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Abstract

The work presented in this thesis discusses various formal language formalisms that
extend classical formalisms like regular expressions and context-free grammars with
additional abilities, most relating to order. This is done while focusing on the im-
pact these extensions have on the efficiency of parsing the languages generated. That
is, rather than taking a step up on the Chomsky hierarchy to the context-sensitive
languages, which makes parsing very difficult, a smaller step is taken, adding some
mechanisms which permit interesting spatial (in)dependencies to be modeled.

The most immediate example is shuffle formalisms, where existing language for-
malisms are extended by introducing operators which generate arbitrary interleavings
of argument languages. For example, introducing a shuffle operator to the regular ex-
pressions does not make it possible to recognize context-free languages like anbn, but
it does capture some non-context-free languages like the language of all strings con-
taining the same number of as, bs and cs. The impact these additions have on parsing
has many facets. Other than shuffle operators we also consider formalisms enforcing
repeating substrings, formalisms moving substrings around, and formalisms that re-
strict which substrings may be concatenated. The formalisms studied here all have a
number of properties in common.

1. They are closely related to existing regular and context-free formalisms. They
operate in a step-wise fashion, deriving strings by sequences of rule applications
of individually limited power.

2. Each step generates a constant number of symbols and does not modify parts
that have already been generated. That is, strings are built in an additive fashion
that does not explode in size (in contrast to e.g. Lindenmayer systems). All
languages here will have a semi-linear Parikh image.

3. They feature some interesting characteristic involving order or other spatial con-
straints. In the example of the shuffle multiple derivations are in a sense inter-
spersed in a way that each is unaware of.

4. All of the formalisms are intended to be limited enough to make an efficient
parsing algorithm at least for some cases a reasonable goal.

This thesis will give intuitive explanations of a number of formalisms fulfilling these
requirements, and will sketch some results relating to the parsing problem for them.
This should all be viewed as preparation for the more complete results and explana-
tions featured in the papers given in the appendices.
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Sammanfattning

Denna avhandling diskuterar utökningar av klassiska formalismer inom formella språk,
till exempel reguljära uttryck och kontextfria grammatiker. Utökningarna handlar på
ett eller annat sätt om ordning, och ett särskilt fokus ligger på att göra utökningarna
på ett sätt som dels har intressanta spatiala/ordningsrelaterade effekter och som dels
bevarar den effektiva parsningen som är möjlig för de ursprungliga klassiska forma-
lismerna. Detta står i kontrast till att ta det större steget upp i Chomsky-hierarkin till
de kontextkänsliga språken, vilket medför ett svårt parsningsproblem.

Ett omedelbart exempel på en sådan utökning är s.k. shuffle-formalismer. Des-
sa utökar existerande formalismer genom att introducera operatorer som godtyckligt
sammanflätar strängar från argumentspråk. Om shuffle-operator introduceras till de
reguljära uttrycken ger det inte förmågan att känna igen t.ex. det kontextfria språket
anbn, men det fångar istället vissa språk som inte är kontextfria, till exempel språket
som består av alla strängar som innehåller lika många a:n, b:n och c:n. Sättet på vil-
ket dessa utökningar påverkar parsningsproblemet är mångfacetterat. Utöver dessa
shuffle-operatorer tas också formalismer där delsträngar kan upprepas, formalismer
där delsträngar flyttas runt, och formalismer som begränsar hur delsträngar får konka-
teneras upp. Formalismerna som tas upp här har dock vissa egenskaper gemensamma.

1. De är nära besläktade med de klassiska reguljära och kontextfria formalismerna.
De arbetar stegvis, och konstruerar strängar genom successiva applikationer av
individuellt enkla regler.

2. Varje steg genererar ett konstant antal symboler och modifierar inte det som
redan genererats. Det vill säga, strängar byggs additivt och längden på dem kan
inte explodera (i kontrast till t.ex. Lindenmayer-system). Alla språk som tar upp
kommer att ha en semi-linjär Parikh-avbildning.

3. De har någon instressant spatial/ordningsrelaterad egenskap. Exempelvis sättet
på vilket shuffle-operatorer sammanflätar annars oberoende deriveringar.

4. Alla formalismera är tänkta att vara begränsade nog att det är resonabelt att ha
effektiv parsning som mål.

Denna avhandling kommer att ge intuitiva förklaring av ett antal formalismer som
uppfyller ovanstående krav, och kommer att skissa en blandning av resultat relaterade
till parsningsproblemet för dem. Detta bör ses som förberedande inför läsning av de
mer djupgående och komplexa resultaten och förklaringarna i de artiklar som finns
inkluderade som appendix.

v



vi



Preface

This thesis consists of an introduction which discusses some different language for-
malisms in the field of formal languages, touches upon some of their properties and
their relations to each other, and gives a short overview of relevant research. In the ap-
pendix the following six articles, relating to the subjects discussed in the introduction,
are included.

Paper I Martin Berglund, Henrik Björklund, and Johanna Björklund. Shuffled lan-
guages – representation and recognition. Theoretical Computer Science,
489-490:1–20, 2013.

Paper II Martin Berglund, Henrik Björklund, and Frank Drewes. On the parameter-
ized complexity of Linear Context-Free Rewriting Systems. In Proceed-
ings of the 13th Meeting on the Mathematics of Language (MoL 13), pages
21–29, Sofia, Bulgaria, August 2013. Association for Computational Lin-
guistics.

Paper III Martin Berglund, Henrik Björklund, Frank Drewes, Brink van der Merwe,
and Bruce Watson. Cuts in regular expressions. In Marie-Pierre Béal and
Olivier Carton, editors, Proceeding of the 17th International Conference
on Developments in Language Theory (DLT 2013), pages 70–81, 2013.

Paper IV Martin Berglund, Frank Drewes, and Brink van der Merwe. Analyzing
catatrophic backtracking behavior in practical regular expression match-
ing. Submitted to the 14th International Conference on Automata and
Formal Languages (AFL 2014), 2014.

Paper V Martin Berglund. Characterizing non-regularity. Technical Report UMINF
14.12, Computing Science, Umeå University, http://www8.cs.umu.
se/research/uminf/, 2014. In collaboration with Henrik Björklund
and Frank Drewes.

Paper VI Martin Berglund. Analyzing edit distance on trees: Tree swap distance
is intractable. In Jan Holub and Jan Žďárek, editors, Proceedings of the
Prague Stringology Conference 2011, pages 59–73. Prague Stringology
Club, Czech Technical University, 2011.
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CHAPTER 1

Introduction

This thesis studies extensions of some classical formal languages formalisms, notably
for the regular and context-free languages. The extensions center primarily around ad-
ditions of operations or mechanism that constrain or loosen order, with a special focus
on parsing in the presence of such ordering loosening or constraints. This statement
is, of course, quite vague. The extensions take such a form that they modify the way
in which a grammar or automaton generates a string. “Order” here refers to a spatial
view of this generation.

Very informally, imagine a person with finite memory (a natural assumption) who
is tasked to write down certain types of strings of symbols on paper. The ways in
which he or she is allowed to move around the paper will impact the types of strings
they can write. If they are required to start at the left (i.e., start with the first, leftmost,
symbol) and work their way through the string in a left-to-right fashion they can easily
write the string abcabcabc . . ., but the strings {ab,aabb,aaabbb, . . .} (i.e. as followed
by an equal number of bs) require them to remember the number of as written if it is
done in a left-to-right fashion, which is arbitrarily much information to remember. If
the person is permitted to keep track of the middle of the string, adding symbols on
the right and left side simultaneously, they can easily write strings of the second type
by simply in each step writing one a and one b, never having to remember how many
steps have been made. The first variant, where the person has to work left-to-right
and cannot remember arbitrarily much is an informal description of finite automata, a
characterization of the very important class of regular languages. The case where the
person keeps track of the middle and writes on both the left and the right corresponds
to the class of linear context-free languages, another very classical concept. From this
perspective it is easy to imagine additional extensions of the formalisms, a notable
example is that the writer may remember multiple positions, and add symbols to them
interchangeably, which corresponds to a more complex language class.

Among the variety of formalisms one can imagine that modify the way in which
generation happens it is important to remain true to the spirit of classical mechanisms.
This tends to return to the idea that only finite memory is required when viewed from
the correct perspective. Consider for example the following trivial formalism.

Example 1.1 (Mappings of copy-languages) Given two mappings σ1,σ2 from {a,b}
to arbitrary strings and a string w decide whether there exist some α1, . . . ,αn ∈ {a,b}
such that σ1(α1)⋯σ1(αn) ⋅σ2(α1)⋯σ2(αn) =w. ◇

1



Chapter 1

This particular example is simplified quite a bit, but there are popular formalisms ex-
hibiting this exact behavior, where some underlying “decision” is made in one deriva-
tion step, and the result gets reflected in multiple (but normally constant number of)
places in the output string. The mapping may make it difficult to actually recognize
the decision after the fact, but the problem is very related to parsing for some language
classes with similar spatial dependencies.

Not all formalisms are concerned with instilling this extra level of order on the
string, we also consider cases where separate “underlying decisions” may become in-
tertwined or otherwise not get spatially separated in the way we are used to. Consider
the following example of a fairly important real-world problem where difficulties arise
from insufficient order.

Example 1.2 (Parallel program verification) Let P be a computer program which
when run produces some output string. Assume we have a context-free grammar G
which is such that if a string w can be output by a correct run of P then w can be
derived in G. Then, whenever P produces output that is not accepted by G we know
that P is not functioning properly.

Now run n copies of the program P, in parallel, all producing output simultane-
ously into the same string w. In w the outputs of the different instances of P will be
arbitrarily interleaved. Now we wish to use G to determine whether this w is consistent
with n copies of P running correctly. ◇
The lack of order makes this problem difficult, to answer the question we need to
somehow track how single decisions in single instances of the program may have been
spread out across the resulting string. As these artifacts may be arbitrarily far apart
this problem becomes rather difficult, and the unfortunate reality is that the string w
may appear consistent despite a program failing to run in accordance with G, due to
some other part of the string masking the fault.

The cases in Example 1.1 and Example 1.2 are almost each others opposites, but
are connected in that they are both possible to describe by a spatial dependence in the
strings. A simple block-wise dependence in Example 1.1, and an entirely scattered
dependence in Example 1.2.

Earlier Work This work is deeply related to the preceding licentiate thesis [Ber12]
by the same author. While this thesis is intended to replace this earlier work it may for
some readers be of interest to refer back to [Ber12] for further examples and explana-
tions of many of the same concepts.

1.1 Formal Languages

Formal languages is a vast area of study, it covers both a lot of practical algorithmic
work with numerous application areas, as well as more theoretically founded mathe-
matical study. The original subject of study in formal languages are string languages.
These are concerned with sequences of symbols from a finite alphabet, which is usu-
ally denoted Σ. Going forward we will usually simply assume that Σ is the latin alpha-

2
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bet, Σ = {a,b,c, . . . ,z}, meaning that usual words like “cat” and “biscuit” are strings in
this formal sense. We let ε denote the empty string. A language is a, potentially infi-
nite, set of strings. One trivial example is the empty set, ∅, the language that contains
no strings, and the set of all strings, which we denote Σ∗. Other examples include fi-
nite languages like {cat} and {cat,biscuit}, infinite languages like the set of all strings
except “cat”, the language {ab,aabb,aaabbb,aaaabbbb, . . .}, and, over the alphabet{0, . . . ,9}, the language {3,31,314,3141,31415,314159, . . .}.

The most immediate subject of study in formal languages is representing them.
Finite languages like ∅ and {cat,biscuit} are easy to describe by exhaustively enu-
merating the strings they contain. Some infinite languages are also trivial, the lan-
guage containing all strings except “cat” can be described by enumerating the strings
it does not contain. However, languages like {ab,aabb,aaabbb,aaaabbbb, . . .} and{3,31,314,3141,31415, . . .} are more complex. Certainly the “dots”-notation used
here to describe them is flawed, as the generalization intended is ambiguous at best.

This question of representation for languages is the core of formal language the-
ory, arbitrary languages can of course represent almost arbitrary computational prob-
lems, but the question of how the language can be finitely represented restricts matters.
Specifically what is studied is classes of languages defined by the type of descrip-
tional mechanism capable of capturing them. Most trivially, the finite languages is a
language class, defined by being describable through simply enumerating the strings.

While language classes are typically defined using the formalism that can describe
them it is important to remember that languages are abstract entities that exist in and
of themselves. In most formalisms a given language can be represented by many
different grammars or automata, and few of the usual formalisms have unique normal
forms that can be computed.

1.2 An Example Representation

To make the previous more concrete let us establish a representation for formal lan-
guage formalisms as rather visual grammars. We call these instances of formalisms
“grammars” here, but the sketches used here intentionally straddle the boundary of
what is traditionally called “grammars” and what is called “automata”.

1.2.1 Our Grammar Sketch

Essentially the grammars will consist of two parts; “memory”, or state, and rules.
States, or non-terminals, represent what the formalism is remembering about the string
it is generating. They are simply symbols attached to the intermediary output. The
grammars always start out in the state S, the initial non-terminal in an otherwise empty
string. The rules specify which state can generate what in the string. We write the rules
down as shown in Figure 1.3, where three rules are given which generate the language{a,aba,ababa,abababa, . . .} using two non-terminals. The left-hand side shows the
state which the rule applies to. The little dot below the S represents the position in the
string the S is keeping track of. On the right-hand side is shown what the formalism
generates, in the case of the first rule it outputs the symbol “a”, followed by a position

3
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(●●)
S

Ð→ (aa●●)
A

(●●)
A

Ð→ (bb●●)
S

(●●)
S

Ð→ (aa)
Figure 1.3: A regular grammar generating the language {a,aba,ababa,abababa, . . .}
using three rules. S is the initial non-terminal.

which is kept track of by the second non-terminal A. In effect S “remembers” that
the next symbol should be an “a”, and the second non-terminal A remembers that the
next symbol should be a “b” (and we then go back to S. The third rule allows the S
to generate a final “a” and ending the generation by producing no new non-terminal.
Since the first and third rule have the same left-hand side the abbreviation

(●●)
S

Ð→ (aa●●)
A

(aa)
is sometimes used in place of writing both out in full. We write the generation of
strings in the way shown in Figure 1.4, where a derivation is performed using the
grammar from Figure 1.3 to generate the string “ababa”. Notice that, as usual, none

(●●)
S

Ô⇒ (aa●●)
A

Ô⇒ (aabb●●)
S

Ô⇒ (aabbaa●●)
A

Ô⇒ (aabbaabb●●)
S

Ô⇒ (aabbaabbaa)
Figure 1.4: A derivation of the string “ababa” using the grammar Figure 1.3. The
derivation starts with the initial non-terminal S, applies the first rule, this produces the
non-terminal A, making the second rule the only possible one. This is then repeated,
and finally the third rule is used to get rid of the non-terminal S entirely. As there is no
more state left the derivation is finished, and the string “ababa” has been generated.
The dotted outline around non-terminals show which non-terminal is used in the next
rule application, but as there is only one to choose from in each step it is not very
informative here.

of the intermediary strings are “generated”, all states must be gone before generation
is finished. The black bullets, or “positions” act as the points of the string tracked by
attached non-terminals. Their role will become slightly more complex later on.

1.2.2 Generating Regular Languages

A simple and important class of languages that we can generate with grammars of the
type we have sketched are the regular languages. Specifically the regular languages
are precisely the following.

Definition 1.5 (Regular Grammars) A grammar of the form sketched in Figure 1.3
is regular if

4



Introduction

• It is finite.

• Each right-hand side contains zero or one symbol from Σ and zero or one non-
terminal attached to the position (bullet).

• The position is to the right of the symbol if one exists.

Every regular language can be represented by a grammar of this form. ◇
A grammar G then generates exactly the strings one can produce by starting from S
attached to the initial position, and then repeatedly picking a rule, and replacing an
instance of the non-terminal on the left-hand side of the rule (this is then only possible
if that non-terminal exists in the string) by the new substring on the right-hand side of
the rule. If a point is reached where no non-terminal exists in the string the generated
string w is in the language, denoted w ∈ L(G). That is, L(G) is a set consisting of
exactly these strings.

1.2.3 Regular Expressions as an Alternative

A regular expression is another way of expressing a language, which is equivalent
to the description of a regular grammar in Definition 1.5, but which is often more
compact and convenient, as well as being very popular in practical use.

Definition 1.6 (Regular Expressions) A regular expression over the alphabet Σ is,
inductively, the following. For each α ∈ Σ and regular expressions R and T :

• ε is a regular expression with L(ε) = {ε}.

• α is a regular expression with L(α) = {α}.

• R ⋅T is a regular expression with L(R ⋅T) = {wv ∣ w ∈ L(R),v ∈ L(T)} (i.e. the
concatenation of the strings in the languages of the subexpressions). We often
write RT as an abbreviation.

• R ∣T is a regular expression, with L(R ∣T) = L(R)∪L(T).

• R∗ is a regular expression, with L(R∗) = {ε}∪{wv ∣ w ∈ L(R),v ∈ L(R∗)} in-
ductively. That is, the concatenation of arbitrarily many strings from R. ◇

1.3 Computational Problems in Formal Languages

With formalisms for representing formal languages in hand it is time to consider the
various questions that can be asked about them. An immediate example is the empti-
ness problem; given a grammar G, does it generate the language ∅? Computing the
answer to this problem is easy for context-free languages1, but it is undecidable to
determine if a context-free language generates Σ∗, the language of all strings.

1 We have not defined the context-free languages properly, but all regular languages are context-free, and
some context-free languages are not regular, so it can serve as an unspecific more powerful example.

5
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Many problems also deal with languages themselves, being somewhat independent
of representation. For example, given two context-free languages (i.e., two languages
that can be generated by some context-free grammar) L and L′, is the language L∪L′
also context-free? It, in fact, is, and given any context-free grammar for L and L′ a
grammar for L∪L′ can easily be constructed. The same does not hold for the language
L∩L′, some context-free languages have an intersection that is not context-free. The
regular languages, however, as closed under intersection, so for all regular languages
L and L′ the language L∩L′ is regular as well, a fact we will make use of later.

It is important to remember that while grammars may determine languages the
grammar is not necessarily always in the most convenient form. Given a regular
grammar G it is easy to determine if it generates Σ∗, but it is hard to determine if
a context-free grammar generates Σ∗. However, context-free grammars can generate
all the regular languages as well, but even if a context-free grammar generates a reg-
ular language it is still hard to tell if it generates Σ∗ (in fact, as Σ∗ is regular this is a
part of the general problem).

The problem we are primarily concerned with in this work, however, is the mem-
bership problem. This is the problem of determining whether a string belongs to a
given language or not. There are at least three different variations of the membership
problem of interest here.

Definition 1.7 (The Uniform Membership Problem) Let G be a class of grammars
(e.g. context-free grammars) such that each G ∈ G defines a formal language. The
uniform membership problem for G is “Given a string w and some G ∈ G as input, is w
in the language generated by G?” ◇
This case is certainly of interest at times, but fairly often the details of the formalismG are irrelevant to the practical problem. The most notable example is in instances
where the language is known in advance and can be coded into the most efficient
representation imaginable. A second type of membership problem accounts for this
case, by simply considering only the string part of the input.

Definition 1.8 (The Non-Uniform Membership Problem) Let L be any language.
Then the non-uniform membership problem for L is “Given a string w as input, is
w in L?” ◇
There is a third approach, called fixed-parameter analysis, which provides more nu-
ance in the complexity analysis of the membership problems. In this approach any
part of the problem may be designated the “parameter”, and is considered secondary
in complexity concerns. This is treated in Section 3.5.1.

The final, and perhaps most practically interesting case, is parsing. In parsing we
no longer expect to get just a “yes” or “no” as an answer to the question whether the
string belongs to the language, we expect a description of why the string belongs to the
language. For example, when asking whether the string “ababa” can be generated by
the grammar in Figure 1.3 the answer should not be “yes”, it should be some descrip-
tion of the generation procedure in Figure 1.4. In most practical cases any solution
to the membership problems in Definition 1.7 and 1.8 will construct some represen-
tation of this answer anyway (the case of Definition 1.8 becomes more complicated,
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Introduction

however, as the internal representation of the language may be hard to practically de-
cipher). Thanks to this fact this thesis will primarily refer to and work on membership
problems, despite it being understood that parsing is the real goal.

1.4 Outline of Introduction

In the following chapters we will look at some formalisms that are of interest for this
thesis (and are studied in the papers included). We will start out using variations on
the informal notation demonstrated above (as in Figure 1.3), modifying it to illustrate
the general idea of how the formalisms differ. More formalized, and deeper, matters
are then considered for each.

For the most part each chapter starts out with a self-contained informal introduc-
tion, with a more formal treatment being undertaken at the end. This is intended to
cater to multiple types of readers. A casual reader may be most interested in reading
every chapter only up until the section marked by a star, ☆, and then skipping to the
next. The non-starred portion of the introduction is self-contained. For a deeper treat-
ment the entirety of the introduction may be read, but, of course, in the end most of
the material is in the accompanying papers, and readers familiar with the area may be
best served only skimming the introduction in favor of proceeding to the papers.

Chapter 2 gives a light introduction to shuffle formalisms, which are related to
Example 1.2, extending regular expressions with an operator that interleaves strings.
This sets the scene for a short summary of the contents of Paper I, with some words
on Paper V in addition. Chapter 3 discusses synchronized substrings, similar to Ex-
ample 1.1, going into a summary of Paper II. Chapter 4 discusses some extensions of
regular expressions, primarily dealing with the cut operator, which provides a more
limited string concatenation, but also giving an overview of some of the details of real-
world matching engines. Papers III and IV are then discussed in brief in this context.
Chapter 5 discusses distance measures on languages for handling errors. This yields
a short discussion of grammar-instructed block movements, where substrings may be
moved around in the string depending on how they were generated by a grammar,
leading into Paper VI. Finally, Chapter 6 provides a short summary.
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CHAPTER 2

Shuffle-Like Behaviors in
Languages

Shuffle in the title of this chapter refers to shuffling a deck of cards, specifically to the
riffle shuffle, where the deck is separated into two halves, which are then interleaved.
This idea, transferred to formal languages, is intended to capture situations such as
the one illustrated in Example 1.2, where multiple mostly independent generations are
performed in an interleaved fashion.

2.1 The Binary Shuffle Operator

We specifically transfer the riffle shuffle to the case of strings in the following way.
Starting with the strings “ab” and “cd”, the shuffle of “ab” and “cd” is denoted ab⊙cd,
and results in the language {abcd,acbd,cabd,acdb,cadb,cdab}, that is, all ways to
interleave “ab” with “cd” while not affecting the internal order of the strings. Let us
make this point slightly more formal with a definition.

Definition 2.1 (Shuffle Operator) Let w and v be two arbitrary strings. Then w⊙ε =
ε⊙w = {w}. Recall that ε denotes the empty string.

If both w and v are non-empty let w =αw′ and v = βv′ (for strings w′ and v′, single
symbols α and β ). Then w⊙v = α(w′⊙v)∪β(w⊙v′). ◇
This is then generalized to the shuffle of two languages in a straightforward way, for
two languages L and L′ we let the shuffle L⊙L′ be the language of shuffles of strings
in L with strings in L′, or ⋃{w⊙w′ ∣ w ∈ L,w′ ∈ L}.

Example 2.2 (The shuffle of two languages) Let L ={ab,abab,ababab, . . .} and L ′ ={bc,bcbc,bcbcbc, . . .}. Then the shuffle L⊙L ′ contains, for example, abbc (all of “ab”
which is in L occurring before “bc” which is in L ′), babc (same strings interleaved
differently), and abbabcbcabab. ◇
2.2 Sketching Grammars Capturing Shuffle

Without further ado we can fairly easily modify the graphical grammars we previously
introduced to generate shuffles of this kind. We for the moment stick to the regular
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languages, such as in Figure 1.3, and then extend the formalism to combine them.
There are a number of restrictions on the shape of the grammars in this formalism:

1. There may be at most one non-terminal position marker (black dot) on the right-
hand side of a rule.

2. The right-hand side of a rule may contain at most one generated symbol (from
Σ), and the non-terminal position marker, if there is one, must be to the right of
the symbol.

These two requirements together in effect require the grammar to work from left to
right, generating one symbol at a time. We now, on the other hand, permit more
than one non-terminal to attach itself to the same “position” (we will also in the next
section outline how a non-terminal may be attached to another). In this way (with the
correct precise semantics) we arrive at shuffle formalisms of various kinds. Consider
for example the grammar in Figure 2.3. Effectively this grammar will generate the

(●●)
A

Ð→ (aa●●)
A′

(●●)
A′

Ð→ (bb●●)
A

(bb)

(●●)
B

Ð→ (bb●●)
B′

(●●)
B′

Ð→ (cc●●)
B

(cc) (●●)
S

Ð→ (●●)
A B

Figure 2.3: A grammar generating a language exhibiting a shuffling behavior.

shuffle LA⊙LB, if we let LA and LB denote the language the grammar would generate
if we started with the non-terminal A and B respectively. The way the grammar works
is that it starts out (since there is only one rule for the initial state) by attaching two
states, A and B, to the same position. The intended semantics of this is that all non-
terminals attached to the same position can generate symbols simultaneously, while
the others are unaware. A derivation of the string “bacbbc” is shown in Figure 2.4.

The languages that these grammars express are closely related to the languages
generated by (or, rather, denoted by) regular expressions extended with the shuffle
operator. For example, the grammar in Figure 2.3 corresponds to the expression(ab)∗⊙(bc)∗. These expressions form a part of what is known as “shuffle expres-
sions”. This is not all there is to the grammars or to shuffle expressions. Consider
the grammar in Figure 2.5. This grammar is able to keep attaching arbitrarily many
additional instances of the non-terminal S to the initial position, each S can produce
one “a” to transition into the non-terminal B, which simply produces a “b” and disap-
pears. An example derivation is shown in Figure 2.6. The language generated by this
grammar is, obviously, ab⊙ab⊙ab⊙⋯ (the language which is such that in every pre-
fix the number of “a”s is greater or equal to the number of “b”s, and the entire string
has the same number of “a”s and “b”s). This language is not expressed by any regular
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(●●)
S

Ô⇒ (●●)
A B

Ô⇒ (bb●●)
A B′

Ô⇒ (bbaa●●)
A′ B′

Ô⇒ (bbaacc●●)
A′ B

Ô⇒

(bbaaccbb●●)
A′ B′

Ô⇒ (bbaaccbbbb●●)
B′

Ô⇒ (bbaaccbbbbcc)
Figure 2.4: A derivation of the string “bacbbc” in the grammar from Figure 2.3.
Notice that there are multiple ways this string could be derived, here the last “b”
“belongs” to the string “ab” generated by the A non-terminal, but the second to last
could be used instead.

(●●)
S

Ð→ (●●)
S S

(aa●●)
B

(●●)
B

Ð→ (bb)
Figure 2.5: A grammar that showcases the ability to shuffle arbitrarily many strings.

expression extended by the shuffle operator, but general shuffle expressions have an
additional operator for this purpose.

2.3 The Shuffle Closure

To complete the picture, shuffle expressions are regular expressions (regular expres-
sions are introduced in short in Definition 1.6, for a more complete introduction see
e.g. [HMU03]) extended with the binary shuffle operator from Definition 2.1 and the
unary shuffle closure operator, denoted L⊙ (for some expression or language L). The
shuffle closure captures exactly languages of the type illustrated in Figure 2.5, where

(●●)
S

Ô⇒ (●●)
S S

Ô⇒ (●●)
S S S

Ô⇒ (aa●●)
S B S

Ô⇒ (aaaa●●)
S B B

Ô⇒

(aaaabb●●)
S B

Ô⇒ (aaaabbaa●●)
B B

Ô⇒ (aaaabbaabb●●)
B

Ô⇒ (aaaabbaabbbb)
Figure 2.6: An example derivation using the grammar from Figure 2.5.
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arbitrarily many strings from a language are shuffled together. Recall that L(E) de-
notes the language generated/denoted by a grammar/expression E.

Definition 2.7 (Shuffle Closure) For a language L the shuffle closure of L , denoted
L⊙ is {ε}∪{w⊙L⊙ ∣ w ∈ L}. For an expression E of course L(E⊙) = L(E)⊙. ◇
The language generated by the grammar in Figure 2.5 is then simply (ab)⊙.

The grammatical formalism we have so far sketched can represent simple shuffles,
but it is not yet complete. The shuffle expression (ab)⊙c causes trouble. If we start
out with the grammar in Figure 2.5 (and we more or less have to) we somehow have
to designate a non-terminal to generate the final c, but we have no way of ensuring
that all the other non-terminals finish generating first. As such further extensions to
the grammars are required. To leap straight to the illustrative example, see Figure 2.8.
Here the first rule generates two non-terminals, one A and one C, where the C is

(●●)
S

Ð→ (●●)
A

C

(●●)
A

Ð→ (●●)
A A

(aa●●)
B

(●●)
B

Ð→ (bb)
Figure 2.8: This grammar illustrates an extension which enables the combination of
shuffling with sequential behavior. Specifically this grammar generates the language(ab)⊙c.

no longer connected to the position tracked, but is rather connected to the A. We
say that C depends on A. The semantics is that rules may only be applied to non-
terminals attached only to the position, all non-terminals that depend on another must
be left alone. If new non-terminals are created from the one on which C depends
then C will depend on all the new non-terminals. If all non-terminals on which C
depends are removed (i.e. they finish generating) then C gets attached to the position.
See the example run in Figure 2.9. Notice how the C is generated with the first rule
application, but then no rule can be applied to it until all the non-terminals it depends
on have disappeared, meaning, in this case, that it will generate the last symbol in the
string, since all the As (and subsequent Bs) much first finish.

2.4 Shuffle Operators and the Regular Languages

It may be interesting to note that a shuffle expression which uses only the binary shuffle
operator, ⊙, still denotes a regular language (i.e. any regular formalism, such as finite
automata or regular expressions, can represent the same language). That is, we do not
need to generate multiple non-terminals to construct a shuffle language of this kind.
This is fairly easy to see, recall the simple shuffle grammar in Figure 2.3, and then
consider a new grammar with non-terminals containing multiple symbols. Consider
specifically the two left-most rules in that figure, and then consider the new rules in
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(●●)
S

Ô⇒ (●●)
A

C

Ô⇒ (●●)
A A

C

Ô⇒ (●●)
A A A

C

Ô⇒ (aa●●)
B A A

C

Ô⇒ (aaaa●●)
B A B

C

Ô⇒

(aaaabb●●)
B A

C

Ô⇒ (aaaabbaa●●)
B B

C

Ô⇒ (aaaabbaabb●●)
B

C

Ô⇒ (aaaabbaabbbb●●)
C

Ô⇒ (aaaabbaabbbbcc)
Figure 2.9: Generation of the string “aababbc” using the grammar from Figure 2.8.

(●●)
(A,B)

Ð→ (aa●●)
(A′,B)

(bb●●)
(A,B′)

(●●)
(A′,B)

Ð→ (aa●●)
(B)

(aa●●)
(A,B)

(bb●●)
(A′,B′)

Figure 2.10: Some example rules from a regular grammar for the shuffle grammar in
Figure 2.3.

Figure 2.10. That is, we create non-terminals which contain all the non-terminals of
a certain step of the generation for the original grammar. The first left-hand side,
with the nonterminal (A,B), corresponds to the situation created immediately after
the first rule applied in Figure 2.4, and the two possible right-hand sides correspond
to either applying a rule to the A or to the B. Similarly the second left-hand side
corresponds to when A′ and B are tracking the position, and either A′ is chosen to
disappear generating a, or just produce a and generate a new A, or B generates a b
turning into B′. Instead of the grammar in Figure 2.3 we get a grammar with the non-
terminals (S), (A,B), (A′,B), (A,B′), (A′,B′), (A), (A′), (B), (B′), quite a number,
but this grammar only has a single non-terminal tracking the point at any point of a
generation. This procedure demonstrates that only one non-terminal is necessary, so
the language generated is regular. However, a potentially exponential number of non-
terminals may be generated performing the construction, so this cannot be combined
with the efficient parsing for regular languages to produce an efficient uniform parsing
algorithm. This construction works for any expression with arbitrarily many binary
shuffle operators, as they still only give rise to a constant number of possible sets
of non-terminals attached to the tracked position, making this product construction
generate a finite regular grammar.

Applying the shuffle closure, however, does not necessarily preserve regularity.
Recall that the language {anbn ∣ n ∈ N} is not regular, as reading it from left to right
arbitrarily much information (the number of as) must be remembered. Regular lan-
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guages are also closed under intersection, so if R1 and R2 are regular then so is R1∩R2.
Consider the language L(a∗b∗), which contains all strings consisting of some number
of as followed by some number of bs. This is clearly regular. However,

L((ab)⊙)∩L(a∗b∗) = {anbn ∣ n ∈N}
since the language L((ab)⊙) only matches strings with equally many as and bs. As
such, since {anbn ∣ n ∈N} is not regular it follows that (ab)⊙ cannot be regular either.
Notice that in terms of the sketched grammars above this corresponds to the case
where arbitrarily many non-terminals may be attached to the tracked position, which
would create an infinite grammar if the product construction above was attempted.

2.5 Shuffle Expressions and Concurrent Finite State Automata

The formalism that these sketched grammars are trying to imitate is Concurrent Fi-
nite State Automata, one of the main subjects of Paper I. These can represent all the
languages that can be represented by shuffle expressions, in the way the previous sec-
tions sketched. They can, however, represent even more languages using one special
trick: as was shown in the grammar in Figure 2.8 they are able to build “stacks” of
non-terminals, where only the bottom one can be used to apply rules. By building
these stacks arbitrarily high, by having rules that add more and more non-terminal on
top, they are able to represent arbitrarily amounts of state (i.e. arbitrarily much infor-
mation). In this way they are able to represent context-free languages, as well as the
shuffle of context-free languages.

However, when this particular trick is removed we reach one of the important
milestones. Understanding that the formalism is vaguely sketched so far (next chapter
formalizes things further), let us nevertheless call it CFSA and make the following
statement.

Theorem 2.11 (Fragment of Theorem 2 in Paper I) A language L is accepted by
some shuffle expression if and only if it is accepted by some CFSA for which there
exists a constant k such that no derivation in the CFSA has a stack of non-terminals
higher than k. ◇
As such, CFSA capture both the well-known class of shuffle languages (the languages
recognized by shuffle expressions), and permit additional language classes based on
(possibly fragments of) context-free languages. This opens up questions about mem-
bership problems.

2.6 Overview of Relevant Literature

These types of languages featuring shuffle, and many questions relating to them, have
been studied in depth and over quite some time. Arguably they started with a definition
by S. Ginsburg and E. Spanier in 1965 [GS65]. The shuffle expressions, and the shuffle
languages they generate have been the primary focus of this section so far. This is the
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name given to regular expressions extended with the binary shuffle operator and unary
shuffle closure, a formalism introduced by Gischer [Gis81]. These were in turn based
on an 1978 article by Shaw [Sha78] on flow expressions, which were used to model
concurrency. The proof that the membership problem for shuffle expressions is NP-
complete in general is due to [Bar85, MS94], whereas the proof that the non-uniform
case is decidable in polynomial time is due to [JS01].

Shuffle expressions are nowhere near the end of interesting aspects of the shuffle
however, even if we restrict ourselves to the focus on membership problems. A very
notable example is Warmuth and Hausslers 1984 paper [WH84]. This paper for ex-
ample demonstrates that the uniform membership problem for the iterated shuffle of a
single string is NP-complete. That is, given two strings, w and v, decide whether or not
w ∈ v⊙v⊙⋯⊙v. A precursor to one of the results in Paper I is due to Ogden, Riddle
and Rounds, who in a 1978 paper [ORR78] showed that the non-uniform membership
problem for the shuffle of two deterministic context-free languages is NP-complete
(extended to linear deterministic context-free languages in Paper I).

Some additional examples of interesting literature on shuffle includes a deep study
on what is known as shuffle on trajectories [MRS98], where the way the shuffle may
happen is in itself controlled by a language, and axiomatization of shuffle [EB98]. For
a longer list of references, see the introduction of Paper I.

2.7 CFSA and Context-Free Languages

As noted in Section 2.5 part of the purpose of concurrent finite-state automata is
that they permit the modeling of context-free languages, for example the language{anbn ∣ n ∈ N} (i.e. the language where some number of as are followed by the same
number of bs), something that is not captured by shuffle expressions. A grammar for
this language is shown in Figure 2.12. A derivation in this grammar will simply gen-

(●●)
S

Ð→ (aa●●)
S

A

(εε) (●●)
A

Ð→ (bb)
Figure 2.12: A grammar in the CFSA style for the language {anbn ∣ n ∈N}.

erate some number of as while stacking up equally many A non-terminals, then when
the S is finally replaced by ε the A non-terminals drop down and each successively
generates a b. In this way the (non-shuffle) language is generated. Effectively the
CFSA simulates a push-down automaton.

We can easily shuffle two context-free languages in this way, by simply taking
grammars of the style of Figure 2.12 and generating their initial non-terminal (now
suitably renamed) attached to the same position using a new initial non-terminal rule.
This type of language, mixing context-free languages and shuffle, are of some practi-
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cal interest, so Paper I studies this type of situation in some depth.
In fact, where shuffle expressions are regular expressions with the two shuffle

operators added, it is instructive to view general CFSA as context-free languages with
the addition of the binary shuffle operator. This part requires knowledge of context-
free grammars, see e.g. [HMU03]. Consider the right-most rule in Figure 2.13, which
showcases all the features of CFSA. Then consider the context-free grammar which

(●●)
A1

Ð→ (αα) (●●)
A2

Ð→ (ββ●●)
B1 . . . Bn

(●●)
A3

Ð→ (γγ●●)
C1 . . . Cm

D

Figure 2.13: The three possible types of rules in our sketched variation of CFSA
where α,β ,γ ∈ Σ∪{ε}. The right-most exhibits all features, where the two first are
only differentiated in that some parts don’t exist.

produces strings over the alphabet Σ∪{⊙,),(} by rewriting the CFSA rules in the way
shown in Table 2.14. Constructing a context-free grammar in this way, starting from a

Table 2.14: Context-free rules for the CFSA rule in Figure 2.13.

First rule A1→ α
Second rule A2→ β(B1⊙⋯⊙Bn)

Third rule A3→ γ(C1⊙⋯⊙Cm)D

CFSA A, one gets a context-free language L containing shuffle expressions which are
such that L(A) = ⋃{L(e) ∣ e ∈ L}. That is, when the result of evaluating all the shuffle
expressions in L are unioned together we arrive at the language generated by A.

This should serve to illustrate that all languages generated by CFSA can be viewed
as “disordered” context-free languages. The above procedure generates a charac-
terizing context-free language, which specifies which strings are to be shuffled to-
gether to produce strings in the original CFSA. As such, for example the language{anbncn ∣ n ∈N} cannot be generated by a CFSA, as it is not context-free, nor can one
arrive at it by relaxing the order of substrings in a context-free language.

2.8 Membership Problems

The membership problem for these shuffle formalisms should be divided into two
parts; the membership problem for shuffle expressions, which do not feature the
context-free abilities of full CFSA, and the one for full CFSA.
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2.8.1 The Membership Problems for Shuffle Expressions

The membership problem for shuffle expressions is already a fairly complex question.
There is a sizable body of literature, and Paper I studies one fragment of the problem.

• The non-uniform membership problem is decidable in polynomial time [JS01].
The algorithm relies on permitting each symbol read (or generated) to produce
some large number of potential states, which limits the complexity in terms of
the length of the string but explodes the complexity in terms of the size of the
expression.

• Unsurprisingly, in view of the above, the general uniform membership problem
is NP-complete [Bar85, MS94].

These two pieces paint a fairly clear picture; if we wish to check membership (or
parse) a string with respect to a shuffle expression it can be done reasonably efficiently
if the string is much larger than the shuffle expression. However, this does not reveal
the exact way in which the complexity depends on the expression. Notably, regular
expressions are (trivially) shuffle expressions, and for regular expressions the uniform
membership problem is not very difficult. Paper I explores how the structure of the
expression affects the complexity of the problem. See Section 2.9.

2.8.2 The Membership Problems for General CFSA

The membership problem for CFSA is NP-hard even in very restrictive cases, such as
where at most two non-terminals are ever attached to a position. It may therefore be
surprising that the problem is in NP. The overall construction hinges on limiting the
size of the trees of non-terminals generated by parsing a certain string, which relies
on a careful case-by-case analysis of symmetries in how non-terminals may be gener-
ated. This means that even if far more (seemingly) complex CFSA are considered the
problem does not become substantially harder. All of this is treated in Paper I, which
Section 2.9 now takes a deeper look into.

2.9 Contributions In the Area of Shuffle☆
This section provides, as denoted by the star, a slightly more formal treatment of the
contributions to the area of shuffle that have been made in (the papers included in) this
work. We need some additional definitions to start with.

2.9.1 Definitions and Notation

Let N+ denote N∖{0}. A tree with labels from an alphabet Σ is a function t ∶N → Σ,
where N ⊆N∗+ is a set of nodes which are such that

• N is prefix-closed, i.e., for every v ∈N and i ∈N+, vi ∈N implies that v ∈N, and

• N is closed under less-than, i.e., for all v ∈ N∗+ and i ∈ N+, v(i+1) ∈ N implies
vi ∈N.
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Let N(t) denote the set of nodes in the tree t. The root of the tree is the node ε , and vi
is the ith child of the node v. t/v denotes the tree with N(t/v) = {w ∈N∗+ ∣ vw ∈ N(t)}
and (t/v)(w) = t(vw) for all w ∈ N(t/v). The empty tree, denoted tε , is a special
case, since N(tε) = ∅ it cannot be a subtree of another tree. Given trees t1, . . . ,tn and
a symbol α , we let α[t1, . . . ,tn] denote the tree t with t(ε) = α and t/i = ti for all
i ∈ {1, . . . ,n}. The tree α[] may be abbreviated by α . Given an alphabet Σ, the set
of all trees of the form t ∶N → Σ is denoted by TΣ. For trees t,t′ and v ∈ N(t) let tv↦t′
be the tree resulting from replacing the node at v by t′ in t. That is, tε↦t′ = t′, and
tiv↦t′ = t(ε)[t/1, . . . ,(t/i−1),(t/i)v↦t′ ,(t/i+1), . . . ,t/n] for iv ∈ N(t) and i ∈N+. For
tv↦tε the subtree at v is deleted (e.g. α[t1,t2,t3]2↦tε = α[t1,t3]).
2.9.2 Concurrent Finite State Automata

With this we can make a formal definition of the concurrent finite state automata
already sketched. These automata are the subject at the heart of Paper I.

Definition 2.15 A concurrent finite state automaton is a tuple A = (Q,Σ,S,δ) where
Q is a finite set of states, Σ is the input alphabet, S ∈ Q is the initial state, and δ ∶
Q×(Σ∪{ε})×TQ are the rules.

A derivation in A is a sequence t1, . . . ,tn ∈ TQ such that t1 = S[] and tn = tε . For each
i < n the step from t = ti to t′ = ti+1 is such that there is some (q,α,t′′) ∈ δ and v ∈N(ti)
such that t/v = q[] and t′ = tv↦t′′ . Applying this rule reads the symbol α (nothing if
α = ε). L(A) is the set of all strings that can be read this way.

We only permit four types of rules in δ . Deleting rules of the form (q,ε,tε) ∈ δ .
Horizontal rules of the form (q,α,q′[]) ∈ δ . Vertical rules of the forms (q,α,q′[p1]) ∈
δ and (q,α,q′[p1, p2]) ∈ δ . Finally the closure rules, where (q,α,q′[p1, . . . , p1]) ∈ δ
for every number of repetitions of p1s, greater or equal to zero. ◇
We treat the in practice infinite set of rules for the closure rules as a schema (i.e.
they count as a constant number of rules for the purposes of defining the size of the
automaton).

Using this definition it should be easy to see how the rules in Figure 2.13 can be
constructed. The graphical rules cheat by ignoring the possibility that α = ε , while per-
mitting e.g. generating siblings without a root (effectively having rules (q,α, p1 p2)),
but it is trivial to add an additional state that serves as root for the subtree with only a
deleting rule defined.

Notice that the rules overlap a bit, in that the closure schema is unnecessary if we
are allowed to replace (q,α,q′[p1, . . . , p1]) with (q,α,q′[q′′, p1]) where q′′ is a new
state with only two rules, (q′′,ε,tε) and (q′′,ε,q′′[q′′, p1]). However, the context-free
languages are precisely those that can be recognized by a CFSA where every (q,α,t) ∈
δ has no node with more than one child in t, and we often wish to syntactically restrict
CFSA to not permit context-free languages, recreating the shuffle languages. We do
this as follows: a configuration is acyclic if for every v ∈ N(t) it holds that t(v) does
not occur in t/vi for any i, the shuffle languages are then precisely the CFSA where all
configurations are acyclic. The closure-free shuffle languages are those recognizable
by a CFSA with a finite (schema-free) δ and all reachable configurations acyclic.
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2.9.3 Properties of CFSA

Paper I proves a number of relevant properties about CFSA. Notably they are closed
under union, concatenation, Kleene closure, shuffle, and shuffle closure (i.e., if A and
A′ are CFSA then there exists a CFSA A′′ such that e.g. L(A′′) = L(A)⊙L(A′)),
but not under complementation or intersection (so there exists some A and A′ such
that there exists no CFSA recognizing the language e.g. L(A)∩L(A′)). Emptiness of
CFSA is decidable in polynomial time, and the CFSA generate only context-sensitive
languages.

2.9.4 Membership Testing CFSA

Membership in general CFSA. With this done we can consider uniform mem-
bership testing for general CFSA, one of the core results of Paper I. Since even a
severely restricted case of CFSA already have a NP-complete uniform membership
problem [Bar85, MS94], which serves as a lower bound, it is a pleasant surprise that
the general problem is in NP, as the restricted cases appear so relatively restrictive. A
non-deterministic polynomial time algorithm can simply guess which rules to apply
to accept a string, as long as the number of rules necessary (i.e. the sequence t1, . . . ,tn
in Definition 2.15) is polynomial in the length of the string. The only way this might
not happen is if a lot of ε-rules are required. A simple polynomial rewriting procedure
on A solves this, based on statements such as “if rules from δ can rewrite q[] into q′[]
without reading a symbol, include (q,ε,q′[]) in δ .” This ensures that if a derivation
of a string exists in A then a short one exists.

Membership in the shuffle of shuffle languages and context-free languages. The
CFSA model goes on to be used to prove a number of other membership problem
results. One interesting case is the shuffle of a shuffle language and a context-free
language, i.e., membership for the CFSA where every configuration tree (except the
first one and the last one where things are getting set up and dismantled) is of the
form q[t1,t2] where t1 is acyclic and N(t2) ⊂ 1∗ (that is, no node in t2 has more than
one child). This proof is rather more involved, and relies on finding a number of
symmetries in the way the tree corresponding to the shuffle language (i.e. t1 here) can
behave. Notably it relies on defining an equivalence relation on nodes in the tree, i.e.,
if we have t(v) = t(v′) what we do to v and v′ is interchangeable. Most notably, if we
in two places apply a rule schema (q,α,q′[p1, . . . , p1]) there is no point in generating
p1 instances in both places, we might as well pick one of the places and generate all
the instances of p1 necessary. In fact, in the procedure we can just remember “as
long as this node is still here we can assume we have any necessary number of p1
instances”. In this way the number of possibilities are limited in such a way that a
Cocke-Younger-Kasami-style table can be established for parsing. While polynomial
the degree of the polynomial is very substantial, an efficient algorithm is left as future
work.

The hardness of context-free shuffles. Another of the core results of Paper I is a
proof that there exist two deterministic linear context-free (DLCF) languages L and L′
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such that the membership problem for L⊙L′ is NP-complete. That is, the non-uniform
membership problem for the shuffle of two DLCF languages is NP-complete. The
proof relies on the following. We can construct a DLCF language L which consists of
strings of the following form:

[0][1]⋯[1][1]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C1

$[0][1]⋯[1][1]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C2

$⋯$[0][1]⋯[1][0]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C′2

$[0][1]⋯[1][1]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C′1

where each bit-string is a polynomial-length Turing machine configuration, and C′
1 is

the (reversed) configuration the Turing machine reaches taking one step from C1, and
similarly C′

2 is one step from C2 (and so on nested inwards). The rules of the Turing
machine are encoded in L. The language class is not powerful enough to relate C1 and
C2, all it can do by itself is take a single step. We can however also construct a DLCF
language L′ which recognizes all strings

$[0][1]⋯[0][1]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P1

$[1][1]⋯[1][1]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P2

$⋯$[1][1]⋯[1][1]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P′2

$[1][0]⋯[1][0]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P′1

which are such that P′1 is P1 reversed, and P′2 is P2 reversed, and so on inwards. At
the center there is one extra string of the form ([0]∣[1])∗, entirely arbitrary. Now
construct the string

[0]⋯[0]´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
I

$[[01]]⋯[[01]]$$⋯$$[[01]]⋯[[01]]
where I is filled with the initial Turing machine configuration we are interested in.
Then check if this string is in L⊙L′. What will happen is that L and L′ will have to
“share” every [[01]]⋯[[01]] substring (since neither can by itself produce e.g. [[),
each producing half the brackets and binary digits, forcing the other to produce its
complement. The initial I must be produced by L, as L′ requires a leading $, which
makes L produce the result of taking the first step of the Turing machine in the last[[01]]⋯[[01]] section, which leaves the complement for L′ to produce in the last
section, which will make it produce the complement in the first [[01]]⋯[[01]] section,
forcing L to produce the same configuration in that first sectiont that it produced in the
last section. This makes it produce the result of taking another computation step in
the second-to-last [[01]]⋯[[01]] section, which L′ then copies, and so on. In this way
the shuffle will cooperate to perform an arbitrary (non-deterministic) Turing machine
computation for polynomially many steps, making the membership problem NP-hard.
This is non-uniform as the Turing machine coded in L may be one of the universal
machines, which reads its program from the input I.

2.9.5 The rest of Paper I.

Paper I has a number of further results, including a fixed parameter analysis of parsing
shuffle expressions with the number of shuffle operators which is discussed in brief in
Section 3.5.1. In addition the paper discusses the uniform membership problem for
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the shuffle of a context-free language and a regular language. That is, a context-free
grammar G, a finite automaton A and a string w are given as input, and the decision
problem is checking whether w ∈ L(G)⊙L(A)). An important point in this context is
that L(G)⊙L(A) is a context-free language for all G and A. This can be shown by
a simple product construction. This, however, raises a question discussed in another
paper.

2.9.6 Language Class Impact of Shuffle

Paper V also considers shuffle, but here the question is of a more abstract nature.
The claim studied is, for two context-free languages L ⊆ Σ∗ and L′ ⊆ Γ∗ (with Σ∩Γ =∅) is L⊙ L′ ∉ CF unless either L ∈ Reg or L′ ∈ Reg? That is, if the shuffle of two
context-free languages is context-free must one of the languages be regular? The
author conjectures that this is indeed the case, but Paper V gives only a conditional
and partial proof.
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Synchronized Substrings in
Languages

In this chapter we take a look at what can be described as formalisms with synchro-
nized substrings. A single sequence of derivation decisions which (may) have effects
in several places of a string. This is most easily illustrated by extending our running
sketched formalism to generate such languages.

3.1 Sketching a Synchronized Substrings Formalism

3.1.1 The Graphical Intuition

In this section the grammars introduced in Figure 1.3 will be extended in a different
way from the preceding shuffle chapter. In this new grammatical formalism there may
not be more than one non-terminal attached to a position (i.e. to a bullet), nor may we
have non-terminals depend on each other. That is, the “stacking” of non-terminals of
Figure 2.8 is no longer permitted.

The new grammatical formalism for this chapter instead generalize the regular
grammars in some new ways, which will pave the way to rules of the following form.

(●●)
E

Ð→ (aaaa●●●●aaaa●●bb●●bbbb)
DE

• Positions (i.e. bullets) may now occur anywhere in the string, not just at the
end. There may be any number of positions on the right-hand side of rules.

• Each non-terminal may be attached to multiple positions. We say that the non-
terminal tracks, or controls, those positions. This in turn means that the left-
hand sides may also contain multiple positions (the number controlled by the
non-terminal being replaced).

We assume that each non-terminal always tracks the same number of positions (so if A
tracks 3 positions in one rule it will always track 3 positions). See Figure 3.1 for a first
example of a grammar of this new kind. An example derivation using this grammar is
shown in Figure 3.2.
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(●●)
S

Ð→ (●●●●●●)
A

(●●,●●,●●)
A

Ð→ (aa●●,,bb●●,,cc●●)
A

(aa,,bb,,cc)
Figure 3.1: An example of a grammar of the synchronized substring variety. The
initial non-terminal S, which tracks a single position, generates an instance of the
non-terminal A, which tracks three positions, inserted as a string at the position which
S was previously tracking (notice that this is not the same as attaching them all to
that position, they are ordered and distinct in the resulting string). A has two rules,
the first generates an a in the first position, a b in the second and a c in the third,
while generating a new A tracking the positions just after each of the newly generated
symbols. The last rule generates the same symbols but creates no new A.

(●●)
S

Ô⇒ (●●●●●●)
A

Ô⇒ (aa●●bb●●cc●●)
A

Ô⇒ (aaaa●●bbbb●●cccc●●)
A

Ô⇒ (aaaaaabbbbbbcccccc)
Figure 3.2: A derivation of the string “aaabbbccc” using the grammar in Figure 3.1.
Notice that even though A tracks multiple positions there will never be commas in the
derivation like there is in the grammar, the positions will instead be interspersed with
real symbols in a contiguous string. Applying a rule places new substrings in some
positions, and these substrings may themselves contain positions.

Notice that this formalism features ordering in the positions that the non-terminals
track. Consider for example adding the following rule to the grammar in Figure 3.1.

(●●,●●,●●)
A

Ð→ (●●,,●●,,●●)
A

This then permits derivations like the one shown in Figure 3.3, and more generally it
permits deriving strings of the form “aacacbbbbbccaca”, containing the same number
of “a”s, “b”s and “c”s, but the first and last section are the same sequence with “a”s
replaced with “c”s and vice versa.

(●●)
S

Ô⇒ (●●●●●●)
A

Ô⇒ (aa●●bb●●cc●●)
A

Ô⇒ (aa●●bb●●cc●●)
A

Ô⇒ (aaccbbbbccaa)
Figure 3.3: A derivation of the string “acbbca” using the grammar in Figure 3.1
extended with a rule which switches the first and third position tracked by the A.
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3.1.2 Revisiting the Mapped Copies of Example 1.1

Example 1.1 illustrates a trivial case of synchronized substrings formalisms, where a
sequence of symbols is chosen, and two different symbol mappings create two dif-
ferent strings, which are concatenated to produce an output string. Let us recall it
here.

Example 3.4 (Mappings of copy-languages) Given two mappings σ1,σ2 from {a,b}
to arbitrary strings and a string w decide whether there exists some α1, . . . ,αn ∈ {a,b}
such that σ1(α1)⋯σ1(αn) ⋅σ2(α1)⋯σ2(αn) =w. ◇
Let us look at how

1. we can model this type of language by a grammar, and,

2. parsing may be performed, in both the uniform and non-uniform case.

3.1.3 Grammars for the Mapped Copy Languages

Here we have two alphabets, the “internal” alphabet Γ = {a,b} as well as the usual Σ.
In addition we have two mappings from Γ to strings in Σ. Let wa = σ1(a), wb = σ1(b),
va = σ2(a) and vb = σ2(b). Then the grammar in Figure 3.5 generates the language of
the strings that the procedure in Example 1.1 yields.

(●●)
S

Ð→ (●●●●)
A

(●●,●●)
A

Ð→ (wawa●●,,vava●●)
A

(wbwb●●,,vbvb●●)
A

(εε,,εε)
Figure 3.5: A synchronized substring-type grammar for the language that the proce-
dure sketched in Example 1.1 can produce. Notice that wa, va, wb and vb are strings
derived from the mappings σ1 and σ2, rather than symbols in their own right.

3.1.4 Parsing for the Mapped Copy Languages

Let us consider the uniform parsing problem for this class of grammars (i.e., those
that can be generated by some choice of σ1 and σ2 in the above construction). We can
divide the parsing problem into two parts:

1. We need to find the position at which the concatenation happens. That is, let G
be the grammar constructed as in Figure 3.5 for some σ1 and σ2, then, to decide
if some w belongs to L(G) we need to tell if there is some way to divide w into
two, w = xy, such that σ1(v) = x and σ2(v) = y for some v ∈ {a,b}∗.

2. The second part is finding the actual v ∈ {a,b}∗.

Solving the second part effectively solves the first, in the sense that if we are given v
we will be able to tell where the concatenation happens by simply computing σ1(v)
and σ2(v).
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However, it might be easier to find v if the point of concatenation is found. We
are in fact primarily concerned about whether parsing can be done in polynomial time
or not, and if we can compute v in polynomial time given the point of concatenation
we can solve the whole problem in polynomial time, as there are only linearly many
positions at which the concatenation may occur. That is, we can simply for each
possible way of dividing w into xy try to compute a v for this x and y. This exhaustive
search at most makes the membership problem linearly more expensive.

The full algorithm for this toy example is in fact fairly simple. It will, however,
serve to illustrate the more general algorithms later, where the directed graph con-
struction will be replaced by something similar but more advanced.

Algorithm 3.6 (Parsing for Example 1.1)
1: function PARSECOPYMAP(string w ∈ Σ∗, σ1 ∶ {a,b}→ Σ∗, σ2 ∶ {a,b}→ Σ∗)
2: let α1⋯αn =w (i.e., each αi is a symbol in Σ).
3: let G be a digraph with nodes {(p,q) ∣ p,q ∈ {0, . . . ,n}} and no edges.
4: for p,q, p′,q′ ∈ {0, . . . ,n} do
5: if (σ1(a) = αp+1⋯αp′ and σ2(a) = αq+1⋯αq′ ) or
6: (σ1(b) = αp+1⋯αp′ and σ2(b) = αq+1⋯αq′ ) then
7: add an edge from (p,q) to (p′,q′) to G
8: end if
9: end for

10: for i ∈ {0, . . . ,n} do
11: if REACHABLE(G, (0, i), (i,n)) = True then
12: return True
13: end if
14: end for
15: return False
16: end function

REACHABLE is a function which takes a graph G and two nodes v and w and checks
if w can be reached from v following the edges. Notice that we abuse the subscripts in
the algorithm, so αp+1⋯αp′ for p ≥ p′ will be an empty string.

To quickly outline the algorithm, in lines 4–9 the graph G is constructed in such a
way that a node (p′,q′) is only reachable from (p,q) if the substrings αp+1⋯αp′ can
be generated by σ1(v) and αq+1⋯αq′ can be generated by σ2(v) for some common v.
Once this graph is constructed lines 10–14 simply test all ways to cut the initial string
into two pieces and checks on the graph if the resulting two strings can correspond to
a common original string mapped through σ1 and σ2.

Notice that the graph will be polynomial in the size of the string to be parsed,
and computing reachability on a directed graph is very cheap. Also notice that this
algorithm as written is just a membership test, but making it parsing amounts to simply
outputting the path in G found when line 11 succeeds.
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3.2 The Broader World of Mildly Context-Sensitive Languages

The above may seem like trivialities, but it appears to be at the core of the difficulty
in deciding membership for the general class of formalisms along these lines. The
formalism sketched here (exemplified by the grammar in Figure 3.5) is intended to
imitate a hyperedge replacement grammar (see e.g. [DHK97]) generating a string, but
that formalism is equivalent to a large class of other formalisms.

3.2.1 The Mildly Context-Sensitive Category

All the formalisms discussed in this chapter fall within the category “mildly context-
sensitive”, defined by Aravind Joshi in [Jos85]. A language class L is defined by Joshi
to be mildly context-sensitive if and only if all the following hold.

1. At least one language in L features limited cross-serial dependencies.

2. All languages L in L have a semi-linear set {∣w∣ ∣ w ∈ L}. That is, the lengths
of strings in the language form a union of a finite number of linear sequences,{s1+ ik1 ∣ i ∈N}∪⋯∪{sn+ ikn ∣ i ∈N}.

In addition the following two requirements are implicit but clearly required in [Jos85]

3. All L ∈ CF are in L , that is, a mildly context-sensitive formalism must be able
to represent all context-free languages (recall Section 2.7).

4. The non-uniform membership problem for languages in L is decidable in poly-
nomial time.

Requirement 1 needs some further explanation. It refers to a certain type of substring
synchronization that Joshi derives from the tree-adjoining grammar formalism that
he uses in that paper. The description is fairly involved, but one key detail is that
languages of the form anbncn may be in such a class, but anbnanbnanbn⋯ may not.
This statement may be transferred to the formalism we have sketched by noting that
for every such grammar there exists some constant k such that no non-terminal tracks
more than k positions, which makes it impossible to generate e.g.

anbn⋯anbn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k+1 copies

.

3.2.2 The Mildly Context-Sensitive Classes

There are at least two different classes of languages with published formalisms that fit
clearly into the mildly context-sensitive definition.

1. The first is the motivating class, into which tree-adjoining grammars [JLT75]
which Joshi used when first defining the category, fall. All the following for-
malisms are equivalent [JSW90] (that is, they define the same language class):
linear indexed grammars [Gaz88], combinatorial categorial grammars [Ste87]
and head grammars [Pol84].
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2. The second class still fulfills all the requirements outlined by Joshi, but is strictly
more powerful (i.e. every language that can be generated by e.g. a head grammar
can be generated by any of these formalisms). These formalisms include linear
context-free rewriting systems [Wei92]1, deterministic tree-walking transduc-
ers [Wei92], multicomponent tree-adjoining grammars [Jos85, Wei88], multiple
context-free grammars [SMFK91, Göt08], simple range concatenation gram-
mars [Bou98, Bou04, BN01, VdlC02] and string-generating hyperedge replace-
ment grammars [Hab92, DHK97].

It is interesting to note that while the mildly context-sensitive definition requires a non-
uniform membership problem (i.e. the membership problem where the string, but not
the grammar/automaton, is included in the input, recall Definitions 1.7 and 1.8) that is
solvable in polynomial time, all the listed formalisms above have an NP-hard uniform
membership problem. The way that the grammars perform concatenation, notably
how many positions each non-terminal keeps track of (or, in Joshis terminology, the
extent of the cross-serial dependencies), play a big part in how difficult the uniform
membership problem becomes.

Going through all of these formalisms is not time well spent for an introductory
text like this, but in the next section we will make the connection between the sketched
formalism of Figure 3.1 and string-generating hyperedge replacement grammars.

3.3 String-Generating Hyperedge Replacement Grammars

The formalism sketched in Figures 3.1–3.5 is more or less a direct copy of hyperedge
replacement grammars tuned for string generation. This formalism constructs a di-
rected graph by having hyperedges (that is, edges that connect an arbitrary number
of nodes) labeled with non-terminal symbols, and having rules that replace these by
new subgraphs connected to the nodes the hyperedge was connected to. So, the rule
application (using a rule from Figure 3.1)

(aa●●bb●●cc●●)
A

Ô⇒ (aaaa●●bbbb●●cccc●●)
A

actually corresponds to rewriting the directed graph

a b c

A

where the box labeled by A now represents a hyperedge which is connected to 6 nodes,
into this graph

1 References are for the most part not to the original definitions, but rather to sources where they are
described and related to the broader class at hand.
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a a b b c c

A

by the hyperedge labeled A being replaced by attaching new nodes and edges to the
positions the original hyperedge was attached to, and attaching a new hyperedge (also
labeled A). To make this perfectly formal we also need to number the nodes, or oth-
erwise somehow distinguish between them, which we manage to avoid graphically in
the string case by just keeping track of things left-to-right.

Notice that while the non-uniform membership problem is polynomial for string-
generating hyperedge replacement grammars it very quickly becomes NP-hard when
the grammar are allowed to generate graphs even a little bit more complex than these
string-representing directed chains. In fact, if the grammar is allowed to make multiple
chains, that is, creating a graph consisting of the union of directed chains, by simply
having the hyperedge replacement rules leaving pieces unconnected, the non-uniform
membership problem becomes NP-complete [LW87].

In addition note that for a hyperedge replacement grammar to generate a string
it will necessarily have to keep track of both sides of each “gap” corresponding to a
position, as is sketched in the above figures. If it loses track of a node that is supposed
to be internal to the string it becomes impossible to later join it up to the other parts
generated, and the graph becomes a set of multiple chains.

We will next take a look at a general non-uniform parsing algorithm for string-
generating hyperedge replacement grammars (the informal flavor used here). This
construction is from 2001 by Bertsch and Nederhof [BN01] (this is not the earliest or
most efficient parsing algorithm of this type, but a straightforward and clear one).

3.4 Deciding the Membership Problem

3.4.1 Deciding Non-Uniform Membership

Origins of the Algorithm The construction from [BN01] is here modified a bit for
clarity and to fit into the approach we use. In its original form the algorithm takes
the grammar G (for which membership should be decided) and a string w, and from
these two constructs a new grammar G′, which is empty if and only if w ∉ L(G). In
this way it reduces the problem of deciding membership for one grammar to the prob-
lem of deciding emptiness for another. More specifically the grammar G is one of
the mildly context-sensitive formalisms (the algorithm is originally defined in terms
of Range Concatenation Grammars, but here we opt to continue with the equiva-
lent string-generating hyperedge replacement grammars) and the constructed gram-
mar G′ is a context-free grammar, for which emptiness testing (i.e. computing whether
L(G′) = ∅) is very easy. However, as context-free grammars are a subset of the hy-
peredge replacement grammars (and emptiness testing is just as easy for hyperedge
replacement grammars) we will not differentiate between the formalisms.
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Deciding Emptiness Emptiness-checking a hyperedge replacement grammar is very
easy. Start by letting all non-terminals be unmarked. For each rule, if the left-hand is
unmarked but the right-hand side contains no unmarked non-terminals mark the non-
terminal on the left-hand side and start over the looping through the rules from the first
one. If we make it through all the rules without marking a non-terminal we are done,
and the language generated by the grammar is empty if and only if S is still unmarked.
This algorithm is clearly in O(n2) where n is the number of rules, as it is a loop that
is restarted at most n times (sooner or later all the non-terminals have been marked).

Reducing Membership to Emptiness It is time to solve the membership problem
for string-generating hyperedge replacement grammars. Let G be the grammar, and
α1⋯αn (αi ∈ Σ for each i) the string for which we wish to check whether α1⋯αn ∈
L(G). To decide this we will construct a new grammar G′ such that L(G′) ≠ ∅ if and
only if α1⋯αn ∈ L(G) (specifically, L(G′) = {ε} otherwise). The construction of G′
should be reminiscent of the construction of the graph in Algorithm 3.6.

G′ will be constructed in such a way that if G contains a non-terminal A which con-
trols k positions (i.e. there are k positions on the left hand side of rules for A) then G′
contains one non-terminal A(p1,q1),...,(pk,qk) for each p1,q1, . . . . . . , pk,qk ∈ {0, . . . ,n},
such that p1 ≤ q1, . . . , pk ≤ qk. The logic will be, if the non-terminal A(p1,q1),...,(pk,qk)
can generate any strings, then the non-terminal A in the original grammar G is able to
generate the strings αp1⋯αq1 , . . . ,αpk⋯αqk . The most direct rule to include in G′ then
becomes that if

(●●,, . . .. . .,,●●)
A

Ð→ (αp1+1⋯αq1αp1+1⋯αq1 ,, . . .. . .,,αpk+1⋯αqkαpk+1⋯αqk). . .

is a rule in G then

(●●)
A(p1,q1),...,(pk,qk)

Ð→ (εε)
is a rule in G′. That is; if A can generate the substrings αp1+1⋯αq1 through αpk+1⋯αqk ,
then A(p1,q1),...,(pk,qk) can generate the empty string (we could select any string as only
emptiness is of interest). Similarly, for example, if there is a rule in G of the form

(●●,●●)
A

Ð→ (●●●●,,●●●●●●)
B C D

then, for all p1,q1, p2,q2 ∈ {0,n}, and k1,k2,k3 ∈ {0,n}, such that p1 ≤ k1 ≤ q1, and
p2 ≤ k2,k3 ≤ q2 there is a rule

(●●)
A(p1,q1),(p2,q2)

Ð→ (●●●●●●)
B(p1,k1),(k3,q2) C(k1,q1),(p2,k2) D(k2,k3)

.
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That is, the p1,q1, p2,q2 decide the substrings checked by the left-hand side, and k1
is the position between p1 and q1 where the substring goes from being generated by
the B and the C, and similarly for k2 and k3 with the two concatenation points in the
second substring. This generalizes to arbitrary rules in the obvious way, when non-
terminals and symbols are mixed one additionally needs to check that the symbols
generated correspond correctly to the symbols in α1⋯αn.

As such, if each of the B, C and D non-terminals can generate their respective
substrings then the right-hand side can generate the empty string, meaning that the A
can generate the whole. Finally, add the rule

(●●)
S

Ð→ (●●)
S(0,n)

to G′, that is, the initial non-terminal goes to the non-terminal that checks if the non-
terminal S in G can generate the substring α0+1⋯αn, i.e., the whole string.

Following this procedure G′ will be able to generate the empty string if and only if
G can generate the string α1⋯αn. It should be clear that the size of G′ is on the order
of O(nc) where c is polynomial in the size of the grammar G. Notably c increases
with the number of positions tracked by non-terminals in G.

However, we were considering the non-uniform membership problem, and as such
we view G as a constant, which in turn means that c is viewed as a constant. It
follows that O(nc) is a polynomial, and, as established above, deciding emptiness is
polynomial, making for a membership algorithm that is polynomial.

3.4.2 Deciding Uniform Membership

Deciding the uniform membership problem for our sketched grammatical formalism
appears to be extremely hard, a proof that LCFRS parsing is PSPACE-hard is given
in [KNSK92]. This makes it extremely unlikely that an efficient algorithm exists. The
best known algorithms (see e.g. [SMFK91] and Paper II for more references) for the
problem are in O(mn f(r+1)) where m is the size of the grammar, n the size of the
input string, and f and r are two very specific properties of the grammar, the fan-out
and the rank of the grammar respectively. Before we get further into the explanation
it is important to note that since f and r are values depending on the grammar the
algorithm is in O(nm) as well, that is, the length of the string raised to the size of the
grammar. However, it turns out that in practice the fan-out and rank tend to be small
compared to the size of the full grammar, so it is a useful distinction to separate them
out.

In short, the rank of a grammar is the maximum number of non-terminals occur-
ring on the right hand side of a rule. The fan-out is the maximum number of positions
a non-terminal tracks. So for example a grammar G containing the rule

(●●,●●,●●,●●)
A

Ð→ (aa●●●●●●,,●●,,aabbcc,,cc●●cc)
BC D
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implies that it has rank at least 3, since the right-hand side has three non-terminals,
and fan-out at least 4, since A controls four positions. These are “at least” since other
rules may contain more non-terminals or more positions tracked.

3.4.3 On the Edge Between Non-Uniform and Uniform

So far we have seen that the problem is polynomial when the grammar is left out of the
input entirely, and an algorithm that is unquestionably exponential when the grammar
is included. However, this distinction, where some aspects of the grammar is separated
out to illustrate that it is not exponential in the “worst” way, is a bit blunt and imprecise
a way of viewing the complexity. For example, if the total number of rules were in
the exponent many practical grammars would have very problematic running times,
whereas if the number of symbols in the alphabet is the part in the exponent things
may not be nearly as problematic.

For a deeper look in this direction, we now give a slightly deeper summary of the
results in Paper II, with explanations of some of the supporting theory.

3.5 Contributions in Fixed Parameter Analysis of Mildly Context-
Sensitive Languages☆

We take this opportunity to briefly explain fixed parameter complexity, as it is neces-
sary to appreciate the contents of Paper II, and may not be common knowledge. See
e.g. [FG06] for a full introduction.

3.5.1 Preliminaries in Fixed Parameter Tractability

In classical complexity theory a problem may be viewed as a set of all positive in-
stances P ⊆ I, where I is the set of all possible instances. For example, we may have I
be all graphs and P be the set of all graphs which have a Hamiltonian path. A decision
procedure for the problem is then a program that computes a function a ∶ I→{yes,no}
such that P = {p ∈ I ∣ a(p) = yes}. The running time of the program is then analyzed
as a function in ∣p∣. For two problems P ⊆ I and P′ ⊆ I′ a polynomial time reduction
is a function r ∶ I → I′, computable in polynomial time such that p ∈ P⇔ r(p) ∈ P′. A
polynomial time reduction r from P to P′ implies that the fastest decision procedure
for P cannot be more than polynomially slower than the fastest for P′.

A parameterized problem is viewed as a set P ⊆ I ×N, where I is again the set
of all problem instances and the integer is what is called the parameter. A decision
procedure for R again computes a function a ∶ I ×N → {yes,no}, but now the time
of deciding a(p,k) is described in both ∣p∣ and k. If a runs in time f (k) ⋅ ∣p∣O(1)
for any computable function f ∶ N → N the problem is said to be fixed-parameter
tractable (FPT); that is, intuitively, for a small parameter the problem is basically
polynomial. The way the parameter is chosen has a large impact on how the analy-
sis behaves. Notably, taking any problem P ⊆ I and constructing the parameterized
problem {(p, ∣p∣) ∣ p ∈ P} ⊆ I ×N yields a fixed-parameter tractable problem for ev-
ery decidable P. A FPT reduction from P ⊆ I ×N to P′ ⊆ I′ ×N is a program which
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computes a function r ∶ (I ×N) → (I′ ×N) such that, (i) r(p,k) is computable in time
f (k) ⋅ ∣p∣O(1) for some computable function f ; (ii) (p,k) ∈ P⇔ r(p,k) ∈ P′; and; (iii)
there exists a computable function g such that for all (p′,k′) = r(p,k) it holds that
k′ ≤ g(k).

The parameter is normally chosen as some minor aspect of the problem. A classic
case is the vertex cover problem for graphs, which is NP-complete in general, but if
one looks for small covers (i.e. does this graph of a million vertices have a cover of
size five?) it turns out that the problem is easy. Vertex cover is, in fact, a classic
problem in the class FPT. That is, the parameterized problem is P ⊆G×N, where G
is the set of all graphs, such that (G,k) ∈ P if and only if G has a cover of size k.
This problem is decidable in time O(k∣G∣ +1.3k), which is excellent for small k. Not
all problems work out this well however, and there is a hierarchy of parameterized
complexity classes:

FPT ⊆W[1] ⊆W[2] ⊆ ⋯ ⊆W[SAT] ⊆W[P] ⊆XP, where FPT ⊊ XP,

each of which has some complete (characterizing) problem.
To make a quick revisit to Paper I and Chapter 2 note that there a proof is given

which shows that the uniform membership problem for shuffle expressions is W[1]-
hard when the parameter is the number of shuffle operators used in the expression.
One example of an instance is (((ab)∗⊙a∗,abb),1), and deciding it involves check-
ing whether abb ∈ L((ab)∗⊙a∗) (and checking that the expression has precisely one
shuffle operator, agreeing with the parameter). It is proven that this is W[1]-hard us-
ing a reduction from k-clique. k-clique is the set P ⊆ G×N where (G,k) ∈ P if and
only if G has a clique of size k. k-clique is known to be W[1]-complete.

3.5.2 The Membership Problems of Paper II

The graphical formalism sketched in this chapter is again slightly unspecific on some
details, but is close enough to hyperedge replacement string grammars that we can
restate all the results in Paper II in terms of it, although care should be taken and the
paper read whenever vagueness makes any statement feel unclear.

Recall the definition of rank and fan-out from Section 3.4.2. Then Paper II con-
siders the following four parameterized membership problems, all having the set of
all instances I×N where I = {(G,w) ∣ G a grammar,w ∈ Σ∗}. The grammars are of the
LCFRS type in Paper II, but considering the sketched hyperedge replacement gram-
mar case is illustrative enough. In each case the decision problem is to check whether
w ∈ L(G), but the parameter k differs.

1. The problem where the fan-out is constant (i.e. fixed, not part of the problem)
and the rank is the parameter. That is, deciding P⊆ I×N such that ((G,w),k) ∈P
if and only if w ∈L(G), G has rank at most k, and G has fan-out less than or equal
to a constant c.

2. The problem where the rank is constant (less than or equal to a constant c) and
the fan-out is the parameter.
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3. The problem where the parameter contains both the rank and the fan-out. That
is, the tuples in P⊆ I×N are still ((G,w),k) but G has rank at most k and fan-out
at most k.2

4. The problem where the parameter contains the rank, the fan-out, and the length
of the derivation. That is, we again have ((G,w),k) ∈ P if and only if w ∈ L(G),
the derivation in w takes less than k steps, and both the rank and fan-out of G
are less than k.

The first problem is proven to be W[1]-hard already for c = 2, again by a reduction
from the k-clique problem. There is currently nothing to suggest that this problem is
in W[1], and unfortunately W[1] is likely already rather hard.

The second problem is proven to be W[SAT]-hard already for rank 1, by reduction
from a type of satisfiability problem that is W[SAT]-complete. This is (most likely)
an even harder class than the previous parameterization, and mostly serves to illustrate
the need for a better choice of parameter. This also makes the third problem W[SAT]-
hard, since if fixing the rank to one gives W[SAT]-hardness it cannot help us to include
it in the parameter, as it then only goes up by a constant in infinitely many hard cases.

Finally, consider the fourth problem, where the rank, the fan-out, and the deriva-
tion length are all included in the parameter. As we keep adding more and more of
the problem to the parameter the complexity of the resulting parameterized problem
should hopefully fall (up until the (p, ∣p∣) case discussed above), the limitation on
the derivation length limits the length of the strings possible, but still does nothing
to control the overall size of the grammar. However, the proof of W[1]-hardness for
the first problem type is here reapplied, as the reduction incidentally also constructs a
grammar where all derivations are short (in the overall size of the grammar). Luck-
ily it can be proven that this problem is in W[1]. This is proven by using a special
case of parsing short derivations in context-sensitive grammars, which is known to be
W[1]-complete, and applying this to our short LCFRS derivations through a careful
FPT reduction.

2 It may seem more logical to make k the sum or product of the rank and fan-out, but since all treatment
of the parameter is through arbitrary computable functions this is unnecessary, as for example squaring
the maximum of the rank and the fan-out is necessarily greater or equal to the product of the two.
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Constraining Language
Concatenation

In this chapter we consider another operator which in some ways operates in the oppo-
site way of the binary shuffle operator. The binary shuffle operator for two languages
L and L′ constructs a language L⊙L′ which is a superset of the concatenation L ⋅L′.
This superset is created by, in a sense, softening the requirement of the concatenation
point, and letting strings interleave into each other. Here we will introduce the cut
operator, which creates a subset of L ⋅L′, which contains all of the concatenations for
which it is not in any way ambiguous where one string ends and the next starts. This
is quickly clarified once we leap into the definition.

We will in addition compare and contrast this type of operator with a number of
features and properties of real-world regular expression engines. This chapter, since
it deals with a somewhat singular practical regular expression feature, does not have
a ☆-marked section, and instead has a slightly more technical slant in various parts.
Familiarity with regular expressions is important for understanding the material here
presented.

4.1 The Binary Cut Operator

The cut operator is a kind of concatenation of languages. To state this definition we
need some additional notation. For any string α1⋯αn ∈ Σ∗ (i.e., αi ∈ Σ for each i)
let prefix(α1⋯αn) = {α1,α1α2, . . . ,α1⋯αn}, that is, all non-empty prefixes of α1⋯αn.
Let P(S) denote the power-set of a set S. Then the definition of the cut is as follows.

Definition 4.1 (Binary Cut Operator) Let !∶ P(Σ∗)×P(Σ∗) → P(Σ∗) be a binary
operator such that

L ! L ′ = {uv ∣ u ∈ L,v ∈ L ′,uv′ ∉ L for all v′ ∈ prefix(v)}
for any languages L,L ′ ∈ Σ∗. ◇
Notice that this definition ensures that L ! L ′ ⊆ L ⋅L ′, that is, the cut is a subset of
the concatenation. The inclusion is not necessarily strict, for example if L ′ = {ε} it
necessarily follows that L ! L ′ = L ⋅L ′.
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Let us look at a series of examples (partially borrowed from Paper III, see Section 2
of that paper for further examples).

Example 4.2 (Empty Cuts) Let L = {ab,abb,abbb, . . .} and L ′ = {bc,bbc,bbbc, . . .}
(that is, L = abb∗ and L ′ = bb∗c). Then L ! L ′ is the empty language. Let us consider
one of the strings in the concatenation, abbc. This string cannot be in L ! L ′, as,
looking at Definition 4.1, splitting it into u = ab and v = bc, while fulfilling u ∈ L and
v ∈ L ′, is not permitted as b ∈ prefix(bc), and abb ∈ L . Picking u = abb leaves v = c,
which is not in L ′. ◇
A more interesting language generated by a cut is the following.

Example 4.3 (Very Unsymmetrical Cuts) Let L = {a,b,aa,bb,aaa,bbb, . . .} and let
L ′ = {ac,bc}. Then L ! L ′ = {abc,bac,aabc,bbac,aaabc,bbbac, . . .}. The reason is
simple; if the u (in the sense of Definition 4.1) is chosen to be some number of “a”s,
then v cannot be picked to be ab, since the a prefix will be consumed by L . Similarly,
if the string starts with a b it becomes impossible to pick v as bc.

This illustrates that while the cut L ! L ′ produces a subset of L ⋅L ′ it does not
necessarily produce a language of the form L ⋅L′ for some L ⊆ L and L′ ⊆ L ′. ◇
4.2 Reasoning About the Cut

As a short aside, let us consider how the cuts relate to the other formalisms presented
here. Where the shuffle operator effectively takes two strings, let us call them w and v,
and interleaves them in such a way that, reading the result left to right, we (in general)
have no idea which string each symbol belongs to. Perhaps v has not even started yet,
or perhaps all of it has already been seen. The cut, on the other hand, is such that it
only permits the concatenations where there is no ambiguity about where w ends. The
only way wv is in the language generated by the cut is if the point of concatenation
is decided entirely by the language w belongs to. That is, reading a string from a cut
language from left to right we know that we have finished reading the w part when it
is no longer possible for w to be longer. Then the remaining string must be the v part.

It is in this way the cut and the shuffle can be viewed as opposite directions from
the concatenation, where the shuffle permits more ways of combining w and v, and the
cut permits only a subset of all possible concatenations based on removing ambiguity
when reading from the left.

4.3 Real-World Cut-Like Behavior

In the case of the cuts the real-world motivation is rather immediate and, hopefully,
compelling. Regular expressions are a very popular tool for programmers, and regu-
lar languages of other forms also show up with great frequency. However, in mixing
non-deterministic constructions for testing language membership and the determinis-
tic flow control of the “main” program some very interesting effects can be achieved
(or, alternatively, unexpected problems may be created, as the case may be).

36



Constraining Language Concatenation

Consider the Python function shown below, which successively matches multiple
regular expressions to the same string.

Listing 4.4 (A Repeated Regular Expression Python Program)

# match argument against successive regular expressions
def matchx(s):

# match a prefix of s against aa*|bb*
m1 = re.match("ˆaa*|bb*", s)
if m1 != None:

# if ok, match the remainder of s against ab|bc
m2 = re.match("ab|bc$", s[m1.end(0):])
if m2 != None:

# if both succeded report success
return "Matched"

# otherwise failure
return "Did not match"

Basically, the code in Listing 4.4 is a function, which takes a string s as input, and then
matches a prefix of s to the regular expression aa∗ ∣bb∗ (the language {a,b,aa,bb,aaa,
bbb, . . .}), if that match is successful the remaining suffix, that is, whatever remains
after removing the prefix that the first regular expression matched, of s is matched
against the regular expression ab ∣bc (the language {ab,bc}). If that match is success-
ful success is reported.

The language “matched” by this program is exactly the language (aa∗ ∣bb∗) !(ab ∣bc). It might be easy to think that is should match (aa∗ ∣bb∗) ⋅ (ab ∣bc) (which
includes e.g. aab and bbc, which are not included in Example 4.3), but this is not the
case. The thinking is exactly the one discussed for the cuts, the deterministic behavior
of the outer program lets the first regular expression read as much as it wants, and
the default behavior or regular expressions in most software libraries is to make the
longest possible match. Once that has happened the suffix has been deterministically
selected, and the second regular expression must match whatever is left for the overall
match to work. In comparison, (aa∗ ∣bb∗) ⋅(ab ∣bc) features the non-deterministic be-
havior “intended” in regular expressions, the default behavior in most software pack-
ages will still be that the first part should match as much as possible, but if the overall
match fails it will backtrack and choose a smaller match (if possible) in deference to
the entire expression succeeding.

4.4 Regular Expressions With Cut Operators Remain Regular

4.4.1 Constructing Regular Grammars for Cut Expressions

Next we in short recap a result given in full in Paper III, showing that adding the cut
operator to regular languages (or, of course, regular expressions) creates regular lan-
guages. We will, with some further extensions later, call these expressions which add
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the cut to the normal set of regular expression operators cut expressions. The straight-
forward way to demonstrate that cuts preserve regularity is by employing a product
construction, a variation of which was already employed in Section 2.4 to demonstrate
the regularity of regular expressions extended with the binary shuffle operator.

Assume that we have some regular grammars (in the vein of Figure 1.3) R1 and
R2, and that we wish to construct a regular grammar R for R1 ! R2. Basically we will
for each non-terminal A1 in R1 and each non-terminal A2 in R2 construct the non-
terminals (A1,�), (�,A2) and (A1,A2) in the new grammar. The extra symbol � is
intended to signify “absent” here, and the new grammar will start out in (S,�) where
S is the initial non-terminal from R1. The full construction then carefully ensures that
whenever we have read a prefix of the input-string that R1 could accept it starts R2 on
its initial non-terminal (i.e., if we are in (A,B) and R1 can get rid of A without reading
any more we go to (A,S′), where S′ is the initial non-terminal for R2). That is, as
the string is read whenever R1 can accept the string it restarts R2 in its initial state,
whenever R2 can accept the grammar for R1 ! R2 can accept.

The basic intuition behind this construction is that for every prefix that R1 can
accept Definition 4.1 says two things:

• It is possible that R2 may start matching at this point, if R1 cannot go on to
match something longer.

• It is not allowed that we have already switched to matching in R2.

In effect the construction speculatively keeps track of both R1 and R2, ensuring that
R1 gets its longest possible prefix of the string read, while keeping track of what R2
has otherwise done.

The construction is hard to further simplify in a form that is more instructive than
the full version, so refer to Lemma 2 of Paper III for a deeper explanation.

4.4.2 Potential Exponential Blow-Up in the Construction

While the cut expressions generate only regular languages, proving no more powerful
than regular expressions, this does not mean that it is a pointless formalisms. There
are two additional considerations to make.

1. Does the formalism allow something important to be conveniently expressed?

2. Does it express some languages in a more compact way?

In the case of cut expressions both are true. Modeling the loss of non-determinism
illustrated in Listing 4.4 (and later in Listing 4.7) is interesting, and as we will demon-
strate next there are also some families of languages where the smallest regular expres-
sion is exponentially larger than the equivalent cut expression, even when restricting
ourselves to use only a single binary cut operator.

The core of this argument is simply that the cut can express a set difference of
sorts on languages.

Lemma 4.5 Let Γ = Σ∪{#}, we assume that # ∉ Σ. Then ((L#Γ∗)∣ε) ! (Σ∗#) = (Σ∗∖
L)# for all languages L over Σ. ◇
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A complete proof of this lemma is out of the scope of this introduction, but it is fairly
intuitive when one considers the cases. Assume that w ∈ L, then, for the lemma to
hold, w# should not be in ((L#Γ∗)∣ε) ! Σ∗#. This is clearly the case, as the L#Γ∗ will
consume it entirely, leaving nothing for the trailing Σ∗# to match. This in fact holds
for any string v with w# as a prefix, as the Γ∗ keeps consuming all symbols. In the
other direction, assume that w ∉ L. Then w# is not matched by L#Γ∗, meaning that the
ε part of the branch is chosen, and then Σ∗# matches it and the match succeeds.

To exploit Lemma 4.5 we can now construct a regular expression R over Σ such
that the shortest string R does not match is exponential in length (compared to the
length of R). We can then apply Lemma 4.5, taking L as L(R), to produce a cut
expression for which the shortest matching string is exponential in the length of the
expression. From this we can then draw the conclusion that the smallest regular gram-
mar (or finite automaton or regular expression) is at least exponentially larger than
the cut expression. Recall Definition 1.6 in preparation, and note that Rk (for some
regular expression R and k ∈ N) is not a regular expression operator, but is here used
as an abbreviation for

R ⋅R⋯R´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k times

.

If regular expressions are extended with an actual Rk operator the explosion in size
would be even greater.

We select Σ = {0,1,$} as the alphabet, and let ∆ = {0,1}. For each n ∈N the regular
expression Rn has five components, Rn = A ∣B ∣Cn ∣Dn ∣En, which are as follows. In the
end the language considered will be (Σ∗ ∖L(Rn))#, so the aspect to consider is e.g.
the language Σ∗∖A and so on.

1. A = ∆Σ∗ ∣$∆∗1∆∗$Σ∗. Note that all strings in Σ∗∖A start with $ and contain no
1 until the next $.

2. B = Σ∗∆ ∣Σ∗$∆∗0∆∗$. Note that all strings in Σ∗∖B end with $ and contain no
zero between the last two $ symbols.

3. Cn = Σ∗$∆n+1∆∗$Σ∗ ∣Cn,0⋯Cn,n−1 where Cn,i = Σ∗$∆i$Σ∗ for each i. Note that
all strings in Σ∗ ∖Cn have exactly n zeroes and ones between each pair of $
symbols.

4. Dn = Dn,1 ∣⋯∣Dn,n−2, where Dn,i = Σ∗$∆i0∆∗0∆∗$∆i1∆∗$Σ∗ for each i. Note
that the strings in Σ∗ ∖Dn are such that every substring $x$y$ (with x,y ∈ ∆n,
which will be enforced by Cn), is such that if the ith symbol in x is a zero, and
the ith symbol in y is a 1, then symbols i+1 through n in x must be ones.

5. En = En,1 ∣⋯En,n−2 where En,i = Σ∗$∆i01n−i−1$∆i1∆∗1∆∗$Σ∗ for each i. Note
that all strings in Σ∗ ∖En are such that every substring $x$y$ (with x,y ∈ ∆n,
which will be enforced by Cn), is such that if the ith symbol in x is a 0, symbols
i+1 through n are ones, and the ith symbol in y is a 1, then the remainder of y
must be zeroes.
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Taking all these together we learn that each w ∈ (Σ∗ ∖L(Rn)) are strings such that
w = $x1$x2$⋯$xm$ where each xi is a string of n zeroes and ones (due to Cn), such that
x1 = 0⋯0 (due to A), and xn = 1⋯1 (due to B). At most one zero in xi can be turned into
a one in xi+1, and only if all the subsequent positions were ones in xi and are zeroes
in xi+1. From this it directly follows that the shortest string in Σ∗ ∖L(Rn) will be the
sequence of all n-bit binary strings in order, for example

$000$001$010$011$100$101$110$111$ ∈ R3.

In addition a number of longer strings exist, which show up since a one in xi may turn
into a zero in xi+1. However, the only way to get from the initial zero sequence to the
final one sequence is to increment by one in the binary addition sense at least 2n times.

Notice, however, that the actual expression Rn is on the order of n2 symbols long,
where Cn, Dn and En are the big part. Applying Lemma 4.5 constructs a cut expression
accepting (Σ∗∖L(Rn))#, which is still on the order of n2 symbols long, but as argued
above the shortest string it accepts is exponential in n.

Non-extended regular expressions, regular grammars (as sketched in figures here)
and finite automata are all such that the shortest string they accept is at most linear in
the size of the expression/grammar/automaton (if they accept any string at all). This
is easy to see, some efficient shortest path algorithm can be employed to find a path
through the expression/grammar/automaton. As such, cut expressions are exponen-
tially more succinct in some cases, and converting an arbitrary cut expression into one
of those listed formalisms may create an exponentially larger representation. This will
be rather key to understanding the complexity of solving the membership problem.

4.5 The Iterated Cut

In a further parallel with Chapter 2 we also consider a unary iterated version of the
cut. Much like R⊙ = R⊙R⊙⋯⊙R we let R!∗ = R ! (R ! (R ! ⋯(R ! R)⋯)). However,
notice that while the shuffle operator is associative, the cut operator is not.

Example 4.6 Let us consider two expressions differing only in associativity ((ab)∗ !
a) ! b and (ab)∗ ! (a ! b).

• For ((ab)∗ ! a) ! b clearly (ab)∗ ! a is the same as (ab)∗a, since the (ab)∗
part cannot cover the final a, so L((ab)∗ ! a) = {a,aba,ababa, . . .}, and, hence,
L(((ab)∗ ! a) ! b) = {ab,abab,ababab, . . .}.

• However, if we instead consider (ab)∗ ! (a ! b), we notice that a ! b is the same
as ab, so we have (ab)∗ ! ab which is clearly empty, as the (ab)∗ will consume
all repetitions of ab ensuring the second part never gets to match anything.

It follows that the cut operator is not associative. ◇
The iterated cut, in a sense similar to how the binary cut models the program in List-
ing 4.4, permits the modeling of loops of regular expression matching, like in the
below listing.

40



Constraining Language Concatenation

Listing 4.7 (A Looping Regular Expression Python Program)

# match s against the regular expression R repeatedly
def matchy(R, s):

# keep matching
while True:

# match s to re once
m = re.match(R, s)
# if the match failed report failure
if m == None:

return "Did not match"
# otherwise, extract the remainder of the match
s = s[m.end(0):]
# if the whole string matched, report success
if len(s) == 0:

return "Matched"

This listing will give the same behavior as trying to match s to R!∗.
The iterated cut is hard to express directly in a regular expression with just the

addition of the binary cut operator. Notably it is not a matter of nesting cuts inside of
Kleene closures, like (R ! R)∗ or similar, as this will give too much non-deterministic
freedom in general. However, adding both the binary cut operator and the iterated
cut to regular expression still produces expressions that can only generate regular lan-
guages. The construction for this part is slightly trickier than for the case of the binary
cut operators, so it is best to refer to Paper III where complete and formal constructions
for both cases are given.

4.6 Regular Expression Extensions, Impact and Reality

4.6.1 Lifting Operators to the Sets

Recall Definition 1.6 where the basic operations in regular expressions are defined. It
is an important fact to note that each of those classical regular expression operators
are expressed string-wise. That is, an operator f takes n argument subexpressions
R1, . . . ,Rn, and the language it generates is then

L( f (R1, . . . ,Rn)) = { f (v1, . . . ,vn) ∣ v1 ∈ L(R1), . . . ,vn ∈ L(Rn)}.
That is, the classic operators all operate “point-wise” on strings, and this is then lifted
to the level of sets (i.e. we can take the categorial view and consider a functor here) to
generate languages. However, the cut does not operate on this level. Instead Defini-
tion 4.1 operates on the level of the language. We can talk about L ! L′ for languages,
but informed that w ∈ L and v ∈ L′ we cannot from this determine whether wv ∈ L ! L′.

This should be viewed as a flaw with the cuts, their introduction into expressions
does change the nature of the expression in a fundamental way. On the other hand,
the impact is comparatively small when contrasted to the cut-like operators that many
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regular expression software packages include. These have behavior that is even further
from the clean nature of the classical operators.

4.6.2 An Aside: Regular Expression Matching In Common Software

This way of phrasing how matching happens may appear unusual for anyone more fa-
miliar with the more classic regular expression constructions, where the semantics are
described in a composed way, i.e., L(R1 ∣R2) = L(R1)∪L(R2), etc., or by construct-
ing finite automata for the expression (constructing the Glushkov automaton [Glu61]
and determinising it, or directly constructing a deterministic finite automaton using
e.g. derivatives [Brz64]). Most practical software packages, however, use a depth-
first backtracking search across some abstract syntax tree representation of the regular
expression. The reasons for this are two-fold.

1. The efficiency of this approach is in many cases great. Constructing the syntax
tree is efficient, and the representation is in general far more compact than the
automata approach. The actual search may in the worst case be a lot slower
(exponential in the length of the string), but the semantics are straightforward
enough that the task of structuring the expression in a way that gives efficient
matching in the most common cases can be left to the programmer.

2. It enables a multitude of additional regular expression features. Most immedi-
ately it makes it possible to deterministically talk about which part of the regular
expression matches which part of the string. That is, (a∗ ∣b∗)(a ∣b)∗ matches
aaababa, but which part of the expression matches the aaa prefix? In the the-
oretical setting this is a nonsense question, all we state is that aaababa ∈ L , the
how is entirely undefined. In regular expression software packages however the
initial three as will be matched by the first a∗, and this information can be ex-
tracted with the API provided. Which parts of the expression will “prefer” to
match what can be controlled further with a variety of operators, and the pieces
of the string matched by a certain subexpression can even be recalled inside the
expression (permitting the language {ww ∣ w ∈ Σ∗} to be matched by recalling a
copy of the string already matched).

In short; the accepted approach has numerous implications for the functionality and
performance of regular expression matching in practice.

4.6.3 Real-World Cut-Like Operators

There are a variety of operators in practical regular expression packages which behave
somewhat similar to cuts. The first, and most common, are the possessive quantifiers.
Let us look specifically at the possessive variation of the Kleene star R∗ as defined in
Definition 1.6, denoted R∗+. Defining the language generated by R∗+ leads to disap-
pointment however, L(R∗+) = {ε}∪{vw ∣ v ∈L(R),w ∈L(R∗+)} inductively. Unfortu-
nately this is precisely the same language as generated by L(R∗), which is because the
possessive quantifier does not operate on the same level as classical regular operators,
or even the set-level behavior of the cut operators. Instead the semantics of the posses-
sive quantifiers are intertwined with the overall matching of the entire expression in a
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way that is hard to formalize. Consider the examples in Table 4.8 which are produced
using the Java (1.6.0u18) regular expression implementation. Notice how applying

Table 4.8: Some regular expressions using possessive quantifiers and the language
they accept in Java 1.6.0u18.

Expression Language(aa)∗+a {a,aaa,aaaaa,aaaaaaa, . . .}((aa)∗+a)∗ {ε,a,aaa,aaaaa,aaaaaaa, . . .}((aa)∗+a)∗a {a}
the Kleene star to the expression in the first row does not (in the second row) generate
for example aa, despite a being in the language of the first row.

We will not attempt to deeply explain the semantics of this operator, but it operates
by manipulating the internal backtracking search. The outcome does not easily fit into
the compositional classic explanation of how regular expressions generate languages.
See Paper III for more examples of this type of operator.

As an addition, some regular expression engines feature an additional binary op-
erator, (*PRUNE), that compares fairly directly to the binary cut operator (in that it
is not attached to a Kleene star), but still has semantics that are hard to comprehend
form the compositional perspective. See Table 4.9 for some examples of expressions
and the languages recognized in Perl 5.16.2.

Table 4.9: Some regular expressions using the (*PRUNE) operator and the language
they accept in Perl 5.16.2, similar to the examples in Table 4.8.

Expression Language(aa)∗(*PRUNE)a {a,aaa,aaaaa,aaaaaaa, . . .}((aa)∗(*PRUNE)a)∗ ∅((aa)∗(*PRUNE)a)∗a ∅

4.6.4 Exploring Real-World Regular Expression Matchers

Paper IV explores the behavior of these practical software package matchers. They
effectively operate by constructing an automaton (or grammar) where rules are prior-
itized, whenever there are multiple rules that could be applied there is a preferred rule
that is tried first. If applying that rule does not lead to accepting the string the proce-
dure backtracks and tries the other options. The full discussion requires a deep tech-
nical look at the behavior of the software, and is best explored by reading Paper IV.
Suffice it to say, beyond exploring the semantics to analyze additional operators, this
search procedure will additionally at times require exponential time. Consider for ex-
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ample the expression (a ∣a)∗, trying to match the string a⋯ab. It will fail to match the
b, but in the process the matching procedure will pick whether the first or second a
should match each a in the string, and when the failure on b happens the backtracking
will attempt every other way of matching the as to the string. In fact, attempting this
match using Java on the authors (reasonably modern) machine the runtimes shown in
Table 4.10 are achieved. The main contribution in Paper IV is in statically analyzing

Table 4.10: The time in seconds it takes to match the string a⋯ab to the regular
expression (a ∣a)∗ in Java on the authors desktop PC, as it depends on the number of
as in the string. Notice the almost perfect power of two exponential growth.

Number of “a”s in w = a⋯ab 23 24 25 26 27 ⋯ 30
Seconds to match w to (a ∣a)∗ 1.04 2.00 3.66 7.22 13.56 ⋯ 118.81

regular expressions for this type of exponential worst-case behavior (i.e., a∗ can never
take exponential time, since there is only one choice, but (a∗)∗ can).

One additional point of interest in Paper IV is how the matcher picks which choice
to explore first. This is done by giving finite automata priorities, where one choice
is more prioritized than another. This leads to the definition of the prioritized non-
deterministic finite automata (pNFA) formalism in Paper IV. These are fairly straight-
forward, if we imagine the rule

(●●)
S

Ð→ (aa●●)
A

(aa●●)
B

we now say that the first possibility, which generates the non-terminal A, is prioritized.
That is, if A can generate the rest of the string we prefer to have it do so, and try
generating the rest with B only if A fails. This distinction makes no difference for the
language accepted, but it makes it unambiguous how the string is generated, which
ensures that the solution to a parsing problem instance is unequivocal.

4.7 The Membership Problem for Cut Expressions

Parts of the membership problem for cut expressions should already be clear; namely,
Section 4.4 and Section 4.5 together demonstrate that the cut expressions generate
only regular languages. The non-uniform membership problem for regular languages
is decidable in linear time, so we can decide the non-uniform membership problem
for cut expressions in linear time, since we can just rewrite the cut expression into a
regular grammar or similar (through the arguments in the aforementioned sections).

However, as Section 4.4.2 demonstrates, the regular grammar may be exponen-
tially large, so the equivalence to regular grammars gives us no more than an ex-
ponential algorithm for deciding the uniform membership problem. Luckily a very
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direct table parsing algorithm can decide membership in cubic time. Let us sketch
very quickly how it is done.

Algorithm 4.11 (Parsing for Cut Expressions) Take as input a cut expression E and
a string α1⋯αn. Let SE denote the set of subexpressions of E (including E itself).

1: Construct the table T ∶ SE ×{1, . . . ,n+1}×{1, . . . ,n+1}→ {true, false}.
2: Set T(E, i, j) ∶= false for all E, i, j at the start
3: for S ∈ SE , working bottom-up through the sub-expressions do
4: if S = ε then T(S, i, i) ∶= true
5: else if S ∈ Σ then T(S, i, i+1) ∶= true for all i with αi = S
6: else if S = E1 ∣E2 then
7: T(S, i, j) ∶= true for all i ≤ j s.t. T(E1, i, j)∨T(E2, i, j)
8: else if S = E1 ⋅E2 then
9: T(S, i,k) ∶= true for all i ≤ j ≤ k s.t. T(E1, i, j)∧T(E2, j,k)

10: else if S = E∗
1 then

11: T(S, i1, in) ∶= true for all n, i1 ≤⋯ ≤ in s.t. T(E1, i1, i2)∧⋯∧T(E1, in−1, in)
12: else if S = E1 ! E2 then
13: T(S, i,k) for all i ≤ j ≤ k such that:
14: T(E1, i, j)∧T(E2, j,k), and,
15: ¬T(E1, i, j′) for all j < j′ ≤ k.
16: end if
17: end for

This algorithm is trivially cubic (quadratic in the length of the string), since every
table position is set true at most once. The case for the shuffle closure is not included,
but is a trivial addition.

After the threat of potentially exponentially large regular grammars the cubic time
(and space) of the above algorithm may be calming, but given the typical efficiency of
matching classical regular expressions cubic time is still not entirely pleasing. Better
algorithms remain an open question however, very notably Section 4.4.2 demonstrates
a case where applying a cut exponentially blows up the size of the smallest corre-
sponding regular grammar exponentially, but for the upper bound we only know that
it cannot be worse than non-elementary, which is not very satisfying. This in fact fol-
lows from the product-style construction discussed in Section 4.4.1, and is discussed
at greater length in Paper III.
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Block Movement Reordering

This short chapter discusses matters of block reordering, which is once again a non-
obvious term, this time lifted form the field of edit distance, where operations that
modify multiple symbols in a contiguous substring at once are referred to as block
operations. Specifically the topic of interest is attempting to study the results of re-
ordering nodes in the parse tree for a string, which gives rise to a sort of hierarchical
block movement reordering in the underlying string language.

5.1 String Edit Distance

String edit distance is a long studied field. It is concerned with defining a distance
between strings using a sequence of operations (reminiscent of the rule-based deriva-
tions discussed in earlier chapters, but starting from another, possibly longer, string).
The distance measure is defined in terms of a set of operations, each of which makes
some small modification to a string, and then the distance between a string w ∈ Σ∗
and v ∈ Σ∗ is the minimum number of operations (possibly weighted in some way) we
need to apply to modify w into v. The problem of finding this sequence is known as the
string correction problem. A classic set of operations for this is to have an operation
to delete a single symbol and one to insert a single symbol. Making the distance from
e.g. abc to cca four, since the initial ab must be removed (two removal operations)
and ca must be added at the end. A typical additions to the set of operations is to
add an operator to replace one symbol by another, this set of three operators is called
Levenshtein distance [Lev66]. The next typical addition, and most important for us
here, is the swap, which swaps the positions of two adjacent symbols, the resulting set
of operators is called Damerau-Levenshtein distance [Dam64].

5.2 A Look at Error-Dilating a Language

The direction of interest here starts out from the question of an error dilation of a
language. Consider Figure 5.1. That is, we choose a language class G (perhaps the
regular or context-free languages) and a string edit distance e, then for each language
L ∈ G and each k ∈ N we define Le=k to mean that w ∈ Le=k if and only if there exists
some v ∈ L such that w is k or less distance from v. Notably, as k approaches ∞ the
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Σ∗

L
Le=1

Le=2
⋯

Figure 5.1: A diagram of the dilation of a language through error measures.

language Le=k approaches Σ∗.
Performing such a construction is fairly straightforward for most choices of for-

malisms. If we consider just the case of insert and delete with a regular grammar
G, and the constant k chosen, then we can for each non-terminal A construct k+ 1
new non-terminals Ak,Ak−1, . . . ,A0. The non-terminal Ai has all the rules that A would
have, with i preserved, so for example the left rule turns into the right in the following
way.

(●●)
A

Ð→ (αα●●)
B

(●●)
Ai

Ð→ (αα●●)
Bi

In addition for each α ∈ Σ and non-terminal Ai with i > 0 we add the following rule.

(●●)
Ai

Ð→ (αα●●)
Ai−1

This allows one “insertion” to be used, we count down the number allowed and add
an arbitrary symbol.

Finally, for each existing rule that would add a symbol we simulate a deletion by
adding a rule that counts down i but “fails” to generate the symbol, as above with the
left original rule and the right new rule (though one for each 0< i≤ k must be generated
of course).

(●●)
A

Ð→ (αα●●)
B

(●●)
Ai

Ð→ (●●)
Bi−1

Finally, we let the starting non-terminal S go to Sk (to signify that we start out with k
operations available). Notice how, once the subscript gets to zero, only the “original”
rules are usable, each use of a insertion/deletion rule “costs” one from the subscript.
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5.3 Adding Reordering

5.3.1 Reordering Through Symbol Swaps

Adding the simple symbol swap to the prior construction is only minimally more
complex. We can extend the tagging of the non-terminals to remember “we pretended
to swap α for a β”, meaning that we generated a β from a rule that should have
generated α , and this tagging of the non-terminal lets it only take rules which have
been modified such that they originally generated β , but in this modified rule they
generate the missing α and the derivation continues on as normal.

5.3.2 Derivation-Level Reordering

We now get to the real aim of this section, the intent of this edit distance is to model
some sort of error or imprecision, however, in the context of a lot of languages simply
replacing symbols may not really reflect the nature of errors properly. Consider for
example in natural languages, where large grammatical restructurings may be only
“slightly” bad, since they still obey some basic rules. That is, “She chases a blue ball”
is correct English, whereas “A blue ball she chases” is slightly ungrammatical, but
still completely understandable, whereas “ball she chases a blue” is incomprehensible
despite involving less reordering.

We have so far dodged the issue of parse trees, but here they become rather core
to the question. Consider Figure 5.2. This illustrates (a possible interpretation of)

S

NP

She

VP

V

chases

NP

Det

a

NP

Adj

blue

N

ball

Figure 5.2: A parse tree for the sentence “She chases a blue ball”, the internal nodes
of the tree corresponds to the non-terminals which generated that part of the sentence,
the words in the leafs are the symbols of Σ in this case.

the structure of the natural language sentence. It stands to reason that small modifi-
cations of this tree will have a closer relationship to the original sentence than small
modifications to the string which forms the sentence.
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5.3.3 Tree Edit Distance

Tree edit distance is a natural way to think about this, that is, we would like to create
an error dilation of a language, in the style of Figure 5.1 using tree operations on the
parse tree (which requires a specific instance of a grammar for the language to make
sense) to modify the final strings.

The problem of tree edit distance is fairly well explored in some limited settings,
see e.g. [Sel77, Tai79]. This work has for the most part however been constrained
to just allowing insert and delete operators, the swap, or similar subtree movement
operators, is a trickier matter [ZS89, Kle98, Bil05]. This is partially necessary, the
tree edit distance on unordered trees (i.e., we allow deletions and insertions of nodes,
but siblings in the tree have no order) is NP-complete [ZSS92]. We can simulate
the unordered case if swaps are permitted, by simply replacing each internal node by
a long chain of copies of the node. This way the swap remains cheap (it does not
care how many nodes it moves in swapping two siblings) while making insertions and
deletions expensive. If we add sufficiently many of these nodes the result will be that
all orders can be achieved cheaper than it is to perform a single insertion or deletion,
effectively making the problem behave like the unordered case.

5.4 Analyzing the Reordering Error Measure☆
Paper VI considers the very limited case of only permitting tree swaps in the distance
measure, each swap having a cost of one. Let us consider the proper definition, re-
calling the definitions of trees from Section 2.9.1. First we define the swap distance
between permutations.

Definition 5.3 Let πn ⊂Nn denote the set of permutations of length n, that is, p1⋯pn ∈
πn if and only if {p1, . . . , pn} = {1, . . . ,n}. Then p1⋯pn ∈ πn has a swap distance less
than or equal to k, denoted swap(p1⋯pn,k) if and only if

• k ≥ 0 and p1⋯pn = 1⋯n,

• there exists some i such that swap(p1⋯pi−1 pi+1 pi pi+2⋯pn,k−1). ◇
Then the tree variant is as follows.

Definition 5.4 For two trees t,t′ we say that t and t′ are within tree swap distance
k, denoted swap(t,t′,k), if and only if t = α[t1, . . . ,tn] and t′ = α[t′1, . . . ,t′n] for some
α ∈ Σ and n, and there exists some p1⋯pn ∈ πn and l0, . . . , ln ∈N such that

• k ≥∑n
i=0 li,

• swap(p1⋯pn, l0), and

• swap(ti,tpi , li) for all i.

The triple (t,t′,k) is a “yes” instance of the tree swap distance problem if and only
if swap(t,t′,k). ◇
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Unfortunately this problem is proven to be NP-hard in Paper VI (the problem is ob-
viously in NP, since the permutations for each level of the tree can be guessed and
then verified in polynomial time). Let us briefly outline the process. The reduction
starts with the extended string-to-string correction problem, which is an edit distance
with only delete and swap operations1. This problem is known to be NP-complete
(see e.g. [GJ90]). The reduction makes an intermediary stop in a problem that may be
interesting in itself.

Definition 5.5 Let M ∶ N×N → N be an n by n matrix (i.e. a matrix with n rows
and columns, letting M(i, j) denote the value at the ith row and jth column), then(M,k) is a “yes” instance of the swap assignment problem if and only if there exists a
permutation p1⋯pn ∈ πn and l ∈N such that

• swap(p1⋯pn, l)
• k ≥ l+∑n

i=1 M(pi, i) ◇
That is, the problem is to decide whether it is possible to swap rows positions in M in
such a way that the sum of the number of swaps used and the diagonal in the resulting
matrix is less than or equal to k. The reduction is such that e.g. position M(i, j) is
zero if symbol i of the first string in the original edit distance problem is the same as
symbol j in the second, combined with some trickery to enable deletions.

This matrix problem is then in turn reduced to the tree swap problem of Defini-
tion 5.4. This reduction is not overly difficult, the tree constructed will have height
3, the root has n immediate children corresponding to the rows, these have n children
corresponding to the column positions in that row, and finally these have a coding
of the number they should contain as children. Everything is distinctly coded so the
swaps can only be used to reorder the rows, and to make the binary representations
equal (which costs exactly the absolute difference between the numbers).

The fact that the tree swap distance is NP-complete is unfortunate, however, the
amount of distance permitted in the error-dilating of languages should be very con-
strained (e.g. a sentence with three or more errors will often be incomprehensible
already), so fixed parameter analysis and other more nuanced analysis would be of
great interest.

1 This statement abuses the notion of a distance heavily, since it is asymmetric. It does however fall into
a similar class of problems.
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CHAPTER 6

Summary and Loose Ends

None of the matters here can be considered settled or treated with some deep finality.
This is a snapshot of ongoing research, here tied together with an overarching theme,
but it is both likely and desirable that everything here treated will be supplanted with
new greater results in the future. As such this concluding chapter attempts to look
forward, while and noting the missing pieces, as well as summarizing some of the
aspects of the attached papers that have not yet been brought up.

6.1 Open Questions and Future Directions

6.1.1 Shuffle Questions

There are two open questions from the preceding licentiate thesis [Ber12] that may be
interesting to recall.

1. Deciding the membership problem for the shuffle of palindromes:

{wwR ∣ w is any string, wR is w reversed}.
2. Deciding the membership problem for the language of shuffle squares,

{w⊙w ∣ w is any string}.
Notice that as the languages we are concerned with are specified as part of the problem
these should be viewed as non-uniform membership problems.

The first remains a point of interest, Paper I demonstrates that the non-uniform
membership problem for two linear deterministic context-free languages is NP-hard
(see Chapter 2), and the shuffle of two palindromes seems like, in a spirit rather similar
to the ideas of Paper V, or possibly more illustratively the Chomsky-Schützenberger
theorem [CS63], the next step. That is, the palindromes are sort of the most primitive
representation of the basic power that differentiates the linear deterministic context-
free languages from the regular, in that both the intersection and homomorphism in
the Chomsky-Schützenberger decomposition of it do “nothing”. The author has no
speculation whether this problem should be expected to be in P or not.

The shuffle square, on the other hand, has seen some important developments
since [Ber12], and is proven NP-complete in a rather tricky reduction in [BS13].
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In addition, let us note that the problems as stated above deal with languages with
arbitrarily large alphabets (i.e., when it says that w is any string it may be over an
alphabet up to ∣w∣ in size). The reduction in [BS13] works for a finite alphabet version
of the shuffle square as well, meaning that the language is NP-complete either way.
No results are known for the palindrome shuffle, so a possibility is that the problem is
NP-complete for arbitrarily large alphabets, but is in P for all alphabet sizes smaller
than some constant.

Beyond that, there are numerous additional problems that may be considered in
shuffle, especially as many aspects are of practical interest. Beyond simply improving
on many of the results in Paper I, and considering both more generalized and restricted
cases (shuffle on trajectories is a lively and interesting case), the problem the author
most wants to highlight is the one considered in Paper V. That is, proving that for
all context-free languages L ⊆ Σ∗ and L′ ⊆ Γ∗ (with Σ∩Γ = ∅) the shuffle L⊙L′ is
context-free if and only if one of L and L′ is regular.

6.1.2 Synchronized Substrings Questions

The synchronized substrings formalisms, such as linear context-free rewriting sys-
tems, are a prime example of where the details of parsing complexity are hugely im-
portant. The uniform membership algorithm appears inefficient from the classical
complexity theory perspective, but in practice the algorithms are considered reason-
ably efficient (recall Section 3.4.3). Paper II does find some potentially efficient cases,
but they are not necessarily entirely satisfactory, as the one truly efficient case iden-
tified is where the rank, fan-out and derivation length are included in the parameter
(i.e., if all three are small the parsing problem is efficient).

The most obvious case not yet studied is to take the opposite approach from the
classical non-uniform membership problem1; we let the length of the string be the
parameter and consider the grammar in full, or near full. To see the reasoning here
the intended application may need to be clarified. These formalisms are typically
used for natural language processing. In this case it is easy to see that the sizes of
the components are backwards from what is usually assumed, the strings are simply
natural language sentences, and, while they can be long, like this run-on sentence,
there are still very real practical limits on how many words there can be in one. A
reasonably complete grammar for English however is vast at the best of times, simply
enumerating exceptions will create tens of thousands of rules. As such the complexity
in the grammar is actually more important than the complexity in the string.

6.1.3 Regular Expression Questions

The two Papers III and IV both deal with very similar issues, in that they are motivated
by the order-dependencies that exist in practical regular expression semantics as an
effect of matching methodology employed. Their approaches are very different how-

1 Notice however, here we talk about parameterized complexity, the intent is not to clumsily assume some
parts constant like in the non-uniform case. Parameterized complexity bounds still take the parts put in
the “parameter” into account, but differentiate between how large a role that part plays in the complexity.
See Section 3.5.1.
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ever, in that Paper III attempts to bring an approximation (attempting to make them
behave nicely within the classical framework) of these effects into a formal frame-
work, whereas Paper IV tries to analyze the actual state of being of these regular ex-
pression engines using formal techniques. The way forward here is not immediately
obvious, there are clear open questions that follow directly from Paper III (e.g. an up-
per bound on the automaton size), as well as some mechanical improvements already
considered. On the other hand Paper IV having a continuation is to a great extent a
question of impact, as the paper may very well inspire changes in regular expression
engines, which would make continued research chase a moving target. A possibility
which has both advantages and disadvantages.

As such there is a wealth of possible work in the area of regular expression se-
mantics, but beyond incremental open questions which are already listed in the papers
themselves this direction depends on the expected and actual impact of the research.

6.1.4 Other Questions

Paper V is obviously a work in progress published primarily for inclusion in this thesis.
The conjecture presented does, however, appear very promising and significant, far
beyond proving the open question for context-free shuffles discussed above. In the
other direction, Paper VI is the oldest paper included, and is concerned with a direction
that has not gotten a high level of attention from the author since. Continuing work
appears to be a matter of extending the discussion in Chapter 5 in a way that arrives at a
reasonably compelling language class, while having clearly motivated fixed parameter
complexity problem with a positive outcome.

6.2 Conclusion

As a final remark the author wishes to again thank all his collaborators and colleagues,
as well as everyone who worked on the many pieces of research leveraged as prelimi-
naries in this work. Finally, the author thanks the reader for the interest shown.
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Abstract

Language models that use interleaving, or shuffle, operators have applications
in various areas of computer science, including system verification, plan recog-
nition, and natural language processing. We study the complexity of the mem-
bership problem for such models, in other words, how difficult it is to determine
if a string belongs to a language or not. In particular, we investigate how inter-
leaving can be introduced into models that capture the context-free languages.

Keywords: Interleaving, shuffle languages, membership problems

1. Introduction

We study the membership problem for various language classes that make
use of the shuffle operator �. When applied to a pair of strings u and v, the
operator returns the set of all possible interleavings of the symbols in u and v.
For example, the shuffle of ab and cd is {abcd, acbd, acdb, cabd, cadb, cdab}. This
type of interleaving operation has been considered as far back as in a 1965
paper by S. Ginsburg and E. Spanier [22]. The operator is lifted to languages
by defining L1 � L2 to be the set

⋃{u� v | u ∈ L1, v ∈ L2}. We also consider
the shuffle closure operator, whose relationship to the shuffle operator resembles
that of the Kleene star to concatenation, iterating the shuffle operation. As our
starting point, we take the shuffle languages considered by Gischer [23] and
by Jedrzejowicz and Szepietowski [31]. These are the languages defined by
regular expressions augmented with the shuffle operation and the shuffle closure
operators, inspired by Flow Expressions [43].

Shuffling of languages is of interest in a number of different areas:

• One of the original motivations for studying shuffle is in the modelling
and verification of systems, where shuffling is useful for reasoning about

IThe present article extends [3], which was presented at the 5th International Conference
on Language and Automata Theory and Applications (LATA) 2011.
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interleaved or parallel processes [19, 43, 41]. There is a close connection
between shuffle languages and Petri nets [23, 19, 8, 6].

• The shuffle operator is used in XML database systems for schema defini-
tions, see for example the work on schema languages by Gelade et al. [20].

• In plan recognition, the challenge is to identify an agent’s objectives, based
on observations of the its actions [11, 42]. In a generalized version, a num-
ber of independent agents perform their actions in an interleaved fashion.
To model such a scenario, one could combine shuffle operators and context-
free grammars [29]. For this approach to be tractable, the membership
problem for the resulting languages must remain efficiently solvable.

• In natural language processing, there is a growing interest in linguistic
models for languages with relatively free word order. Recent work in this
direction includes parse algorithms for dependency grammars [39, 32].

Many fundamental questions regarding the membership problem for shuffled
languages remain unanswered. We consider and answer some of them in this
paper. In particular, we are interested in language classes that capture the
context-free languages. Among the above application areas, such languages are
primarily of interest in plan recognition and natural language processing.

It is important to distinguish between the uniform and the non-uniform
version of the membership problem. In the uniform version, both the string and
a representation of the language is given as input. It is therefore relevant how
the language is represented. In the non-uniform version, only the string to be
tested is considered as input. The language is fixed, so its representation never
enters into the equation.

Contributions. To facilitate the study of languages combining restricted
forms of recursion and interleaving, we define Concurrent Finite State Automata
(CFSA) which have an expressive power between those of context-free grammars
and context-sensitive grammars. These automata can be viewed as ground tree
rewriting systems (see, e.g., [33, 12]) used as language acceptors. We show that
the emptiness problem for CFSA is solvable in polynomial time, list the closure
properties of the automata, and identify the language classes that correspond
to certain syntactic restrictions.

Our results for the complexity of the membership problems for various lan-
guage classes are summarized in Table 1. It should be noted that all problems
we consider, except the membership problem for CFSA, are trivially in NP. For
the full class of languages recognized by CFSA, we show that both the uniform
and the non-uniform membership problem are NP-complete.

For the shuffle languages (as used in [23, 31]), the uniform membership prob-
lem is NP-complete [44, 2, 35], while the non-uniform membership problem can
be decided in polynomial time [31]. We shed further light on the complexity of
the membership problem by establishing that the uniform version, when param-
eterized by the number of shuffle operations, is hard for the complexity class
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Table 1: Summary of results for the membership problem. The shuffle languages are ab-
breviated by Sh, the regular by Reg, and the deterministic linear context-free by DLCF.
The results of this paper appear in bold face. In the case of CFSA membership NP-hardness
follows from [40] and inclusion is demonstrated here.

Sh Reg � CF Sh� CF DLCF�DLCF CFSA
Non-Uniform P P P NPC NPC

Uniform W[1]-hard P NPC NPC NPC

W[1]. This result suggests a strong dependence on the number of shufflings. For
this reason, we do not expect to find a particularly efficient algorithmic solu-
tion to the non-uniform membership problem for language definitions involving
many shufflings, even when it is theoretically polynomial.

For the interleaving of a regular language and a context-free language, we
show that the uniform (and thus also the non-uniform) membership problem
can be solved in polynomial time. The regular language is assumed to be rep-
resented by a nondeterministic finite automaton and the context-free language
by a context-free grammar.

For the shuffling of a shuffle language and a context-free language, the uni-
form problem is NP-hard, since this holds already for the shuffle languages. In
one of our main results, we show that the non-uniform problem, on the other
hand, is solvable in polynomial time.

It is known that already the non-uniform version of the membership problem
is NP-hard for the shuffling of two deterministic context-free languages [40]. We
strengthen this result by demonstrating that it holds even for the shuffle of
deterministic linear context-free languages. Here, the results in [28] may also
be of interest, since it draws parallels between two-stack Turing machines and
the shuffle of context-free languages, which is similar to the technique we use.

It should be noted that we only investigate which broad complexity classes
the problems belong to. In particular, for the problems that belong to P, our
aim has not been to find optimal algorithms. Future work in this direction
includes finding the exact complexities of these problems, as well as heuristic
algorithms and tractable restrictions of the NP-complete problems.

Related work. Various aspects of shuffling have been studied in formal lan-
guage theory and its effects on regular languages have received particular in-
terest. Câmpeanu et al. establish 2mn − 1 as a tight upper bound on the state
complexity of the shuffle of two regular languages [10], represented by finite
deterministic automata of size m and n, respectively. Biegler et al. provide
a similar result for singleton languages and identify properties that trigger an
exponential blow-up in state complexity [5]. On the descriptive side, it follows
from a result by Gruber and Holzer that the addition of a shuffle operator to
regular expressions may reduce representation sizes exponentially [25]. A gen-
eration algorithm with linear complexity for approximate size sampling (i.e.,
random generation) of regular specifications including shuffle has been provided
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by Darrasse et al. [14]. Brozozowski et al. consider the complexity of ideal
languages [9], which are regular languages invariant under shuffle with the uni-
versal language [26]. Further results for sub-families of the regular languages
are found in [24, 27, 4, 13]. Warmuth and Haussler gives complexity results
(NP-completeness proofs) for some specific and very simple shuffle languages,
notably, given two strings v and w as input deciding whether v ∈ w� is NP-
complete [44].

Shuffling has also been investigated in a more algebraic setting. The axiom-
atization of shuffle theory was addressed by Ésik together with Bloom [7] and
Bertol [16]. Another important direction is shuffling on trajectories, which is the
idea of shuffling two strings in a way informed by a third string, the trajectory.
That is, for example abc �011010 def = adebfc where the binary string is the
trajectory which identifies a specific interleaving of abc and def . This is then
generalized to languages, which makes the shuffle considered here a special case,
where the trajectory is always the universal language (e.g., x � y is equivalent
to x�{0,1}∗ y). See [34] for more information on shuffle on trajectories.

Another related formalism is permutation languages, first considered by
Nagy [37, 38], which allow rules of the form AB → BA in an otherwise nor-
mal context-free grammar. These rules can be applied to interchange positions
of adjacent non-terminals in intermediary derivation steps, and thus allows for
certain forms of shuffling.

2. Preliminaries

Sets and numbers. If S is a set, then |S| denotes the cardinality of S, S∗ is
the set of all finite sequences of elements of S, and precl(S) is the set of all finite
prefix-closed subsets of S∗. In other words, for every S′ ∈ precl(S), if uv ∈ S′
for some u, v ∈ S∗ then u ∈ S′. We write N for the natural numbers. For k ∈ N,
we write [k] for {1, . . . , k}. Note that [0] = ∅. The domain of a mapping f is
denoted dom (f).

A total order on a set S is an binary relation ≤ on S that is antisymmetric,
transitive, and such that for every s, s′ ∈ S, either s ≤ s′ or s′ ≤ s.

An alphabet is a finite nonempty set. Let Σ be an alphabet and let ε be the
empty string, then Σ∪{ε} is denoted by Σε. The length of a string w = α1 · · ·αn
is written |w|, and for every α ∈ Σ, |w|α = |{i ∈ [n] | αi = α}|. The reversal
of w = α1 · · ·αn is wR = αn · · ·α1. For strings w,w′ ∈ Σ the concatenation
is usually denoted ww′. When necessary for clarity, however, the operation
is written explicitly as w · w′. Concatenation distributes over sets, e.g. for
S, S′ ⊆ Σ∗ we have w·S = {w·w′ | w′ ∈ S}, and S ·S′ = {w·w′ | w ∈ S,w′ ∈ S′}.
Trees. The set TΣ of (unranked) trees over the alphabet Σ consists of all
mappings t : D → Σ, where D ∈ precl(N). The empty tree, denoted tε, is
the unique tree such that dom (t) = ∅. We henceforth refer to dom (t) as
the nodes of t and write nodes(t) rather than dom (t). The size of a tree
t ∈ TΣ, denoted size (t), is |nodes(t)|. The height of t, denoted height (t), is
1 + max(n | α1 · · ·αn ∈ nodes(t)).
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For a tree t ∈ TΣ and a node v ∈ nodes(t), the subtree of t rooted at v
is denoted by t/v. It is defined by nodes(t/v) = {v′ ∈ N∗ | vv′ ∈ nodes(t)}
and, for all v′ ∈ nodes(t/v), (t/v)(v′) = t(vv′). The leaves of t is the set
leaves(t) = {v ∈ N∗ | @i ∈ N s.t. vi ∈ nodes(t)}. The substitution of t′ into t at
node v is denoted t[[v ← t′]]. It is defined by

nodes(t[[v ← t′]]) = (nodes(t) \ {vu | u ∈ N∗}) ∪ {vu | u ∈ nodes(t′)} ;

and, for every u ∈ nodes(t[[v ← t′]]), if u = vv′ for some v′ ∈ nodes(t′) then
t[[v ← t′]](u) = t′(v′), otherwise t[[v ← t′]](u) = t(u).

For a tree t ∈ TΣ let v1, . . . , vk ∈ nodes(t) be the immediate child nodes of the
root ordered by numeric value. That is, {v1, . . . , vk} = {v ∈ nodes(t) | |v| = 1},
ordered such that vi < vi+1 for all i ∈ [k−1]. Then we will write t as f [t1, . . . , tk],
where f = t(ε) and tj = t/vj for all j ∈ [k]. In the special case where k = 0
(i.e., when nodes(t) = {ε}), the brackets may be omitted, thus denoting t as f .

Shuffle operations and shuffle expressions. We recall the definitions of the
operations shuffle and shuffle closure, and of shuffle expressions, from [23, 31].

The shuffle operation � : Σ∗ × Σ∗ → pow (Σ∗) is inductively defined as
follows: for every u ∈ Σ∗ it is given by u� ε = ε� u = {u}, and by

α1u1 � α2u2 = {α1w | w ∈ (u1 � α2u2)} ∪ {α2w | w ∈ (α1u1 � u2)} ,

for every α1, α2 ∈ Σ, and u1, u2 ∈ Σ∗. The operation extends to languages with

L1 � L2 =
⋃

u1∈L1,u2∈L2

u1 � u2 .

The shuffle closure of a language L ∈ Σ∗, denoted L�, is

L� =
∞∪
i=0
L�i , where L�0 = {ε} and L�i = L � L�i−1 .

Shuffle expressions are regular expressions that can additionally use the
shuffle operators. The shuffle expressions over the alphabet Σ are as follows.
The empty string ε, the empty set ∅, and every α ∈ Σ is a shuffle expression.
If s1 and s2 are shuffle expressions, then so are (s1 · s2), (s1 + s2), (s1 � s2), s∗1,
and s1

�. Shuffle expressions that do not use the shuffle closure operator are said
to be closure free. The language L(s) of a shuffle expression s is defined in the
usual way. Shuffle languages are the languages defined by shuffle expressions.

3. Concurrent Finite-State Automata

In this section, we introduce concurrent finite-state automata (CFSA). They
are inspired by recursive Markov models, but differs from these in two aspects:
the global state space is not partitioned into component automata and, more
importantly, they differ in that recursive calls can be made in parallel. The
latter feature allows for an unbounded number of invocations to be executed
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simultaneously, but each symbol can only be read by one invocation. In Defi-
nition 1, the string p� is to be read as single symbol. In the later definition of
CFSA semantics, transitions of the form (q, α, q′[p�]) will be interpreted as rule
schema.

Definition 1 (CFSA). A Concurrent FSA is a tuple M = (Q,Σ, δ, I), where

• Q is a finite set of states;

• Σ is an alphabet of input symbols;

• δ ⊆ Q× Σε × T is a set of transitions, where T is the finite set

{q, q[p], q[p, p′], q[p�] | q, p, p′ ∈ Q} ∪ {tε} .

A transition (q, α, t) ∈ δ is

– terminal if |nodes(t)| = 0, in this case it must also hold that α = ε,

– horizontal if |nodes(t)| = 1, and

– vertical if |nodes(t)| > 1.

• I ⊆ Q is a set of initial states. �

We now establish the semantics of CFSA. Whereas a FSA is in a single state
at a time, a concurrent FSA maintains a branching call-stack of states, repre-
sented by an unranked tree over an alphabet of states. In each step, exactly one
leaf node of the state tree is rewritten. Vertical transitions model the invoca-
tion of child processes; horizontal transitions the continued execution within a
process; and terminal transitions the completion of a process. A CFSA accepts
a string if, upon reading the entire string, it can reach a configuration in which
every processes has been completed, i.e., the state tree is empty.

Definition 2 (Concurrent FSA semantics). A configuration of the CFSA
M = (Q,Σ, δ, I) is a tuple (w, t) ∈ Σ∗ × TQ. The set of all configurations of M
is denoted ∆(M). A configuration (w, t) ∈ ∆(M) is initial (with respect to the
string w ∈ Σ∗) if t ∈ I.

Consider the configurations (w, t), (w′, t′) ∈ ∆(M). There is a transition step
from (w, t) to (w′, t′), written (w, t)→ (w′, t′), if there is a transition (q, α, s) ∈ δ
and a node v ∈ nodes(t) such that w = αw′, t/v = q (so v is a leaf), and either

• s ∈ TQ and t′ = t[[v ← s]], or

• s = p′[p�] and t′ = t[[v ← p′[p, . . . , p︸ ︷︷ ︸]
n

]] for some for p, p′ ∈ Q and n ∈ N.

The reflexive and transitive closure of → is denoted
∗−→. The language rec-

ognized by M is L(M) = {w ∈ Σ∗ | ∃q ∈ I : (w, q)
∗−→ (ε, tε)}. �
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For the sake of brevity only the state-tree part of a configuration, called a
configuration tree, may be shown in cases where the string is irrelevant.

Remark. For simplicity we will assume that the terminal transitions of a
CFSA form a subset of Q × {ε} × {tε}, that is, we assume that terminal tran-
sitions do not read symbols. This causes no loss of generality with respect to
the recognised string language, since a CFSA can be rewritten to fulfil this
requirement in linear time by adding a designated terminal state q (the only
transition for q is (q, ε, tε)), and change all other terminal rules (q′, α, tε) into
the horizontal rule (q′, α, q).

Example 1. Recall that a Dyck language consists of all well-balanced strings
over a given set of parentheses. Let L1 and L2 be the Dyck languages over the
symbol pairs b, c and d, e, respectively. Their shuffle L = L1 � L2 is recognized
by the concurrent FSA M = ({q0, q

′
0, q1, q

′
1, q2, q

′
2}, {b, c, d, e}, δ, {q0}), where

δ = { (q0, ε, q
′
0[q1, q2]), (q′0, ε, tε), (q1, b, q′1[q1]), (q′1, c, q1),

(q1, ε, tε), (q2, d, q′2[q2]), (q′2, e, q2), (q2, ε, tε) } .

To illustrate the automaton’s semantics, we step through an accepting run
of M on the string w = bbdcbecc (see Figure 1). Note that since w ∈ w1 � w2

for w1 = bb cb cc ∈ L1 and w1 = d e ∈ L2, it follows that w ∈ L1 � L2. �

It is known that L1 = {anbn | n ∈ N} is a context-free language, but it is
not a shuffle language. Conversely, L2 = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} is
a shuffle language but is not context-free. Both L1 and L2 is recognized by a
CFSA, and so is L1 ∪L2, which is neither a context-free nor a shuffle language.
As will be shown below, the CFSA languages properly extend both the context-
free languages and the shuffle languages. They also have comparatively nice
closure properties.

Theorem 1. The languages recognized by CFSA are closed under union, con-
catenation, Kleene star, shuffle and shuffle closure. They are not closed under
intersection with a regular language or complementation.

Proof. Let M = (Q,Σ, δ, I) and M ′ = (Q′,Σ, δ′, I ′) be CFSA. We assume
without loss of generality that Q ∩ Q′ = ∅, and that the automata have only
one initial state each, i.e., I = {q0} and I ′ = {q′0}. The latter assumption can
be made without loss of recognizing power since ε-transitions are allowed.

Union. A CFSA for the union of M and M ′ can be constructed by adding a
new initial state q together with ε-transitions from q to each of q0 and q′0.

Concatenation. A CFSA for the the concatenation of M with M ′ can be
constructed by adding a new initial state q, new states q′ and q′′, and the
transitions (q, ε, q′[q0]), (q′, ε, q′′[q′0]), and (q′′, ε, tε). This allows the automaton
to first simulate a run of M and then a run of M ′.

Kleene closure. A CFSA for the Kleene closure of M can be constructed by
adding a new initial state q and the transitions (q, ε, tε) and (q, ε, q[q0]). This
allows the automaton to simulate any number of runs of M , one after the other.
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Initial configuration:

q0 b
↑
b d c b e c c

Via transition (q0, ε, q
′
0[q1, q2]):

q′0

q1 q2

b
↑
b d c b e c c

Via transition (q1, b, q′1[q1]):

q′0

q′1

q1

q2

b
↑
d c b e c c

Via transition (q1, b, q′1[q1]):

q′0

q′1

q′1

q1

q2

d
↑
c b e c c

Via transition (q2, d, q′2[q2]):

q′0

q′1

q′1

q1

q′2

q2

c
↑
b e c c

Via transition (q1, ε, tε:)

q′0

q′1

q′1

q′2

q2

c
↑
b e c c

Via transition (q′1, c, q1):

q′0

q′1

q1

q′2

q2

b
↑
e c c

Via transition (q′1, b, q′1[q1]):

q′0

q′1

q′1

q1

q′2

q2

e
↑
c c

Via transition (q2, ε, tε:)

q′0

q′1

q′1

q1

q′2

e
↑
c c

Via transition (q′2, e, q2):

q′0

q′1

q′1

q1

q2

c
↑
c

After the sequence of transitions
(q1, ε, tε), (q

′
1, c, q1), twice applied:

q′0

q1 q2

Via (q1, ε, tε), followed by (q2, ε, tε)
twice in a row we obtain q′0, then
via (q′0, ε, tε) we arrive at the empty
state tree tε, so the run is accepting.

Figure 1: An accepting run of the CFSA M on input bbdcbecc.
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Shuffle. For the shuffle of L(M) and L(M ′) we add states q, q′, where q
becomes the unique initial state of the new automaton. We also add the vertical
transition (q, ε, q′[q0, q

′
0]) and the terminal transition (q′, ε, tε).

Shuffle closure. To construct the shuffle closure of the language of M , we
again add states q, q′, where q becomes the unique initial state of the new
automaton. Additionally, we add the vertical transition (q, ε, q′[q0

�]) and the
terminal transition (q′, ε, tε). This allows the new automaton to spawn any
number of copies of M that can then run in parallel over the input string.

Intersection. Consider the languages L1 = (abc)
�

and L2 = a∗b∗c∗. The
former is a shuffle language, and the latter clearly a regular language, so both are
recognizable by CFSA. As we shall see, their intersection L = {anbncn | n ∈ N}
is not. The proof is by contradiction, so let us assume that L is recognized by
some CFSA M = (Q,Σ, δ, I).

To make the upcoming argument clearer, we introduce some convenient defi-
nitions. For every q ∈ Q, Mq denotes the CFSA (Q,Σ, δ, {q}). The substrings of
a language L, written substring(L), is the set {v | uvw ∈ L for some u,w ∈ Σ∗}.

Now, if a transition r of the form (q, α, q′[p, p′]) ∈ δ is applied in an ac-
cepting run of M , then L(Mp) � L(Mp′) ⊆ substrings(L). For this rea-
son, L(Mp) ∪ L(Mp′) ⊆ α∗ for some α ∈ {a, b, c}. Otherwise, if for exam-
ple w ∈ L(Mp) and w′ ∈ L(Mp′) with |w|a > 0 and |w′|b > 0, the string
w′w ∈ w � w′ would be in substrings(L), but this is impossible since a b oc-
curs before an a in w′w. It follows that the order of p and p′ in r is irrele-
vant. Hence, r can equivalently be replaced by a pair of transitions such that
(ε, q)

∗−→ (α, q′[p[p′]]). The same argument justifies the replacement of transitions

of the form (q, α, q′[p�]) with transitions that yield (ε, q)
∗−→ (α, q′[p[p[. . . [p]]]]).

After this language-preserving normalization, the resulting CFSA only gen-
erates monadic configuration trees, which means that no shuffling is done. How-
ever, without shuffle operations, L(M) is a context-free language (cnf. Theo-
rem 2), and it is well known that L is not a context-free language. Conse-
quently, L is not recognizable by a CFSA.

Complementation. Since the CFSA languages are closed under union, but
not under intersection, they are not closed under complementation either, since

(L1 ∩ L2) can be expressed as (L1 ∪ L2). �

Restrictions and expressive power. We introduce CFSA to provide an
automaton model that can be syntactically restricted to capture the combination
of shuffle operations with some well-known languages classes. The restrictions
considered here are as follows. A CFSA M = (Q,Σ, δ, I) is:

• horizontal if δ contains no vertical transitions;

• non-branching if every vertical transition is in Q×Σ× {q′[q] | q, q′ ∈ Q};
• finitely branching if no vertical transition is in Q×Σ×{q′[q�] | q, q′ ∈ Q};
• acyclic if there is no configuration (w, t) ∈ ∆(M) and state q ∈ Q such

that q appears twice on a path from the root of t to a leaf.
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Theorem 2. A language is:

• regular if and only if it is recognized by a horizontal CFSA;

• context-free if and only if it is recognized by a non-branching CFSA;

• a shuffle language if and only if it is recognized by an acyclic CFSA;

• a closure-free shuffle language if and only if it is recognized by an acyclic
and finitely branching CFSA.

Proof sketch. Horizontal CFSA are equivalent to nondeterministic finite au-
tomata in that they recognize the regular languages.

It is easy to turn a context-free grammar G = (N,Σ, γ, S) in Chomsky nor-
mal form into a non-branching CFSA M = (Q,Σ, δ, I). Let Q = N∪{q | q ∈ N},
I = {S}, and define δ as follows.

• For every rule q → α in γ, where α ∈ Σε, there is a horizontal transition
(q, α, q) and a terminal transition (q, ε, tε) in δ.

• For every rule q → pp′ in γ, there is a transition (q, ε, p′[p]) in δ2.

For the opposite direction, it is equally easy to turn a non-branching CFSA into
a language-equivalent push-down automaton.

Next, we show that acyclic CFSA correspond to the shuffle languages. The
only-if direction follows directly from the proof of Theorem 1 since the construc-
tions there preserve automata acyclicity.

Given an acyclic CFSA M = (Q,Σ, δ, I) we show how to construct a shuffle
expression s recognizing L(M). Two states q, q′ ∈ Q are said to be connected
if there is a transition (q, α, t) ∈ δ, where the label of the root of t is q′, for
some α ∈ Σε. With this notion of connectivity, let C1, . . . , Ck be the connected
components of M . Consider the directed graph GM = (C1, . . . , Ck, E), where
(Ci, Cj) ∈ E if there is a state q ∈ Ci, a vertical transition (q, α, t) ∈ δ, and a
state p ∈ Cj such that p (or p�) labels a leaf of t. Since M is acyclic, also GM
is acyclic.

Let δv ⊆ δ be the set of all vertical transitions. We create an alphabet Σv
with one unique new symbol for each vertical transition. Let h : δv → Σv be
the bijection mapping each d ∈ δv to the corresponding alphabet symbol. Also,
for each d ∈ δv, let qd be a new state. Define H to be the CFSA obtained from
M by replacing each vertical transition d = (q, α, q′[...]) with the horizontal
transitions (q, α, qd) and (qd, h(d), q′). Notice that the connected components
of H are the same as the connected components of M and that H is a finite
automaton recognizing a regular language.

For each q ∈ Q, let the regular expression r(q) be such that L(r(q)) = L(Hq),
that is, r(q) describes the language that H recognizes when starting from state q.
Such a regular expression can be computed using standard constructions.

We are now ready to describe how to construct the shuffle expression cor-
responding to M . To be precise, for each state q ∈ Q, we will define a shuffle
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expression s(q) such that the language of s(q) is the language of Mq, in other
words, the CFSA obtained from M by replacing I by {q}. We do this by induc-
tion on the structure of GM .

If C is a leaf of GM , then there are no vertical transitions in the connected
component C. Hence, for every q ∈ C, we have s(q) = r(q).

Suppose that q belongs to a connected component Ci such that for all states
in all components reachable from Ci in GM , we have already computed the
corresponding shuffle expressions. In this case we get the shuffle expression for q
by taking r(q) and replacing symbols in Σv by appropriate shuffle expressions.
In particular, consider symbol h(d) ∈ Σv that corresponds to d = (q′, α, t) ∈ δv.
The shuffle expression for h(d) is obtained from t as follows.

• If t = p[p′], for some p, p′ ∈ Q, then the shuffle expression is s(p′).

• If t = p[p′1, p
′
2] then the shuffle expression is s(p′1)� s(p′2).

• If t = p[p′�], then the shuffle expression is (s(p′))�.

The shuffle expression for M is the union of those for the states in I, i.e.,

s =
⋃

q∈I
s(q) .

The equivalence L(M) = L(s) can be shown by a standard induction.
Finally, that acyclic and finitely branching CFSA correspond to the closure

free shuffle languages follows from the constructions in the proof of Theorem 1
as only the shuffle closure operator induces unbounded branching. �

Since the closure free shuffle languages are regular [21], we can conclude that
acyclic and finitely branching CFSA also recognize the regular languages.

To see that CFSA do not provide us with the full power of linear bounded
Turing machines, we first note that they can be augmented in polynomial time
with “shortcuts”, that is, contractions of ε-consuming transition sequences into
single transitions.

Definition 3 (ε-efficient). A CFSA M = (Q,Σ, δ, I) is ε-efficient if it fulfills
the following conditions:

1. For every q ∈ Q, if (ε, q)
∗−→ (ε, tε) then (ε, q)→ (ε, tε).

2. For every choice of q, q′ ∈ Q, if (ε, q)
∗−→ (ε, q′) then (ε, q)→ (ε, q′).

3. For every choice of q, q′, p, p′ ∈ Q, if (ε, q)
∗−→ (ε, q′[p, p′])

∗−→ (ε, q′[p]) then
(ε, q)→ (ε, q′[p]).

Lemma 1. Every CFSA M = (Q,Σ, δ, I) can be rewritten into a language-
equivalent ε-efficient CFSA in polynomial time.
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Proof (Sketch). A simple procedure based on the emptiness test (see The-
orem 4) suffices to add any missing transition to M in polynomial time. For
example, construct the automaton M ′ = (Q,Σ, δ′, {q}) where δ′ ⊆ δ contains

only the transitions that do not consume any symbol. Then (ε, q)
∗−→ (ε, tε)

if and only if M ′ is nonempty. Once Condition 1 is satisfied, the transitions
needed to satisfy the remaining two conditions can be added through similar
constructions. �

Lemma 2. Let M = (Q,Σ, δ, I) be an ε-efficient CFSA. In a sequence of tran-
sition steps that accepts the string w and is of minimum length, no intermediary
configuration tree needs to have more than |w| leaves or be of height greater than
|Q|(|w|+ 1).

Proof. Let c = (w, t) and c′ = (w, t′) be a pair of configurations in ∆(M). If
there is a sequence of ε-transitions from c to c′, then there is also a sequence
of length at most n ≤ size (t) + 2size (t′). Such a short sequence can be found

by organizing the transitions as follows: (w, t)
∗−→ (w, t̂)

∗−→ (w, t′) where the
t→ t̂ part of the derivation only deletes nodes, and the t̂→ t′ part never deletes
nodes. This reorganization is possible since M is ε-efficient, so all possible node
deletions/relabelings can be performed without generating extraneous nodes.
In turn, this means that no node needs to be generated only to subsequently be
deleted. It follows that at most |nodes(t)| may need to be deleted, and at most
|nodes(t′)| nodes may need to be created and/or relabeled with a new state.

Consider an accepting sequence of transitions of minimal length. Only |w|
symbols are consumed by the transitions, so if there are |w|+1 leaves in any in-
termediate configuration tree, then one of them must consume ε. The existence
of such a leaf violates the assumption that the sequence is of minimal length
(notice that conditions 1–3 in Definition 3 ensure that useless nodes never have
to be added). The height bound holds since a higher tree would have |w| + 2
or more copies of some state q along some path. With |w| + 2 instances of
q-labeled nodes, there are |w| + 1 such q-delimited sections on the path. Only
|w| symbols are consumed, so one of those sections will be matched up against
the empty string. The redundant section could be omitted without affecting the
accepted string, which violates the assumption that the original sequence was
of minimum length. �

Theorem 3. The languages recognized by CFSA are properly contained in the
context-sensitive languages.

Proof. Let M = (Q,Σ, δ, I) be a CFSA and w string. If there is an accepting
run of M on w from an initial state q0, then a nondeterministic Turing machine
can guess and verify this run in linear space by a depth-first left-to-right search.

The TM simulates a run of M on w starting from q0, but when a vertical
transition (q, α, q′[s]) is used, where s is a sequence of labels, the TM guesses
what prefix w′ of the subsequent string is to be consumed by the state trees
derived from s, and calls itself recursively with w′ and s as arguments. If the
recursive call succeeds, it goes on to verify the remainder of w from q′.
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Let w′ and s be such a prefix and sequence of labels. If s is a single state p,
the TM recursively verifies that w′ is accepted by M when starting from state
p, i.e., w′ ∈ L(Mp). If s is a pair p, p′ ∈ Q, the TM guesses a way to partition
w′ into subsequences u, u′ so that w′ ∈ u � u′. It then recursively verifies
that u ∈ L(Mp), and if that is the case, that u′ ∈ L(Mp′). Finally, if s = p�,
the TM guesses a non-empty subsequence of w′, verifies recursively that this
subsequence belongs to L(Mp), and if so, verifies recursively that the remainder
of w′ (if it is non-empty) can be accepted from the sequence of labels p�.

We note that as the TM explores a candidate run top-down, it need only
remember a sequence of labels s and a partitioning of the argument string at
each level in the call stack. By Lemma 1, the CFSA M can be assumed to
be ε-efficient, so by Lemma 2, the height of the call stack can be restricted to
|w| + 1. The information about where in the string partitions end can easily
be maintained in linear space, for example as a bit string where the ith zero
signifies the ith symbol in w, and the jth one signifies the end of the partition
for the jth object on the current call stack. If follows that the information
maintained during any step of the simulated run is linear in |w|, so the non-
uniform membership problem for CFSA languages can be decided by a linearly
bounded nondeterministic TM. As shown in the proof of Theorem 1, no CFSA
recognizes the language {anbncn | n ∈ N}, so the CFSA languages form a proper
subset of the context-sensitive languages. �

Since not all CFSA-languages are context-free (e.g., there are non-context-
free shuffle languages), we conclude that their expressive powers lies strictly
between that of context-free grammars and that of context-sensitive grammars.

Also unlike linear bounded Turing machines, CFSA can be efficiently checked
for emptiness.

Theorem 4. The emptiness problem for CFSA is decidable in polynomial time.

Proof. Let M = (Q,Σ, δ, I) be a CFSA. A state q of M is live if L(Mq) is
nonempty. Let F ⊆ Q be the smallest set satisfying the following conditions.

1. F0 = {q | (q, ε, tε) ∈ δ}

2. Fi ⊆ Fi+1

3. if (q, α, q′) ∈ δ and q′ ∈ Fi then q ∈ Fi+1

4. if (q, α, q′[p�]) and q′ ∈ Fi, for any p ∈ Q, then q ∈ Fi+1 (recall that the
shuffle closure may generate zero instances of p)

5. if (q, α, q′[s]) ∈ δ for some q′ ∈ Fi and some s such that every state that
appears in s belongs to Fi, then q ∈ Fi+1

6. F = ∪∞i=0Fi
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Claim. A state q of M is live if and only if q ∈ F .
For the if-direction, we prove by induction on the smallest i such that q ∈ Fi

that q is live. For i = 0 this is trivially true, since (q, ε, tε) ∈ δ, and thus Mq

accepts the string ε.
Assume that every state in Fi is live, and consider the state q ∈ Fi+1 \ Fi.

If (q, α, q′) ∈ δ, with q′ ∈ Fi, then there is a string w such that Mq′ accepts w.
This means that Mq accepts αw and we conclude that q is live. If there is no
such rule, there must be a rule (q, α, q′[s]) in δ such that q′ and either s = p�

or every state that appears in s belongs to Fi. If this is the case, then there is a
word wq′ accepted by Mq′ . If s = p, there is a word wp ∈ L(Mp) and conclude
that Mq accepts α ·wp ·wq′ . Similarly, if s = p, p′ there are strings wp ∈ L(Mp),
wp′ ∈ L(Mp′), and wp� p′ ∈ wp � wp′ such that Mq accepts α · wp1�p2 · wq′ .
Finally, if s = p�, we know that Mq accepts α · wq′ . Thus q is live.

For the other direction, assume that q is live as witnessed by some word
w = α1 · · ·αm in L(Mq) with αi ∈ Σ ∪ {ε}. Let

(w, q) = (w1, t1)→ · · · → (wm, tm) = (ε, tε)

be an accepting sequence of transition steps of Mq on w. We show by induction
that every state that appears in t1, . . . , tm is in F . In particular, this means
that q belongs to F , because t1 = q. Since tm = tε, all states in tm belong to F .
Assume that all states appearing in ti belong to F and consider ti−1. One of
the following cases apply (for some leaf node v).

1. ti−1 = t[[v ← q]], ti = t[[v ← q′]], and there is a transition (q, αi, q
′) ∈ δ. If

this is the case, q ∈ F and thus all states of ti−1 belong to F .

2. ti−1 = t[[v ← q]], ti = t[[v ← q′[u1, . . . , un]]], and there is a transition
(q, αi, q

′[s]) ∈ δ such that

• s = p, n = 1, and u1 = p,

• s = p1, p2, n = 2, u1 = p1 and u2 = p2, or

• s = p� and u1 = · · · = un = p.

In either case, q ∈ F and thus all states of ti−1 belong to F .

3. ti−1 = t[[v ← q]], ti = t[[v ← tε]]. In this case, q belongs to F0 and we can
conclude that all states appearing in ti−1 belong to F .

The set F can be computed in polynomial time and L(M) is empty if and only
if F ∩ I = ∅. Thus emptiness for CFSA can be decided in polynomial time. �

4. Membership Problems

4.1. The membership problem for unrestricted CFSA

The membership problem for unrestricted CFSA is intractable, both in the
uniform and the non-uniform case.
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Theorem 5. Both the uniform and the non-uniform membership problem for
CFSA is NP-complete.

Proof. NP-hardness for the uniform membership problem for shuffle expres-
sions is already known; see, e.g., [44, 2, 35]. The non-uniform membership
problem is also NP-complete, this follows from both [40] and Corollary 4 in
this paper. Corollary 4 states that the non-uniform membership problem for
the shuffle of two deterministic linear context-free languages is NP-hard. Theo-
rem 2 says that CFSA can represent all context-free languages and Theorem 1
that they are closed under the shuffle operation, so a CFSA can be constructed
to represent the shuffle of context-free languages, establishing NP-hardness.

Demonstrating that the membership problem for CFSA is in NP is deferred
to Lemma 3 below. �

Lemma 3. Given a CFSA M = (Q,Σ, δ, I) and a string w ∈ Σ∗ it is possible
to determine if w ∈ L(M) in nondeterministic polynomial time.

Proof sketch. Due to Lemma 1, we may assume that M is ε-efficient. We show
that there is a polynomial P such that for every w ∈ L(M), there is a state
q0 ∈ Q and a sequence of transition steps

(w, q0) = (w1, t1)→ · · · → (wn, tn) = (ε, tε)

such that n ≤ P (|Q|+|w|). This result allows an accepting sequence of transition
steps to be “guessed” as part of a nondeterministic polynomial-time decision
algorithm for the membership problem.

It follows from Lemma 2 that the size of the configuration trees necessary to
accept an input string w is bounded by |w|2|Q|, and any sequence of transitions
on polynomially sized trees can be limited to a polynomial number of steps.
There is thus, for every w ∈ L(M), a sequence of polynomial length, which
means that a nondeterministic algorithm can check membership by guessing
the sequence. �

4.2. The membership problem for acyclic CFSA

We now turn to the membership problem for acyclic CFSA, i.e., the restric-
tion of CFSA that recognizes the shuffle languages.

Corollary 1. For acyclic CFSA

1. the non-uniform membership problem is solvable in polynomial time, and

2. the uniform membership problem is NP-complete.

Proof. The result for non-uniform membership follows directly from Theo-
rem 2 and the fact, proved in [31], that non-uniform membership for shuffle
expressions is polynomial. For the uniform membership problem, membership
in NP follows from Theorem 5. NP-hardness follows by an easy adaptation of
a result by Barton on the complexity of ID/LP parsing [2]. �
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The uniform membership problem is NP-complete already for acyclic and finitely
branching CFSA, which only recognize regular languages. This is not too sur-
prising since the similar NFA(&) employed by Gelade et al. [20], which also
recognize the regular languages, has PSPACE-complete uniform membership.
For some languages, CFSA offer a more succinct form of representation than
NFA and the shuffle automata from [31]. One example is the language family
{{an} | n ∈ N}, for which the smallest NFAs and shuffle automata have sizes
linear in n, while the smallest CFSAs are logarithmic in n.

Corollary 1 states that the membership problem is polynomial for a fixed au-
tomaton but NP-hard if the automaton is considered as part of the input. The
question then remains whether the size of the automaton merely influences the
coefficients of the polynomial or if it affects the degree itself. We give a partial
answer by showing that when parameterized by the maximal size of a configu-
ration tree for the automaton, the uniform membership problem for acyclic and
finitely branching CFSAs is not fixed-parameter tractable, unless FPT = W[1].
This class equivalence is considered very unlikely and would have far-reaching
complexity-theoretic implications. For more on parameterized complexity the-
ory, see, e.g., [15, 17].

We state the result for acyclic and finitely branching CFSA, but it could
be equivalently stated for closure-free shuffle expressions. We first define the
parameterized version of the problem.

Definition 4. An instance of the parameterized uniform membership problem
for acyclic and finitely branching CFSA is a pair (M,w) where M is an acyclic
and finitely branching CFSA over a finite alphabet Σ and w is a string in Σ∗.
The parameter is the maximal size of any configuration tree for M . The question
is whether w ∈ L(M). �

For acyclic and finitely branching CFSA, the maximal size of the configuration
trees depends only on the automaton. If the membership problem for these
automata was fixed-parameter tractable, it would have an algorithm with run-
ning time f(k) · nc, where f is a computable function, k is the parameter (the
maximal tree size), n is the instance size, and c is a constant. Theorem 6 gives
strong evidence to the contrary.

Theorem 6. The parameterized uniform membership problem for acyclic and
finitely branching CFSA is W[1]-hard.

The proof is by a fixed-parameter reduction from parameterized clique, which
is known to be W [1]-complete [15].

Definition 5. An instance of k-Clique is a pair (G, k), where G = (V,E) is
an undirected graph and k is an integer. The question is whether there is a
set C ⊆ V of size k such that the subgraph of G induced by C is complete. The
parameter is k. �

Proof. The proof consists in a reduction from k-Clique to the member-
ship problem at hand. Let (G = (V,E), k) be an instance of k-Clique, and
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v3

v1

v4

v2

w = v1v1v1v2v2v2v3v3v3v4v4v4e1,2e1,3e1,4e2,4

s = (v1v1v1 + v2v2v2 + v3v3v3 + v4v4v4)

t = Σ∗

u = v1v2e1,2 + v1v3e1,3 + v1v4e1,4 + v2v4e2,4

Figure 2: A graph together with the corresponding input word w and the regular expressions
s, t, and u, given k = 3.

let n = |V | and m = |E|. We construct an alphabet Σ, a shuffle expression r,
and a string w ∈ Σ∗ such that |Σ| = O(n + m), |r| = O(k · n2 + k2 · m),
|w| = O(k ·n+m), the shuffle operator appears O(k2) times in r, and w ∈ L(r)
if and only if G has a clique of size k. To construct Σ, we assume that the ver-
tices in V are named v1, v2, . . . , vn and that the edges are named ei,j where i < j
are the numbers of the two incident vertices and let Σ = V ∪E. The word w is
vk1 · vk2 · · · vkn · edges, where edges is any enumeration of the edges in E.

We define the regular languages s, t, u by

• s = (vk1 + vk2 + · · ·+ vkn)n−k,

• t = Σ∗, and

• u = Σei,j∈E(vi · vj · ei,j).

Finally, we define

r = s� t� (

k(k−1)/2⊙

i=1

u) .

A graph, together with the expressions and the input string resulting from
the reduction with k = 3 is shown in Figure 2. The intuition behind the reduc-
tion is as follows:

• The expression s matches n − k sequences of k copies of a vertex name.
This leaves only k such sequences in w for the rest of r to match against,
so the remainder of the expression can only use k distinct vertex names.
In the example shown in Figure 2, we have n = 4 and k = 3. Thus s
matches exactly one group of three identical vertex names.

• Each instance of expression u matches one sequence vi · vj · ei,j . Thus, the
k(k−1)/2 instances of umatch against k(k−1) vertex names and k(k−1)/2
edge names. Due to the matching of s, the k(k−1) vertex names can only
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be chosen from among k vertices. Thus the k(k− 1)/2 edge names, which
are distinct since edges is an enumeration of E, represent edges that have
both their endpoints in a set of vertices of size k. In the example from
Figure 2, we have k = 3 and thus 3(3 − 1)/2 = 3 copies of u are used.
Since s matches one group of vertex names, these three copies of u can
only be matched against a total of three distinct vertex names.

• The expression t matches all remaining vertex and edge names.

• Any graph that has k(k− 1)/2 distinct edges whose endpoints are all in a
set of vertices of size k has a clique of size k.

Thus w belongs to L(r) if and only if G has a clique of size k. Notice that |r| is
polynomial in |G| and that the number of shuffle operators depends only on k.

Using Theorem 2 it is easy to find an acyclic and finitely branching CFSA Mr

such that L(Mr) = L(r), the size of Mr is polynomial in the size of G, and the
maximum size of a configuration tree for Mr is O(k2). Thus there is a fixed-
parameter reduction from k-Clique to parameterized membership for acyclic
and finitely branching CFSA, so the latter problem is W[1]-hard. �

The following corollary is immediate.

Corollary 2. The uniform membership problem for closure-free shuffle expres-
sions, parameterized by the number of shuffle operators, is W[1]-hard.

4.3. The membership problem for Reg � CF and Sh� CF

We next show that the shuffle of a context-free language and a regular lan-
guage is efficiently recognizable, even if the language descriptions are considered
to be part of the input.

Theorem 7. The uniform membership problem for the shuffle of two languages,
one represented by context-free grammar and one represented by a nondetermin-
istic finite automaton, is solvable in polynomial time.

Proof (Sketch). It is well known that the shuffle of a regular and a context-
free language is context-free. It remains to argue that a grammar for the lan-
guage can be constructed in polynomial time. To achieve this, it is enough to
construct a nonterminal (A, q1, q2) for every nonterminal A of the input gram-
mar and every pair (q1, q2) of states of the input automaton. Working bottom
up, it is straightforward to construct the rules of the grammar in such a way
that a string w can be produced from (A, q1, q2) if and only if there are w1 and
w2 such that w = w1 � w2, where w1 can be produced from A in the input
grammar and w2 can take the input automaton from q1 to q2. �

Since acyclic and finitely branching CFSA only provide a more compact rep-
resentation of the regular languages, Theorem 7 extends to the non-uniform
membership problem for the shuffle of a context-free language and a closure-
free shuffle language:
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Corollary 3. The non-uniform membership problem for the shuffle of two lan-
guages, one represented by a context-free grammar and one represented by an
acyclic and finitely branching CFSA, is solvable in polynomial time.

Extending Theorem 7 with techniques inspired by [31], we get the following:

Theorem 8. The non-uniform membership problem for the shuffle of a shuffle
language and a context-free language is solvable in polynomial time.

Since the languages are not part of the input, we may assume that they are
represented by an acyclic CFSA M , and a context-free grammar G, respectively.
We prove the above theorem in several steps. First, we show that we can assume
that the CFSA for a shuffle language has certain structural properties. Second,
we define simple configuration trees, and show that any computation of a CFSA
for a shuffle language that has the above-mentioned structural properties can be
assumed to use only simple configuration trees. Third, we show an upper bound
on the number of different simple configuration trees that need to be taken into
account during a computation, and provide a compact representation for these.
Finally, we prove the theorem, using an extension of the CYK algorithm.

The first structural property of CFSAs that we consider is stratification.

Definition 6. An acyclic CFSA M = (Q,Σ, δ, I) is stratified if, for every q ∈ Q,
there is at most one p ∈ Q such that, in a configuration tree, a node with label p
can be the parent of a node with label q. �

To proceed, we need a canonical translation from shuffle expressions to CFSAs:

Definition 7. Let s be a shuffle expression. Then Ms is the CFSA constructed
from s as in the proof of Theorem 1. We call Ms the canonical CFSA for s. �

Observation 1. Let s be a shuffle expression, and let Ms = (Q,Σ, δ, q0) be the
canonical CFSA for s. Then Ms has the following properties.

• It is stratified.

• It is acyclic.

• For each q ∈ Q, there is at most one vertical transition (p, α, t) in δ with
q labelling the root of t. We say that an automaton A with this prop-
erty is vertically separated. We write scp(A) (for shuffle-closure-parent)
for the set of states that can have an unbounded number of children in
configuration trees, i.e., scp(Ms) = {q | ∃p, p′, α : (p′, α, q[p�]) ∈ δ}. �

Having covered the first step of our proof outline, we continue to introduce
and reason about so-called simple configuration trees. For this purpose, we
introduce the notions of pruned configuration trees and symmetrically equivalent
nodes. Prunings delete subtrees produced through shuffle-closure; a pair of
nodes in a configuration tree t are symmetrically equivalent if they are identical
modulo an automorphism in a pruned version of t, i.e., when we disregard their
exact number of descendant subtrees created through shuffle-closure.
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Definition 8 (Pruning). Let Ms be the canonical CFSA for a shuffle expres-
sion s, let t be a configuration tree of Ms and let v, v′ be nodes in t.

We denote by P (v, v′) the set of the closest shuffle-closure-parent descendants
of v and v′. More formally, let P (v, v′) be the set of nodes u of t such that:

1. t(u) ∈ scp(Ms),

2. u is a descendant of v or v′, and

3. there is no node with a label in scp(Ms) on the path from v (or v′) to u.

The pruning of t with respect to v, v′, written prune(t, v, v′), is obtained
from t by removing all subtrees rooted at children of nodes in P (v, v′). �

Definition 9 (Symmetrical equivalence). Let Ms be the canonical CFSA
for a shuffle expression s, let t be a configuration tree of Ms and let v, v′ be
nodes in t. The nodes v and v′ are symmetrically equivalent if there is an
automorphism f on the nodes of t′ = prune(t, v, v′) such that

• f(v) = v′ and f(v′) = v,

• for every u ∈ nodes(t′), t′(f(u)) = t′(u), and

• for every u, u′ ∈ nodes(t′), it holds that f(u) is a child of f(u′) if and only
if u is a child of u′.

We write se(v, v′) if v and v′ are symmetrically equivalent.

It is easy to check that symmetrical equivalence is an equivalence relation
in the algebraic sense, and thus reflexive, symmetric and transitive. When
considering a configuration tree from a computational point of view, we notice
that the ordering of its nodes is not important, only its hierarchical structure. It
is therefore meaningless to distinguish between symmetrically equivalent nodes
in the rewriting process. For our purposes this is an advantage, because we only
have to remember to what class of symmetrically equivalent nodes a subtree
attaches, not the exact location.

Observation 2. Let k ∈ N, let t and s1, . . . , sk be configuration trees, let
v1, . . . , vk be symmetrically equivalent nodes in nodes(t), and let

T = {t[[v1 ← sφ(1), . . . , vk ← sφ(k)]] | φ is a permutation on [k]} .

For every t1, t2 ∈ T and w ∈ Σ∗, if (t1, w)
∗→ (ε, tε) then (t2, w)

∗→ (ε, tε) �

Due to Observation 2, it is never useful to apply a transition r = (p′, α, q[p�])
below a node v, when there is a symmetrically equivalent node v′ below on which
r has already been applied. This claim, which will be proved later on, means
that the search space can be reduced to so-called simple configuration trees.
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Figure 3: Children obtained through shuffle-closure can be moved between descendants of
symmetrically equivalent nodes.

Definition 10. A configuration tree t is simple if is it does not contain sym-
metrically equivalent nodes v and v′, such that both v and v′ have descendants
which are labeled by states in scp(Ms) and have children.

A run of a CFSA is simple if all configuration trees of the run are simple. �

Lemma 4. Let Ms the be the canonical CFSA for a shuffle expression s and
let w be a word. Then Ms has a simple accepting run on w, if and only if Ms

has an accepting run on w.

Proof sketch. For the “only if” direction we note that every simple accepting
run is an accepting run.

For the opposite direction, we provide a rewrite procedure that rearranges
the configuration trees in an accepting run into an alternative run that is also
accepting. After applying this procedure a finite number of times we are guar-
anteed to reach a run that is both accepting and simple.

Assume that Ms has an accepting run ρ = t0, t1, . . . , tn on w, and that ρ is
not simple. Let ti be the first non-simple tree. Then the transition from ti−1

to ti must have been a vertical transition of the form (p′, ε, q[p�]) that changed
the label of some leaf node u from p′ to q and gave it a number of children with
label p, say m children. Also, there must be an ancestor v of u (possibly, v = u)
and a node v′ such that v and v′ are symmetrically equivalent in ti. Let φ
be the corresponding automorphism on prune(ti, v, v

′). Let u′ = φ(u). If all
the children of u were instead children of u′, the tree ti would be a simple
configuration tree. And, indeed, because of the vertical separation of Ms, the
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transition that labeled u′ by q must have been (p′, ε, q[p�]). Thus, it could
as well have created m extra children of u′ with label p, in addition to the
children it originally created. This would not have affected any transitions up
to configuration tree ti−1. Symmetrically, the transition from ti−1 to ti might
not have created any children at all under u. Thus, with the same sequence of
transitions, we could equally well have ended up with the configuration tree t′i
which is identical to ti except that u has no children in t′i and u′ has m more p-
labeled children than in ti. Figure 3 depicts the situation.

It remains to argue that any sequence of transitions used in ρ from ti for-
ward is also possible from t′i. Let j > i be the smallest number such that
in tj , either v has no children or v′ has no children. We show that the partial
run ρi,j = ti, . . . , tj can be mirrored in a partial run ρ′i,j = t′i, . . . , t

′
j , using the

same transitions. If a transition of ρi,j affects a node in tk that does not belong
to the subtree of v or v′, we mirror it directly on t′k. Now consider a transition
from tk to tk+1 that affects a node in a subtree of v or v′. If the same operation
is possible on t′k, we perform it. If not, this can only have two causes.

1. The affected node in tk is a descendant of u that does not exist in t′k. In
this case, we perform the operation on the corresponding descendant of u′.

2. The affected node in tk is u′ which in t′k still has children. In this case,
we perform the operation on u.

In each of ti and tj , we have that exactly one of v and v′ is childless. If
this is the same node in both trees, they are identical and we are done. If
not, we still have to argue that the transitions from tj forward can be mirrored
from t′j . If not, we use the fact that in ti and t′i, v and v′ were symmetrically
equivalent. Thus we are free to use the automorphism φ to reinterpret the
sequence t′i, . . . , t

′
j . Under this reinterpretation, tj and t′j are identical.

After performing the above operation, all configuration trees up to and in-
cluding ti are simple. This means that after going through the procedure at
most a linear number of times, all configuration trees will be simple. �

Lemma 4 concludes the second step in our proof outline. What remains is
to provide a compact representation for simple configuration trees. This makes
it necessary to compress the potentially large number of subtrees produced
through shuffle closures. Under nodes labelled by states in scp(Ms) we therefore
only record which types of subtrees appear, and annotate each of them with a
“repetition counter”, which encodes the number of times they appear.

Definition 11. Let Ms = (Q,Σ, δ, q0) be the canonical CFSA for a shuffle
expression and let t be a simple configuration tree of Ms. The compact configu-
ration tree cct(t) for t is a tree with nodes labelled by Q×N∗ where the second
component is used as a sequence of counters, one for each direct subtree of the
node in question. We define cct(t) by induction on the structure of t as follows.

• If t = q, then cct(t) = (q, 〈〉).
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• If t = q[t1, . . . , tk] and q ∈ Q \ scp(Ms), then

cct(t) = (q, 〈1, . . . , 1︸ ︷︷ ︸〉
k

)[cct(t1), . . . , cct(tk)] .

Notice that in this case, k always equals 1 or 2.

• If t = q[t1, . . . , tk] and q ∈ scp(Ms) , then

cct(t) = (q, 〈n1, . . . , nm〉)[cct(t′1), . . . , cct(t′m)] ,

where

1. t′1, . . . , t
′
m is an enumeration of the elements in {t1, . . . , tk}, so t′i is

not isomorphic to t′j for any i, j ∈ [m], making m the number of
unique trees, up to isomorphism, in t1, . . . , tk,

2. ni = |{j | j ∈ [k], tj isomorphic to t′i}| for all i.

We write CCT(Ms) for the set of all compact configuration trees of Ms. �

It should be clear that there is a many-to-one correspondence between simple
configuration trees t and their respective compact configuration trees cct(t).

Next, we show that the size of compact representation trees for simple con-
figuration trees depends only on the automaton, not on the input word.

Lemma 5. Let Ms be the canonical CFSA for a shuffle expression s. Then
there is a constant c ∈ N that depends only on Ms, such that for every simple
configuration tree t of Ms, the size of cct(t) is at most c.

Proof. Let t be a simple configuration tree of Ms. Since Ms is acyclic we
know that height (t), and thus also height (cct(t)), is at most |Q|. We argue
that the index (i.e., the number of equivalence classes) of the relation se on t is
completely decided by Ms.

Let SCFree be the set of subtrees t′ of simple configuration trees of Ms such
that in t′ no scp(Ms)-labeled node has children. We note that since the height
of trees in SCFree is bounded by |Q| and since they branch only binarily, we
know that |SCFree| is finite and depends only on Ms.

Let Layer(i, t) be the tree obtained from t by removing all nodes v such
that there are i or more scp(Ms)-labeled nodes on the path from the root to v
(not including v itself). We argue by induction on i, that the index of se on
Layer(i, t) depends only on i and on Ms. Since i is itself bounded by |Q| this
will in the end give us what we need.

In the base case, where i = 1, the claim holds, since Layer(1, t) ∈ SCFree
and thus Layer(1, t) has a maximum number of nodes that depends only on Ms.
The index of se can of course not exceed the number of nodes.

For the inductive case, we assume that there is a number ei that depends
only on i and on Ms, such that for all simple configuration trees t of Ms, the
index of se on Layer(i, t) is at most ei. We obtain Layer(i+1, t) from Layer(i, t)
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by adding trees from SCFree as children to scp(Ms)-labeled leaves of Layer(i, t).
For two nodes v1 and v2 in nodes(Layer(i+ 1, t)) \ nodes(Layer(i, t)) not to be
symmetrically equivalent, they must either belong to two such subtrees from
SCFree that are not isomorphic or their closest ancestors in Layer(i, t) belong
to different equivalence classes of se. This means that in Layer(i + 1, t) there
can be no more than ei · |SCFree| · m equivalence classes of se, where m is
the maximum size of any tree in SCFree. Using the induction hypothesis, this
quantity depends only on i and Ms.

Since t is a simple configuration tree, in any set of symmetrically equivalent
nodes, there is at most one whose corresponding subtree contains an scp(Ms)-
labeled node that has children. Take a set {v1, . . . , vn} of symmetrically equiva-
lent nodes (n can be arbitrarily large). Then, {t/v1, . . . , t/vn} contains at most
two unique trees, the single one with scp(Ms)-labeled nodes with children be-
ing one, while all other subtrees are necessarily isomorphic. This immediately
implies that the number of unique, up to isomorphism, subtrees of t depends
only on Ms.

All that remains is to note that in cct(t), every node either has at most two
children (non-scp nodes) or it has only unique, up to isomorphisms, children.
Since the number of unique subtrees depends only on Ms, and height (t) ≤ |Q|
this means that the number of nodes of cct(t) depends only on Ms. �

Lemma 6. Let Ms = (Q,Σ, δ, I) be the canonical CFSA for a shuffle expres-
sion. Then there exists a constant k ∈ N that depends only on Ms, such that
the number of distinct compact configuration trees needed by Ms for accepting
all words in L(Ms) of length at most n is bounded by O(nk).

Proof. We may assume, thanks to Lemma 1, that Ms is ε-efficient. This means
that no intermediate configuration tree in a run over a word of length n needs
to contain more than n + 1 leaf nodes. Indeed, whenever a configuration tree
contains n+ 1 leaf nodes, by the pigeon hole principle, at least one of the states
must ultimately derive ε, since there are only n symbols in the string. As such,
whenever a configuration contains n+1 leafs we can safely nondeterministically
choose a leaf state which can derive ε and replace it by tε in the next step, cre-
ating a new run. Iterating this process produces a run in which no configuration
tree has more than n+ 1 leaf nodes.

Since an acyclic CFSA will have configuration trees of height at most |Q|,
no configuration tree needs to be of size greater than (n+ 1)|Q|.

Lemma 5 establishes that there is a constant c such that no compact config-
uration tree corresponding to a simple configuration tree of Ms has more than c
nodes. This also means that they contain at most c repetition counters (the
counters that are placed as part of the children in scp-nodes in the CCT(Ms)
construction). We have also shown that no intermediary configuration tree of
Ms running on a word of length n needs to have more than (n+ 1)|Q| nodes.

To conclude, we note that during any step of a simple run of Ms on a word
of length n, there are less than (|Q| + 1)c possible compact configuration trees
when ignoring the values of the repetition counters. Furthermore, there are less
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than (n+1)|Q| “units” to be divided among the c counters, which can be done in
less than ((n+1)|Q|)c ways. Therefore, there are less than (|Q|+1)c((n+1)|Q|)c
possible compact configuration trees for any step of Ms. Since c depends only
on Ms, we have the desired bound of O(nk) with k depending only on Ms. �

Finally, we are ready to prove Theorem 8.

Proof (of Theorem 8). To compute membership for the shuffle of a shuf-
fle language and a context-free language, we outline an extension of the CYK
algorithm. The extension maintains triples consisting of a nonterminal from
the context-free grammar G and two configuration trees with respect to the
CFSA Ms. A triple (A, t, t′) is assigned to a substring w′ of the input string w
if

1. w′ ∈ w′1 � w′2,

2. the string w′1 can take M from t to t′, and

3. the string w′2 can be derived from A in the grammar G.

A pair of triples (A, t, t′) and (B, t′, t′′) for the substrings w′ and w′′ can be
combined into a triple (C, t, t′′) for the substring w′w′′ if there is a derivation
rule C → AB in G. To decide whether there is a parse for w, one starts by
deriving all possible triples for every substring of w of length 1, and then uses
the above combination rule to dynamically complete the parse chart.

A string of length n has O
(
n2
)

substrings, which means that O
(
n2
)

sets of
triples have to be computed. From Lemma 6 we know that there is a k ∈ N, that
depends only on the shuffle language involved, such that no more than O

(
nk
)

distinct configuration trees have to be considered. If G has m nonterminals,
there are thus no more than O

(
m · nk

)
possible triples. Given that we have

the sets of triples for all substrings of w, deciding whether a particular triple
belongs to the set of triples for w can be done in polynomial time. Since m
and k are constants, the problem is polynomial in the length n of the string. �

5. An NP-complete Shuffle of Two Deterministic Linear Context-Free
Languages

In this section we will construct two deterministic linear context-free lan-
guages such that deciding the membership problem for their shuffle is NP-
complete. Phrased differently we will demonstrate the non-uniform membership
problem for DLCF�DLCF is NP-complete.

5.1. Proof Preliminaries

Deterministic linear context-free languages, denoted DLCF, will be used
extensively in the following. It is assumed that the reader is familiar with the
relevant formalisms for these languages, for instance, deterministic pushdown
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automata restricted to a single pushdown reversal. For an introduction to the
subject, see, e.g., the textbook by Hopcroft and Ullman [30]. We typically give
inductive definitions for the DLCF languages, from which push-down automata
can be easily deduced.

Non-deterministic polynomial time-bounded Turing machines are used heav-
ily in the proofs to demonstrate NP-completeness. Full definitions of the ma-
chines are given, but for more complete background information on these topics
see, for example, [18, 36].

5.2. Proof Overview

To make two DLCF languages perform a computation, they have to be made
interdependent. This is done by constructing a template input string containing
sequences of double-bracketed bits:

w = [[01]][[01]][[01]]$$[[01]][[01]][[01]]$$[[01]][[01]][[01]].

Assume that the first language contributes the string [0][1][0]$[1][1][1]$[1][0][1] to
w, then the second language has to contribute the string [1][0][1]$[0][0][0]$[0][1][0]
if the whole input string w is to be assembled. Notice that the bit sequence in
this string is the complement of the bit sequence in the first. In this way the
two shuffled languages can communicate arbitrary choices by only accepting
properly bracketed input. The proof will use this to let one language make
computation steps for a Turing machine, while the other language copies the
configuration to link the computation steps. The following figure acts as a visual
aid to see how the languages will cooperate to simulate the computation. Many
details are left out; the figure only serves as a structural overview.

[[template]] $$ [[template]] $$ [[template]] $$ · · · $$ [[template]] $$ [[template]]

Computation step

Computation step

Copy configuration

Copy configuration

5.3. Parsing the Shuffle of Deterministic Linear Context-Free Languages

The reduction hinges on representing the computations of Turing machines
as strings. To simplify the presentation, we give custom definitions of non-
deterministic Turing machine configurations and runs, and work with totally
ordered state spaces.

Definition 12. Let S be an ordered set, i.e., a set S together with a total order
on S. For i ∈ [|S|], let S(i) denote the ith element in S according to this total
order. When a set is given in the form of an enumeration S = {s1, . . . , sn}, it
is implied that si = S(i).
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Definition 13. A non-deterministic Turing machine (NTM) is a tuple (Q,∆)
where

• Q is a finite ordered set of states,

• ∆ ⊂ Q× {0, 1} × {←,→}×Q× {0, 1} is a finite set of rules,

• Q(1) is the initial state, and Q(|Q|) is the accepting state.

The DLCF languages that we shall consider are made up of symbols from
the alphabet

ΣM = Q ∪ {0, 1, ., [, ], $,#} .
A configuration becomes a simple string containing both the state, tape con-
tents, and tape position, allowing rule applications to be expressed as string
rewrites.

Definition 14. The set of configurations of an NTM M = (Q,∆), denoted
CM , is the set

CM = {[} ·Q · {]} · {[0], [1]}∗ · {[.0], [.1]} · {[0], [1]}∗ ⊂ Σ∗M .

Example 2. As will be seen in Definition 16, an NTM will be provided with
tape cells it can work on by padding the input with additional cells filled with
zeros. For example, an NTM with initial state q, the input string 1101, and 6
tape cells at its disposal would start in the following configuration.

[q][.1][1][0][1][0][0]

Current state

Tape cell with current head position

Tape w. input

Non-input tape cells

Definition 15. For an NTM M = (Q,∆), the rule r ∈ ∆ is applicable to a
configuration c ∈ CM and yields the configuration c′ ∈ CM under the following
conditions. Let r = (q, α, d, q′, α′). For all strings t1 and t2, and β ∈ {0, 1},
• if d =→ and c = [·q·] · t1 · [. ·α·][·β·] · t2 then c′ = [·q′·] · t1 · [·α′·][. · β·] · t2,

• if d =← and c = [·q·] · t1 · [·β·][. ·α·] · t2 then c′ = [·q′·] · t1 · [. · β·][·α′·] · t2.

We denote this rule application by c
r−→ c′, or c→ c′ leaving r implicit.

Example 3. For example, in the configuration [q][0][1][0][.1][1][0] it is possible
to apply the rule (q, 1,→, q′, 0) to produce the configuration [q′][0][1][0][0][.1][0].
In the configuration [q][0][1][.0] a rule (q, 0,→, q′, 0) cannot be applied since
there is no room to move to the right, nor can the rule (q, 1,←, q′, 0), since . is
pointing to a 0 and the rule requires a 1.
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Let us now define what it means for an NTM to accept a language in time
bounded by some function.

Definition 16. Take an NTM M = (Q,∆), a function ψ : N→ N and a string
α1 · · ·αn ∈ {0, 1}∗. The initial configuration is defined as

I(M,ψ, α1 · · ·αn) = [ ·Q(1) · ] [. · α1 · ] · · · [ · αn · ][0][0] · · · [0]︸ ︷︷ ︸
ψ(n) + 1 bracketed bits

,

the set of final configurations is F (M) = ([ ·Q(|Q|) · ] · Σ∗M ) ∩ CM .
M accepts α1 · · ·αn in ψ-bounded time if and only if the initial configuration

can be transformed into some final configuration by exactly ψ(n) rule applica-
tions. That is, there exists ψ(n) + 1 configurations, c1, . . . , cψ(n)+1 such that
c1 = I(M,ψ, α1 · · ·αn), cψ(n)+1 ∈ F (M) and ci → ci+1 for all i ∈ [ψ(n)]. The
language M accepts in ψ-bounded time is exactly the set of strings M accepts
in ψ-bounded time.

The above definition is slightly irregular in that M is required to take exactly
ψ(n) steps to accept a string of length n, but any Turing machine that would
accept the string in at most ψ(n) steps can remain in the accepting state in-
definitely to fulfil this condition. This makes the above definition equivalent to,
e.g., that of Minsky [36]. It follows that every problem L ∈ NP is, when suitably
encoded, accepted by some NTM M in polynomially bounded time [18].

The template string defined next will be used as the input for the member-
ship query, encoding the Turing machine input and a long specially formatted
suffix to make the shuffled computation possible.

Definition 17. The run template string for running the machine M = (Q,∆)
in ψ-bounded time on the input string α1 · · ·αn ∈ {0, 1}∗ (n ∈ N) is denoted
S(M,ψ, α1 · · ·αn) and is defined as follows. First the configuration template is

T = [[ ·Q(1) · · ·Q(|Q|) · ]] [[.01]] · · · [[.01]]︸ ︷︷ ︸
ψ(n) + 1 times

.

Then S(M,ψ, α1 · · ·αn) equals

I(M,ψ, α1 · · ·αn) · $$ · T · $$ · T · · · $$ · T︸ ︷︷ ︸
ψ(n) occurrences of T

· $$## · $$ · TR · $$ · TR · $$ · · ·TR︸ ︷︷ ︸
ψ(n) + 1 occurrences of TR

.

Example 4. Let M = ({q1, q2},∆), and let ψ(2) = 1, then S(M,ψ, 1) is

[q1][.1][0]$$[[q1q2]][[.01]][[.01]]$$##$$]]10.[[ ]]10.[[ ]]q2q1[[$$]]10.[[ ]]10.[[ ]]q2q1[[ .

The logical “bracketed” units are divided by a dotted line as a visual aid, since
the TR strings are made hard to read by their reversed brackets.

Next we define the shuffle complement with respect to a template.
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Definition 18. For all strings w, t ∈ Σ∗M , let comp(w, t) denote the shuffle
complement of w with respect to t, defined as

comp(w, t) = {x ∈ Σ∗M | t ∈ w � x}.

Example 5. comp([q1][0][.1], [[q1q2q3]][[.01]][[.01]]) = {[q2q3][.1][0]}.

A very small but important lemma follows.

Lemma 7. For any configuration c ∈ CM and configuration template T (as in
Definition 17) if it holds that |c|[ = 1

2 |T |[ then

1. comp(c, T ) = {c′} for some string c′, and

2. comp(c′, T ) = {c}.

Proof (sketch). If we have a configuration template string T as in Defini-
tion 17 and a configuration c, such that |c|[ = 1

2T[, then this means that T
and c have the same number of bracketed sections (T has each section double-
bracketed, [[.01]], c has each single-bracketed as in [.1]). As a consequence
comp(c, T ) = {c′} is a singleton. This is easy to see, by observing that the
interleaving of c can only ever pick one of the [ symbols in each [[ pair in T ,
since it needs to read a ] symbol before reading another left bracket. This forces
it to skip the other bracket in the pair, meaning that the bracketed sections will
match up one-to-one in the shuffle.

This in turn enforces that c′ will also have |c′|[ = 1
2 |T |[, and will have

similarly single-bracketed sections, containing the complement of those in c
with respect to the string .01. The same argument therefore establishes that
comp(c′, T ) = {c}. �

Next we define a deterministic linear context-free language which will encode
the steps a given NTM can make.

Definition 19. For an NTM M = (Q,∆) the step language for M , denoted
Lstep(M), is the smallest language that contains the string #, and all strings

c1 · $ · l · $ · cR2 , where l ∈ Lstep(M), c1, c2 ∈ CM , and c1
r−→ c2 for some r ∈ ∆.

Example 6. Let M = ({q1, q2}, {(q1, 0,→, q2, 1)}), then for example

[q1][.0][1][0]$#$]0[ ]1.[ ]1[ ]q2[ ∈ Lstep(M),

[q1][0][.0][0]$#$]0.[ ]1[ ]0[ ]q2[ ∈ Lstep(M),

[q1][.0][1][0]$[q1][.0][1][0]$#$]0[ ]1.[ ]1[ ]q2[$ ]0[ ]1.[ ]1[ ]q2[ ∈ Lstep(M).

It might not be immediately obvious that this language is both linear and de-
terministic, so let us look at how a deterministic linear push-down automaton
can accept it. An automaton for Lstep(M) can start by pushing the first half of
the string onto its stack, validating that it is in the regular language (CM · $)∗
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in the process. When it encounters # it switches to popping off the stack, while
popping c1 ∈ CM reading the reverse of c2 ∈ CM on the string, and immediately
rejecting unless c2 differs from c1 by exactly one rule application from ∆. The
automaton can achieve this by checking that c1 and c2 are equal in all positions
except the states and the immediate neighbourhoods of the . symbol, both of
which are constant-sized and can be remembered in the state of the automaton.
It then validates that these differences correspond to a rule in ∆.

Now we turn to the other DLCF language, which is responsible for linking
the computation steps by making copies of the complement of configurations.
It consists of strings of the form c̄1 · $ · c̄2 · · · c̄R2 · $ · c̄R1 where each c̄i is such
that {c̄i} = comp(c, T ) for some configuration c and configuration template T .
Compare the constructed strings to those in Example 5.

Definition 20. For an NTM M = (Q,∆) the inverted copy language for M ,
denoted Lcopy(M), is defined as Lcopy(M) = $ · L where L is in turn defined as
follows. First let

• Q̄i = [ ·Q(1) ·Q(2) · · ·Q(i− 1) ·Q(i+ 1) · · ·Q(|Q|) · ] for i ∈ [|Q|],

• U = {[.0], [.1], [0], [1]} · {[.0], [.1], [0], [1]}∗.

Then the strings in L are exactly the following. First, for all t ∈ U

#$ · (Q̄|Q| · t)R ∈ L.

Second, for all c̄ ∈ {Q̄i | i ∈ [|Q|]} · U , and l ∈ Lcopy(M)

c̄ · $ · l · $ · c̄R ∈ Lcopy(M).

Example 7. Let M = ({q1, q2, q3},∆), where q3 is the final (last) state. Then
among the strings in Lcopy(M) are

#$]0[ ]1.[ ]0.[ ]q2q1[ ,

[q1q3][.0][.1][1]$#$]0[ ]1.[ ]0.[ ]q2q1[$]1[ ]1.[ ]0.[ ]q3q1[ ,

[q2q3][1][.0]$[q1q3][.0][.1][1]$#$]0[ ]1.[ ]0.[ ]q2q1[$ ]1[ ]1.[ ]0.[ ]q3q1[$]0.[ ]1.[ ]q3q2[ .

It should be clear that this language is both deterministic and linear, the symbol
# marking the centre playing a key role. The argument is similar to the one in
the proof of Lemma 7, but slightly simpler, because no rules need to be taken
into account.

This only leaves us to assemble the pieces to prove the main result.

Theorem 9. Take any w ∈ {0, 1}∗, NTM M and function ψ : N → N. Then
M accepts w in ψ-bounded time if and only if S(M,ψ,w) ∈ Lstep(M)�Lcopy(M).

The proof of Theorem 9 is divided into Lemma 8 and Lemma 9; the first
showing the “only if” direction, the second the “if” direction.
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Lemma 8. Take any string α1 · · ·αn ∈ {0, 1}∗, NTM M = (Q,∆) and func-
tion ψ : N → N. If M accepts the string α1 · · ·αn in ψ-bounded time then
S(M,ψ, α1 · · ·αn) ∈ Lstep(M) � Lcopy(M).

Proof. Let c1, . . . , cψ(n)+1 ∈ CM be the sequence of configurations which
makes M accept α1 · · ·αn (so c1 = I(M,ψ, α1 · · ·αn) and cψ(n)+1 ∈ F (M)).
Then construct the string

wstep = c1 · $ · c2 · $ · · · $ · cψ(n) · $#$ · cRψ(n)+1 · $ · cRψ(n) · $ · · · $ · cR2 .

Notice that wstep ∈ Lstep(M) by construction. Now, for each i ∈ [ψ(n) + 1]
let {c̄i} = comp(ci, T ) where T is a configuration template as in Definition 17.
Recall that this complement is always a singleton. Now let

wcopy = $ · c̄2 · $ · c̄3 · $ · · · c̄ψ(n) · $#$ · c̄Rψ(n)+1 · $ · c̄Rψ(n) · · · $ · c̄R2 .

It is then straightforward to check that wcopy ∈ Lcopy(M) by construction.
As an abbreviation denote the template string S(M,ψ, α1 · · ·αn) by w. All

that remains is to show that w ∈ wstep � wcopy. To illustrate:

w = c1$$T $$· · ·$ T $$##$$ TR $· · ·$TR,
wstep = c1 $ c2 $ · · ·$cψ(n) $#$ cRψ(n)+1$· · ·$ cR2 ,
wcopy = $ c̄2 $ · · ·$c̄ψ(n) $#$ c̄Rψ(n)+1$· · ·$ c̄R2 .

w and wstep both start with c1, so cancel that bit. Next w contains two dollar
signs, one corresponds to the initial in wcopy and one the next symbol in wstep.
After that a T configuration template is next in w, c2 is next in wstep, and c̄2 is
next in wcopy. By construction T ∈ c2 � c̄2, leaving us again with $$ next in w
and a single $ next in the other strings, and so on through all of w. �

Lemma 9. Take any string α1 · · ·αn ∈ {0, 1}∗, NTM M = (Q,∆) and function
ψ : N→ N. If S(M,ψ, α1 · · ·αn) ∈ Lstep(M)�Lcopy(M) then M accepts α1 · · ·αn
in ψ-bounded time.

Proof. Let w = S(M,ψ, α1 · · ·αn), and let the strings wstep ∈ Lstep(M) and
wcopy ∈ Lcopy(M) such that w ∈ wstep �wcopy (the lemma assumes these exist).

No string in Lstep(M) ∪ Lcopy(M) has two $ symbols in a row, while every
$ occurrence in w consists of two $ symbols. This enforces that every such
$$ substring in w is divided up so that one belongs to wstep and one to wcopy

(so |wstep|$ = |wcopy|$ = 1
2 |w|$). Combining this with the way Lstep(M) and

Lcopy(M) are constructed it follows that the shuffling must have this structure

w = c1$$T $$· · ·$ T $$##$$ TR $· · ·$TR,
wstep = c1 $ c2 $ · · ·$cψ(n) $#$ dRψ(n)+1$· · ·$dR2 ,
wcopy = $ e2 $ · · ·$eψ(n) $#$ eRψ(n)+1$· · ·$eR2 ,

for some configurations c1, . . . , cψ(n), d2, . . . , dψ(n)+1 ∈ CM , and some strings
e2, . . . , eψ(n)+1. That is, the assumption that w ∈ wstep � wcopy does together
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with the placement of $ symbols imply that

T ∈ ci � ei for all i ∈ {2, . . . , ψ(n)}, (1)

T ∈ di � ei for all i ∈ {2, . . . , ψ(n) + 1}. (2)

The second is not reversed since TR ∈ dRi � eRi ⇐⇒ T ∈ di � ei. Next,
recall from Lemma 7 that comp(ci, T ) and comp(di, T ) are singletons for all
i ∈ {2, . . . , ψ(n)}. Equations 1 and 2 dictate that the string ei ∈ comp(ci, T )
and the string ei ∈ comp(di, T ), so comp(ci, T ) = comp(di, T ) = {ei}. Reversing
this (again by Lemma 7) yields comp(ei, T ) = {ci} = {di}, so ci = di. Let (the
previously undefined) cψ(n)+1 be equal to dψ(n)+1 as well. The construction of
Lstep(M) and Lcopy(M) dictates that

• ci → di+1, and therefore ci → ci+1, for all i ∈ [ψ(n)],

• c1 = I(M,ψ, α1 · · ·αn),

• comp(eψ(n)+1, T ) = {cψ(n)+1} ⊂ F (M) (since eψ(n)+1 does not contain
the final state by construction).

From this it follows that c1, . . . , cψ(n)+1 is a correct configuration sequence which
makes M accept α1 · · ·αn. �

It follows from Theorem 9 that the non-uniform membership problem for
the shuffle of DLCF languages is NP-complete.

Corollary 4. For an input string w it is an NP-complete problem to decide
whether or not w ∈ L� L′ when L and L′ are deterministic linear context-free
languages, even when L and L′ are fixed.

Proof. The problem is trivially in NP. Membership in context-free languages
can be decided in polynomial time, and we can, in polynomial time, guess any
w1 and w2 such that w = w1 � w2 and check if w1 ∈ L and w2 ∈ L′.

Hardness follows easily from Theorem 9. Pick any NTM M and polynomial
function ψ such that M runs in ψ-bounded time. This characterises NP by
definition. Fix the languages L = Lstep(M) and L′ = Lcopy(M). It is then
possible to check if M would accept an input string w in ψ-bounded time by
checking if S(M,ψ,w) ∈ L� L′. The reduction is polynomial since S(M,ψ,w)
produces a string that is of length O(ψ(|w|)2) and can, because of its exceedingly
simple structure, be constructed in time O(ψ(|w|)2). Thus, choosing M such
that it accepts an NP-complete language in polynomial time (e.g. a universal
NTM) concludes the proof. �

Corollary 5. Corollary 4 holds even for languages over an alphabet of size 3.

Proof sketch. We use the alphabet {0, [, ]} and use the 0 symbol to encode
all other symbols in unary. To start with, let 1 be written as 00 and . as 0000
(changing the template bit [[.01]] into [[0000000]]). For example, if one automa-
ton reads [00000], corresponding to [.0] (or [0.], but the order is irrelevant), then
the remaining subsequence is [00], correctly corresponding to [1].
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Now $$ can be represented as [[016]] (i.e. 16 zeroes with brackets around),
with each language reading $ as [08]. Similarly ## can be represented as [[032]],
each language reading # as [016]. Notice that these are sufficiently long that
they cannot be divided into subsequences that allow them to be confused with
any other case.

Finally, the state vector part of the template, [[q1q2 · · · ]], can be replaced
by |Q| “bits”, [[000]][[000]] · · · [[000]]. The step language reads [00] (representing
“1”) in the ith position if qi is the current state, and [0] in all other positions,
and the copy language copies the remainder as usual. �

6. Conclusions and Future Work

Concurrent finite-state automata combine the expressive power of context-
free and shuffle languages. The CFSA languages are properly included in the
context-sensitive languages, and minor restrictions of the device suffice to obtain
the regular, context-free, and shuffle languages. CFSA have comparatively nice
closure properties, and can be checked for emptiness in polynomial time.

It remains the case, however, that the computational complexity of the mem-
bership problem for a formalism is of critical importance in practical applica-
tions. This paper demonstrates the non-uniform membership problem NP-hard
for a quite restricted CFSA (of the form DLCF � DLCF). This may appear
daunting, but many possibilities remain for deriving new language classes from
CFSA that allow for more efficient parsing, both through syntactic and se-
mantic restrictions. It is also not unexpected that finding efficiently decidable
membership problems is difficult. This paper demonstrates that the efficiency
of deciding membership for the shuffle languages relies heavily on using only
a limited number of shuffle operations. On the other hand, the non-uniform
membership problem for the shuffle of a shuffle language and a context-free
language can be decided in polynomial time. Considering the difficulty of the
membership problem for very restricted CFSA it is also positive to find that
the general uniform membership problem for CFSA is just NP-complete. For
the shuffle of a regular language and a context-free language even the uniform
membership problem is polynomial.

Future work will strive to determine the complexity of the non-uniform mem-
bership problem for further restrictions of CFSA. For example unordered shuffle
could be considered, or perhaps the class of languages that a CFSA could gen-
erate if at most one path in the configuration tree may exceed a constant depth
at a time, or even cases where the CFSA is forced to encode some informa-
tion about the shuffling choices in the string. In the other direction, to better
understand the boundary where the membership problem turns NP-hard, the
construction used to demonstrate that the membership problem for the shuffle of
two deterministic linear context-free languages should be possible to extend (to,
e.g., visibly pushdown languages [1]). Success in this direction will, hopefully,
give a better understanding of what properties of a CFSA need to be restricted
to get an efficient membership problem while still giving rise to a powerful class
of languages.
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[24] Gómez, A.C., Pin, J.E.: Shuffle on positive varieties of languages. Theo-
retical Computer Science 312 (2004) 433–461

[25] Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and reg-
ular expression size. In: Proc. International Colloquium on Automata,
Languages and Programming, Springer (2008)

[26] Haines, L.H.: On free monoids partially ordered by embedding. Journal of
combinatorial theory (6) (1968) 94–98

97



[27] Han, Y.S., Salomaa, K., Wood, D.: Operational state complexity of prefix-
free regular languages. In: Proc. Automata, Formal Languages, and Re-
lated Topics. (2009) 99–115

[28] Haussler, D., Zeiger, H.P.: Very special languages and representations of
recursively enumerable languages via computation histories. Information
and Control 47(3) (1980) 201 – 212
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Abstract

We study the complexity of uniform mem-
bership for Linear Context-Free Rewriting
Systems, i.e., the problem where we are
given a string w and a grammar G and are
asked whether w ∈ L(G). In particular,
we use parameterized complexity theory
to investigate how the complexity depends
on various parameters. While we focus
primarily on rank and fan-out, derivation
length is also considered.

1 Introduction

Linear Context-Free Rewriting Systems (LCFRS)
were introduced by Vijay-Shanker et al. (1987)
with the purpose of capturing the syntax of nat-
ural language.1 It is one of several suggested ways
of capturing Joshi’s concept of mildly context-
sensitive languages (Joshi, 1985). As such, it
strengthens the expressive power of context-free
grammars, while avoiding the full computational
complexity of context-sensitive grammars.

One of the defining features of mildly context-
sensitive languages is that they should be decid-
able in polynomial time. This is indeed true for ev-
ery language that can be generated by an LCFRS.
Unlike the case for context-free grammars, how-
ever, the universal or uniform membership prob-
lem for LCFRSs, where both the grammar and
the string in question are considered as input, is
known to be PSPACE-complete (Kaji et al., 1992),
making a polynomial time solution very improba-
ble.

The best known algorithms for the problem
have a running time of O(|G| · |w|f ·(r+1)), where
G is the grammar, w is the string, f is the fan-out
and r is the rank of the grammar (Seki et al., 1991;
Burden and Ljunglöf, 2005; Boullier, 2004). (For

1Seki et al. (1991) independently suggested the nearly
identical Multiple Context-Free Grammars.

a definition of fan-out and rank, see Section 2.)
Unlike the rank of a context-free grammar, the fan-
out and rank of an LCFRS cannot in general be re-
duced to some fixed constant. Increasing the fan-
out always gives more generative power, as does
increasing the rank while keeping the fan-out fixed
(Satta, 1998). The rank can be reduced to two, but
at the price of an exponential increase in the fan-
out.

Research into algorithms for LCFRS parsing
that are efficient enough for practical use is quite
active. For example, algorithms for restricted
cases are being studied, e.g., by Gómez-Rodrı́guez
et al. (2010), as well as rank reduction, primarily
in special cases, where the fan-out is not affected;
see, e.g., Sagot and Satta (2010).

This article is a first step towards a finer com-
putational complexity analysis of the membership
problem for LCFRSs. Specifically it asks the
question “could there exist an algorithm for the
uniform LCFRS membership problem whose run-
ning time is a fixed polynomial in |w| times an ar-
bitrary function in f and r?” By employing pa-
rameterized complexity theory, we show that such
an algorithm is very unlikely to be found. Fix-
ing the rank of the grammar to one, the mem-
bership problem, parameterized by the fan-out, is
W[SAT]-hard. Fixing the fan-out to two and tak-
ing the rank as the parameter, the problem is W[1]-
hard. Finally, if the fan-out, rank, and derivation
length are included in the parameter, the problem
is W[1]-complete. These results help guide future
work, suggesting other types of parameters and
grammar restrictions that may yield more favor-
able complexity results.

2 Preliminaries

For n ∈ N, we write [n] for {1, . . . , n} and [n]0
for {0} ∪ [n]. Given an alphabet Σ we write Σ∗

for all strings over Σ and Σ+ for all non-empty
strings. The empty string is denoted by ε.
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2.1 Linear context-free rewriting systems
Let Σ be an alphabet, x1, . . . , xn variables, and
w1, . . . , wk strings over Σ such that

w1 · · ·wk = α0 · xπ(1) · α1 · · ·xπ(n) · αn
for some permutation π and some strings
α0, . . . , αn ∈ Σ∗. Then define f as a function
over tuples of strings such that

f((x1, . . .), . . . , (. . . , xn)) = (w1, . . . , wk).

A function is linear regular if and only if it
can be described in this way. For example
f((x1), (x2)) = (a, bx2x1c) is linear regular, and
f((aaa), (bc)) = (a, bbcaaac).
Definition 2.1. A Linear Context-Free Rewriting
System is a tupleG = (N,Σ, F,R, S), whereN is
an alphabet of nonterminals, where each A ∈ N
has an associated fan-out #(A); S ∈ N is the
initial nonterminal with #(S) = 1; Σ is an al-
phabet of terminals; F is a set of linear regu-
lar functions; and R is a set of rules of the form
A → g(B1, . . . , Bn), where A,B1, . . . , Bn ∈ N
and g is a function in F of type

(Σ∗)#(B1) × · · · × (Σ∗)#(Bn) → (Σ∗)#(A).

For rules A → g(), where g has arity 0 and
g() = (α1, . . . , α#(A)), we often simply write
A→ (α1, . . . , α#(A)).

The rank of a rule is the number of nontermi-
nals on the right-hand side. The rank of G is the
maximal rank of any rule in R. The fan-out of G
is the maximal fan-out of any nonterminal in N .

The language generated by a nonterminal A is a
set of n-tuples, where n = #(A).
Definition 2.2. Let G = (N,Σ, F,R, S) be
a linear context-free rewriting system. Let
LA ⊆ (Σ∗)#(A) denote the tuples that a nontermi-
nal A ∈ N can generate. This is the smallest set
such that if A → f(B1, . . . , Bn) is in R then, for
all bi ∈ LBi where i ∈ [n], f(b1, . . . , bn) ∈ LA.
The language of G is L(G) = LS .

For i ∈ N, we write i-LCFRS for the class of
all LCFRSs of rank at most i and LCFRS(i) for
the class of all LCFRSs of fan-out at most i. We
also write i-LCFRS(j) for i-LCFRS∩LCFRS(j).

2.2 Parameterized complexity theory
We only reproduce the most central definitions of
parameterized complexity theory. For a more thor-
ough treatment, we refer the reader to (Downey
and Fellows, 1999; Flum and Grohe, 2006).

A parameterized problem is a language
L ⊆ Σ∗ × N, where Σ is a finite alphabet. The
second component is called the parameter. An al-
gorithm for L is fixed-parameter tractable if there
is a computable function f and a polynomial p
such that for every (x, k) ∈ Σ∗×N, the algorithm
decides in time f(k) · p(|x|) whether (x, k) ∈ L.
The problem of deciding L is fixed-parameter
tractable if there is such an algorithm. If so, L
belongs to the class FPT.

A parameterized problem L ⊆ Σ∗ × N
is fpt-reducible to another parameterized prob-
lem K ⊆ Γ∗ × N if there is a mapping
R : Σ∗ × N→ Γ∗ × N such that

1. for all (x, k) ∈ Σ∗ × N, we have (x, k) ∈ L
if and only if R(x, k) ∈ K,

2. there is a computable function f and a poly-
nomial p such that R(x, k) can be computed
in time f(k) · p(|x|), and

3. there is a computable function g such that for
every (x, k) ∈ Σ∗ × N, if R(x, k) = (y, k′),
then k′ ≤ g(k).

Note that several parameters may be combined
into one by taking their maximum (or sum).

The most commonly used hierarchy of parame-
terized complexity classes is the following.

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆
⊆W[SAT] ⊆W[P] ⊆ XP

The classes W[1],. . . ,W[P] are defined using cir-
cuits or, alternatively, logic. None of the inclu-
sions is known to be strict, except that FPT is a
strict subclass of XP. It is widely believed, how-
ever, that each of them is strict. The class XP is
the class of all parameterized problems for which
there is a computable function f such that every
instance (x, k) can be decided in time |x|f(k).

2.3 Problems of interest

We know from Kaji et al. (1992) that the universal
membership problem for 1-LCFRSs is PSPACE-
complete. Satta (1992) has further shown that
LCFRS(2)-MEMBERSHIP is NP-hard.

We study the following decision problems,
where the symbol P is used to indicate what the
parameter is:

• P-LCFRS(j)-MEMBERSHIP, where j ∈ N
is the membership problem for LCFRS(j),
parameterized by the rank.
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• i-LCFRS(P)-MEMBERSHIP, where i ∈ N
is the membership problem for i-LCFRS, pa-
rameterized by the fan-out.
• P-LCFRS(P)-MEMBERSHIP is the mem-

bership problem for LCFRS parameterized
by the rank and the fan-out.
• SHORT P-LCFRS(P)-DERIVATION is the

membership problem for LCFRS parameter-
ized by the rank, the fan-out, and the deriva-
tion length.

Since there are algorithms that solve the member-
ship problem for LCFRSs with rank r and fan-out
t and string w in time |w|(r+1)t (see, e.g., (Seki
et al., 1991; Burden and Ljunglöf, 2005; Boul-
lier, 2004)), we can immediately conclude that
P-LCFRS(P)-MEMBERSHIP, as well as every
other parameterized membership problem men-
tioned above, belongs to XP.

3 Fixed rank grammars

The following theorem establishes a lower bound
for 1-LCFRSs parameterized by the fan-out.

Theorem 3.1. 1-LCFRS(P)-MEMBERSHIP is
W[SAT]-hard.

The proof of Theorem 3.1 is by reduction from
WEIGHTED MONOTONE SATISFIABILITY. Be-
fore we get into the actual proof, we discuss some
properties of this problem.

Definition 3.1. A monotone Boolean formula is a
Boolean formula that contains only conjunctions,
disjunctions, and variables. In particular, there are
no negations. An instance of WEIGHTED MONO-
TONE SATISFIABILITY is a pair (φ, k), where φ
is a monotone Boolean formula and k ∈ N. The
question is whether φ has a satisfying assignment
of weight k, i.e., an assignment that sets exactly
k of the variables that occur in φ to true. The pa-
rameter is k. WEIGHTED MONOTONE SATISFIA-
BILITY is W[SAT]-complete (Abrahamson et al.,
1993; Abrahamson et al., 1995; Downey and Fel-
lows, 1999).

We can view a monotone Boolean formula φ
as an unranked tree, where the root node corre-
sponds to the top level clause and the leaves corre-
spond to bottom level clauses, i.e., variable occur-
rences. The set pos(φ) of positions of φ is defined
as usual, consisting of strings of natural numbers
that indicate how to navigate to the clauses in a
tree representation of φ. We denote each subclause
of φ by Cs, where s ∈ pos(φ) is its position. Thus

φ = (((x1 ∧ (x2 ∨ x3)) ∨ x3 ∨ (x3 ∧ x4))∧
∧x2 ∧ ((x1 ∧ (x2 ∨ x4)) ∨ (x1 ∧ x3)))

Cε

C1

C11
C111

C112
C1121

C1122
C12

C13
C131

C132

C2

C3

C31
C311

C312
C3121

C3122

C32
C321

C322

Figure 1: A formula φ and its tree representa-
tion. Conjunctive clauses are round and disjunc-
tive rectangular. For example, C111 is the leftmost
occurrence of x1 and C13 the clause (x3 ∧ x4).

Cε denotes the whole of φ, while, e.g., Cijl is the
lth clause of the jth clause of the ith clause of φ.
See Figure 1 for an example. We use C for the set
of all clauses of φ and C∧, C∨, and CVar for the
sets of conjunctive, disjunctive, and bottom level
clauses, respectively. For all c ∈ CVar let Var(c)
denote the variable in c, and let Var(φ) denote the
set of all variables in φ.

Given a monotone Boolean formula φ and a
variable assignment ρ : Var(φ) → B, we de-
fine a verification tour for φ and ρ. Such a tour
moves through the tree representation of φ, start-
ing at the root node, and verifies that ρ satis-
fies φ. To this end, we first define the function
Next : pos(φ) → pos(φ) ∪ {True} as follows.
For the root clause let Next(ε) = True . For all
si ∈ pos(φ), where s ∈ N∗ and i ∈ N, if Cs ∈ C∧
and s(i + 1) ∈ pos(φ) let Next(si) = s(i + 1),
otherwise let Next(si) = Next(s).

A verification tour over φ, given a variable as-
signment ρ is constructed by the following proce-
dure. Set the initial position p = ε, then
• If Cp ∈ C∧ set p ← p1 (i.e., go to the first

subclause).
• If Cp ∈ C∨ set p ← pi for any i (i.e. non-

deterministically pick a subclause).
• IfCp ∈ CVar verify that ρ(Var(Cp)) = true .

If so, set p ← Next(p) and repeat. Other-
wise, the verification tour fails.

A verification tour succeeds if it reaches True .
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The following lemma can be proved by straight-
forward induction on the structure of φ.

Lemma 3.2. If a verification tour for φ and vari-
able assignment ρ succeeds, then ρ satisfies φ.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let (φ, k) be an instance of
WEIGHTED MONOTONE SATISFIABILITY. Let
{x1, . . . , xn} be the variables that appear in φ. In
particular, n is the number of distinct variables.
Let m be the number of bottom level clauses.

Intuitively, the LCFRS we will construct will
guess a weight k variable assignment ρ and then
simulate a verification tour for φ and ρ.

Basically, we will use one nonterminal per
clause and use the structure of the grammar to sim-
ulate a verification tour. In order to verify that the
necessary bottom level clauses can all be satisfied
through the same k true variables, we will use the
input string to be parsed. The string w will con-
sist of bracketed sequences of m copies of each of
the n variables, i.e., w = [xm1 ] · · · [xmn ]. To un-
derstand the construction of the grammar, please
keep in mind that the only derivations that matter
are those generating this particular input string.

The grammar will guess which k variables
should be set to true and disregard the other vari-
ables. Technically, this is done by first letting a
nonterminal F generate a tuple of k + 1 strings
s0, . . . , sk such that each si consists of zero or
more of the bracketed sequences of variables to
be disregarded. The rest of the grammar generates
exactly k bracketed sequences that will be inter-
leaved with s0, . . . , sk. During the generation of
these k bracketed sequences it is nondeterministi-
cally verified that the corresponding truth assign-
ment satisfies φ.

We use the following set of nonterminals:

{S, F} ∪ {Cs | s ∈ pos(φ) ∪ {True}}

For S, there is only one rule: S → fS(F ). The
function fS places brackets around the k vari-
ables that are guessed to be true, represented by
the strings t1, . . . , tk, and interleaves them with
the remaining variables, represented by the strings
s0, . . . , sk:

fS(s0, . . . , sk, t1, . . . , tk) = (s0[t1]s1 · · · [tk]sk)

The nonterminal F has rules F → fF,i,j(F ) for
all i ∈ [n] and j ∈ [k]0. These rules produce the
bracketed sequences of copies of the variables xi

to be disregarded, as can be seen from the corre-
sponding function:

fF,i,j(s0, . . . , sk, t1, . . . , tk) =

(s0, . . . , sj [x
m
i ], . . . , sk, t1, . . . , tk)

Moreover, there is a single rule

F → fF (Cε)

with

fF (t1, . . . , tk) = (ε, . . . , ε, t1, . . . , tk)

The rules for the nonterminals that represent
clauses differ according to the type of the clause,
i.e., if the nonterminal represents a conjunctive
clause, a disjunctive clause, or a variable. For each
conjunctive clause Cs there is exactly one rule,
representing a move to its first subclause. Here,
fid is the identity function.

Cs → fid (Cs1)

For every disjunctive clause Cs and every i such
that Csi is a subclause of Cs there is one rule.

Cs → fid (Csi)

For every bottom level clause, i.e., Cs ∈ CVar ,
every i ∈ [k] and every j ∈ [m] there is one rule.

Cs → fs,i,j(CNext(s))

Intuitively, such a rule corresponds to producing j
copies of the variable of clause Cs in component i
of the tuple and moving on to the next clause that
should be visited in a verification tour. This can be
seen from the corresponding function.

fs,i,j(t1, . . . , tk) = (t1, . . . ,Var(Cs)
jti, . . . , tk)

The reason that the function produces j copies of
the variable, rather than just one, is that it is un-
known beforehand how many times a bottom level
clause that represents that particular variable will
be visited. Thus the number of copies to be pro-
duced has to be guessed nondeterministically in
order to make sure that a total of m copies of each
variable set to true are eventually produced.

If there is a weight k satisfying assignment,
there will also be a verification tour that even-
tually reaches True when Next is called (by
Lemma 3.2). The single rule forCTrue simply pro-
duces a k-tuple of empty strings.
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The reduction is polynomial and the fan-out of
the resulting grammar is 2k+1. Thus it is an FPT-
reduction. It remains to argue that the grammar
can produce w if and only if φ has a satisfying
assignment of weight k.

We first note that whatever tuple is derived from
F , the first k + 1 entries in the tuple consist of
bracketed sequences of the form [xml ]. If the
grammar can produce w, it follows that the tuple
(t1, . . . , tk) produced from Cε must be such that
each ti equalsm copies of the same variable name.

Any successful derivation of a string by the
grammar corresponds to a verification tour of φ
and the variable assignment that sets the variables
that appear in (t1, . . . , tk) to true and all other vari-
ables to false. Thus φ has a satisfying assignment
of weight k.

For the other direction, assume that φ has a sat-
isfying assignment of weight k. Then the grammar
can guess this assignment and a corresponding
successful verification tour, thus producingw.

Note that Theorem 3.1 can easily be strength-
ened to grammars with a binary terminal alphabet.
It is enough to represent each variable name by
a bitstring of length dlog2(m)e in the above re-
duction. We also note that Theorem 3.1 immedi-
ately implies that P-LCFRS(P)-MEMBERSHIP

is W[SAT]-hard.

4 Fixed fan-out grammars

We next turn to the case where the fan-out is fixed
to two, while the rank is treated as a parameter.

Theorem 4.1. P-LCFRS(2)-MEMBERSHIP is
W[1]-hard.

Proof. We reduce from k-CLIQUE, the problem of
deciding whether a given graph has a clique of size
k, with k as the parameter. This problem is known
to be W[1]-complete (Flum and Grohe, 2006). Let
G = (V,E) be an undirected graph. We assume,
without loss of generality, that V = {1, . . . , n}
and that an edge connecting nodes i, j ∈ V is rep-
resented as the ordered pair (i, j) such that i < j,
i.e., E ⊆ {(i, j) ∈ V × V | i < j}. To find out
whether G has a clique of size k we construct an
instance of the membership problem for LCFRSs.

The input alphabet is Σ = {0, 1}. Construct the
input string as

w = 0n10n10n1 · · · 10n︸ ︷︷ ︸
(3k + 2)(k − 1)/2 ones

.

The nonterminals are N = {A,E,C, S}, with S
being the initial nonterminal. The rules are the fol-
lowing.
{A→ 0i | i ∈ {1, . . . , n}}.
{E → 0n−i10n−j | (i, j) ∈ E}.
{C → (0i, 0n−i10i) | i ∈ {1, . . . , n}}.
Handling S is a bit more complex. Let

φ = k(k−1)/2, the number of edges in a k-clique.
Then the unique rule for S is:

S → f(E, . . . , E︸ ︷︷ ︸
φ

, C, . . . , C︸ ︷︷ ︸
2φ

, A, . . . , A︸ ︷︷ ︸
2k

).

Now we need to define f . Consider the following
application of f .

f(e1, . . . , eφ, (c1, ĉ1), . . . , (cφ, ĉφ),

(d1, d̂1), . . . , (dφ, d̂φ), a1, . . . , a2k).

The application above evaluates to the string

c1e1d11c2e2d21 · · ·
· · · 1cφeφdφ1a1θ1a21a3θ2a41s1a2k−1θka2k.

The substrings θ1 through θk are left to be de-
fined, and will contain all the ĉ and d̂ arguments
in a careful configuration derived from the struc-
ture of a clique. Let (π1, π

′
1), . . . , (πφ, π

′
φ) be the

lexicographically sorted sequence of edges in a
k-clique with nodes numbered 1 through k. For
example, (π1, π

′
1) = (1, 2), (π2, π

′
2) = (1, 3),

(πk, π
′
k) = (2, 3), and (πφ, π

′
φ) = (k − 1, k).

Then, for each l, find the longest subsequences
i1, . . . , ip and j1, . . . , jq of 1, . . . , φ for which
πi1 = · · · = πip = l and π′j1 = · · · = πjq = l, and
let θl = ĉi1 · · · ĉip d̂j1 · · · d̂jq .

This construction is simpler than it may at first
appear. Basically, the clique is found by generat-
ing k(k− 1)/2 copies of E, each of which will be
placed so that it has no choice but to generate an
edge in a k-clique. Looking at the first part of the
string, each 1cleldl1 must generate a string of the
form 10n10n1: el will generate some 0n−i10n−j ,
were (i, j) is an edge in G, which forces cl to gen-
erate 0i and dl to generate 0j . The trick is that cl
and dl yield the first string in a pair generated by
an instance of C. The other string in the pair de-
scribes the same number as the first, but in such
a way that it can be carefully placed in the lat-
ter part of the derivation string, thus forcing other
instances of the C nonterminal to pick the same
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node (number of zeros) to generate. These are
then placed in such a way that the edges picked by
the instances of E all belong to the same clique.
For example, for k = 3 the result of f will
be c1e1d11c2e2d21c3e3d31a1c1c2a21c3d11d2d3,
where the latter part ensures that c1 and c2 have
to pick the same node (lowest-numbered node in
the clique), as do c3 and d1, and d2 and d3.

5 Short derivations

In this section, we consider the length of deriva-
tions as an additional parameter. As usual, the
length of a derivation is the number of derivation
steps it consists of. (In a derivation of an LCFRS
(N,Σ, F,R, S), this is the same as the number of
applications of functions in F .)

Let G = (N,Σ, F,R, S) be an LCFRS in the
following. Consider the following problem:

Definition 5.1. An instance of the SHORT P-
LCFRS(P) DERIVATION problem consists of a
LCFRS G, some w ∈ Σ∗ and a constant d ∈ N.
The question asked is: can w be derived by G in
at most d steps? The parameter is k = d + r + f
where r is the maximum rank and f the maximum
fanout.

Lemma 5.1. SHORT P-LCFRS(P) DERIVA-
TION is W[1]-hard.

Proof. The W[1]-hardness of the problem follows
immediately from the reduction in the proof of
Theorem 4.1, since k-Clique is reduced to an in-
stance of LCFRS membership with O(k2) deriva-
tion steps, rank O(k2), and fixed fan-out.

We next demonstrate that SHORT P-
LCFRS(P) DERIVATION is in W[1] (and is
therefore W[1]-complete) by reducing to SHORT

CONTEXT-SENSITIVE DERIVATION, shown to
be W[1]-complete by Downey et al. (1994).
Let H = (NH ,ΣH , RH , SH) be an arbitrary
context-sensitive grammar in the following. A
context-sensitive grammar has nonterminals,
terminals and a starting nonterminal just like a
LCFRS, but the rules are of the form α → β for
strings α, β ∈ (ΣH ∪NH)∗ where 0 < |α| ≤ |β|.
A derivation starts with the string SH . A string
w · α · w′ can be turned into w · β · w′ in one
derivation step if (α, β) ∈ RH .

Definition 5.2. An instance of the SHORT

CONTEXT-SENSITIVE DERIVATION problem
consists of a context-sensitive grammar H , a

string w ∈ Σ∗H , and a constant dH ∈ N. The
question is: can w be derived by H in at most dH
steps? The parameter is dH .

We are now ready to prove membership in W[1]
by a FPT-reduction from (G,w, d) to (H,w, dH).

Lemma 5.2. The SHORT P-LCFRS(P)
DERIVATION problem is in W[1].

Proof. We can restrict ourselves to the case where
no nonterminal appears twice in a right-hand side
of any rule in G. This is because, e.g., a rule
of the form A → f(B,B) can be turned into
A → f(B,B′), using a fresh copy B′ of B that
has the same rules asB (except for having the left-
hand side B′ rather than B). Note that this modifi-
cation does not affect the parameter, and increases
the size of the grammar only polynomially.

The complete reduction is somewhat lengthy,
but the core intuition is very simple. The string
is kept the same, and a context-sensitive gram-
mar H is constructed such that L(H) = L(G).
H simulates G by maintaining a string serializa-
tion of the current “configuration” of G, walking
through the whole string rewriting the appropriate
non-terminal for every rule application in G. A
configuration of G can be viewed in this way,

aa • b • • • b • ba

A B A

where the derivation has, so far, generated some
terminal symbols (the lower-case letters), two in-
stances of the non-terminal A and one instance of
B. The configuration keeps track of where the
symbols generated by the non-terminals should
go in the string, so #(A) = 2, #(B) = 1,
and if (c, d) ∈ LA and e ∈ LB this derivation
can generate the final string aacbeddbcba. These
intermediary configurations are in H serialized
into strings of nonterminals, with a “nonterminal
marker” symbol in each position where a non-
terminal is referred to (i.e., H generates a symbol
stating “the ith string generated by instance j of
the nonterminal A goes here”). H then operates
like a Turing machine. A special nonterminal, the
rewriting head, picks a rule from G to apply, and
walks through the string replacing the nonterminal
markers that are affected by that rule. This proce-
dure is then repeated d times.

We start by illustrating the principles of the re-
duction by an example. Consider the grammar
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�Pr1,1→2XS,1,1� =⇒ �XA,1,2XA,2,2Pr1,1→2� =⇒ �XA,1,2XA,2,2R� =⇒ �XA,1,2RXA,2,2� =⇒
�RXA,1,2XA,2,2� =⇒ �Pr2,2→3XA,1,2XA,2,2�

∗
=⇒ �XA,1,3XB,1,3XA,2,3B2,3R�

∗
=⇒

�Pr2,3→4XA,1,3XB,1,3XA,2,3XB,2,3�
∗

=⇒ �XA,1,4XB,1,4XB,1,3XA,2,3XB,2,4XB,2,3R�
∗

=⇒
�Pr6,3→1XA,1,4XB,1,4XB,1,3XA,2,3XB,2,4XB,2,3�

∗
=⇒ �Pr3,4→1XA,1,4XB,1,4bXA,2,3XB,2,4b�

∗
=⇒

�Pr5,4→1aXB,1,4baXB,2,4b�
∗

=⇒ �aabaabR�
∗

=⇒ aabaab

Figure 2: A derivation in the context-sensitive grammar constructed to simulate an LCFRS. All steps in
the application of the first rule, r1 = S → f(A), are given, the rest is abbreviated.

G = ({S,A,B}, {a, b}, F,R, S) where F is

{f(x, y) = xy, ha() = (a, a), hb() = (b, b),
g((x, y), (x′, y′)) = (xx′, yy′)},

and R contains the following

r1 = S → f(A) r2 = A→ g(A,B)
r3 = A→ ha() r4 = A→ hb()
r5 = B → ha() r6 = B → hb()

Notice that L(G) = {ww | w ∈ {a, b}+}. We
now describe how H is constructed by the reduc-
tion, after which the more general description fol-
lows. A derivation in G starts with the nontermi-
nal S and must then apply r1. H is constructed
to start with the string �Pr1,1→2XS,1,1� (all these
symbols are nonterminals, H has the same termi-
nal alphabet as G). The symbols � and � mark
the beginning and end of the string. The nonter-
minal XS,1,1 is a “nonterminal marker” and de-
notes the location where the first string generated
by instance 1 of the nonterminal S is to be placed.
Since #(S) = 1 the first string is the only string
generated from S. The last subscript, the instance
number, is there to differentiate markers belong-
ing to different instances of the same nonterminal.
The rewriting head non-deterministically picks an
instance number for a round of rewriting (single
rule application) from a pool sufficiently large to
differentiate between the maximal number of non-
terminals (since the rank of G is at most k, no
more than k2 nonterminals can be generated in k
rule applications). Pr1,1→2 is the “rewriting head”,
the anchor for rule applications. The subscripts on
P determines that it will apply the rule r1, rewrit-
ing nonterminal markers corresponding to the left
hand side nonterminal of r1 which have instance
number 1. Applying the rule may create new non-
terminal markers, all of which get the instance
number 2, also determined by the subscript.

That is, the rules for Pr1,i→j in H will
be Pr1,i→jXS,1,i → XA,1,jXA,2,jPr1,i→j , for

i, j ∈ [2k2], and Pr1,i→jx → xPr1,i→j for all
other x 6= �. Pr5,i→jXB,1,i → aPr5,i→j is an-
other example of a rule corresponding to rule r5
of G. When a rewriting head hits � it is replaced
by a nonterminal R which reverses through the
string (with rules of the form xR → Rx for all
x 6= �), after which a new rewriting head is non-
deterministically picked using one of the rules in
{�R → �Pr,i→j | r ∈ R, i, j ∈ [2k2]}, after
which the string is rewritten once more. Finally,
there are rules � → ε, � → ε and R → ε, to
remove all nonterminals once rewriting has termi-
nated. A derivation is demonstrated in Figure 2.

By induction on the length of derivations, one
can show that L(H) = L(G). Now we need to
modify the construction slightly to ensure that H
can simulate d steps of G in dH steps.

Limiting steps in G. Construct a SHORT

P-LCFRS(P) DERIVATION instance (G′, w, d)
from (G,w, d) whereG′ is such that it cannot per-
form more than d derivation steps. Let

N ′ = {Ai | A ∈ N, i ∈ [d]},

and let

Ai → f(Bj1 , Cj2 , . . .) ∈ R′

for all A → f(B,C, . . .) ∈ R, i ∈ [d] and
j1 + j2 + · · · = i− 1. Then G′ = (N ′,Σ, R′, S1).
This reduction is somewhat heavy-handed, but is
in FPT since it leaves k unchanged and each rule
is replaced by less than kk rules (since d and the
rank of the grammar are part of the parameter k).

Deferring terminals. A problem in completing
the reduction from (G,w, d) to (H,w, dH) is that
the number of terminal symbolsG generates is not
in its parameter k. For example, G may contain
a rule like A → a · · · a, for an arbitrary num-
ber of as. Applying this rule may make the in-
termediary string H is operating on too long for
it to complete rewriting in dH steps. This can
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easily be fixed by a polynomial-time rewriting of
H . For any rule w → w′ in H such that w′ con-
tains at least one terminal, replace every maximal
substring α ∈ Σ∗ by a new nonterminal Tα, a
“terminal place-holder”.The rewriting head P and
reversal nonterminal R just walk over the place-
holders without changing them. Now add the rule
Tα → α for each Tα. For example, where a
rewriting head inH might have replacedXA,1,1 by
abcXB,1,1baXB,2,1cc it will now instead replace it
by TabcXB,1,1TbaXB,2,1Tcc, and can defer replac-
ing the place-holder nonterminals until the end.

Completing the reduction. Now we are ready
to put all the pieces together. Given the SHORT

P-LCFRS(P) DERIVATION instance (G,w, d),
apply the limiting steps reduction to construct
(G′, w, d′). Apply the rewriting construction to
G to get the context-sensitive grammar H . Now
L(H) equals the language G can generate in d
steps. Apply the deferring terminals construction
to H to get H ′. All that remains is to calcu-
late dH , the number of steps that H ′ may take.
For an FPT-reduction this number may only de-
pend on the parameter k of (G′, w, d′). Picking
dH = k5+103 is sufficient. Each rule inG′ gener-
ates less than k nonterminals (since the maximum
rank is at most k), each of which will generate
at most k markers in the derivation in H ′ (since
the fanout is at most k). The rule may in addi-
tion generate (k + 1)k terminal place-holders (the
k2 nonterminal markers and string ends separating
maximal terminal substrings). After k rule appli-
cations, without replacing terminal placeholders,
the intermediary string in a derivation in H is less
than k(k2+(k+1)k)+3 symbols long. Simulating
a rule application in H ′ entails walking the string
twice (forward and then reversing), and k rules are
applied, giving 2k(k(k2+(k+1)k)+3) steps. An-
other k(k+ 1) + 3 steps at the end replace the ter-
minal place-holders and remove markers and the
rewriting head. Adding things up we arrive at a
polynomial of degree 4 that can be rounded up to
k5 + 103.

Theorem 5.3. SHORT P-LCFRS(P) DERIVA-
TION is W[1]-hard.

Proof. This combines Lemmas 5.1 and 5.2.

The result of Theorem 5.3 also trivially applies
to another natural choice of parameters, the depth

of acyclic LCFRS, since they can naturally only
take a limited number of derivation steps.
Definition 5.3. A LCFRS is acyclic of depth d if d
is the smallest integer such that there is a function
φ : N → [d] such that for all A→ f(B1, . . . , Bn)
in R and i ∈ [n] it holds that φ(A) < φ(Bi).
Corollary. The membership problem for acyclic
LCFRS where the rank, fan-out, and depth are
taken as the parameter is W[1]-complete.

6 Discussion

We have shown that the 1-LCFRS(P)-
MEMBERSHIP problem is W[SAT]-hard, but
we have no upper bound, except for the trivial
XP membership. A conjecture of Pietrzak (2003)
may help explain the difficulty of finding such
an upper bound. It states that any parameterized
problem that has a property that Pietrzak calls
additive is either in FPT or not in W[P]. Basically,
additivity says that any number of instances,
sharing a parameter value, can in polynomial time
be combined into one big instance, with the same
parameter. While 1-LCFRS(P)-MEMBERSHIP

is not additive, it has subproblems that are. This
means that if Pietrzak’s conjecture is true (and
FPT 6= W[P]), then 1-LCFRS(P)-MEMBERSHIP

cannot belong to W[P].
While our results are mostly intractability re-

sults, we see them as a first step towards a more
finely grained understanding of the complexity of
LCFRS parsing. Ruling out simple parameteri-
zation by fan-out or rank as a road towards effi-
cient algorithms lets us focus on other possibili-
ties. Many possible parameterizations remain un-
explored. In particular, we conjecture that param-
eterizing by string length yields FPT membership.
In the search for features that can be used in algo-
rithm development, it may also be useful to inves-
tigate other formalisms, such as e.g., hypergraph
replacement and tree-walking transducers.
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Abstract. Most software packages with regular expression matching en-
gines offer operators that extend the classical regular expressions, such as
counting, intersection, complementation, and interleaving. Some of the
most popular engines, for example those of Java and Perl, also provide
operators that are intended to control the nondeterminism inherent in
regular expressions. We formalize this notion in the form of the cut and
iterated cut operators. They do not extend the class of languages that
can be defined beyond the regular, but they allow for exponentially more
succinct representation of some languages. Membership testing remains
polynomial, but emptiness testing becomes PSPACE-hard.

1 Introduction

Regular languages are not only a theoretically well-understood class of formal
languages. They also appear very frequently in real world programming. In par-
ticular, regular expressions are a popular tool for solving text processing prob-
lems. For this, the ordinary semantics of regular expressions, according to which
an expression simply denotes a language, is extended by an informally defined
operational understanding of how a regular expression is “applied” to a string.
The usual default in regular expression matching libraries is to search for the
leftmost matching substring, and pick the longest such substring [2]. This be-
havior is often used to repeatedly match different regular expressions against a
string (or file contents) using program control flow to decide the next expression
to match. Consider the repeatedly matching pseudo-code below, and assume
that match_regex matches the longest prefix possible:

match = match_regex("(a*b)*", s);

if(match != null) then

if(match_regex("ab*c", match.string_remainder) != null) then

return match.string_remainder == "";

return false;

For the string s = abac, this program first matches R1 = (a∗ ·b)∗ to the substring
ab, leaving ac as a remainder, which is matched by R2 = a·(b∗)·c, returning true.
The set of strings s for which the program returns “true” is in fact a regular
language, but it is not the regular language defined by R1 · R2. Consider for
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example the string s = aababcc, which is matched by R1 · R2. However, in an
execution of the program above, R1 will match aabab, leaving the remainder cc,
which is not matched by R2. The expression R1 · R2 exhibits non-deterministic
behavior which is lost in the case of the earliest-longest-match strategy combined
with the explicit if -statement. This raises the question, are programs of this type
(with arbitrarily many if -statements freely nested) always regular, and how can
we describe the languages they recognize?

Related work. Several extensions of regular expressions that are frequently avail-
able in software packages, such as counting (or numerical occurrence indicators,
not to be confused with counter automata), interleaving, intersection, and com-
plementation, have been investigated from a theoretical point of view. The suc-
cinctness of regular expressions that use one or more of these extra operators
compared to standard regular expressions and finite automata were investigated,
e.g., in [4, 6, 8]. For regular expressions with intersection, the membership prob-
lem was studied in, e.g., [10, 14], while the equivalence and emptiness problems
were analyzed in [3, 15]. Interleaving was treated in [5, 11] and counting in [9, 12].
To our knowledge, there is no previous theoretical treatment of the cut operator
introduced in this paper, or of other versions of possessive quantification.

Paper outline. In the next section we formalize the control of nondeterminism
outlined above by defining the cut and iterated cut operators, which can be
included directly into regular expressions, yielding so-called cut expressions. In
Section 3, we show that adding the new operators does not change the expres-
sive power of regular expressions, but that it does offer improved succinctness.
Section 4 provides a polynomial time algorithm for the uniform membership
problem of cut expressions, while Section 5 shows that emptiness is PSPACE-
hard. In Section 6, we compare the cut operator to the similar operators found
more or less commonly in software packages in the wild (Perl, Java, PCRE, etc.).
Finally, Section 7 summarizes some open problems.

2 Cut Expressions

We denote the natural numbers (including zero) by N. The set of all strings
over an alphabet Σ is denoted by Σ∗. In particular, Σ∗ contains the empty
string ε. The set Σ∗ \ {ε} is denoted by Σ+. We write pref (u) to denote the
set of nonempty prefixes of a string u and prefε(u) to denote pref (u)∪ {ε}. The
canonical extensions of a function f : A → B to a function from A∗ to B∗ and
to a function from 2A to 2B are denoted by f as well.

As usual, a regular expression over an alphabet Σ (where ε, ∅ /∈ Σ) is either
an element of Σ ∪ {ε, ∅} or an expression of one of the forms (E |E′), (E · E′),
or (E∗). Parentheses can be dropped using the rule that ∗ (Kleene closure3)
takes precedence over · (concatenation), which takes precedence over | (union).

3 Recall that the Kleene closure of a language L is the smallest language L∗ such that
{ε} ∪ LL∗ ⊆ L∗.
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Moreover, outermost parentheses can be dropped, and E · E′ can be written
as EE′. The language L(E) denoted by a regular expression is obtained by
evaluating E as usual, where ∅ stands for the empty language and a ∈ Σ ∪ {ε}
for {a}. We denote by E ≡ E′ the fact that two regular expressions (or, later on,
cut expressions) E and E′ are equivalent, i.e., that L(E) = L(E′). Where the
meaning is clear from context we may omit the L and write E to mean L(E).

Let us briefly recall finite automata. A nondeterministic finite automaton
(NFA) is a tuple A = (Q,Σ, δ, q0, F ) consisting of a finite set Q of states, a
initial state q0 ∈ Q, a set F ⊆ Q of final states, an alphabet Σ, and a transition
function δ : Q×Σ → 2Q. In the usual way, δ extends to a function δ : Σ∗ → 2Q,
i.e., δ(ε) = {q0} and δ(wa) =

⋃
q∈δ(w) δ(q, a). A accepts w ∈ Σ∗ if and only if

δ(w) ∩ F 6= ∅, and it recognizes the language L(A) = {w ∈ Σ∗ | δ(w) ∩ F 6= ∅}.
A deterministic finite automaton (DFA) is the special case where |δ(q, a)| ≤ 1
for all (q, a) ∈ Q×Σ. In this case we consider δ to be a function δ : Q×Σ → Q,
so that its canonical extension to strings becomes a function δ : Q×Σ∗ → Q.

We now introduce cuts, iterated cuts, and cut expressions. Intuitively, E !E′

is the variant of EE′ in which E greedily matches as much of a string as it can
accommodate, leaving the rest to be matched by E′. The so-called iterated cut
E!∗ first lets E match as much of a string as possible, and seeks to iterate this
until the whole string is matched (if possible).

Definition 1 (cut and cut expression). The cut is the binary operation ! on
languages such that, for languages L,L′,

L !L′ = {uv | u ∈ L, v ∈ L′, uv′ /∈ L for all v′ ∈ pref (v)}.

The iterated cut of L, denoted by L!∗, is the smallest language that satisfies

{ε} ∪ (L ! (L!∗)) ⊆ L!∗

(i.e., L ! (L ! · · · (L ! (L ! {ε})) · · · ) ⊆ L!∗ for any number of repetitions of the cut).
Cut expressions are expressions built using the operators allowed in regular

expressions, the cut, and the iterated cut. A cut expression denotes the language
obtained by evaluating that expression in the usual manner.

The precedence rules give !∗ precedence over ·, which in turn gets precedence
over ! which in turn gets precedence over | .

The motivation for the inclusion of the iterated cut is two-fold; (i) it is a
natural extension for completeness in that it relates to the cut like the Kleene
closure relates to concatenation; and, (ii) in the context of a program like that
shown on page 1, the iterated cut permits the modelling of matching regular
expressions in loops.

Let us discuss a few examples.

1. The cut expression ab∗ ! b yields the empty language. This is because every
string in L(ab∗b) is in L(ab∗) as well, meaning that the greedy matching of
the first subexpression will never leave a b over for the second. Looking at
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the definition of the cut, a string in L(ab∗ ! b) would have to be of the form
ub, such that u ∈ L(ab∗) but ub /∈ L(ab∗). Clearly, such a string does not
exist. More generally, if ε /∈ L(E′) then L(E !E′) ⊆ L(EE′)\L(E). However,
as the next example shows, the converse inclusion does not hold.

2. We have (a∗ | b∗) ! (ac | bc) ≡ a+bc | b+ac.4 This illustrates that the semantics
of the cut cannot be expressed by concatenating subsets of the involved
languages. In the example, there are no subsets L1 and L2 of L(a∗ | b∗) and
L(ac | bc), respectively, such that L1 · L2 = L(a∗ | b∗) !L(ac | bc).

3. Clearly, ((ab)∗ ! a) ! b ≡ (ab)∗ab whereas (ab)∗ ! (a ! b) ≡ (ab)∗ ! ab ≡ ∅ (as in
the first example). Thus, the cut is not associative.

4. As an example of an iterated cut, consider ((aa)∗ ! a)∗. We have (aa)∗ ! a ≡
(aa)∗a and therefore ((aa)∗ ! a)∗ ≡ a∗. This illustrates that matching a string
against (E !E′)∗ cannot be done by greedily matching E, then matching E′,
and iterating this procedure. Instead, one has to “chop” the string to be
matched into substrings and match each of those against E !E′. In partic-
ular, (E ! ε)∗ ≡ E∗ (since E ! ε ≡ E). This shows that E!∗ cannot easily be
expressed by means of cut and Kleene closure.

5. Let us finally consider the interaction between the Kleene closure and the
iterated cut. We have L!∗ ⊆ L∗ and thus (L!∗)∗ ⊆ (L∗)∗ = L∗. Conversely,
L ⊆ L!∗ yields L∗ ⊆ (L!∗)∗. Thus (L!∗)∗ = L∗ for all languages L.
Similarly, we also have (L∗)!∗ = L∗. Indeed, if w ∈ L∗, then it belongs to
(L∗)!∗, since the first iteration of the iterated cut can consume all of w.
Conversely, (L∗)!∗ ⊆ (L∗)∗ = L∗. Thus, altogether (L∗)!∗ = L∗ = (L!∗)∗

3 Cut Expressions Versus Finite Automata

In this section, we compare cut expressions and finite automata. First, we show
that the languages described by cut expressions are indeed regular. We do this by
showing how to convert cut expressions into equivalent finite automata. Second,
we show that cut expressions are succinct: There are cut expressions containing
only a single cut (and no iterated cut), such that a minimal equivalent NFA or
regular expression is of exponential size.

3.1 Cut Expressions Denote Regular Languages

Let A,A′ be DFAs. To prove that the languages denoted by cut expressions are
regular, it suffices to show how to construct DFAs recognizing L(A) !L(A′) and
L(A)!∗. We note here that an alternative proof would be obtained by showing how
to construct alternating automata (AFAs) recognizing L(A) !L(A′) and L(A)!∗.
Such a construction would be slightly simpler, especially for the iterated cut,
but since the conversion of AFAs to DFAs causes a doubly exponential size
increase [1], we prefer the construction given below, which (almost) saves one
level of exponentiality. Moreover, we hope that this construction, though more
complex, is more instructive.

4 As usual, we abbreviate EE∗ by E+.
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We first handle the comparatively simple case L(A) !L(A′). The idea of the
construction is to combine A with a kind of product automaton of A and A′.
The automaton starts working like A. At the point where A reaches one of its
final states, A′ starts running in parallel with A. However, in contrast to the
ordinary product automaton, the computation of A′ is reset to its initial state
whenever A reaches one of its final states again. Finally, the string is accepted
if and only if A′ is in one of its final states.

To make the construction precise, let A = (Q,Σ, δ, q0, F ) and A′ = (Q′, Σ, δ′,
q′0, F

′). In order to disregard a special case, let us assume that q0 /∈ F . (The case
where q0 ∈ F is easier, because it allows us to use only product states in the
automaton constructed.) We define a DFA A = (Q,Σ, δ, q0, F ) as follows:

– Q = Q ∪ (Q×Q′) and F = Q× F ′,
– for all q, r ∈ Q, q = (q, q′) ∈ Q, and a ∈ Σ with δ(q, a) = r

δ(q, a) =

{
r if r /∈ F
(r, q′0) otherwise,

and δ(q, a) =

{
(r, δ′(q′, a)) if r /∈ F
(r, q′0) otherwise.

Let w ∈ Σ∗. By construction, δ has the following properties:

1. If u /∈ L(A) for all u ∈ prefε(w), then δ(w) = δ(w).
2. Otherwise, let w = uv, where u is the longest prefix of w such that u ∈ L(A).

Then δ(w) = (δ(w), δ′(v)).

We omit the easy inductive proof of these statements. By the definition of
L(A) !L(A′) and the choice of F , they imply that L(A) = L(A) !L(A′). In other
words, we have the following lemma.

Lemma 2. For all regular languages L and L′, the language L !L′ is regular.

Let us now consider the iterated cut. Intuitively, the construction of a DFA
recognizing L(A)!∗ is based on the same idea as above, except that the product
construction is iterated. The difficulty is that the straightforward execution of
this construction yields an infinite automaton. For the purpose of exposing the
idea, let us disregard this difficulty for the moment. Without loss of generality,
we assume that q0 /∈ F (which we can do because L(A)!∗ = (L(A) \ {ε})!∗) and
that δ(q, a) 6= q0 for all q ∈ Q and a ∈ Σ.

We construct an automaton whose states are strings q1 · · · qk ∈ Q+. The
automaton starts in state q0, initially behaving like A. If it reaches one of the
final states of A, say q1, it continues in state q1q0, working essentially like the
automaton for L(A) !L(A). In particular, it “resets” the second copy each time
the first copy encounters a final state of A. However, should the second copy
reach a final state q2 of A (while q1 /∈ F ), a third copy is spawned, thus resulting
in a state of the form q1q2q0, and so on.

Formally, let δa : Q→ Q be given by δa(q) = δ(q, a) for all a ∈ Σ and q ∈ Q.
Recall that functions to extend to sequences, so δa : Q∗ → Q∗ operates element-
wise. We construct the (infinite) automaton Â = (Q̂,Σ, δ̂, q0, F̂ ) as follows:
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– Q̂ = (Q \ {q0})∗Q.

– For all s = q1 · · · qk ∈ Q̂ and a ∈ Σ with δa(s) = q′1 · · · q′k

δ̂(s, a) =

{
q′1 · · · q′k if q′1, . . . , q

′
k /∈ F

q′1 · · · q′lq0 if l = min{i ∈ {1, . . . , k} | q′i ∈ F}.
(1)

– F̂ = {q1 · · · qk ∈ Q̂ | qk = q0}.

Note that δ̂(s, a) ∈ Q̂ since we assume that δ(q, a) 6= q0 for all q ∈ Q and a ∈ Σ.
Similar to the properties of A above, we have the following:

Claim 1. Let w = v1 · · · vk ∈ Σ∗, where v1 · · · vk is the unique decomposition of w
such that (a) for all i ∈ {1, . . . , k−1}, vi is the longest prefix of vi · · · vk which is in

L(A) and (b) prefε(vk)∩L(A) = ∅.5 Then δ̂(w) = δ(v1 · · · vk)δ(v2 · · · vk) · · · δ(vk).

In particular, Â accepts w if and only if w ∈ L(A)!∗.

Again, we omit the straightforward inductive proof.
It remains to be shown how to turn the set of states of Â into a finite set. We

do this by verifying that repetitions of states of A can be deleted. To be precise,
let π(s) be defined as follows for all s = q1 · · · qk ∈ Q̂. If k = 1 then π(s) = s. If
k > 1 then

π(s) =

{
π(q1 · · · qk−1) if qk ∈ {q1, . . . , qk−1}
π(q1 · · · qk−1)qk otherwise.

Let π(Â) be the NFA obtained from Â by taking the quotient with respect to

π, i.e., by identifying all states s, s′ ∈ Q̂ such that π(s) = π(s′). The set of final

states of π(Â) is the set π(F̂ ).
This completes the construction. The following lemmas prove its correctness.

Lemma 3. For all s ∈ Q̂ and a ∈ Σ it holds that π(δ̂(s, a)) = π(δ̂(π(s), a)).

Proof. By the very definition of π, for every function f : Q → Q and all s ∈ Q̂
we have π(f(s)) = π(f(π(s))). In particular, this holds for f = δa. Now, let

s = q1 · · · qk be as in the definition of δ̂. Since the same set of symbols occurs
in δa(s) and δa(π(s)), the same case of Equation 1 applies for the construction

of δ̂(s, a) and δ̂(π(s), a). In the first case π(δ̂(s, a)) = π(δa(s)) = π(δa(π(s))) =

π(δ̂(π(s), a)). In the second case

π(δ̂(s, a)) = π(δa(q1 · · · ql)q0)
= π(δa(q1 · · · ql))q0
= π(δa(π(q1 · · · ql)))q0
= π(δa(π(q1 · · · ql))q0)

= π(δ̂(π(s), a)).

Note that the second and the fourth equality make use of the fact that q0 /∈
{q1, . . . , qk−1}, which prevents π from deleting the trailing q0. ut
5 The strings v1, . . . , vk are well defined because ε /∈ L(A).
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Lemma 4. The automaton π(Â) is a DFA such that L(π(Â)) = L(A)!∗. In
particular, L!∗ is regular for all regular languages L.

Proof. To see that π(Â) is a DFA, let a ∈ Σ. By the definition of π(Â), its

transition function δ̂π is given by

δ̂π(t, a) = {π(δ̂(s, a)) | s ∈ Q̂, t = π(s)}

for all t ∈ π(Q̂). However, by Lemma 3, π(δ̂(s, a)) = π(δ̂(t, a)) is independent

of the choice of s. In other words, Â is a DFA. Furthermore, by induction on
the length of w ∈ Σ∗, Lemma 3 yields δ̂π(w) = π(δ̂(w)). Thus, by Claim 1,

L(π(Â)) = L(A)!∗. In particular, for a regular language L, this shows that L!∗

is regular, by picking A such that L(A) = L. ut

We note here that, despite the detour via an infinite automaton, the con-
struction given above can effectively be implemented. Unfortunately, it results
in a DFA of size O(n!), where n is the number of states of the original DFA.

Theorem 5. For every cut expression E, L(E) is regular.

Proof. Follows from combining Lemmas 2 and 4. ut

3.2 Succinctness of Cut Expressions

In this section we show that for some languages, cut expressions provide an
exponentially more compact representation than regular expressions and NFAs.

Theorem 6. For every k ∈ N+, there exists a cut expression Ek of size O(k)
such that every NFA and every regular expression for L(Ek) is of size 2Ω(k).
Furthermore, Ek does not contain the iterated cut and it contains only one oc-
currence of the cut.

Proof. We use the alphabets Σ = {0, 1} and Γ = Σ ∪ {], [}. For k ∈ N+, let

Ek = (ε | [Σ∗0Σk−11Σ∗] | [Σ∗1Σk−10Σ∗]) ! [Σ2k].

Each string in the language L(Ek) consists of one or two bitstrings enclosed
in square brackets. If there are two, the first has at least two different bits at
a distance of exactly k positions and the second is an arbitrary string in Σ2k.
However, when there is only a single pair of brackets the bitstring enclosed is of
length 2k and its second half will be an exact copy of the first.

We argue that any NFA that recognizes L(Ek) must have at least 2k states.
Assume, towards a contradiction, that there is an NFA A with fewer than 2k

states that recognizes L(Ek).
Since |Σk| = 2k there must exist two distinct bitstrings w1 and w2 of length

k such that the following holds. There exist a state q of A and accepting runs ρ1
and ρ2 of A on [w1w1] and [w2w2], resp., such that ρ1 reaches q after reading [w1

and ρ2 reaches q after reading [w2. This, in turn, means that there are accepting

121



runs ρ′1 and ρ′2 of Aq on w1] and w2], respectively, where Aq is the automaton
obtained from A by making q the sole initial state. Combining the first half of
ρ1 with ρ′2 gives an accepting run of A on [w1w2]. This is a contradiction and
we conclude that there is no NFA for Ek with fewer than 2k states.

The above conclusion also implies that every regular expression for L(Ek) has
size 2Ω(k). If there was a smaller regular expression, the Glushkov construction [7]
would also yield a smaller NFA. ut

Remark 7. The only current upper bound is the one implied by Section 3.1, from
which automata of non-elementary size cannot be ruled out as it yields automata
whose sizes are bounded by powers of twos.

A natural restriction on cut expressions is to only allow cuts to occur at the
topmost level of the expression. This gives a tight bound on automata size.

Lemma 8. Let E be a cut expression, without iterated cuts, such that no subex-
pression of the form C∗ or C · C ′ contains cuts. Then the minimal equivalent
DFA has 2O(|E|) states, and this bound is tight.

Proof (sketch). Given any DFAs A,A′, using product constructions we get DFAs
for L(A) |L(A′) and L(A) !L(A′) whose number of states is proportional to
the product of the number of states in A and A′. (See Lemma 2 for the case
L(A) !L(A′).) Thus, one can construct an exponential-sized DFA in a bottom-up
manner. Theorem 6 shows that this bound is tight. ut

4 Uniform Membership Testing

We now present an easy membership test for cut expressions that uses a dynamic
programming approach (or, equivalently, memoization). Similarly to the Cocke-
Younger-Kasami algorithm, the idea is to check which substrings of the input
string belong to the languages denoted by the subexpressions of the given cut
expression. The pseudocode of the algorithm is shown in Algorithm 1. Here, the
string u = a1 · · · an to be matched against a cut expression E is a global variable.
For 1 ≤ i ≤ j ≤ n+ 1, Match(E, i, j) will check whether ai · · · aj−1 ∈ L(E). We
assume that an implicit table is used in order to memoize computed values
for a given input triple. Thus, recursive calls with argument triples that have
been encountered before will immediately return the memoized value rather than
executing the body of the algorithm.

Theorem 9. The uniform membership problem for cut expressions can be de-
cided in time O(m · n3), where m is the size of the cut expression and n is the
length of the input string.

Proof. Consider a cut expression E0 of size m and a string u = a1 · · · an. It is
straightforward to show by induction on m+n that Match(E, i, j) = true if and
only if ai · · · aj−1 ∈ L(E), where 1 ≤ i ≤ j ≤ n+ 1 and E is a subexpression of
E0. For E = E1 !E2, this is because of the fact that v ∈ L(E) if and only if v
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Algorithm 1 Match(E, i, j)

if E = ∅ then return false
else if E = ε then return i = j
else if E ∈ Σ then return j = i+ 1 ∧ E = ai
else if E = E1 |E2 then return Match(E1, i, j) ∨Match(E2, i, j)
else if E = E1 · E2 then

for k = 0, . . . , j − i do
if Match(E1, i, i+ k) ∧Match(E2, i+ k, j) then return true

return false
else if E = E∗

1 then
for k = 1, . . . , j − i do

if Match(E1, i, i+ k) ∧Match(E, i+ k, j) then return true
return i = j

else if E = E1 !E2 then
for k = j − i, . . . , 0 do

if Match(E1, i, i+ k) then return Match(E2, i+ k, j)
return false

else if E = E!∗
1 then

for k = j − i, . . . , 1 do
if Match(E1, i, i+ k) then return Match(E, i+ k, j)

return i = j

has a longest prefix v1 ∈ L(E1), and the corresponding suffix v2 of v (i.e., such
that v = v1v2) is in L(E2). Furthermore, it follows from this and the definition
of the iterated cut that, for E = E!∗

1 , v ∈ L(E) if either v = ε or v has a longest
prefix v1 ∈ L(E1) such that the corresponding suffix v2 is in L(E).

Regarding the running time of Match(E, 1, n+ 1), by memoization the body
of Match is executed at most once for every subexpression of E and all i, j,
1 ≤ i ≤ j ≤ n+ 1. This yields O(m · n2) executions of the loop body. Moreover,
a single execution of the loop body involves at most O(n) steps (counting each
recursive call as one step), namely if E = E∗1 , E = E1 !E2 or E = E!∗. ut

5 Emptiness Testing of Cut Expressions

Theorem 10. Given a cut expression E, it is PSPACE-hard to decide whether
L(E) = ∅. This remains true if E = E1 !E2, where E1 and E2 are regular
expressions.

Proof. We prove the theorem by reduction from regular expression universality,
i.e. deciding for a regular expression R and an alphabet Σ whether L(R) = Σ∗.
This problem is well known to be PSPACE-complete [12].Given R, we construct
a cut expression E such that L(E) = ∅ if and only if L(R) = Σ∗.

We begin by testing if ε ∈ L(R). This can be done in polynomial time. If
ε /∈ L(R), then we set E = ε, satisfying L(E) 6= ∅. Otherwise, we set E = R !Σ.
If R is universal, there is no string ua such that u ∈ L(R) but ua /∈ L(R). Thus
L(E) is empty. If R is not universal, since ε ∈ L(R) there are u ∈ Σ∗ and a ∈ Σ
such that u ∈ L(R) and ua 6∈ L(R), which means that ua ∈ L(E) 6= ∅. ut
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Lemma 11. For cut expressions E the problems whether L(E) = ∅ and L(E) =
Σ∗ are LOGSPACE-equivalent.

Proof. Assume that # /∈ Σ, and let Σ′ = Σ ∪ {#}. The lemma then follows
from these two equivalences: (i) E ≡ ∅ if and only if ((ε |EΣ∗) !Σ+) | ε ≡ Σ∗;
and; (ii) E ≡ Σ∗ if and only if (ε |E#(Σ′)∗) !Σ∗# ≡ ∅. ut

6 Related Concepts in Programming Languages

Modern regular expression matching engines have numerous highly useful fea-
tures, some of which improve succinctness (short-hand operators) and some of
which enable expressions that specify non-regular languages. Of interest here
is that most regular expression engines in practical use feature at least some
operation intended to control nondeterminism in a way that resembles the cut.
They are however only loosely specified in terms of backtracking, the specific
evaluation technique used by many regular expression engines. This, combined
with the highly complex code involved, makes formal analysis difficult.

All these operations appear to trace their ancestry to the first edition of
“Mastering Regular Expressions” [2], which contains the following statement:

“A feature I think would be useful, but that no regex flavor that I know of has, is
what I would call possessive quantifiers. They would act like normal quantifiers
except that once they made a decision that met with local success, they would
never backtrack to try the other option. The text they match could be unmatched
if their enclosing subexpression was unmatched, but they would never give up
matched text of their own volition, even in deference to the overall match.”[2]

The cut operator certainly fits this somewhat imprecise description, but as we
shall see implementations have favored different interpretations. Next we give a
brief overview of three different operations implemented in several major regular
expression engines, that exhibit some control over nondeterminism. All of these
operators are of great practical value and are in use. Still, they feature some
idiosyncrasies that should be investigated, in the interest of bringing proper
regular behavior to as large a set of regular expression functionality as possible.

Possessive Quantifiers Not long after the proposal for the possessive quantifier,
implementations started showing up. It is available in software such as Java,
PCRE, Perl, etc. For a regular expression R the operation is denoted R∗+, and
behaves like R∗ except it never backtracks. This is already troublesome, since
“backtracking” is poorly defined at best, and, in fact, by itself L(R∗+) = L(R∗),
but L(R∗+ · R′) = L(R∗ !R′) for all R′. That is, extending regular expressions
with possessive quantifiers makes it possible to write expressions such that L(E ·
E′) 6= L(E) · L(E′), an example being given by E = a∗+ and E′ = a. This
violates the compositional spirit of regular expressions.

Next, consider Table 1. The expression on the first row, call it R, is tested in
each of the given implementations, and the language recognized is shown. The
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Table 1. Some examples of possessive quantifier use.

Expression Perl 5.16.2 Java 1.6.0u18 PCRE 8.32

(aa)∗+a {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .}
((aa)∗+a)∗ {ε, a, aaa, aaaaa, . . .} {ε, a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .}
((aa)∗+a)∗a {a} {a} {a}

Table 2. Comparison between Perl and PCRE when using the (*PRUNE) operator.

Expression Perl 5.10.1 Perl 5.16.2 PCRE 8.32

(aa)∗(*PRUNE)a {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .}
((aa)∗(*PRUNE)a)∗ {ε, a, aa, aaa, . . .} ∅ ∅
a∗(*PRUNE)a {a, aa, aaa, . . .} ∅ ∅

results on the first row are easy to accept from every perspective. The second
row however has the expression R∗, and despite a ∈ L(R) no implementation
gives aa ∈ L(R∗), which violates the classical compositional meaning of the
Kleene closure (in addition, in PCRE we have ε /∈ L(R∗)). The third row further
illustrates how the compositional view of regular expressions breaks down when
using possessive quantifiers.

Independent Groups or Atomic Subgroups A practical shortcoming of the pos-
sessive quantifiers is that the “cut”-like operation cannot be separated from the
quantifier. For this reason most modern regular expression engines have also in-
troduced atomic subgroups (“independent groups” in Java). An atomic subgroup
containing the expression R is denoted (?R), and described as “preventing back-
tracking”. Any subexpression (?R∗) is equivalent to R∗+, but subexpressions of
the form (?R) where the topmost operation in R is not a Kleene closure may be
hard to translate into an equivalent expression using possessive quantifiers.

Due to the direct translation, atomic subgroups suffer from all the same
idiosyncrasies as possessive quantifiers, such as L(((? (aa)∗)a)∗a) = {a}.

Commit Operators and (*PRUNE) In Perl 6 several interesting “commit oper-
ators” relating to nondeterminism control were introduced. As Perl 5 remains
popular they were back-ported to Perl 5 in version 5.10.0 with different syntax.
The one closest to the pure cut is (*PRUNE), called a “zero-width pattern”, an
expression that matches ε (and therefore always succeeds) but has some engine
side-effect. As with the previous operators the documentation depends on the
internals of the implementation. “[(*PRUNE)] prunes the backtracking tree at
the current point when backtracked into on failure”[13].

These operations are available both in Perl and PCRE, but interestingly their
semantics in Perl 5.10 and Perl 5.16 differ in subtle ways; see Table 2. Looking at
the first two rows we see that Perl 5.10 matches our compositional understanding
of the Kleene closure (i.e., row two has the same behavior as ((aa)∗!a)∗). On the
other hand Perl 5.10 appears to give the wrong answer in the third row example.
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7 Discussion

We have introduced cut operators and demonstrated several of their properties.
Many open questions and details remain to be worked out however:

– There is a great distance between the upper and lower bounds on minimal
automata size presented in Section 3.2, with an exponential lower bound for
both DFA and NFA, and a non-elementary upper bound in general.

– The complexity of uniform membership testing can probably be improved
as the approach followed by Algorithm 1 is very general. (It can do comple-
mentation, for example.)

– The precise semantics of the operators discussed in Section 6 should be
studied further, to ensure that all interesting properties can be captured.

Acknowledgments. We thank Yves Orton who provided valuable information
about the implementation and semantics of (*PRUNE) in Perl.
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Umeå, Sweden
mbe@cs.umu.se

Frank Drewes
Department of Computing Science,
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We consider in some detail how regular expression matching happens in Java1, as a popular represen-
tative of the category of regex-directed matching engines. We extract a slightly idealized algorithm
for this scenario. Next we define an automata model which captures all the aspects needed to perform
matching, of the Java style, in a formal way. Finally, two types of static analysis, which take a regular
expression and tells whether there exists a family of strings which make Java-style matching run in
exponential time, are done.

1 Introduction

Regular expressions constitute a concise, powerful, and useful pattern matching language for strings.
They are commonly used to specify token lexemes for scanner generation during compiler construction,
to validate input for web-based applications, to recognize meaningful patterns in natural language pro-
cessing and data mining, for example, locating e-mail addresses, and to guard against computer system
intrusion. Libraries for their use are found in most widely-used programming languages.

There are two fundamentally different types of regex matching engines: DFA (Deterministic Finite
Automaton) and NFA (Non-deterministic Finite Automaton) matching engines. DFA matchers are used
in (most versions of) awk, egrep, and in MySQL, and are based on the NFA to DFA subset conversion
algorithm. This paper deals with NFA engines, which is found in GNU Emacs, Java, many command
line tools, .NET, the PCRE (Perl compatible regular expressions) library, Perl, PHP, Python, Ruby and
Vim. NFA matchers make use of an input directed depth first search on an NFA, and thus the matching
performed by NFA engines are referred to as backtracking matching. NFA engines have made it possible
to extend regular expressions with captures, possessive quantifiers, and backreferences.

Theory has however not kept pace with practice when it comes to understanding NFA engines. We
now have NFA matchers that are more expressive and succinct than the originally developed DFA match-
ers, but are also in some cases significantly slower. Although it is known that in the worst case, the
matching time of NFA matchers are exponential in the length of input strings [7], their performance char-
acteristics and operational matching semantics are poorly understood in general. Exponential matching
time, also referred to as catastrophic backtracking (by NFA matchers), can of course be avoided by using
the DFA matchers, but then a less expressive pattern matching language has to be used. Catastrophic
backtracking has potentially severe security implications, as denial-of-service attacks are possible in any
application which matches a regular expression to data not carefully controlled by the application.

This work was motivated by the exponential time algorithm presented by Kirrage et. al. in [7], which
for regular expressions with catastrophic backtracking comes up with a family of strings exhibiting this

1Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
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exponential matching time behavior. However, they only consider the case where the exponential match-
ing behavior can be exhibited by strings that are rejected. We investigate the complexity of deciding
exponential backtracking matching on strings that are rejected (which we refer to as deciding exponen-
tial failure backtracking) further, and in addition we consider exponential backtracking in general.

To formally capture backtracking matching, we introduce prioritized NFA (pNFA). These automata
make non-deterministic choices ordered, prioritizing some over others, in a way very reminiscent of
parsing expression grammars (PEGs), which introduce ordered choice to context-free grammars [5]. An
interesting algorithm bridging the two areas is given in Medeiros et. al. in [8], this algorithm translates
extended regular expressions to PEGs.

We then define both general backtracking and failure backtracking. The latter is concerned with only
failed matches. By linking failure backtracking with ambiguity in NFA, we show that catastrophic failure
backtracking can be decided in polynomial time, and in the case of polynomial failure backtracking, the
degree of the polynomial can be determined in polynomial time. General backtracking is shown decid-
able in EXPTIME by associating a tree transducer with the expression and applying a result from [4].

2 Preliminaries

For a set A, we denote by P(A) the power set of A. The constant function f : A→ B with f (a) = b ∈ B
for all a ∈ A is denoted by bA. Also, given any function f : A→ B and elements a ∈ A, b ∈ B, we let fa7→b
denote the function f ′ such that f ′(a) = b and f ′(x) = f (x) for all x ∈ A \ {a}. For an alphabet Σ, we
denote the set of all strings over Σ by Σ∗. In particular, it contains the empty string ε . To avoid confusion,
it is assumed that ε /∈ Σ. The length of a string w is denoted by |w|, and the number of occurrences of a
symbol a in w is denoted by |w|a. The union of disjoint sets A and B is denoted by A]B.

As usual, a regular expression over an alphabet Σ (where ε, /0 /∈ Σ) is either an element of Σ∪{ε, /0}
or an expression of one of the forms (E |E ′), (E ·E ′), or (E∗), where E and E ′ are regular expressions.
Parentheses can be dropped using the rule that ∗ (Kleene closure) takes precedence over · (concatenation),
which takes precedence over | (union). Moreover, outermost parentheses can be dropped, and E ·E ′ can
be written as EE ′. The language L (E) denoted by a regular expression is obtained by evaluating E as
usual, where /0 stands for the empty language and a ∈ Σ∪{ε} for {a}.

A tree with labels in a set Σ is a function t : V → Σ, where V ⊆ N∗+ is a non-empty set of vertices (or
nodes) which are such that (i) V is prefix-closed, i.e., for all v ∈ N∗+ and i ∈ N+, vi ∈ V implies v ∈ V ;
and; (ii) V is closed to the left, i.e., for all v ∈ N∗+ and i ∈ N+, v(i+1) ∈V implies vi ∈V .

The vertex ε is the root of the tree and vertex vi is the ith child of v. We let |t|= |V | denote the size
of t. t/v denotes the tree t ′ with vertex set V ′ = {w ∈ N∗+ | vw ∈V}, where t ′(w) = t(vw) for all w ∈V ′.
If V is not explicitly named, we may denote it by V (t). The rank of a tree t is the maximum number of
children of vertices of t. Given trees t1, . . . , tn and a symbol α , we let α[t1, . . . , tn] denote the tree t with
t(ε) = α and t/i = ti for all i ∈ {1, . . . ,n}. The tree α[] may be abbreviated by α .

Given an alphabet Σ, the set of all trees of the form t : V → Σ is denoted by TΣ. Moreover, if Q is an
alphabet disjoint with Σ, we denote by TΣ(Q) the set of all trees t : V → Σ∪Q such that only leaves may
be labeled with symbols in Q, i.e., t(v) ∈ Q implies that v ·1 /∈V .

Finally, we recall the definition of non-deterministic finite automata and string-to-tree transducers.
A non-deterministic finite automaton (NFA) is a tuple A = (Q,Σ,q0,δ ,F) where Q is a finite set

of states, Σ is an alphabet with ε /∈ Σ, q0 ∈ Q, F ⊆ Q and δ : Q× ({ε}∪Σ)→P(Q) is the transition
function. A string w∈ Σ∗ is accepted by A if and only if there exist α1, . . . ,αm ∈ Σ∪{ε} and p1 · · · pm+1 ∈
Q∗, the latter being the accepting run, such that; pi+1 ∈ δ (pi,αi) for all i ∈ {1, . . . ,m}; α1 · · ·αm = w;
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and, finally; p1 = q0 and pm ∈ F . The set of strings in Σ∗ accepted by A is denoted by L (A). The fact
that p ∈ δ (q,α) may also be denoted by q α−→ p.

A string-to-tree transducer is a tuple stt = (Q,Σ,Γ,q0,δ ), where Σ and Γ are the input and output
alphabets respectively, Q is the set of states, q0 ∈ Q is the initial state, and δ : Q×Σ→ TΓ(Q) is the
transition function. When δ (q,α) = t we also write q α−→ t.

For α1, . . . ,αn ∈ Σ, stt(α1 · · ·αn) is the set of all trees t ∈ TΓ such that there exists a sequence of trees
t0, . . . , tn which fulfill the requirement that t0 = q0 and tn = t; and; for every i ∈ {1, . . . ,n}, ti is obtained
from ti−1 by replacing every leaf v for which ti−1(v) ∈ Q with a tree in δ (ti−1(v),αi), i.e., it holds that
ti/v ∈ δ (ti−1(v),αi).

3 Regular Expression Matching in Java

Here we will take a look at the algorithm used for matching regular expressions in Java, using the default
java.util.regex package, and describe in pseudocode roughly how matching is accomplished in
this package. The Java implementation is a good representative of the class of NFA search matchers.
It is both fairly typical and very consistent. Java 6, 7 and 8 all function the same (Java 1.6.0u27 is
used to generate figures here), and many other implementations behave similarly, e.g. the popular Perl
Compatible Regular Expressions library (PCRE).

The meat of the implementation lives in java.lang.regex.Pattern which for a regular expression
constructs an object graph of subclasses of the class java.lang.regex.Pattern$Node (we abbrevi-
ate this as just Node, assuming all classes to be inner classes of java.lang.regex.Pattern unless
otherwise stated). Node objects correspond to states, encapsulating their transitions in addition, and
have one relevant method, boolean Node.match(Matcher m, int i, CharSequence s), which
we will closely mimic later. The implicit this pointer of the method call corresponds to the state, s
is the entire string, i is the index of the next symbol to be read. The m argument contains a variety of
book-keeping, notably it contains variables corresponding to C in Algorithm 4, as well as the informa-
tion on what the accepting run was after the fact (match instead returns true if and only if the node can
(potentially recursively) match the remainder of the string. Every Node contains at least a pointer next
which serves as the “default” next transition out of the node. Let us look at the object graph on the left
in Figure 1. As can be seen there are quite a few nodes even for a small expression like ab∗, but most
are needed for fairly minor book-keeping, and in general implement features tangential to our concerns
here. For example LastNode checks that all symbols are read by the matching, but can be made to do
other things using additional features in java.util.regex which we do not deal with.

The matching starts with a call to match on Begin with the full string (i.e., i set to one and the string
in s). See Figure 2 for pseudo-code for the behavior of Begin, Single and Curly. Begin (and LastNode)
are trivial, they just check that we are in the expected position of the string, and in the case of Begin
calls into its next. Single reads a single symbol (equal to its internal c) and continues to next. Accept
is even more trivial and always returns true. Curly is where things get more complex. Curly handles the
Kleene closure, and, since it has to resolve non-determinism (i.e. how many repetitions to perform), it is
a bit more complex. The values type, cmin, and cmax are irrelevant for our concerns, they implement
the counted repetition extension. In reality the statement on line 2 on the right works by updating values
in the m in-out argument left unspecific here. Curly starts by trying to match the atom node atom to a
prefix of the string, if it succeeds Curly calls itself recursively (call match on this) with the remainder.
When atom fails to match any further Curly instead continues to next (backtracking as needed). In
reality Curly uses imperative loops for efficiency, but it only serves to achieve a constant speedup and
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Begin

Single
c=‘a‘

Curly
type=0
cmin=0
cmax=2147483647

Single
c=‘b‘

LastNode

Accept
next=null

next

next atom

next

next

next

Begin Prolog

Loop
countIndex=1
beginIndex=0
cmin=0
cmax=2147483647

Branch
size=2

array

Single
c=‘a‘

Single
c=‘b‘

LastNode

next

loop

bodynext

atoms

next

next

element 1 element 2

Figure 1: The left diagram shows essentially the complete internal object graph of subclasses of Node
Java constructs for ab∗. On the right we show a simplified version of the corresponding object graph for
(a|b)∗. In the latter all nodes without matching effect (in our limited expressions) are removed (e.g. the
node Accept seen in the more complete example on the left).

1: if i = 0 then
2: return next.match(i,w)
3: else
4: return false
5: end if

1: if αi = c then
2: return next.match(i+1,w)
3: else
4: return false
5: end if

1: if atom.match(i,w) then
2: b := #symbols read above
3: if this.match(i+b,w) then
4: return true
5: end if
6: end if
7: return next.match(i,w)

Figure 2: The code for a call of the form match(i,w = α1 · · ·αn) on a Begin (left), Single (middle) and
Curly (right) node. Single has a member variable c identifying the symbol it should read. Curly tries to
recursively repeat atom, calling next when that fails.

is as such irrelevant for us. Curly is not used for all Kleene closures, if b = 0 it would loop forever, so
the construction procedure for the object graph only uses Curly when it (with a fairly limited decision
procedure) can tell that the contents looped is of constant non-zero length.

Next we look at the more general example on the right side of Figure 1. Here there are some ad-
ditional nodes to consider. Branch implementing the union, and Prolog and Loop implementing the
Kleene closure together (with Prolog calling matchInit on Loop to initialize the loop). Let us look
at each function in Figure 3. Notably match in Branch starts by letting the first subexpression match,
continuing with the second and so on if the first attempts fail. The symbiotic relationship between Prolog
and Loop is trickier. Where all other nodes calls into Loop with match(i,w) as usual Prolog calls in with
matchInit(i,w) (on the left in Figure 3). This serves only one purpose: it eliminates ε-cycles. That is, it
prevents Loop from recursively matching body to the empty string, making no progress. In matchInit

the current value of i is stored, and in match (in the middle in Figure 3) the node body will only get a
match attempted if at least one symbol has been read since the last attempt.

As an additional example, consider the regular expression (a|a)∗, which has an object graph almost
like on the right of Figure 1, except the second Single also has c set to a. Matching this against aa · · ·ab
will take exponential time in the number of as, as all ways to match each a to each Single in a|a will be
tried as the matching backtracks trying to match the final b. In an experiment on an authors desktop PC
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1: this.sp := i
2: if body.match(i,w) then
3: return true
4: else
5: return next.match(i,w)
6: end if

1: if i> this.sp then
2: if body.match(i,w) then
3: return true
4: end if
5: end if
6: return next.match(i,w)

1: for e ∈ array do
2: if e.match(i,w) then
3: return true
4: end if
5: end for
6: return false

Figure 3: On a call of the form match(i,w = α1 · · ·αn) to, on the left to Loop.matchInit (called by
Prolog in lieu of match), in the middle to Loop.match (called by all other nodes), and on the right to
Branch. Notice that the loop in Branch is in array order.

an attempt to match (a|a)∗ to a35b using Java took roughly an hour of CPU time.
As was already mentioned space does not permit all details to be considered, and a formal proof of

Java semantics is in general outside of our scope. Let us explain some details skipped however.
The object graph on the right in Figure 1 is, as is noted in the caption, a bit of creative editing of

reality. A number of nodes not affecting the search behavior or matching are removed, in total the Accept
node, which is just a next placeholder with no effect, GroupHead and GroupTail, which tracks what part
of the match corresponds to a parenthesized subexpression, and finally BranchConn, which is placed
in relation to Branch in the right of Figure 1 and records some information for the optimizer (which is
responsible e.g. for choosing whether Curly or Loop should be used).

In general all nodes have numerous additional features not discussed, and there are many additional
nodes serving similar purposes. For example Single may be replaced with Slice (matches multiple sym-
bols at once) or BnM (matches multiple symbols using Boyer-Moore matching [2]). However, the op-
timizations are too minor to matter for our concerns (e.g. replacing a sequence of Slice and BnM by
Single nodes will be at most a linear slow-down), and the additional features are outside our scope.

To wrap this section up we take the above together and assemble the snippets of matching code into
a function which takes a regular expression and a string as input and decides if the expression matches
the string. A regular expression is represented by its parse tree, T : N∗+→{|, ∗, ∗?, ·,ε}∪Σ. The operator
∗? is the lazy Kleene closure, the same as ∗ except it attempts to make as few repetitions as possible. We
will, naturally, assume that · and | have two children, ∗ and ∗? one, and each α ∈ Σ∪{ε} zero.

Define the function next : N+→ N+ on the nodes of T as follows (compare to the cont pointers in
Kirrage at al. [7]). Let next(ε) = nil, and

1. If T (v) = | then next(v ·1) = next(v ·2) = next(v).

2. If T (v) = · then next(v ·1) = v ·2 and next(v ·2) = next(v).

3. If T (v) = ∗ or T (v) = ∗? then next(v ·1) = v.

Then, collapsing the object graph and ignoring precise node choices in Java we get Algorithm 1.

Algorithm 1. This is a collapsed fragment of the Java matching algorithm. The implicit regular ex-
pression parse tree is T . There are three call-by-value input parameters, the node of the tree currently
processed, the remainder of the string to match, and the set of nodes that we should not revisit until at
least one symbol has been read. This prevents ε-cycles in a way similar to what was discussed above.
The initial call made is MATCH(ε,w, /0).

1: function MATCH(v,w = a1 · · ·an,C)
2: if v = nil then
3: return n = 0

4: else if T (v) = ε then
5: return MATCH(next(v),w,C)
6: else if T (v) ∈ Σ then
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7: if n≥ 1∧T (v) = a1 then
8: return MATCH(next(v),a2 · · ·an, /0)
9: end if

10: return false
11: else if T (v) = | then
12: if MATCH(v ·1,w,C) then
13: return true
14: end if
15: return MATCH(v ·2,w,C)
16: else if T (v) = · then
17: return MATCH(v ·1,w,C)
18: else if T (v) = ∗ then
19: if v ·1 /∈C then
20: if MATCH(v ·1,w,C∪{v ·1}) then

21: return true
22: end if
23: end if
24: return MATCH(next(v),w,C)
25: else if T (v) = ∗? then
26: if MATCH(next(v),w,C) then
27: return true
28: else if v ·1 /∈C then
29: return MATCH(v ·1,w,C∪{v ·1})
30: else
31: return false
32: end if
33: end if
34: end function

Notice how the code for the two Kleene closure variants only differ in what they try first: ∗ tries to
repeat its body first, whereas ∗? tries to not repeat the body.

Notice also how C is used to prevent ε-loops in the Kleene closure cases (lines 19–20 and 28–29). If
the node we would go to is already in C this means that no symbol has been read since last time we tried
this, meaning repeating it would be a loop making no progress.

4 Prioritized Non-Deterministic Finite Automata

Here we will define a new type of non-deterministic finite automaton, with some additions. These mod-
ifications have no impact on the language accepted, but makes the automaton “run-deterministic”, every
string in the language accepted has a well-defined unique accepting run, a property brought about by
ordering every non-deterministic choice, giving some alternatives higher-priority than others, and letting
the unique accepting run be the highest priority run for that string.

Definition 2. A prioritized non-deterministic finite automaton (or pNFA) is a tuple of seven elements,
A = (Q1,Q2,Σ,q0,δ1,δ2,F), where Q1 ∩Q2 = /0; Σ is a finite alphabet; q0 ∈ Q1 ∪Q2 is the initial
state; δ1 : Q1 × Σ → (Q1 ∪Q2) is the deterministic transition function; δ2 : Q2 → (Q1 ∪Q2)

∗ is the
non-deterministic prioritized transition function; and F ⊆ Q1∪Q2 are the final states.

The NFA corresponding to the pNFA A is given by A = (Q1∪Q2,Σ,q0, δ̄ ,F), where

δ̄ (q,α) =

{
{δ1(q,α)} if q ∈ Q1 and α ∈ Σ,
{q1, . . . ,qn} if q ∈ Q2, α = ε , and δ2(q) = q1 · · ·qn.

The language accepted by A, denoted by L (A), is L (A).

Next, we define the so-called backtracking run of a pNFA on an input string w. This run takes the
form of a tree which, intuitively, represents the attempts a matching algorithm such as Algorithm 1 would
make until accepting the input string (or eventually rejecting it).

Definition 3. Let A = (Q1,Q2,Σ,q0,δ1,δ2,F) be a pNFA, q ∈Q1∪Q2, w = α1 · · ·αn ∈ Σ∗, and C : Q2→
N. Then the (q,w,C)-backtracking run of A is a tree over Q1 ∪Q2 ] {Acc,Rej}. A backtracking run
succeeds if and only if Acc occurs in it. We denote the (q,w,C)-backtracking run by btrA(q,w,C) and
inductively define it as follows. If q∈ F and w = ε then btrA(q,w,C) = q[Acc]. Otherwise, we distinguish
between two cases:
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1. If q ∈ Q1, then

btrA(q,w,C) =

{
q[btrA(δ1(q,α1),α2 · · ·αn,0Q2)] if n> 0 and δ1(q,α1) is defined,
q[Rej] otherwise.

2. If q ∈ Q2 with δ2(q) = q1 · · ·qk, let i0 =C(q)+1 and ri = btrA(qi,w,Cq7→i) for i0 ≤ i≤ k. Then

btrA(q,w,C) =





q[Rej] if i0 > k,
q[ri0 , . . . ,rk] if i0 ≤ k but no r j succeeds,
q[ri0 , . . . ,r j] if j ∈ {i0, . . . ,k} is the least index such that r j succeeds.

The backtracking run of A on w is btrA(w) = btrA(q0,w,0Q2). If btrA(w) succeeds, then the accepting run
of A on w is the sequence of states on the right-most path in btrA(w).

Notice that the third parameter C in btrA(q,w,C) fulfills a similar purpose as the set C in Algorithm 1.
It is used to track transitions that must not be revisited to avoid cycles.

Clearly, for a pNFA A and a string w, w ∈L (A) if and only if btrA(w) succeeds, if and only if the
accepting run of A on w is an accepting run of the NFA A. Backtracking runs capture the behavior of
the following algorithm which generalizes Algorithm 1 to arbitrary pNFAs to deterministically find the
accepting run of A on w if it exists.
Algorithm 4. Let A = (Q1,Q2,Σ,q0,δ1,δ2,F) be a pNFA. The call MATCH(q0,w,0Q2)2 of the following
procedure yields the accepting run of A on w if it exists, and ⊥ /∈ Q1∪Q2 otherwise. The third is similar
to the C in Definition 3. For every state q ∈ Q2 with out-degree d, C(q) ranges between 0 and d.

1: function MATCH(q,w = a1 · · ·an,C)
2: if q ∈ Q1 then
3: if n = 0 then
4: if q ∈ F then
5: return q
6: else
7: return ⊥
8: end if
9: else

10: return q ·MATCH(δ1(q,a1),a2 · · ·an,0Q2)
11: end if
12: else
13: if n = 0∧q ∈ F then

14: return q
15: else
16: q1 · · ·qk := δ2(q)
17: for i =C(q)+1, . . . ,k do
18: r := MATCH(qi,w,Cq7→i)
19: if r 6=⊥ then
20: return q · r
21: end if
22: end for
23: return ⊥
24: end if
25: end if
26: end function

Notice especially line 10 where a symbol gets read, and C reset to 0Q2 in the recursive call. The case
for Q2 starts at line 13, the loop at 17 tries all not yet tried transitions for that state. If no transition
succeeds we fail on line 23.

We note here that the running time of Algorithm 4 is exponential in general, just like Algorithm 1.
This can be remedied by means of memoization, but potentially with a significant memory overhead, due
to the fact that memoization needs to keep track of each possible assignment to all of C(q), for q ∈ Q2.3

Depending on how one turns a given regular expression into a pNFA, Algorithm 4 will run more
or less efficiently. For example, if the pNFA is built in a way that reflects Algorithm 1, analyzing the
efficiency of Algorithm 4 or, equivalently, the size of backtracking runs, yields a (somewhat idealized)
statement about the efficiency of the Java matcher.

2Recall that 0Q2 denotes the function C : Q2→ N such that C(q) = 0 for all q ∈ Q2.
3Apparently, starting from version 5.6 Perl uses memoization in its regular expression engine in order to speed up matching.
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4.1 Two Constructions for Turning Regular Expressions into pNFA

In this section we give two examples of constructions that can be used to turn a regular expression E
into a pNFA A such that L (A) = L (E). The first is a prioritized version of the classical Thompson
construction [9], whereas the second follows the Java approach.

Recall that the classical Thompson construction converts the parse tree T of a regular expression E to
a NFA, which we denote by Th(E), by doing a postorder traversal on T . A NFA is constructed for each
subtree T ′ of T , equivalent to the regular expression represented by T ′. We do not repeat this well-known
construction here, assuming that the reader is familiar with it. Instead, we define a prioritized version,
which constructs a pNFA denoted by Thp(E) such that Thp(E) = Th(E).

Just as the construction for Th(E), we define Thp(E) recursively on the parse tree for E. For each
subexpression F of E, Thp(F) has a single initial state with no ingoing transitions, and a single final
state with no outgoing transitions. The constructions of Thp( /0), Thp(ε), Thp(a), and Thp(F1 ·F2), given
that Thp(F1) and Thp(F2) are already constructed, are defined as for Th(E), splitting the state set into
Q1 and Q2 in the obvious way. It is only when we construct Thp(F1|F2) from Thp(F1) and Thp(F2), and
Thp(F∗1 ) from Th(F1), where the priorities of introduced ε-transitions require attention. We also consider
the lazy Kleene closure, denoted by F∗?1 , to illustrate the difference in priorities of transitions between
constructions for the greedy and lazy Kleene closure. We only discuss the constructions of Thp(F1|F2),
Thp(F∗1 ) and F∗?1 . In each of the constructions below, we assume that Thp(Fi) (i ∈ {1,2}) has the initial
state qi and the final state fi. Furthermore, δ2 denotes the transition function for ε-transitions in the
newly constructed pNFA Thp(E). All non-final states in Thp(E) that are in Thp(Fi) inherit their outgoing
transitions from Thp(Fi).

• If E = F1|F2 then Thp(E) is built in precisely the same way as Th(E), thus introducing new initial
and final states q0 and f0, respectively, and defining δ2(q0) = q1q2 and δ2( f1) = δ2( f2) = f0.

• If E = F∗1 then we add new initial and final states q0 and f0 to Q2 and define δ2(q0) = q1 f0 and
δ2( f1) = q1 f0. The case E = F∗?1 is the same, except that δ2(q0) = f0q1 and δ2( f1) = f0q1.

Thus, the pNFA Thp(F∗) tries F as often as possible whereas Thp(F∗?) does the opposite.
The second pNFA construction is the one implicit in the Java approach and Algorithm 1. We denote

this pNFA by Jp(E). The base cases Jp( /0), Jp(ε), Jp(a) are identical to Thp( /0), Thp(ε), Thp(a), respec-
tively. Now, let us consider the remaining operators. Again, we assume that Jp(Fi) (i ∈ {1,2}) has the
initial state qi and the final state fi. Furthermore, δ2 denotes the transition function for ε-transitions in
the newly constructed pNFA Jp(E).

• Assume that E = F1 ·F2. Then Jp(E) is built from Jp(F1) and Jp(F2) by identifying f1 with q2,
adding a new initial state q0 ∈ Q2 with δ2(q0) = q1, and making f2 the final state. Thus, Jp(E) is
built like Thp(E), except that a new initial state is added and connected to the initial state of Jp(F1)
by means of an ε-transition.

• If E = F1|F2 then Jp(E) is constructed by introducing a new initial state q0, defining δ2(q0) = q1q2,
and identifying f1 and f2, the result of which becomes the new final state.

• Now assume that E = F∗1 . Then we add a new final state f0 to Jp(F1), make q0 = f1 the initial state
of JP(E), and set δ2(q0) = q1 f0. The case E = F∗?1 is exactly the same, except that δ2(q0) = f0q1.

Observation 5. Let E be a regular expression and A a pNFA. Then the running time of Algorithm 4 on
w (with respect to E) is Θ(|btrA(w)|).
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Figure 4: Abstract pNFA corresponding to E1 ·E2, E1 |E2, E∗1 and E∗?1 , from which Thp(E) (top row) and
Jp(E) (bottom row) are constructed.

The two variants of implementing regular expressions by pNFA are closely related. In fact, Kirrage
et al. [7] seem to regard them as being essentially identical and write that their reasons for choosing
Jp(E) is “purely of presentational nature”. However, using our notion of pNFA we can show that this is
not always the case. For this, note first that the construction of both Thp(E) and Jp(E) can be viewed
in a top-down fashion, where each operation is represented by an abstract pNFA in which zero, one, or
two transitions are labeled with regular expressions. Replacing such a transition with the corresponding
pNFA yields the constructed pNFA for the whole expression. Figure 4 shows the building blocks for the
operations ·, |, ∗, and ∗? in both cases. Priorities follow the convention that ε-transitions leaving a state
are drawn in clockwise order, starting at noon. Unlabeled edges denote ε-transitions.

Now consider an expression E of the form ((ε|E1) · ε∗)∗ ·E2. When building Thp(E) and Jp(E),
these correspond to the following abstract pNFA:

E1

E2 and
E2

E1

In Thp(E), when processing an input string w, the run will first choose the prioritized choice of the
union operator (which is ε), iterate the inner loop once, and then return to the initial state of the sub-
pNFA corresponding to ε|E1. Now, the first alternative is blocked, meaning that Algorithm 4 tries to
match E1. Assuming that no failure occurs, it will then proceed by following ε transitions leading to E2.

Now look at Jp(E). Here, the run first bypasses E1, similarly to Thp(E), but this leads to the state
following the start state. As the first alternative of transitions leaving this state has already been used, the
run drops out of the loop and proceeds with E2. E1 will only be tried after backtracking in case E2 fails.

We thus get several cases by appropriately instantiating E1 and E2. Assume first that we choose
E1 in such a way that Thp(E1) suffers from exponential backtracking on a set W of input strings over
Σ, and E2 = Σ∗. Then Thp(E) causes exponential backtracking on strings in W whereas Jp(E) does not
backtrack at all. A concrete example is obtained by taking Σ= {a,b}, E1 = (a∗)∗, and W = {anb | n∈N}.

Conversely, we may choose E2 = ε |E ′2 so that Jp(E ′2) fails exponentially on W , but E1 = Σ∗. Then
Thp(E) will match strings in W in linear time whereas Jp(E) will take exponential time.

Finally, we can of course easily combine two examples of the types above into one, to obtain an
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expression such that Thp(E) shows exponential behavior on a set W of strings on which Jp(E) runs in
linear time whereas Jp(E) shows exponential behavior on another set W ′ of strings on which Thp(E)
runs in linear time.

5 Static Analysis of Exponential Backtracking

We now consider the problem of deciding whether a given pNFA causes backtracking matching similar
to Algorithm 1 to run exponentially. More precisely, we ask whether a pNFA has exponentially large
backtracking runs. In the case where the considered pNFA is Jp(E), this yields a statement about the
running time of Algorithm 1. However, we are interested in the problem in general, because other regular
expression engines may correspond to other pNFA. The decision problem comes in two flavors, with very
different complexities. Let us start by defining the first.
Definition 6. Given a pNFA A = (Q1,Q2,Σ,q0,δ1,δ2,F), let f (n) = max{|btrA(w)| | w ∈ Σ∗, |w| ≤ n}
for all n∈N. We say that A has exponential backtracking if f ∈ 2Ω(n), polynomial backtracking of degree
k for k ∈ N if f ∈Θ(nk+1), and finite backtracking if f ∈Θ(n).
Definition 7. Given a pNFA A = (Q1,Q2,Σ,q0,δ1,δ2,F), let let A f be the pNFA (Q1,Q2,Σ,q0,δ1,δ2, /0),
and let g(n) = max{|btrA f (w)| | w ∈ Σ∗, |w| ≤ n} for all n ∈ N. We say that A has exponential failure
backtracking if g ∈ 2Ω(n), polynomial failure backtracking of degree k ∈ N if g ∈ Θ(nk+1), and finite
failure backtracking if g ∈Θ(n).

Definition 7 provides an upper bound for the general case as defined in Definition 6. Also in cases
where we know that the worst-case matching complexity complexity can be exhibited by a family of
strings not in L (A), this analysis is precise. This happens for example if for some $ ∈ Σ, we have
w$ 6∈L (A) for all w ∈ Σ∗, or more generally, if for each w ∈ Σ∗, there is w′ ∈ Σ∗, with |w′| ≤ k for some
fixed constant k, such that ww′ 6∈L (A). Definition 7 is of great interest in that it is much easier to decide,
being in PTIME, instead of being PSPACE-hard. Definition 7 is closely related to the case considered in
e.g. [7], where matching complexity of the strings not in L (A) are considered.

5.1 An Upper Bound on the Complexity of General Backtracking Analysis

Let us first establish an upper bound on the complexity of general backtracking analysis. We will give an
algorithm which solves this problem in EXPTIME. Afterwards, we will also note some minor hardness
results. The EXPTIME decision procedure relies heavily on a result from [4].
Lemma 8. Given a string-to-tree transducer stt = (Q,Σ,Γ,q0,δ ), it is decidable in deterministic expo-
nential time whether the function f (n) = max{|t| | t ∈ stt(s), s ∈ Σ∗, |s| ≤ n} grows exponentially, i.e.
whether f ∈ 2Ω(n).

In short, we will hereafter construct a string-to-tree transducer from a pNFA A which reads an input
string (suitably decorated) and outputs the corresponding backtracking run of A (see Definition 3). In this
way, we model the running of Algorithm 4 on that string. Then Lemma 8 can be applied to this transducer
to decide exponential backtracking. To simplify the construction we first make a small adjustment to the
input pNFA in the form of a “flattening”, which ensures that δ2 maps Q2 to Q∗1. That is, we remove the
opportunity for repeated ε-transitions.
Definition 9. Let A = (Q1,Q2,Σ,q0,δ1,δ2,F) be a pNFA. Define d : (Q1∪Q2)× (Q2→ N)→ Q∗1, and
r̄ : Q∗1→ Q∗1 as follows:

d(q,C) =

{
q if q ∈ Q1,

d(qi+1,Cq7→i+1) · · ·d(qn,Cq7→i+1) if q ∈ Q2, δ2(q) = (q1 · · ·qn) and C(q) = i.
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r̄(s) =
{

r̄(uv) if s = uqv for some u,v ∈ Q∗1 and q ∈ Q1 with |u|q ≥ 2
s otherwise.

That is, r̄ removes all repetitions of each state q beyond the first two occurrences.
Now, the δ2-flattening of A is the pNFA A′ = (Q1,Q2,Σ,q0,δ1,δ ′2,F ′) with δ ′2(q) = r̄(d(q,0Q2)) for

all q ∈ Q2, and F ′ = {q ∈ Q1∪Q2 | d(q,0Q2)∩F 6= /0}.
First let us note that A′ in Definition 9 can be computed in polynomial time. In fact, the size of A′ is

polynomial in the size of A, as no new states are added and no right-hand side is greater than polynomial
in length (2|Q1| is the maximum length after applying r̄). The construction itself can be performed in
polynomial time in a straightforward way by computing d incrementally in a left-to-right fashion, and
aborting each recursion visiting a state that has already been seen twice to the left.

Before proving some properties of the above construction we clarify a supporting observation.

Lemma 10. Let σ be a function on trees such that, for t = f [t1, . . . , tk]

σ(t) =





t if k = 0
f [σ(t1)] if k = 1
f [σ(ti),σ(t j)] otherwise, where ti, t j (i 6= j) are largest among t1, . . . , tk.

Let T0,T1,T2, . . . be sets of trees of rank at most k. Then the function f (n) = max{|t| | t ∈ Tn} grows
exponentially if and only if f ′(n) = max{|σ(t)| | t ∈ Tn} grows exponentially.

The proof of the lemma can be found in the appendix.

Lemma 11. Let A = (Q1,Q2,Σ,q0,δ1,δ2,F) be a pNFA and A′ its δ2-flattening. Then A′ can be con-
structed in polynomial time, L (A′) = L (A), and the function f (n) = max{|btrA(w)| | w ∈ Σ∗, |w| ≤ n}
grows exponentially if and only if f ′(n) = max{|btrA′(w)| | w ∈ Σ∗, |w| ≤ n} grows exponentially.

Proof sketch. Let A′ = (Q1,Q2,Σ,q0,δ1,δ ′2,F ′). As noted, A′ can be constructed in polynomial time.
The language equivalence of A and A′ can be established by induction on the accepting runs of A

and A′. δ ′2 is a closure on δ2, such that any accepting run for A of the form p1 · · · pn can be turned into
one for A′ by replacing each maximal subsequence pk · · · pk+i ∈ Q∗2 with just pk. The function d in the
construction of δ2 will ensure that pk is accepting if this was at the end of the run, and that pk can go
directly to the following Q1 state. The converse is equally straightforward, as a suitable sequence from
Q2 can be inserted into an accepting run for A′ to create a correct accepting run for A.

Finally, we argue that A′ exhibits exponential backtracking behavior if and only if A does. By the
construction of A′, we have btrA′(w) ≤ btrA(w). Hence, f grows exponentially if f ′ does. It remains
to consider the other direction. Thus, assume that f (n) grows exponentially. We have to show that
f ′(n) grows exponentially as well. Let A′′ be the pNFA generated by δ2-flattening A without apply-
ing r̄. Let t = btrA(w) and t ′′ = btrA′′(w) for some input string w. Then t ′′ is obtained from t by
repeatedly replacing subtrees of the form q[s1, . . . ,sk,q′[t1, . . . , tl],sk+1, . . . ,sm], where q,q′ ∈ Q2, by
q[s1, . . . ,sk, t1, . . . , tl,sk+1, . . . ,sm]. Since Definition 3 prevents repeated ε-cycles, this process removes
only a constant fraction of the nodes in t.4 Hence, f ′′(n) = max{|btrA′′(w)| | w ∈ Σ∗, |w| ≤ n} grows
exponentially. Now, compare t ′′ with t ′ = btrA′(w). If a node of t ′′ has m children with the same state
q ∈ Q2 in their roots, by the definition of backtracking runs the m subtrees rooted at those nodes will be
identical. The application of r̄ to A′′ means that, in effect, the first two copies of these m subtrees are
kept in t ′. In particular, the two largest subtrees of the node are kept in t ′. According to Lemma 10, this
means that g′ grows exponentially.

4The constant may be exponential in the size of A, but for the question at hand this does not matter.
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It should be noticed that, for the proof above to be valid, it is important that r̄ preserves the order
of occurrences of states from the left, as a subtree being accepting means that no further subtrees are
constructed to the right of it.

We are now prepared to define the construction which for any δ2-flattened pNFA A produces a string-
to-tree transducer stt such that btrA(w) = t if and only if t ∈ stt(w′). Here, w′ is a version of w decorated
with extra symbols [ and $. The former will serve as padding to be read when δ2 transitions are taken,
and $ marks the beginning and the end of the string.

Definition 12. Given a δ2-flattened pNFA A = (Q1,Q2,Σ,q0,δ1,δ2,F) we construct the string-to-tree
transducer stt = (Q,Σ′,Γ,q′0,δ ) in the following way. Q = {q′0}∪{aq, fq | q ∈Q1∪Q2}, Σ′ = Σ]{[,$},
and Γ = Q1∪Q2]{Acc,Rej}. Furthermore, δ consists of the following transitions:

1. Let q′0
$−→ aq0 and q′0

$−→ fq0 . For all q ∈ Q let q [−→ q.

2. For all q ∈ Q1 and α ∈ Σ:

(a) If δ1(q,α) = q′ let aq
α−→ q[aq′ ] and fq

α−→ q[ fq′ ].
(b) If δ1(q,α) is undefined let fq

α−→ q[Rej].

3. For all q ∈ Q2, if q1 · · ·qn = δ2(q), then for all i ∈ {0, . . . ,n−1} let aq
[−→ q[ fq1 , . . . , fqi ,aqi+1 ], and

let fq
[−→ q[ fq1 , . . . , fqn ].

4. Finally if q ∈ F let aq
$−→ q[Acc], whereas when q /∈ F:

(a) if q ∈ Q1 let fq
$−→ q[Rej], and,

(b) if q ∈ Q2 and q1 · · ·qn = δ2(q), then fq
$−→ q[q1[Rej], . . . ,qn[Rej]].

Definition 13. The string w1α1w2α2 · · ·wnαnwn+1 is a decoration of α1 · · ·αn ∈ Σ∗ if wi ∈ {$, [}∗ for
each i. $[α1[α2 · · ·[αn$ is the correct decoration of α1 · · ·αn, denoted dec(α1 · · ·αn).

Lemma 14. For a δ2-flattened pNFA A, the string-to-tree transducer stt as constructed by Definition 12,
and an input string w = α1 · · ·αn, it holds that stt(dec(w)) = {btrA(w)}. For all u which are decorations
of w either stt(u) = /0 or stt(u) = {btrA(w)}.

Proof. First, notice how A being δ2-flattened impacts btrA. The flattening ensures that there is no way
to take two ε-transitions in a row in A, meaning that every time case 2 of Definition 3 applies, we have
C(q) = 0 since the previous step is either the initial call or a call from case 1 where C gets reset. As such
we will have C = 0Q2 in every recursive call below. Let sttq denote the string-to-tree transducer stt with
the initial state q (instead of q0).

Let v = $[α1[α2[ · · ·[αn$. Establishing that stt(dec(w)) = {btrA(w)} merely requires a straightfor-
ward case analysis that can be found in the appendix. Starting with the case where the backtracking
run on w fails, the analysis establishes that for rejecting backtracking runs t = btrA(q,w,0Q2), we have
t ∈ stt fq(v), for all q, where v equals dec(w) with the initial $ removed (we will deal with this at the end)
and, vice versa, t ∈ stt fq(v) is true for exactly one t, so t must be the tree btrA(q,w,0Q2).

The proof for the accepting runs follows very similar lines, but with the extra wrinkle of how Q2 rules
are handled when some path accepts. The invariant that t ∈ sttaq(v) is true for at most one t is maintained
however, as is, of course, the parallel to btrA. Again, the proof shows that sttaq(v) outputs precisely one
tree if v is dec(w) with the initial $ removed. That initial $ is now used by the initial rules in stt: q′0

$−→ aq0

and q′0
$−→ fq0 . This means that stt produces exactly one tree for every dec(w), and in both the accepting

and rejecting case it matches the tree from btrA.
Finally, we need to deal with incorrect decorations. Let v be a decoration of w which is not dec(w).

If v has no leading $, or no trailing $, or has a $ in any other position, stt(v) = /0, since stt has no other
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possible rules for $. If v contains extraneous [ we still have stt(v) = {btrA(w)}, since they will just be
consumed by q [−→ q rules. If some [ is “missing” compared to dec(w) this either causes stt(v) = /0, if a
Q2 rule needed it, or stt(v) = {btrA(w)}, if it is just removed by a q [−→ q rule anyway.

Theorem 15. It is decidable in exponential time whether a given pNFA A has exponential backtracking.

Proof. From A, construct the δ2-flattened pNFA A′ according to Definition 9. According to Lemma 11 A′

can be constructed in polynomial time, and it has exponential backtracking if and only if A has. Construct
the transducer stt for A′ according to Definition 12. By Lemma 14 stt outputs exponentially large trees if
and only if A′ has exponential backtracking. The construction of stt can clearly be implemented to run in
polynomial time. Hence, Lemma 8 yields the result.

5.2 Hardness of General Backtracking Analysis

It seems likely that general backtracking analysis is difficult. We cannot prove this yet, but here we
demonstrate that either it is hard to decide if Jp(E) has exponential backtracking or the class of regular
expressions E such that Jp(E) does not have exponential backtracking has an easy universality decision
problem. In the following, we say that E has exponential backtracking if Jp(E) does.

Let us briefly recall the universality problem.

Definition 16. A regular expression E is Σ-universal if Σ∗ ⊆L (E). The input of RE Universality is a
regular expression E over an alphabet Σ. The question to be answered is whether L (E) is Σ-universal.

This problem is well-known to be PSPACE-complete. See e.g. [6]. We will now give a simple
polynomial reduction which takes a regular expression E and constructs a new regular expression E ′

such that E ′ has exponential backtracking if E has exponential backtracking or E is not universal.

Lemma 17. Let E be a regular expression over Σ, α ∈ Σ, and Γ = Σ∪{$} for some $ /∈ Σ. If E does not
have exponential backtracking then E ′ = ((E |E$Γ∗) |(Σ∗$(α∗)∗$) has exponential backtracking if and
only if E is not Σ-universal.

Proof. If E does not have exponential backtracking then neither does E$Γ∗, since Γ∗ never fails. Now,
let A = Jp(E ′). For every input string, the backtracking run of A will attempt to match Σ∗$(α∗)∗$ to the
string only if neither E nor E$Γ∗ matches it. If E is universal, i.e. equal to Σ∗, then L (E|(E$Γ∗)) =
L (Σ∗|(Σ∗$Γ∗)) = Γ∗ (since a string in Γ∗ is either in Σ∗ or has a prefix in Σ∗ followed by a suffix in Γ∗
that begins with a $). Hence, in this case E ′ has exponential backtracking if and only if E does.

If we instead assume that E is not universal, then there exists some w ∈ Σ∗ such that w /∈ L (E).
Consider the string w$αn for any n ∈ N. Neither E nor E$Γ∗ matches it, which means that backtracking
will proceed into Σ∗$(α∗)∗$, where 2n backtracking attempts will be made to match the suffix αn$ to the
subexpression (α∗)∗$ (as the final $ keeps failing to match).

The previous lemma yields the following corollary.

Corollary 18. Let E be the set of all regular expressions that do not have exponential backtracking. Then
either RE Universality is not PSPACE-hard for inputs in E , or deciding whether regular expressions have
exponential backtracking is PSPACE-hard.
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5.3 The Complexity of Failure Backtracking Analysis

Now we look at the problem to decide whether a given pNFA has exponential failure backtracking (see
Definition 7). For reasons of technical simplicity, assume that parallel ε-transitions are absent from
pNFA in this section. To simplify the exposition of proofs in this section, we redefine an accepting run
of an NFA, as originally defined in Section 2, to exclude accepting runs of w = β1 · · ·βm ∈ Σ∗ of the
form p1 · · · pm+1, where βi = . . .= β j = ε , for some 1≤ i< j ≤m, with pi = p j, and pi+1 = p j+1. Thus
we do not allow an accepting run to contain a consecutive sequence of ε-transitions of which some are
the same. We also talk about a run, in the case where p1 · · · pm+1 satisfies the same conditions as for an
accepting run, but p1 is not necessarily the initial state or pm+1 an accepting state.

First we recall definitions from [1] on ambiguity for NFA, but for NFA with ε-cycles, these definitions
differ from those in [1], due to way we have defined accepting runs in the paragraph above. We define
the degree of ambiguity of a string w in N, denoted by da(N,w), as the number of accepting runs in N
labeled by w. The degree of ambiguity of N is defined as da(N) = supw∈Σ∗ da(N,w). N is said to be
finitely ambiguous if da(N) < ∞, and infinitely ambiguous otherwise. N is polynomially ambiguous if
there exists a polynomial h such that da(N,w) ≤ h(|w|) for all w ∈ Σ∗. The minimal degree of such
a polynomial is the degree of polynomial ambiguity of N. When N is infinitely ambiguous but not
polynomially ambiguous, it is exponentially ambiguous.

For an NFA N, we denote by |N|Q and |N|E the number of states and transitions of N respectively.

Theorem 19. For an NFA N it is decidable in time O(|N|3E) if N is finitely, polynomially, or exponentially
ambiguous, and if N is polynomial ambiguous, the degree of polynomial ambiguity can be computed in
time O(|N|3E).

Proof. If N is ε-cycle free, the result follows from Theorems 5 and 6 in [1]. Now let N = (Q,Σ,q0,δ ,F)
be an NFA, potentially with ε-cycles, and define the equivalence relation ∼ on Q, where p ∼ q if and
only if they are in the same strongly connected component determined by using only ε-transitions in N.
Let N′ := N/∼ be the quotient of N by ∼, having as states the equivalence classes of ∼.

The correctness of the remainder of the argument requires N not to have equivalence classes with
two elements, say p,q, where both p and q do not have ε self-loops. We briefly argue how equivalences
classes of this form can be removed without changing the ambiguity properties of N. It is tedious, but
straightforward, to verify that this can for example be achieved by replacing p and q (and p ε−→ q, q ε−→ p)
with 6 states and the appropriately defined ε-transitions to model the behavior of runs in N that go through
one or both consecutively of p and q. Three of the 6 states are used to model incoming transitions to p
in runs that after reaching p do not follow p ε−→ q, or follow only p ε−→ q, or follow consecutively p ε−→ q
and q ε−→ p, and the other 3 states are used for q in a similar way.

N′ could potentially have (parallel) ε self-loops. Let N′′ be N′ with ε self-loops removed. Each state
in N′′ will belong to exactly one of the following categories of equivalence classes: (a) a single state of
N without an ε self-loop in N; (b) a single state of N with an ε self-loop in N; (c) at least two states such
that, in N, there are at least two distinct ε-runs (staying within the equivalence class) between any two
states in the equivalence class (thanks to the modification of N described in the preceding paragraph).

Let Z be the states in N′′ having the properties specified in (b) or (c). In N′′ there are two possibilities.
Either (i) there is a (run which is a) cycle in N′′ having at least one state in Z, or (ii) each run in N′′ goes
through at most k states in Z (k is bounded by the number of states in N′′). In case (i), N is exponentially
ambiguous, since we have at least two ε-runs in N between any two states in an equivalence class in Z. In
case (ii), the number of acceptance runs in N′′ (by definition without ε-cycles) and number of acceptance
runs in N, differ by a constant factor, and we can apply the ε-cycle free result from [1] to N′′.
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Theorem 20. For a pNFA A we can decide in time O(|A|3E) if A has finite, polynomial or exponential
failure backtracking, and in the case of polynomial failure backtracking, the degree of backtracking can
be computed in time O(|A|3E).

Proof. Recall, A f is the pNFA obtained from A where we change all states of A so that they are not
accepting, and A f denotes the NFA obtained by ignoring priorities on transitions of A f . For an NFA N,
a(N) is obtained from N by adding a new accepting sink state z (having transitions to itself on all input
letters), all other states in N are made non-accepting, and we add ε-transitions from all states in N to z.
Since da(a(A f

),w) = |btrA f (w)|, and thus max{da(a(A f
),w) | w ∈ Σ∗, |w| ≤ n}= max{|btrA f (w)| | w ∈

Σ∗, |w| ≤ n}, the failure backtracking complexity of A is equal to the ambiguity of a(A f
). To complete

the proof, apply Theorem 19 to a(A f
).

6 Conclusion/Future Work

Our prioritized NFA model is the only automata model, that we are aware of, which formalizes back-
tracking regular expression matching. This model is well suited to be extended to describe notions such
as possessive quantifiers, captures and backreferences found in practical regular expressions. Backrefer-
ences have been formalized in [3], but without eliminating ambiguities due to multiple matches. Trying
to improve our current complexity result for deciding backtracking complexity (as in Definition 6), and
secondly, to formalize what is meant by equivalence of a regular expression with an pNFA, will provide
the impetus for future investigations.
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A More Detailed Proofs

In this appendix, we collect some proofs that had to be omitted or substantially shortened in the main
part of the paper. For convenience, we re-state the results these proofs belong to.
Lemma 10. Let σ be a function on trees such that, for t = f [t1, . . . , tk]

σ(t) =





t if k = 0
f [σ(t1)] if k = 1
f [σ(ti),σ(t j)] otherwise, where ti, t j (i 6= j) are largest among t1, . . . , tk.

Let T0,T1,T2, . . . be sets of trees of rank at most k. Then the function f (n) = max{|t| | t ∈ Tn} grows
exponentially if and only if f ′(n) = max{|σ(t)| | t ∈ Tn} grows exponentially.

Proof. The if direction is obvious. Let us consider the only if direction. Without loss of generality,
we may assume that every node of a tree in

⋃
n∈N Ti is either a leaf or has at least two children (i.e. the

second case of the definition of σ(t) never applies). Now, the implication to be proved is equivalent
to saying that g′(n) = max{`(σ(t))| | t ∈ Tn} grows exponentially if g(n) = max{`(t)| | t ∈ Tn} does,
where `(t) denotes the number of leaves of a tree t. However, among all trees t of rank k with a given
number of leaves, the balanced k-ary trees t are those which minimize `(σ(t)). Clearly, for such a tree,
assuming for simplicity that it is fully balanced, we have `(σ(t)) = `(t)c, where c = logk 2, which proves
the statement.

Lemma 14. For a δ2-flattened pNFA A, the string-to-tree transducer stt as constructed by Definition 12,
and an input string w = α1 · · ·αn, it holds that stt(dec(w)) = {btrA(w)}. For all u which are decorations
of w either stt(u) = /0 or stt(u) = {btrA(w)}.

Proof. First, notice how A being δ2-flattened impacts btrA. The flattening ensures that there is no way
to take two ε-transitions in a row in A, meaning that every time case 2 of Definition 3 applies, we have
C(q) = 0 since the previous step is either the initial call or a call from case 1 where C gets reset. As such
we will have C = 0Q2 in every recursive call below. Let sttq denote the string-to-tree transducer stt with
the initial state q (instead of q0).

Let v = $[α1[α2[ · · ·[αn$. The proof will simply be a lengthy case analysis. For the most part the
cases in the definition of btrA have a very direct one-to-one relationship with what is done in stt, with
some details requiring clarification. We work our way backwards, starting with the subtrees generated
when the empty string remains, w′ = ε and v = $.

We start with the case where the backtracking run on w fails. We divide this into two cases.

• Let the remaining suffixes of w and v be w′ = ε and v′ = $. For every state q of A we have:

– When q ∈ Q1 \F , let t = q[Rej]. Then we have btrA(q,w,0Q2) = t and t ∈ stt fq(v
′).

– When q ∈ Q2 \ F and q1 · · ·qn = δ2(q), let t = q[q1[Rej], . . . ,qn[Rej]]. Then it holds that
btrA(q,w′,0Q2) = t and t ∈ stt fq(v

′).

These are by construction. Notice that in both cases t is the only tree in stt fq(v).

• Let the remaining suffixes of w and v be w′=α1 · · ·αn for n> 0 and v′ ∈{α1[ · · ·[αn$, [α1[ · · ·[αn$}.
For every state q of A we have:

– When q ∈ Q1 and δ1(q,α1) = q′ then btrA(q,w′,0Q2) = q[btrA(q′,α2 · · ·αn,0Q2)] and, if t ′ ∈
stt fq′ ([α2 · · ·[αn$) then q[t ′] ∈ stt fq(v

′). The rule used in the transducer is given by case 2(a)
of Definition 12, preceded by fq

[−→ fq if v′ has a leading [.
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– When q ∈ Q1 and δ1(q,α1) is undefined we have btrA(q,w′,0Q2) = q[Rej] and q[Rej] ∈
stt fq(v

′). The rule used in the transducer is given by case 2(b) of Definition 12, preceded
by fq

[−→ fq if v′ has a leading [.
– When q ∈ Q2 and δ2(q) = q1 · · ·qn, since we assume the backtracking run to fail all qi paths

will fail and we will have btrA(q,w′,0Q2) = q[btrA(q1,w′,0Q2), . . . ,btrA(qn,w′,0Q2)]. In the
transducer a rule from case 3 is applied to get q[t1, . . . , tn]∈ stt fq(v

′) where ti ∈ stt fqi
(α1[ · · ·[αn)

for each i. Notice that here a leading [ in v is required, but one will always be available (as
we cannot have two Q2 states in a row due to δ2-flattening). Since none of the qi are in Q2
the next step will read the leading α1 and a new [ will be available in the next recursive step.

Notice that each step in stt creates precisely one tree if only a single subtree is the recursive call
generates only a single tree, and as shown above the base case produces only a single tree. As such
t ∈ stt fq(v) is by induction true for exactly one tree for each (properly decorated) v. This property
will be maintained for aq states as well.

This establishes that for rejecting backtracking runs t = btrA(q,w,0Q2), we have t ∈ stt fq(v), for all q,
where v= dec(w) with the initial $ removed (we will deal with this at the end) and, vice versa, t ∈ stt fq(v)
is true for exactly one t, so t must be the tree btrA(q,w,0Q2).

The proof for the accepting runs follows very similar lines, but with the extra wrinkle of how Q2 rules
are handled when some path accepts. The invariant that t ∈ sttaq(v) is true for at most one t is maintained
however, as is, of course, the parallel to btrA. Take a w on which the backtracking run of A succeeds. We
divide this into the same two cases.
• Let the remaining suffixes of w and v be w′ = ε and v′ = $ respectively. For every q ∈ F we have

t = q[Acc] and btrA(q,w′,0Q2) = t and t ∈ sttaq(v
′). This completes all cases for the empty input

string.

• Let the remaining suffixes of w and v be w′=α1 · · ·αn for n> 0, and v′ ∈ {[α1 · · ·[αn$,α1[ · · ·[αn$
respectively. For every state q of A we have:

– The case where q ∈Q1 and δ1(q,α1) = q′ is precisely like the failing case except with aq and
aq′ in place of fq and fq′ .

– The case where q ∈ Q1 but δ1(q,α1) cannot give rise to a backtracking run that succeeds.
– When q∈Q2 and δ2(q) = q1 · · ·qn we get something slightly more complex. One of the paths

qi will accept, by assumption, so btrA(q,w′,0Q2) = q[btrA(q1,w′,0Q2), . . . ,btrA(qi,w′,0Q2)]
by construction. Case 3 of Definition 12 makes it possible to generate any q[ fq1 , . . . , fqi−1 ,aqi ],
so here q[t1, . . . , ti] ∈ sttaq(v

′) with t j ∈ stt fq j
(α1[ · · ·[αn$) for j ∈ {1, . . . , i− 1} and ti ∈

sttaqi
(α1[ · · ·[αn$). This is in fact the only possible case, as the transducer, as here sketched

out, can only successfully complete its computation from a state aq if q eventually accepts
the string, and can only complete its computation from a state fq state if q fails.

Again, this shows that sttaq(v) outputs precisely one tree if v is dec(w) with the initial $ removed. That
initial $ is now used by the initial rules in stt: q′0

$−→ aq0 and q′0
$−→ fq0 . This means that stt produces

exactly one tree for every dec(w), and in both the accepting and rejecting case it matches the tree from
btrA.

Finally, we need to deal with incorrect decorations. Let v be a decoration of w which is not dec(w).
If v has no leading $, or no trailing $, or has a $ in any other position, stt(v) = /0, since stt has no other
possible rules for $. If v contains extraneous [ we still have stt(v) = {btrA(w)}, since they will just be
consumed by q [−→ q rules. If some [ is “missing” compared to dec(w) this either causes stt(v) = /0, if a
Q2 rule needed it, or stt(v) = {btrA(w)}, if it is just removed by a q [−→ q rule anyway.
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Abstract. This paper considers a characterization of the context-free non-regular
languages, conjecturing that there for all such languages exists a fixed string that
can be pumped to exhibit infinitely many equivalence classes. A proof is given
only for a special case, but the general statement is conjectured to hold. The
conjecture is then shown to imply that the shuffle of two context-free languages
is not context-free.
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1 Introduction

This paper is concerned with the characterization of context-free languages, a subject
with a long and interesting history. The context-free class of languages is after all
very important, it is a both large and interesting class for which parsing is reasonably
efficient both in theory and practice. See e.g. [HMU03] for the basics on context-free
languages. We will assume a passing familiarity with formal language theory and will
only recall the most important definitions we need.

Specifically, we will consider a conjecture, considered likely to be true by the au-
thor, which characterizes the non-regular context-free languages. Consider Figure 1.
Where classic characterizations such as Parikh’s theorem and the context-free pump-

CF RegSemi-linear
Parikh image

Pumping
Lemma

Characterizations of the
shaded part is the goal

Fig. 1: A Venn diagram illustrating what is being looked at. The set of languages with
semi-linear Parikh images are a (strict) superset of the context-free (CF ), the languages
that fulfill the context-free pumping lemma form a (disjoint and strict) superset of the
context-free. The conjecture here studied will restrict itself to just the context-free (by
assumption) but will characterize the non-regular (non-Reg ) part of the context-free.
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ing lemma state requirements that all context-free languages fulfill, this conjecture
instead precisely defines which context-free languages are non-regular.

Stating and proving some properties about a conjecture characterizing the inner
border of that shaded area, CF \Reg in Figure 1, is one part of this paper. The other
proves a result that was part of the original motivation for this conjecture, relating
to the shuffle. The shuffle of two languages consists of all strings that can be con-
structed by picking one string from each language and interleaving them. It seems
highly probable that the shuffle of any two context-free languages should produce a
language which is not context-free, unless one of those two original context-free lan-
guages was actually regular. A more specialized case of this statement will be proven
to be true if the conjecture holds.

Overview of the paper. All this will become clearer once some baseline definitions
are given, so the intuition about the conjecture is continued in Section 3. In Section 4
the conjecture itself is introduced. In Section 6 the impact it would have on the shuffle
of context-free languages if true.

Acknowledgments and citations. The author is indebted to his advisors Henrik
Björklund and Frank Drewes for input on the contents of this paper. As most bibliog-
raphy formats lack a more appropriate field it is suggested that they are listed as author
on citations of this paper.

2 Basic Notation

Let N = {0,1, . . .}. Let ε denote the empty string. Let Σ denote an arbitrary alphabet
(finite set of symbols). L∗ denotes the Kleene closure (i.e. Σ ∗ is the language of all
strings). We let wk =wwk−1 with w0 = ε (i.e. the concatenation of k copies of a string).
For a string w = α1 · · ·αn (with all αi ∈ Σ ) let w(i) = α1 · · ·αi and w(i, j) = αi · · ·α j.
As already seen we let Reg denote the regular languages and CF denote the context-
free languages. We let L(A) denote the language generated by a grammar/automaton
A. L ∝ L′ denotes the left quotient:

Definition 2 For languages L,L ′ ⊆ Σ ∗ the left quotient L ∝ L ′ is defined by letting
w ∈ L ∝ L ′ if and only if vw ∈ L ′ for some v ∈ L . �
To simplify the notation in some common cases we, for a string u ∈ Σ ∗, write just u to
mean the language {u} in this context. For example u ∝ L and L ∝ u are equivalent to
{u} ∝ L and L ∝ {u} respectively. Let w ≡L v if and only if w ∝ L = v ∝ L , the sub-
classes of strings induced by ≡L are called the equivalence classes of L . The relation
≡L is also known as the right congruence induced by L.

3 Further Introductory Discussion

Among the characterizing results about context-free languages there are few better
known than the context-free pumping lemma [BHPS61]. Let us briefly recall it.
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Lemma 3 For every context-free language L ⊆ Σ ∗ there exists some constant k ∈ N
such that every string w ∈ L with |w|> k can be split into strings x,v,y,w,z ∈ Σ ∗ (i.e.
w = xvywz) such that

1. the middle piece is not too long, |vyw| ≤ k,
2. we can repeat v and w arbitrarily many times, xviywiz ∈ L for all i ∈ N,
3. the repetition part is non-empty, |vw|> 0. �

As illustrated in Figure 1 this lemma encapsulates context-free languages neatly, prov-
ing for example that {anbncn | n ∈N} is not context-free is straightforward as require-
ments 2 and 3 mean at least one a, b or c must be repeatable, but requirement 1 ensures
that we cannot fit at least one each of all three symbols into vw without making the
middle too long.

However, what this lemma does not tell us is (at least) two-fold. Firstly, for every
language L the language Laa∗ fulfills the lemma. That is, arbitrarily complex lan-
guages can fulfill the lemma if you “attach” them to a language that fulfills it. Sec-
ondly, and more importantly for our concerns here, the lemma does not tell us if the
language is “just” regular. That is, if the lemma is fulfilled using e.g. w = ε then it is
equivalent to the pumping lemma for regular languages. As shown in Figure 1 we are
aiming to instead make a statement about the non-regular context-free languages.

The characterization through the semi-linear Parikh image [Par66] is of course
similar in the first respect, LΣ ∗ has a semi-linear Parikh image for all L, and the state-
ment of the theorem is precisely that context-free and regular languages have the same
class of Parikh images.

It is important to note that there of course are strict characterizations of the CF \
Reg class, simply stating “a language L such that a context-free grammar G exists with
L(G) = L but no finite automaton A exists with L(A) = L” is sufficient. The perhaps
most used characterization for CF \Reg is to make use of the fact that infinitely many
equivalence classes exist, in effect using the converse of the statement of the Myhill-
Nerode theorem (see e.g. [HMU03]) to characterize non-regularity.

This is however a matter of how helpful the statement is. In short, what we are
aiming for is the intuition that every non-regular context-free language has a choice
of x and v in the pumping lemma (as sketched in Definition 3) for which the set of
choices for y,w,z that fulfill the lemma is non-empty, but all have w 6= ε . That is, if
the language is non-regular then there exists a choice of string to repeat which must
be matched by a change in the suffix of the language.

Another way of viewing matters is through the Chomsky-Schützenberger theo-
rem [CS63], which precisely defines the context-free languages, basically defining an
alternative representation alongside the context-free grammars. To avoid recalling this
theorem in full we just note that that the intuition corresponding to the conjecture
which follows here would, in terms of the Chomsky-Schützenberger theorem, state
that the homomorphism may not project away the difference between opening and
closing parenthesis in the underlying Dyck language.
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4 The Characterizing Conjecture

We now arrive at the main topic of this paper, a conjecture which, if true, characterizes
the non-regular context-free languages.

Conjecture 4 For L ∈ CF (over Σ ) it holds that L ∈ CF \Reg if and only if there
exists some x,v ∈ Σ ∗ such that for all n,m ∈ N with n 6= m it holds that xvn 6≡L xvm

(i.e., that (xvn ∝ L) 6= (xvm ∝ L)). �

Hopefully it is already clear that this statement is of a rather fundamental nature. It
characterizes the context-free languages without including the regular languages, in a
way that the author believes has not otherwise been done. Unsurprisingly the author is
also intuitively convinced that the conjecture holds, as it appears to strike at the core
of what context-free languages do. It is important to note that this statement is not
a trivial consequence of the pumping lemma for context-free languages (or Ogden’s
lemma or other variations), as those characterize all context-free languages, including
the regular. In addition it may be instructive to keep in mind that for L ∈ CF it is, in
general, undecidable whether L ∈ Reg , which implies that any proof of Conjecture 4
must be non-constructive.

5 Proving a Fragment of Conjecture 4

There are, luckily, some subclasses of the context-free languages for which it is easier
to see that Conjecture 4 holds than it is for the full class. It is, of course, very easy to
see that it holds for the language {anbn | n ∈ N}, by choosing x = ε and v = a. We
can, however, broaden this to a much larger (though somewhat related) subclass of the
context-free languages still.

First we recall the definition of push-down automata, mainly in order to name to
name some restrictions on the language class precisely.

Definition 5 A push-down automaton (PDA) is a tuple A = (Q,Σ ,Γ ,δ ,q0,⊥,F),
where

– Q is the finite set of states,
– Σ is the input alphabet,
– Γ is the stack alphabet,
– q0 ∈ Q is the initial state,
– F ⊆ Q is the set of final states,
– ⊥ ∈ Γ is the bottom stack symbol, and, finally,
– δ : Q×(Σ∪{ε})×Γ ×Q×Γ ∗ is the finite set of rules. For all rules (q,α,γ,q′,s)∈

δ where γ =⊥ it must hold that s = s′⊥ for some s′ ∈ Γ ∗.

The set of configurations of A is CA = Q× (Γ ∗ ·⊥). A can go from the configuration
(q,γs) to (q′,s′s), for γ ∈ Γ and s,s′ ∈ Γ ∗, by reading the symbol α (may be ε in
which case nothing is read) if and only if there is a rule (q,α,γ,q′,s′) ∈ δ . The initial
configuration is (q0,⊥). A accepts a string w, i.e. w ∈ L(A), if and only if the string
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can be read going from the configuration (q0,⊥) to an accepting configuration. For
general push-down automata the accepting configurations are all (q,s) such that q∈ F
and s ∈ Γ ∗.

If A is a stack-emptying PDA the accepting configurations are the set {(q,⊥) | q ∈
F}. A is fully deterministic if δ is a function δ : (Q×Σ ×Γ )→ (Q×Γ ∗). �
Next let us note a small, and fairly obvious detail, before we use it in the broader
proof. Most readers will probably accept it as true without further argument, but for
completeness sake the proof is sketched.

Lemma 6 For every language L ∈ CF \Reg there exists an infinite string ω such that
ω(i) 6≡L ω( j) for all i 6= j. �
PROOF: This is necessarily the case, since the Myhill-Nerode theorem dictates that
L /∈ Reg if and only if L has infinitely many equivalence classes. Simply construct the
tree where the root is marked ε , and for each node v give it a child for each α ∈ Σ
such that vα 6≡L v(i) for every i. Each node has a finite number of children, but the
infinitely many equivalence classes will necessarily be reached in this fashion, so by
Königs lemma some path is infinite, which we take as ω .

Theorem 7 If L is a language accepted by a stack-emptying fully deterministic PDA
A then Conjecture 4 holds for L . �

PROOF: Clearly, if L ∈ Reg Conjecture 4 holds, since L has a finite set of equivalence
classes according to the Myhill-Nerode theorem, and so for all x,v ∈ Σ ∗ there must
exist i 6= j with xvi ≡L xv j.

The case where L ∈ CF \Reg remains. Let ω be an infinite word such that ω(i) 6≡L
ω( j) for all i, j ∈ N. Let (qi,si) be the configuration A reaches on ω(i). There will be
precisely one since A is fully deterministic. Then let S : N → Q×Γ be such that
S(i) = (qi,γi) where si = γis′i for some γ ∈ Γ . Let H(i) = |si| (i.e. the height of the
stack of the configuration reached on ω(i)).

All (qi,si) must be different, by the construction of ω and the fact that A accepts L,
so H must be ultimately increasing, in the sense that there exists an infinite set I⊆ N
such that for all i ∈ I and j > i it holds that H( j)> H(i).

Since I is infinite and Q×Γ finite there must exist some (q,γ) for which I(q,γ) =
{i ∈ I | S(i) = (q,γ)} is infinite. Let n = |Q|+ 1 and let i1, . . . , in be the n smallest
elements of I(q,γ).

To give the intuition of the remainder of the proof, we now select a sufficiently
long prefix of ω that all of the above configurations are visited. A suffix which is in
the language is selected, then a substring of the prefix is found such that pumping it
will force an equivalent pumping in the suffix.

Pick any string v such that ω(in) · v ∈ L (at least one must exist as (ω(i) ∝ L) 6= /0
for all i). Let w = ω(in) · v and let S′, H ′ be functions as above but for running A on
w. Let j1, . . . , jn ∈ N be such that, for all k, jk is the smallest number with jk > ik and
H ′( jk) ≤ H ′(ik). More precisely this means that H ′( jk) = H ′(ik), and the configura-
tions reached by A on w( jk) and w(ik) have the same stack. This is necessarily the
case since A is stack-emptying and a rule can pop at most one stack symbol. Notice
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that the j indices end up being “reversed”, in that jk+1 < jk for all k. Since n> |Q| the
pigeon-hole principle yields that there exists some p ∈Q and k1,k2 ∈N (with k1 < k2)
such that (p,γ) = S( jk1) = S( jk2). Note that this is the same γ as in S(i1) through S(in).

Next, we partition w into w = xvyuz where

– x = w(1, ik1),
– v = w(ik1 +1, ik2),
– y = w(ik2 +1, jk2),
– u = w( jk2 +1, jk1),
– z = w( jk1 +1, |w|).

Notice that after A has read x it will be in a configuration of the form (q,γs), and that,
by construction, whenever A is in a configuration of the form (q,γs′) it can read v to
go to a configuration (q,γs′′γs′) without ever inspecting s′. In the opposite direction,
whenever A is in a configuration of the form (p,γs′′γs′) (with the same s′ as above) it
can read u to go to the configuration (p,γs′), without ever inspecting s′. In particular,
since xvyuz ∈ L we have xviyuiz ∈ L for all i≥ 1.

Claim. xvi 6≡L xv j for all 1≤ i< j.
Assume that there are 1 ≤ i < j such that xvi ≡L xv j. Let d = j− i. Then, since

equivalence is closed under concatenation to the right, xvi ≡L xvi+d ≡L xvi+2d ≡L
xvi+3d ≡L · · · . However, as argued above, running A on the string xvi+cd , for c ∈ N,
will place it into a configuration

(q,γs′′γs′′ · · ·γs′′︸ ︷︷ ︸
i+ cd copies

γs),

which, for a sufficiently large c will give a stack deeper than |yuiz|, but since A must
empty its stack before accepting, and must read a symbol for each symbol popped
from the stack, this means that xvi+cdyuiz /∈ L, but xviyuiz ∈ L, so our assumption that
xv j ≡L xvi must have been incorrect. This contradiction proves the claim, which makes
x and v fulfill the conjecture for L.

It seems probable that this proof can be extended to handle slightly less restrictive lan-
guage classes (notably the stack emptying is a candidate for removal), but introducing
full non-determinism appears to require a more advanced approach.

6 Closure Properties of Shuffling Context-Free Lan-
guages

To show that Conjecture 4 is not entirely without motivation (although it appears very
interesting in its own right), we will here prove a fairly interesting statement about the
shuffle of context-free languages that can be made using the conjecture. First let us
recall the definition of the shuffle, an interleaving operator of great interest in many
areas.
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Definition 8 For all strings w=α1 · · ·αn and v= β1 . . .βm, for α1, . . . ,αn,β1, . . . ,βm ∈
Σ , let w� v denote the shuffle of w and v. The shuffle is defined by letting w� ε =
ε�w = w, and letting

α1 · · ·αn�β1 · · ·βm = α1(α2 · · ·αn�β1 · · ·βm)∪β1(α1 · · ·αn�β2 · · ·βm).

For languages L,L′ ⊆ Σ ∗ let L�L′ = {w� v | w ∈ L,v ∈ L′}. �
Next, let us for the sake of completeness recall the statement of Ogden’s Lemma [Ogd68],
which generalizes the pumping lemma of Definition 3, and which will be useful later.

Lemma 9 If a language L ∈ Σ ∗ is context-free there exists a constant p ∈N such that
for every string w ∈ L and every way of marking at least p of the positions in w there
exists a subdivision p1r1mr2 p2 = w such that

1. r1r2 contains at least one marked position,
2. r1mr2 contains at most p marked positions,
3. p1ri

1mri
2 p2 ∈ L for all i ∈ {0,1, . . .}. �

We can now go on to prove the following theorem.

Theorem 10 Assume that Conjecture 4 holds. Let a,b be two symbols not in Σ . Let
D = {anbn | n ∈N}. Then for any context-free L ∈ Σ ∗ it holds that L�D ∈ CF if and
only if L ∈ Reg . �
PROOF: If L ∈ Reg it is trivially true that L �D ∈ CF , one can directly construct a
push-down automaton which recognizes the regular L entirely in its finite state, and
uses the stack to recognize the D portion.

The remainder of the proof demonstrates the other direction. Using L let x,v ∈ Σ ∗
be as in Conjecture 4, which we assumed to be true. Let L ′ = L �D as above. The
proof continues by contradiction, let us assume that L ′ ∈ CF but L ∈ CF \Reg .

Let R be the regular language corresponding to the regular expression x(av)∗b∗Σ ∗,
then let L ′′ = L ′∩R . This L ′′ must be context-free, since L ′ is assumed to be context-
free and CF is closed under intersection with regular languages.

Let p be the constant for which (Ogden’s) Lemma 9 holds for L ′′. For all γ ∈N let
Wγ = xvγ ∝ L . Then, for each γ ≥ p and w ∈Wγ consider the string x(av)γ bγ w, which
is in L ′′ by definition. Apply Lemma 9 by marking all symbols in the substring (av)γ

(that is sufficient, as we chose γ ≥ p), and let p1r1mr2 p2 be the subdivision that the
lemma dictates exists. We know that r1r2 must contain at least one symbol from (av)γ ,
and that p1ri

1mri
2 p2 ∈ L ′′ for all i≥ 0 by the lemma, this restricts the choice of r1 and

r2 severely:

– The language R used in the construction of L ′′ ensures that if any symbol in (av)γ

is repeated then a complete substring of the form (av)k, for 1 ≤ k ≤ p must be
repeated. In actuality k ≤

⌊ p
|av|
⌋

is dictated by Lemma 9, but we overestimate for
simplicity.

– The intersection with the language R also ensures that neither r1 nor r2 can span
the border between x and (av)γ , the border between (av)γ and bγ , or the border
between bγ and w, as those borders are distinctly dictated in the regular expres-
sion.
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– If r1 contains no a then r2 must contain the a, but then the repetition p1ri
1mri

2 p2
increases the number of as without increasing the number of bs, which the shuffled
in language D disallows. As such, r1 must contain an a, and therefore be of the
form (av)k for some k, as this is the only repetition in this section that R makes
possible.

– This leaves r2 to be of the form bk, to preserve the number of bs in correspondence
with the number of as.

This leads us to w, which by the above cannot be modified by the pumping p1ri
1mri

2 p2
(i.e., it necessarily falls entirely within p2), despite the number of vs changing as part
of the pumping of a substring in (av)∗. This means that for all γ ≥ p and w ∈Wγ
(recall, Wγ = xvγ ∝ L) there exists a constant k such that xvγ+ikw ∈ L for all i≥−1.

Notice that p! is a multiple of all 1 ≤ k ≤ p, meaning that all w ∈Wγ are such
that xvγ+i(p!)w ∈ L for all i ≥ 0. It follows from this that Wγ ⊆ Wγ+p!, and, since
Conjecture 4 is assumed to be true Wi 6= Wj for all i 6= j, so the inclusion is strict:
Wγ (Wγ+p! for all γ ≥ p. Since this holds for all γ we can by simple induction establish
that

Wp (Wp+p! (Wp+2(p!) (Wp+3(p!) ( · · ·
by simply choosing γ to be p, p+ p!, p+2(p!) successively. Replacing the uses of Wγ
with its left quotient definition we arrive at the statement that

(xvp+i(p!) ∝ L)( (xvp+(i+1)(p!) ∝ L)

for all i ≥ 0. Now, for each i > 1 pick some representative wi ∈ (xvp+i(p!) ∝ L) \
(xvp+(i−1)(p!) ∝ L). Notice that this by induction means that wi /∈ (xvp+ j(p!) ∝ L) for
any 0< j < i.

Next, let R̂ = xvp(avp!)∗b∗Σ ∗, and construct L̂ = R̂ ∩ (L�D). Let p̂ be the con-
stant for Lemma 9 for this language. Pick the string xvp(avp!)p̂b p̂w p̂. Apply Lemma 9
by marking the substring (avp!)p̂ and let p1r1mr2 p2 be the substring subdivision that
the lemma dictates exist. Again notice that r1 must fall entirely within the substring
(avp!)p̂ due to the intersection with R̂ , and r2 must then fall entirely within the b∗

substring (refer to the full argument above). The lemma then further dictates that
p1mp2 ∈ L̂ , but this removes (using the same argument for where r1 and r2 must
be in the original string as above) a non-zero number of the substrings avp! from the
string, and by construction w p̂ /∈ (xvp+k(p!) ∝ L) for k < p̂.

This contradicts the assumption that L ∈ CF and L ′ /∈ Reg .

7 Conclusions

We have shown that Conjecture 4 holds for at least one limited case, and proven a
follow-up result of an interesting nature. However, the most obvious missing piece is a
complete proof of the conjecture, or possibly a counter-example. The author still hopes
to manage such a proof, but contributions are most certainly welcome. Secondarily an
extension of the proof that the shuffle of a context-free language with anbn (on disjoint
alphabets) is context-free if and only if the first language was regular should also be
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considered. It appears likely that for all L,L ′ ∈ CF , on disjoint alphabets, L�L ′ ∈ CF
if and only if either L ∈ Reg or L ′ ∈ Reg . In this case it seems likely that this can be
achieved along the lines of the proof of Theorem 10, by making the central claims
symmetrical and employing some case analysis, but a counter-example as the final
result cannot yet be entirely ruled out.
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Abstract. The string correction problem looks at minimal ways to modify one string
into another using fixed operations, such as for example inserting a symbol, deleting a
symbol and interchanging the positions of two symbols (a “swap”). This has been gen-
eralized to trees in various ways, but unfortunately having operations to insert/delete
nodes in the tree and operations that move subtrees, such as a “swap” of adjacent sub-
trees, makes the correction problem for trees intractable. In this paper we investigate
what happens when we have a tree edit distance problem with only swaps. We call
this problem tree swap distance, and go on to prove that this correction problem is
NP-complete. This suggests that the swap operation is fundamentally problematic in
the tree case, and other subtree movement models should be studied.

1 Introduction

String edit distance is an old, well-known and thoroughly studied concept, most
commonly used in the context of string correction problems. An edit distance (of
which there are many kinds) defines some small set of operations on strings. An
instance of the string correction problem corresponding to a given edit distance is a
question of the form “can the string s be transformed into s′ by applying at most k
edit operations?” In more complex cases the string correction problem may associate
different costs to the edit operations, having k serve as a total budget.

One of the most frequently used types of edit distance is Levenshtein distance [7],
which features the three operations delete, insert, and replace. These can be
applied to any position in a string, to delete a single symbol, insert a single symbol,
and replace a single symbol by another, respectively. A popularly applied extension,
called Damerau-Levenshtein distance [3], adds a fourth operation, swap, which swaps
the position of any two symbols in a string. For both of these distances the string
correction problem is very efficiently solvable if all operations have the same cost. A
more general variant is called the extended string-to-string correction problem, which
uses the four Damerau-Levenshtein operations, but allows the problem instance to
assign each operator an arbitrary integer cost [11]. In general this makes the correction
problem strongly NP-complete [10], a fact that we will make use of later.

As this area is well-explored and successful in the string case it is of great interest
to extend the same ideas to the tree case [8, 9]. This work has been very successful for
the “insert”, “delete” and “replace” operations, but the “swap” operation has most
often been left out [12, 5, 2]. This is in fact a necessity, as the problem quickly becomes
intractable when subtree movement is introduced as an operation. This follows triv-
ially from the fact that tree edit distance on unordered trees is NP-complete [13], by
duplicating nodes one can create a situation where the swaps are so much cheaper than
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a delete/insert operation that the problem becomes equivalent to the unordered
one. Still, swaps and other subtree movement operations remain very interesting in
practice in very diverse fields such as XML processing, computational biology, natural
language processing and many others. Approximations have been considered, for ex-
ample [1] introduces swaps into tree edit distance but the algorithm as given actually
restricts each node to participate in at most one swap, so arbitrary reorderings are
not possible.

While much work has been done to restrict the swaps to make the problem
tractable we will here instead take a step back and consider the “tree swap dis-
tance” problem. In this restriction of tree edit distance only the swap operation is
allowed, reducing the problem to finding the least number of swaps necessary to re-
order one tree into another. Unfortunately the end result is that we demonstrate
that even this problem is NP-complete, suggesting that the swap operation may be
a computationally bad choice to model subtree movement operations.

2 Preliminaries

Let N denote the set of natural numbers {0, 1, 2, 3, . . .}. For all n ∈ N let [n] denote
the set {1, . . . , n}. An alphabet Σ is a finite set of symbols. Going forward we will
simply use Σ to mean some appropriate alphabet without specifying it precisely. The
empty string/sequence is denoted by ε. The set of all strings over an alphabet Σ is
denoted Σ∗ and is defined as Σ∗ = {ε}∪{αv |α ∈ Σ, v ∈ Σ∗}. The length of a string
v ∈ Σ∗ is denoted |v|. The set of sequences over an arbitrary set S is also denoted S∗,
the sequence s1, . . . , sn is referred to as an n-tuple. When expedient we may abuse
notation and confuse the n-tuple s1, . . . , sn with the string s1 · · · sn.

An n by n matrix (all our matrices are square) is an n-tuple of n-tuples M =
((x1,1, . . . , x1,n), . . . , (xn,1, . . . , xn,n)) with xi,j ∈ N for all i, j ∈ [n]. We say that xi,j is
on row i and column j, and denote it by Mi,j.

A tree t consists of a root node labeled by some symbol α ∈ Σ and a tuple
of zero or more direct child subtrees (t1, . . . , tn) (for any n ∈ N) over the same
alphabet. t is denoted by α[t1, . . . , tn]. For a tree α[] with zero children we may
abbreviate it as simply α. The set of all trees over Σ, denoted by TΣ, is defined as
TΣ = Σ ∪ {α[t1, . . . , tn] |α ∈ Σ, n ∈ N, t1, . . . , tn ∈ TΣ}.

The set of positions in a tree is defined by a function pos : TΣ → 2N∗
. For any

k ∈ N, including zero, α ∈ Σ and t1, . . . , tk ∈ TΣ the definition of pos
(
α[t1, . . . , tk]

)

is {ε} ∪
{

(i, v1, . . . , vn) | i ∈ {1, . . . , k}, (v1, . . . , vn) ∈ pos(ti)
}

. That is, a position
p ∈ pos(α[t1, . . . , tn]) denotes the root note α if p = ε, otherwise p is of the form
(i, v1, . . . , vn) referring to the position (v1, . . . , vn) in the subtree ti.

3 The Extended String-to-String Correction Problem

A (pre-existing) problem that we will make use of in the coming proof will now be
defined. Later on we will use a reduction from an instance of the extended string-to-
string correction problem (ESSCP) to our problem to show strong NP-hardness. The
ESSCP is known to be NP-complete (problem [SR20] in [4]), shown in the case where
the cost of inserts and replacements is made infinite and when swaps and deletes are
given a constant cost [10]. The formulation by Wagner in [10] allows arbitrary costs
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for deletes and any non-zero cost for swaps, while the formulation in [4] fixes both
costs to 1. Here we opt to set the cost of a single swap to 1 and the cost of deletes to
0, this causes no loss of generality, since the number of deletes in a solution is always
the difference in length between the source and target strings. The problem definition
is divided into three parts, for all α1 · · ·αn ∈ Σ∗:
Definition 1 (String deletes). For all {d1, . . . , dm} ⊆ [n] we define the delete func-
tion as delete(α1 · · ·αn, {d1, . . . , dm}) = αi1 · · ·αin−m where i1 < . . . < in−m and
{i1, . . . , in−m} = [n] \ {d1, . . . , dm}.

Definition 2 (String swaps). We define the swap function by letting swap(s, ε) = s
for all strings s and for all (s1, . . . , sm) ∈ [n− 1]∗ letting

swap(α1 · · ·αn, (s1, . . . , sm)) = swap(α1 · · ·αs1−1αs1+1αs1αs1+2 · · ·αn, (s2, . . . , sm)).

Definition 3 (The delete/swap ESSCP). An instance of the delete/swap ESSCP
(over some alphabet Σ) is a tuple (S, T, b) ∈ Σ∗ × Σ∗ × N. The instance is a “yes”
instance (the answer is “yes”) if and only if there exists some D ⊆ [|S|] and W ∈
[|S| − |D| − 1]∗ such that swap(delete(S,D),W ) = T with |W | ≤ b. We denote the
set of all such “yes” instances ESSCPds.

There are a couple of important things to notice here.

– The definition is stated so that all deletes happen before any swap. This is not a
restriction of the problem, since there is no instance where it is better to delete
something after moving it around.

– b is in all interesting instances polynomial in the size of the instance, since all
reorderings can be realized in less than n2 swaps. We therefore, without loss of
generality, assume b to be coded in unary in the input, so ESSCPds is strongly
NP-complete.

– Swaps of unrelated symbols can be reordered freely. One recurring example is that
if swap(α1 · · ·αn,W ) is such that the symbol αi is moved to the end of the string
by W we can trivially restructure W to start with the sequence i, i+ 1, . . . , n− 1,
without making W longer. That is, if a minimal swap sequence moves the symbol
in position i to the last position n then doing this before anything else cannot
make the swap sequence longer, since keeping the symbol in the middle of the
string for longer serves no purpose.

4 Swap Assignment Problem

Now we will define the first original problem, the swap assignment problem. We will
demonstrate that this problem is strongly NP-complete by a reduction from ESSCPds.
This problem will serve as a stepping stone to demonstrate NP-completeness for the
tree swap distance problem.

This problem is quite similar to the classical assignment problem [6], except a
starting assignment is given, and an optimal assignment is to be reached by swapping
adjacent assignments. The swap function is defined exactly as in the string case, when
the matrix is viewed as a string of rows.
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Definition 4 (Matrix Row Swap). For an n by n matrix M the swap function
is defined by for all W ∈ [n − 1]∗ simply viewing the matrix as a string of rows:
(M1,1, . . . ,M1,n) · · · (Mn,1, . . . ,Mn,n) and applying the string swap swap(M,W ).

Definition 5 (The Swap Assignment Problem). An instance of the swap as-
signment problem is a tuple (M, b) where b ∈ N, and M is an n by n matrix. The
instance is a “yes” instance if and only if there exists some W ∈ [n− 1]∗ such that

b ≥ |W |+
n∑

i=1

swap(M,W )i,i.

We denote the set of all such “yes” instances SAP.

Let us look at a small instance to better understand the problem.

Example 6. As an example swap assignment problem instance we can take (M, b)
with b = 9 and M as below.

M =




4 5 16 0

3 4 16 0

2 3 0 16

1 2 16 16


 M ′ =




4 5 16 0

1 2 16 16

2 3 0 16

3 4 16 0


 .

Since we can use the swaps W = 3, 2, 3 to construct M ′ = swap(M,W ) as shown
above, it follows that (M, b) ∈ SAP. M ′ has the diagonal sum 6 which together with
the three swaps adds up to exactly 9. We could also equivalently solve the problem
instance using the swap-sequence W ′ = 1, 3, 2, 3 which produces a diagonal cost of
3 + 2 + 0 + 0 = 5 but, on the other hand, requires 4 swaps, again giving a total of 9.

The ESSCPds (Definition 3) can be reduced to the swap assignment problem in a
slightly tricky to visualize but functionally straightforward way.

Definition 7 (ESSCP to Swap Assignment Reduction). Take a delete/swap
ESSCP instance (s1 · · · sn, t1 · · · tm, b) (we assume that m ≤ n, otherwise it is trivial).
Then construct a swap assignment problem instance (M, b′) where the n by n matrix
M is constructed by taking:

Mi,j =





0 if j ≤ m and si = tj,

b′ + 1 if j ≤ m and si 6= tj.

n+ i− j if j > m,

,

and b′ = b+ n(n−m).

This definition is not really intuitive, but a short example should explain the idea of
how this represents an ESSCP instance.

Example 8. Let us consider the delete/swap ESSCP instance (aacb, abc, 1). This has
a fairly simple solution, delete one of the “a” symbols and swap the “b” and “c”. The
reduction computes b′ = 1 + 4(4− 3) = 5 and the matrix

M =




0 6 6 1

0 6 6 2

6 6 0 3

6 0 6 4


 .
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We will look at the left part first, the part that corresponds to the first two cases
of the construction. All these cells are set either to 0 or to b′ + 1, which means that
none of the non-zero cells may ever be on the diagonal of a solution, since the sum
would always be greater than the budget. So, the first three positions on the diagonal
(counting from the upper left) must be made zero in a solution, the three corresponds
to the length of the target string. The idea is that a zero on the diagonal in this first
part corresponds to a correctly matched symbol. The cells on the right-hand side only
come into play on the last part of the diagonal, the bottom few rows of the result.
The rows moved to the bottom correspond to symbols that get deleted.

The motivation for the weight n + i − j in case 3 of the reduction is that if we
wish to delete some symbol in the original string problem we have a fixed cost (zero),
but to move a row to the bottom of the matrix has different cost depending on where
the row starts out, since different numbers of swaps need to be used. The cost the
rows that end up at the bottom contribute to the diagonal is there to counteract this.
Let us look at the two ways to solve this instance, see Figure 1. Here we show the




0 6 6 1

0 6 6 2

6 6 0 3

6 0 6 4


⇒




0 6 6 2

0 6 6 1

6 6 0 3

6 0 6 4


⇒




0 6 6 2

6 6 0 3

0 6 6 1

6 0 6 4


⇒




0 6 6 2

6 6 0 3

6 0 6 4

0 6 6 1


⇒




0 6 6 2

6 0 6 4

6 6 0 3

0 6 6 1




Figure 1: A solution for the the swap assignment problem instance produced by
reducing from (aacb, abc, 1) ∈ ESSCPds

solution equivalent to deleting the first “a”, by swapping the top row down to the
bottom with the first three swaps. This row then contributes cost 1 to the diagonal,
for a total cost of 4 to get rid of the first symbol. Then we swap the rows that were
originally 3 and 4 (going from “acb” to “abc”) to move the zeros to the diagonal.
The total cost of the solution is 5, which fits the budget b′.

What is key is that the solution can choose to delete any symbol without the cost
being different. So let us look at the other possibility, where we delete the second “a”
instead, shown in Figure 2. Here we start by swapping the second row, corresponding




0 6 6 1

0 6 6 2

6 6 0 3

6 0 6 4


⇒




0 6 6 1

6 6 0 3

0 6 6 2

6 0 6 4


⇒




0 6 6 1

6 6 0 3

6 0 6 4

0 6 6 2


⇒




0 6 6 1

6 0 6 4

6 6 0 3

0 6 6 2




Figure 2: An alternative solution for the swap assignment problem instance produced
by reducing from (aacb, abc, 1) ∈ ESSCPds

to the second “a” into the last position. This takes only 2 swaps, but this row con-
tributes a cost of 2 to the diagonal, again making the delete cost exactly 4. A final
swap of the original row three and four again produces a solution with cost 5.

This illustrates the key property of the construction, deletions are substituted
with moving the rows in question into bottom positions, and the costs in the rows are
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constructed so that a row that is originally far from the bottom gets a proportionally
larger “discount” on the diagonal sum to pay for the extra swaps needed to delete
them. The formula for the rightmost column is n+ i− j, the subtraction of j comes
into play when multiple symbols are deleted. Since not all rows can go to the bottom
position later deletions will have a shorter distance to travel than the first ones, this
is counteracted by the costs being greater in the “discount columns” further left. As
a final example see the slightly larger instance in Figure 3.




12 12 0 2 1

12 0 12 3 2

0 12 12 4 3

0 12 12 5 4

12 12 0 6 5



⇒




0 12 12 4 3

12 0 12 3 2

12 12 0 6 5

12 12 0 2 1

0 12 12 5 4




Figure 3: Reducing (cbaac, abc, 1) ∈ ESSCPds produces the swap assignment problem
instance with the left matrix and budget b′ = 11. “Deleting” a row ends up with a cost
of 5 counting swaps and diagonal cost. On the right is the solution which performs
the swaps 4, 1, 2, 3, 1 for a total cost of 11. This solution corresponds to deleting the
last “a”, deleting the first “c” and finally swapping the remaining “b” and “a”.

Lemma 9. The reduction in Definition 7 produces a swap assignment problem in-
stance that answers “yes” if and only if the original delete/swap ESSCP instance
answers “yes”.

Proof (Sketch). Starting with the “if” direction, take some (s1 · · · sn, t1 · · · tm, b) ∈
ESSCPds. Let the deletes and swaps that solves this instance be {d1, . . . , dn−m} ⊆ [n]
and W ∈ [m − 1]∗. Construct (M, b′) using the reduction. Assume that d1 > d2 >
· · · > dn−m then construct the swaps:

Wd = d1, d1 + 1, . . . , n− 1, d2, d2 + 1, . . . , n− 2, . . . , dn−m, . . . ,m

That is, take row d1, which corresponds to the last (position-wise) symbol deleted in
the original string, and swap it into the last position in the matrix. Then swap row
d2 (second to last deleted position) into the second to last position in the matrix and
so on. Now construct W ′ = WdW (concatenating the two), after applying the swaps
Wd the top m rows in the matrix correspond to the positions which are not deleted,
and we perform the swaps in W on these.

Now we will just demonstrate that (M, b′) ∈ SAP using W ′ as the solution. |W ′| =
|Wd| + |W | and |Wd| contains (n− i)− di swaps to place the row initially at di into
position n−i, for each i ∈ [n−m]. So the row (initially at) di will contribute Mdi,n−i to
the final diagonal sum. The range of i means that Mdi,n−i = n+ di − (n− i) = di + i
(since all these positions are filled by the third case in the construction of M in
Definition 7). Taking the swaps and diagonal contribution together each of the di
rows contribute to the total cost by (n− i)− di + di + i = n, meaning that

|Wd|+
n∑

i=m+1

swap(M,W ′)i,i = (n−m)n.
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This establishes that b′ = b + (n − m)n ≥ |W ′| +∑n
i=m+1 swap(M,W ′)i,i = |W | +

(n−m)n, since b ≥ |W | and |W ′| = |Wd|+ |W |.
All that needs to be added is the remainder of the diagonal, so next we show that∑m
i=1 swap(M,W ′)i,i is zero. Take M ′ = swap(M,Wd) and S ′ = delete(s1 · · · sn, D)

and simply note that if the symbol in position i in S ′ started out in position l then
row i in M ′ started out in position l in M . The next step for both S ′ and M ′ is to
apply W , meaning that row j ∈ [m] in the matrix started out as row i if and only
if symbol in position j in the final string was originally si. Since this is a solution
for the ESSCP instance this means that si = tj which means that row i in M ends
up in position j in swap(M,W ′) if and only if si = tj. It follows that the new row
contributes Mi,j to the diagonal, and the construction of M is such that set Mi,j = 0
when si = tj.

Since we showed that b′ ≥ |W ′|+∑n
i=m+1 swap(M,W ′)i,i above and showed that∑m

i=1 swap(M,W ′)i,i = 0 here it follows that b′ ≥ |W ′| +
∑n

i=1 swap(M,W ′)i,i so
(M, b′) ∈ SAP.

The “only if” direction remains but works in a very similar way. Assume that
(M, b′) ∈ SAP is constructed from some delete/swap ESSCP instance (S, T, b). Let
W ′ be the swaps that solve (M, b′). Notice that if such a solution W ′ exists then a
solution exists which has the structure W ′ = WdW (that is, which first swaps all
the n −m bottom rows into position), if row i is going to be swapped into position
n nothing can be gained by not doing so as the first thing in the swap sequence.
Using this we can extract the solution to the string problem instance, deleting the
symbols corresponding to rows swapped below the mth row. The solution to (M, b′)
also cannot do better than the fixed cost (n −m)(n − 1) for swaps and diagonal of
these bottom rows, and it has to place the top m rows so that they all contribute zero
to the diagonal (all other positions being b′ + 1 which is impossible in a solution),
which corresponds directly to matching symbols correctly. ut

Corollary 10. The swap assignment problem is strongly NP-complete.

This follows since ESSCPds is strongly NP-complete and the reduction constructs a
polynomially sized matrix containing numbers that are all bounded by a polynomial
in the original instance (recall that b is polynomial in all relevant cases and assumed
to be unary). The problem is in NP since no swap sequence ever needs to be longer
than n2, allowing W ′ to be guessed.

5 Swap Even-Cost Assignment Problem

Now we will define a very minor restriction on the swap assignment problem. This
will turn out to be key to make the final reduction to the tree swap distance problem
simple.

Definition 11. Let 2 |x denote that x is even (x ∈ {0, 2, 4, 6, . . .}), let 2 -x denote
that x is odd.

Definition 12 (Swap Even-Cost Assignment Problem). An instance of the
swap even-cost assignment problem is a swap assignment problem instance (M, b)
such that 2 |Mi,j for all i, j ∈ [n]. The answer to (M, b) is “yes” if and only if
(M, b) ∈ SAP. We denote the set of all “yes” instances as SecAP.
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We will quickly establish that all swap assignment problem instances have an equiv-
alent swap even-cost assignment problem instance.

Definition 13. Let h(x) =
⌈
x
2

⌉
.

Definition 14 (Reducing SAP to SecAP). Let (M, b) be an instance of the swap
assignment problem with M an n by n matrix, we then construct (M ′, b′), where M ′

is a 2n by 2n matrix, by letting b′ = b+ n(n−1)
2

and taking

M ′
i,j =





Mi,h(j) if i ≤ n, 2-j and 2|Mi,h(j),

b′′ if i ≤ n, 2-j and 2-Mi,h(j),

Mi,h(j) − 1 if i ≤ n, 2|j and 2-Mi,h(j),

b′′ if i ≤ n, 2|j and 2|Mi,h(j),

0 if i > n and h(j) = i− n,

b′′ if i > n and h(j) 6= i− n,

where b′′ is the smallest even number strictly larger than b′.

This definition is also a bit daunting but the underlying thinking is fairly straight-
forward, let us look at an example.

Example 15. We will start with an instance of the swap assignment problem instance
(M, b), where b = 11 and M is shown on the left in Figure 4. For this example b′ = 14,

M =




2 3 3

9 4 12

1 2 8


⇒




2 16 16 2 16 2

16 8 4 16 12 16

16 0 2 16 8 16

0 0 16 16 16 16

16 16 0 0 16 16

16 16 16 16 0 0




Figure 4: Example of applying the even-cost reduction to a swap assignment problem
instance

so b′′ = 16. Let us look at the upper half of the matrix first. The thing to notice about
this part is that for all i, j ∈ [n] there are for each pair (M2i−1,j,M2i,j) only two cases,
either the pair is (Mi,j, 16) if Mi,j was even, or it is (16,Mi,j − 1) if Mi,j was odd.

This starts making sense when we look at the lower half of the matrix, which is
filled with rows such that for each j ∈ [n] the row at position n + j can only be
in either position 2j − 1 or 2j in a valid solution (since that brings the rows zero
positions to the diagonal, and b′′ is guaranteed to be more than the budget). This
means that any valid solution will be structured so that for each j ∈ [n] one of the
positions 2j − 1 and 2j contains the row originally in position n + j (in all other
positions it would contribute b′′ to the diagonal making the solution impossible) and
the other position contains some row originally in the top half (since all rows from

the bottom half are already accounted for). The n(n−1)
2

part of the budget is exactly
enough to pay for the minimal such interspersing (where the row from the top half is
the one at the 2j − 1 position since that is closer).

168



Let i ∈ [n] be the initial position of the row from the top that ends up in position
2j − 1 or 2j, this row is supposed to simulate the cost Mi,j on the diagonal. If
Mi,j is even this is easy, the row can be placed at position 2j − 1 (since it will
have M ′

i,2j−1 = Mi,j), if Mi,j contained an odd number however the construction has
made Mi,2j−1 = b′′, which forces the solution to take an extra swap to bring the row
to position 2j. This extra swap fixes the cost that was lost when the construction
rounded down M ′

i,2j = Mi,j − 1.
To make this more visual see Figure 5. Since this solution involves a total of




2 16 16 2 16 2

16 8 4 16 12 16

16 0 2 16 8 16

0 0 16 16 16 16

16 16 0 0 16 16

16 16 16 16 0 0




⇒




16 0 2 16 8 16

16 8 4 16 12 16

2 16 16 2 16 2

0 0 16 16 16 16

16 16 0 0 16 16

16 16 16 16 0 0




⇒




16 0 2 16 8 16

0 0 16 16 16 16

16 8 4 16 12 16

16 16 0 0 16 16

2 16 16 2 16 2

16 16 16 16 0 0




⇒




0 0 16 16 16 16

16 0 2 16 8 16

16 8 4 16 12 16

16 16 0 0 16 16

16 16 16 16 0 0

2 16 16 2 16 2




Figure 5: Some steps of the solution of the problem instance in Figure 4

seven swaps several are done in each step. Let us first note that a solution for the
original (pre-reduction) instance in Figure 4 is to swap 2, 1, 2, giving a diagonal sum
of 1 + 4 + 3 = 8 and a total solution cost of 11. In Figure 5 we have the original
reduced matrix on the left, in the first step we do the same three swaps 2, 1, 2. In the
next step we intersperse the rows from the bottom half with the top with the swaps
3, 2, 4. This however leaves us with 16 in two places on the diagonal, and have to
finish with the swaps 1, 4. These last swaps are key. Notice how the diagonal in the
original instance ended up being 1 + 4 + 3, the first and last positions are odd. The
construction took these odd numbers, rounded them down to something even and
placed this rounded result on the right side of its horizontal “pair” in the top row.
This forces the solution to do extra swaps to bring the rows down one step further,
paying the cost that was removed by the rounding. In total the solution here makes
8 swaps, and has a diagonal sum of 6, for a total cost of 14, exactly the budget b′.

Lemma 16. For every swap assignment problem instance (M, b) (M is n by n) the
reduction in Definition 14 produces a swap even-cost assignment problem instance
(M ′, b′) such that (M ′, b′) ∈ SecAP if and only if (M, b) ∈ SAP.

Proof (Sketch). Assume that (M, b) ∈ SAP. Let W be a swap sequence that solves
(M, b). Then construct a (minimal) swap sequence Wi such that

swap(a1 · · · anb1 · · · bn,Wi) = a1b1a2b2 · · · anbn,

and, let Wo = o1 · · · , om be such that o1 < · · · < om and 2 - swap(M,W )i,i if and
only if i ∈ {o1, . . . , om}. Then W ′ = WWiWo (the concatenation) is a solution for
(M ′, b′). This sequence of swaps being a solution is quickly established, noting that

|Wi| = n(n−1)
2

which accounts for the difference between b′ and b, and then noting
that the construction makes all the swaps in Wo necessary.

The other direction amounts to assuming the existence of W ′ and then extracting
the W part which concerns the internal order of the n first rows. ut
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Corollary 17. The swap even-cost assignment problem is strongly NP-complete.

This follows from the above. The reduction from the strongly NP-complete swap
assignment problem is clearly polynomial, the matrix dimensions are doubled and
the values in the matrix grow on the order of O(n2). The problem is in NP, since
SecAP is simply SAP with inputs restricted to even numbers.

6 Tree Swap Distance Problem

This section will reach the goal of the paper, defining the tree swap distance problem
and then demonstrating that it is strongly NP-complete by a reduction from SecAP.
Let us define the problem.

Definition 18 (Tree Swap). Take any tree t = α[t1, . . . , tn] ∈ TΣ and any P =
(p1, . . . , pm) ∈ pos(t) such that (p1, . . . , pm−1, (pm + 1)) ∈ pos(t). Then define the
single-swap function

swap1(t, P ) =

{
α[t1, . . . , tp1−1, swap1(tp1 , (p2, . . . , pm)), tp1+1, . . . , tn] if m > 1,

α[t1, . . . , tp1−1, tp1+1, tp1 , tp1+2, . . . , tn] otherwise.

The full swap function is for (appropriate) positions P1, . . . , Pp defined as

swap(t, (P1, . . . , Pp)) = swap1(. . . swap1(swap1(t, P1), P2) . . . , Pp).

The definition of swaps for trees is slightly unwieldy, but the swap function takes a tree
and a sequence of tree positions (which are integer sequences). The positions identify,
in order, the subtree which should next swap position with its sibling immediately to
the right. Notice that Pi for i > 1 does not refer to a position in the tree t but to a
position in an intermediary tree, it may be that Pi /∈ pos(t). An example is shown in
Figure 6.

a

b c

d e

f ⇒

a

b f c

d e

⇒

a

b f c

e d

Figure 6: An example of applying the tree swaps ((2), (3, 1)) to a small tree. That is,
going from the first to second tree we swap the position 2, referring to the second
child of the root, next the position (3, 1) is swapped, referring to the first child of the
rightmost child subtree of the root.

The definition of the tree swap distance problem now follows a familiar formula.

Definition 19 (The Tree Swap Distance Problem). An instance of the tree swap
distance problem is a tuple (t, t′, b) where t ∈ TΣ is the start tree, t′ ∈ TΣ is the target
tree and b ∈ N is the budget. The instance is a “yes” instance if and only if there
exists some P1 ∈ N∗, . . . , Pn ∈ N∗ such that n ≤ b and t′ = swap(t, (P1, . . . , Pn)). We
denote the set of all such “yes” instances TSwD.
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The next definition is used to make it easier to talk about minimal swap sequences.

Definition 20 (Minimal budget for TSwD). For all t, t′ ∈ TΣ let mincost(t, t′) =
b, where b ∈ N is the smallest number for which (t, t′, b) ∈ TSwD. If no such number
exists let b =∞.

The reduction from SecAP to TSwD requires some building blocks. A visual example
of the different types of notation defined below is shown later in Figure 8.

Definition 21 (Number Tree). Assume that 0, 1 ∈ Σ. For some symbol α ∈ Σ
and x, y ∈ N such that x ≤ y we let α[x : y] denote the tree α[p1, . . . , py+1] where
pi = 0 for all i 6= x+ 1 and px+1 = 1.

For example, α[2 : 3] = α[0, 0, 1, 0]. We call these trees “number trees”. Notice that
for all x, x′, y ∈ N such that x ≤ y and x′ ≤ y it holds that mincost(α[x : y], α[x′ :
y]) = |x − x′|. That is, the minimum number of swaps needed to turn α[x : y] into
α[x′ : y] is exactly |x − x′|. The tree α[x : y] serves the purpose to represent the
number x, with the minimal swap distance to any other α[x′ : y] being the absolute
difference between x and x′.

Definition 22 (Number Trees with Neutral Elements). Assume that for each
α ∈ Σ there exists a distinct α′ ∈ Σ. Then for all x, y ∈ {0, 2, 4, 6, . . .} let α〈x : y〉
denote the following special tree.

α〈x : y〉 = α

[
α
[x

2
:
y

2

]
, α′
[y − x

2
:
y

2

]]
.

Additionally let α〈⊥ : y〉 denote the special tree α
[
α
[
0 : y

2

]
, α′
[
0 : y

2

]]
, called a “neu-

tral” tree.

So, for example α〈2 : 6〉 is the tree α[α[0, 1, 0, 0], α′[0, 0, 1, 0]]. These trees have the
property that for all x, x′, y ∈ {0, 2, 4, 6, . . .} it holds that mincost(α〈x : y〉, α〈x′ :
y〉) = |x − x′|. This should not be a surprise, these trees behave like the earlier
number trees, only the necessary swaps are split across two subtrees, and we lose the
capability to represent odd numbers in the process. The gain lies in the neutral trees,
it holds that mincost(α〈⊥ : y〉, α〈x : y〉) = y

2
completely independently of the value x.

Definition 23 (Multi-number Trees). For some α ∈ Σ and k ∈ N assume that
we have the distinct symbols α1, . . . , αk ∈ Σ. Then, for all x1, . . . , xk ∈ N∪{⊥}, such
that either xi ≤ y or xi = ⊥ for all i ∈ [n], let α〈(x1, . . . xk) : y〉 denote the tree

α[α1〈x1 : y〉, . . . , αk〈xk : y〉].

This means that

mincost(α〈(x1, . . . , xn) : y〉, α〈(x′1, . . . , x′n) : y〉) =
n∑

i=1

|xi − x′i|,

for all x1, x
′
1, . . . , xn, x

′
n, y ∈ N such that xi ≤ y and x′i ≤ y for all i ∈ [n].

Now all the building blocks necessary to reduce a swap even-cost assignment
problem instance to a tree swap problem instance are ready.
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Definition 24 (Reducing SecAP to TSwD). Let (M, b) be an instance of the
swap even-cost assignment problem as in Definition 12. We then construct the in-
stance (t, t′, b′) of the tree swap distance problem as follows. Assume that M is an n

by n matrix, let τ be the largest integer that occurs in M . Then let b′ = b + n(n−1)τ
2

and construct
t = α[ β〈(M1,1, . . . ,M1,n) : τ〉,

β〈(M2,1, . . . ,M2,n) : τ〉,
...

β〈(Mn,1, . . . ,Mn,n) : τ〉],
and

t′ = α[β〈(0,⊥,⊥, . . . ,⊥) : τ〉,
β〈(⊥, 0,⊥, . . . ,⊥) : τ〉,

...

β〈(⊥,⊥, . . . ,⊥, 0) : τ〉],
that is, t′ = α[t1, . . . , tn] such that for all i ∈ [n] we have ti = β〈(x1, . . . , xn) : τ〉
where xj = ⊥ for all j 6= i and xi = 0.

The dense notation may make this reduction hard to visualize, let us look at an
example.

Example 25. Let (M, b) be an instance of the swap even-cost assignment problem,
letting b = 3 and

M =

[
4 0

2 2

]
.

Now we construct the tree swap distance problem instance (t, t′, b′) by applying the
reduction from Definition 24. From M we see that τ = 4, so the budget becomes
b′ = 3 + 2(2−1)4

2
= 7. The constructed trees are

t = α[β〈(4, 0) : 4〉, β〈(2, 2) : 4〉],
t′ = α[β〈(0,⊥) : 4〉, β〈(⊥, 0) : 4〉].

To get past the notation the full tree t is shown in Figure 7, and the tree t′ (as well
as a breakdown of which subtrees correspond to which piece of notation) is shown in
Figure 8.

Using these figures it is not hard to see how the solutions to (M, b) and (t, t′, b′)
correspond to each other. (M, b) has a single solution, swapping the two rows (which
gives a diagonal sum of 2, for a total cost of 3, which is exactly the budget), making
no swap is not an option since the initial diagonal sum is 6, which is over the budget.

The decision to swap the rows in M or not corresponds to the decision whether
or not to swap the β〈. . . 〉-subtrees in t. The reader can easily verify by inspecting
Figure 7 and 8 that it takes 10 swaps to move the 0/1 nodes around to match t′ if we
do not swap the β〈. . . 〉-subtrees first, which is over the budget (in fact, it is over the
budget by the same amount as the initial order of M is for that instance). If the two
β〈. . . 〉-subtrees are swapped however, we can reorder the 0/1 nodes in the resulting
tree in only 6 swaps, for a total cost of 7, exactly the budget b′.
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α

β

β1

β1

0 0 1

β′
1

1 0 0

β2

β2

1 0 0

β′
2

0 0 1

β

β1

β1

0 1 0

β′
1

0 1 0

β2

β2

0 1 0

β′
2

0 1 0

Figure 7: The tree t constructed in the reduction in Example 25. Notice that any
solution only needs to perform swaps on the nodes in the dotted rectangles, all other
nodes are already in their only possible internal order (compare to t′ in Figure 8).

β2〈⊥ : 4〉 β〈(⊥, 0) : 4〉β′
1[2 : 2]β1[0 : 2]

α

β

β1

β1

1 0 0

β′
1

0 0 1

β2

β2

1 0 0

β′
2

1 0 0

β

β1

β1

1 0 0

β′
1

1 0 0

β2

β2

1 0 0

β′
2

0 0 1

Figure 8: The tree t′ constructed in the reduction in Example 25. The dotted arrows
shows the notation we use to describe the indicated parts of the tree.

Hopefully the example has clarified the general idea of this reduction, but a proof
sketch follows which further illustrates how it functions in the general case.

Lemma 26. For every swap even-cost assignment problem instance (M, b) and tree
swap distance problem instance (t, t′, b′) constructed from (M, b) by the reduction in
Definition 24 it holds that (t, t′, b) ∈ TSwD if and only if (M, b) ∈ SecAP.

Proof (Sketch). We reuse the notation of the reduction. First notice that there are
only two levels of swapping to consider in t. The immediate subtrees can be reordered
since all are of the β multi-number kind, this is the interesting part. In addition the
leaves will be swapped to move around the 0/1 sequences that are there to represent
numbers, but this is abstracted by our number trees and can only be done in one
trivial way once the top-level swaps are decided. The nodes in between are marked
with distinct symbols.

Now let us look at the sub-subtrees in t′. There are n2 of them, organized into n
subtrees, each of which represents a row. For each i ∈ [n] look at position i, i in t′,
this tree is of the form βi〈0 : τ〉, whereas for all i, j ∈ [n] such that i 6= j the subtree
at position i, j is of the form βj〈⊥ : τ〉. These n(n − 1) trees will be matched up
with some βj sub-subtree in t at a constant cost of τ

2
each, incurring a constant and

unavoidable cost of n(n−1)τ
2

, leaving exactly b of the budget for the remainder.
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This leaves the n “diagonal” subtrees of the form βi〈0 : τ〉 in t′. Assume that W in
M moves row i into position j, incurring some swap cost and a diagonal cost of Mi,j.
If we apply W directly to t this would move subtree β〈Mi,1, . . . ,Mi,n〉 into position
to match the tree in t′ that contains the zero number tree βj〈0 : τ〉 in position j.
This means that the cost incurred, beyond the already accounted for constant cost
associated with the n− 1 neutral trees will be mincost(βj〈Mi,j : τ〉, βj〈0 : τ〉), which
is exactly Mi,j by the construction of the number trees. So, to recap, applying W

at the top level leaves us with the constant cost of n(n−1)τ
2

plus |W | plus Mi,j for
each row moved from position i to position j by W . Which is exactly the same cost
that applying W in M incurs plus n(n−1)τ

2
, and since b′ = b + n(n−1)τ

2
this makes

the problem instances equivalent. We did the argument starting from W , but we
can trivially extract the swaps which deal with the immediate subtrees in t from a
solution to (t, t′, b′), making the other direction very straightforward. ut

Corollary 27. The tree swap distance problem is strongly NP-complete.

As before the problem being in NP is trivial since the swap sequence never needs to
be longer than n2 so we may guess it. The reduction being polynomial is not hard to
see, though the details become somewhat lengthy. There are on the order of O(τn2)
nodes in the trees, but SecAP is strongly NP-complete so this unary representation
is not problematic.

7 Conclusion

Treating a problem where the only conclusion is negative, the problem being in-
tractable, is never quite the ideal outcome. On the other hand it was already known
that tree edit distance with subtree movement is problematic, and the efforts to in-
tegrate limited forms of swaps have been ongoing for some time. As such it is useful
to establish that swaps are inherently problematic in trees. This hints that better
results may be achieved if one considers simpler measures, such as linear distance,
where all subtrees are reordered simultaneously and the cost of moving a subtree from
position i to position j is exactly |i− j| independent of whether the trees in between
are moved. This would allow the Hungarian algorithm [6] to be leveraged in the tree
case, giving a polynomial algorithm.

The problem itself may also be useful for complexity analysis of other swap prob-
lems, since it is at its core very simple both to explain and intuitively understand.

Hopefully this rather fundamental problem being proven NP-complete will also
serve as a useful stepping stone for other complexity-theoretical work.
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