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Since first demonstrated by Clark et al in 2005, live migration of virtual machines has both become a stan-
dard feature of hypervisors and created an active field of research. However, the rich ongoing research in
live migration focus mainly on performance improvements to well-known techniques, most of them being
variations of the Clark approach. In order to advance live migration beyond incremental performance im-
provements, it is important to gain a deeper understanding of the live migration problem itself and its
underlying principles.

To address this issue, this contribution takes a step back and investigates the essential characteristics
of live migration. The paper identifies 5 fundamental properties of live migration and uses these to in-
vestigate, categorize, and compare three approaches to live migration, precopy, postcopy and hybrid. The
evaluated algorithms include well-known techniques derived from that of Clark as well as novel RDMA
in-kernel approaches. Our analysis of the fundamental properties of the algorithms is validated by a set of
experiments. In these, we migrate virtual machines with large memory sizes hosting workloads with high
page dirtying rates to expose differences and limitations of the different approaches. Finally, we provide
guidelines for which approach to use in different scenarios.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management; D.4.8 [Operating
Systems]: Performance

General Terms: Design, Measurement, Performance
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1. INTRODUCTION
Live Virtual Machine, VM, migration often fails when migrating demanding work-
loads, i.e. workloads that are CPU and/or memory intensive, because of issues with
high downtime and unpredictable behaviour [Liu et al. 2008; Svärd et al. 2011; Mohan
and S 2013]. Many attempts to improve the performance of the precopy live migra-
tion approach used in mainstream hypervisors like Xen, KVM, Microsoft Hyper-V and
VMware have been made [Svärd et al. 2011; Wood et al. 2011; Pan et al. 2012; Hudiza
and Shribman 2012; Hu et al. 2012; Zhang et al. 2013; Song et al. 2013] but they all
retain the same basic algorithm, derived from Clark et al. [2005] and as such, still suf-
fer from the same problems although to a lesser extent. Alternatives like postcopy and
hybrid live migrations have also been proposed [Hines and Gopalan 2009; Hirofuchi
et al. 2011; Hudiza and Shribman 2012; Sahni and Varma 2012] but so far, postcopy
migration has only been demonstrated for non-demanding workloads. The severe per-
formance penalty for retrieving memory pages over the network means that there is
a considerable risk of performance loss to the migrated VM and its applications when
migrating demanding workloads. To advance the live migration research field beyond
incremental algorithmic improvements and enable the use of live migration also for
VMs with demanding workloads, it is therefore important to gain a deeper under-
standing of the characteristics of live migration and its underlying principles, both in
the precopy, the postcopy and the hybrid case.

In this contribution we investigate, categorize and compare the three current ap-
proaches to live migration. We define five common criteria for live migration, Contin-
uous service, Low resource usage, Robustness, Predictability and Transparency, that
provide a means to describe and compare live migration algorithms. We then perform
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a performance evaluation where we migrate VMs running demanding workloads on
high-performance testbeds to highlight performance properties and other characteris-
tics for precopy, postcopy and hybrid live migration. In the evaluation, VMs with up to
14 GB of RAM running workloads with page dirtying rates up to 10 GB/s are live mi-
grated while measuring migration downtime, total migration time, transmitted data
volume and performance degradation during migration. For the precopy approach, we
use the standard KVM live migration algorithm. The postcopy approaches used in the
evaluation are the Yabsume algorithm [Hirofuchi et al. 2011] and the novel RDMA in-
kernel Hecatonchire algorithm [Hudiza and Shribman 2012]. The Hecatonchire algo-
rithm also supports hybrid live migration with a variable length precopy phase. Based
on the results from the evaluation we study the three approaches using the five mi-
gration properties. We also investigate under what circumstances the approaches fail
to uphold the desired properties and investigate the underlying cause of the failure.
Finally, we provide guidelines for which live migration approach to use depending on
the desired performance and operational requirements, as well as outline the future
directions for the live migration research community.

The rest of the paper is organized as follows: Section 2 contains a short background
on live migration, in Section 3 we introduce our proposed common properties of live mi-
gration as well as discuss some common challenges that affect live migration. Section 4
contains the experimental evaluation and Section 5 is a comparison of the live migra-
tion approaches based on the results of the evaluation. Section 6 discusses related
work, Section 7 contains suggested directions for future work and finally, Section 8
summarizes the conclusions.

2. BACKGROUND
Live migration is the concept of transferring a VM’s state from the source to the des-
tination host and switch the execution to the destination host without a perceived
interruption in service. There are two main approaches to live migration. Either, the
state is transferred before execution is switched from source to destination, precopy
migration, or execution is first switched and the state is then transferred on demand,
postcopy migration.

2.1. Precopy Live Migration
The precopy approach transfers the whole content of the source VM’s RAM to the
destination host before the VM is resumed on the destination side. Figure 1 outlines
this process. This figure also illustrates two commonly used performance criteria: total
migration time and migration downtime. The total migration time is the time from
when the migration process is initiated until it completes and the migration downtime
is the period during which the VM is suspended and thus not responding to requests.

The exact implementation of precopy migration varies between different hypervisors
but most share the same basic concept of three phases, commonly referred to as the
initial phase, the iterative phase and the stop-and-copy phase. During the initial phase,
each of the VM’s memory pages are transferred from the source to the destination. Be-
cause the source VM continues to run during this process, already transmitted pages
might be written to, dirtied, before the last page is transferred. These dirty pages need
to be re-transferred since the destination would otherwise have an incorrect version of
the page. To achieve this, the algorithm moves to the iterative phase, where pages dirt-
ied in the previous iteration are re-transferred, until the remaining number of pages to
transfer is below a certain threshold or a maximum number of iterations is reached. At
the beginning of the final phase, stop-and-copy, the source VM is suspended to enable
transfer of the last remaining pages without any further pages being dirtied. Finally,
the CPU state is transferred and VM execution is resumed on the destination host.
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Because both the source and destination VMs are stopped during the stop-and-copy
phase, this phase must be very short as there is otherwise a high risk of a perceived
service interruption to users. If the migration downtime is extensive, TCP connections
might drop, but even shorter downtimes can lead to issues. For example, in transaction
processing applications, missed timers, unscheduled or delayed events or clock drift
can lead to data corruption and/or a crash [Svärd et al. 2011]. It is therefore desirable
to minimize the amount of data transferred during the stop-and-copy phase.

This fundamental precopy algorithm can also be applied to other areas. For example,
the Slacker MySQL live migration system [Barker et al. 2012] uses an application-level
precopy algorithm to migrate databases between hosts without interrupting transac-
tions.

2.2. Postcopy Live Migration
An alternative approach to live migration is to switch the VM execution to the desti-
nation host at the beginning of the migration process and then transfer the memory
pages as they are requested by the VM. An outline of this algorithm is shown in Fig-
ure 2. In order to start the VM at the destination, the CPU state, BIOS data and the
Video RAM contents needs to be transferred. The VM’s RAM is next allocated at the
destination host but no memory content is transferred from the source at this time.
The VM is then resumed and starts to access its memory, which is transferred in a on-
demand manner from the source. Several techniques, implemented in kernel and/or
user space, can then be used to trap the memory reads and writes and transfer miss-
ing memory pages from the source to the destination. To shorten the total migration
time, many postcopy implementations also include a background process that pulls
memory pages from the source in a sequential order when it is not requesting any
other pages. Without this addition, the total migration time might be extended since
the migration process would otherwise not complete until the VM has accessed every
page.

The main motivation for postcopy migration is a short and stable migration down-
time and a predictable total migration time, but as the pages have to be pulled over
the network before the VM can access them, there is a risk of performance degradation
to the VM and its applications after the VM is resumed.

2.2.1. Hybrid Live Migration. From a technical point of view, hybrid migration may be
viewed as a special case of postcopy migration as it is a postcopy algorithm preceded
by a limited precopy stage. The idea is that if a subset of the most frequently accessed
memory pages are transferred before the VM execution is switched to the destination,
the performance degradation after the is VM resumed can be reduced because fewer
pages need to be retrieved from the source. However, the precopy phase can lead to a
slightly longer total migration time than for pure postcopy algorithms and it is also
challenging to choose the correct set of pages for transfer.

Fig. 1: Precopy live migration.
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Fig. 2: Postcopy live migration. Fig. 3: Hybrid live migration.

2.3. LAN vs WAN migration
In most cases, migration is performed within the same subnet, LAN migration. In
these cases, the VM’s disk image(s) can be kept on a network storage device accessible
from both the source and destination hosts which means that only the VM’s memory
contents need to transferred during migration. However, VMs can also be migrated
over WAN links. As it is impractical to use shared storage devices in such cases, this
makes WAN-migration more cumbersome than LAN migration because the VM’s stor-
age has to be migrated [Hirofuchi et al. 2009; Zheng et al. 2011; Nicolae and Cap-
pello 2012]. In addition, the VM’s IP traffic must be rerouted [Wood et al. 2011] as it
no longer resides on the same subnet. WAN migration has been successfully demon-
strated in several cases [Ramakrishnan et al. 2007; Wood et al. 2011] and is imple-
mented in Microsoft Hyper-V [Microsoft 2012].

In this contribution, we focus on the LAN migration scenario as this allows full
control of network configuration and gives a more predictable environment but the
principles of this work are also applicable to WAN-migration.

3. PROPERTIES AND CHALLENGES OF LIVE MIGRATION
However different in implementation, all approaches to live migration aim to fulfil the
fundamental criteria of live migration, namely the ability to migrate the VM with no
perceived interruption of service to the user [Clark et al. 2005]. In addition, the migra-
tion process should be invisible to the VM, its hosted applications and any connected
peers both in terms of minimal performance degradation as well as any need to mod-
ify the software to support live migration. We summarize the fundamental aspects of
live migration in a number of properties that are presented in this section. We also
evaluate common challenges in live migration and how they relate to these properties.

3.1. Properties of Live Migration
In this section we propose the following five properties to be desired for live migration.

(1) Continuous service: Service should be perceived as continuous by users of the VM’s
hosted applications despite migration downtime. In the case of interactive services,
this means that the live migration process should not cause users to be discon-
nected or experience performance degradation to such a degree that it affects the
normal execution of applications running on the VM.

(2) Low resource usage: The live migration process consumes resources on both the
source and destination machines [Strunk 2012; Strunk and Dargie 2013] and this
resource usage, sometimes referred to as migration noise [Koto et al. 2012], should
be kept to a minimum. If an excessive amount of resources is consumed, perfor-
mance and operation of applications in the VM as well as any co-hosted VMs might
be affected, thus imposing performance penalties for the VM or any co-located VMs.

(3) Robustness: The hypervisor, the VM or any hosted applications should not risk
crashing or freezing due to the migration process.
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(4) Predictability: It should be possible to predict the duration of the migration pro-
cess and how much resources it will consume. This includes predicting both the
total migration time and the migration downtime as well as the amount of net-
work and CPU resources required by the migration process on both the source and
destination hosts.

(5) Transparency: The VM’s operating system and its hosted applications should not
need to be migration aware. The migration process should be transparent to both
the VM and any connected users and the performance of any hosted applications
should not be affected.

Although an ideal live migration algorithm would fulfil all of these properties, this
is not possible in practice. The continuous service property is central to live migra-
tion and unless met, the migration process cannot be considered live. However, the
other criteria are more flexible and subject to compromises. For example, postcopy
migration algorithms trade robustness for a shorter migration downtime and a more
predictable migration process. Another example is hybrid algorithms that compromise
transparency in order to make a better prediction as to which pages to transfer during
the precopy phase [Lu et al. 2012].

3.2. Live Migration Challenges
The practical applicability of live migration is limited by three common problems that
combined cause extended migration downtime, performance degradation and unpre-
dictable behavior. In this section, we discuss three challenges that hamper live migra-
tion, the transfer rate problem, the page re-send problem and the missing page prob-
lem and how they affect the migration process with respect to the properties presented
above.

3.2.1. The transfer rate problem. During the iterative phase of precopy live migration,
the VM’s pages are sent over the network from the source to the destination. As the
source VM is running during this process, its memory contents is constantly updated.
Because memory bandwidth is higher than network bandwidth, there is a high risk
of memory pages being dirtied at a faster rate than they can be transferred over the
network. In such cases, these pages are transferred repeatedly while the amount of
dirty pages remaining to transfer does not decrease. This means that the migration
process gets stuck in the iterative phase and as a result, the migration may have to
be forced into the stop-and-copy phase with a large number of dirty pages remaining
to transfer. As the VM is suspended during the stop-and-copy phase, this leads to ex-
tended migration downtime and a prolonged total migration time. Even in less severe
cases, where the algorithm does not need to be forced to proceed to the stop-and-copy
phase, downtime and total migration time are still extended to some degree.

The transfer rate problem poses a high risk to continuous service operation, as an
extended migration downtime can lead to interruption of services and possibly dis-
connection of clients, lost database connections, or other issues. Even if the migration
downtime is short enough for network connections not to drop (typically a few seconds
for TCP connections over LANs or the internet), timing errors, missed triggers, etc,
might occur and decrease the application’s stability and performance. In our previous
experiments with live migration of enterprise applications, downtimes as low as one
second caused unrecoverable application problems [Hacking and Hudzia 2009; Svärd
et al. 2011].

3.2.2. The page re-send problem. Live migration of a VM requires significant CPU and
memory resources, although the heaviest load is put on the network. As a VM can
easily have several gigabytes of RAM, a large amount of data is transferred during the
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live migration process. This problem is amplified in precopy migration as the source
VM is running during the iterative phase and pages that have already been transferred
are often being dirtied again. Since the state of the destination VM upon resume must
be an exact copy of the source VMs state, these pages must be re-sent.

The page re-send problem was first discussed by Clark et al. Clark et al. [2005] and
can lead to excessive resource consumption as only the final version of a page is used
and re-sending pages during migration consume both network and CPU resources.
Furthermore, the page re-send problem is a challenge to the predictability criteria as
it is not known beforehand the total number of pages that are to be re-transferred,
making it difficult to estimate how long time a migration takes to complete.

Precopy migration is affected by both the page-resend and transfer rate problems.
These problems are related as the transfer rate problem is a cause of the page-resend
problem. However, factors like memory size, page dirtying rate and memory write pat-
terns also affect the number of page re-sends [Clark et al. 2005; Svärd et al. 2011].

3.2.3. The missing page problem. Postcopy live migration algorithms resume the desti-
nation VM before its complete memory contents have been transferred to the destina-
tion host. After the execution is switched to the destination side, the missing pages are
pulled over the network from the source. Because networks have lower bandwidth and
higher latency than RAM, there is a performance penalty associated with accessing
these missing pages. We refer to this phenomenon as the missing page problem. This
problem imposes a high risk of performance degradation for the hosted applications
after the VM execution has switched to the destination host. If the performance degra-
dation is severe, the transparency and continuous service objectives might not be met.
The missing page problem also imposes a loss of robustness as it is not possible to fall-
back to the source VM if the live migration fails, e.g. due to network disconnects that
occur before the complete RAM content has been transferred. As the destination VM
is not started until all memory pages are present in precopy methods, such algorithms
are not affected by the missing page problem.

4. EXPERIMENTAL EVALUATION
To highlight the characteristics of the different live migration approaches a perfor-
mance evaluation has been performed. The focus of this evaluation is to illustrate
the conceptual differences between precopy, postcopy, and hybrid approaches in order
to observe the characteristic behavior of the algorithms. The implementation of the
evaluated algorithms are rather close to the definition given in Section 2 and the eval-
uation does not consider various modifications and improvements to the conceptual
algorithms, including use of compression, caching, and page transfer reordering, topics
that are further discussed in Section 6. We remark that although such techniques sig-
nificantly improve the practical performance of a particular live migration algorithm,
its main characteristics remains.

Two different workloads were used in the evaluation, one synthetic benchmark tai-
lored specifically towards evaluation of live migration, Appmembench [A. Shribman
2012] and one real-world database application, SAP HANA [SAP 2013]. The chosen
workloads are both demanding workloads as the difference in behavior between the mi-
gration approaches becomes more visible under demanding conditions. The tests were
run on two testbeds, one with standard Gigabit Ethernet and one with IWARP [Net-
Effect 2012] networking to illustrate the algorithms behavior using both high-speed
networking as well as during more typical conditions.
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4.1. Algorithms
Three algorithms has been evaluated, one precopy algorithm and two postcopy algo-
rithms. The two postcopy algorithms differ in implementation in that one does all
transfer of memory pages in-kernel while the other one moves pages to userspace be-
fore they are transferred. The former algorithm includes an optional precopy stage,
which means that it also supports hybrid migration. Both postcopy algorithms are
modifications to the live migration algorithms in the KVM hypervisor assisted by cus-
tom kernel modules. The precopy algorithm evaluated in this contribution is the stan-
dard KVM live migration algorithm.

4.1.1. Precopy. The standard version of KVM 1.2.50 was used to demonstrate the pre-
copy approach. The code was downloaded from the official git tree [Linux-KVM 2013]
and built on the test machines.

4.1.2. Userspace postcopy. The open source Yabusame [Hirofuchi et al. 2011] imple-
mentation was chosen to represent the userspace postcopy approach (where pages are
moved between kernelspace and userspace during migration). In Yabusame, the page
fault handler is modified to pull the missing pages from the source where the source
VM’s RAM contents are exposed using a network block device server. This approach is
outlined in Figure 4. In this figure, it can be seen that the migration process is con-
trolled by the qemu-kvm processes on the source and destination hosts that communi-
cate to coordinate the migration. The actual page transfer is handled by a userspace
process on the destination side, alloc bg. This process pulls the pages from an xndb
server on the source host that reads from shared memory, where the VM’s memory
pages are stored. On the destination host, the alloc bg process writes the pages to the
VM using a custom kernel driver, vmem. This approach means that memory pages are
being moved between kernel space and userspace during migration, which incurs a
performance overhead.

Fig. 4: The Yabusame userspace postcopy approach.

4.1.3. In-kernel postcopy and hybrid. The Hecatonchire [Hecatonchire 2012], Heca, sys-
tem represents the in-kernel postcopy approach where memory pages are transferred
from the source to the destination host without moving them between kernel space
and userspace. Since the Heca algorithm features an optional precopy phase it also
supports hybrid live migration. Figure 5 shows the design of the system. As with
Yabusame, migration is coordinated by the qemu-kvm processes on the source and
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destination hosts. If the VM tries to access a memory page that is not yet present, the
VM traps a page fault and initializes a memory request, using using the Heca kernel
module. The page fault is transparently handled by the Heca kernel module on the
virtual host that extracts the page from the destination over Remote Direct Memory
Access, RDMA. When an application performs an RDMA read or write request, the ap-
plication data is delivered directly to the network, reducing latency and thus enabling
fast message transfers that run in parallel with other system operations. This means
that pages are not transferred in and out of kernel space during migration.

Fig. 5: The Hecatonchire in-kernel postcopy approach.

4.2. Workloads
Two workloads were used in the performance evaluation. The first, Appmembench, is a
benchmark for live migration algorithms while the second, SAP HANA, is a real-world
in-memory database system with large memory requirements.

4.2.1. Appmembench. Appmembench is a benchmark for live migration that allocates
and repeatedly writes blocks of memory while measuring the iteration time needed for
the writes. It thus allows the rate at which memory pages are dirtied to be controlled
accurately. In the evaluation, from 500 MB to 7 GB of memory was allocated to the
benchmark. This benchmark is one variant of the diabolical workload [Clark et al.
2005], which is a workload that has a very high dirtying rate and is thus difficult to
migrate. The source code for Appmembench is available online [A. Shribman 2012].

4.2.2. SAP HANA. SAP HANA is an in-memory database server. The software aggre-
gates huge volumes of data and is typically very demanding in terms of CPU and mem-
ory usage. The SAP HANA benchmarking utility was used to put load on the servers
by simulating users logging on and executing queries towards the server.

4.3. Testbeds
Two testbeds were used in the evaluation. In both testbeds, the VM disk images were
kept on an NFS share accessible to both the source and destination hosts which means
that storage migration was not needed. The hardware specifications of the testbeds are
found in Table I. For the second testbed, the iWARP setup consist of 10GbE Chelsio
T422CR network adapters connected to a Fujitsu 10GbE switch.
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Table I: Testbeds.
Testbed CPU RAM Network Kernel
I Intel i5-2500 @ 3.30GHz 16 GB Gigabit Ethernet Linux stable 3.6
II Intel i5-2500 @ 3.30GHz 16 GB iWARP Linux stable 3.6

4.4. Scenarios
Three scenarios were included in the evaluation. The scenarios were chosen to study
the characteristics of the different approaches while migrating demanding workloads
and as such expose any shortcomings such as interruptions in service, unpredictable
behavior, high resource usage and performance degradation. Table II contains an
overview of the three scenarios. For policy reasons, the Yabusame postcopy algorithm
could not be run on testbed II but the results from testbed I are sufficient to draw
conclusion about its characteristics.

Table II: Evaluation Scenarios.

Scenario Evaluated Algorithms Workload Testbed
I Postcopy (userspace), Hybrid, Precopy Appmembench I
II Postcopy (kernel), Hybrid, Precopy Appmembench II
III Postcopy (kernel), Hybrid, Precopy SAP HANA II

In all scenarios, the live migration process was performed as follows:

(1) t = 0 start the application inside the VM.
(2) t = 10 s initiate live migration of the VM.
(3) t = 70 s force the live migration to stop-and-copy if it has not completed.
(4) t = 120 s end scenario.

Notably, Step 3 is applied only when the live migration process gets stuck in the iter-
ative phase which can happen due to the effects of the transfer rate problem, discussed
in Section 3.2.1.

4.4.1. Scenario I. Scenario I compares traditional precopy migration with postcopy and
hybrid migration. The Yabusame algorithm was used to demonstrate postcopy in this
scenario and for the hybrid approach, the Heca algorithm was configured with a 5 s
precopy phase. A 1 GB VM running Appmembench with 500 MB of allocated memory
was migrated and the page dirtying rate was increased by a factor of 10 between runs,
from 10 MB/s to 1 GB/s.

Results for Scenario I: Figure 6 shows the migration downtime in seconds. As seen,
the migration downtime for the precopy algorithm increases as the page dirtying rate
rises while the Yabusame userspace postcopy algorithm maintains a much shorter
and more stable downtime even though a small increase is seen for Yabusame when
the page dirtying rate is increased from 10 to 100 MB/s. The migration downtime for
the Heca hybrid algorithm is short and almost the same in all runs.

In Figure 11, which shows the perceived performance degradation during the mi-
gration process, it can be seen that while it takes longer for the precopy migration
algorithm to finish, performance is close to 100% except for a brief interruption of ser-
vices in the 1 GB/s case. The result for the Yabusame postcopy algorithm is good with
a dirtying rate of 10 MB/s but in the 100 MB/s and 1 GB/s cases, severe performance
degradation is measured for up to 23 seconds (from t=19 to t=42) after migration is
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Fig. 6: Migration downtime for Appmembench with 500 MB al-
located memory on a 1 GB VM for varying page dirtying rates.
This scenario uses Gigabit Ethernet.

initiated. Finally, the Heca hybrid algorithm with a 5 second precopy stage shows no
degradation of service in any of the runs.

Figure 7 shows the number of dirty pages that remains to be transferred when the
source VM is suspended for a page dirtying rate of 1 GB/s. The page size is 4 KB in
this, and all other, scenarios. As the Yabusame algorithm is a pure postcopy approach,
no pages have been transferred before the suspend (with the exception of CPU-state,
BIOS information and VRAM contents) so it is expected to have the highest number.
What is interesting is that even though the precopy migration ran for 60 seconds before
forced into the stop-and-copy phase, it still has more dirty pages remaining to transfer
than the Heca hybrid algorithm that only had a 5 second precopy phase in this case.

Fig. 7: Number of dirty pages remaining to transfer when the
source VM is suspended. The application is Appmembench
with a page dirtying rate of 1 GB/s.
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4.4.2. Scenario II. Scenario II compares precopy, postcopy and hybrid migration with
respect to migration downtime and performance degradation during migration. The
scenario investigates the effect of varying the working set size and page dirtying rate
during migration as well as the duration of the precopy phase in hybrid migration. The
Heca algorithm was used to demonstrate both the postcopy and hybrid approaches in
this scenario.

Two tests were performed for each algorithm. First, Appmembench was run with a
fixed page dirtying rate of 1 GB/s while the amount of memory allocated to the bench-
mark was varied from 500 MB up to 7 GB. The migration was run once for precopy and
postcopy live migration and 3 times for hybrid migration, varying the precopy phase
between 3, 5 and 10 seconds. The VM size ranged from 1 GB to 14 GB, i.e., twice the
size of the amount of memory allocated to Appmembench.

In the second test, Appmembench was run with 5 GB of allocated memory and with
page dirtying rates varying from 10 MB/s to 10 GB/s. The precopy algorithm was com-
pared to hybrid migration with a 5 second precopy phase. A 10 GB VM was used in
this test. The second test is basically the same test as Scenario I but performed on
Testbed II which means that instead of Gigabit Ethernet, iWARP accelerated network-
ing was used.

Results for Scenario II: The result from the first test is shown in Figure 8 that il-
lustrates the downtime in milliseconds. In the first migration, with 500 MB allocated
to Appmembench, all algorithms show roughly the same downtime. When the amount
of allocated memory increases, they start to behave differently. Using the precopy al-
gorithm, the migration downtime increases superlinearly with the amount of memory
allocated to the Appmembench benchmark. The migration downtime for the postcopy
and hybrid algorithms also increases although at a much slower rate, and it and stays
well below 500 ms in all runs. The shortest downtime in this test is achieved by the
hybrid algorithm but notably, for small VM sizes (1 GB and 4 GB), the length of the
precopy phase used by hybrid migration has no effect on the downtime. When the VM
size increases to 10 GB and 14 GB, the migration downtime becomes shorter as the hy-
brid precopy phase is extended, with 10 seconds precopy giving the best performance
for the largest VM size.

Figure 9 shows the migration downtime in milliseconds for the second test. As seen,
the downtime for the precopy algorithm increases superlinearly with the dirtying rate,
which is the same behaviour as in Scenario I, while the hybrid algorithm with 5 s
precopy stage maintains a stable downtime, below 250 ms in all runs. However, in the
10 MB/s case, the precopy algorithm achieves a shorter downtime.

Figure 10 shows the total migration time for the precopy algorithm in Scenario II.
With a page dirtying rate of 10 MB/s, the precopy algorithm finished after 6 and 24
seconds with 500 MB and 5 GB allocated to Appmembench, respectively. In all other
cases, the migration was forced after 60 seconds since the amount of dirty pages did
not decrease.

4.4.3. Scenario III. The purpose of Scenario III is to evaluate how postcopy, hybrid
and precopy migration behave in terms of migration downtime when live migrating
a database-driven, memory intensive business application. A 14 GB VM running a
SAP HANA instance was used for this purpose. The SAP HANA benchmarking utility
was used to put load on the servers by simulating users logging on and sending queries
to the server. In total 5 runs were made, one run each using precopy and postcopy mi-
gration and 3 runs with hybrid migration, varying the duration of the precopy phase
between 3, 5 and 10 seconds. The Heca algorithm represents both postcopy and hybrid
migration in this scenario.
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Fig. 8: Migration downtime for precopy, postcopy and hybrid
approaches running Appmembench, 1 GB/s dirtying rate. The
amount of memory allocated to Appmembench ranges from
500 MB to 7 GB.

Fig. 9: Migration downtime running Appmembench with 5 GB
allocated memory. The page dirtying rate is 10 MB/s and
10 GB/s.

Results for Scenario III: The results for Scenario II are shown in Figure 12. As seen,
the behaviour of the algorithms is similar to the earlier scenarios in that the precopy
algorithm shows a much longer migration downtime than both hybrid and postcopy.
However, it is interesting that there is no difference between hybrid and postcopy in
terms of migration downtime which means that the duration of the precopy phase had
little effect in this scenario.

5. COMPARISON OF THE APPROACHES
The algorithms in the evaluation are all designed to perform efficient live migrations
with minimal downtime but differences in implementation and underlying approach
mean that their results in the evaluation differed greatly. Based on these results, we
examine how the different live migration algorithms meet the live migration proper-
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Fig. 10: Total migration for time the precopy algorithm time
running Appmembench with 500 MB and 5 GB allocated
memory. Page dirtying rate varies from 10 MB/s to 1 GB/s.

Fig. 11: Relative application performance degradation during migration for pre-
copy, postcopy and hybrid running Appmembench with page dirtying rates from
10 MB/s to 1 GB/s.

ties presented in Section 3 while migrating demanding workloads and how they are
affected by the three live migration challenges outlined in Section 3.2.

5.1. Continuous service
All algorithms evaluated in this contribution fulfill the continuous service objective
while migrating non-demanding workloads, however, as seen in the evaluation once
the algorithms are stressed, they start to behave differently. While migrating demand-
ing workloads the precopy algorithm can no longer uphold the continuous service cri-
teria. As illustrated in Figures 6, 8 and 9, the migration downtime for the precopy
algorithm increases with both the page dirtying rate and the size of the working set
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Fig. 12: Migration downtime for precopy, postcopy and hybrid,
running SAP HANA. The VM size is 14 GB.

which leads to a perceived interruption in service. The cause of this is the transfer rate
problem, which is more likely to arise when migrating VMs running heavy workloads.

Considering the postcopy approaches, the Yabusame algorithm also fails to meet
the continuous service property when the dirtying rate is high. This is visible in Fig-
ure 11 which shows mild to severe performance degradation for Yabusame migration
after the execution is switched to the destination host. The reason for this performance
degradation is the missing page problem and to rectify this to some extent, most post-
copy implementations, including Yabusame and Heca, use a pre-caching mechanism to
predict which pages are needed by the VM in the near future based previous requests.
Those pages are pulled from the source even if they are not requested by the VM. How-
ever, such a modification does not completely solve the problem as firstly, no pages are
present directly after the VM is resumed, and secondly, the prediction of which pages
are needed right after resume tend to be difficult and error-prone.

Hybrid live migration can in theory reduce the effect of the missing page problem
as a subset pages are transferred during the precopy phase before the execution is
switched to the destination host. If this subset is chosen so that the most frequently ac-
cessed pages are transferred, the risk of a page not being present when it is requested
by the destination VM after the switch is reduced compared to a pure postcopy algo-
rithm. As the performance penalty for retrieving a page from the source host over the
network is high, the risk of post-migration performance degradation is reduced for hy-
brid migration compared to pure postcopy migration. This effect is seen in Figure 11
which demonstrates that the in-kernel Heca hybrid algorithm caused no performance
degradation during migration in any of the runs.

Notably, the duration of the precopy phase needs to be tuned for optimal downtime.
Even though the hybrid algorithm obtained the shortest downtimes in the benchmark
migration tests throughout the evaluation, increasing the precopy phase from 5 to 10
seconds actually resulted in a longer downtime in Scenario II as illustrated in Figure 8,
where a smaller amount of memory was allocated to Appmembench. The opposite was
true for the runs with more memory allocated. This is because even though there is
less memory unmapped for smaller VMs, it is more fragmented and therefore requires
more ioctl requests which increases the downtime.

The drawback with the hybrid approach is that it is difficult to choose the correct set
of pages to transfer during the precopy phase. In the in the real world application case,
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there is very little difference between the pure postcopy and the hybrid algorithms as
seen in Figure 12. This is most likely due to the more unpredictable nature of the SAP
HANA application compared to the synthetic benchmark which makes it difficult to se-
lect suitable pages to transfer during the precopy phase. Transferring the pages that
are most frequently written is not sufficient as pages that are frequently read must
also be considered. Tracking page reads is more expensive performance-wise than
tracking writes [Lu and Shen 2007] and would thus risk reducing the performance
of the VM, its applications and any co-located VMs.

Finally, hybrid migration is still affected by the missing page problem and if stressed
beyond its limits it might be subject to performance degradation after the execution
switch, even though this was not seen in this evaluation. However, since the evalu-
ation used heavy workloads with a high page dirtying rate, it is not likely that such
performance degradation would occur under more normal circumstances.

5.2. Low resource usage
Postcopy approaches are usually lean on resource usage since they transfer each mem-
ory page only once. Even though the hybrid approach includes a time-limited precopy
stage, only a small subset of the VM’s pages are transferred during this stage which
means that the overhead in resource usage compared to pure postcopy is usually small.

In contrast, precopy algorithms often use significant resources. As illustrated by Fig-
ure 7, the precopy algorithm, which was forced into the stop-and-copy phase after 60 s
in this scenario, has more dirty pages remaning to transfer than the hybrid algorithm,
which only ran for 5 seconds. Notably, the postcopy algorithm which does not transfer
any pages before the VM is suspended only a had a slightly larger amount of dirty
pages remaning to transfer. As the network bandwidth is 1 GB/s, i.e. the same as the
page dirtying rate, this scenario is an example of when the transfer rate problem takes
effect. The precopy migration algorithm is stuck in the iterative phase where pages are
being transmitted over and over again, but the amount of dirty pages does not decrease
between iterations which means that the migration process is wasting resources.

5.3. Robustness
Precopy approaches like the KVM algorithm used in the evaluation are robust since if
migration fails, it is possible to fall-back to the source host. However, for postcopy and
hybrid approaches, the situation is different as they sacrifice robustness to minimize
downtime and gain predictability. Unless the source host remains available during the
whole process, the destination VM suffers an unrecoverable crash as there is no way
to transfer the remaining memory pages. This is the case with both the Heca (hybrid
and postcopy) and the Yabusame algorithms. As seen in the evaluation, this leads to a
short and stable migration downtime and a predictable behavior, but at the expense of
robustness.

5.4. Predictability
It is much easier to predict the behaviour of a postcopy than a precopy algorithm since
postcopy algorithms transfer each memory page once only. Additionally, the postcopy
approach has the benefit of an almost immediate switch of execution as only the BIOS
information, CPU state and the Video RAM contents are transferred before the con-
text switch. This information makes up only a small part of the total RAM and the
transfer is usually very fast. Postcopy migration is therefore predictable as the switch
of execution always happens at the start of migration and the amount of data that is
transferred is known. In the hybrid case where a precopy stage is included in postcopy
migration, the duration of this precopy phase is known. This means that the hybrid
algorithms behavior is also predictable. Note that predictability refers to migration



A:16

downtime, resource usage and total migration time. Post-migration service interrup-
tion caused by the missing page problem is not considered as a part of predictability
but belong to the continuous service criteria. In the evaluation, both the postcopy and
hybrid approaches showed consistently predictable behavior in all scenarios.

Precopy algorithms are much more un-predictable since they might transfer each
memory page more than once, making it very hard to predict migration time and re-
source usage. In addition to the greatly varying migration downtime of the precopy
approach in the evaluation, Figure 10 illustrates that the total migration time is also
hard to predict since there is no obvious pattern in its duration.

5.5. Transparency
The transparency criteria is fulfilled by all of the algorithms studied in this contribu-
tion, precopy, postcopy and hybrid, since none of them require any modifications to be
made to the guest OS or any hosted applications. Benefits and drawback of alternative,
non-transparent, approaches are discussed in Section 6.

5.6. Comparison summary
Table III, summarizes the criteria that are met by the algorithms in the evaluation.
The main benefit of precopy migration is that it is robust. If the migration fails, it is
possible to fall back to the source host, provided failure of this host was not the cause of
the problem. If the VM to be migrated is not too heavy in terms of CPU and/or memory
usage, and enough network bandwidth is available, the standard precopy live migra-
tion algorithms of modern hypervisors work well. The precopy algorithm is also ma-
ture and migrates non-demanding workloads with acceptable downtime [Clark et al.
2005] over LANs. The downside with precopy migration is that it is subject to both the
transfer rate and the page re-send problem. This means that continuous service cannot
be guaranteed and when migrating VMs running demanding workloads interruption
of service is quite likely. This also means that there is a risk of excessive resource
consumption, longer total migration time and less predictable behavior compared to
postcopy approaches.

Several attempts have been made to improve the precopy algorithm. The transfer
rate problem has been tackled by increasing migration throughput with compres-
sion [Svärd et al. 2011; Wood et al. 2011], data de-duplication [Wood et al. 2011; Zhang
et al. 2013], use of pass-through network devices [Pan et al. 2012] and parallelizing
primitive operations [Song et al. 2013] while the page re-send problem has been ad-
dressed by non-sequential transfer order [Hudiza and Shribman 2012] and log-based
migration [Hu et al. 2012]. However, none of these improvements completely remedy
the transfer rate or page-resend problem. Thus, the risk of extended migration and
excessive resource usage remains also for an improved precopy migration algorithm.

Table III: Summary of live migration algorithms and criteria.
Precopy Postcopy Hybrid

Continuous service (3) 3

Low resource usage 3 3

Robustness 3

Predictability 3 3

Transparency 3 3 3
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In contrast to precopy migration, the postcopy approach is not robust as it is not
possible to fall back to the source VM as this one is suspended at the beginning of mi-
gration and its state thus is inconsistent with the destination copy. The benefits with
postcopy live migration is the short and stable migration downtime and that postcopy
algorithms are not subject to the page-resend problem. However, because the post-
copy approach is affected by the missing page problem, there is a risk of performance
degradation after the execution has been switched to the destination host. If this per-
formance degradation is large enough, the continuous service criteria may not be met.
This can be observed in the evaluation where the Yabusame postcopy algorithm had is-
sues with post-migration performance degradation for page dirtying rates higher than
100 MB/s. This is probably caused by the implementation of that algorithm where
unnecessary overhead is added by copying memory pages between kernelspace and
userspace.

The approach that showed the overall best results in the evaluation was the hybrid
approach. The Heca hybrid algorithm with a 5 s precopy phase had a short, stable
migration downtime in all scenarios and showed no performance degradation after the
VM was resumed on the destination. However, in Scenario III, there was no difference
between the postcopy and hybrid versions of the Heca algorithm so it is thus possible
that the biggest performance gain in Heca comes from using the in-kernel zero-copy
RDMA approach that enables the network adapter to transfer data directly to or from
application memory.

To summarize, precopy should be used only if robustness cannot be sacrificed. In all
other cases it is better to use postcopy or hybrid migration. The predictable nature
and low resource usage of such approaches means that reliable migrations can be per-
formed without wasting resources and the short, stable migration downtime makes
these approaches better suited for migrating demanding workloads.

6. RELATED WORK
Since live migration was first demonstrated [Clark et al. 2005], there have been many
attempts to improve the performance of the precopy migration algorithm and several
algorithms that tackle the transfer rate problem by increasing migration throughput
have been suggested. The XBRLE [Svärd et al. 2011] and XBZRLE [Hudiza and Shrib-
man 2012] delta compression algorithms as well as CloudNet [Wood et al. 2011] are
examples of such approaches. Delta compression is the idea of transferring changes
to memory pages, deltas, instead of the full page contents. When a page is transferred
during the iterative phase of precopy migration, it is stored in a cache. If the same page
is dirtied again, a compressed delta page can be computed and transferred instead of
the full page.

Another way to increase throughput is by using data de-duplication techniques.
CloudNet [Wood et al. 2011], is a migration solution for cloud environments and routes
the migration traffic through a proxy. The proxy calculates a checksum for each page
and keeps track of duplicate pages, which are sent as references, thus reducing the
amount of transferred data. Using this technique, throughput can be increased when
migrating multiple instances of VMs with similar memory contents. A similar ap-
proach is used by Jo et al. [2013]. Their algorithm tracks the VM’s I/O to the net-
work storage device and maintains an updated mapping of memory pages that reside
in identical form on the storage device. During the iterative phase of precopy migra-
tion, the destination host fetches those memory pages directly from the storage device
instead of transferring those pages over the network from the source. Another data
de-duplication approach is MiyakoDori [Akiyama et al. 2012], geared towards data
centers where VMs are sometimes migrated back and forth between hosts for server
consolidation purposes. The MiyakoDori system takes advantage of this by keeping a



A:18

memory image of a migrated VM on the source host. If the VM is then migrated to a
host where it has been provisioned before, pages that are identical with those in the
saved image are not transferred. Similar ideas are used by Cui et al. [2013] in the
VMScatter system which is an one-to-many migration method to migrate VMs from a
single source to multiple destinations simultaneously. Deshpande et al. [2012] also uti-
lize data de-duplication techniques to reduce the traffic load on the core network links.
They suggest a distributed system for inter-rack live migration, IRLM, that aims to
reduce the traffic load on the core network links during mass VM migration through
distributed deduplication of the VMs memory images.

A somewhat different approach to increase migration throughput is an approach
where the state between the source and the destination is synchronized with the help
of log files [Hu et al. 2012]. Memory writes are traced on the source and replayed on
the destination. In their experiments, resource usage was reduced compared with the
precopy algorithm which indicate that their approach to some extent remedy the page-
resend problem. Migration throughput can also be increased by applying data and
pipeline parallelism to the precopy algorithm. Song et al. [2013] propose the PMigrate
algorithm where several threads are spawned to handle the most time-consuming
primitive operations during live migration.

To tackle the page re-send problem, Hudiza and Shribman [2012] propose a Least
Recently Used, LRU, page reordering technique. The algorithm is a development of the
page transfer reordering algorithm presented by Svärd et al. [2011] and aims to reduce
the number of page re-sends by first sending pages which have a smaller likelihood of
changing again in the near future. The number of page re-sends can be significantly
reduced when pages are updated with no regular pattern. LRU page reordering is
designed to give no degradation in performance even when memory is updated in a
sequential sweep. A similar approach geared towards storage migration is proposed
by Zheng et al. [2011] who use an improved VM disk storage block live migration al-
gorithm that includes an analysis of the write history to storage blocks. They use this
information to schedule the transfer order of the blocks, thereby reducing the amount
of storage data being transferred during live migration. The SonicMigration [Koto
et al. 2012] algorithm uses a selective approach when transferring memory pages.
Free pages and soft-state pages, i.e. caches for disk blocks etc are not transferred since
they can be re-created by the destination hypervisor. If a significant part of the VMs
memory consists of such pages, total migration time can be significantly reduced.

In an effort to reduce resource usage for precopy migration Xu et al. [2012] pro-
pose a network bandwidth cost function that capture the tradeoff between migration
overhead and service degradation based on queuing theory. The idea is to minimize
the resource usage during migration while maintaining a short migration downtime
thereby reaching a tradeoff between migration performance and delivering an accept-
able quality of service.

HSG-LM [Lu et al. 2012] is a hybrid migration technique implemented in the guest
OS kernel. They reason that guest OS can make a more accurate prediction as to what
pages will be accessed in the near future than the hypervisor as the hypervisor does
not have access to data of the same granularity. Because the guest OS is modified and
aware of the migration, the HSG-LM thus sacrifices the transparency with the goal of
delivering better performance.

Live migration can also be used as a tool to improve datacenter performance. The
sandpiper [Wood et al. 2007] system uses live migration to resolve overloaded servers
in datacenters. Sandpiper monitors server performance using a combination of black
box as well as grey box techniques and uses live migration to re-arrange the physi-
cal mapping if necessary. Similar ideas are utilized in the Reactive Cloud [Hirofuchi
et al. 2012] system in which VMs are migrated using postcopy migration to achieve a
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dynamic consolidation of VMs in a datacenter as well as by Chuan et al. [2012] in a
study of virtual machine migration strategies.

7. FUTURE DIRECTIONS
In this section, we outline a few future directions for the live migration research com-
munity.

7.1. Dynamic context switching
Dynamic context switching is the concept of allowing execution to move dynamically
between the source and destination hosts instead of performing a single context switch
at a certain point in the migration process. As the CPU state is small and can easily be
migrated, these dynamic context switches can be performed almost instantaneously.
For example, after a certain amount of pages have been transferred using a pre-copy
stage, the execution is switched over to the destination side while pages continue to be
migrated in the background. If performance is degraded because the VM requests a lot
of pages that are not present, execution is switched back to the source. The execution
then moves back and forth as needed until the migration process is complete. The
dynamic context switching algorithm can be considered a seamless hybrid of precopy
and postcopy migration.

7.2. VM phase detection
It has been demonstrated that applications normally run in cycles, repeating a num-
ber of tasks following a number of normal patterns. It is also possible to detect which
phases an application consists of and to determine which phase it is currently in [Sem-
brant et al. 2012]. If this technique can be modified to detect the phases of a VM’s
execution, this information can be used to improve the performance of live migration.
For example, a postcopy migration could be initiated when the VM is at the beginning
of the least CPU and/or memory intensive phase. As the dirtying rate is at its lowest at
that time, the impact of the missing page problem is reduced. This approach has been
studied by Zhihong et al. who examine the average utilization of the CPU, memory, I/O
and network bandwidth of a VM to make a series of decisions about migration, such
as whether a migration is triggered, what virtual machine should be migrated, and to
which host [Li et al. 2012]. The idea is also is somewhat related to the HSG-LM tech-
nique, mentioned above, but the goal is to address the transfer rate problem without
breaching the transparency criteria.

7.3. Flash cloning/VM Forking
VM forking is a technique to instantaneously clone a VM into multiple replicas running
on different hosts [Lagar-Cavilla et al. 2009]. As all replicas have the same initial
state, VM forking enables straightforward creation and efficient deployment for many
tasks demanding swift instantiation of multiple VMs in a cloud environment. Flash
cloning is the concept of expanding this technique to allow for sub-second stateful VM
cloning, scaled to hundreds of VMs, while consuming few cloud I/O resources and with
negligible runtime overhead [Hudzia 2012].

8. CONCLUSION
So far, studies of live migration typically focus on implementation details and per-
formance optimization, most commonly for precopy migration. In contrast, this paper
studies the underlying concepts and fundamental characteristics, as well as introduces
desired properties of live migration algorithms that can be used to gain a deeper under-
standing about the principles and performance of live migration. With a starting-point
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in these properties we analyze the benefits and drawbacks of three live migration al-
gorithms: precopy, postcopy and hybrid.

In the study of migration approaches performed in the paper, it is seen that al-
though precopy approaches are robust, widely available and proven, they fail in deliv-
ering continuous service throughout the migration process when migrating demand-
ing workloads. As validated by the evaluation, precopy migration is also unpredictable
and consume more resources than necessary. Although many attempts of improving
the precopy approach have been made, none of these completely solve the underlying
issues associated with this technique. On the other hand postcopy approaches, includ-
ing hybrid, are lean in terms of resource usage and deliver a short and predictable
migration downtime. The evaluation in this contribution indicate that novel in-kernel
postcopy algorithms are able to migrate demanding workloads with no interruption
in service or performance degradation. The downside of postcopy migration, including
hybrid, is the lack of robustness as it is not possible to fall back to the source host if
migration fails.

To summarize, due to its limitations, precopy live migration should be used only
when robustness cannot be sacrificed. In all other cases postcopy or hybrid migra-
tion provide live migration with a short downtime, minimal resource usage and a pre-
dictable total migration time. We foresee that support for postcopy migration will be
included in future versions of mainstream hypervisors.
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SVÄRD, P., TORDSSON, J., HUDZIA, B., AND ELMROTH, E. 2011. High performance live migration through
dynamic page transfer reordering and compression. In CloudCom ’11: 3rd IEEE International Confer-
ence on Cloud Computing Technology and Science. IEEE, 542–548.

WOOD, T., RAMAKRISHNAN, K. K., SHENOY, P., AND VAN DER MERWE, J. 2011. CloudNet: dynamic pool-
ing of cloud resources by live WAN migration of virtual machines. In VEE ’11: The 2011 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments. ACM, 121–132.

WOOD, T., SHENOY, P., VENKATARAMANI, A., AND YOUSIF, M. 2007. Black-box and gray-box strategies
for virtual machine migration. In NSDI ’07: 4th USENIX Symposium on Networked Systems Design &
Implementation. 229–242.

XU, X., YAO, K., WANG, S., AND ZHOU, X. 2012. A vm migration and service network bandwidth analysis
model in iaas. In CECNet ’12: 2nd International Conference on Consumer Electronics, Communications
and Networks. 123–125.

ZHANG, Z., XIAO, L., ZHU, M., AND RUAN, L. 2013. Mvmotion: a metadata based virtual machine migration
in cloud. Cluster Computing, 1–12.

ZHENG, J., NG, T. S. E., AND SRIPANIDKULCHAI, K. 2011. Workload-aware live storage migration for
clouds. In VEE ’11: The 2011 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. ACM, 133–144.


