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Petter Svärd, Wubin Li, Eddie Wadbro, Johan Tordsson, and Erik Elmroth

Department of Computing Science, Umeå University
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Abstract—Efficient mapping of Virtual Machines (VMs) onto
physical servers is a key problem for cloud infrastructure
providers as hardware utilization directly impacts revenue.
Today, this mapping is commonly only performed when new
VMs are created, but as VM workloads fluctuate and server
availability varies, any initial mapping is bound to become
suboptimal over time. We introduce a set of heuristic methods
for continuous optimization of the VM-to-server mapping based
on combinations of fundamental management actions, namely
suspending and resuming physical machines, migrating VMs,
and suspending and resuming VMs. Using these methods cloud
infrastructure providers can continuously optimize their server
resources regardless of the predictability of the workload. To
verify that our approach is applicable in real-world scenarios,
we build a proof-of-concept datacenter management system that
implements the proposed algorithms. The feasibility of our
approach is evaluated through a combination of simulations and
real experiments where our system provisions a workload of
benchmark applications. Our results indicate that the proposed
algorithms are feasible, that the combined management approach
achieves the best results, and that the VM suspend and resume
mechanism has the largest impact.
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I. INTRODUCTION

To date, most research on Virtual Machine (VM) provision-
ing for cloud datacenters has focused on deploy time schedul-
ing, typically formulated as assignment problems where VMs
are mapped to Physical Machines (PMs). Common objectives
for these formulations are to optimize criteria such as Service
Level Agreements (SLAs) [5], provider revenue [9], perfor-
mance [23], utilization [37] etc. or a combination thereof.
Notably, there are several factors that complicates this prob-
lem. First of all, VM scheduling is an online problem as
both the arrival rate of new VM requests and the completion
time for provisioned VMs is unknown. In addition, resource
usage of individual VMs also varies over time. Changes to
the server pool, due to failures or energy-management actions
such as power-off and frequency-scaling, can also impact the
performance of deployed VMs.

These factors imply that any scheduling solution may be-
come suboptimal over time. To address this, we propose a
continuous VM remapping approach to optimize VM provi-
sioning as a complement to VM scheduling. Our approach
consists of a set of algorithms that enable cloud infrastructure
providers to automatically reconfigure the mapping of VMs to
PMs and adapt to the changes in workloads and the physical

environment. These algorithms are based on a combination
of management actions, i.e., suspend and resume of PMs,
live VM migration, and suspend and resume of VMs. This
continuous datacenter consolidation approach aims to maxi-
mize cloud provider revenue over time by minimizing power
consumption, maximizing PM utilization, and prioritizing im-
portant VM requests.

The remainder of the paper is organized as follows. Sec-
tion II describes our system model and the assumptions made.
Section III briefly elaborates on the problem and outlines our
optimization algorithms. Section IV describes the architecture
and implementation of our continuous datacenter consolida-
tion engine. Section V presents the experimental evaluation
on synthetic workload. Section VI surveys the related work
on datacenter management, autonomic computing, and VM
scheduling. Our conclusions are given in Section VII followed
by a presentation of future work, acknowledgments, and a list
of references.

II. SYSTEM MODEL OVERVIEW

This work is based on a model where a datacenter consists
of a set of PMs that are used to provision VMs on behalf
of users. For each time unit the datacenter provisions a VM
for a user, a profit r is generated, whereas a penalty f is
imposed to the provider if the VM is not running for a time
unit. In addition to any such SLAs, penalties, cloud providers
pay electricity costs for running the PMs. To model the power
consumption P of a physical server, as a function of the
CPU utilization u, we adopt the following model presented
by Blackburn [24]:

P (u) = Pidle + (Pmax − Pidle)u, (1)

where Pmax and Pidle are the power consumption for a server
at full load and at idle respectively. In this model, server
power consumption scales linearly with CPU utilization. So for
example, a server with Pidle = 200 W, Pmax = 300 W, and
10% CPU utilization requires P (10%) = 200 W + (300 W−
200 W)× 10% = 210 W. Through empirical measurement of
various servers, this approximation has proven by Baroso et
al. to be accurate to within ±5% across all CPU utilization
rates [4]. They also argue that although the power consumption
of the CPU only accounts for roughly 40% of the power usage
of a server, it can be used to model the total usage [4].



Finally, the power consumption of the whole data center can
be expressed as

Ptot =
∑

i|physical machine pmi is active

P (ui),

where ui denotes the CPU utilization of physical machine
pmi. The monetary cost of running the data center during
a time interval (0, t) is therefore given by

C =
m

1000

∫ t

0

Ptot,

where m represents the unit cost per kWh.
When mapping VMs to PMs it is possible to provision

more virtual resources than what is physically available in
the PM, a concept known as overbooking [33]. However,
some infrastructure providers e.g., Amazon EC2, provide a
one-to-one mapping between virtual and physical CPU and
memory resources [10], which means that PMs are not being
overbooked. Within the context of this work, we assume that
no overbooking is taking place.

Research on proactive optimization based on the historical
data and workload prediction has been performed extensively,
by e.g. Ali-Eldin et al. [2]. In our model, we assume that
the infrastructure provider has no knowledge of the future
workload and no prediction is taking place. However, we
believe that it is possible to enhance our approach with such
prediction techniques.

A core technology to optimize the mapping of VMs to PMs
during operation of the datacenter is live VMs migration [6].
Live VM migration allows a running VM to be moved from
one PM to another without shutting it down. Live migration
thus reduces SLA penalties as the VM is accessible by
users during migration, but at the cost of migration taking
considerable time to complete and consuming much hardware
resources. To reduce both migration time and resource usage,
we use the KVM XBZRLE delta compression migration algo-
rithm [32] in our work as delta compression can significantly
reduce the migration downtime, migration time and the amount
of transmitted data during live migration for memory-intensive
workloads [32], [36]. The total migration time of a VM is
given by

dt = ti + tc + ts + tr,

where ti, tc, ts, and tr denote the time for iteratively transfer-
ring memory pages, the time for suspending the VM at source,
time for CPU/BIOS transfer and the time for resuming the
VM at destination, and pulling respectively. The three latter
operations are usually fast and vary little between VMs, that
is, tc, ts, and tr are typically small. The iterative transfer
time is harder to predict, but is usually a function of the
active memory usage and the memory size of the VM and
the network bandwidth b.

III. THE PROPOSED APPROACH AND HEURISTIC METHODS

At any point in time, multiple events can take place. We
define three events and prioritize them in descending order as

PM crash, VM exit, and VM arrival. Our proposed approach
dynamically handle these events according to their priori-
ties, and adapts the cloud infrastructure to the environmental
changes in a reactive manner. Simple management actions are
used for optimization of the datacenter, i.e., (i) suspend/resume
VMs, (ii) VM migration, and (iii) suspend/resume PMs. For
an event of PM crash, a crashed PM not only affects all VMs
hosted, but it must also be excluded as a potential destination
for VMs. Upon an event of PM crash, we simply suspend all
VMs hosted on that PM. A VM exit event has a higher priority
than a VM arrival event, as capacity released by a terminated
VM can be used to accept more VMs into the datacenter.
When a VM terminates, the occupied resources are released,
increasing the residual capacity of a PM. All VMs arriving
are added to a list, namely, candidateList, which also may
include VMs suspended in the past. VMs in candidateList
can be prospectively executed depending on the decision by
the optimization process. A summary of the actions taken on
the occurrence of events is shown in Algorithm 1.

Algorithm 1: handleEvents(events)

1 for e ∈ events do
2 if PM pm crash then
3 Exclude pm and all VMs hosted;
4 else if VM vm quits then
5 Release capacity occupied by vm;
6 else if VM vm arrives then
7 Add vm to candidateList;

Once the event handling procedure is completed, a con-
solidation action presented in Algorithm 2 is triggered to
optimize the profit gained by VM provision. In particular, if
an infrastructure provider has too limited capacity, the profit
can be maximized by selecting which VMs to run. In order to
make an optimal selection, the following two questions need
to be answered.
1. Which VM should be placed first?

Intuitively, given a set of VMs, the ones that are most
profitable should be placed with higher priorities. However,
in our model, we also need to consider the penalty of
suspending a VM. In this contribution, we prioritize a
VM using the sum of its associate profit and penalty. For
example, given two VMs, vm1 with profit r1 and penalty
f1, and vm2 with profit r2 and penalty f2, our algorithms
place vm1 prior to vm2 if r1 − f2 > r2 − f1 (even
when r2 > r1).

TABLE I
EXAMPLE OF VM PRIORITIZATION.

Option Profit Penalty Gain
Run vm1, and suspend vm2 r1 f2 r1 − f2
Run vm2, and suspend vm1 r2 f1 r2 − f1

Table I compares two different options with respect to
potential gains from the perspective of the infrastructure



provider. In this case, the first option is preferable if
r1 − f2 > r2 − f1, or equivalently r1 + f1 > r2 + f2.

2. Which VM should be selected to be replaced?
Given a VM vm (with profit r and penalty f ) that can
not be hosted by any PM, it is possible to suspend another
already running VM vm′ (with profit r′ and penalty f ′)
in PM pm and instead run vm if (i) pm is capable of
running vm (after the suspension of vm′) and (ii) it is
more profitable to run vm than vm′. Following the strategy
aforementioned, the VM with minimum (r′+f ′) is selected
as the victim VM, i.e., the VM to be suspended.

Algorithm 2: consolidation()

/* consolidation */
1 if suspend/resume VM is allowed then
2 Add all suspended VMs to candidateList;
3 Sort VMs in candidateList by (price+ penalty) in

descending order;
4 for vm ∈ candidateList do
5 handleVM(vm);
6 if suspend/resume PM is allowed then
7 if VM migration is allowed then

// Release PMs via VM migration.
8 releasePMsbyMigration();
9 else

// Suspend PMs without VM running.
10 suspendIdlePMs();

In order to optimize the datacenter operation, our approach
is to generate a list of consolidation actions according to
Algorithm 2. If the used algorithm allows for suspend/resume
of VMs, the first step is to recycle all the currently suspended
VMs and enable them to be possibly resumed by adding
them to candidateList (see Line 2). All VMs (also referred
to as object VMs) in candidateList are to be handled
sequentially, in a descending order that they are ranked by
(price + penalty). There are two possible outcomes of the
action handleVM, i.e., either suspend the current VM, or place
and start VM in some physical server. The final step in a
round of optimization is to suspend idle PMs if the feature is
enabled (see Line 6–10). More PMs may be released and then
suspended, depending on whether VM migration is allowed.

As depicted in Line 2 in Algorithm 3, we use best-fit as
the baseline strategy to find an active PM for a VM. The
motivation for this is to load each PM as much as possible,
maximizing the utilization of the PMs and thus minimizing
the residual capacity of the whole infrastructure. If this is not
feasible (i.e., no PM can host the VM), a simple solution
is to try starting a suspended (or a new) PM (see Line 6)
and place the VM there. However, in order to decrease the
total number of active PMs, prior to starting a new PM, the
proposed algorithm strives to readjust the placement of VMs,
to see if there exists a PM that can host the VM after migrating
some VMs to other PMs (see Line 4). The details of this can
be found in Algorithm 4).

Algorithm 3: handleVM(vm)

/* This function is for handling newly
arrival VMs and VMs that were
suspended in the previous period. */

1 pms← active PMs;
// Find a PM for vm using the best-fit

strategy.
2 pm← best-fit(vm, pms);
3 if pm not found and VM migration is allowed then
4 pm← findPMbyMigration(vm);
5 if pm not found then
6 pm← attempt to start a new PM;
7 if pm not found and suspend/resume VM is allowed then

// Find a victim VM and replace it
with vm.

8 pm← findPMwithVictimVM(vm);
9 if pm found then

10 placeVM(vm, pm);
11 else
12 suspendVM(vm);

Finally, if no suitable PM is found after trying all of
the above approaches, an aggressive approach is applied to
pick one of the running VMs as the victim, suspend it, and
replace it with the object VM (see Line 8, as described in
Algorithm 5). This step is conducted only if replacing the
victim with the object VM is feasible and more profitable.
Note that our algorithm currently only selects one VM as
victim, it is however possible to extend this to enable selection
of multiple VMs as victims instead.

To find if re-arranging the mapping of VMs by live mi-
gration them can make room for vm on some PM, all active
PMs are sorted by residual capacity in descending order in
Algorithm 4. The PMs are then evaluated by looking at the
feasibility of migrating a set of VMs to other PMs. When
evaluating a PM, we only consider migrating VMs that are
smaller than vm (see Line 6), as testing a VM larger than vm
is meaningless (namely, if a PM can be found for this case,
just place vm there without adjusting any VM placement).
Also, note that as a machine can be represented by multiple
dimensions (CPU, memory, storage, etc), the size function in
Algorithm 4 can have different definitions depending on the
application scenarios. In this work, it is defined in terms of
CPU cores while other dimensions (memory, storage, etc.)
are used as constraints when evaluating the feasibility of
placement on PMs. The algorithm also strives to minimize
the number of migrated VMs, as migration takes time and
consumes resources. In addition, to further reduce the number
of VMs migrated, all potential VMs are sorted by size in
descending order (see Line 7). VMs to be migrated are added
to a plan by function addToMigratitonPlan (see Line 13).
The evaluation procedure stops when the first suitable PM is
found, and the migration plan is executed by commitMigrati-
tonPlan (see Line 20). If a PM is not suitable, the migration



Algorithm 4: findPMbyMigration(vm)

/* Find a PM that can host vm after
migrating some VMs to other PMs. */

1 pms← all active PMs;
2 Sort pms by residual capacity in descending order;
3 for p ∈ pms do
4 feasible← FALSE;
5 vmSet← VMs hosted in p;
6 vms← {v ∈ vmSet | size(v) < size(vm)};
7 Sort vms by capacity in descending order;
8 pmset← pms \ {p};
9 for v ∈ vms do

// Find a PM (not p) to host v
using the best-fit strategy.

10 pm← best-fit(v, pmset);
11 if pm not found then
12 break;
13 addToMigratitonPlan(v, pm);
14 if p can host vm then
15 feasible← TRUE;
16 break;
17 if not feasible then
18 cancelMigratitonPlan();
19 continue;
20 commitMigratitonPlan();
21 return p;

plan is canceled by cancelMigratitonPlan (see Line 18).
Algorithm 5 introduces the strategy of finding a victim VM

to be replaced by a VM in candidateList. The basic idea is to
select the VM with the minimum value of (price+ penalty)
among all selectable VMs (see Line 9-13). Once a VM is
selected as a victim VM, it is suspended and moved to a
waiting list and may potentially be resumed depending on the
future optimization decision.

The final action in each consolidation process is to try
to reduce the power consumption of the infrastructure by
suspending all idle PMs, or by releasing more PMs by VM
migration. To empty an active PM, all hosted VMs need to be
migrated to other PM(s). Intuitively, PMs with higher residual
capacity are more likely able to be emptied, and thus PMs
are evaluated in the order of residual capacity (see Line 2 in
Algorithm 6). Once again, we use a best-fit strategy whenever
finding a new location for a VM (see Line 8).

Finally, by enabling or disabling the three management
actions identified, we end up with 8 algorithms to evaluate
in Section V, as listed in Table II.

Notably, scheduling algorithms based on bin-packing [7] or
knapsack approaches are exponential in complexity, limiting
their applicability for large-scale problems. As our algorithms
are all with polynomial complexity this means that they can
be used for larger problem sizes than what is studied in our
simulations.

Algorithm 5: findPMwithVictimVM(vm)

/* Find a PM that can host vm after
suspending a vm hosted. */

1 destination← null;
2 minRF ← price(vm) + penalty(vm);
3 pms← all active PMs;
4 for p ∈ pms do
5 vmSet← VMs hosted in p;
6 vms← {v ∈ vmSet | price(v) + penalty(v) <

minRF};
7 Sort vms by (price+ penalty) in ascending order;
8 for v ∈ vms do
9 if p can host vm after suspending v then

10 victim ← v;
11 destination← p;
12 minRF ← price(v) + penalty(v);
13 break;
14 if destination is not null then
15 suspendVM(victim);
16 return destination;

Algorithm 6: releasePMsbyMigration()

/* Release PMs through VM migration */
1 pms← all active PMs;
2 Sort pms by residual capacity in descending order;
3 for p ∈ pms do
4 feasible← TRUE;
5 vms← VMs hosted in p;
6 pmset← pms \ {p};
7 for vm ∈ vms do

// Find a PM (not p) to host vm
using the best-fit strategy.

8 pm← best-fit(vm, pmset);
9 if pm not found then

10 feasible← FALSE;
11 break;
12 addToMigratitonPlan(vm, pm);
13 if not feasible then
14 cancelMigratitonPlan();
15 continue;
16 commitMigratitonPlan();

// Suspend PM p when it is idle.
17 suspendPM(p);



TABLE II
ALGORITHMS AND MANAGEMENT DIMENSIONS

algorithm suspend/resume suspend/resume VM
PMs VMs migration

baseline
pmSR X
vmSR X
vmM X
vmSRpmSR X X
vmMpmSR X X
vmMvmSR X X
combined X X X

IV. ARCHITECTURE AND IMPLEMENTATION.

To verify that our algorithms are valid in real-world scenar-
ios, we design and implement a software package, Automatic
Continuous Datacenter Consolidation (ACDC), capable of
managing PMs and VMs using the algorithms described in
Section III. PMs can be suspended and resumed, and VMs
can be started, shutdown and migrated. The ACDC is built on
the open-source KVM [18] hypervisor in combination with
libvirt [22] to provide the virtualization backend.

The architecture consists of three components, as shown in
Figure 1. All components are implemented in Java and the
complete package runs on one PM, the controller. To perform
consolidation actions on the worker PMs, where ACDC is
not running, ssh remote invocation by means of shared key
authentication is used. This means that remote libvirt virsh [22]
commands for suspending and resuming VMs and migration
of VMs, as well as scripts to suspend and resume PMs, can
be executed by the controller PM.

PM1
PM...

KVM Hypervisor

sysstatvirt-top

VM1
VM2 VMk

...

PMn

VM...

...

...

CollectorAggregator

ConsolidationEngine

TaskExecutor

ACDC

DCMonitor

Fig. 1. Architecture overview.

A. DCMonitor.

To continuously collect the state information of the data
center, we implement a monitoring system that consists of
two subcomponents. A Collector installed in each phys-
ical machine, and an Aggregator is co-located with the
ConsolidationEngine. The collector is built on two libraries,
virt-top [13] and sysstat [1]. virt-top is a top1-like utility for
showing stats of virtualized domains. It is employed to collect

1top is a task manager program inherent in many Unix-like operating
systems.

the cpu, memory and IO usage info of virtual machines. Note
that virt-top only collects the total memory allocated to the
guest, not the memory being used. The sysstat utilities are a
collection of performance monitoring tools for Linux hosts.
They are used to gather the resource usage info of physical
hosts. Using the statistics collected by the Collector in each
physical host, the Aggregator constructs a global view of the
state of the data center.

B. ConsolidationEngine.

The ConsolidationEngine analyzes the data from the DC-
Monitor and decides on what actions to take in order to opti-
mize the operation of the datacenter, according to the selected
algorithm. All algorithms in Table II are evaluated through
simulation. In addition to this, the combined algorithm and
the baseline algorithm are also used to verify the simulation
results for small-scale real experiments. The output from the
ConsolidationEngine is an Execution Plan which is an ordered
list of optimization actions.

C. TaskExecutor.

The TaskExecutor is designed to perform the actions pro-
duced by the ConsolidationEngine. It is running as a daemon,
waiting to accept Execution Plans from the Consolidatio-
nEngine. Once an Execution Plan arrives, it is processed and
the tasks are performed in order. The TaskExecutor controls
the underlying virtualized infrastructure by using libvirt virsh
commands.

V. EVALUATION

We compare the eight algorithms defined in Table II by
comparing the impact of each management action in isolation
and combination on provider profit, PM utilization, number of
running and suspended VMs. This is done both through sim-
ulations and real experiments. Note that, in order to increase
the readability of the figures, data values are aggregated for
each hour, unless otherwise specified.

A. Overall experiment setup.

We model the datacenter as a set of PMs where each server
has 32 cores and 56G of memory. A limitation factor (χ = 0.9)
is set to restrict the maximum number of cores loaded for each
PM, i.e., for each PM, 28 cores are allowed to be occupied by
VMs. This is reasonable as some resources are needed by the
hypervisor, for example to emulate the underlying hardware
environment and to migrate VMs, and by the host operating
system. The server power consumption is 100 W when idle
and 560 W when fully utilized, which is consistent with power
usage for the HP ProLiant DL165G7 servers used in the real
tests. The price of electricity is set to be $0.07 per kW/h.

We consider 7 different VM instance types similar to
offerings by Amazon EC2. Their hardware characteristics are
illustrated in Figure 2, and their hourly prices as well as the
associated SLA penalties for downtime are listed in Table III.
VM arrival is modeled using one Poisson process for each
instance type, seven processes in all. A parameter associated



with these processes is λ, which indicates the average arrival
interval. Note that the time unit used in simulation is hours,
while minutes are used in real test.
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Fig. 2. VM instance types.

TABLE III
SETTING OF PRICES AND PENALTIES FOR VM INSTANCES.

VM types S S+ M M+ L L+ XL
Price ($/h) 0.04 0.06 0.09 0.14 0.20 0.31 0.46
Penalty ($/h) 0.40 0.60 0.90 1.40 2.00 3.10 4.60

B. Simulations.

For the simulations, we use 48 PMs, which is a common
size for a rack in a datacenter [4]. We study three different
scenarios with λ = 0.4 (high load scenario), λ = 0.5 (medium
load scenario), and λ = 0.6 (low load scenario), respectively.
Each new VM instance is assigned a lifetime ranging from 1
hour to 60 hours, uniformly distributed. By aggregating the
capacity over all cores for each instance type (22 cores), we
arrive at an average capacity requirement of 22

λ ×
1+60

2 = 1342
cores per hour for the medium load scenario. These parameters
are selected to make the average workload demand (1342/(48∗
32) = 87.4%) close to the selected infrastructure limitation
factor (χ = 0.9). All VMs arrive during the first 252 hours,
and then terminate within 60 hours after its arrival.

To compare the performances of algorithms on increasing
the profit for the infrastructure provider, we run 10 tests for
each value of λ. Note that the workload in each test case is
the same for all eight algorithms. However, the workloads for
any two tests are different, although they have the same VM
arrival interval parameter.

1) Simulation Results: In the following sections we use one
of the 10 medium load tests (λ = 0.5) as an example to
investigate the behavior of the algorithms in detail. We study
the profit (p′) for each of the seven other algorithms compared
with the profit (p) achieved by the baseline algorithm using
a metric defined by α = (p′ − p)/p. The average α values
of the 10 medium load tests are presented in Figure 3. Some
interesting findings can be observed in Figure 3, including
(i) that algorithms with suspend/resume of VMs enabled
show more significant improvements with average α values
higher than 20%, (ii) enabling suspend/resume PMs increase
profit only slightly, by less than 5%, and (iii) using live VM
migration can improve the profit by more than 10%.
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Fig. 3. Average profit improvement (all other algorithms vs. baseline).

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a). Time axis (hour)

M
ig

ra
tio

n 
C

os
ts

 ($
).

 

 
vmM
vmMpmSR

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

(b). Time axis (hour)

M
ig

ra
tio

n 
C

os
ts

 ($
).

 

 
vmMvmSR
combined

Fig. 7. VM migration cost: with/without suspend/resume PMs.

We next study the impact of the suspend/resume PM man-
agement action in more detail. Figure 4 shows that the average
PM CPU usage with suspend/resume of PMs enabled is higher
than without. In particular after 252 hours, these differences
become larger, as there are no arriving VM requests resulting
in a larger number of PMs that can be suspended. This is
evident when VM migration is enabled (see subgraphs (c)
and (d) in Figure 4, and subgraphs (c) and (d) in Figure 5).
Enabling suspend/resume of PMs is also beneficial for the
power consumption of the whole infrastructure. Similar to the
CPU usage and number of active PMs, the differences are
larger when the PMs are under low load compared with when
the load is high, as illustrated in Figure 6. Also as expected, the
difference for PM expenses is even larger when VM migration
is enabled (see subgraphs (c) and (d) Figure 6);

Figure 7 demonstrates the collected average migration cost
over time for algorithms with VM migration enabled. In order
to improve the readability the migration costs are aggregated
every 2 hours. Even so, we see that the migration costs are
very low due to the short migration times. For example, it
only takes 8 seconds to migrate an XL instance, resulting in
a monetary cost of $0.0102. From Figure 7, we also observe
that, for algorithms with suspend/resume PMs, VM migration
costs are much higher than others, as Algorithm 6 migrates all
VMs before suspending an active PM. Looking at subgraphs
(c) and (d) in Figure 5, it is observed that benefiting from VM
migration, more PMs can be suspended compared with other
algorithms without VM migration.
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Fig. 4. CPU usage: with/without suspend/resume PMs.
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Fig. 5. No. of active PMs: with/without suspend/resume PMs.

Regarding the impact of VM migration, Figure 8 illustrates,
for each policy, how CPU usage changes when migration
is used. The impact is largest for the policies that allow
suspend/resume of VMs (vmM)pmSR, and for the combined
policy (as compared to vmSRpmSR). Looking at subgraph (c),
we can see that there is almost no difference between vmSR
and vmMvmSR. This is because in our current settings,
suspend/resume VM is much more profit-efficient than VM
migration, and it is dominating. This is also consistent with
the data plot in Figure 3, where the differences among vmSR,
vmSRpmSR, vmMvmSR, and combined are very small.

Turning to the impact of suspending and resuming VMs,
Figure 9 plots the number of VMs suspended over time, as
well as the their total number of cores. The subgraph (a) shows
that, in general, the algorithms without the feature of resuming
VMs (e.g., pmSR, and vmMpmSR) suspend fewer VMs than
others. In particular, looking at the combined algorithm, we
can see that it suspends the largest number of VMs most of
the time (see the curve in bold). However, the total number
of cores that belongs to suspended VMs is usually fewer than
other algorithms (see subgraph (b) in Figure 9).

This observation indicates that VMs suspended by al-
gorithms with this feature enabled are comparably smaller
instances. This is consistent with our algorithm design, as

when the capacity of the infrastructure is tight, Algorithm 5
selects VMs with smaller values of (price + penalty) to
suspend in order to release more capacity and run VMs with
higher (price+ penalty) values. According to the settings in
Figure 2 and Table III, smaller instances are using smaller
(price+ penalty) values (but this is not a necessity). This is
also consistent with the penalty plots in Figure 10.

Finally, we study the impact of the data center workload
by varying the datacenter workload parameter (λ). Table IV
presents aggregated results of 10 runs each with parameters
λ = 0.4 (high load), λ = 0.5 (medium load), and λ = 0.6
(low load), respectively. In the high load scenario, the number
of active PMs is high along with CPU usage. As there are
quite a few VMs not running, the datacenter pays significant
penalties and the profits are negative. Here, we note that base-
line, pmSR, vmM, and vmMpmSR all perform very similar,
with an average loss around $50 per hour. In contrast, the
algorithms that can start and resume VMs (vmSR, vmMvmSR,
vmSRpmSR, and combined) and thus replace low-profit VMs
when more important VM workload arrive, all perform much
better with average losses around $11 per hour. In the medium
load case, we observe similar resource usage in the high load
scenario, but for medium load, there are only a few VMs that
are suspended as the average penalties are much lower and the



0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a). Time axis (hour)

PM
 E

xp
en

se
s 

($
).

 

 

baseline
pmSR

0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b). Time axis (hour)

PM
 E

xp
en

se
s 

($
).

 

 

vmSR
vmSRpmSR

0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(c). Time axis (hour)

PM
 E

xp
en

se
s 

($
).

 

 

vmM
vmMpmSR

0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(d). Time axis (hour)

PM
 E

xp
en

se
s 

($
).

 

 

vmMvmSR
combined

Fig. 6. PM expenses: with/without suspend/resume PMs.
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Fig. 8. CPU usage: with/without VM migration.
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Fig. 9. No. of VMs suspended and No. of VM cores suspended.
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Fig. 10. Penalties with/without suspend/resume VMs.

TABLE IV
AGGREGATED RESULTS FOR DIFFERENT WORKLOADS.

λ metrics baseline pmSR vmSR vmM vmSRpmSR vmMpmSR vmMvmSR combined

0.4

profit ($/h) -56.15 -56.13 -11.33 -48.60 -11.31 -49.73 -11.40 -11.30
penalty ($/h) 118.20 118.20 77.42 111.32 77.42 112.39 77.48 77.42
no. act. PMs 45.7 43.3 45.7 45.7 43.2 39.4 45.7 39.2
CPU usage (%) 74.20 74.71 76.74 75.07 77.29 84.36 76.75 84.94

0.5

profit ($/h) 48.10 49.72 58.80 53.28 59.46 53.96 59.50 59.80
penalty ($/h) 12.05 12.05 1.72 9.67 1.72 9.67 1.66 1.61
no. act. PMs 45.1 43.1 45.0 45.1 42.6 38.8 45.1 38.6
CPU usage (%) 72.73 73.47 73.85 73.00 74.53 84.24 73.87 85.31

0.6

profit ($/h) 50.66 50.68 50.66 50.66 50.68 50.71 50.66 50.71
penalty ($/h) 0 0 0 0 0 0 0 0
no. act PMs 39.7 36.6 39.7 39.7 36.7 31.8 39.7 31.8
CPU usage (%) 69.88 71.66 69.88 69.89 71.66 83.72 69.89 83.72

datacenter is profitable. Regarding the different algorithms, we
note that also here, the ability to suspend and resume VMs is
the key, with these four algorithms keeping penalties around
$1.7 per hours and profits around $59 per hour. Notably, as
the PMs are less loaded in this scenario, migration of VMs
actually make a difference, with vmM and vmMpmSR having
penalties of $9.7 as compared to $12 for baseline and pmSR.
In the low load scenario, no penalties are paid as there for
all algorithms always are enough resources to run all VMs.
There are some differences in average number of PMs used
and subsequently in CPU usage. The ability to suspend and
resume PMs brings the average number of PMs down from
39.7 (algorithms baseline, vmSR, vmM, and vmMvmSR) to
36.7 (pmSR) and 36.7 (vmSRpmSR). Combining this with
VM migration to be able to achieve consolidation has even
greater impact, with 31.8 PMs used on average for vmMpmSR
and the combined algorithm.

C. Real-world Demonstration.

In order to verify the validity of our approach, we perform
a real-world test on a small testbed with 5 nodes, using our
software described in Section IV. The PMs used are HP
ProLiant DL165G7 @ 2.1 GHz with 32 cores and 56 GB of
RAM each, connected by a top-of-the-rack Gigabit Ehternet
switch. One node is functioning as controller and the other
four nodes are worker nodes, hosting VMs. The setup of the
testbed in terms of nodes and installed software is shown in
Figure 11.

One debatable point is the setting of the peer-to-peer

connection bandwidth among PMs, as network congestion
issues can reduce the available bandwidth. However, we argue
that by tuning the over-subscription factor and constructing
the network topology in a proper manner [4] the effect of
this problem can be reduced. Also, as VM migrations are
carried out in a sequential order using our approach, network
congestion potentially introduced by parallel VM migration
can be mitigated.

Controller Node
ACDC

NFS Server

Worker Nodes
KVM/Libvirt
NFS Client

Fig. 11. Setup of the testbed.

With a limitation factor χ = 0.9, the maximum number of
cores available for VM provisioning is 4∗32∗0.9 = 115. The
test starts with an empty datacenter with new VMs arriving
at an average rate of 6 minutes per instance type, namely,
following a Poisson process with λ = 0.1. The VM lifetime
is set to 24− 36 minutes normally distributed and the number
of VMs to be provisioned during 96 minutes is 69. All VMs
arrive in the first 60 minutes. For the real-world demonstration



we use the same instance types as in the simulation and the
number of instances of each type is limited to 10. Using this
configuration, the average demand of cores during the test
duration of 96 minutes is 105 which is close to the maximum
115.

Each VM is running a synthetic benchmark bw mem, which
is a memory write benchmark from the LMBench [25] suite.
The bw mem benchmark allocates twice the specified amount
of memory, zeros it, and then copies the first half to the second
half. For each of the instance types, the amount of memory
allocated to bw mem and the number of parallel threads used
is tuned in order to consume 50% of the VMs memory and
100% of the vCPU.
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Fig. 12. CPU usage with combined: simulation vs. real.
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Fig. 13. CPU usage with baseline: simulation vs. real.

Figure 12 and Figure 13 present the CPU usage of the whole
testbed over time in simulation and real tests. First of all, we
remark that the behaviour of our algorithms (combined and
baseline) in simulation is consistent with that in real tests.
Another observation is that, in most cases the CPU usage in
the real-world test is lower than in the simulation. The reason
for this is that, in the simulation the CPU usage of a PM is
defined by the proportion of cores occupied by VMs and these
numbers are constant. However, in the real test, the workload
fluctuates a bit, for example it takes up to 60 seconds from
when a VM is provisioned until it is consuming the maximum
amount of resources, because of the boot-up delay. Due to the
same reason, it is also illustrated that there is a lag (around

60 seconds) between the curves representing the results in real
tests and that of simulations.
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Fig. 14. No. of active PMs (real): combined vs. baseline.

Figure 14 presents the number of active PMs over time
during the tests. We can see that the combined algorithm
suspends one PM roughly between 35th minute and 36th
minute and one PM roughly between the 54th minute and
the 57th minute, resulting in higher CPU usage of the whole
testbed, which is consistent with Figure 12. Additionally,
benefiting from VM migration, some PMs can be suspended
by the combined algorithm and the CPU usage can stay at a
high level even after the 60th minute. In contrast, CPU usage
achieved by the baseline algorithm keeps dropping as no new
VMs arrive after the 60th minute and more PMs become idle
when VMs terminate.

TABLE V
COMPLEMENTARY RESULTS FOR REAL TESTS: COMBINED VS. BASELINE.

VMs suspended Cores suspended CPU usage (%)
combined 0.001% <0.0001% 73.58
baseline 1.642% 6.103% 52.96

Table V summarizes some complementary results for the
real tests. For the baseline algorithm, an average of 1.642%
of VM instances are suspended per minute, while it is only
0.001% for the combined. Looking at the average percentage
of VM cores suspended, the difference between the combined
and the baseline algorithm is even larger. The reason behind
this is that, if it is necessary to suspend VMs, the combined
algorithm tends to suspend small instances that with fewer
cores. Regarding the average CPU usage during the test, the
combined algorithm also outperforms the baseline algorithm.

Finally, we also remark that in the simulations, the total
time spent on VM migration was 77 seconds, while the
duration in the real-world was 178.2 seconds. This difference
is because migration time in the simulations are modeled on
post-copy migration which transfers each memory page only
once. The real-world tests are run using the standard KVM
hypervisor, version 1.5.0, which does not include a post-copy
migration algorithm. Because of this, pre-copy migration is
used and this type of live migration algorithm uses an iterative
transfer where memory pages can be sent multiple times, thus
increasing migration time and making it hard to predict the
migration time [32].



VI. RELATED WORK

Optimal mapping of admitted VMs to a set of PMs in order
to gain maximum profit while complying to all SLAs specified
by customers is challenging for cloud providers as it is in
general a NP-hard problem [20], [27]. Various algorithms have
been proposed to produce near-optimal placement schemes,
e.g., by Jing et al. [38], who present an improved genetic
algorithm aimed to optimize possibly conflicting objectives,
including making efficient usage of multidimensional re-
sources, avoiding hotspots, and reducing power consumption.
On the other hand, given the dynamic nature of clouds, with
significant changes over time both in workload demands and
available resources, the mapping of VMs to PMs need to
be revisited regularly. Live migration of running VMs is
therefore a necessity. A comprehensive study on principles
and performance of live migration mechanisms (including
precopy, postcopy and hybrid) is presented in [26], which
also discusses how migration downtime can be reduced. Li
et al.[21] define a framework for joint optimization of data
center deployment, VM assignment, and migration. Based on
fluctuations in network performance (latency), they propose
a method based on network flow maximization to estimate
VM migration cost by amortizing it to the latency of every
access. Song et al.[30] define a bin packing approach to
allocation and migration of VMs in data centers and similarly,
Sato et al.[28] combine bin packing with resource usage
prediction to dynamically optimize VM placement. Auto-
regressive models are used for predictions and the number
of VM migrations is minimized (avoiding ping-pong effects)
based on the predictions. Li et al. [19] aim to minimize
VM completion time using a knapsack formulation for VM
placement. A hybrid on-line off-line scheme is used where
VM migrations are combined with the knapsack placement
algorithm. A defragmentation approach by Shanmuganathan et
al. [29] include two algorithms whereas Avin et al. [3] propose
simple destination swap strategies for VMs in order to reduce
network traffic.

A large amount of effort has been devoted to server
consolidation methods based on workload analysis, aiming
at improving efficiency in cloud infrastructures [14], [31],
[35]. Additional mechanisms for isolation of resources in
hardware [12], [15], or software [34] have been developed
to reduce the performance degradation introduced by consol-
idation of multiple VMs on a same server. Further, Roytman
et al. present a polynomial time algorithm to determine the
best suited VM combinations to be co-located [27], yielding
server energy saving and VM performance preservation. How-
ever,these approaches commonly operate in off-line manners
which are not able to dynamically and efficiently adapt the
cloud to the changes (including workload variations, system
failures, etc). They neither take VM pricing schemes and mon-
etary penalty for SLA violation into consideration. Khanna et
al. [17] propose a framework to detect application performance
deviations and a VM migration mechanism to handle these.
They proposed a set of server consolidation heuristics based

on VM migration costs and server residual capacity. Xiao
et al. [37] introduce some skewness metrics and use these
to avoid hot and cold spots in datacenters and migrate VMs
around.

In 2001, the Autonomic Computing [11] initiative was
initiated by IBM, who also introduced the MAPE-K refer-
ence model. Its goal is to build computing systems that can
manage themselves given high-level objectives from admin-
istrators [16]. In the MAPE-K model, with the support of a
Knowledge base, the system Monitors the managed elements,
analyzes the data monitored, and finally Plans and Executes
suitable actions to ensure the system is in a desired state.
Although considerable progress has been achieved in the past
few years, the original vision remains unfulfilled as even more
complexity is added to the system due to the convergence
of new technologies and new applications [8]. The main
goal of this work is to maximize the monetary profit of
running a datacenter by automatic adaption to both internal and
external changes, and thus it is within the scope of autonomic
computing. The design and implementation of the proposed
system (see Section IV) follows the MAPE-K model.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we present a continuous management approach
for cloud infrastructure providers to maximize their PM uti-
lization and increase profits. Based on a set of fundamental
management actions, our approach can rearrange the VM
to PM mapping during operation to increase the resource
utilization of the cloud infrastructure, thereby increase the rev-
enue by prioritizing more profitable workloads and reducing
energy consumption. The feasibility and performance of our
work, consisting of optimization algorithms and a continuous
datacenter consolidation software, is evaluated by simulations
and real-world experiments on a testbed. Results indicate
that overall utilization of the datacenter is increased using
out approach and that power consumption is reduced. The
testbed results are consistent with the simulation results, which
validates our simulation and indicates that our approach is
applicable in real-world scenarios.

We have identified several interesting subjects for the future
work, e.g., (i) to investigate the impact of the penalty model
on our algorithms, (ii) to extend our work to support other
pricing models and to integrate our algorithms in open-source
cloud middlewares such as CloudStack and OpenStack, and
(iii) to study the feasibility of incorporating our work with
auto-scaling and workload prediction techniques, targeting
proactive optimization and even better performance.
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[26] P. Svärd, J. Tordsson, E. Elmroth, S. Walsh, and B. Hudzia. The Noble
Art of Live VM Migration - Principles and Performance of Precopy and
Postcopy Migration of Demanding Workloads. 2014. Submitted.

[27] A. Roytman, A. Kansal, S. Govindan, J. Liu, and S. Nath. PACMan:
Performance Aware Virtual Machine Consolidation. In Proceedings of
the 10th International Conference on Autonomic Computing, pages 83–
94, Berkeley, CA, 2013. USENIX.

[28] K. Sato, M. Samejima, and N. Komoda. Dynamic Optimization of Vir-
tual Machine Placement by Resource Usage Prediction. In Proceedings
of the 11th IEEE International Conference on Industrial Informatics
(INDIN), pages 86–91. IEEE, 2013.

[29] G. Shanmuganathan, A. Gulati, and P. Varman. Defragmenting the Cloud
using Demand-based Resource Allocation. In Proceedings of the ACM
SIGMETRICS/international Conference on Measurement and Modeling
of Computer Systems, pages 67–80. ACM, 2013.

[30] W. Song, Z. Xiao, Q. Chen, and H. Luo. Adaptive Resource Provisioning
for the Cloud using Online Bin Packing. IEEE Transactions on
Computers, 99(PrePrints), 2013.

[31] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware Consolidation for
Cloud Computing. In Proceedings of the 2008 Conference on Power
aware Computing and Systems, volume 10. USENIX Association, 2008.
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