
Characterizing Non-Regularity

Martin Berglund

Umeå University, Sweden
mbe@cs.umu.se

In collaboration with Henrik Björklund and Frank Drewes.

Abstract. This paper considers a characterization of the context-free non-regular
languages, conjecturing that there for all such languages exists a fixed string that
can be pumped to exhibit infinitely many equivalence classes. A proof is given
only for a special case, but the general statement is conjectured to hold. The
conjecture is then shown to imply that the shuffle of two context-free languages
is not context-free.

Technical report UMINF 14.12, April 2014

1 Introduction

This paper is concerned with the characterization of context-free languages, a subject
with a long and interesting history. The context-free class of languages is after all
very important, it is a both large and interesting class for which parsing is reasonably
efficient both in theory and practice. See e.g. [HMU03] for the basics on context-free
languages. We will assume a passing familiarity with formal language theory and will
only recall the most important definitions we need.

Specifically, we will consider a conjecture, considered likely to be true by the au-
thor, which characterizes the non-regular context-free languages. Consider Figure 1.
Where classic characterizations such as Parikh’s theorem and the context-free pump-

CF RegSemi-linear
Parikh image

Pumping
Lemma

Characterizations of the
shaded part is the goal

Fig. 1: A Venn diagram illustrating what is being looked at. The set of languages with
semi-linear Parikh images are a (strict) superset of the context-free (CF), the languages
that fulfill the context-free pumping lemma form a (disjoint and strict) superset of the
context-free. The conjecture here studied will restrict itself to just the context-free (by
assumption) but will characterize the non-regular (non-Reg) part of the context-free.

ing lemma state requirements that all context-free languages fulfill, this conjecture
instead precisely defines which context-free languages are non-regular.

Stating and proving some properties about a conjecture characterizing the inner
border of that shaded area, CF \Reg in Figure 1, is one part of this paper. The other
proves a result that was part of the original motivation for this conjecture, relating
to the shuffle. The shuffle of two languages consists of all strings that can be con-
structed by picking one string from each language and interleaving them. It seems
highly probable that the shuffle of any two context-free languages should produce a
language which is not context-free, unless one of those two original context-free lan-
guages was actually regular. A more specialized case of this statement will be proven
to be true if the conjecture holds.

Overview of the paper. All this will become clearer once some baseline definitions
are given, so the intuition about the conjecture is continued in Section 3. In Section 4
the conjecture itself is introduced. In Section 6 the impact it would have on the shuffle
of context-free languages if true.

Acknowledgments and citations. The author is indebted to his advisors Henrik
Björklund and Frank Drewes for input on the contents of this paper. As most bibliog-
raphy formats lack a more appropriate field it is suggested that they are listed as author
on citations of this paper.

2 Basic Notation

Let N = {0,1, . . .}. Let ε denote the empty string. Let Σ denote an arbitrary alphabet
(finite set of symbols). L∗ denotes the Kleene closure (i.e. Σ ∗ is the language of all
strings). We let wk =wwk−1 with w0 = ε (i.e. the concatenation of k copies of a string).
For a string w = α1 · · ·αn (with all αi ∈ Σ) let w(i) = α1 · · ·αi and w(i, j) = αi · · ·α j.
As already seen we let Reg denote the regular languages and CF denote the context-
free languages. We let L(A) denote the language generated by a grammar/automaton
A. L ∝ L′ denotes the left quotient:

Definition 2 For languages L,L ′ ⊆ Σ ∗ the left quotient L ∝ L ′ is defined by letting
w ∈ L ∝ L ′ if and only if vw ∈ L ′ for some v ∈ L . �
To simplify the notation in some common cases we, for a string u ∈ Σ ∗, write just u to
mean the language {u} in this context. For example u ∝ L and L ∝ u are equivalent to
{u} ∝ L and L ∝ {u} respectively. Let w ≡L v if and only if w ∝ L = v ∝ L , the sub-
classes of strings induced by ≡L are called the equivalence classes of L . The relation
≡L is also known as the right congruence induced by L.

3 Further Introductory Discussion

Among the characterizing results about context-free languages there are few better
known than the context-free pumping lemma [BHPS61]. Let us briefly recall it.

Lemma 3 For every context-free language L ⊆ Σ ∗ there exists some constant k ∈ N
such that every string w ∈ L with |w|> k can be split into strings x,v,y,w,z ∈ Σ ∗ (i.e.
w = xvywz) such that

1. the middle piece is not too long, |vyw| ≤ k,
2. we can repeat v and w arbitrarily many times, xviywiz ∈ L for all i ∈ N,
3. the repetition part is non-empty, |vw|> 0. �

As illustrated in Figure 1 this lemma encapsulates context-free languages neatly, prov-
ing for example that {anbncn | n ∈N} is not context-free is straightforward as require-
ments 2 and 3 mean at least one a, b or c must be repeatable, but requirement 1 ensures
that we cannot fit at least one each of all three symbols into vw without making the
middle too long.

However, what this lemma does not tell us is (at least) two-fold. Firstly, for every
language L the language Laa∗ fulfills the lemma. That is, arbitrarily complex lan-
guages can fulfill the lemma if you “attach” them to a language that fulfills it. Sec-
ondly, and more importantly for our concerns here, the lemma does not tell us if the
language is “just” regular. That is, if the lemma is fulfilled using e.g. w = ε then it is
equivalent to the pumping lemma for regular languages. As shown in Figure 1 we are
aiming to instead make a statement about the non-regular context-free languages.

The characterization through the semi-linear Parikh image [Par66] is of course
similar in the first respect, LΣ ∗ has a semi-linear Parikh image for all L, and the state-
ment of the theorem is precisely that context-free and regular languages have the same
class of Parikh images.

It is important to note that there of course are strict characterizations of the CF \
Reg class, simply stating “a language L such that a context-free grammar G exists with
L(G) = L but no finite automaton A exists with L(A) = L” is sufficient. The perhaps
most used characterization for CF \Reg is to make use of the fact that infinitely many
equivalence classes exist, in effect using the converse of the statement of the Myhill-
Nerode theorem (see e.g. [HMU03]) to characterize non-regularity.

This is however a matter of how helpful the statement is. In short, what we are
aiming for is the intuition that every non-regular context-free language has a choice
of x and v in the pumping lemma (as sketched in Definition 3) for which the set of
choices for y,w,z that fulfill the lemma is non-empty, but all have w 6= ε . That is, if
the language is non-regular then there exists a choice of string to repeat which must
be matched by a change in the suffix of the language.

Another way of viewing matters is through the Chomsky-Schützenberger theo-
rem [CS63], which precisely defines the context-free languages, basically defining an
alternative representation alongside the context-free grammars. To avoid recalling this
theorem in full we just note that that the intuition corresponding to the conjecture
which follows here would, in terms of the Chomsky-Schützenberger theorem, state
that the homomorphism may not project away the difference between opening and
closing parenthesis in the underlying Dyck language.

4 The Characterizing Conjecture

We now arrive at the main topic of this paper, a conjecture which, if true, characterizes
the non-regular context-free languages.

Conjecture 4 For L ∈ CF (over Σ) it holds that L ∈ CF \Reg if and only if there
exists some x,v ∈ Σ ∗ such that for all n,m ∈ N with n 6= m it holds that xvn 6≡L xvm

(i.e., that (xvn ∝ L) 6= (xvm ∝ L)). �

Hopefully it is already clear that this statement is of a rather fundamental nature. It
characterizes the context-free languages without including the regular languages, in a
way that the author believes has not otherwise been done. Unsurprisingly the author is
also intuitively convinced that the conjecture holds, as it appears to strike at the core
of what context-free languages do. It is important to note that this statement is not
a trivial consequence of the pumping lemma for context-free languages (or Ogden’s
lemma or other variations), as those characterize all context-free languages, including
the regular. In addition it may be instructive to keep in mind that for L ∈ CF it is, in
general, undecidable whether L ∈ Reg , which implies that any proof of Conjecture 4
must be non-constructive.

5 Proving a Fragment of Conjecture 4

There are, luckily, some subclasses of the context-free languages for which it is easier
to see that Conjecture 4 holds than it is for the full class. It is, of course, very easy to
see that it holds for the language {anbn | n ∈ N}, by choosing x = ε and v = a. We
can, however, broaden this to a much larger (though somewhat related) subclass of the
context-free languages still.

First we recall the definition of push-down automata, mainly in order to name to
name some restrictions on the language class precisely.

Definition 5 A push-down automaton (PDA) is a tuple A = (Q,Σ ,Γ ,δ ,q0,⊥,F),
where

– Q is the finite set of states,
– Σ is the input alphabet,
– Γ is the stack alphabet,
– q0 ∈ Q is the initial state,
– F ⊆ Q is the set of final states,
– ⊥ ∈ Γ is the bottom stack symbol, and, finally,
– δ : Q×(Σ∪{ε})×Γ ×Q×Γ ∗ is the finite set of rules. For all rules (q,α,γ,q′,s)∈

δ where γ =⊥ it must hold that s = s′⊥ for some s′ ∈ Γ ∗.

The set of configurations of A is CA = Q× (Γ ∗ ·⊥). A can go from the configuration
(q,γs) to (q′,s′s), for γ ∈ Γ and s,s′ ∈ Γ ∗, by reading the symbol α (may be ε in
which case nothing is read) if and only if there is a rule (q,α,γ,q′,s′) ∈ δ . The initial
configuration is (q0,⊥). A accepts a string w, i.e. w ∈ L(A), if and only if the string

can be read going from the configuration (q0,⊥) to an accepting configuration. For
general push-down automata the accepting configurations are all (q,s) such that q∈ F
and s ∈ Γ ∗.

If A is a stack-emptying PDA the accepting configurations are the set {(q,⊥) | q ∈
F}. A is fully deterministic if δ is a function δ : (Q×Σ ×Γ)→ (Q×Γ ∗). �

Next let us note a small, and fairly obvious detail, before we use it in the broader
proof. Most readers will probably accept it as true without further argument, but for
completeness sake the proof is sketched.

Lemma 6 For every language L ∈ CF \Reg there exists an infinite string ω such that
ω(i) 6≡L ω(j) for all i 6= j. �

PROOF: This is necessarily the case, since the Myhill-Nerode theorem dictates that
L /∈ Reg if and only if L has infinitely many equivalence classes. Simply construct the
tree where the root is marked ε , and for each node v give it a child for each α ∈ Σ

such that vα 6≡L v(i) for every i. Each node has a finite number of children, but the
infinitely many equivalence classes will necessarily be reached in this fashion, so by
Königs lemma some path is infinite, which we take as ω .

Theorem 7 If L is a language accepted by a stack-emptying fully deterministic PDA
A then Conjecture 4 holds for L . �

PROOF: Clearly, if L ∈ Reg Conjecture 4 holds, since L has a finite set of equivalence
classes according to the Myhill-Nerode theorem, and so for all x,v ∈ Σ ∗ there must
exist i 6= j with xvi ≡L xv j.

The case where L ∈ CF \Reg remains. Let ω be an infinite word such that ω(i) 6≡L
ω(j) for all i, j ∈ N. Let (qi,si) be the configuration A reaches on ω(i). There will be
precisely one since A is fully deterministic. Then let S : N → Q×Γ be such that
S(i) = (qi,γi) where si = γis′i for some γ ∈ Γ . Let H(i) = |si| (i.e. the height of the
stack of the configuration reached on ω(i)).

All (qi,si) must be different, by the construction of ω and the fact that A accepts L,
so H must be ultimately increasing, in the sense that there exists an infinite set I⊆ N
such that for all i ∈ I and j > i it holds that H(j)> H(i).

Since I is infinite and Q×Γ finite there must exist some (q,γ) for which I(q,γ) =
{i ∈ I | S(i) = (q,γ)} is infinite. Let n = |Q|+ 1 and let i1, . . . , in be the n smallest
elements of I(q,γ).

To give the intuition of the remainder of the proof, we now select a sufficiently
long prefix of ω that all of the above configurations are visited. A suffix which is in
the language is selected, then a substring of the prefix is found such that pumping it
will force an equivalent pumping in the suffix.

Pick any string v such that ω(in) · v ∈ L (at least one must exist as (ω(i) ∝ L) 6= /0
for all i). Let w = ω(in) · v and let S′, H ′ be functions as above but for running A on
w. Let j1, . . . , jn ∈ N be such that, for all k, jk is the smallest number with jk > ik and
H ′(jk) ≤ H ′(ik). More precisely this means that H ′(jk) = H ′(ik), and the configura-
tions reached by A on w(jk) and w(ik) have the same stack. This is necessarily the
case since A is stack-emptying and a rule can pop at most one stack symbol. Notice

that the j indices end up being “reversed”, in that jk+1 < jk for all k. Since n > |Q| the
pigeon-hole principle yields that there exists some p ∈Q and k1,k2 ∈N (with k1 < k2)
such that (p,γ) = S(jk1) = S(jk2). Note that this is the same γ as in S(i1) through S(in).

Next, we partition w into w = xvyuz where

– x = w(1, ik1),
– v = w(ik1 +1, ik2),
– y = w(ik2 +1, jk2),
– u = w(jk2 +1, jk1),
– z = w(jk1 +1, |w|).

Notice that after A has read x it will be in a configuration of the form (q,γs), and that,
by construction, whenever A is in a configuration of the form (q,γs′) it can read v to
go to a configuration (q,γs′′γs′) without ever inspecting s′. In the opposite direction,
whenever A is in a configuration of the form (p,γs′′γs′) (with the same s′ as above) it
can read u to go to the configuration (p,γs′), without ever inspecting s′. In particular,
since xvyuz ∈ L we have xviyuiz ∈ L for all i≥ 1.

Claim. xvi 6≡L xv j for all 1≤ i < j.
Assume that there are 1 ≤ i < j such that xvi ≡L xv j. Let d = j− i. Then, since

equivalence is closed under concatenation to the right, xvi ≡L xvi+d ≡L xvi+2d ≡L
xvi+3d ≡L · · · . However, as argued above, running A on the string xvi+cd , for c ∈ N,
will place it into a configuration

(q,γs′′γs′′ · · ·γs′′︸ ︷︷ ︸
i+ cd copies

γs),

which, for a sufficiently large c will give a stack deeper than |yuiz|, but since A must
empty its stack before accepting, and must read a symbol for each symbol popped
from the stack, this means that xvi+cdyuiz /∈ L, but xviyuiz ∈ L, so our assumption that
xv j ≡L xvi must have been incorrect. This contradiction proves the claim, which makes
x and v fulfill the conjecture for L.

It seems probable that this proof can be extended to handle slightly less restrictive lan-
guage classes (notably the stack emptying is a candidate for removal), but introducing
full non-determinism appears to require a more advanced approach.

6 Closure Properties of Shuffling Context-Free Lan-
guages

To show that Conjecture 4 is not entirely without motivation (although it appears very
interesting in its own right), we will here prove a fairly interesting statement about the
shuffle of context-free languages that can be made using the conjecture. First let us
recall the definition of the shuffle, an interleaving operator of great interest in many
areas.

Definition 8 For all strings w=α1 · · ·αn and v= β1 . . .βm, for α1, . . . ,αn,β1, . . . ,βm ∈
Σ , let w� v denote the shuffle of w and v. The shuffle is defined by letting w� ε =
ε�w = w, and letting

α1 · · ·αn�β1 · · ·βm = α1(α2 · · ·αn�β1 · · ·βm)∪β1(α1 · · ·αn�β2 · · ·βm).

For languages L,L′ ⊆ Σ ∗ let L�L′ = {w� v | w ∈ L,v ∈ L′}. �

Next, let us for the sake of completeness recall the statement of Ogden’s Lemma [Ogd68],
which generalizes the pumping lemma of Definition 3, and which will be useful later.

Lemma 9 If a language L ∈ Σ ∗ is context-free there exists a constant p ∈N such that
for every string w ∈ L and every way of marking at least p of the positions in w there
exists a subdivision p1r1mr2 p2 = w such that

1. r1r2 contains at least one marked position,
2. r1mr2 contains at most p marked positions,
3. p1ri

1mri
2 p2 ∈ L for all i ∈ {0,1, . . .}. �

We can now go on to prove the following theorem.

Theorem 10 Assume that Conjecture 4 holds. Let a,b be two symbols not in Σ . Let
D = {anbn | n ∈N}. Then for any context-free L ∈ Σ ∗ it holds that L�D ∈ CF if and
only if L ∈ Reg . �

PROOF: If L ∈ Reg it is trivially true that L �D ∈ CF , one can directly construct a
push-down automaton which recognizes the regular L entirely in its finite state, and
uses the stack to recognize the D portion.

The remainder of the proof demonstrates the other direction. Using L let x,v ∈ Σ ∗

be as in Conjecture 4, which we assumed to be true. Let L ′ = L �D as above. The
proof continues by contradiction, let us assume that L ′ ∈ CF but L ∈ CF \Reg .

Let R be the regular language corresponding to the regular expression x(av)∗b∗Σ ∗,
then let L ′′ = L ′∩R . This L ′′ must be context-free, since L ′ is assumed to be context-
free and CF is closed under intersection with regular languages.

Let p be the constant for which (Ogden’s) Lemma 9 holds for L ′′. For all γ ∈N let
Wγ = xvγ ∝ L . Then, for each γ ≥ p and w ∈Wγ consider the string x(av)γ bγ w, which
is in L ′′ by definition. Apply Lemma 9 by marking all symbols in the substring (av)γ

(that is sufficient, as we chose γ ≥ p), and let p1r1mr2 p2 be the subdivision that the
lemma dictates exists. We know that r1r2 must contain at least one symbol from (av)γ ,
and that p1ri

1mri
2 p2 ∈ L ′′ for all i≥ 0 by the lemma, this restricts the choice of r1 and

r2 severely:

– The language R used in the construction of L ′′ ensures that if any symbol in (av)γ

is repeated then a complete substring of the form (av)k, for 1 ≤ k ≤ p must be
repeated. In actuality k ≤

⌊ p
|av|
⌋

is dictated by Lemma 9, but we overestimate for
simplicity.

– The intersection with the language R also ensures that neither r1 nor r2 can span
the border between x and (av)γ , the border between (av)γ and bγ , or the border
between bγ and w, as those borders are distinctly dictated in the regular expres-
sion.

– If r1 contains no a then r2 must contain the a, but then the repetition p1ri
1mri

2 p2
increases the number of as without increasing the number of bs, which the shuffled
in language D disallows. As such, r1 must contain an a, and therefore be of the
form (av)k for some k, as this is the only repetition in this section that R makes
possible.

– This leaves r2 to be of the form bk, to preserve the number of bs in correspondence
with the number of as.

This leads us to w, which by the above cannot be modified by the pumping p1ri
1mri

2 p2
(i.e., it necessarily falls entirely within p2), despite the number of vs changing as part
of the pumping of a substring in (av)∗. This means that for all γ ≥ p and w ∈Wγ

(recall, Wγ = xvγ ∝ L) there exists a constant k such that xvγ+ikw ∈ L for all i≥−1.
Notice that p! is a multiple of all 1 ≤ k ≤ p, meaning that all w ∈Wγ are such

that xvγ+i(p!)w ∈ L for all i ≥ 0. It follows from this that Wγ ⊆ Wγ+p!, and, since
Conjecture 4 is assumed to be true Wi 6= Wj for all i 6= j, so the inclusion is strict:
Wγ (Wγ+p! for all γ ≥ p. Since this holds for all γ we can by simple induction establish
that

Wp (Wp+p! (Wp+2(p!) (Wp+3(p!) (· · ·

by simply choosing γ to be p, p+ p!, p+2(p!) successively. Replacing the uses of Wγ

with its left quotient definition we arrive at the statement that

(xvp+i(p!)
∝ L)((xvp+(i+1)(p!)

∝ L)

for all i ≥ 0. Now, for each i > 1 pick some representative wi ∈ (xvp+i(p!) ∝ L) \
(xvp+(i−1)(p!) ∝ L). Notice that this by induction means that wi /∈ (xvp+ j(p!) ∝ L) for
any 0 < j < i.

Next, let R̂ = xvp(avp!)∗b∗Σ ∗, and construct L̂ = R̂ ∩ (L�D). Let p̂ be the con-
stant for Lemma 9 for this language. Pick the string xvp(avp!)p̂b p̂w p̂. Apply Lemma 9
by marking the substring (avp!)p̂ and let p1r1mr2 p2 be the substring subdivision that
the lemma dictates exist. Again notice that r1 must fall entirely within the substring
(avp!)p̂ due to the intersection with R̂ , and r2 must then fall entirely within the b∗

substring (refer to the full argument above). The lemma then further dictates that
p1mp2 ∈ L̂ , but this removes (using the same argument for where r1 and r2 must
be in the original string as above) a non-zero number of the substrings avp! from the
string, and by construction w p̂ /∈ (xvp+k(p!) ∝ L) for k < p̂.

This contradicts the assumption that L ∈ CF and L ′ /∈ Reg .

7 Conclusions

We have shown that Conjecture 4 holds for at least one limited case, and proven a
follow-up result of an interesting nature. However, the most obvious missing piece is a
complete proof of the conjecture, or possibly a counter-example. The author still hopes
to manage such a proof, but contributions are most certainly welcome. Secondarily an
extension of the proof that the shuffle of a context-free language with anbn (on disjoint
alphabets) is context-free if and only if the first language was regular should also be

considered. It appears likely that for all L,L ′ ∈ CF , on disjoint alphabets, L�L ′ ∈ CF
if and only if either L ∈ Reg or L ′ ∈ Reg . In this case it seems likely that this can be
achieved along the lines of the proof of Theorem 10, by making the central claims
symmetrical and employing some case analysis, but a counter-example as the final
result cannot yet be entirely ruled out.

References

[BHPS61] Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir. On formal properties of
simple phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und
Kommunikationsforschung, (14):143–172, 1961.

[CS63] Noam Chomsky and Marcel Paul Schützenberger. The Algebraic Theory of Context-
Free Languages. In P. Braffort and D. Hirshberg, editors, Computer Programming
and Formal Systems, Studies in Logic, pages 118–161. North-Holland Publishing,
Amsterdam, 1963.

[HMU03] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (2nd Ed.). Pearson Education International, 2003.

[Ogd68] William Ogden. A helpful result for proving inherent ambiguity. Mathematical
systems theory, 2(3):191–194, 1968.

[Par66] Rohit Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.

