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Abstract

We present an event driven adaptive time stepper for the simulation of the dy-
namics of switching electronic circuits with an application to power inverters. We
show that in this context, variable time-stepping is both more efficient and more
accurate than commonly used fixed-step integration methods using interpolation
and extrapolation for event location and handling. We also show that impacts are
needed to resolve certain types of transitions accurately. The stepping scheme is
based on a nonsmooth variational method and can also handle complementarity
conditions for nonsmooth elements such as diodes and transistors for instance.
The combination of variable step size and impacts yields a method of second
order according to numerical tests.

We also introduce a parallel, strongly coupled co-simulation method which
allows to simulate many inverters with nearly linear complexity on multicore
CPUs. The parallelization avoids the linear increase of switching events with the
increase in number of phases or inverters, which leads to quadratic computational
complexity. To do this, we used the effective admittances of subcircuits to enforce
the voltages at common nodes. Our tests indicate that this is nearly as accurate
as a fully coupled simulation. We have found that the combination of variable
time-stepping and our parallelization technique allow for the simulation of several
inverters in real-time.

We wrote prototype software which indicates that single inverters can be sim-
ulated faster than real-time, and slightly less than real-time for several ones,
despite the additional numerical linear algebra necessary.
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1 Introduction

Numerical simulation is essential for the development of switching circuits because
they combine electronics and control systems. Interaction between the two can lead
to systemic errors which are hard to find. This is even more important in the context
of micro-grids because of strong interaction between inverters. Small grids are also
sensitive to faults and so these have to be predicted.

The dynamics of switched circuits like inverters non-smooth, meaning that standard
integration methods are not necessarily applicable since derivatives are not continuous
at each switching event in the general case. Each transition must be treated with care
in order to maintain good accuracy.

For the case of inverters, state transitions are governed by controllers whose function
is to produce smooth AC signals from DC input, and they are tuned to respond
quickly to small variations in frequency and to attenuate undesirable harmonics. The
consequence is that simulations must run at very small time steps which make them
slow. But as we show, the most commonly used methods are unnaturally slow by
almost one order of magnitude. But there is a demand for simulations which can run
in real time for hardware-in-the-loop for instance, and this motivates the present study
for finding new, faster and more accurate methods.

The computational complexity of simulating inverters grows quadraticly with the
number of phases which means that simulating all the inverters in a small wind farm,
say, is prohibitive.

We introduce a high performance variable time step, event driven time integration
method with impacts to improve both speed and accuracy. This contrasts with the
state of the art methods which use interpolation and extrapolation to maintain a
fixed step, and to locate events. There is currently no method which handles impacts
either. As shown in our results section 6, variable time stepping is both faster and
more accurate, reaching the real-time domain for two simple circuits, nearly one order
of magnitude faster than the state of art commercial software packages.

We also developed a parallel algorithm allowing for the simulation of several in-
verters. Some accuracy is lost when doing this, but the parallel execution scales well
enough that we can simulate very many coupled inverters with nearly linear scalability.

The report is organized as follows. We first discuss previous work in Sec. 2. We then
continue with theory and numerical methods in Sec. 3, numerical methods in Sec. 4,
and present our results and discussion in Sec. 6. The software is described in Sec. 5.

2 Previous work

The mathematical theory of differential equations with discontinuous right hand sides [8]
is well established and for the case at hand, there is no difficulty from the perspective
of existence and uniqueness of solutions for most cases. The problems we consider fit
in the simpler category, and numerical handling of these is well-established [12, see p
196–200]. This is so because our in our case, events and switches are due to causes
external to the dynamics of the system, i.e., they are exogenous events, i.e., they do
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not depend directly on the internal states of the system. In other words, an event at
a given time t cannot cause another one instantaneously, though several can happen
simultaneously. Exogenous events are common in all numerical integration packages
but since they work as black boxes, these are ill-suited for the case at hand where
performance is crucial.

There is theory for cases of switching circuits with endogenous switches, i.e., state
changes which arise due to the dynamics of the system [2, 26, 30] where the main
problem is that solutions can be “trapped”, meaning that it is impossible to cross
from one state of a condition, where, say, a switch is in an ON state, to the other
side where it is in the OFF state. This then requires sliding modes. This would be
relevant for more general circuits but is outside of our scope. We have also worked
on fixed step numerical methods which can handle such problems [29] but abandoned
this avenue for the present study when tests showed that fixed step size integration is
ill-suited here.

One could consider the complete circuits we study as a closed system, including
the dynamics switches and filters, explained below in Sec. 3.1, but filters are weakly
coupled to the rest of the dynamics, and are in fact delayed even in their physical
realization.

When considering the simpler case only, a few questions remain namely, whether
or not to use a variable step-size, and whether or not impacts must be resolved at
transition time, i.e., where there is an instantaneous change of state when a event is
triggered.

It appears that variable time step methods have not been used in the context we
consider, though one can clearly use the standard methods offered in Matlab, but
that is prohibitive in terms of performance, something we address here. One could
presumably use one of the various implementations of [24] but we found very few
literature about this.

The state of the art and previous work for the simplified event driven dynamics of
electronic circuit then reduces to a handful of methods [see 21], all of which use fixed
time step integration, but differ in how they locate transitions and how to reconcile
fixed time step with the variable duration and uneven distribution in time of the events.

The industry standard software is currently PSCAD/EMCDT [6, 10]. This was orig-
inally designed for smooth circuits dynamics not subject to switching events according
to the documentation. Fixed step is good here since the time integrator used is the
implicit midpoint method [11] which is very stable even at fixed step. When fixed step
is used, the linear algebra involved in computing voltages and currents is simplified
since matrix factorizations can be reused. Adapting this to the case we study here
poses difficulties, but revising the entire software package is presumably not advisable.

The five most common methods are illustrated in Fig. 2. We consider a circuit
connected to a voltage source which can be switched ON or OFF. We assume that
there is an event function g(x) such that g(x) > 0 when the switch is ON, and g(x) < 0
when it is OFF, and x state of the system.

The fixed time grid used by all five methods is denoted t0, t1, . . . , t5 and an event is
triggered at time between t0 and t1 and triggered again just before t4, and has length
less than the step size. This pulse is shown with a dotted black line, hidden by other
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lines in some cases. In all cases, the orange rectangles are the excess energy put into
the system because of the fixed step size, and blue is the energy unaccounted for. The
reference is the middle panel on the left hand side.

For the simplest fixed step method in the top panel on the left hand side, time is
advanced to t1. A switch is then detection at an indeterminate time between t0 and
t1. This event is then considered to have happened at t1, and the switch is kept ON
up to t4. At that point, the switch is detected to be OFF, and the stepping continues
with an OFF state.

Clearly, this makes sense only if the time step is very small. In the case of PWM
circuits described below in Sec. 3.1, and in view of results in Sec. 6.3, high frequencies
will not be resolved properly.

The post correction method on the top panel of the right hand side locates the ON
event between t0 and t1, and then increases the voltage of the source to account for
the missing energy. It does the opposite when the OFF switch is detected between t4
and t3. This clearly introduces anomalies. FiXme Note:

references?For the Time Averaging Method (TAM) [21], an estimate of the energy in the duty
cycle is computed, and the solution is then interpolated by varying the input voltage.
This corresponds to recomputing the step from t0 to t1 in principle, but, without
changing the state at t0, only turning the switch ON at t1. The same operation is
repeated for the OFF event between t3 and t4.

Then comes the Interpolation and Extrapolation Method (IEM) which is the bottom
panel on the right hand side column. This does locate the ON event before t1, and
interpolates to that point. It then turns the switch ON and takes a new step. This is
not aligned with the grid however as it overshoots t1. Instead of backtracking however,
and new step is computed to reach a point before t2. Since that undershoots t2, a new
step is taken, and the result is interpolated to t2. Data for t1 is then missing, or left
at the wrong value.

Finally the Double Interpolation Method (DIM) used in PSCAD[9, 15, 17] is il-
lustrated at the bottom panel of the left hand side. There the event is located by
interpolation between t0 and t1 and interpolation is used to construct the state of the
system there. A step is taken with the switch ON. Because of the fixed step, this
overshoots and therefore, another interpolation is made to t1 where a full step is now
taken.

No matter how one looks at these methods, they can only be accurate for small
step-size, even if the pulses are large on average. When the time step is large, there is
severe attenuation of the high frequencies in the circuits as shown in Sec. 6.3.

But this is one aspect only. Common to all these methods is a simple restart of the
integration when an event is located. However, as shown in Sec. 3.2, this is simply
wrong and noticeably so for circuits which do not have inductance in them, such as
non-ideal voltage sources.

PSCAD is the best representative of fixed-step methods we could find so it is the
method we use for reference.
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Figure 1: Different event location for fixed step methods
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3 Theory

We present now the elements of theory needed to support our simulation techniques.
We start with a general discussion of inverters, continue to the dynamics of electronic
circuits. We then move on to discontinuities, and numerical time integration.

3.1 Inverters

Inverters are switching transformers which convert an DC signal to an AC one. These
are used in frequency converters, also known as AC-AC transformers. Converters
first transform an AC signal to a DC one using a rectifier. A DC transformer then
converts this to the correct voltage, and an inverter is then used to produce AC at a
given frequency using an array of switches which are turned ON and OFF in rapid
sequences to produce a smooth signal of a given frequency. Frequency converters are
essential in wind power generation for obvious reasons.

Going from AC to DC requires a filter, such as an LCL circuit. But modulating
the input voltage, any wave form be generated. To produce a smooth sine wave
however, the switches have to be controlled minutely. A fundamental problem with this
technique is that any sudden change in the voltage causes undesirable high frequencies
because of the 1/f nature of the spectrum of a pulse, as shown in Fig. 2. The LCL
filter acts as a low pass filter though and greatly attenuates the higher frequencies but,
being a linear filter, this attenuation is slow. The modulation of the natural frequency
of a single phase filter is illustrated in Fig. 4.

Once a sine wave of the right frequency and amplitude is generated, there remains
the problem of coupling this to a load such as the grid. For the latter case, an oper-
ator makes demands as to how much active and reactive power should be delivered.
This requires the use of controllers which monitor the signal and modulate the pulse
sequence.
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Figure 2: Frequency response of a square wave. The decay of the harmonics is very
slow.

We consider two types of controllers, namely, those based on Pulse Width Modula-
tion (PWM), and those based on Space Vector Modulation (SVM). We study both.

The working principle of PWM circuits is a comparator between a carrier signal
and the output signal from a controller which monitors the signal. The carrier is a
triangular wave at fixed frequency, much higher than that of the output wave. A
typical value is 6KHz to control the 50Hz signal used in the grid. When the output
signal crosses the carrier, an event is triggered. In this case, it would be to toggle
a switch and change the voltage on one of the phases. To use PWM controllers in
our simulation, we must detect the “collisions”, i.e., the times at which the values we
compute cross the carrier.
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This is shown in Fig. 3 where the background grey triangular wave is the carrier
signal, and the noisy sine waves are control signals for each of the phases. Comparator
circuits triggers transitions whenever a control signal crosses the carrier, generating
pulses of variable width. These pulses in turn activate switches on the voltage sources.

In our simulations, the time steps correspond to a fraction or the totality of a duty
cycle which means that for PWM circuits, we must predict when a given control signal
will cross the carrier. Given the noise in the signals, this poses a challenge we address
in Sec. 4.7.
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Figure 3: Details of a PWM controller

The SVM circuits on the other hand are based on a Clark transform which compute
the phases and amplitude of the output signal from the controllers [1]. From this, a
sequence of duty cycles is computed which should result in the desired signal. The
SVM controller is essentially predictive, and we use this in our simulation to compute
time steps.

A single phase inverter is described in Fig. 5. Here the filter is a simple LC circuit,
and we have a load attached at the end of the inverter. The dynamics of the filter is
shown in Fig. 4. The bottom curve is the natural oscillation of the LC filter, but the
other two curves contain the current and voltage, respectively. Note that the current
has discontinuous derivatives at the pulses.

A complete three-phase inverter is depicted in Fig. 6 which illustrates how the grid
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controller signal comes in to the inverter, filtered via numerous filters, from there,
generating switches on the input voltage sources.
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Figure 6: A complete PWM controlled three phase inverter circuit.
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Figure 7: PWM control using a comparator between a triangle wave and a control
signal.

3.2 Discontinuities

Switching circuits are discontinuous by definition and cause nearly instantaneous
changes in voltages or currents. This can cause the currents or their derivatives to
jump suddenly, though charges are continuous in time. We use simple serial LRC and
RC circuits to illustrate this, and show that special care is needed for RC circuits or
subcircuits.

A simple forced harmonic oscillator with damping with discontinuity at t = 0 reads

Mẍ− +Bẋ− +K = f−
Mẍ+ +Bẋ+ +K = f+,

(1)

where t− < 0 < t+, and both are arbitrarily close to 0. Since a mass cannot change
position instantaneously, x+ = x− = x. By integration we have

∫ t+

t−

dsẋ(s) = x(t+)− x(t−) = 0. (2)
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This leads to
ẍ+ = ẍ− + (f+ − f−)/M. (3)

This corresponds to a discontinuous derivative of the velocity. Since our time steppers
only consider velocities and make no assumption on acceleration, see Sec. 4.1, this
poses no problem.

When M = 0 however, Eqn. (1) implies

ẋ+ = ẋ− + (f+ − f−)/B. (4)

This implies that there is an impact which needs to be resolved. Note however that
the impact is due to a discontinuity on the forcing term which is entirely different
from a an impact involving a boundary condition such as x ≥ 0 for instance, which
produces an instantaneous change in velocity. The latter needs an impact law for
energy conservation but this is not the case here. Given the continuity assumptions,
all that is needed is to compute a consistent acceleration after the impact, and this
is unique since we already know all the other variables, so that know f+ is enough to
compute ẍ+ or ẋ+ from Eqn. (1) or Eqn. (3) respectively.

Note also that for the case where M = 0, we have two values for ẋ at time t, so that
restarting the integrator must occur at ẋ+, and that as far as the numerical solution
is concerned, there must be data points that are either very close in time, or at the
same time. The numerical ramifications are discussed in Sec. 4.2.

In the context of electronics, using ẋ = i for current, B = R, the resistance, M = L
for inductance, K = 1/C for capacity, and f = V , the voltage, this yields either

di+
dt

=
di−
dt

+ (V+ − V−)/L (5)

or
i+ = i− + (V+ − V−)/R. (6)

Once more, the continuity assumption on charge means that q+ = q−.
For switched circuits which do not have inductance on certain branches, these im-

pacts must be resolved. The procedure for this is described in Sec. 4.1. The case of FiXme Note: write
the fucking sectionthe LC circuit is illustrated in Fig. 4 where the discontinuities in the derivative of the

current are apparent. FiXme Note: for
that picture,
mention that the
sine wave is
different freq from
the natural freq

The RC circuit we chose was a battery that is switched ON and OFF, connected
into a serial RC circuit. The current through the capacitor is shown in Fig. 8. The
blue line is computed without using impacts and the black line is computed using
impacts. PSCAD’s solution is added for illustration. The impact solution is close to
the analytic computation. But the solution without impacts overshoots significantly,
and smooths out the dynamics. One should note that only q− and q̇− are reported by
PSCAD which leads to lines with modest slopes instead of nearly vertical ones.

The voltage on the battery and charge on the capacitor are shown in Fig. 9 and
Fig. 10, respectively. It is clear that the näıve approach with the implicit midpoint
method [13] gives catastrophic results, as seen from the blue line at the bottom.
PSCAD’s solution is better, but clearly, resolving impacts is necessary.
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Figure 8: Impact dynamics for a pulsed, charging capacitor in an RC circuit: capaci-
tor’s current.
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Figure 9: Impact dynamics for a pulsed, charging capacitor in an RC circuit: capaci-
tor’s voltage.
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Figure 10: Impact dynamics for a pulsed, charging capacitor in an RC circuit: capac-
itor’s charge.

3.3 The equations of motion

We briefly review the equations of motion of electrical circuits without discontinuities
for the moment.

Consider a set of linear, discrete components such as capacitors C, resistors R and
inductors L, each of which has a charge q and a current q̇ = i running through it.
These components are assembled in diagonal matrices with the same letters, namely,
L, R, and C. These have different dimensions of course. Conservation of charge, or
implies that

Ai = 0, (7)

where A is the nodal matrix, with one row per node, and entries ±1 corresponding to
the components connected to the node. This is Kirchhoff’s current law since for each
row j of the matrix, we have

∑

l

ajlσlil = 0, and σl = ±1. (8)

Restricting ourselves to linear components, the system’s motion satisfies the following
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Differential Algebraic Equations (DAEs)


L 0 0
0 0 0
0 0 0






diL
dt
diR
dt
diC
dt


+




0 0 0
0 R 0
0 0 0





iL
iR
iC


+




0 0 0
0 0 0
0 0 1

C





qL
qR
qC


 =



VL
VR
VC




Ai = is,

. (9)

where is are external current sources. The last line here is the algebraic condition,
and one can show that in fact, the voltages can be separated as



VL
VR
VC


 = ATV + Ve, (10)

where Vl is the voltage at node l, and Ve are external sources.
The DAEs of motion in Eqn. (9) are degenerate which makes them difficult to solve

numerically in this form. The most common method is called the Modified Nodal
Analysis (MNA) [27] which reduces the system to a set of coupled differential equations
which can be integrated numerically with standard methods. We choose a different
method however.

4 Method

We now describe all the components of our algorithms.

4.1 Variational integration

Using a Lagrangian formulation and discrete-time variational mechanics[22], we arrive
at a discretization which reads as follows

[
Z(h) −AT

A 0

] [
ik+1

V

]
=

[
ak
ie

]
(11)

where kis the discrete time, ie contains external current sources, and

Z(h) =




1
hL 0 0
0 h

4C 0
0 0 R


 , ik =



i
(L)
k

i
(C)
k

i
(R)
k


 , ak =




1
hLik + V

(L)
k

− h
4C ik − 1

C qk + V
(C)
k

V
(R)
k


 . (12)

Here, V
(j)
k , j = L,C,R are external voltage source relative to ground. We update the

capacity’s charges according to

q
(C)
k+1 = q

(C)
k +

h

2
(i

(C)
k+1 + i

(C)
k ), (13)

which is the trapezoidal rule. We will write the system matrix as follows

H =

[
Z −AT

A 0

]
, and H̄ =

[
Z AT

A 0

]
. (14)
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Either H or H̄ can be used to solve the stepping scheme in Eqn. (11), as H can be
used to solve for ik+1, V , and H̄ can solve for ik+1,−V . Not that H is non-symmetric
so it is generally more efficient to use H̄ which is semi-definite.

A similar method is present in the literature [25], but this is seldom used on the
grounds that the matrix H or H̄ in Eqn. (14) large and would be inefficient in a
numerical context in comparison to the MNA formulation which uses smaller, positive
definite matrices, but which are more dense. But matrix H̄ is very sparse. Much like
the midpoint method, the time stepping scheme above is very stable [18] at fixed step.
This formulation also allows for inequalities which then includes diodes and transistors
among other non-smooth components. This can also be done at fixed step without
any difficulty [18, 20]. This differs from standard stiff nonlinear functions for diodes,
and is much more efficient [29].

This stepping scheme then is the basis of our numerical method. The matrix H in
Eqn. (14) depends on the time step so factorization is needed whenever this changes.
But provided this matrix has the same structure at each factorization, the cost can
be made small given suitable sparse linear algebra routines. This is discussed further
below in Sec. 4.3.

4.2 Impacts for complete circuits

We think now of crossing singularities for an entire system, i.e., stepping with a van-
ishing step when there is a sudden, large change in input voltage. As said previously,
suffice to compute a new current according to an equivalent of Eqn. (1) or Eqn. (3).
Though it suffices to restart the integrator after the discontinuity, taking a standard
step would blur the sudden change which is undesirable as discussed in Sec. 3.2. The
change should be instantaneous or at least we should have values for the currents,
charges and voltages at the instant infinitesimally close to the discontinuity. This does
not matter for circuits with inductances since the changes in the current, charges and
voltages are not abrupt.

But looking at the numerical impedance matrix in Eqn. (12), it is clear that we
cannot let the time step be too small because of the factor 1/h in the inductances, yet
we want as sharp corners as possible.

To study this, we are thinking of applying a voltage Vs = V+−V− on the components
with a zero time step. We then compute the current i+ after the impact using the
currents i− before. To unify notation, we denote i− = ik and ik+1 = i+.

Starting with the inductors, we take the Schur complement of 1
hL to get



R 0 AT

R

0 h
4C AT

C

AR AC hALL
−1AT

L







i
(R)
k+1 + V

(R)
s

− h
4C i

(C)
k+1 − q

(C)
k+1 + V

(C)
s

−AL(L−1i
(L)
k + V

(L)
s )


 . (15)

It is clear now that the matrix on the RHS in Eqn. (15) has a good limit as h → 0,
and that the inductors now act essentially as current sources. The remaining system
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matrix has some issues to. As h→ 0 we have

H̃ =



R 0 −AT

R

0 0 −AT
C

AR AC 0


 (16)

This matrix will not necessarily have full row rank, which corresponds to a circuit made
of disconnected subcircuits. However we know the voltage drops across capacitors
which means that we can remove them. We therefore remove AC and reconstruct AR

so that components that were coupled on either side of a capacitor are now connected
together. The capacitors become voltage sources if they are connected to resistors on
both sides so that for each one of them, we put V (j) on one of the components and 0
on the other, where

V (j) = − q
j
k

Cj
− V (j)

C . (17)

Assuming that a capacitor j is connected to nodes m,n, the A matrix is then modified
by summing these two, and then one of two nodes, m, say. The voltage in Eqn. (17)
is then added to all components connected previously connected to m.

All the nodal voltages are known at this point but not the capacitor or resistor cur-

rents. For inductors we have i
(L)
k+1 = i

(L)
k since the voltages are finite by construction.

For the capacitors the difference

Amj ,•ik+1 −Anj ,•ik+1 (18)

using the original rows of matrix A. Note that these impact matrices can be computed
and factored once and then stored for reuse. The complete procedure is listed in
Alg. 4.1.

Algorithm 4.1 Computing impacts for a full circuit

Assemble current sources from the inductors: −AL(L−1i
(L)
k + V

(L)
s )

for all capacitors j = 1, 2, . . . , nc do
Sum rows Amj ,• ← Amj ,• +Anj ,•
Delete row nj from A
Delete column cj from A
Add voltage V (j) to components in row mj

end for
Add current to the RHS of each new submatrices
Solve new systems for i

(R)
k+1

Compute the capacitor currents according to Eqn. (18)

4.3 Numerical linera algebra

Matrix H in Eqn. (14) is non-symmetric but positive definite and this structure is nec-
essary when dealing with non-smooth system for solvability of the Linear Complemen-
tarity Problems (LCP)s[23] which arise when diodes and transistors are present[29].
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We use H̄ in the computations because it is symmetric which leads to computational
savings. However, since H̄ is indefinite, some dynamic pivoting is generally needed [7]
we instead relied on an a-priori safe pivoting technique [19].

Factorizing a sparse matrix requires permutations to avoid fill-ins [5] which is a costly
process. But H̄ has fixed structure for any given circuit. Though widely available
packages such as UMFPACK[4] and CHOLMOD [3] mention that the permutations
can be reused, they do not reuse all information and spend considerable amount of
time repeating work at each factorization. The most problematic being that for a
factorization

H̄ = LDLT , (19)

where L is unit lower triangular, and D is diagonal, the solution of a linear system
H̄x = b is computed as follows

Solve Lz = b for z
Solve Dy = z for y
Solve LTx = y for x

each step being relatively easy to perform [5]. The issue here is that transposition is
a costly operation. Our solution here is to construct LT so that it holds pointers to
the elements in L. This involves memory indirection but the rationale here is that
sorting, permuting and copying is slower than a single memory lookup, especially if
the factorization is used only once, which is the case for variable time-stepping.

4.4 Splitting

The complexity of simulating N coupled inverters grows at least as fast N2. If we
consider a single inverter with M components and p phases, simulating two separate
inverters takes twice as much work. If they are coupled however, this might be even be
larger because of the linear algebra which can have complexity larger than linear, even
when using good software for sparse matrices. However, the number of events doubles.
Unless one takes many steps between events, this leads to twice as many steps. Let
h be the average time step, n = T/h the number of steps per period T , and nc the
number of crossing. The number of steps taken is simply ns = n + nc in general, or
just nc for a variable step size assuming the filter frequencies are low enough. The
number of crossing is then twice the number of phases so nc = 2Np. The total amount
of work wt per period is then wt = w(N)ns, where w(N) the work to step N inverters.
With the optimistic case of linear scaling to perform one step in terms of the number
of inverters, we have w(N) = αN . Asymptotically, ns → nc = 2np = 2pN . Putting
all this together, we have

wt(N) = O(w(N)ns) = O(αN · nc) = O(α ·N · 2pN) = O(N2). (20)

Clearly, this is an undesirable situation. The only opportunity for parallelism in this
case is in the numerical linear algebra and this is rarely advantageous except for very
large systems.

One can decouple the inverters in principle by simulating them separately, each with
its own grid model, and then exchange currents periodically so they share a common
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voltage at the grid coupling. The problem then is that each inverter must have an
estimate of the nodal voltage, as well as the impedance of the others. This type of weak
coupling is notoriously unstable and this only gets worse as the number if subsystems
increases.

We present two strategies to split a system and estimate the current through and
voltage at a common node.

4.5 Weak coupling

We consider two systems each with impedance Z (i), coupled at a common node. With
the discretization mentioned in This can be written as



Z11 0 AT

1

0 Z22 AT
2

A1 A2 0






i
(1)
k

i
(2)
k

V


 =



a
(1)
k

a
(2)
k

0


 , (21)

where i (j) are currents Zjj are impedances, and a (j) are vectors which depend on
discretization. What the last line in the matrix says is

A1i
(1)
k +A2i

(2)
k = 0, (22)

which is Kirchhoff’s law for the common node where only few currents are involved. In
this case, A1, A2 are simply projection matrices, i.e., this equation simply says that a
few currents of the first subsystem should be identical to a few currents in the second.
In other words, some components are duplicated, and the constraint ensures that their
currents match. The Lagrange multiplier λ is then simply the voltage at the common
node, which is an input to each of the subsystems. With simple manipulations, it is
easy to show that

[
A1Z

−1
11 A

T
1 +A2Z

−1
22 A

T
2

]
λ = Wλ = −A1Z

−1
11 a

(1)
k −A2Z

−1
22 a

(2)
k . (23)

There are methods to simulate weakly coupled systems, a popular one being the
Transmission Line Model[16, 28] but in all our tests, this failed to converge properly
for reasonable steps.

4.6 Strong coupling

We choose a “strong coupling” strategy in which an estimate of the admittance of the
coupled inverters is performed numerically. To do this, we perform the time integration
of each subcircuits – inverter in this case – p+1 times where p is the number of phase.
In each of these time integration, we vary the input slightly on one of the phases,
away from a starting estimate used for all subcircuits and all phases. One integration
serves as a reference. Using finite differences, we can then compute the admittance
of a circuit, i.e., a matrix which tells us the current-voltage relationship. Once this
information is collected for each subcircuit we can compute the approximate input
current for each so they agree on the voltage at the common node at the end of a
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given time interval. At that point, each subcircuit is integrated one more time. Note
that this is multirate as well since the effective admittance can be computed for a time
interval that is commensurate with the oscillation period of the grid.

In between the synchronization points, each inverter can also use the admittance
matrix to compute the impedance of a local grid model.

This technique then requires p+ 2 integrations per inverter per step. However, the
admittance computations which require p + 1 time integrations over a given interval
are embarrassingly parallel. The overall cost is then only twice as large assuming
enough computing resources. In principle, this can scale linearly. In terms of raw
computational cost, this method is advantageous from six inverters onward, but taking
parallelism into account and assuming sufficient resources, this is faster in terms of wall
clock time from three inverters onward.

We consider two inverters with p phases and a grid serving as an energy sink with
resistance Rg and voltage

Vg(t) ≈ sin(ωt+ φ). (24)

For a short interval of time, the voltage at the node connecting the inverters and the
grid can be approximated with

V sin(ωgt+ φp) (25)

for each phase p. The grid itself, approximated by an impedance Rg is simulated with
a fixed integration step of h.

For each inverter there is an operator which maps initial condition z
(j)
0 , which in-

cludes currents and changes, and the grid parameter V so that

z
(j)
h ← Φ

(j)
h (z

(j)
0 , V ). (26)

Note here that several internal steps are needed to go from t = 0 to t = h. For two
phases now we need to solve the nonlinear system of equations

z
(1)
h = Φ

(1)
h (z

(1)
0 , V )

z
(2)
h = Φ

(2)
h (z

(2)
0 , V )

A (1)z
(1)
h +A (2)z

(2)
h = 0.

(27)

The last line can be rewritten thus

A (1)Φ
(1)
h (z

(1)
0 , V ) +A (2)Φ

(2)
h (z

(2)
0 , V ) = 0. (28)

We need to know V such that this is satisfied and this we do by first using an estimate
V̄ so that V = V̄ + δV . We first write

J (j) =
∂Φ

(j)
h (z

(j)
0 , V )

∂V
(29)

So that we can write
A (j)Φ

(j)
h (z

(j)
0 , V̄ ) = ī (j) (30)
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and
A (j)Φ

(j)
h (z

(j)
0 , V ) ≈ ī (j) + J (j)δV, (31)

so that Eqn. (28) is approximated by

A (1)ī (1) +A (2)ī (2) + [J (1) + J (2)]δV ≈ 0. (32)

This is then a simple linear system of equations for δV . Remains to compute the ma-
trices J (j) which must be done procedurally since there are multiple switches between

0 and h. To do this, we first simulate the inverter with V̄ and obtain z̄
(j)
h . Then for

each phase we introduce a perturbation δV (p) and compute the resulting states z̄
(j,p)
h .

We then have an approximation of the column p of J (j) as

J•,p
(j) ≈ z̄

(j,p)
h − z(j)h

δV (p)
. (33)

Only the current variables in z (j) are used. We then construct the matrix

K = J (1) + J (2). (34)

Note that if we did just one step of equal length for each inverter, we would have

J (j) = [Z (j)]−1A (j)T , (35)

and so K would be symmetric and positive definite. This is not the case here however
and though there is no theory available at this time, this is suspected to be a source
of instability so there are limits on the time step h.

The full listing is found in Alg. 4.2.

4.7 Collision detection

The speed of our method depends critically on the collision detection for PWM control
circuits. Here, each phase of the control signal crosses the carrier twice per carrier
period. There therefore six crossings for a three phase circuit with PWM control. The
carrier for a three phase circuit with PWM control, as in Fig. 6. Each crossing causes
changes in the switches, therefore changing the configuration of the circuit. In the best
possible case assuming that the filter dynamics is slow enough, we could in principle
take only six steps per carrier period assuming that collisions between the signals of
the phases and that of the carrier can be detected accurately enough. There is no
collision detection in the case of SVM, though the switches depend on the accuracy of
the simulation, and this decreases when proceeding at fixed step. We concentrate on
PWM circuits with triangular carriers in what follows.

Our examples had relatively slow dynamics, i.e., a filter at 400Hz and a carrier at
6KHz. This means that we can take large steps and in that context, linear interpolation
for collision detection is sufficient. Quadratic interpolation would be used if the filter
frequency was higher.
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Algorithm 4.2 Strong coupling, multirate simulation

Given n inverters with p phases each, a global step h, and a grid voltage of V
while Not done do

for all Inverters j = 1, 2, . . . , n do . parallel
Simulate for time h with node with grid approximation V̄
Store bari (j)

for all Phases l = 1, 2, . . . , p do . Parallel
Simulate for time h with node with grid approximation V̄ + δV (l)

end for
Compute J (j)

end for
Compute K =

∑
j J

()j

Compute ī =
∑

j A
(j)īj

Solve KV = ī
for all inverters j = 1, 2, . . . , n do . Parallel

Simulate for time h with node with grid approximation V
Store bari (j)

end for
Update grid voltages with bari (j)

V̄ ← V + Vs . Vs is an estimate of noise
end while

The stepping scheme here uses a nominal step h∗, then checks for collisions in the
past. If there is a collision on one of the phases, the step is rejected and a new steps
is taken to the estimated crossing time. Collision detection is performed again to see
if other phases crossed the carrier, but the step is not rejected.
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Algorithm 4.3 Collision detection

while not done do
Take a step of length h∗
Detect collisions on all phases
if collision on phase p then

Compute h < h∗ for the earliest collision
Take a step of length h
Switch the state of phase p
for all phases j 6= p do

Detect collision
if collision then

Switch the state of phase j
end if

end for
end if

end while
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Figure 11: The dynamics of variable time stepping and collision detection. The differ-
ence between the analytic solution and the numerical one is grossly exag-
gerated for illustrative purposes only.
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The collision detection algorithm in Fig. 12. The upper half represents the case
where the computed collision time is greater than the real impact, and the lower half
covers the opposite case. The alternative curves are zoom-ins of the background sine
wave.

In both cases, the dark red line is the exact solution. The blue line is the computed

trajectory from the last step to point 1 , when the first computation of the state 2
at tk+1 is computed. Since the trajectory crosses the carrier however, the approximate
location of the collision tc is computed by intersecting lines. Then the step is rejected.

Setting the time step to h = tc − tk, the new state 3 is computed and a flag is set
to indicate that the collision is handled. Since the collision time tc is approximated

according to the rejected trajectory, the new state 3 could be above or below the
carrier, i.e., ahead or after the actual collision, corresponding to the top and bottom
half, respectively. In the first case, we detect that we passed the carrier. Since the flag
is ON at this point, we assume that this is the collision we had to consider. We accept
the step and unset the flag. We do not backtrack however, but fire the pulse and take

a new step to state 4 at time tk+2. We could do a refinement, but this first order
method has proved sufficiently accurate.

The alternative is shown in the bottom have in which case the value of the signal at

3 to tc is not yet passed the carrier. Here we assume that we are close to the carrier
and therefore, keep the flag ON. Again, the pulse is fired and the step is accepted to

reach state 4 . The collision detected between tc and tk+2 is then ignored due to
the flag being set, meaning that it is assumed to be the same one which was detected
previously. The flag is then unset, since we are guaranteed to have past the carrier.

The value of the pulse is determined by looking at state 1 . If the control signal is
below the carrier, the value pulse is set to the upper value and vice versa.
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Figure 12: Detailed view of collision detection.

All possible types of steps are presented in Fig. 13, where we used straight lines only
for clarity. We start from the top of the figure which describes situations involving
a peak, and the bottom half is a mirror image corresponding to a dip. The dotted
vertical lines at t4 and t10 are walls which prevent double crossing, meaning that only
collision is with the carrier is possible, as illustrated in traces +1 to +5. For trace +1
for instance, we want to step all the way to t8 which would mean that two collisions
are missed. However, the wall at t4 means that we will search only between t2 and
t4, during which interval we are guaranteed to have a maximum of one collision. The
wall at t7 is not even considered. Trace +6 is clear so step t2 is taken. Traces +7 and
+8 are also stopped at a wall, but trace +9 does not need this. Traces +10, +11 and
+12 start at a wall and collide with the carrier, and stopped by a wall for +10 and
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+11, but not +12. Traces from +13 to +18 we start from a safe point and continue
forward to either a wall, a safe point, or a carrier position. The other cases from −1
to −18 are mirror images.

Essentially, we never integrate past a wall, i.e., if we do go past, we restart with
a suitable time step. Since we keep the factorization of the stepping matrix for the
nominal step, the carrier period in the optimal case which is exactly the time between
two walls, this is more efficient overall, instead of adjusting the step to avoid passing
them.

However there is a still a problem since this scheme has a minimum of 8 steps per
carrier period. A better collision detection scheme could reduce the number of accepted
steps per period to 6, and the number of rejected steps would also be 6. This requires
more logic to handle double crossing which then allows to remove the walls. We did
not implement this.

The case of several phases is exemplified in Fig. 14 with two phases. This is much
like Fig. 12 except that the exact solution is not drawn. The main issue here is that
after re-doing the step, another phase could have crossed the carrier. This is illustrated
in “Alternative 1” phase 1 is detected to have crossed the carrier before phase 2 so
we backtrack to tk and step to tc. However, during that step, phase 2 crosses the
carrier between tk and tcol.1. However, we never reject small steps in our current
implementation so tcol.1 is accepted. Therefore, we trigger the switch on both phases 1
and 2 at tcol.1. A step is then taken to tk+2, where the phases are at the very top and
very bottom. For “Alternative 2”, the step to tc causes phase 1 to cross, but phase 2
does not. In this case, we trigger the switch on phase 1 only.
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Figure 13: Description of all possible types of collisions between signal and carrier.
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Figure 14: Collision detection for two phases.

Finally, the crossing times computed by our collision detection algorithm converges
quadraticly to the exact collision times with the nominal time step h∗, from the max-
imum allowable step down to zero as shown in Fig. 15.
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Figure 15: Convergence of event location
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Figure 16: Shows the carrier interpolated with fixed time steps and variable time steps.
The above pictures correspondence to how PSCAD interpolates the carrier
and the bottom one how it is done in our method.

4.8 Time step selection
FiXme Note:
describe graph
better: average vs
nominal step etc.

The maximum nominal time step is the minimum of half the carrier period and 1/20
of the filter period, because we must resolve all six collisions with the carrier signal,
and should resolve the filter dynamics accurately enough. For the example circuit we
used with 6Khz carrier frequency, and 400Hz filter frequency, the carrier period is the
smallest so that our nominal step corresponds to approximately 40 steps per period
of the filter. For the implicit midpoint integration method, which has second order
accuracy, this is short enough to produce a high quality approximation of a sine wave.
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The average step changes with the nominal step as illustrated in Fig. 17, where it
is seen to increase up to critical points where increasing h∗ has no influence. Here
we consider two different filters of varying periods on the x-axis. We choose two
representative filters with periods td1 and td2 , and a carrier with period tca such that
td1 < tca < td2 to illustrate the different regimes. We write tcr for the optimal average
step, i.e., the carrier frequency divided by the number of crossings, six in our example
circuit.

From the origin to the red point Dyn.1, the average step is not dependent on the
carrier frequency but we cannot go beyond td1

for stability and accuracy reasons. The
for a lower frequency filter td2 , the average step increases linearly with the nominal
step up to the critical point which is the limitation due to the carrier. The linear
relation is an idealization, assuming high accuracy collision detection. If the noise
level is very high however, that may not be the case.

0 td1
tcr tca td2

0

hn

hnominal

h

Dyn.1

Dyn.2Critical
Avr. step

Collision
distribution

Critical
performance

Avr. step
Critical
Carrier
Dynamic 1
Dynamic 2

Figure 17: Critical performance of time step control.

5 Software implementation

The first guiding principle in designing the software is that a switched circuit is in fact
a collection of similar circuits, each using the same components. The second principle
is that in order to achieve performance, one must have good memory alignment as well
as a minimum number of copy operations, if any.

At the basis of the software is the concept of “stacked objects” which contain multiple
copies of the same variable. Depending on the state of a circuit, the suitable value is
reported, used, written to.

What this means is that, say, a stacked double variable is in fact a collection
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of double variables. The object containing these acts and behaves like a double in
all aspects, but it changes layer when needed. Layers are changed when there is a
switching event.

What this means in particular is that during circuit construction, a single instance
of a capacitor would be created and then inserted into one or several layers. This
means there is absolutely no chance to inadvertently insert two different capacitors in
two different layers where they should be identical. Circuit creation has proven nearly
error prone.

From that point on, there is no difference between the different configuration, only
an active circuit.

Then we reuse the linear algebra as much as possible and even though our variable
stepping method requires refactorization, the configuration of each state of the global
circuit does not change. We therefore use one matrix per configuration, and store the
fill-in reducing reordering as soon as it is computed. This is used once only. Also, once
this is computed, the address in the matrix where an object will write is given to that
object, meaning that no copy is ever made. On top of that, we use a pointer access to
the triangular factors of the matrix so that the transpose operation is performed once
only, avoiding all data copy.

We wrote our own LDLT factorization matrix for the saddle point matrices described
in Sec. 4.1 but used a proprietary implementation of a preemptive pivoting method [19],
which is why the software cannot be published at this time.

Also in line with direct pointer access, we designed a submatrix class which behaves
like a matrix in every respect, but is only a view into the system matrix. It allows
writing data into the system matrix without any knowledge of the permutation or even
the size of the full matrix.

The rest of the design is a standard box and arrow architecture. At the basis are
filters which have ports. The directionality of these is irrelevant to the linear algebra
operations so there is no assumption of causality here. We also used direct pointer
access here so that a filter owns it’s output ports, but the input ports are in fact
pointers to another blocks’ output ports. The danger of this design is alleviated with
the smart pointers in the C++ language and standard library.

For data handling, we used the HDF5 library systematically along with various
buffering mechanisms to alleviate the poor performance when writing to disk. Be-
cause of the class hierarchy in which everything ultimately resolves to a block, we get
systematic access to all the data and can read and write anything from and to a file.

Finally we used Intel’s thread building blocks tbb[14] for parallelism which proved
to be surprisingly easy to use and very effective.

We did not implement a parser to process netlists and this is a drawback. But not
in the context of the present study.

6 Results and discussion

We now present results obtained from the prototype code briefly described in the
previous Sec. 5.
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6.1 Energy conservation

We start with a one phase circuit to simplify the analysis and illustrate the worse case
scenario. We consider a linear LC filter of frequency 150Hz and a carrier frequency
of 10,000Hz without any feedback control and used instead a regular pulse train with
two pulses per carrier period, i.e., regular pulses of 50µs. We take the period of the
pulse train as the representative time scale of the system, namely, τ = 100µs. This
configuration allows for the evaluation of the event handling, time step adaptation or
interpolation, since the period of oscillation of the filter itself is much slower than the
carrier’s period.

In Fig. 18, we present an exact solution without any resistance which gives a base line
for the performance of the variable time-step integrator. This is a good reference for
our technique since we use ideal bi-directional switches meaning there is no resistance
at all. The switches in PSCAD use IGBT models which require small resistances of
the order of mΩ, 10mΩ being the default value. We set this to 10−9Ω which is possible
for this circuit.

We measure the rate of energy loss as a function of time step by simulating over
10,000 carrier period. For the interpolation method, we used time steps from 1

4τ ·10−3,
four times less than the recommended value from the users’s manual of τ/100, and up
to τ/24. Our method used τ throughout as nominal step, but that could have been as
high as 70τ . We then divided the simulated amplitude by the reference solution. The
decay rate is then the logarithm of this ratio with the simulation time.

Our software implementation of the adaptive time stepping technique does not loose
energy, despite the inexact event location. Of course, the result is independent of the
nominal step as long as the dynamics of the filters is slow compared to the carrier.
However, as the time step increases, the interpolation method quickly looses energy
as shown in Fig. 18. The energy decays exponentially with a time constant essentially
proportional to the time step. We believe this is not specific to PSCAD but repre-
sentative of any interpolation method. Using the recommended value of τ/100, there
is still a significant loss of energy. Our method takes four steps per period which is
a twenty five fold increase in performance. Only at a step of 1

4 · 10−3 is the energy
loss commensurate with the small resistor in the switches. But at this point, the
performance ratio is then a thousand folds in favor of variable stepping.

We also computed the exact solution for an LRC circuit subject to regular square
pulses as seen in Fig. 19 to see what is the effect of the parasitic resistances. We exper-
imented with very small values of 1nΩ to see if dissipation was due to this resistance or
the time stepping scheme itself. Our results show that indeed, the parasitic resistance
plays very little role in the decay of the signal, but that interpolation causes rapid
energy losses even for moderate time steps.

The same experiment is presented in Fig. 19 in the time domain for selected values
of time step. We plotted the rolling RMS of the capacitance voltage to remove the
overall high amplitude sine wave. The zoom-in shows how the simulated dynamics
between adaptive and fixed step methods converge. The difference with the analytic
solution is due to sampling errors.

We also simulated an LRC circuit to see what happens when more practical values
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of resistances are used for the non-ideal switches. We used PSCAD’s default value
with R = 10mΩ. For that case, the artificial dissipation due to the interpolations
during event detection is not as severe, differing by only a few percent from the exact
solution, unless unreasonably large steps are taken. This is shown in Fig. 18 where we
used a rolling RMS value of the voltages to remove the overall sine wave in the signal.
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Figure 18: Energy conservation in a single phase circuit subjected to regular pulses.
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Figure 19: Energy conservation and dissipation for different time step. Rolling RMS
value of the voltages are plotted to remove the overall large amplitude sine
wave.

Our conclusion is that there is excessive energy dissipation non-ideal switches are
used, and especially when interpolation is used unless unnecessarily small steps are
used and this shows the usefulness of a variable time step method. In particular,
as long as event location is performed correctly, the variable time step method can
preserve energy with relatively large average step, the size of which depends only on
the desired accuracy for the dynamics of the filters. The use of ideal switches helps
also, even though real circuits would have resistance. We believe that a circuit should
be simulated faithfully and that ideal switches must be available when desired. Energy
preservation has repercussions on the spectrum as shown below.

6.2 Time domain analysis

We compared the output our method with that of PSCAD which is a good represen-
tative of fixed step methods. Since it uses interpolation, we used the effective average
step by counting the interpolation steps as well as the full steps. This yields an average
step by dividing the total integration time by the total number of steps taken. We did
the same for our method. In Fig. 20 we present time domain data for the grid current.
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We adjusted PSCADs step size as well as our nominal step so we could compare
the accuracy for similar amount of numerical work. It is clear from the zoom-in
windows is that we do not converge to exactly the same solution. This could be due
to small difference in the circuit configurations and the non-ideal vs ideal switches.
Nevertheless, the time-steps taken by PSCAD have to be much smaller before the
results are comparable which was expected. The convergence rate also appears to
be slower for PSCAD, especially in the transient regime. We believe this is due to
missing pulses because of the method described in Sec. 4.7, even at relatively small
steps. There is also a much slower convergence of the reference signal as seen in Fig. 22,
for reasons unknown. On the figure for the reference signal in Fig. 22, the left most
zoom-in contains the carrier signals in grey lines. We see here that the data from
PSCAD is not at the right location in time because of the interpolations. This has
consequences in the spectrum shown below in Sec. 6.3.

The real power delivered on the grid is in Fig. 21 and the convergence rate of
the PSCAD solution is much worse here than for the current of the inverter or the
control signal. Ours converge quickly and from this graph at least, the 21µs average
step seems sufficient to produce a good signal, given the relative errors between the
different simulations.

Because of the qualitative converge rate, we can only conclude that variable time
stepping gives more accurate solutions, and can do so even at large step size.
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Figure 20: Grid current
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Figure 22: Transients of the reference signal
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Figure 23: Transients of the reference signal
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6.3 Spectral analysis

The properties of the spectrum of the output signal is the most important aspect of
the simulation output. The noise and harmonic levels of the simulated data should
match those of the real circuit being designed. The numerical method should not hide
defects or add anomalies.

Fourier analysis of irregularly sampled signals is difficult. Non-uniform Fourier trans-
forms using NUFFT produced too many artifacts and spurious results. We opted in-
stead for the Fast Fourier Transform using a linear interpolation to project our data
onto a regular grid, choosing an suitably small time interval.

We present the spectra of the grid current in Fig. 24, the inverter current in Fig. 25,
and reference signal in Fig. 26.

For the grid current spectrum, the adaptive stepping method has very low amplitude
in the low frequencies as it should be, without artificial filtering. Since we have less
noise, we have up to 0.2dB amplitude at the fundamental and harmonics. For the
PSCAD signal, the slow rate of convergence is even more striking than seen in the
time domain. However, the peaks are not shifted.

44



0.
05

6
12

18

−
12
0

−
10
0

−
80

−
60

−
40

−
200

F
re
q
u
en
cy
[
k
H
z]

Decibel[db]

F
ou

ri
er

tr
an

sf
or
m

o
f
th
e
g
ri
d
cu
rr
en
t

h
=

3
5
.1
µ
s

P
S
C
A
D

h
=

1
0
.7
µ
s

P
S
C
A
D

h
=

3
.5

2
µ
s

P
S
C
A
D

h
=

1
1
.0
µ
s

A
d
a
p
t
iv

e

h
=

7
.5
µ
s

A
d
a
p
t
iv

e

h
=

3
.1
µ
s

A
d
a
p
t
iv

e
1
8
.0

−
6
3
.5

−
6
2
.8

1
1
.9

−
6
0
.9

−
6
0
.3

6
.0

−
4
0
.5

−
3
9
.5

0
.0

5
−

2
.3

−
1
.4

Figure 24: Spectrum of the grid current
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6.4 SVM circuits

SVM controllers do not require collision detection since the controller generates se-
quences of switching times. These are therefore easier to implement and simulate
since no backtracking is necessary for the case of a variable stepping scheme, unlike
for fixed step and interpolation methods. Our circuit uses a non-ideal power source
with a finite capacity and resistance. In this case, switching produces impacts because
RC sub-circuits become disconnected from the inductive part of the circuit, i.e., LCL
filters. The reason for the impacts is explained in Sec. 3.2. We found that this intro-
duced significant difference in the dynamics of the circuit, closely matching analytic
solutions when these could be computed. We used a Simulink implementation as a
reference which ran at fixed step. This has obvious limitations since the SVM filter
can produce switching sequences arbitrarily close. We could not do this implementa-
tion in PSCAD because the free version we used was too limited and we could not
get access to a full one in this project. We chose time steps of 1, 2 and 10µs in the
Simulink simulations to test convergence. Steps below 1µs are unreasonable because
these simulations are very slow, taking more than five minutes to simulate just one
second on a commodity desktop computer, compared to less than one second for our
software.

The treatment of impacts requires the solution of an extra linear system of equations
but in this case, the matrices are smaller, and their factorizations can be reused and
so that resolving impacts comes at little cost.

The power spectrum of the grid signal appears in Fig. 27. Our method shows good
convergence and a large average step. Impacts reduced this by half of the theoretical
value, as would be the case if the voltage source was ideal, which does not require
impacts. Moreover, the fixed step method does not appear to converge to our solution
either in the asymptotic regime. Differences in the early parts of the transients are due
to slightly different conditions which depend on the software implementation. What is
obvious from Fig. 27 is that there is more noise in the SVM circuit, and that the peaks
at the fundamental and harmonics are spread, unlike the case for the PWM circuit
in Fig. 24. The fixed step implementation however converges much more slowly, even
with steps twenty times smaller. In particular, there is a large amount of spurious
noise near the fundamental, as well as between the peaks. Less energy is lost between
the harmonics at smaller step, but the noise near the fundamental is large. This is
explained by the fact that fixed steps act as filters, since they cannot resolve the high
frequencies. But even at the fundamental, the amplitude is nearly 12dB lower for fixed
step compared to variable stepping, i.e., an underestimate of the peak by a factor of
more than 15. Similar difference appear all the harmonics.

The time domain signals in Fig. 28 shows once more than our method converges
quickly and does not require very small nominal time step, i.e., performs nicely at
large average step. The fixed step version does not converge to the same value as
our method. This is also visible on the time plot of the voltage source in Fig. 29.
These anomalies are significant if one wants to rely on simulation to validate a design,
especially if they are visible on very simple circuits.
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Figure 27: Frequency spectrum of the grid signal for an SVM inverter.
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6.5 Timing results

We simulated both PWM and SVM circuits, and used the same filters in either case
with 350Hz natural frequency since this does not matter up to approximately 1000Hz
as per Fig. 17.

Since we used ideal voltage sources for PWM, we did not perform impact compu-
tations. Our SVM circuit however used a non-ideal source which means that impacts
were computed at every step.

We simulated 1s of dynamics and the performance of our method is summarized
in Tab. 1. This shows that real-time performance is achievable for SVM circuits in
particular. There are many opportunities for optimization which we did not pursue.

In table 1, the “Control freq.” corresponds to either the carrier frequency for PWM,
or operating frequency for SVM.

Inverter model Control freq. Filter freq. h∗(µs) time (s)
PWM variable 2 KHz 350 Hz 500 0.4
PWM variable 5 KHz 350 Hz 200 1.0
PWM variable 6 KHz 350 Hz 166 1.2
PWM PSCAD 6 KHz 350 Hz
SVM variable 5 KHz 350 Hz 0.5

Table 1: Timing data for PWM and SVM interters

6.6 Parallel performance

We implemented the strong coupling algorithm Alg. 4.2 in Sec. 4.6 and performed
tests on the Akka and Abisko supercomputers at HPC2N www.hpc2n.umu.se which
are up-to-date machines, having reached high rank in the 100 list when they were
inaugurated. Details of the configuration is on the website. An important feature is
that Abisko which is more recent than Akka is lower, with clock frequencies of 2.6GHz
and 2.5GHz respectively, but Abisko has more cores per node than Akka, 48 and 8
cores per node, respectively. This affects performance in different aspects depending
on the amount of cache available, 6MB L2 and 6MB L3 for Abisko, compared to 12MB
of L2 but no L3 for Akka. We could only use one node because we did not do an MPI
implementation.

We only used an SVM inverter with the properties described in Sec. 6.5.
The run-time performance on an SVM circuit starts in Fig. 30. Given that each

inverter needs 4 threads to compute the Jacobian according to Alg. 4.2, the number of
threads needed for 1, 12 and 24 inverters are 4, 48 and 96 respectively. The reason for
the slowdown in comparison to the results in Tab. 1 is likely due to memory traffic.

We then fixed the number of cores and tested the scalability of the algorithm itself
and results are shown in Fig. 31. We have very nearly linear scalability when the
number of threads is sufficient. This indicates that our memory utilization is good,
and demonstrates that our stacked design is effective, despite complexity.
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Speedup data is shown in Fig. 32 and shows that parallelization is effective at least
up to 24 inverters. The fluctuations before 10 inverters or so are presumably due to
memory traffic.

Finally, Fig. 33 is the relative speedup with respect to processing resources showing
that we can accelerate our method up to 20x on current CPUs using threads for 24
inverters.

An MPI implementation would of course go beyond.
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Figure 30: Parallel runtime performance
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6.7 Accuracy of the multirate method

We now describe the quality of the solution of the multirate method. The grid current
is found in Fig. 34 and shows good agreement between a circuit with two inverters
simulated with the standard method, we call this global henceforth, and the same
circuit simulated with the multirate method. Note that the average step for the global
simulation is one half that used in each inverter in the multirate since all collisions of
all six phases are detected and processed. This means that it is nearly impossible to
converge to the exact same solution, though this is to be expected. What can be seen
in the zoom-in is that there is convergence however.

The differences are more noticeable on the voltage in Fig. 35 where much of the
noise is removed because of the simplistic approximation of the grid signal in each
inverter between synchronization point. We believe this can be fixed and will present
solutions in the future.

A problem appears however as shown in Fig. 36, which is due both to the connection
of several inverters at a common node and to the multirate method where the issue is
aggravated.

Assuming an inverter with output impedance of 1Ω. Coupling n such inverters
to a common node will decrease the effective impedance to 1/nΩ for each, meaning
that they influence each other strongly, because they can easily accept currents from
each other. This happens quickly. This is bad for the multirate case because of the
extrapolation used between the large steps. In practical terms, since changing the
output impedance of the inverters, on must adjust the grid impedance to a sufficiently
small value given a number of inverters. At zero grid impedance though, the inverters
do not affect each other making the simulation pointless.

What is seen in Fig. 36 is that the global simulation can fail, and the multirate
one fails similarly for small global step. But at big global step, the multirate method
becomes unstable, not surprisingly.
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Figure 34: Grid current of the multirate method
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57



0
5

10
15

20
25

30
35

40
45

50

−
2
00
.00.
0

2
00
.0

4
00
.0

6
00
.0

T
im

e
[τ
]

Voltage[V]

G
ri
d
vo
lt
ag
e,
τ
=

20
m
s

T
ig

h
t

c
o
u
p
le

d
2

in
v
e
r
t
e
r

T
ig

h
t

c
o
u
p
le

d
1

in
v
e
r
t
e
r

h
m
u
lt
i

=
0
.2

4
τ

m
u
lt
ir
a
t
e

h
m
u
lt
i

=
0
.0

4
τ

m
u
lt
ir
a
t
e

2
7
.0

2
9
.0

−
3
3
4

3
3
5

Figure 36: Failure case of the multirate method
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6.8 Limitations

Collision detection first order only: can’t resolve only one collision per carrier crossing.
A dramatic change in slope could in principle collide with a carrier twice by shooting
upwards after the first collision. Fixing this is a technical problem we did not consider
yet.

Another limitation here is that we only considered exogenous events, and have not
harmonized this with other circuits with other types of discontinuities i.e., endogenous
events.

7 Conclusion

Our investigations demonstrate clearly that variable time stepping methods are supe-
rior to fixed step ones in the context of externally switched electronic circuits, both
in speed in accuracy. We have also shown that resolving impacts is essential to get
numerical accuracy whenever the currents are discontinuous.

We also introduced an effective and accurate multirate method which, though ex-
pensive numerically, is well suited for parallel computing.

Our software implementation, not freely available now for technical reasons, also
demonstrates that real-time performance is achievable for simple inverters.

Possible improvements include better collision detection, a more refined model of
the grid for the multi-rate method, e.g., considering the global admittance computed
in Eqn. (34) for the multi-rate algorithm, as well as the inclusion of diodes, transistors,
and other non-smooth components for the same.

We should also extend this work to see how such externally switched circuits can be
simulated simultaneously with endogenously switched ones, i.e., circuits with diodes,
op-amps, internally triggered switches, and transistors to name a few.

The code could be improved with further optimizations as well as adding MPI
capabilities for large scale parallelism,
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