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Abstract

With the emergence of cloud computing, computing resources (i.e., networks, servers,
storage, applications, etc.) are provisioned as metered on-demand services over net-
works, and can be rapidly allocated and released with minimal management effort.
In the cloud computing paradigm, the virtual machine (VM) is one of the most com-
monly used resource units in which business services are encapsulated. VM schedul-
ing optimization, i.e., finding optimal placement schemes for VMs and reconfigu-
rations according to the changing conditions, becomes challenging issues for cloud
infrastructure providers and their customers.

The thesis investigates the VM scheduling problem in two scenarios: (i) single-
cloud environments where VMs are scheduled within a cloud aiming at improving
criteria such as load balancing, carbon footprint, utilization, and revenue, and (ii)
multi-cloud scenarios where a cloud user (which could be the owner of the VMs or a
cloud infrastructure provider) schedules VMs across multiple cloud providers, target-
ing optimization for investment cost, service availability, etc. For single-cloud scenar-
ios, taking load balancing as the objective, an approach to optimal VM placement for
predictable and time-constrained peak loads is presented. In addition, we also present
a set of heuristic methods based on fundamental management actions (namely, sus-
pend and resume physical machines, VM migration, and suspend and resume VMs),
continuously optimizing the profit for the cloud infrastructure provider regardless of
the predictability of the workload. For multi-cloud scenarios, we identify key re-
quirements for service deployment in a range of common cloud scenarios (including
private clouds, bursted clouds, federated clouds, multi-clouds, and cloud brokering),
and present a general architecture to meet these requirements. Based on this architec-
ture, a set of placement algorithms tuned for cost optimization under dynamic pricing
schemes are evaluated. By explicitly specifying service structure, component relation-
ships, and placement constraints, a mechanism is introduced to enable service owners
the ability to influence placement. In addition, we also study how dynamic cloud
scheduling using VM migration can be modeled using a linear integer programming
approach.

The primary contribution of this thesis is the development and evaluation of al-
gorithms (ranging from combinatorial optimization formulations to simple heuristic
algorithms) for VM scheduling in cloud infrastructures. In addition to scientific pub-
lications, this work also contributes software tools (in the OPTIMIS project funded
by the European Commissions Seventh Framework Programme) that demonstrate the
feasibility and characteristics of the approaches presented.
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Sammanfattning

I datormoln tillhandahålls datorresurser (dvs., nätverk, servrar, lagring, applikationer,
etc.) som tjänster åtkomliga via Internet. Resurserna, som t.ex. virtuella maskiner
(VMs), kan snabbt och enkelt allokeras och frigöras alltefter behov. De potentiellt
snabba förändringarna i hur många och hur stora VMs som behövs leder till utmanade
schedulerings- och konfigureringsproblem. Scheduleringsproblemen uppstår både för
infrastrukturleverantörer som behöver välja vilka servrar olika VMs ska placeras på
inom ett moln och deras kunder som behöver välja vilka moln VMs ska placeras på.

Avhandlingen fokuserar på VM-scheduleringsproblem i dessa två scenarier, dvs
(i) enskilda moln där VMs ska scheduleras för att optimera lastbalans, energiåtgång,
resursnyttjande och ekonomi och (ii) situationer där en molnanvändare ska välja ett
eller flera moln för att placera VMs för att optimera t.ex. kostnad, prestanda och
tillgänglighet för den applikation som nyttjar resurserna. För det förstnämnda scenar-
iot presenterar avhandlingen en scheduleringsmetod som utifrån förutsägbara belast-
ningsvariationer optimerar lastbalansen mellan de fysiska datorresurserna. Därtill pre-
senteras en uppsättning heuristiska metoder, baserade på fundamentala resurshanter-
ingsåtgärder, för att kontinuerligt optimera den ekonomiska vinsten för en molnlever-
antör, utan krav på lastvariationernas förutsägbarhet.

För fallet med flera moln identifierar vi viktiga krav för hur resurshanteringstjänster
ska konstrueras för att fungera väl i en rad konceptuellt olika fler-moln-scenarier.
Utifrån dessa krav definierar vi också en generell arkitektur som kan anpassas till
dessa scenarier. Baserat på vår arkitektur utvecklar och utvärderar vi en uppsättning
algoritmer för VM-schedulering avsedda att minimera kostnader för användning av
molninfrastruktur med dynamisk prissättning. Användaren ges genom ny funktion-
alitet möjlighet att explicit specificera relationer mellan de VMs som allokeras och
andra bivillkor för hur de ska placeras. Vi demonstrerar också hur linjär heltals-
programmering kan användas för att optimera detta scheduleringsproblem.

Avhandlingens främsta bidrag är utveckling och utvärdering av nya metoder för
VM-schedulering i datormoln, med lösningar som inkluderar såväl kombinatorisk op-
timering som heuristiska metoder. Utöver vetenskapliga publikationer bidrar arbetet
även med programvaror för VM-schedulering, utvecklade inom ramen för projektet
OPTIMIS som finansierats av EU-kommissionens sjunde ramprogram.
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Chapter 1

Introduction

By provision of shared resources as metered on-demand services over networks,
Cloud Computing is emerging as a promising paradigm for providing configurable
computing resources (i.e., networks, servers, storage, applications, and services)
that can be rapidly allocated and released with minimal management e↵ort.
Cloud end-users (e.g., service consumers and developers of cloud services)
can access various services from cloud providers such as Amazon, Google
and SalesForce. They are relieved from the burden of IT maintenance and
administration and their total IT cost is expected to decrease. From the
perspective of a cloud provider or an agent, however, resource allocation and
scheduling become challenging issues. This may be due to the scale of resources
to manage, and the dynamic nature of service behavior (with rapid demands
for capacity variations and resource mobility), as well as the heterogeneity of
cloud systems. As such, finding optimal placement schemes for resources, and
making resource reconfigurations in response to the changes of the environment
are di�cult [21].

There are a multitude of parameters and considerations (e.g., performance,
cost, locality, reliability and availability) in the decision of where, when and how
to place and reallocate virtualized resources in cloud environments. Some of the
considerations are aligned with one another while others may be contradictory.
This work investigates challenges involved in the problem of VM scheduling in
cloud environments, and tackles these challenges using approaches ranging from
combinatorial optimization techniques and mathematical modeling to simple
heuristic methods. Note that the term scheduling in the context of this thesis is
referred to as the initial placement of VMs and the readjustment of placement
over time.

Scientific contributions of this thesis include modeling for dynamic cloud
scheduling via VM migration in multi-cloud environments, cost-optimal VM
placement across multiple clouds under dynamic pricing schemes, modeling and
placement of cloud services with internal structure, as well as to optimize VM
placement within data centers for predicable and time-constrained load peaks,
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and continuous VM scheduling aiming at maximizing the profit for a cloud
infrastructure provider. In addition, the feasibility and characteristics of the
proposed solutions are demonstrated by a set of software tools contributed in
the EU-funded project OPTIMIS [26].

The rest of this thesis is organized as follows. Chapter 2 provides a brief
introduction to Cloud Computing. Chapter 3 describes virtual machine schedul-
ing in cloud environments. Chapter 4 summarizes the contributions of the
thesis and presents the papers. Finally, conclusions and future work are given
in Chapter 5 followed by a list of references and the papers.
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Chapter 2

Cloud Computing

Cloud Computing provides a paradigm shift following the shift from mainframe
to client-server architecture in the early 1980s [33, 92]. It is a new paradigm
in which computing is delivered as a service rather than a product, whereby
shared resources, software, and information are provided to consumers as a
utility over networks.

The vision of this paradigm can be traced back to 1969 when Leonard
Kleinrock [47, 48], one of the chief scientists of the original Advanced Research
Projects Agency Network (ARPANET) project, which preceded the Internet,
stated at the time of ARPANET’s development:

“as of now, computer networks are still in their infancy, but as they grow up
and become sophisticated, we will probably see the spread of ‘computer utilities’
which, like present electric and telephone utilities, will service individual homes
and o�ces across the country.”

Over the past decades, new computing paradigms (e.g., Grid Computing [45],
P2P Computing [72], and Cloud Computing [6]) promising to deliver this vision
of computing utilities have been proposed and adopted. Of all these paradigms,
the two most frequently mentioned ones with di↵ering areas of focus are Grid
Computing and Cloud Computing [12]. Grids are designed to support shar-
ing of pooled resources, usually used for solving problems that may require
thousands of processor cores or hundreds of terabytes of storage, while cloud
technologies are driven by economies of scale, focusing on integrating resource
capacities to the public in the form of a utility and enabling access to leased
resources (e.g., computation power, storage capacity, and software services) at
prices comparable to in-house hosting [24, 27]. The distinctions between these
two paradigms are sometimes not clear as they share the same vision [85]. An
in-depth comparison between girds and clouds is beyond the scope of this thesis,
but for details there are a number of valuable works available, e.g., by Foster et
al. [27], Mei et al. [63], Zhang et al. [95], EGEE [8], and Sadashiv et al. [77].
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One of the main advantages and motivations behind Cloud Computing
is reducing the CAPEX (capital expenditures) of systems from the perspec-
tive of cloud users and providers. By renting resources from cloud providers
in a pay-per-use manner [85], cloud customers benefit from lowered initial
investments and relief of IT maintenance. On the other hand, taking advan-
tage of virtualization technologies, cloud providers are enabled to increase the
energy-e�ciency of the infrastructures and scale the costs of the o↵ered virtual-
ized resources. The paradigm has been proved to be suitable for a wide range of
applications, e.g., for hosting websites [66] and social networks applications [14],
scientific workflows [36], Customer Relationship Management [78, 91], and high
performance computing [20].

2.1 Virtualization

Virtualization is a technology that separates computing functions and imple-
mentations from physical hardware. Early related research dates back to 1960s
and the joint work of IBM TJ Watson and MIT on the M44/44X Project [38].
Now virtualization has become the foundation of Cloud Computing [93], since
it enables isolation between hardware and software, between users, and between
processes and resources. These isolation problems have not been well solved by
traditional operating systems. With virtualization, software capable of execu-
tion on the raw hardware can be run in a virtual environment. Depending on
the layer where the virtualization occurs, two major categories of virtualization
can be identified (as illustrated in Figure 1):

Operating System

Applications

Hardware

Hypervisor

OS1 OS2 OS3

Hardware Hardware

Linux with Containers

C1 C2 C3

Bare Metal 
Environment

Hypervisor-based 
Virtualization

Container-based 
Virtualization

Figure 1: A bare-metal environment (left), compared to two major categories
of virtualization (center and right). Illustration from MontaVista [68].

Hypervisor-based Virtualization. This technology is based on a layer of
software (i.e., the hypervisor) that manages the resources of physical hosts and
provides the necessary services for the VMs to run. Instead of direct access to
the underlying hardware layer, all VMs request resources from the hypervisor
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that is in charge of resource allocation and scheduling for VMs. There are two
major types of implementations of this kind of virtualization, briefly described
as follows.

I. Full virtualization [87], fully emulates system hardware, and thus does
not require changes to the operating system (OS) or applications. Vir-
tualization is done transparently at the hardware level of the system.
Well known implementations include Microsoft Virtual PC [37], VMware
Workstation [88], VirtualBox [90], and KVM [46].

II. Paravirtualization [87], requires changes to the OS and possibly the appli-
cations to take full advantage of optimizations of the virtualized hardware
layer, and thus achieves better performance than Full Virtualization. As a
well established example, Xen [7] o↵ers a Paravirtualization solution.

In environments with hypervisor-based virtualization, Cloud services can
be encapsulated in virtual appliances (VAs) [44], and deployed by instantiating
virtual machines with their virtual appliances [43]. Moreover, since the underly-
ing hardware is emulated, multiple di↵erent operating systems (see OS1, OS2
and OS3 in Figure 1) are usually allowed to run in virtual machines atop the
hypervisor. This new type of service deployment provides a direct route for
traditional on-premise applications to be rapidly redeployed in a Software as
a Service (SaaS) manner for SPs. By decoupling the infrastructure provider
possessing hardware (and usually operating system) from the application stack
provider, virtual appliances allow economies of scale which is a great attraction
for IT industries. This thesis work is based on hypervisor-based virtualization.
Throughout the thesis, unless otherwise specified, the term virtualization refers
to this category.

Container-based Virtualization. This technology is also known as operating
system virtualization [18, 79, 86], a light-weight virtualization which is not aimed
to emulate an entire hardware environment, as traditional virtual machines do.
Relying on the recent underlying improvements that enable the Linux kernel
manage isolation between applications, an operating system-level virtualization
method can run multiple isolated LXC (LinuX Containers) on a single control
host. Rather than providing virtualization via a virtual machine managed by
a specific hypervisor, LXC provides a virtual environment that has its own
process and network space. Systems such as Docker [18], Linux-VServer [57]
and OpenVZ [71] are implementation examples of this kind. This category of
virtualization is more e�cient than traditional virtualization technologies since
the virtualization is at the OS API level. There are, however, some drawbacks
to containers, e.g., they are not as flexible as other virtualization approaches
because it is infeasible to host a guest OS di↵erent from the host OS, or a
di↵erent guest kernel. As a consequence, workload migration is more complex
than that in an environment supporting hypervisor-based virtualization.
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2.2 The XaaS Service Models

Commonly associated with cloud computing are the following service models,
di↵ering in the service o↵ered to the customers:

I. Software as a Service (SaaS)
In the SaaS model, software applications are delivered as services that exe-
cute on infrastructure managed by the SaaS vendor itself or a third-party
infrastructure provider. Consumers are enabled to access services over
various clients such as web browsers and programming interfaces, and are
typically charged on a subscription basis [64]. The implementation and the
underlying cloud infrastructure where the service is hosted are transparent
to consumers.

II. Platform as a Service (PaaS)
In the PaaS model, cloud providers deliver a computing platform and/or
solution stack typically including operating system, programming language
execution environment, database, and web server. Application developers
can develop and run their software on a cloud platform without having to
manage or control the underlying hardware and software layers, including
network, servers, operating systems, or storage, but maintain the control
over the deployed applications and possibly configuration settings for the
application-hosting environment [64].

III. Infrastructure as a Service (IaaS)
In the IaaS model, computing resources such as storage, network, and
computation resources are provisioned as services. Consumers are able to
deploy and run arbitrary software, which can include operating systems
and applications. Consumers do not manage or control the underlying
physical infrastructure but have to control their own virtual infrastructures
typically constructed by virtual machines hosted by the IaaS vendor. This
thesis work is mainly focusing on the IaaS model, although it may be
generalized also to apply to the other models.

2.3 Cloud Computing Scenarios and Roles

Based on the classification of cloud services into SaaS, PaaS, and IaaS, three
main stakeholders in a cloud provisioning scenario can be identified:

I. Infrastructure Providers (IPs) provision infrastructure resources such
as virtual instances, networks, and storage to consumers usually by utiliz-
ing hardware virtualization technologies. In the IaaS model, a consumer
rents resources from an infrastructure provider or multiple infrastructure
providers, and establishes its own virtualized infrastructure, instead of
maintaining an infrastructure with dedicated hardware. There are nu-
merous infrastructure providers on the market, such as Amazon Elastic
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Compute Cloud (EC2) [3], GoGrid [29], and Rackspace [75]. To simplify
the application delivery for consumers, some infrastructure providers go
a step further with the PaaS model, i.e., in addition to supporting appli-
cation hosting environments, these infrastructure providers also provide
development infrastructure including programming environment, tools,
configuration management, etc. [17]. Some notable providers of this type
include Google App Engine [30], Salesforce.com [78], and AppFog [5]. In
academia, some ongoing projects such as ConPaaS [74] and 4CaaSt [28]
are developing new PaaS frameworks that enable flexible deployment and
management of cloud-based services and applications.

II. Service Providers (SPs) use either their own resources (taking both
the SP and IP roles) or resources leased from one or multiple IPs to deliver
end-user services to their consumers. It can be a telco service provider,
an internet service provider (e.g., LinkedIn [56]), etc. These services can
be potentially developed using PaaS tools as mentioned previously. In
particular, when cloud resources are leased from external IPs, SPs are not
in charge of maintaining the underlying hardware infrastructures. Without
having direct control over the low-level hardware resources, SPs can use
performance metrics (e.g., response time) to optimize their applications
by scaling their rented resources from IPs, providing required Quality of
Service (QoS) to the end users.

III. Cloud End Users who are the consumers of the services o↵ered by SPs
and usually have no concerns on where and how the services are hosted.

As identified by M. Ahronovitz et al. [1], di↵ering from deployment models,
four main types of cloud scenarios can be listed as follows.

I. Private Cloud.

IP

company), therefore the data comes onshore via Company 
A’s communication links. Company C does not have the 
capabilities to develop their own IT systems, hence they 
outsourced the development and management of the system 
to Company B, which is an IT solutions company with a 
small data center. Fig. 1 provides an overview of the system, 
which consists of two servers: 

1) A database server that logs and archives the data 
coming in from offshore into a database. A tape drive is 
used to take daily backups of the database, the tapes are 
stored off-site. 

2) An application server that hosts a number of data 
reporting and monitoring applications. The end users at 
Company C access these applications using a remote 
desktop client over the internet. 

 

 
Figure 1.  System overview 

The system infrastructure was deployed in Company B’s 
data center and went live in 2005. Since then, Company B’s 
support department have been maintaining the system and 
solving any problems that have risen. This case study 
investigated how the same system could be deployed using 
the cloud offerings of Amazon Web Services. Fig. 2 provides 
an overview of this scenario, where Company B deploys and 
maintains the same system in the cloud. 

 

 
Figure 2.  System deployed in the cloud 

B. Related Work 
Cloud computing is not just about a technological 

improvement in data centers; it represents a fundamental 
change in how IT is provisioned and used [7]. For enterprises 
to use cloud computing, they have to consider the benefits, 
risks and effects of cloud computing on their organizations. 
Case studies provide an effective way to investigate these 
areas in real-life organizations. This section takes a brief 
look at the related work in each of these three areas.  

Armbrust et al [1] argued that elasticity is an important 
economic benefit of cloud computing as it transfers the costs 
of resource over-provisioning and the risks of under-
provisioning to cloud providers. Motahari-Nezhad et al [8] 
added that the potentially reduced operational and 
maintenance costs is also important from a business 
perspective. Walker [9] also looked into the economics of 
cloud computing, and pointed out that lease-or-buy decisions 
have been researched in economics for more than 40 years. 
Walker used this insight to develop a model for comparing 
the cost of a CPU hour when it is purchased as part of a 
server cluster, with when it is leased (e.g. from Amazon 
EC2). Walker's model was a good first step in developing 
models to aid decision makers, but it was too narrow in 
scope as it focused only on the cost of a CPU hour. 

Klems et al [10] presented as a framework that could be 
used to compare the costs of using cloud computing with 
more conventional approaches, such as using in-house IT 
infrastructure. Their framework was very briefly evaluated 
using two case studies. However, no results were provided 
because the framework was at an early developmental stage 
and more conceptual than concrete. In contrast, we provide 
detailed results by comparing the costs of using an in-house 
data center with AWS for our case study. 

From an enterprise perspective, security, legal and 
privacy issues seem to present a number of risks as pointed 
out by detailed reports from the Cloud Security Alliance [11] 
and European Network and Information Security Agency 
[12]. Others have discussed risks posed by a cloud’s 
geographic location [13], legal issues that affect UK-based 
organisations [14], and the technical security risks of using 
cloud computing [15]. 

However, not much has been published about the 
organizational risks of the change that cloud computing 
brings to enterprise. Yanosky [16] discussed how cloud 
computing will affect the authority of the IT department 
within universities and argued that the IT department's role 
will change from “provider to certifier, consultant and 
arbitrator”. This could lead to inefficiencies in organizations 
if certain stakeholders resist the changes brought about by 
cloud computing. One approach to understanding these risks 
is to capture each stakeholders’ perception of the change 
through semi-structured interviews allowing stakeholders to 
raise the benefits, risks, opportunities or concerns as they 
perceive them [17, 18]. 

The results of the case study presented in this paper are 
novel as they attempt to highlight the overall organizational 
implications of using cloud computing. This issue has not 
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Figure 2: Private cloud scenario.

An organization provisions services using internal infrastructure, and thus
plays the roles of both a SP and an IP. Private clouds can circumvent
many of the security and privacy concerns related to hosting sensitive
information in public clouds. They may also o↵er stronger guarantees on
control and performance as the whole infrastructure can be administered
within the same domain.
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Figure 3: Cloud bursting scenario.

Private clouds may o✏oad capacity to other IPs under periods of high
workload, or for other reasons, e.g., planned maintenance of the internal
servers. In this scenario, the providers form a hybrid architecture commonly
referred to as a cloud bursting as seen in Figure 3. Typically, less sensitive
tasks are executed in the public cloud while tasks that require higher levels
of security stay in the private infrastructure.

III. Federated Cloud.
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Figure 4: Cloud federation scenario.

Federated clouds are IPs collaborating on a basis of joint load-sharing
agreements enabling them to o✏oad capacity to each other [76] in a manner
similar to how electricity providers exchange capacity. The federation
takes place at the IP level in a transparent manner. In other words, a SP
that deploys services to one of the IPs in a federation is not notified if its
service is o↵-loaded to another IP within the federation. However, the SP
may be able to steer in which IPs the service may be provisioned, e.g., by
specifying location constraints in the service manifest. Figure 4 illustrates
a federation between three IPs.

IV. Multi-Cloud.

In multi-cloud scenarios, the SP is responsible for handling the additional
complexity of coordinating the service across multiple external IPs, i.e.,
planning, initiating and monitoring the execution of services.
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organisations [14], and the technical security risks of using 
cloud computing [15]. 

However, not much has been published about the 
organizational risks of the change that cloud computing 
brings to enterprise. Yanosky [16] discussed how cloud 
computing will affect the authority of the IT department 
within universities and argued that the IT department's role 
will change from “provider to certifier, consultant and 
arbitrator”. This could lead to inefficiencies in organizations 
if certain stakeholders resist the changes brought about by 
cloud computing. One approach to understanding these risks 
is to capture each stakeholders’ perception of the change 
through semi-structured interviews allowing stakeholders to 
raise the benefits, risks, opportunities or concerns as they 
perceive them [17, 18]. 

The results of the case study presented in this paper are 
novel as they attempt to highlight the overall organizational 
implications of using cloud computing. This issue has not 
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Figure 5: Multi-cloud scenario.

It should be remarked that the multi-cloud and federated cloud scenarios
are commonly considered only in the special case where Organization 1
does not possess an internal infrastructure, corresponding to removing IP1
from Figures 4 and 5.

9



10



Chapter 3

Virtual Machine Scheduling

Given a set of admitted services and the availability of local and possibly
remote resources, there are a number of scheduling problems to be solved to
determine where to store data and where to execute and reallocate VMs. We
categorize these problems into two classes, namely single-cloud environments and
multi-cloud environments. The following sections describe these two scenarios
respectively, as well as the challenges and the state of the art of VM scheduling.

3.1 Scheduling in Single-cloud Scenarios

In this thesis, VM scheduling in single-cloud environments is referred to as
scenarios where VMs are scheduled within an infrastructure provider that
can have multiple data centers geographically distributed. This is consistent
with the Private Cloud scenario described in Chapter 2, while cases where the
private infrastructure outsources (part of) its workload to external infrastructure
provider(s) belong to another class of scenarios discussed in the following section.
In single-cloud scenarios, resource characteristics, including the real-time state
of the whole infrastructure, the revenue model, and the schedule policies, are
usually exposed to the scheduling optimization process. A scheduling algorithm
can thus take full advantage of the information potentially available.

A well-known case is when a cloud provider strives to lower the carbon
footprint of operating the infrastructures and scale the costs of the o↵ered
virtualized resources. This is very appealing to IT industries and also has
significant impact on the global environment, as more than 1% of the global
electricity consumption is consumed by data centers [49]. Energy cost per
year can exceed $105,000 for a single rack of servers [73], while according to
a study by IDC and IBM in 2008, most test servers run at 10% utilization.
Furthermore, 30% of all defects are caused by wrongly configured servers
and 85% of computing sites are idle [39]. To improve the energy-e�ciency of
infrastructures that rely on virtualization technologies, VMs running in the cloud
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need to be properly configured and scheduled, ensuring high energy-e�ciency
of the cloud systems [58]. As another key aspect, from a profit perspective,
Service-Level Agreement (SLA) compliance is also crucial as violations in SLA
can result in significant revenue loss to both the customer and the provider.
This may also require accurate and e�cient SLA compliance monitoring [80].

3.2 Scheduling in Multi-cloud Scenarios

Multi-cloud scenarios include (i) one cloud infrastructure that o✏oads its
workload to another infrastructure, for example in order to lower the operating
costs while maintaining customer satisfaction, and (ii) a cloud user who deploys
and manages VMs across multiple cloud infrastructures gaining advantage
of avoidance of vendor lock-in problem, improving service availability and
fault-tolerance, etc. This is consistent with the cases of cloud bursting, cloud
federation, and multi-cloud mentioned in Chapter 2. In such cases, decision
making is usually focused on selecting which cloud to run in, not which server.
The detailed states of the infrastructures are commonly opaque to the cloud
user or the cloud infrastructure that initiates the non-local actions. Conversely,
the remote cloud infrastructures usually only expose business-related info such
as VM instance types, pricing schemes, locality of the infrastructures, and legal
information to the optimization process. VM scheduling in these scenarios
is also complicated by obstacles in integrating resources from various cloud
providers which usually have their own characteristics of resources, protocols
and APIs.

3.3 Objectives and Considerations

There are a multitude of parameters and considerations involved in the decision
on where and when to place or reallocate data objects and computations in
cloud environments. An automated scheduling mechanism should take the
considerations and tradeo↵s into account, and allocate resources in a manner
that benefits the stakeholder for which it operates (SP or IP). For both of these,
this often leads to the problem of optimizing cost or performance subject to a
set of constraints. Among the main considerations are:

• Performance. In order to improve the utilization of physical resources,
data centers are increasingly employing virtualization and consolidation
as a means to support a large number of disparate applications running
simultaneously on server platforms. With di↵erent VM scheduling strate-
gies, the achieved performance may di↵er significantly [83]. In scenarios
where multiple cloud providers are involved, the performance is of ad-
ditional concern, as preserving performance of systems constructed by
integrating resources from heterogeneous infrastructures is a challenge
with high complexity.
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• Energy-e�ciency. In line with the interest in eco-e�ciency technologies,
increasing overall e�ciency of cloud infrastructures in terms of power,
cost, and utilization has naturally become a major concern. However, this
is usually conflicting with other concerns, e.g., performance.

• Costs. The price model was dominated by fixed prices in the early phase
of cloud adoption. However, cloud market trends show that dynamic
pricing schemes utilization is increasing [60]. Deployment costs decrease by
dynamically placing services among clouds or by dynamically reconfiguring
services (e.g., resizing VM sizes without harming service performance)
become possible. In addition, internal implicit costs for VM scheduling,
e.g., interference and overhead that one VM causes on other concurrently
running VMs on the same physical host, should also be taken into account.

• Locality. In general, for considerations of usability and accessibility,
VMs should be located close to users (which could be other services or
VMs). However, due to e.g., legal issues and security reasons, locality
may become a constraint for optimal scheduling. This may apply to both
cloud providers with geographically distributed data centers and service
providers utilizing resources from multiple cloud providers.

• Reliability and continuous availability. Part of the central goals for
VM scheduling is service reliability and availability. To achieve this, VMs
may be replicated across multiple (at least two) geographical zones. During
this procedure, factors such as the importance of the data and/or service
encapsulated in VMs, its expected usage frequency, and the reliability
of the di↵erent data centers, must be taken into account. As such,
scheduling VMs within a single-cloud environment may also cause service
degradation, e.g., by introducing additional delays due to VM migration,
or by co-locating to many VMs with competing demands on a single
physical server.

3.4 Main Challenges

Given the variety of VM scheduling scenarios, the wide range of relevant param-
eters, and the set of constraints and objective functions of potential interest,
there are a number of challenges in the development of broadly applicable
scheduling methods, some of which are presented below.

I. There exists no generic model to represent various scenarios of VM
scheduling, especially when users’ requirements are vague and hard to
encode through modeling languages. In particular, mapping QoS re-
quirements (e.g., latency, consistency, and reliability) of applications to
fine-grained resource-level attributes is di�cult [22]. Applications have
various business-level requirements for QoS based on di↵erent metrics such
as response time, throughput, and transaction rate. Such requirements
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depend on the type of the applications and how they are being used.
Modeling and quantifying these requirements, especially non-functional
requirements such as high availability, is challenging.

II. Model parameterization, i.e., finding suitable values for parameters in a
proposed model, is a tedious task when the problem size is large. For
example, for a multi-cloud scenario that includes n cloud providers and m
VMs, m ⇤ n2 parameter assignments are needed in principle to express the
VM migration overheads ignoring possible changes of VM sizes. There-
fore, mechanisms that can help to automatically capture those values are
required.

III. The initial VM placement problem is typically formulated as a variant of
the class constrained multiple-knapsack problem that is known to be NP
hard [15]. Thus, to solve large-scale problem instances, tradeo↵s between
quality of solution and execution time must be taken into account. This
is a very important issue given the size of real life data centers, e.g., by
2011, Amazon EC2 [3], the leading cloud provider, has approximately
40,000 servers and schedules 80,000 VMs every day [23]. These numbers
may be even larger today as the cloud market is much bigger than three
years ago. Finding usable solutions for such large-sized data centers in an
acceptably short time, resulting high scalability of the solution, is known
to be di�cult [11].

IV. Conflicting objectives. On energy-e�cient scheduling, existing work [9,
19, 51, 94] focuses on certain aspects of QoS, however they commonly
overlook the energy-e�ciency aspect that may conflict with the other
QoS requirements. For example, the migration of a given VM from one
data-center to another may have a positive impact on reducing the carbon
footprint. However it may also cause service degradation by introducing
additional delays, or even reduce the availability if two redundant VMs are
co-located on the same physical server that forms a single point of failure.
Besides, harmonizing the incompatibility between conflicting objectives
becomes even more challenging when the importance of these objectives is
hard to quantify accurately.

V. Continuous optimization. Given the dynamic nature of clouds, resource
allocations need to be renewed regularly for performance reasons, failure,
etc., for example when a SLA violation is detected, or when the cloud
resources are not e�ciently utilized. It is challenging to e�ciently decide
when and how to reconfigure the cloud in order to dynamically adapt to the
changes. Such a challenge has been identified as a MAPE-K (Monitoring,
Analysis, Planning, Execution, and Knowledge) [40] control loop by IBM,
resulting in the concept of Autonomic Computing. In the context of the
MAPE-K reference model, information such as resource usage, and work-
load demands is collected from managed entities, aggregated, filtered and
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reported by Monitoring mechanisms. An adaptation Plan is produced and
Executed based on the Analysis of the collected information. Knowledge
collected or derived is shared among all parties involved, possibly providing
solid support to decision making.

3.5 State of the Art

Virtual machine scheduling in distributed environments has been extensively
studied in the context of cloud computing. Such approaches address separate
problems, such as initial placement, consolidation, or tradeo↵s between honoring
SLAs and constraining provider operating costs, etc. [67]. Studied scenarios are
usually encoded as assignment or packing problems in mathematical models and
are finally solved either by approximations, e.g., greedy packing and heuristic
methods, or by existing mathematical programming solvers such as Gurobi [32],
CPLEX [41] and GLPK [31]. As before, related work can be separated into two
sets: (i) VM scheduling in single-cloud environments and (ii) VM scheduling in
multi-cloud environments.

In the single-cloud scenario, given a set of physical machines and a set of
services (encapsulated within VMs) with dynamically changing demands, to
decide how many instances to run for each service and where to put and execute
them, while observing resource constraints, is an NP hard problem [15]. Tradeo↵
between quality of solution and computation cost is a challenge. To address
this issue, various approximation approaches are applied, e.g., Tang et al. [15]
propose an algorithm that can produce high-quality solutions for hard placement
problems with thousands of machines and thousands of VMs within 30 seconds.
This approximation algorithm strives to maximize the total satisfied application
demand, to minimize the number of application starts and stops, and to balance
the load across machines. Hermenier et al. [34] present the Entropy resource
manager for homogeneous clusters, which performs dynamic consolidation
based on constraint programming and takes migration overhead into account.
Entropy chooses migrations that can be implemented e�ciently, incurring a
low performance overhead. The CHOCO constraint programming solver [42],
with optimizations e.g., identifying lower and upper bounds that are close to
the optimal value, is employed to solve the problem. To reduce electricity cost
in high performance computing clouds that operate multiple geographically
distributed data centers, Le et al. [50] study the impact of VM placement policies
on cooling and maximum data center temperatures. They develop a model of
data center cooling for a realistic data center and cooling system, and design
VM distribution policies that intelligently place and migrate VMs across the
data centers to take advantage of time-based di↵erences in electricity prices and
temperatures. Targeting the energy e�ciency and SLA compliance, Borgetto
et al. [11] present an integrated management framework for governing Cloud
Computing infrastructures based on three management actions, namely, VM
migration and reconfiguration, and power management on physical machines.
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Incorporating an autonomic management loop optimized using a wide variety
of heuristics ranging from rules over random methods, the proposed approach
can save energy up to 61.6% while keeping SLA violations acceptably low.

For VM scheduling across multiple IPs, information about the number of
physical machines, the load of these physical machines, and the state of resource
distribution inside the IPs’ side is normally hidden from the SP and hence is
not part of the parameters that can be used for placement decisions. Only
provision-related information such as types of VM instance and price schemes,
is exposed to SP. Therefore, most work on VM scheduling across multi-cloud
environments is focusing on cost aspects. Chaisiri et al. [13] propose an stochas-
tic integer programming (SIP) based algorithm that can minimize the cost
spending in each placement plan for hosting virtual machines in a multiple
cloud provider environment under future demand and price uncertainty. Van
den Bossche et al. [16] examine the workload outsourcing problem in a multi-
cloud setting with deadline-constrained workloads, and present a cost-optimal
optimization method to maximize the utilization of the internal data center
and minimize the cost of running the outsourced tasks in the cloud, while
fulfilling the QoS constraints for applications. Tordsson et al. [84], propose a
cloud brokering mechanism for optimized placement of VMs to obtain optimal
cost-performance tradeo↵s across multiple cloud providers. Similarly, Vozmedi-
ano et al. [69, 70] explore the multi-cloud scenario to deploy a compute cluster
on top of a multi-cloud infrastructure, for provisioning loosely-coupled Many-
Task Computing (MTC) applications. In this way, the cluster nodes can be
provisioned with resources from di↵erent clouds to improve the cost-e↵ectiveness
of the deployment, or to implement high-availability strategies.
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Chapter 4

Summary of Contributions

4.1 Paper I

In non-local scenarios, cloud users may want to distribute the VMs across
multiple providers for various purposes, e.g., in order to construct a user’s
cloud environment and prevent potential vendor lock-in problems by means of
migrating applications and data between data centers and cloud providers. Most
likely, the decision on VMs distribution among cloud providers is not a one-time
event. Conversely, it needs to be adjusted according to the changes exposed.
In Paper I [55], we investigate dynamic cloud scheduling in scenarios where
conditions are continuously changed, and propose a linear programming model
to dynamically reschedule VMs (including modeling of VM migration overhead)
upon new conditions such as price changes and service demand variation. Our
model can be applied in various scenarios through selections of corresponding
objectives and constraints, and o↵ers the flexibility to express di↵erent levels of
migration overhead when restructuring an existing virtual infrastructure, i.e.,
VM layout.

In scenarios where new instance types are introduced, the proposed mech-
anisms can accurately determine the break-o↵ point when the improved per-
formance resulting from migration outweighs the migration overhead. It is
also demonstrated that our cloud mechanism can cope with scenarios where
prices change over time. Performance changes, as well as transformation of
VM distribution across cloud providers as a consequence of price changes, can
be precisely calculated. In addition, the ability of the proposed mechanism
to handle the tradeo↵ between vertical (resizing VMs) and horizontal elastic-
ity (adding VMs), as well as to improve decision making in complex scale-up
scenarios with multiple options for service reconfiguration, e.g., to decide how
many new VMs to deploy, and how many and which VMs to migrate, is also
evaluated in scenarios based on commercial cloud providers’ o↵erings.
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4.2 Paper II

In Paper II [54], the VM placement problem for load balancing of predictable and
time-constrained peak workloads is studied for placement of a set of VMs within
a single datacenter. We formulate the problem as a Min-Max optimization
problem and present an algorithm based on binary integer programming, along
with three approximations for tradeo↵s in scalability and performance. Based
on the observation that two VM sets (i.e., VMs provisioned to fulfill service
demands) may use the same physical resources if they do not overlap in runtime,
we define an approximation based on discrete time slots to generate all possible
overlap sets. A time-bound knapsack algorithm is derived to compute the
maximum load of machines in each overlap set after placing all VMs that run
in that set. Upper bound based optimizations are used to shorten the time
required to compute a final solution, enabling larger problems to be solved. An
evaluation based on synthetic workload traces suggests that our algorithms are
feasible, and that these can be combined to achieve desired tradeo↵s between
quality of solution and execution time.

4.3 Paper III

The cloud computing landscape has developed into a spectrum of cloud archi-
tectures, resulting in a broad range of management tools for similar operations
but specialized for certain deployment scenarios. This not only hinders the
e�cient reuse of algorithmic innovations for performing the management opera-
tions, but also increases the heterogeneity between di↵erent cloud management
systems. A overarching goal is to overcome these problems by developing tools
general enough to support the range of popular architectures. In Paper III [52],
we analyze commonalities in multiple di↵erent cloud models (private clouds,
multi-clouds, bursted clouds, federated clouds, etc.) and demonstrate how a key
management functionality - service deployment - can be uniformly performed in
all of these by a carefully designed system. The design of our service deployment
solution is validated through demonstration of how it can be used to deploy
services, perform bursting and brokering, as well as mediate a cloud federation
in the context of the OPTIMIS Cloud toolkit.

4.4 Paper IV

At the early stage of the cloud era, most cloud providers used fixed pricing
schemes to o↵er capacity to customers. Under these schemes, the price of
a compute unit was usually set regardless of the available capacity at the
provider. For example, GoGrid [29] and Rackspace [75] o↵er capacity on hourly,
monthly, semi-annual, and annual base, without considering the real-time state
of the backend infrastructures. As a consequence, most research on cloud
service placement has focused on static pricing scenarios. However, the concept
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of dynamic resource pricing is becoming popular and has garnered a lot of
attention recently. One promising advantage of this concept is that it enables
cloud providers the ability to attract more customers by o↵ering lower price if
they have excess capacity. Amazon for example has introduced spot instances [2],
enabling users to bid for spare Amazon EC2 instances and run them whenever
the bid exceeds the current spot price, which is set by Amazon and varies in
real-time based on supply and demand for the spot instance capacity.

From the cloud customer’s perspective, such pricing models complement
static pricing, potentially providing the most cost-e↵ective option for obtaining
compute capacity. To investigate cloud service placement under dynamic pricing
schemes, we in Paper IV [53] study a set of algorithms to find cost-optimal
deployment of services across multiple cloud providers. The algorithms range
from simple heuristics to combinatorial optimization solutions. By deploying
nearly 3000 synthetically constructed services with varying amounts of service
components and VM instance types on three simulated cloud providers using the
service deployment toolkit presented in Paper III [52], the studied algorithms
are evaluated in terms of execution time, ratio of successfully solved deployment
cases, and the quality of the solution. The results suggest that exhaustive
search based approach is (as expected) good at finding optimal solutions for
service placement under dynamic pricing schemes, but execution time is usually
very long. In contrast, greedy approaches perform surprisingly well with fast
execution times and acceptable solutions. More specifically, the very fast greedy
algorithm finds optimal solutions in more than half of all cases, and for 90%
of the rest of cases, the quality of solution is within 25% from optimal. As
such, it can be a suitable compromise considering the tradeo↵s between quality
of solution and execution time. We believe that results from this paper can
be helpful in the design of scheduling algorithms and mechanisms in cloud
environments with dynamic pricing schemes.

4.5 Paper V

A cloud service might be compromised of multiple components. For example, a
three-tier web application may consist of a database component (e.g., Oracle
DB), an application component (e.g., JBoss application server), and a presenta-
tion layer component (Apache web server). There are multiple advantages in
terms of e.g., fault tolerance, redundancy, and legislation compliance of taking
the internal structure of the service into consideration when placing components
in cloud infrastructures. For example, due to legislative reasons [61], some
services might not be allowed to be provisioned in specific regions. Further-
more, some services might require redundancy by avoiding collocation of critical
components in the same host.

In Paper V [25], we present an approach that formalizes hierarchical graph
structures for inter-dependencies among components in a service, enabling
service owners to influence placement of their service components by explicitly
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specifying the service structure, component relationships, and constraints among
components. We also demonstrate how these can be converted into placement
constraints. In particular, we use a�nity constraints to express restrictions
on service components that must be co-located, and anti-a�nity constraints
to express the requirements on component instances that may not be placed
on the same host or cloud level. An integer linear programming formulation
is defined to illustrate how scheduling may be performed using the presented
approach. The feasibility of the model is confirmed by experimental evaluation
on 15300 randomly constructed services with varying amounts of background
load, a�nity constraints and anti-a�nity constraints. Our experimental results
indicate that (i) with respect to the ability of finding a solution, the impact
introduced by the number of a�nity and anti-a�nity constraints is higher than
that by background loads, and (ii) component a�nity is the dominating factor
a↵ecting the possibility to find a solution in a setting with a large number of
hosts with low capacity.

4.6 Paper VI

To continuously optimize the mapping of VMs to physical servers is cru-
cial in cloud infrastructures, as the initial mapping might become subopti-
mal upon changes introduced by for example workload variations, failures,
energy-management actions such as power-o↵ and frequency-scaling, and the
availability of resources. In Paper VI [82], we present a continuous VM consoli-
dation approach that aims to maximize cloud provider revenue over time. A
combination of management actions, including suspend and resume physical
servers, suspend and resume VMs, and VM migration, is used to achieve this
goal. Based on these actions, we define a set of heuristic algorithms to continu-
ously optimize the revenue for the cloud infrastructure without limitation on
the predictability of the workload. The performance of the proposed algorithms
are confirmed by experimental evaluation on synthetic workloads. To verify
that the proposed ideas are applicable in real-world scenarios, we also design
and implement a proof-of-concept software to manage a small-sized datacenter,
showing the feasibility of our approach.
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Chapter 5

Future Work

The thesis focuses on cloud services placement and scheduling in cloud in-
frastructures from the perspective of an infrastructure provider and a service
provider, respectively. This chapter presents potential directions for future
investigations.

Constraint Relaxation and Improve Algorithms

Future directions for this work include approximation algorithms based on
problem relaxations and heuristic approaches such as greedy formulation for
considerations of tradeo↵ between quality of solution and execution time. It
would also be interesting to allow cloud users to specify hard constraints and soft
constraints when demanding resource provisions. A hard constraint is a condition
that has to be satisfied when deploying services, i.e., it is mandatory. In contrast,
soft constraints (also called preferences) are optional. An optimal placement
solution with soft constraints satisfied is preferable over other solutions. The
hard and soft constraints can, e.g., be used to specify co-location or avoidance
of co-location of certain VMs. We also plan to investigate how to apply multi-
objective optimization techniques to this scenario.

Modeling Inter-VM Relationships

Despite the attempt in Paper V, we believe that modeling the interconnection
requirements that can precisely express the relationships between VMs is far
from complete. For example, extending the a�nity mechanism to support more
internal network properties is one direction. There exists no specification or
standard to semantically describe the relationships between VMs in the context
of cloud computing. Given the variety of existing applications, it is unlikely to
find a general approach that can be applied to any domain. We also foresee that
the relationships between VMs are not necessarily static. They may change
over time. For example, a VM responsible for secondary storage might take
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the place of a VM for primary storage on hardware failure. The inter-VM
relationships should be updated (reconstructed) accordingly. VM scheduling
in cloud infrastructures with compliance to such a dynamic relationship is
challenging. In addition, by inferring from the VM relationships, scheduling
algorithms would possibly benefit from knowing the interference and overhead
that one VM causes on other concurrently running VMs on the same physical
machine.

Network and Storage Considerations

So far, most research on VM scheduling in cloud environments has focused on
aspects of computational resource management. Scheduling network resources
and storage in combination with computation of VMs remains largely unexplored.
The distribution of VMs in cloud infrastructures might a↵ect the network tra�c
and scalability of the infrastructures. For example, by localizing large chunks
of tra�c and thus reducing load at high-level switches, a tra�c-aware VM
scheduling approach can have a significant performance improvement compared
with existing generic methods that do not take advantage of tra�c patterns and
data center network characteristics [65]. On the other hand, the interconnection
network of cloud infrastructures has a significant impact on VM scheduling
strategies and system utilization. Network topology knowledge is important
for e�cient path selection for VM migration. Higher workload density in
combination with network bandwidth intensive migrations can lead to network
contention [81].

Scheduling for Container-based Virtualization Platforms

As discussed in Section 2.1, this thesis work is based on traditional virtu-
alization techniques, i.e., hypervisor-based virtualization. Compared with
hypervisor-based virtualization, despite being less mature and providing less
isolation [35, 62], Linux Containers o↵er several advantages. For example,
reduced overhead can be obtained by using normal system call interface in-
stead of introducing a hypervisor layer as a intermediate to support hardware
emulation, and by maintaining operating systems with the same kernel rather
than maintaining multiple di↵erent operating systems in a hypervisor-based
virtualization environment which can be a heavy task [68]. Moreover, as a
lightweight virtualization mechanism [10, 86], containers are usually smaller
than conventional virtual machines, meaning that given the same physical
machine, it is possible to run more containers on it than conventional virtual
machines.

To the best of our knowledge, however, there exists very few work on cloud
services (encapsulated in containers) scheduling on platforms based on container-
based virtualization. In particular, there is no literature on this topic in the
context of multi-cloud scenarios (if this is even feasible). Most of the existing
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works on this topic are focusing on building clouds atop of container-based vir-
tualization, e.g., by Anwer et al. [4] who present the design and implementation
of a fast, virtualized data center with OpenVZ [71] as the virtualization support
and with NetFPGA [59, 89] as the hardware layer. An interesting direction
would be to investigate VM scheduling problems on container-based virtualiza-
tion infrastructures. Intuitively, new constraints would be introduced to express
the corresponding restrictions, e.g., with the existing technology, a container
is not allowed to be migrated to another host with di↵erent kernel. Moreover,
VM migration overhead and the interference introduced by co-location should
be modeled and profiled in a di↵erent way from hypervisor-based virtualization
platforms.
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Abstract: Cloud brokerage mechanisms are fundamental to reduce the complexity of
using multiple cloud infrastructures to achieve optimal placement of virtual machines
and avoid the potential vendor lock-in problems. However, current approaches are re-
stricted to static scenarios, where changes in characteristics such as pricing schemes,
virtual machine types, and service performance throughout the service life-cycle are
ignored. In this paper, we investigate dynamic cloud scheduling use cases where
these parameters are continuously changed, and propose a linear integer programming
model for dynamic cloud scheduling. Our model can be applied in various scenarios
through selections of corresponding objectives and constraints, and offers the flexi-
bility to express different levels of migration overhead when restructuring an existing
infrastructure. Finally, our approach is evaluated using commercial clouds parameters
in selected simulations for the studied scenarios. Experimental results demonstrate
that, with proper parametrizations, our approach is feasible.

Key words: cloud computing; dynamic scheduling; virtual machine placement; mi-
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Abstract—Cloud brokerage mechanisms are fundamental to
reduce the complexity of using multiple cloud infrastructures to
achieve optimal placement of virtual machines and avoid the
potential vendor lock-in problems. However, current approaches
are restricted to static scenarios, where changes in characteristics
such as pricing schemes, virtual machine types, and service
performance throughout the service life-cycle are ignored. In this
paper, we investigate dynamic cloud scheduling use cases where
these parameters are continuously changed, and propose a linear
integer programming model for dynamic cloud scheduling. Our
model can be applied in various scenarios through selections of
corresponding objectives and constraints, and offers the flexibility
to express different levels of migration overhead when restructur-
ing an existing infrastructure. Finally, our approach is evaluated
using commercial clouds parameters in selected simulations for
the studied scenarios. Experimental results demonstrate that,
with proper parametrizations, our approach is feasible.

Index Terms—cloud computing, dynamic scheduling, virtual ma-

chine placement, migration overhead, linear integer programming

I. INTRODUCTION

As the use of cloud computing grows and usage models [1]
become more complex, cloud users are confronted with ob-
stacles in integrating resources from various cloud providers.
In this context, the use of efficient cloud brokering mech-
anisms are essential to negotiate the relationships between
cloud service consumers and providers, including integrating
cloud services to make up a user’s cloud environment. A
cloud broker also helps users prevent potential vendor lock-in
problems by means of migrating applications and data between
data centres and different cloud providers.

However, current brokering approaches are limited to static
scenarios, where changes in characteristics such as pricing
schemes, virtual machine (VM) types, and service perfor-
mance throughout the service life-cycle are ignored. Con-
versely in dynamic scenarios, it is arguable that either the
offers of the cloud providers or the requirements of the
service owner change over time. When conditions change,
it is necessary to analyse how to optimally reconfigure the
service to adapt it to new situations. For example, if a
vendor retreats from the market, cloud users may be forced
to migrate some resources from one cloud provider to another
so as to guarantee the service availability. Similarly, when a
price reduction occurs, the current configuration may become
suboptimal, and it may be possible to obtain a better placement
of resources by restructuring the virtual infrastructure.

In this paper, we focus on modeling for dynamic scheduling
in the context of cloud brokerage where cloud users employ
multiple cloud infrastructures to execute their VMs in which
business services are encapsulated. In dynamic scheduling
scenarios, the ability to efficiently migrate VMs between
servers or data centres is crucial for the efficient and dynamic
resource management. VM migration is essential to increase
the flexibility in VM provisioning, avoid vendor lock-in prob-
lems, and guarantee the service availability, etc. One of the
key issues for dynamic cloud scheduling is finding a suitable
metric for VM migration overhead, a metric that captures the
distance between two infrastructures in order to estimate the
feasibility of restructuring an existing infrastructure. Possible
infrastructure distance metrics include number of VMs to mi-
grate, number of VMs to migrate weighted with VM size, and
total migration downtime, etc. Another issue is how to express
and embody the migration overhead metric in an objective
function that can equivalently represent the user’s goal. To
tackle these problems, we investigate and classify multiple
dynamic scenarios and propose a linear integer programming
model. With proper parametrization and selections of objective
functions and constraints, our model can be used in a wide
range of scenarios. The optimization problem is finally en-
coded in a mathematical modeling language and solved using
a linear programming solver.

In summary, our contributions are the following. We investi-
gate dynamic cloud scheduling use cases and propose a linear
integer programming model for dynamic cloud scheduling via
VM migration across multiple clouds. Evaluations based on
characteristics of current commercial cloud offerings demon-
strate that our model provides the flexibility of expressing
different levels of migration overhead when restructuring an
existing infrastructure. By proper parametrizations, our ap-
proach can be used to accurately decide optimal VM migration
strategies for elasticity scenarios, as well as handling changes
in provider offers and prices.

The remainder of the paper is organized as follows: Sec-
tion II describes background about cloud brokerage, placement
optimization for cloud resources, and VM migration. Sec-
tion III introduces cloud brokering mechanisms for optimized
placement of VMs across multiple providers, describes the
proposed model, and elaborates its flexibility for expressing
different levels of migration overhead for restructuring an
existing infrastructure. Section IV presents experimental evalu-
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ations against commercial clouds offerings. Finally, some con-
clusions are presented in Section V followed by a presentation
of future work, acknowledgements, and a list of references.

II. BACKGROUND AND RELATED WORK

A. Cloud Brokerage
Cloud brokerage aims to bridge the gap between the cloud

service consumer and the provider. Gartner Research divides
the responsibility of cloud brokers into three main cate-
gories: cloud service intermediation, aggregation and cloud
service arbitrage [2]. On-going research on cloud brokerage
has caught substantial attention, including efforts that target
cloud management middleware (e.g., Emotive Cloud [3] and
OpenNebula [4]), virtualization APIs (e.g., libvirt [5]), and
cloud interoperability and standardization.

Grivas et al. propose a central Cloud Broker component
responsible for the management and the governance of the
cloud environment [6]. However, this approach is mainly fo-
cusing on business process management. It should be remarked
that this approach is still in the phase of comprehensive
architecture design. A cloud broker with an optimal VM
placement algorithm is presented by Chaisiri et al. [7]. This
algorithm can minimize the cost for hosting VMs in a multi-
provider environment. This work is however limited to static
scenarios where the number of required virtual resources is
constant, and the cloud provider conditions (resource prices,
resource availability, etc.) do not change throughout the service
life-cycle.

B. VM Placement Optimization for Clouds
Virtual machine placement in distributed environments has

been studied in the context of cloud computing extensively,
e.g., by Bobroff et al. [8] who present a management algo-
rithm for dynamic placement of VMs to physical servers,
which provides substantial improvement over static server
consolidation in reducing the amount of required capacity and
the rate of Service Level Agreement (SLA) violations. Their
algorithm pro-actively adapts to demand changes and migrates
VMs between physical hosts thus providing probabilistic SLA
guarantees. Another SLA-driven dynamic VM placement opti-
mization approach is proposed by Iqbal et al. [9], who describe
the problem of bottleneck detection and resolution of multi-tier
Web applications hosted on a cloud. They present a solution
to minimize the probability that tiers (hosted on VMs) become
bottlenecks by optimizing the placement of VMs.

For VM placement optimization in a single cloud, An-
dreolini et al. [10] present a management algorithm to re-
allocate the placement of VMs for better performance and
resource utilization by considering the load profile of hosts
and the load trend behaviour of the guest instead of thresh-
olds, instantaneous or average measures that are typically
used in literature. VM placement optimization for multi-cloud
scenarios is studied e.g., by Chaisiri et al. [7], Moreno-
Vozmediano et al. [11] [12] and Tordsson et al. [13]. However,
so far, most of efforts that target VM placement optimization
for clouds have focused on either scenarios of one single cloud

provider or static scenarios in multi-cloud environments. VM
placement issues for dynamic scenarios across multiple cloud
providers remain largely unexplored.

C. Virtual Machine Migration

Leveraging the ability of VM migration, cloud users are
able to switch data and services between different physical
machines in a cloud or even different clouds. In this paper,
we consider a VM to be migrated if either it is moved from
one cloud to another, or its hardware configuration is changed.
VM migration is inevitable when reconstructing virtual infras-
tructure for cloud users in cloud brokerage scenarios.

Heterogeneous live migration of virtual machines is studied
by Liu et al. [14]. Their work demonstrates that due to high
variances of memory page dirtying rate, it is possible to get
very slow migrations (result in long downtime) although a
VM uses only 156MB of memory. Another comprehensive
study of VM migration research, as well as an evaluation of
methods for efficient live migration of VMs is presented by
Svärd et al. [15], who also demonstrates how live migration
of large VMs or VMs with heavy load can be done with
shortened migration time, migration downtime, and reduced
risk of service interruption.

While VM migration research has currently focused on
single-cloud scenarios where data and services are located
within the same cloud infrastructure, we expect that VM
migration across different cloud providers will become a
reality in a near future. In our work, the time and cost for VM
migration are approximated by looking at the time required to
shut down a VM in one cloud provider and start a new VM
with the same configurations in another provider.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. Cloud Brokerage and Modeling

Figure 1 illustrates three roles in the studied cloud brokerage
scenario: the User, the Cloud Providers, and the Cloud Broker.
The user requests a virtual infrastructure by submitting a
service description, which contains a manifest of required
resources (e.g., number of VMs, size of storage, etc.), opti-
mization criteria, and a set of constraints to the cloud broker.

Fig. 1. Architecture overview for cloud brokerage scenario.
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The Scheduling Optimizer component of the broker gener-
ates an Execution Plan based on requirement criteria provided
by the user, the offerings of the available cloud providers, and
the change of situation (e.g., service performance scales up
or down, cloud providers’ offers change and so forth). The
Execution Plan includes either a list of VM templates that
can equivalently represent the implementation of the user’s
abstract infrastructure request, or a description that represents
an adjustment of an existing infrastructure. Finally, the Exe-
cution Plan is enacted by the Virtual Infrastructure Manager
component that is built on a cloud management middleware
such as Emotive [3] and OpenNebula [4]. We remark that in
this paper we focus on problem formulations and modeling,
while difficulties and challenges involving cloud interoper-
ability, robustness of migration, and similar practical matters,
although important for a full implementation, are out of scope.

Each cloud provider supports several VM configurations,
often referred to as instance types. An instance type is defined
in terms of hardware metrics such as main memory, CPU
(number of cores and clock frequency), the available storage
space, and price per hour. Our model has no limitations on the
number of instance types. While we currently use five instance
types, i.e., micro, small, medium, large, and xlarge (see Table I
in Section IV) for the evaluation in this paper, it is straight
forward to extend or decrease the number of instance types.

More formally, in a static scheduling scenario, our goal
is to deploy n VMs, v1, v2, . . . , vn, across m available
clouds, c1, c2, . . . , cm, which provide l possible instance types,
IT1, IT2, . . . , ITl, to improve criteria such as cost, perfor-
mance, or load balance. The hourly computational capability
of a given instance type is denoted Cj , 1  j  l. The hourly
price for running a VM of instance type ITj in cloud ck
is denoted by Pjk. One of the most common used objective
function is to maximize the Total Infrastructure Capacity (TIC)
of the deployed VMs given by:

TIC = H ⇤
lX

j=1

C
j

(
nX

i=1

mX

k=1

x
ijk

), (1)

where H specifies the expected lifetime of the infrastructure,
i.e., how long the virtual infrastructure is to be deployed, xijk

is a decision variable that satisfies xijk = 1 if vi is of type ITj

and placed at cloud ck, and 0 otherwise. Users can specify the
following types of deployment restriction constraints:
• Budget constraints - Let Budget denote the maximum

investment that can be used. Now, the deployment is re-
stricted to solutions where the total infrastructure price (TIP )
satisfies

TIP = H ⇤
lX

j=1

mX

k=1

P
jk

(
nX

i=1

x
ijk

)  Budget. (2)

• Placement constraints - Each VM has to be of exactly one
instance type and placed in exactly one cloud:

8i 2 [1..n] :
lX

j=1

mX

k=1

x
ijk

= 1. (3)

• Load balancing constraints - can be encoded as:

8k 2 [1..m] :

LOC
min

 (
nX

i=1

lX

j=1

x
ijk

)/n  LOC
max

, (4)

where LOCmin and LOCmax are the minimum and maxi-
mum percent of all VMs to be located in each cloud.

Note that additional constraints, such as for example network
resource requirements, and data locality restrictions can also
be added to the model.

As studied by Tordsson et al. [13], the static cloud schedul-
ing problem on performance goals can be formulated as a
linear programming model with objective function (1) and
constraints (2), (3), and (4). In static scenarios, parameters
(n, l, m, Pjk(1  j  l, 1  k  m), and Budget) are
constant throughout the service life-cycle where placement
decisions can be taken off-line, once only, and in advance
to service deployment.

B. Dynamic Cloud Scheduling
In dynamic scenarios, any of the previously discussed parame-
ters may change. We identify two main categories of dynamic
scenarios of cloud scheduling, which respectively reside in
cloud providers and service providers: varying cloud providers
offers, and service performance elasticity.
• Examples in the first category include varying offers:

- A new provider appears or withdraws from the offer
space. For example, Heroku [16] proclaimed the avail-
ability of the commercial version of its new cloud hosting
and deployment service on 2009-04-24.

- Price changes, e.g., in form of new agreements, spot
prices, special discount during night time, etc.

- New instance type offers are introduced, e.g., Amazon
announced Micro Instances for EC2 on 2010-09-09 [17].

• Examples in the second category (service elasticity):
In this case, the service owner wants to scale up or down the
performance while optimizing the cost.

- The service owner adjusts the number of VMs, e.g.,
removes a mail server from a current infrastructure.

- The service owner increases or decreases the budget
investment, e.g., budgetary reduction during recession.

In some scenarios, e.g., price reduction, the cloud user is
offered an opportunity to obtain a better placement of VMs,
while in other scenarios, e.g., an in-use cloud vendor with-
draws from the market, the cloud user is forced to reconstruct
the current infrastructure, striving to guarantee the service
availability. Therefore, possible objectives can be identified
as follows:
I. Maximize the possible new TIC with consideration of VM
migration overhead under new situations.
II. Minimize the possible new TIP while obtaining a new
TIC that can satisfy new performance demands.
III. Minimize the overhead of reconstruction a current con-
figuration. The rationale behind this is service continuity. The
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more VMs the broker has to start and/or shut down, the more
the service is impacted by the change.

To model dynamic scenarios, we introduce several notations:
• MC - denotes the overhead of changing the current place-

ment to a new service layout. It can be defined in terms of
system downtime, the number of VMs migrated, etc.

• �i - denotes the service downtime penalty per time unit,
which can be defined either in terms of capacity loss or
monetary loss.

MC is given by:

MC =
nX

i=1

(�
i

⇤ �
i

), (5)

where �i denotes the overhead of migrating VM vi. For VM
vi, �i depends on its previous instance type, its new instance
type, the previous cloud it is placed in, and in which cloud
it is about to be located. To calculate �i, we introduce M ,
where Mi,j0,j,k0,k denotes the overhead for migrating VM vi of
instance type ITj0 in cloud ck0 to cloud ck with instance type
ITj . Let x0

ij0k0 denote the current placement status for VM
vi. Notably, here x0

ij0k0 is a constant that denotes the current
placement status for VM vi while xijk is a decision variable
for the new model. Now we get:

�
i

=
lX

j

0=1

lX

j=1

mX

k

0=1

mX

k=1

(x
ijk

⇤ x0
ij

0
k

0 ⇤ M
i,j

0
,j,k

0
,k

). (6)

We remark that both x0
ij0k0 and xijk are sparse 0-1 matrices

that satisfy
Pl

j=1

Pm
k=1 xijk = 1 and

Pl
j0=1

Pm
k0=1 xij0k0 =

1 for each i, 1  i  n. Consequently, the expression for
�i is neat and fast to compute although the formulation in
equation (6) is in the form of four-layer nested accumulated
operation. Now, Objective III can be modelled and formulated
using equations (5) and (6). Objective I can be expressed as
maximize the TIC that is given by:

TIC = H ⇤
lX

j=1

C
j

(
nX

i=1

mX

k=1

x
ijk

) � MC

= H ⇤
lX

j=1

C
j

(
nX

i=1

mX

k=1

x
ijk

) �
nX

i=1

(�
i

⇤ �
i

). (7)

Hence, Objective I is formulated using equations (6) and (7).
We remark that the TIC can also be a constraint and TIP can
be an objective function in the dynamic model. For example,
a new model can be formulated as:

Minimize : TIP = H ⇤
lX

j=1

mX

k=1

P
jk

(
nX

i=1

x
ijk

). (8)

Subject to :

TIC = H ⇤
lX

j=1

C
j

(
nX

i=1

mX

k=1

x
ijk

) � Threshold (9)

where the user wants to minimize the TIP while maintaining
the TIC in a certain level. To conclude, three forms of the
model are identified:
• Model I: maximize objective function (7), with equation (2),
(3), and (4) as constraints. A cloud broker employs this model

to obtain an optimal infrastructure capacity that also takes
migration overhead into account.

• Model II: minimize objective function TIP (2), with equa-
tion (3) and (4) as constraints. The goal of this model is
minimization of the price of the new infrastructure, while
keeping the capacity above than a certain threshold.

• Model III: minimize objective function (5), with equa-
tion (2), (3), and (4) as constraints. This model is used
when the cloud broker minimizes the migration overhead,
and meanwhile fulfils the constraints for budget, placement,
and load balancing.

C. Model Parametrization and Application
In our model, �i signifies the weight of migrating VM vi. We
argue that the overhead for migrating different VMs differs,
e.g., the overhead of migrating a backup server is lower than
that of migrating a server running an ERP system.

By assigning suitable values to �i (1  i  n), and the
matrix M , it is possible to express the migration overhead for
various scenarios, e.g., a number of VMs to migrate metric
can be concisely expressed as:

Mi,j0,j,k0,k =

⇢
1 if j0 6= j or k0 6= k;
0 otherwise. (10)

Infeasible migration can be modelled through 1-assignment,
e.g., assignment Mi,j0,j,k0,k = 1 (or �i = 1) specifies that it
is impossible to migrate VM vi of instance type ITj0 placed
in cloud ck0 to cloud ck and of instance type ITj . In practical
applications, �i and M can be estimated based on practical
experience of the used cloud platforms and data collection to
learn the behaviour of the migrated applications. To use the
proposed approach, we sketch an overall algorithm as follows.

Algorithm 1 Cloud re-scheduling
Input:

Environment changes, e.g., updated prices, VM numbers,
budget, cloud provider configurations, etc.

Output:
New placement after reconfiguration;

1: Select optimization criteria (including objective selection
and constraints selection);

2: Determine parameter �i;
3: Determine parameter values in matrix M ;
4: Solve problem for criteria selected in step 1;
5: Migrate VMs if the solution is feasible;

This VM placement problem is known to be NP hard.
Existing approximation and heuristic algorithms can scale to
at most a few hundred machines, and may produce solutions
that are far from optimal when system resources are tight [18].
An in-depth study of integer programming scalability is given
by Alper et al. [19]. Instead of proposing new approximation
algorithms, we encode our model using a mathematical mod-
eling language and use state-of-the-art linear programming
solvers. Optimizations for improving the scalability problem
and complexity investigation are left to future works.
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IV. EVALUATION AND DISCUSSION

We evaluate our approach using imaginary service scenar-
ios based on performance figures from contemporary clouds
offerings. Notably, our goal is not to evaluate the various
providers but rather to investigate how well our proposed
cloud brokering approach can adapt to changes in realistic
scenarios. Two commercial cloud providers are used to model
in our experiments. The first one is GoGrid [20], and the
second is Amazon EC2 [21]. EC2 offers two separate clouds,
one is in the USA, the other in Europe. These three clouds
are henceforth referred to as EC2-US, EC2-EU and GoGrid.
To solve the optimization problem, we use AMPL [22] as
the modeling language and Gurobi [23] as the binary integer
programming problem solver.

A. Experimental Setting and Parameter Estimation

We consider five different VM instance types, their hard-
ware characteristics and prices are listed in Table I.

TABLE I
HARDWARE METRICS AND PRICES FOR INSTANCE TYPES.

In the new instance type scenario (see Section IV-B ) and the
price change scenario (see Section IV-C), we set LOCmin =
30% and H = 1hour. These two scenarios are evaluated for
one hour, and each cloud should host at least 30% of the
VMs. To estimate parameter �i and the values in matrix M ,
we use the service downtime statistics (see Table II) presented
by Iosup et al. in [24] and [25] to calculate the computation
capacity losses of the infrastructure.

TABLE II
STATISTICS FOR RESOURCE ALLOCATION/RELEASE TIME (SECONDS).

More specifically, �i = Cj0 , Mi,j0,j,k0,k =
Downtime of V Mi, where Downtime of V Mi is the sum
of Release Time of vi of instance type ITj0 placed in ck0

and Allocation time of vi of instance type ITj placed in ck.
Notably, Mi,j0,j,k0,k can be ignored if H is large enough.

In the following, three dynamic cloud scheduling scenarios
are selected to evaluate our proposed model. In all experi-
ments, the number of VMs (n) to be deployed is 32.

B. Scenario I: New instance type offers

In this case, we consider a service owner who has a limited
budget, $5 per hour to run 32 VMs. At first, there are only
four instance types available - small, medium, large and xlarge,
and then we simulate the event that the micro instance type is
introduced [17].

Fig. 2. VM placement with and without the micro instance type.

In our experiment, the user obtains an optimal total in-
frastructure capacity (TIC) of 78 by placing 31 VMs of
small instance type and 1 VM of xlarge (at EC2-US) instance
type. This situation changes when the micro instance type is
announced. As Figure 2 illustrates, the virtual infrastructure is
reconstructed accordingly. The number of micro instances is
increased from 0 to 27, while the number of small instances
is decreased from 31 to zero. Since the micro instance type
is offered at a very low price (see Table I), the system now
can improve the investment proportion for other instance types
with larger computing capacity: the number of large instances
is increased from 0 to 1, and the number xlarge instances is
increased from 1 to 4. As a result, the TIC is increased by
22% to 95.2 with no need to increase the budget.

Figure 3 shows how the performance of the infrastruc-
ture changes in the first 800 seconds. In this figure, there
are two obvious inflection points (encircled in the figure)
which indicates the significant growth of capacity for the
infrastructure with micro instances. The first inflection point
is after 90 seconds before only one VM is running in the
infrastructure of micro instance type; afterwards, the cloud
broker completes migration processes for 11 VMs and restarts
them. The second inflection point is after around 280 seconds,
when 20 more VMs are rebooted after migrations. After 610
seconds, the performance of the infrastructure with micro
instance surpasses the one without micro instances, and the
difference expands increasingly as time elapses as illustrated
in Figure 4. In this case, we can conclude that, it is worthy
to perform migration if the infrastructure is to run for more
than 10 minutes. This evaluation demonstrates that our cloud
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Fig. 3. Performance improvement with and without the micro instance type.

Fig. 4. Performance improvement with and without the micro instance type.

brokering mechanisms can handle the scenarios with new
instance types. Interestingly, the proposed mechanisms can
accurately determine the break-off point when the improved
performance resulting from migration outweighs the migration
overhead.

C. Scenario II: Prices change

In this second experiment, we first simulate an imaginary
scenario where cloud providers offer a price discount of 20%
during the night time due to less energy consumption. To
study the effect of this, we increase the budget from $5 per
hour to $60 per hour in 55 steps. We then calculate the
TIC values under three different scenarios: static placement
with old prices, static placement with new prices ignoring
migration overhead, and dynamic placement with new prices
and consideration of migration overhead.

We observe in Figure 5 that, for lower budgets, the perfor-
mance improvement due to price discounts is more significant.
The performance difference between two price offers (i.e.,
original prices and prices after discount) is notable, and despite
the consideration of migration overhead, the new optimal
TICs are very closed to the values in the static scenario,

Fig. 5. VM placement with and without price discount.

especially when the budget is lower than $20 per hour.
However, when the budget is higher than $48 per hour, there
is no difference among the three scenarios. This is because the
budget is excessive compared to the VMs to be deployed and
the price offers, and hence, the broker does not migrate any
VM even if the prices are lowered. To use all the budget, the
broker may suggest the service owner to deploy more VMs
(as discussed in the next scenario), so that the performance
can be improved further.

Fig. 6. VM placement with varying prices discount by GOGRID.

We also explore the behaviour of our model under the
condition that only one of the cloud provider (i.e., GOGRID)
offers price discounts. We set Budget = $5 per hour. Due
to the load balancing constraint (4), each cloud hosts at least
30% of the VMs (notably, 32⇤30% ⇡ 10) and thus at most 12
VMs. Since GOGRID is the most expensive cloud provider,
to fulfil the minimum requirement for loading balancing, the
cloud broker assigns only 10 VMs (of small instance types)
to it, and obtains a TIC = 99 (see Figure 6).

As illustrated in Figure 6, the cloud broker manages to
obtain higher TICs as the discount offered by GOGRID
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increases. The number of VMs hosted in GOGRID is increased
from 10 to 12. The cloud broker first tries to increase the
number of VMs of larger instance types, e.g., when the price
discount is 30%, the number of small instances increases from
0 to 1, while the total number of VMs located in GOGRID
does not change. When the discount is larger (i.e., � 60%),
the number of VMs of small instance types is scaled up to 5
and the total number of VMs located in GOGRID increases
to 11.

Resources allocation for instance type medium, large and
xlarge in GOGRID cloud is comparatively time-consuming
(see Table II), and therefore the cloud broker does not assign
any medium, large or xlarge instance in GOGRID even when
the prices discount increases to 60%. However, 7 xlarge
instances and 1 medium instance are employed when the
discount comes to 80% which means that the cost for hosting
more VMs or upgrading VMs with more computing power
in GOGRID is inexpensive enough and the benefit from it
suppresses the overhead arises from VM migrations.

In these experiments, we do not consider the overhead of
re-migrating the infrastructure when the day time returns at
the end of the discount period. One way of incorporating this
could be to simply multiply MC by 2 (migration to and from
new infrastructure), but this is a simplification as the previous
infrastructure needs not be optimal, unless we know that we
after the discount period will re-migrate the infrastructure to
the original layout.

To summarize, this evaluation demonstrates that our cloud
mechanism can cope with scenarios with changes in price.
Performance change, as well as transformation of VM distri-
bution across cloud providers evolved with prices change can
be precisely calculated through the proposed approach.

D. Scenario III: Service performance elasticity
In this scenario, the service owner needs to increase the

infrastructure capacity due to business growth. Before the ex-
pansion, $5 is invested per hour, and the service owner obtains
TICs of 115, 108, 102 and 99 per hour under load balancing
(LB) constraints 0%, 10%, 20%, and 30% respectively. To
fulfil the new business demands, the service owner needs to
increase the budget so as to obtain a new TIC of 230 per hour.
This goal can be done either through adding certain amount of
new VMs without migrating any running VMs, or by migrating
some running VMs and meanwhile adding some new VMs.

Figures 7, 8, 9 and 10 illustrate how the minimum budget
and infrastructure reconfiguration overhead (IRO) evolve with
the number of new VMs added for these two options. In this
experiment, we define the IRO the sum of resource release
time for VMs shut down weighted with VM size and resource
allocation time for VM booted weighted with VM size, and it
is given by:

IRO =
X

Vi is shut down

(RT
i

⇤ ComputingCapacity
i

)

+
X

Vi is booted

(AT
i

⇤ ComputingCapacity
i

),

where RT denotes recourse release time of shutting down a
VM, AT denotes resource allocation time of booting a VM,

and the computing capacity of VM depends on its instance
type, i.e., ComputingCapacityi = Cj if V Mi is placed
with instance type j. IRO indicates the capacity loss when
re-constructing an existing infrastructure. Notably, IRO is a
dynamic form of MC mentioned in Section III-B, and it can
also be expressed through assigning �i = 1 and Mi,j0,j,k0,k as
follows:

Mi,j0,j,k0,k = RTj0k0 ⇤ Cj0 + ATjk ⇤ Cj (11)

where values for RT and AT can be found in Table II, and
RTj0k0 = 0 if a VM is newly added.
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Fig. 7. Illustration of performance scale-up (LB constraint: 0%).
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Fig. 8. Illustration of performance scale-up (LB constraint: 10%).

Figure 7 illustrates that, without load balancing constraints,
the performance can be doubled to 230 per hour by replicating
the number of VMs (i.e., adding 32 VMs) without any VM
migration using twice the budget ($10 per hour).

In cases where no migration is performed, it is not possible
to achieve a solution until 8 (or 9, if LB constraint is 30%)
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Fig. 9. Illustration of performance scale-up (LB constraint: 20%).
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Fig. 10. Illustration of performance scale-up (LB constraint: 30%).

new VMs are added. Another interesting finding is that, in
some cases, IROs with migration are higher than IROs without
migration, whereas the opposite is true in other cases. The
rationale behind this is the fact that, according to the statistics
in Table II, it is possible that in some cases, the time for
shutting down a VM and booting a new one is shorter than
the time for only booting a new VM of some other type.
For example, increasing the TIC (to be higher than 7) of
an infrastructure with 1 VM of small instance type in EC2-
US can be implemented by shutting down the small instance
and booting an xlarge instance, which takes 85 seconds (21
seconds for shut-down, and 64 seconds for booting), or only
starting a large instance using 90 seconds.

We can also observe from Figure 9 and Figure 10 that
load balancing (LB) constraints impose a significant impact on
infrastructure cost and IRO when migration is prohibited and
few VMs (less then 11) are allowed to assign. Compared with
Figure 7 and Figure 8, when the LB constraint is as 20%, to

fulfil the minimum performance requirement, and meanwhile
comply with the LB constraint, the broker has to place some
VMs with large size in the least cost-efficient provider (i.e.,
GOGRID), which is harmful for the infrastructure cost and
IRO. However, as the number of VMs that are added increases,
the distances between solutions with migration and solutions
without migration are narrowed down again, since the broker
is able to place VMs of small size (instead of larger size)
in GOGRID in order to comply with the LB constraint and
performance constraint.

This experiment demonstrates the ability of the cloud bro-
kering mechanism to handle the tradeoff between vertical
(resizing VMs) and horizontal elasticity (adding VMs), as
well as to improve decision making in complex scale-up
scenarios with multiple options for service reconfiguration,
e.g., to decide how many new VMs to deploy, and how many
and which VMs to migrate.

Through the evaluations above, it is demonstrated that our
model can support a wide range of dynamic scenarios, and
by proper parametrizations, many interesting behaviours can
be achieved. Finally, we point out that values in matrix M in
real world applications are normally much higher than they
are in Section IV-A. This is because VM migration across
cloud providers located in different regions is a tedious task
due to the fact that establishing a high-speed network tunnels
to transfer VM images (that usually consist of Gigabytes of
data) is time-consuming and costly.

V. CONCLUSIONS AND FUTURE WORK

With the emergence of cloud computing as a paradigm,
users can buy computing capacity from public cloud providers
to minimize investment cost rather than purchasing physical
servers. However, users are faced with the complexity of
integrating various cloud services as the cloud computing
market grows and the number of cloud providers increases.
Despite the existence of a large number of efforts targeting
cloud brokerage mechanisms, dynamic cloud scheduling issue
remains largely unexplored. We present a linear integer pro-
gramming model for dynamic cloud scheduling via migration
of VMs across multiple clouds, which offers the flexibility
of expressing different levels of migration overhead when
restructuring an existing infrastructure. By proper parametriza-
tion, this model can be applied to handle changes both in
infrastructure (new providers, prices, etc.) and services (elas-
ticity in terms of sizes and/or number of VMs in a service).
The proposed model is evaluated against commercial clouds
offering settings, and it is demonstrated that our model is
applicable in dynamic cloud scheduling cases aiming at cost-
efficiency and performance-efficiency solutions.

Future directions for our work include investigation of
mechanisms for model parametrization for dynamic cloud
scheduling use cases, i.e., finding suitable values for parame-
ters in the proposed model for different scenarios. Addition-
ally, SLA violation compensation for users has not been taken
into account in our model. Another interesting topic would be
to apply our model to real world services.
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Abstract. We present an approach to optimal virtual machine place-
ment within datacenters for predicable and time-constrained load peaks.
A method for optimal load balancing is developed, based on binary inte-
ger programming. For tradeo�s between quality of solution and compu-
tation time, we also introduce methods to pre-process the optimization
problem before solving it. Upper bound based optimizations are used
to reduce the time required to compute a final solution, enabling larger
problems to be solved. For further scalability, we also present three ap-
proximation algorithms, based on heuristics and/or greedy formulations.
The proposed algorithms are evaluated through simulations based on
synthetic data sets. The evaluation suggests that our algorithms are
feasible, and that these can be combined to achieve desired tradeo�s
between quality of solution and execution time.

Keywords: Cloud Computing, Virtual Machine Placement, Binary In-
teger Programming, O�-line Scheduling, Load Balancing.

1 Introduction

Building on technologies such as distributed systems, autonomic computing, and
virtualization, cloud computing emerges as a promising computing paradigm
for providing configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with
minimal management e↵ort or service provider interaction [13]. A key feature
of future cloud infrastructures is elasticity [2], i.e., the ability of the cloud to
automatically and rapidly scale up or down the resources allocated to a service
according to the workload demand while enforcing the Service Level Agree-
ments (SLAs) specified.

In this paper, we focus on elasticity scenarios where workloads are predictable
and to be deployed and scaled-out quickly through the rapid provisioning of Vir-
tual Machines (VMs). Predictable workload scenarios are frequently occurring,
e.g., online banking has regular peaks once a month, streaming video is con-
sumed mostly during evenings, and video gaming workloads exhibit predictable
daily and weekly changes [6], etc. Both the service and the cloud infrastructure

K. Vanmechelen, J. Altmann, and O.F. Rana (Eds.): GECON 2011, LNCS 7150, pp. 120–134, 2012.
c� Springer-Verlag Berlin Heidelberg 2012
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can benefit from the predictability of the workloads, since placement schemes for
VMs are possible to be pre-calculated and resources can be set up in advance.

To fulfil the service demand, the cloud infrastructure usually produces VM
placement solutions improving criteria such as cost, performance, resource uti-
lization, etc. However, from a cloud infrastructure perspective, physical machines
usually have non-uniform capacities. Their respective utilizations may have high
variances. Users of a service may su↵er from high latency due to high utilizations
of some physical servers. In other words, certain types of applications could ben-
efit from keeping the utilization of individual machines as close as possible to
the utilization of the entire system [15]. To tackle this problem, the worst case of
individual physical machine utilization should be minimized and load balancing
in the whole system should thus be optimized.

The VM placement problem can be generally formulated as a variant of the
class constrained multiple-knapsack problem that is known to be NP hard [14].
Existing approximation algorithms can scale to at most a few hundred machines,
and may produce placement solutions that are far from optimal when system re-
sources are scarce [15]. In this paper, we focus on properties of the load balancing
problem itself instead of proposing new generic approximation algorithms. We
analyse how the studied problem di↵ers from general VM placement problems,
and present a linear programming formulation of the optimization problem along
with some approximations. An evaluation based on synthetic workloads is used
to investigate the feasibility of the algorithms.

The remainder of the paper is organized as follows. Section 2 briefly describes
the problem and motivates our work. Section 3 presents the problem formulation,
defines an optimal algorithm, as well as describes three problem-specific approx-
imations. Section 4 presents an evaluation of our approach. Section 5 discusses
related work. Finally, conclusions and future work are given in Section 6.

2 Problem Description

The studied scenario is illustrated in Figure 1. A set of physical machines with di-
verse capacities are used to execute VMs of di↵erent sizes. The VMs are grouped
by VM sets, i.e., prepared bundles of, e.g., application servers, front ends, and
data base replicas for managing peak loads of certain applications. These VM
sets are to be deployed across the physical machines, i.e., PM1, PM2, ..., PMm,
which may have di↵erent background loads and non-uniform capacities. Each
VM set is comprised of multiple VMs with various capacity requirements. The
durations and sizes of VMs are known in advance. This life cycles of VM sets
may be di↵erent, e.g., some may be provisioned longer than others, some may
start to run earlier than others, etc.

The most significant aspect that could distinguish the VM placement for pre-
dictable peak loads from general placement problems is that the peak loads
are time-constrained. After a certain period, the additional VMs are removed
from the cloud infrastructure. During this period, multiple placement requests
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Fig. 1. Studied scenario illustration

may start or terminate. In this paper, the placement objective is load balancing,
i.e., to minimize the highest utilization of any individual physical machine during
this period.

3 Problem Analysis and Formulation

We use a quadruple r =< id, s, e,VMSet > to uniquely identify a placement
request, where s indicates when the request starts and e specifies the end-time.
A placement request set can thus be represented by an array of quadruples
temporally ordered by s. The VMSet is a collection of VMs, each of which may
have di↵erent computation capacities.

Table 1. Hardware metrics for instance types

Instance Type micro small medium large xlarge � 
CPU (# cores) 1 1 1 2 4  
CPU (GHz/core) 1 1 2 2 2  
Memory (GB) 0.613 1.7 3.5 7.5 15 � 
Storage (GB) 50 160 300 850 1700  
Computing Capacity 1 2 4 8 16 � 

To distinguish VMs with di↵erent computation capacities, we use the hard-
ware discretization approach, used e.g., by Amazon EC2 as shown in Table 1.
An example of placement request is <23, 2011-05-30 18:30, 2011-06-02 12:00, {4,
2, 1, 4, 16}>. This request has id 23, starts at 2011-05-30 18:30, ends at 2011-
06-02 12:00 and demands 5 VMs with capacities 4, 2, 1, 4, and 16 respectively.
All VMs in a request are to start and terminate at the same time.
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Table 2. Symbols used in this paper

H Time period that includes placement requests.
N Number of placement requests.
N

i

Size of the VMSet in the ith request.
C

ij

Capacity requirement of the jth VM in the ith
request.

M Number of physical machines.
w

k

Existing load of the kth physical machine.
W

k

Total capacity of the kth physical machine.
x

ijk

The placement decision variable. x
ijk

= 1 i� the
jth VM in request i is placed on physical machine
k, and 0 otherwise.

G Number of overlap sets generated.
y

ig

y
ig

= 1 if the ith placement request is in the gth
overlap set, and 0 otherwise.

Table 2 contains an overview of the symbols used to formulate the load min-
imization placement problem. Now, for a given VM set in a request set R and
a set of M physical machines, the highest utilization of any individual physical
machine can be described by

Load(R) = Max
k2[1..M ]

PN
i=1

PNi

j=1(xijk ⇤ Cij) + �k

Wk
, (1)

where xijk is the decision variables for placement, Cij the VM capacity, and wk

and Wk the existing load and total capacity of the physical machines. For any
allocation of VMs to physical machines, the following constraints apply:

8i 2 [1..N ], j 2 [1..Ni] :

MX

k=1

xijk = 1 (2)

8k 2 [1..M ]

NX

i=1

NiX

j=1

(xijk ⇤ Cij) + �k  Wk. (3)

Constraint (2) specifies that each VM in every placement request has to be
assigned to exactly one physical machine, and constraint (3) describes how the
total capacity of each physical machine cannot be exceeded.

There are multiple possible approaches to the placement request allocation
problem for load minimization. Our first and simplest algorithm is a greedy
formulation that for each VM in each VM set (in order by request start time)
finds the placement that keeps the average load at a minimum. This is done by
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finding the physical machines that provide the worst-fit for each VM, i.e., leaves
the maximum residual capacity. Of course, before placing a certain request, pre-
vious requests that have terminated can be excluded and the physical machines
reused. This algorithm, Greedy Worst-Fit, is defined in Algorithm 1.

Algorithm 1. Greedy Worst-Fit(R)

Input: Placement request set R = {r1, r2, . . . , rn

}.
Output: Placement Scheme for R.

1 Sort all the requests by start-time s;
2 for 1  i  n do
3 for 1  j < i do
4 if r

j

is expired but still being provisioned then
5 exclude r

j

and release capacities of the physical machines that host
the VMs of r

j

;
6 end

7 end
8 foreach vm in VMSet

i

do
9 pm

k

� the least loaded physical machine with highest residual capacity;
10 if vm can fit in pm

k

then
11 assign vm to pm

k

;
12 end
13 else
14 no feasible solution;
15 return;

16 end

17 end
18 end

Although the greedy formulation is fast to compute, it does not provide an
optimal solution to the VM placement problem (with respect to load balancing),
as VM placement is a version of the general assignment problem [7]. Our second
algorithm operates in a similar manner to the Greedy Worst-Fit one in that it
considers the placement requests sequentially in order of start time. However,
instead of performing a greedy allocation, the second algorithm finds, for each
point in time when a VM set is about to start, the allocation of all running VM
sets, including the new one, that minimizes the average utilization. This method,
(Sequential) is described in more detail in Algorithm 2 and the mathematical
expressions for load minimization is given by equations (1), (2), and (3). Note
that, in Algorithm 2, the minimization in each iteration (see line 8) treats only
the active request sets.

As the complete set of VM requests are known in advance, we can, at the
expense of additional complexity, solve the load balancing optimization problem
not only for the currently running VMs, but for all VMs. This algorithm is a
knapsack formulation, and is defined in Algorithm 3 (Knapsack).
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Fig. 2. Illustration for coexistence of placement requests

One key observation is that two VM sets may use the exact same physi-
cal resources if they do not overlap in runtime. More formally, two placement
requests are coexistent if and only if their lifetimes overlap, i.e., placement re-
quest r1 and r2 are coexistent if and only if s2  s1 < e2 or s1  s2 < e1.
Figure 2 shows an illustration of coexistence. In this figure, there are 7 place-
ment requests whose start-times are hi (1  i  7) for request ri, respectively.
For a given placement request set R, we introduce the notion of OverlapSets
to define a subset of R where any two requests in the subset are coexistent.
Furthermore, there exists no request in R that is not in OverlapSet that is co-
existent with every request in OverlapSet. For the example in Figure 2, we get
OverlapSets = {{r1, r2}, {r2, r3}, {r4, r5, r6}, {r4, r6, r7}}.

In principle, to calculate the highest utilization of any individual physical
machine during the whole period H , we must generate all OverlapSets, and
compute the maximum load of machines in each OverlapSet after placing all
VMs that run in that set. From the definition of the overlap sets, a straight-
forward recursive algorithm to generate the sets can be derived. However, this
recursion results in an exponential runtime complexity. It is thus a very time-
consuming task to complete generating all OverlapSets when the number of
placement requests is large. For example, in our experiments, the time required
to generate all OverlapSets varied from 0.01 second to 45 minutes.

Algorithm 2. SequentialP lacement(R)

Input: Placement request set R = {r1, r2, . . . , rn

}.
Output: Placement Scheme for R.

1 Sort all the requests by start-time s;
2 for 1  i  n do
3 for 1  j < i do
4 if r

j

is expired but still being provisioned then
5 exclude r

j

and release capacities of the physical machines that host
the VMs of r

j

;
6 end

7 end
8 Minimize (1) with (2) and (3) as constraints;

9 end
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Algorithm 3. Knapsack(R)

Input: Placement request set R = {r1, r2, . . . , rn

}.
Output: Placement Scheme for R.

1 Minimize (1) with (2) and (3) as constraints;

We instead use an approximation based on discrete time slots: The time from
the earliest request start-time to the latest end-time is divided into T time slots.
Every time slot is examined and placement requests in this slot are collected and
considered as a potential element of OverlapSets (see line 7 in Algorithm (4)).
If a potential element is not a subset of some element in OverlapSets, it is
finally added to OverlapSets after its subsets (if non-empty) are removed from
OverlapSets (lines 9 � 15 in Algorithm (4)). Obviously, the quality of solution
generated by this algorithm depends on T . If T is large enough, the solution
is close to the one generated by the exact recursive method. Since the time
complexity of Algorithm (4) is polynomial (�(T ⇤n)), it is much faster than the
recursive formulation even when T and n are large. Through experiments, we
note that it takes around 2 seconds to complete the generation process when
T = 10000, H = 24 hours, and n = 1000, whereas with the recursive method,
this problem size would take a day or more.

Algorithm 4. GenerateOverlapSets(R, T )

Input: Placement request set R = {r1, r2, . . . , rn

}, the number of time slots T .
Output: The OverlapSets of R.

1 OverlapSets � {};
2 Sort all the requests by start-time s;
3 S = Min

i�[1..n]
{s

i

}, E = Max
i�[1..n]

{e
i

}, interval = (E � S)/T ;

4 for 1  i  T do
5 ts � S + (i � 1) ⇤ interval;
6 te � S + i ⇤ interval;
7 currentSet = {r 2 R | r starts in [ts, te]};
8 should add � true;
9 foreach P in OverlapSets do

10 if P � currentSet then
11 OverlapSets � OverlapSets \ P ;
12 end
13 if currentSet � P then
14 should add � false;
15 end
16 end
17 if should add then
18 OverlapSets � OverlapSets � currentSet;
19 end

20 end
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Incorporating the concept of overlap sets, our knapsack algorithm can now be
reformulated as:

Minimize { Maximize
R02GenerateOverlapSets(R)

Load(R0) }

Subject to

8i 2 [1..N ], j 2 [1..Ni] :

MX

k=1

xijk = 1 (4)

8k 2 [1..M ], g 2 [1..G] :

NX

i=1

NiX

j=1

(xijk ⇤ Cij ⇤ yig) + �k  Wk. (5)

Here, yig is a decision variable for coexistence used to determine if two VMs can
use the same physical resources i.e., if they do not overlap in time. Constraint
(4) is the same as constraint (2) and specifies that each VM in every placement
request has to be placed in exactly one physical machine. Constraint (5) is the
capacity constraint for each physical machine, with the coexistence as an addi-
tional feature. This is a Min-Max optimization problem, which is non-linear. To
transform this problem to a linear programming problem, we add µ to the list
of unrestricted variables subject to the constraints

8R0 2 GenerateOverlapSets(R) : Load(R0)  µ (6)

and try to minimize µ.
Two steps are required to solve the problem: generation of OverlapSets from

placement requests, and solving the model using the OverlapSets as inputs.
In principle, the solver must enumerate each possible placement scheme, check
whether it is viable, and compare the µ to the minimum found so far. There are
multiple potential optimizations to reduce the computation cost for generating
OverlapSets and solving this model. To reduce the search space, we can signifi-
cantly improve the performance of the solver by identifying upper bounds that
are easy to compute. Since Greedy Worst-Fit is polynomial and fast to complete,
we use the approximated load calculated through Greedy Worst-Fit as an upper
bound as shown in Equation (7):

µ  �, (7)

where � is the highest utilization of any individual physical machine as calcu-
lated by Greedy Worst-Fit algorithm. This optimization tends to reduce the
time required to compute a solution drastically, thus improving scalability. We
refer to this approach that combines upper bound optimizations and overlap
sets as Time-bound Knapsack, as described in Algorithm 5. In this algorithm,
Line 1 calculates the approximative placement using Greedy Worst-Fit algo-
rithm. Lines 2-12 determine the upper bound value for the approximative place-
ment, by finding the highest load for any physical machine that follows the greedy
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placement scheme. Line 13 generates the overlap sets, and Line 14 minimizes the
maximum load.

Algorithm 5. Time-bound Knapsack(R, T )

Input: Placement request set R = {r1, r2, . . . , rn

}, the number of time slots T .
Output: Placement Scheme for R.

1 Execute Greedy Worst-Fit algorithm to initialize variables x
ijk

;
2 � � 0;
3 for 1  i  n do
4 for 1  j < i do
5 if r

j

is expired but still being provisioned then
6 exclude r

j

and release capacities of the physical machines that host
the VMs of r

j

;
7 end

8 end
9 if � < Load(r

i

) then
10 � � Load(r

i

);
11 end

12 end
13 OverlapSets � GenerateOverlapSets(R,T );
14 Minimize µ with (4), (5), (6) and (7) as constraints;

4 Evaluation and Discussion

In this section, the four proposed algorithms are studied from three perspectives:
how good they are at finding solutions to the placement problems, the quality of
the found solutions, and the computational complexity. The experimental setup
is a scenario with a cloud provider with 100 physical machines and 32 placement
requests, each with between 1 and 8 VMs (uniformly distributed). As outlined
in Table 3, VM capacity is uniformly distributed between micro (computing
capacity 1) and xxlarge (computing capacity 32). The background load for each
physical machine is uniformly distributed between 20% and 50%. The placement
problems are encoded using the AMPL [9] modelling language and solved with
the Gurobi [1] solver. All experiments are performed on a workstation with a
2.67 GHz quad-core CPU and 4 GB of memory.

To evaluate the performance of our approach with respect to quality of so-
lution, we first perform 1000 experiments with groups of placement requests.
We specify a one minute execution time limit for all algorithms. Even for very
short term peak loads, e.g., hourly spikes, this one minute limit should be short
enough to calculate a placement solution and configure the system accordingly.

Table 4 summarizes the 1000 experiments. We note that Sequential is able
to solve most problems (994), followed by Time-bound Knapsack (923), Greedy
Worst-Fit (870), and Knapsack trailing with 732 successfully solved problems.
Looking closer at the unsuccessfully solved problems, we note that Time-bound
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Table 3. Experiment Setup

H (experiment duration) 48 hours
Number of physical machines 100
Existing load for each physical machine Uniform(20%, 50%)
Capacity for each physical machine 2Uniform(0,7)

Number of placement requests 32
Number of VMs in a request Uniform(1, 8)

VM capacity demands 2Uniform(0,5)

Life-cycles of placement requests Uniform(1,H)

Table 4. 1000 groups experiment with 1 minute execution time limitation

Algorithms Feasible Solutions No Solution Time-out
Time-bound Knapsack 923 0 77
Knapsack 732 30 238
Sequential 994 4 2
Greedy Worst-Fit 870 130 0

Knapsack encounters no infeasible placements, whereas this happens 4 times
for Sequential, 30 for Knapsack and 130 for Greedy. Considering the problem
instances that could not be solved within feasible time (here selected as one
minute), we note that Greedy always completes within this time, but Sequential
fails in 2 cases, Time-bound Knapsack in 77, and Knapsack in 238 cases. When
combining the two reasons for failing to solve the placement problems, Time-
bound Knapsack and Sequential appear to be the most promising approaches.

Looking further into quality of solutions, we exclude, for each algorithm, the
experiments that could not be solved successfully (or within a minute). The left
part of Figure 3 shows the average load balance (i.e., the maximum load for
any machine during the experiments), including Standard Deviation (SD), for
the successfully solved instances for each algorithm. Here we note that Time-
bound Knapsack result in the best load balance, 71.9% ± 6.1%, whereas the
three other algorithms all result in loads above 80%, with Sequential the second
best at 80.5% ± 7.6%. The right part of Figure 3 shows the average execution
time, including deviation, for the successfully solved problems. As expected, the
polynomial Greedy algorithm is the fastest with average execution time less than
0.5 seconds, as compared to 8 seconds for Time-bound Knapsack, 11 seconds for
Sequential, and 13 seconds for Knapsack. For the last three algorithms, there
are large deviations in execution time for successfully solved problems, also after
excluding the experiments that failed to due exceeding the one minute threshold.

To understand the behaviour of the algorithms more in-depth, we focus on
how the maximum load of any physical machine (the load balance) varies over the
48 hours experiment duration for one of the 1000 experiments. As illustrated in
Figure 4, the Greedy algorithm results in volatile loads with large deviations over
time, whereas and Sequential is more stable but still experiences fluctuations. In
contrast, both Knapsack and Time-bound Knapsack are very stable, and keep the
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Fig. 3. Performance and execution time comparison for 1000 tests

maximum load constant for almost the full duration of the experiment. The low
load very early and very late for all algorithms is due to there being few running
VM sets at these points in time. Figure 4 also gives some insight into how often
the algorithms cannot find feasible solutions. For complicated problems with
many VMs, Greedy, Knapsack, and sometimes also Sequential may fail due to
capacity constraints of the physical machines, whereas Time-bound Knapsack is
more likely to find a solution.

To study the computational complexity (execution times) of the algorithms
further, we perform a second experiment with 100 groups of placement requests
where the execution time was unlimited. Here, we focus on the experiments
where the placement took longer than one minute to solve. Table 5 presents
the number of failures (experiments that ran for more than one minute) and
their execution time deviations in the evaluated 100 tests. Here, we observe that
Knapsack exceeds the time limit in 20% of all tests, Time-bound Knapsack in
4% of the tests, and Sequential in a single test, whereas Greedy always completes
well within one minute. Looking at the average execution times for these tests,
we note that Sequential requires 2.6 minutes, Time-bound Knapsack 95 ± 129
minutes, and Knapsack 346 ± 788 minutes, i.e., there are a few cases where the
latter two algorithms required several hours to complete. A comparison of the
required execution time and the percentage of problems successfully solved is
shown in Figure 5. This figure illustrates that although the Knapsack and Time-
bound Knapsack algorithms in a few specific cases can be very slow, they most
often generate solutions within a few seconds, and allowing these to execute a
couple of minutes improves the probability of finding a solution substantially.

To summarise these experiments, the Time-bound Knapsack algorithm gen-
erates the best solutions, i.e., finds the placement with the lowest average load,
and is also able to find valid placements in complicated cases where the other
algorithms fail. However, it can at times be very slow to execute. Conversely, the
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Table 5. Number of failures (slow executions) and execution times for 100 tests

Algorithms Failure Failure execution time (minutes)
Greedy Worst-Fit 0
Sequential 1 2.6 ± 0
Time-bound Knapsack 4 94.7 ± 128.6
Knapsack 20 345.5 ± 787.5

Greedy algorithm is very fast to compute and should scale well also for larger
problem sizes due to its polynomial complexity. However, it generates placements
with worse load balance and fails to find feasible solutions in some high workload
scenarios. In comparison with these two algorithms, Knapsack performs worse
in overall. Notably, Sequential can be a suitable compromise between quality of
solution and execution time, although it does not excel in either.

5 Related Work

Virtual machine placement across physical servers has recently gained a lot of
attraction. Our previous contributions within this area include integer program-
ming methods to obtain optimal cost-performance tradeo↵s in deploying VMs
across multiple clouds [17] and methods to dynamically reschedule VMs (includ-
ing modeling of VM migration overhead) upon changed conditions [12].

Other contributions to VM placement include a binary integer program formu-
lation for cost-optimal scheduling in hybrid IaaS clouds for deadline constrained
workloads is proposed by den Bossche et al. [4]. It is demonstrated that this
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approach results in a tractable solution for scheduling applications in a public
cloud, but that the same method becomes much less feasible in a hybrid cloud
setting due to sometimes having long solving time. Compared to our work, their
approach also considers the life-cycles of workloads, but mainly focuses on cost-
e↵ective scheduling of applications in a hybrid cloud setting. Load balancing
issues are not considered.

Bobro↵ et al. present a dynamic server migration and consolidation algorithm
to minimize the number of working physical machines without violating SLAs [3].
This work takes only CPU demands into account and uses classification of work-
load signatures to identify the servers that benefit most from dynamic migration.
Using adaptable forecasting techniques well suited for the classification, substan-
tial improvement over static VM placement is shown, reducing the amount of
required capacity and the rate of SLA violations.

A scalable application placement controller for enterprise data centres is pro-
posed by Tang et al. [15]. The objective of this controller is to maximize the total
satisfied application demand, to minimize the number of application starts and
stops, and to balance the load across machines. Compared to existing state-of-
the-art algorithms, this controller can produce within 30 seconds high-quality so-
lutions for hard placement problems with thousands of machines and thousands
of applications. This work is later extended to a binary search based framework
striving to limit the worst case of each individual server’s utilization by Tian et
al. [16]. The system cost, defined as the weighted combination of both placement
change and inter-application communication cost, can be also maintained at a
low level. However, life-cycles of workloads remain unexplored.

Breitgand et al. [5] propose a multiple-choice multidimensional knapsack prob-
lem formulation for policy-driven service placement optimization in federated
clouds, and a 2-approximation algorithm based on a greedy rounding of a linear
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relaxation of the problem. The proposed placement algorithms aims at max-
imizing provider profit while protecting Quality of Service (QoS) as specified
in SLAs of the workloads, and can be used to optimize power saving or load
balancing internally in a cloud, as well as to minimize the cost for outsourcing
workloads to external cloud providers. Breitgand et al. encode load balancing as
the standard deviation of the residual capacity, which is a non-linear function.
A binary search-based heuristic is used to minimize that function, and thus an
optimal solution is not guaranteed.

6 Conclusions and Future Work

We study the VM placement problem for load balancing of predictable and
time-constrained peak workloads. We formulate the problem as a Min-Max op-
timization one and present an algorithm based on binary integer programming,
along with three approximations for tradeo↵s in scalability and performance.
An experimental study compares the proposed methods with respect to ratio of
problems successfully solved, quality of solution, and computational complexity.

Future directions for our work include studies of other load balancing met-
rics, e.g., looking at how to minimize the average load over time instead of
the maximum load. Another topic is how to refine the models and replace the
one-dimensional computing capacity performance metric, e.g., with CPU, mem-
ory, disk, etc. as suggested by Breitgand et al. [5] and to incorporate inter-VM
resources such as network bandwidth, as demonstrated by Lampe et al. [11].
Additionally, one interesting feature to consider in optimization is the grouping
of VMs to hosts based on the interference and overhead that one VM causes on
the other concurrently running VMs on the same physical host, as discussed by
Kousiouris et al. [10].
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Umeå University
SE-901 87 Umeå, Sweden
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Abstract—The cloud computing landscape has recently de-
veloped into a spectrum of cloud architectures, leading to
a broad range of management tools for similar operations
but specialized for certain deployment scenarios. This both
hinders the efficient reuse of algorithmic innovations within
cloud management operations and increases the heterogeneity
between different management systems. Our overarching goal
is to overcome these problems by developing tools general
enough to support the full range of popular architectures. In
this contribution, we analyze commonalities in recently proposed
cloud models (private clouds, multi-clouds, bursted clouds, fed-
erated clouds, etc.), and demonstrate how a key management
functionality - service deployment - can be uniformly performed
in all of these by a carefully designed system. The design
of our service deployment framework is validated through a
demonstration of how it can be used to deploy services, perform
bursting and brokering, as well as mediate a cloud federation in
the context of the OPTIMIS Toolkit.

Index Terms—Cloud Computing; Cloud Architecture; Service
Deployment

I. INTRODUCTION

In the context of cloud computing, deployable services
are encapsulated in virtual machines (VMs), and deployment
is performed by instantiating VMs on top of a virtualized
infrastructure. This new way of service deployment enables
a traditional on-premises application to be rapidly redeployed
as Software as a Service.

In this paper, we present a novel approach to service
deployment, general enough to meet the requirements of a
range of common cloud scenarios, including private clouds,
bursted clouds, federated clouds, multi-clouds, and cloud bro-
kering. We identify key requirements for service deployment
in these scenarios and present the architecture for a service
deployment tool to meet these requirements. Our proposed
tool interacts with components for data management, service
contextualization, and service management in its orchestration
of the service deployment process.

Our approach is validated by implementation and integration
in a private cloud, a bursted cloud, and a brokered multi-cloud
scenario using tools from the OPTIMIS Toolkit [15] providing
the required complementing functionalities. The verification
study is performed in a cross-European testbed consisting of
cloud resources at Atos (Spain), BT (UK), Flexiant (UK), and
Umeå University (Sweden).

The remainder of the paper is organized as follows. Sec-
tion II describes fundamental cloud concepts and outlines the
service lifecycle. Section III discusses the studied cloud de-
ployment scenarios. Core requirements for service deployment
in cloud environments are described in Section IV. Section V
describes the service deployment process. Section VI presents
the design of our service deployment solution. Section VII
contains a validation study of our approach in the context
of OPTIMIS toolkit. Related work within service deployment
is described in Section VIII. Finally, our conclusions are
presented in Section IX, followed by a presentation of future
work, acknowledgments, and a list of references.

II. CLOUD SERVICE CONCEPTS

Cloud services can be categorized into Software as a Ser-
vice, Platform as a Service, and Infrastructure as a service,
or SaaS, PaaS, and IaaS for short [31]. In a cloud service
deployment scenario the two stakeholders are the Infrastruc-
ture Provider (IP) and the Service Provider (SP). An IP offers
infrastructure resources such as VMs, networks, and storage
which can be used by SPs to deliver SaaS solutions to their
customers. The SPs can also use PaaS tools to develop their
services, or offer this functionality to their customers who may
want to construct and deploy custom services. Without loss of
generality, we concentrate in this contribution on the cases
where a SP or IP deploys services to an IP providing IaaS.

A. Deployable Services
IaaS is based on virtualization technology which means that

a deployable cloud service is in fact a VM or a collection of
VMs. We refer to a VM of a certain type as a component
and note that a service can consist of multiple components.
For example, a three-tier web application service may consist
of a database component (e.g., MySQL), an application com-
ponent (e.g., Weblogic server [8]), and a presentation layer
component (e.g., Apache server).

The information about which components the service is
composed of along with functional and non-functional require-
ments for a deployment target is described in a document, the
service manifest. The service manifest can also define elasticity
bounds for the service, i.e., upper and lower limits for how
many instances of a component that may be provisioned at any
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time. These bounds are commonly associated with elasticity
rules for when to scale up or down the number of instances of a
component, and such rules can range from simple condition-
action statements to complex expressions that reason about
statistical properties of the service workload. In addition, a
service manifest typically contains various constraints such
as desired geographical location, and data protection require-
ments.

B. The Service Lifecycle

The lifecycle of a cloud service can be summarized as
construction, deployment, operation, and undeployment. In the
construction phase, the service applications (Virtual Appli-
ances) are implemented and packaged into a set of VMs. The
construction of the above discussed service manifest ends the
service construction phase. The service deployment includes
identification of a suitable deployment target, installation of
the service VMs in the selected provider, and initialization of
these VMs by the provider, i.e., VMs are booted, configured,
and start to deliver the service. In the operation phase, the
IP, and potentially also the SP, perform a set of management
actions to ensure efficient and robust provisioning of the
service. Once the service is no longer needed, it can be
undeployed by the SP, upon which the IP shuts down the
running VMs and removes any assets of the service. Notably,
multiple instances of the same service can be created from a
single service manifest and these instances can be shutdown
or restarted as needed.

III. CLOUD DEPLOYMENT SCENARIOS

Cloud environments can be set up differently depending on
the types of interaction between the collaborating providers.
The main differences between the scenarios are the number
of involved actors and which actor is in control during the
deployment process. The scenarios described in this section
have been proposed and discussed in previous research [10],
[15], [28], [31], [34], albeit typically in isolation and they have
not been compared in the context of service deployment.

Infrastructure Provider (IP)

Service Provider (SP)

Fig. 1. Public cloud.

In the original and today most common cloud scenario,
the public cloud, a SP deploys services to an IP offering
infrastructure resources to the general public. In this case, all
services are deployed to the same IP. Notably, if the IP has
reached its maximum capacity, it rejects requests to deploy
additional services. The public cloud scenario is illustrated in
Figure 1.

Despite the rapid adoption of public clouds, there are
several security and privacy concerns associated with service
deployment to public IPs. To address these issues, a SP can set
up a cloud infrastructure for its own internal use, commonly
referred to as a private cloud, which is illustrated in Figure 2.
Private clouds can circumvent many of the security and privacy
concerns related to hosting sensitive information in public
clouds, and may also offer stronger guarantees on control and
performance as the service as well as the whole infrastructure
is administered from within the same domain.

Infrastructure Provider (IP)

Service Provider (SP)

Private Cloud

Fig. 2. Private cloud.

Private clouds may offload capacity to other IPs under
periods of high workload, or for other reasons, e.g., planned
maintenance of the internal servers. In this scenario, the
providers form a hybrid architecture commonly referred to as
a bursted cloud as seen in Figure 3. Typically, less sensitive
tasks are executed in the public cloud instead while tasks that
requiring higher levels of security are provisioned the private
infrastructure.

Service Provider (SP)

Private Cloud

Infrastructure Provider (IP)Infrastructure Provider (IP)

Fig. 3. Bursted (private) cloud.

Federated clouds are IPs collaborating on a basis of joint
load-sharing agreements enabling them to offload capacity to
each other [28] in a manner similar to how electricity providers
exchange capacity. The federation takes place at the IP level
in a transparent manner. In other words, a SP that deploys
services to one of the IPs in a federation is not notified if
its service is off-loaded to another IP within the federation.
However, the SP is able to steer in which IPs the service may
be provisioned, e.g., by specifying location constraints in the
service manifest. Figure 4 illustrates a federation between three
IPs.

If the SP itself is involved in selecting which IP a service
should be deployed or re-deployed to the scenario is known as
a multi-cloud. In multi-cloud deployments, such as in Figure 5,
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Service Provider (SP)

Infrastructure Provider (IP)Infrastructure Provider (IP)Infrastructure Provider (IP)

Fig. 4. Cloud federation.

the SP is responsible for planning, initiating and monitoring
the execution of services. Notably, we are implicitly consider-
ing split deployment scenarios, i.e., when the components of
the service are deployment across multiple IPs.

Service Provider (SP)

Infrastructure Provider (IP)Infrastructure Provider (IP)

Fig. 5. Multi-cloud scenario.

A related scenario is that when a cloud broker [34] handles
the complexity of prioritization and selection of IPs, and may
also offer value-added services to IPs and SPs. In this case, the
broker may have pre-arranged agreements with a number of
IPs and selects the best match for a service based on the SP’s
desired criteria. The broker operates between the SP and the
IPs, offering an IP-like interface to SPs and a SP-like interface
to IPs, as illustrated in Figure 6.

Broker

Infrastructure Provider (IP)Infrastructure Provider (IP)

Service Provider (SP)

Fig. 6. Cloud brokering.

IV. REQUIREMENTS FOR SERVICE DEPLOYMENT

A general approach to service deployment should work
transparently in all types of clouds. Based on the deployment
scenarios discussed in Section III, we identify a number of
requirements for service deployment. Notably, these require-
ments for service deployment have significant similarities with
the tasks identified in the overall process for resource selection
(scheduling) in Grid computing environments [30]. In the
below, the SP is normally the actor who negotiates terms with
the IPs, initializes the service deployment, and performs any
associated tasks. However, in the cases of cloud federation and
bursting, these interactions occur between two IPs, with the
IP initializing the deployment process acting as the SP.

• Discovery of IPs. In order to deploy a service, the
deploying actor must identify the IPs that are available
for deployment. IPs can be discovered by looking them
up in a registry or by using auto-discovery mechanisms.
We remark that discovery (along with the later filtering
and selection) of an IP is trivial in the private cloud case,
as only a single IP is available.

• Filtering of available IPs. In order not to add overhead
by negotiating deployment with IPs that fail to fulfill
fundamental requirements for the particle service to be
deployed, an initial filtering of the list of IPs retrieved
during IP discovery must be possible. Criteria for fil-
tering include both functional aspects, e.g., support for
certain hypervisors and VM image formats, as well as
non-functional criteria such as constraints based on the
country in which the IP is based (for legal and/or data-
protection reasons).

• Service Manifest construction. Each service must include
a service manifest that describes the functional and non-
functional parameters of the service. A service manifest
is an abstract definition of the service, which is used to
negotiate with IPs and later becomes part of the service
agreement with the IP. Data specified in the service
manifest, i.e. VM disk images, must also be prepared. A
set of utilities for creation, modification, etc. of service
manifests would greatly simplify this procedure.

• Negotiation and deployment optimization. A SP must be
able to negotiate with available IPs for service hosting
offers. Note that it is not always desirable to deploy the
whole service to the same provider. For reasons such
as security, performance, and fault tolerance it can be
preferable to split the service between several IPs which
means that a negotiation can be for part of a service.
Based on the results of these negotiations and data such as
reputation statistics, that could be gathered and evaluated
by third-party entities, the SP must decide where to
deploy the service.

• Service contextualization. When a service component’s
disk images are generated all required information is
not known. Data such as locations of shared network
resources and security credentials depends on the context
in which the service is deployed. In order to launch the
service successfully, this information must be propagated
to the VM. A possible mechanism for this contextual-
ization process is to embed various scripts in the VM
images that dynamically retrieves information upon boot,
enabling VM instances to self-contextualize.

• Service data transfer. The contextualized VM images,
along with any other data required by the service, must
be transferred to the IP. To guarantee properties such
as confidentiality and data integrity during this transfer,
reliable security mechanisms are required.

• Service Level Agreement creation. To ensure that the
service operates according to the SP’s expectations, it
must be possible to establish a Service Level Agreement
(SLA), that governs the relationship between the SP and
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IP for the provisioning of the service. SLA’s for service
provisioning commonly include segments that address
service definition, performance measurements, problem
management, customer duties, warranties, disaster re-
covery, as well as conditions for termination of the
agreement [1]. Penalties may be agreed upon in the case
of non-compliance with the terms in the SLA.

V. THE SERVICE DEPLOYMENT PROCESS

Based on the requirements study in the previous sections,
we derive a general sequence for service deployment. This
process, consisting of tasks to be performed, is illustrated by
the sequence diagram in Figure 7. Notably, the complexity and
details of the service deployment process may vary with the
deployment scenario, but the process remains similar.

Step 1, service construction, is identical in all scenarios.
The SP constructs (implements, packages, etc.) a service in the
same way no matter how it will be deployed. Step 2, discovery
and filtering of IPs to find out what IPs are available for the
deployment, is trivial in the private cloud case as the IP is
already known. It is also relatively simple in cloud brokering
scenarios as only the broker needs to be known. However
in federation, public, and multi-cloud cases this step can be
quite complex, involving auto-discovery mechanisms and/or
IP registries.

Most of the algorithmic complexity in service deployment
is associated within the related tasks of SLA negotiation and
IP assessment (Steps 3 and 4 in Figure 7). In scenarios where
the SP interacts with a single provider, these tasks are sim-
plified. Conversely, for federation, bursting, and multi-cloud
deployments, interaction with more than one IP complicates
the process. The richness of the negotiation protocol can range
from simple versions with primitives such as offer, accept, and
refuse, to more complicated versions with counter-offers, and
approaches based on auctions. An in-depth analysis of nego-
tiation protocols is beyond the scope of this paper and further
details on this topic are given, e.g., by Sarangan et al. [29]
and Jennings et al. [16]. Similarly, for IP assessment, the
complexity of estimating the utility associated with deploying
the service in each potential provider can differ significantly
based on the modeling method used. Algorithms proposed
for optimizing provider selection include scheduling-inspired
combinatorial optimization approaches such as integer pro-
gramming, which are commonly suggested [13], [34], but tend
to scale very poorly with the number of IPs. Other approaches
include heuristic solutions [21] that trade optimality for faster
decision-making.

Once the most suitable provider (or potentially, set of
providers) is identified, the SP performs contextualization
(Step 5 in the sequence diagram) to prepare the service VM
images with any dynamic information that is needed for these
to boot and configure themselves properly. This step is more
complicated if the service is split among several IPs, as an
external rendezvous mechanism is typically required in order
to initialize cross-provider networking for the VMs of the
service.

After the VM images are properly configured, they are
uploaded to the selected provider(s) as illustrated in Step
6 of Figure 7. As VM images typically are very large,
significant performance gains can be achieved by proper tuning
of network parameters. In private clouds where a network
file system may connect the SP and the IP, image transfer is
much less of an issue. Alternatively, if an IP does not support
upload of SP-defined VM images, a custom service image
must be pre-created (based on templates from the provider)
and stored at that IP. In such a case, contextualization abilities
are significantly reduced.

When the contextualized VM images are stored in the IP’s
repository, the SP confirms the offer negotiated in Step 3 and
a SLA is created between the SP and the IP for the operation
of the service, as illustrated in Step 7. Once again, this step
becomes more complex if the SP needs to aggregate multiple
SLAs from different IPs.

Finally, Step 8 in Figure 7 illustrates that once the service is
deployed, the SP stores information about the deployment in a
registry to enable subsequent service monitoring, management,
and undeployment.

Service Provider (SP) Infrastructure Providers (IPs)

1 Service Construction

2 IP Discovery & Filtering

Deployment Optimization
loop

3 Negotiation

4 IP Assessment

5 Service Contextualization

6 Service Data Upload

7 SLA Creation

8 Update Service Resource

Fig. 7. Sequence diagram for service deployment.

VI. PROPOSED SERVICE DEPLOYMENT ARCHITECTURE

To meet the requirements of service deployment, we pro-
pose a service deployment architecture. The purpose of archi-
tecture is two-fold - it is responsible for generating optimal
deployment solutions for a service, and for coordinating the
deployment process in order to provision a service according
to the deployment plan. In order to separate the placement
optimization from the deployment coordination functionality,
our proposed software, referred to as the Service Deployment

20

76



Optimizer (SDO), is divided into two components, the Ser-
vice Deployer (SD), and the Deployment Optimizer (DO),
both illustrated in Figure 8. The DO is a decision-making
component and the SD is a module that orchestrates the
DO and various utility functionalities in order to perform
the deployment sequence described in Figure 7. Notably,
to provide a complete solution for cloud deployment, the
SD and DO interacts with external components for service
contextualization, data management, service management, and
IP assessment, all illustrated in Figure 8 and further discussion
in Section IV. We remark that these external components may
need customization and/or replacement depending on, e.g., the
protocols and data formats used by the IPs.

SDO

Service
 Deployer

Infrastructure Providers

Service
 Management

Data
 Management

IP D
iscovery

Deployment
Optimizer

PlacementOptimization

N
egotiation

InfrastructureProvider Assessm
ent

Service
Contextualization

Fig. 8. Overview of the SDO architecture.

We outline the main design rationale for the SD and DO
components below, as well as discuss how they interact with
each other and related utility functionalities for data transfer,
etc.

A. Service Deployer

The purpose of the SD is to coordinate the deployment
and interact with the other involved parties in a deployment.
The SD takes a service deployment request, contacts the IP
discovery service to obtain which providers are available and
performs filtering (see steps 1-2 in Figure 7). To retrieve
an optimal placement scheme, SD contacts the DO who
performs calculation for placement optimization. Once an
optimal placement solution is returned, the SD deploys a whole
service following steps 5-8 in Figure 7 with the support of
external components. Service Contextualization is in charge of
contextualizing VM images, Data Management is responsible
for data transfer from the SP side to the IP side, Service
Management creates service resource and updates resource
accordingly, and SLA Management handles the IP side creation
of agreement.

B. Deployment Optimizer

The DO’s role in a deployment is to perform placement
optimization based on the inputs from the SD, including a

service manifest, the optimization objective, and available IP
info, etc. Based on this information, the DO generates an
optimal placement scheme for the service. In order to achieve
an optimal placement objective, the DO may split services that
contains more than one component into several sub-services,
and map them to different IPs. This is provided it can do so
without breaking affinity constraints specified in the service
description, During the calculation, the DO negotiates with
IPs and the IP assessment tools, see steps 3-4 in Figure 7.
Optimization techniques such as combinatorial optimization,
problem relaxations and heuristic approaches such as greedy
formulation can be applied in this component.

VII. VALIDATION STUDY

In order to verify that our service deployment architecture is
suitable for the envisioned cloud architectures, we perform a
validation study. The study is carried out in the context of the
OPTIMIS Toolkit [15], which includes a set of independent
components that can be adopted, either in full or in part, by IPs
that provide infrastructure resources, and by SPs that use these
capacities to deliver services. The study comprises three cloud
service deployment scenarios: private cloud, cloud brokerage,
and cloud bursting.

In these three scenarios, the service we use for validation
is a composite service for gene detection presented in [33].
This service contains five components. First, there are four
functionality components which contribute to the overall gene
detection process: translation of the input genomic database
to a given format (component GA); obtention of a list of
amino acid sequences which are similar to a reference input
sequence (component GB); search of the relevant regions of
the genomic database (component GC) and execution of the
GeneWise [12] algorithm on them (component GD). Addition-
ally, there is one component for coordination (component GP).
Each component is encapsulated in a VM sized approxi-
mately 9.8 GB. To avoid repetitive data transfer, only one VM
image is transferred from the SP to the IP in case multiple
components are deployed to the IP. This way, multiple VM
instances can be started from the same image by associating
each instance with different contextualization data.

For the validation, we use a distributed testbed with four
IPs located across Europe: Atos [2] (Spain), BT [3] (UK),
Flexiant [4] (UK) and Umeå University (Sweden). Each IP
site hosts selected parts of the OPTIMIS Toolkit, as well
as fundamental management software such as Xen [5] and
Nagios [6]. The role of the IPs in the different scenarios is
summarized in Table I. Notably, our goal is not to evaluate
the various providers but rather to investigate how well our
proposed approach adapt to real scenarios.

TABLE I
USE CASE CONFIGURATIONS.

Atos BT Umeå University Flexiant
Private cloud X
Cloud brokerage X X X X
Cloud bursting X X
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A. SDO in OPTIMIS
We below outline how the SDO is integrated with selected

components of the OPTIMIS Toolkit, i.e., how the architecture
outlined in Figure 8 is achieved in an OPTIMIS cloud scenario.

• IP Discovery: In OPTIMIS, IP information is registered
in a simple on-line registry accessed through a REST
interface. In this registry, information such as IP identifier,
IP name, and endpoints for negotiation, etc., are stored.

• VM Contextualization: The OPTIMIS VM Contextual-
ization component provides an interface for constructing
service context data, such as security certificates, VPN
hostnames, VPN DNS and Gateway IP addresses, mount
points for network data stores, monitoring manager host-
names, off-line software license tokens, as well as list of
software dependencies [11].

• Data Manager: In OPTIMIS, a Hadoop-based [7] Data
Management service enriched with RESTful APIs is
combined with a series of tools that aim to extend
Hadoop’s functionality beyond its well known scope -
heavy data processing [19]. In all, these tools provide
data management functionalities to cloud services as well
as the capabilities needed to deploy VM images to IPs.

• SLA Management: A service and client based on
WS-Agreement protocol [9] is used in OPTIMIS for ne-
gotiating and creating Service Level Agreements between
IPs and SPs [20].

• Infrastructure Provider Assessment: for OPTIMIS, we
implement a two-step IP assessment strategy, where in
a first step, IPs that do not fulfill functional requirements
or have unsuitable data protection levels, etc. are filtered
out. In a second step, the DO negotiates deployment
terms (cost, etc.) with the remaining IPs and ranked these
on basis of assessment of four non-functional properties:
trust, risk, eco-efficiency, and cost [18], [27].

B. Scenarios Descriptions and Statistics
• Private cloud:

Atos IP

SDO
SP

Atos

Fig. 9. Private scenario.

In the private cloud scenario, the SP (also located in the
Atos cloud) submits the gene detection service deploy-
ment request to the Atos cloud. All components (GA,
GB, GC, GD, and GP) are deployed to the Atos IP.

• Cloud brokerage (multi-cloud):
In the cloud brokerage scenario, two SDO instances are
running: one in the Umeå cloud, which plays the role of
the SP. The other one is located in the BT cloud, which
plays the role of a cloud broker. The SP submits the
gene detection service deployment request to the Umeå
cloud. Instead of deploying the service by itself, the

Flexiant IP

Atos IP

BT IP
(Broker) SDOSDO

SP

Umeå

Fig. 10. Cloud brokerage scenario.

SDO in the Umeå cloud calls the SDO on the broker to
complete the deployment. There are three IPs registered
in the IP registry which can be queried by the SDO
in the BT cloud. After the by Deployment Optimizer’s
calculations (including IP assessment, negotiation, and
placement optimization) two IPs are selected to host the
service. Specifically, two components (GC and GD) are
to be deployed to Flexiant cloud, the other three (GA,
GB, and GP) are to be deployed to the Atos cloud. For
the purpose of this demonstration, VM images are stored
on the broker in advance.

• Cloud bursting:

Flexiant IP
Atos IP

SDO
SP

SDO

Umeå

Fig. 11. Cloud bursting scenario.

In the cloud bursting scenario, the service is already
deployed in the Flexiant cloud. To fulfill a demand for
increasing service capacity from the SP, the Flexiant
cloud needs to launch two more instances respectively
for two of the five components (i.e., GC and GD) in
the service. For financial reasons, the Flexiant cloud
decides to outsource this demand to a more cheaper cloud
provider, i.e., Atos cloud, while maintaining its SLA-
agreement with SP.

C. Experimental Results

In order to assess the performance of the SDO and the
complexity of the service deployment process as such, we
measure the duration of the main steps of deployment for
each studied cloud architecture. Table II presents statistics of
time consumed in each phase of service deployment for each
scenario.

From our experiments, we conclude that the major part of
the time (around 90-95% depending on the scenario) is used
to transfer VM images from the SP to the IP. Notable, the
differences in image transfer time among the scenarios are due
to the complexity of the deployment solution. For the private
cloud scenario, all components are deployed to Atos and only a
single VM image thus needs to be transferred, over an internal
network. In contrast, for the multi-cloud scenario, two VM
images are transferred, one from BT to Atos (for components
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TABLE II
ILLUSTRATIVE PERFORMANCE RESULTS FOR THE DEMONSTRATED

DEPLOYMENT SCENARIOS. ALL TIMES ARE IN SECONDS.

Deployment Phase Private Multi-cloud Cloud bursting
IP discovery 0 2 1
Deployment optimization 2 108 13
VM contextualization 11 19 15
Data upload 598 1546 701
Agreement creation 12 23 17
Update service resource 4 4 2

GA, GB, and GP), the other one from BT to Flexiant (for
components GC and GD), both transfers taking place over
Internet.

Another observation is that placement optimization becomes
more complex in the multi-cloud case. Due to the possibility
of split deployment, the number of potential service config-
urations is much larger in a multi-cloud scenario than for
the private and bursting cases. In the brokering case, multiple
negotiations are performed between the broker deployed at
BT and the Atos and Flexiant IPs. The actual assessment
of the IPs’ suitability for provisioning the service includes
complex statistical modeling techniques [18], [27] to assess
the trust, risk, eco-efficiency and cost factors for each potential
placement. These models all have in common that they in the
assessments make extensive use of a database with historical
information about past IP behavior. Notably, the details of the
optimization techniques used in this section are outside the
scope of this paper, however, a detailed elaboration can be
found in our contribution [23].

In summary, the private cloud scenario demonstrates how
the SDO can be used to complete a service deployment in
general. The cloud brokerage scenario demonstrates brokerage
across multiple cloud providers. The cloud bursting scenario
shows how organizations can utilize the SDO to scale out
their infrastructure, using resources from third-party providers
based upon a range of factors such as trust, risk assessment,
eco-efficiency and cost [18], [27].

VIII. RELATED WORK

Talwar et al. [32] review approaches for service deployment
before the emergence of Cloud Computing. They compare
and evaluate four types of service-deployment approaches:
manual, script-, language-, and model-based solutions, in
terms of scale, complexity, expressiveness, and barriers for
first time usage. They also conclude that service deployment
technologies based on scripts and configuration files have
limitations in expressing dependencies and verifying configu-
rations, and usually result in erroneous system configurations.
Conversely, language- and model-based approaches handle
these challenges better, but at the expense of comparatively
higher barriers for first usage.

With the emergence of cloud computing, services are pro-
visioned using VMs. Service deployment can be done by
initializing VMs with their virtual appliances. Cloud service
developers are thus enabled to deploy applications without
confronting the usual obstacles of maintaining hardware and

system configurations. Much work have been done in the
context of this new service-deployment technology. Most
focus has been on deployment optimization approaches. For
example, Kecskemeti et al. [17] propose an automated vir-
tual appliance creation service that aids the service develop-
ers to efficiently create deployable virtual appliances. They
reduce the deployment time of the service by rebuilding
the virtual appliance of the service on the deployment tar-
get site. For optimal VM placement across multiple cloud
providers, Chaisiri et al. [13] propose an stochastic integer
programming (SIP) based algorithm aimed at minimizing
the cost for a placement plan for hosting VMs in a mul-
tiple cloud provider environment under future demand and
price uncertainty. Similarly, Vozmediano et al. [26] [25] ex-
plore the use case of deploying a compute cluster on top
of a multi-cloud infrastructure, for use by loosely-coupled
Many-Task Computing (MTC) applications. They conclude
that cluster nodes can be provisioned with resources from
different clouds to improve the cost-effectiveness of the de-
ployment, or to implement high-availability strategies.

Our previous contributions in this field include cloud bro-
kering mechanisms [34] for cost- and performance-optimal
placement of VMs across multiple cloud providers in static
scenarios, and extensions to this with a linear programming
model to dynamically reschedule VMs (including modeling
of VM migration overhead) upon changed conditions such as
price changes, service demand variation, etc. in dynamic cloud
scheduling scenarios [22]. In addition, we have proposed an
approach to optimal VM placement within data centers for
predictable and time-constrained load peaks [21].

Although algorithms for optimizing service deployment is a
very active area of research, with lot of interest is given to the
various deployment architectures in general, the topic of this
contribution, namely architectures and tools general enough to
support multiple cloud deployment scenarios, has received far
less attention to date.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a general approach to automatic
service deployment in cloud environments, based on our study
of cloud architectures and deployment scenarios and the core
requirements for service deployment derived from these. A
validation study performed in the context of the OPTIMIS
Toolkit verifies the feasibility of a general service deploy-
ment component that can be reused across multiple cloud
architectures. Our validation study also gives some indications
about the performance aspects of cloud service deployment,
identifying transfer of VM images as the most time-consuming
task.

Future directions for this work includes in-depth studies
of algorithms for optimized selection of deployment targets.
Another topic of future research is the incorporation of
re-deployment, i.e., migration of the full service, or some of its
components, to other IP(s) during operation [14]. Reasons for
re-deployment include improved performance, and improved
cost-efficiency. In such scenarios, a careful tradeoff between
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re-deployment overhead and expected improvement must be
considered [22]. Additionally, a model of interconnection
requirements that can precisely express the relationships be-
tween components within a service to be deployed can be
another promising direction to investigate. Such a model can
help SDO optimizing the service deployment with e.g., less
communication cost between service components. In addition,
we are working on a specific scenario where cloud users can
specify hard constraints and soft constraints when demanding
resource provisions. A hard constraint is a condition that has
to be satisfied when deploying services, i.e., it is mandatory. In
contrast, a soft constraint (also called a preference) is optional.
An optimal placement solution with soft constraints satisfied
is preferable over other solutions. We are also investigating
how to apply multi-objective optimization [24] techniques to
this scenario.
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Approach for Virtual Appliance Distribution for Service Deployment.
Future Gener. Comput. Syst., 27(3):280–289, March 2011.

[18] M. Kiran, M. Jiang, D. J. Armstrong, and K. Djemame. Towards a
Service Lifecycle Based Methodology for Risk Assessment in Cloud
Computing. In Proceedings of the 2011 IEEE Ninth International Con-
ference on Dependable, Autonomic and Secure Computing, DASC’11,
pages 449–456, Washington, DC, USA, 2011. IEEE Computer Society.

[19] G. Kousiouris, G. Vafiadis, and T. Varvarigou. A Front-end, Hadoop-
based Data Management Service for Efficient Federated Clouds. In
Proceedings of the 2011 IEEE Third International Conference on Cloud
Computing Technology and Science, CloudCom’11, pages 511–516,
Washington, DC, USA, 2011. IEEE Computer Society.

[20] A. Lawrence, K. Djemame, O. Wäldrich, W. Ziegler, and C. Zsigri.
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Abstract: Until now, most research on cloud service placement has focused on static
pricing scenarios, where cloud providers offer fixed prices for their resources. How-
ever, with the recent trend of dynamic pricing of cloud resources, where the price of
a compute resource can vary depending on the free capacity and load of the provider,
new placement algorithms are needed. In this paper, we investigate service place-
ment in dynamic pricing scenarios by evaluating a set of placement algorithms, tuned
for dynamic pricing. The algorithms range from simple heuristics to combinatorial
optimization solutions. The studied algorithms are evaluated by deploying a set of
services across multiple providers. Finally, we analyse the strengths and weaknesses
of the algorithms considered. The evaluation suggests that exhaustive search based ap-
proach is good at finding optimal solutions for service placement under dynamic pric-
ing schemes, but the execution times are usually long. In contrast, greedy approaches
perform surprisingly well with fast execution times and acceptable solutions, and thus
can be a suitable compromise considering the tradeoffs between quality of solution
and execution time.
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Email: {wubin.li, petters, tordsson, elmroth}@cs.umu.se

Abstract—Until now, most research on cloud service placement
has focused on static pricing scenarios, where cloud providers
offer fixed prices for their resources. However, with the recent
trend of dynamic pricing of cloud resources, where the price of
a compute resource can vary depending on the free capacity and
load of the provider, new placement algorithms are needed. In
this paper, we investigate service placement in dynamic pricing
scenarios by evaluating a set of placement algorithms, tuned for
dynamic pricing. The algorithms range from simple heuristics
to combinatorial optimization solutions. The studied algorithms
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the tradeoffs between quality of solution and execution time.
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I. INTRODUCTION

Cloud services are typically encapsulated in virtual ma-
chines (VMs), and are deployed by instantiating VMs in a
virtualized infrastructure. When deploying such services, it
is desirable to find an optimal placement, that is an optimal
choice of cloud provider(s), considering for example Service
Level Agreement (SLA) terms, power consumption and per-
formance. By deploying cloud services across several cloud
providers instead of using just one, users can gain benefits
like cost reduction, load balancing and better fault tolerance,
and also avoid vendor lock-in.

In the expanding cloud computing market, there are
many cloud providers with comparable offers, for example
GoGrid [1] and Amazon [2] which offer capacity on a hourly,
monthly, semi-annual, and annual base. Historically, most
providers have used fixed pricing schemes, i.e., the price of a
compute unit is constant regardless of the available capacity at
the provider. Recently, the concept of dynamic resource pricing
is becoming increasingly popular. Such schemes enable cloud
providers to attract more customers by offering a lower price if
they have excess capacity. Amazon for example has introduced
spot instances which enable users to bid for unused Amazon
EC2 capacity. Instances are charged the Spot Price, which is
set by Amazon and fluctuates periodically depending on the
supply of and demand for the spot instance capacity [3]. Such

types of dynamic pricing schemes provide cloud customers
with the flexibility of ad-hoc provisioning while receiving
significant price savings.

As a consequence of the static pricing schemes used by
commercial providers, most cloud service placement research
has focused on static pricing scenarios where cloud providers
offer fixed pricing schemes for their resources. In this pa-
per however, we propose methods and algorithms to find
cost-optimal deployment of services across multiple cloud
providers in dynamic pricing scenarios. We study a number of
algorithms for placement optimization and evaluate them by
running deployments on a cloud platform using our general
approach to service deployment, the Service Deployment
Optimizer (SDO), presented in a previous contribution [14].

The remainder of the paper is organized as follows. Sec-
tion II gives a short background on cloud services and de-
ployment. Related work is discussed in Section III. Section IV
briefly defines the studied problem and outlines our optimiza-
tion algorithms. Section V presents the experimental evalua-
tion in an environment with three clouds. Our conclusions are
given in Section VI followed by acknowledgments, and a list
of references.

II. BACKGROUND

A. Cloud services

In virtualized cloud environments, a cloud service is provi-
sioned as a VM or a collection of VMs. A VM of a certain
type is known as a component and a service can consist of
multiple components. For example, a typical three-tier web
application has a presentation layer component, a business
layer component and a database component. Note that there
can be several instances of each component. Information about
the service composition in terms of components, functional
and non-functional requirements and elasticity bounds may be
described in a document, the service manifest. The elasticity
bounds are upper and lower limits for how many instances of
a component that are allowed to be provisioned at a given time
and are commonly associated with elasticity rules for when to
scale up or down the number of instances of a component.
The service manifest may also contain any constraints on the
service, e.g., geographical location or requirements for data
protection. An extensive implementation of this kind of a
service manifest can be found in [19].
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UndeploymentOperationDeploymentConstruction

Fig. 1. The lifecycle of a cloud service.

Figure 1 illustrates the different phases in the lifecycle of
a cloud service. The packaging the service into components
and building the service manifest is known as the construction
phase of the service lifecycle. In order to get the service
running, it needs to be deployed. During the deployment
phase, a suitable cloud provider, or a set of providers, is
identified. The service components are then contextualized and
transferred to the selected provider where they are installed.
Once the VMs have been booted and are accessible to outside
peers, the deployment phase is complete. The service lifecycle
then moves to the operation phase in which the service is
managed by the cloud provider to ensure efficient and robust
service delivery. Notably, VM recontextualization may be
needed in the operation phase to enable adaptation of VM
behavior in response to internal changes in the service to which
the VM belongs or to external changes affecting the execution
environment of the VM [6]. When the service is no longer
needed, it can be undeployed. During the undeploy phase, the
cloud provider shuts down the running VMs and removes the
service assets such as disk images. This paper focuses on the
service deployment phase which is discussed in more detail
in the upcoming sections.

B. Service Deployment
Providers offering services to customers are known as

Service Providers (SPs). Since most SPs often do not control
enough hardware resources, they deploy their services to
Cloud Providers. This deployment process can be complex.
In a previous contribution [14], where we design and imple-
ment a general approach to service deployment, the Service
Deployment Optimizer, we divide the deployment process
into six stages. These stages are cloud provider discovery
and filtering, service manifest construction, negotiation and
deployment optimization, service contextualization, service
data transfer and SLA creation. We then identify requirements
for all of these stages as well as for the deployment process
as a a whole.

Of interest to this contribution is the requirement for the
negotiation and deployment optimization stage which states
that the deploying party must be able to negotiate with
available providers for service hosting offers. The requirement
also states that it is not always desirable to deploy the
whole service to the same provider but for reasons such as
security, performance, and fault tolerance it can be preferable
to split the service between several providers. This means
that a negotiation can be performed for part of a service, not
necessarily the whole manifest. Based on the results of these
negotiations and data such as reputation statistics, which could
be gathered and evaluated by third-party entities, the deploying
party must then decide where to deploy the service. In this
contribution, we refer to this process as Service Placement.

C. Service Placement
During the deployment of a service, a decision is taken on

which provider, or combination of providers, is to be used
to host the service. If several providers are used, the service
manifest is split to create a number of sub-services which are
then independently mapped to providers. Note that constraints
such as affinity and anti-affinity can limit how the service can
be decomposed [9].

Taking into account these requirements, the placement algo-
rithm usually strives to optimize a given objective, for example
to minimize the cost or the risk by splitting the service and
finding the optimal combination of providers. The selection
process is commonly performed as a negotiation process,
where the SP asks the providers for offers on hosting a service
or parts of a service. Based on the results of these negotiations
and other possibly available information such as previous
experience with the providers (reputation assessments), the SP
decides on where to deploy the service.

III. RELATED WORK

Over the last years, there has been a significant research
effort in optimizing allocation of VMs in clouds, com-
monly with cost and performance as optimization objec-
tives [8], [15], [17], [22], [24]. This research field, commonly
referred to as cloud placement, scheduling, and/or brokering,
started out focusing on static environments. Recently, the
field has been extended to also include dynamic scenarios,
including changes in cloud provider prices. Examples of
the latter include work by Andrzejak et al., who propose a
probabilistic model to optimize cost and performance under
dynamic pricing schemes. They use an SLA model with tasks
bound by deadline and budget, where varying numbers of VMs
can be allocated to optimize these goals [5]. An evaluation
based on historical spot instance prices from Amazon EC2
combined with publicly available grid workloads demonstrates
how users can achieve large cost savings by bidding for high-
CPU instances, and also achieve a balance between cost and
service level (job deadline).

Similarly but from a cloud provider’s perspective, to op-
timize the revenue and energy cost while satisfying the de-
mands of customers, Zhang et al. presents a MPC (Model
Predictive Control) based resource management mechanism
to dynamically adjust the capacity allocated to each VM
type [26]. Experimental evaluations show that, compared with
static allocation strategies, the proposed approach combining
market economy and optimal control theory is very promising.

Service placement in multi-cloud scenarios has also been
studied extensively in the past. Our previous contribution on
this topic includes a novel cloud brokering approach that
optimizes placement of virtual infrastructures across multiple
clouds [23], which compared to single cloud deployment
improves performance, lower costs, or provide a combina-
tion thereof. For scenarios where parameters such as pric-
ing schemes and VM types are continuously changed, we
propose a linear integer programming model for dynamic
cloud scheduling via migration of virtual machines [16]. The
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proposed model can be applied in various scenarios through
selections of corresponding objectives and constraints, and
offers the flexibility to express different levels of migration
overhead when restructuring an existing virtual infrastructure
where services are being hosted. Lucas-Simarro et al. go a step
further to implement a scheduler capable of taking autonomous
placement decisions based on different pricing schemes. In
case of dynamic pricing scenarios, the scheduler decisions are
based on a prediction model that estimates the price of the
VMs in the next period [18].

A field closely related to the optimization of VM placement
is study of the actual cloud provider pricing mechanisms. Wee
studies the development of spot instance prices on Amazon
EC2 [25], the most well-known cloud system with real-time
pricing. While Wee observes that spot instances are around
50% cheaper than reserved instances, the observed deviations
in spot instance prices over a year are very small, with only
a few percent reduction in the cheapest prices. Ben-Yehuda
et al. analyze the historical prices of EC2 spot instances and
reverse engineer the pricing scheme. They conclude that prices
are not market-driven but rather randomly generated within
a tight interval [7]. Analogously, a statistical model of spot
instance prices in public cloud environments is presented by
Bahman et al. in [12], which fits Amazon’s spot instances
prices well with a good degree of accuracy. To capture the
realistic value of the cloud compute commodities, Bhanu et al.
employ financial option theory and treat the cloud resources
as real assets. The cloud resources are then priced by solving
the finance model [21].

IV. ALGORITHMS

In this paper, we study the cost-optimization problem from
the perspective of a service provider, which can be simply
formulated as follows: Given n cloud providers provisioning
resources with dynamic pricing schemes, our goal is to find
the placement solution that minimizes the cost of deploying
a service with q components across those cloud providers.
Notably, unlike the related works mentioned in the previous
section, we assume dynamic pricing of provisioning requests,
and thus, we assume that the price of hosting a service or a
part of a service is not known to the service provider prior to
negotiation with the target provider.

To investigate the effects of our dynamic pricing strategy,
a number of placement algorithms for cost-minimization are
evaluated in this contribution. We define an optimal algo-
rithm (Permutation) that through exhaustive search finds the
best solution. We also define a greedy heuristic and another
approximation (First-fit) to the optimal algorithm. For the
sake of comparison in the later evaluation, we also introduce
two naive algorithms: Round-robin and Random. For the
sake of clarity, we omit requirements on affinity or anti-
affinity between deployed instances but we remark that such
requirements can be included as additional constraints, as
presented in [9].

A. Random

The Random algorithm outlined in Algorithm 1 partitions
the service into components and deploys each component
to a random cloud provider (see lines 3 and 4 in Algo-
rithm 1). After that, negotiations with cloud providers are
performed (see line 9) accordingly. Note that in the presented
algorithms, negotiate(X, I) is an atomic operation that rep-
resents a bargaining action with a service request X against
cloud provider I . This action returns the cost of hosting X
in cloud provider I . If cloud provider I does not accept the
request X (e.g., due to insufficient capacity), the cost is de-
noted as +1, indicating that hosting X in I is infeasible (see
lines 10 and 11 in Algorithm 1).

Algorithm 1: Random(Components, Clouds)
Input: Components = {C0, C2, . . . , Cq�1},

Clouds = {I0, I2, . . . , In�1}
/

*

Randomly map service components to

clouds.

*

/

1 mapping  ;;
2 for C 2 Components do
3 Ip  Randomly select a cloud Ip 2 Clouds;
4 mapping[C] Ip;
5 end
6 for I 2 Clouds do
7 X  {C 2 Components | mapping[C] = I};
8 if X 6= ; then
9 cost negotiate(X, I);

10 if cost = +1 then
11 return N/A;
12 end
13 end
14 end
15 return mapping;

B. Round-robin

The Round-robin algorithm maps the service components
to cloud providers in a circular fashion. While this algorithm
does not in anyway strive to find an optimal solution, it is
simple and fast. The algorithm is outlined in Algorithm 2. For
a component C in the service, if there is no available cloud
provider that can host it within n rounds of negotiation, the
algorithm fails (see lines 18 and 19).

C. Greedy

The Greedy algorithm strives to find the best match for
each component, without considering how this affects the other
components. For many problem classes, this type of algorithm
tends to give good results while being simple and easy to
implement. The Greedy algorithm used in this evaluation is
outlined in Algorithm 3. For each component C in the service,
the lowest cost provider is selected to host it (see lines 6� 13).
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Algorithm 2: Round-robin(Components, Clouds)
Input: Components = {C0, C2, . . . , Cq�1},

Clouds = {I0, I2, . . . , In�1}
/

*

Map service components to clouds

using a Round-robin strategy.

*

/

1 mapping  ;;
2 r  0;
3 for C 2 Components do
4 round 0;
5 while round < n do
6 p r%n;
7 X  {c 2 Components | mapping[c] = Ip};
8 X  X [ {C};
9 cost negotiate(X, Ip);

10 if cost = +1 then
11 r++;
12 round++;
13 continue;
14 end
15 mapping[Ci] Ip;
16 break;
17 end
18 if round � n then
19 return N/A;
20 end
21 end
22 return mapping;

D. Permutation
The optimal Permutation algorithm, outlined in Algorithm 5

evaluates all possible permutations of components on all
providers to find the global maximum. It first generates all
possible partitions of a set of components. In combinatorics,
the number of possible partitions of a set of size n is referred to
as the Bell number, and denoted by Bn. This can be calculated
as Bn =

Pn
i=0

�
n
i

 
, where

�
n
i

 
is the Stirling number of the

second kind which is the number of ways to partition a set
of n objects into i non-empty subsets [11]. For optimization
purpose, given the number of cloud providers k, we only need
to generate B0

n,k =
Pk

i=0

�
n
i

 
partitions for a service with n

components using Algorithm 5.
All generated partitions are then evaluated via a recursive

exhaustive search algorithm presented in Algorithm 4. To
narrow the search space as much as possible, a branch-and-cut
strategy is adopted. For each component set ⌦ in a par-
tition, two different branches are created to find a better
solution. Each non-occupied cloud provider I is evaluated (see
lines 11 � 26). The first branch just skips placing ⌦ in I ,
and continues with the next non-occupied cloud provider,
keeping the cumulative cost unchanged. The other branch
evaluates whether the sum of the cumulative cost and the
cost of placing ⌦ in I is higher than the optimum already
obtained. If so, the current branch is stopped; otherwise, the
algorithm continues with mapping ⌦ to cloud I and adding

Algorithm 3: GreedyAlg(Components, Clouds)
Input: Components = {C0, C2, . . . , Cq�1},

Clouds = {I0, I2, . . . , In�1}
/

*

Map service components to clouds

using a greedy strategy.

*

/

1 mapping  ;;
2 costMap ;;
3 for C 2 Components do
4 cost +1;
5 destination N/A;
6 for I 2 Clouds do
7 currentCost costMap[I]

X  {c 2 Components | mapping[c] = I};
8 X  X [ {Ci};
9 newCost negotiate(X, I);

10 if newCost� currentCost < cost then
11 cost newCost� currentCost;
12 destination I;
13 end
14 end
15 if cost = +1 then
16 return N/A;
17 end
18 costMap[destination] += cost;
19 mapping[C] destination;
20 end
21 return mapping;

the corresponding cost to the cumulative cost.

E. First-fit
The First-fit algorithm is a simplification of the Permu-

tation algorithm. As soon as a feasible solution is found,
the algorithm exits. This means that there is no guarantee
a global optimum is found. This algorithm is outlined in
Algorithm 5 (same as the optimal Permutation algorithm) but
uses a parametric setting firstfit = true to halt upon finding
the first feasible solution.

V. EVALUATION

Multiple external factors affect the results of the service
deployment algorithms, including provider pricing schemes
and workloads, SLA-tiered pricing, and specifications of the
service(s) to deploy. We try to make reasonable assumptions
about these factors in our evaluation and to avoid bias, the
results are interpreted at a higher level, focusing on the
overall trends rather than on exact numbers. The purpose
of the evaluation is to highlight the conceptual differences
between the proposed algorithms in as realistic environments
as possible. The evaluation setup is discussed in detail below.

A. Evaluation setup
1) Testbed configuration: The tests are run on 3.30 GHz

Intel Core i5-2500 machines with 8 GB of RAM and Gigabit
Ethernet. The operating system is Linux stable 3.6. We host
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Algorithm 4: TraversePartition(tmapping, partition,
Clouds, indicator, cost, firstfit)
/

*

partition = {⌦0, ⌦1, . . . , ⌦m�1} where

Components =
S
i

⌦i and

8i, j 2 [0, m� 1], i 6= j : ⌦i \ ⌦j = ;
*

/

1 if firstfit = true && optimum 6= +1 then
2 return;
3 end
4 if indicator � m then
5 if tmapping.size() = m then
6 optimum cost;
7 mapping  tmapping;
8 end
9 end

10 else
11 for I 2 Clouds do
12 r  cost;

/

*

check if I is not occupied.

*

/

13 if 8⌦ 2 partition && tmapping[⌦] 6= I then
14 c negotiate(⌦indicator, I);
15 if cost + c < optimum then
16 tmapping[⌦indicator] I;
17 cost cost + c;
18 TraversePartition(tmapping, partition,

Clouds, indicator + 1, cost);
19 end
20 end
21 else
22 continue;
23 end
24 cost r;
25 tmapping[⌦indicator] ;;
26 end
27 end

Algorithm 5: PFFAlg(Partitions, Clouds, firstfit)
Input: Partitions = {G0, G1, . . . , Gp�1},

Clouds = {I0, I1, . . . , In�1}
/

*

Traverse each patition G 2 Partitions,
and store the optimal mappings

between Partitions and Clouds
*

/

1 mapping  ;;
2 optimum +1 ;
3 for G 2 Partitions do

/

*

tm is a temporary mapping.

*

/

4 tm ;;
5 TraversePartition( tm, G, Clouds, 0, 0, firstfit );
6 end
7 if optimum 6= +1 then
8 return mapping;
9 end

10 return N/A;

TABLE I
HARDWARE METRICS FOR INSTANCE TYPES.

Instance Type small medium large xlarge
CPU(#cores) 1 2 4 8

TABLE II
CONFIGURATIONS.

Tiers no. of instances instance types no. of configurations
FE 1 ⇠ 4 S, M 14
LO 1 ⇠ 4 M, L 14
DB 1 ⇠ 2 L, XL 5

three cloud providers on this testbed. These providers are
configured with the Optimis cloud toolkit [10], which is a
set of independent components. The Optimis toolkit can be
adopted, either in full or in part, by cloud providers that
provide infrastructure resources and by service providers that
use these capacities to deliver services. In the evaluation, we
use three components from the Optimis toolkit. The first is SLA
Management, a service and client based on the WS-Agreement
protocol [4] which is used for negotiating and creating SLAs
between cloud providers and service providers [13]. The sec-
ond is Admission Control, which is responsible for accepting
or rejecting services for deployment in a provider. For clarity,
the Admission Control algorithm used is a simple threshold-
based function that accepts service requests if there is enough
capacity. The third is the (previously discussed) SDO, which
implements the service deployment and placement processes.
For the purpose of this evaluation, the SDO is modified by im-
plementing the placement algorithms discussed in Section IV.

2) Services: We use a service consisting of a typical
three-tier Web application comprised of a front-end (FE), a
logic (LO) and a database (DB) tier in the evaluation. To
evaluate the algorithms against different services with diverse
configurations, we vary the number of instances and the
instance types for each tier, as shown in Table II. In addition,
we use four different sizes of VMs, defined in terms of number
of CPU cores used, as presented in Table I. We also use three
different service availability SLAs, namely Bronze, Silver and
Gold, which are summarized in Table III.

By varying these parameters, we get a considerable amount
of different services. For example, the number of instances
in the FE tier ranges from 1 to 4, and for each instance,
its type is defined to be small or medium. Thus, there
are 14 (

P4
i=1 C1

i+1) different configurations for the FE tier.
Finally, incorporating the SLA types listed in Table III, we end
up with 2940 (14⇥ 14⇥ 5⇥ 3) different services to evaluate
our placement algorithms with.

3) Cloud providers: Three cloud providers with different
average background load and free capacity are used in our
experiments. In this contribution, we assume that the total
capacity of each provider is uniform, i.e., 96 unit-capacity
VMs. To be able to define a dynamic provider pricing scheme
based on real-world conditions, the background load of the
cloud providers must be realistic. To model the background
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loads for these cloud providers, we use the Google cluster
data trace [20], which consists of 30 days of usage data for a
12k-machine cell in May 2011.

The workload consist of traces for jobs, tasks and machines
and contains over 60 GB of data. To get the total CPU load
of the cluster as a relative value, we aggregate the CPU usage
of all running tasks and divide this absolute value with the
total capacity of the cluster. We use data from a 24 hour
period and as seen in Figure 2. The load, represented by the
blue line, varies between 15% � 60% during this interval. In
order to highlight the impact of the dynamic provider pricing
schemes, we scale the CPU load by a factor of 1.6 so that the
load instead varies between 25% � 96%. This scaled load is
represented by the black line in Figure 2.
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Fig. 2. CPU loads of the cluster.

In each of the 2940 tests, one point in Figure 2 is randomly
chosen as the background loads for each of the three cloud
providers. These background loads are then combined with
the service size and required SLA level by the provider when
pricing a service request, as discussed below.

4) Dynamic pricing strategy: In order to evaluate the five
placement algorithms, the providers must support dynamic
pricing. Since little work has been done in researching how
such schemes should work asides from modeling how prices
are set for Amazon spot instances through reverse engineer-
ing [7], we therefore chose to implement a simplistic dynamic
pricing scheme for the purpose of the evaluation.

Our dynamic pricing scheme is a straightforward function
where the price set for a service offer is defined as a func-
tion of three factors: the background workload of the cloud
provider, the size of the service request, and the required SLA
level (availability). A step-function is defined to incorporate
the required SLA level by multiplying the unit price depending
on the currently available capacity. This means that the price
for deploying a service with a high availability requirement
is inversely proportional to the free capacity of the provider,
and that highly loaded cloud providers charge more for high
availability. The pricing function is illustrated in Table III.

TABLE III
SLA PRICING SCHEME: FACTOR g VS. BACKGROUND LOADS +

AVAILABILITY.

Background
Availability Bronze (90%) Silver (95%) Gold (98%)

0% ⇠ 50% 1 1 1
50% ⇠ 70% 1 2 4
70% ⇠ 85% 1 4 8
85% ⇠ 100% 1 8 16

The pricing scheme for the cloud providers are given by:

f (X, I) = g(X, I)⇥ X

C (I)
,

where X denotes the size of the service request, C(I) repre-
sents the available capacity of cloud provider I , and g is the
step-function defined in Table III.

With these configurations, we evaluate the behavior of the
studied algorithms in terms of execution time, rounds of
negotiations, and quality of solutions.

B. Evaluation results
Figure 3 and Figure 4 present the execution time (in

seconds) for each algorithm with respect to the number of
components in a service request. The value is given both as
the average value and the standard deviation. As illustrated,
the execution time for the Permutation algorithm increases
dramatically as the size of the service becomes larger. This is
due to the fact that Permutation algorithm is in essence a brute-
force approach, which iterates through the search space that
contains all possible partitions of components set. The number
of partitions B0

n,k rises rapidly as the number components
n increases, e.g., when n = 10, and the number of cloud
providers k = 3, the number of components are B0

10,3 = 9842.
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Fig. 3. Execution time for algorithms.

In contrast, the Random, Greedy, Round-robin, and First-fit
algorithms require much shorter execution time. The execution
time of Greedy and Round-robin increases linearly with differ-
ent slopes for increasing number of components. Considering
the fact that the execution time for an algorithm is proportional
to the number of negotiations, we do not present the numbers
of negotiations here. In our evaluation, a round of negotiation
lasted for around 0.6 seconds.
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Fig. 4. Execution time for algorithms.

To evaluate the ability of algorithms to find optimal solu-
tions, we reduce the total capacity of the providers by half,
i.e., 48 single core VMs, and repeat the same experiments.
As presented in Table IV, some of the algorithms now fail to
find an optimal solution due to this capacity constraint of the
providers.

TABLE IV
PERFORMANCE RESULTS FOR THE DEMONSTRATED ALGORITHMS.

Algorithms Optimal solution Suboptimal solution No solution
Permutation 2927 0 13
First-fit 23 2904 13
Round-robin 2 2866 72
Greedy 1630 1259 51
Random 6 2125 809

After investigating the ability of the algorithms to find a
solution at all, we next study the quality of the found solutions.
We quantify the distance between suboptimal solutions and
optimal solutions by defining the cost overhead, ↵, as

↵ =
cost� optimum

optimum
, (1)

where cost is the cost of deploying the service request gained
by the algorithm, and optimum is the cost of the optimal
solution for the service. The cost for cases where no solution
is found is denoted by +1. A lower ↵ indicates a better
solution, as it is closer to the optimal solution.

Notably, the Permutation algorithm always finds the opti-
mum solution if one exists. Therefore, for the Permutation
algorithm, ↵ = 0 is always true. For the other algorithms,
since cost � optimum, we have ↵ � 0.

We divide ↵ values into 5 intervals, i.e.,
[0%� 25%], (25%� 50%], (50%� 75%], (75%� 100%],
and (100%�+1). We then calculate the percentage of
solutions whose ↵-values fall into each interval for each
algorithm and present the results in Figure 5. The Permutation
algorithm is not included since its solutions always have an
↵-value of 0.

Finally, to compare the performance of the algorithms with
each other, we employ a similar metric as Equation (1):
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Fig. 5. Distribution of additional costs for deployment for non-optimal
algorithms compared with permutation one.

� =
cost1 � cost2

cost2
,

where cost1 an cost2 are two solutions gained by two com-
pared algorithms respectively.

TABLE V
PERFORMANCE COMPARISON.

Algorithms Permutation First-fit Round-robin Greedy Random
Permutation 0 76.6% 173.6% 7.62% 163.2%
First-fit � 0 52.9% �22.6% 47.0%
Round-robin � � 0 �40.1% �0.86%
Greedy � � � 0 155.2%
Random � � � � 0

We aggregate the results and present the average of � values
in Table V. A value in the table represents an average �, i.e.,
the comparison result for the algorithms in the corresponding
column and row, respectively.

From Figure 5 and Table V, we conclude that the Greedy
algorithm performs very well. For 90% of all 2940 services,
the deployment cost using Greedy is within 25% of the optimal
cost. The corresponding number for first-fit is around 50%.
Conversely, Round-robin and random perform much worse,
with deployment costs twice that of the optimal solution in
almost half of the cases.

To summarize the evaluation, Permutation is the best algo-
rithm for finding optimal solutions. As it evaluates the entire
search space, it either finds optimal solutions, or confirms that
no solution is available. The downside of the Permutation
algorithm is that the number of negotiation rounds grows
rapidly and thus, execution time quickly grows infeasible.
The First-fit algorithm on the other hand terminates when
the first feasible solution is found, if one exists. This means
that the quality of the solution always is the same as the first
solution obtained by the Permutation algorithm. Consequently,
the results shown in Table IV demonstrates that most of the
solutions generated by the First-fit algorithm are suboptimal.
Similar results are observed on Round-robin and Random and
we also remark that while the Random algorithm by chance
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might generate the optimal solution, it also has the largest
percentage of no solution found cases. Interestingly, the very
fast Greedy algorithm finds optimal solutions in more than
half of all cases, and for 90% of the rest of cases, the quality
of solution is within 25% from optimal. Greedy thus seems to
be a very good trade-off between the quality of the solution
and execution time.

As discussed previously, the exact numbers in the evalu-
ation depend on the provider pricing schemes, background
workload, size and composition of services, etc. However, we
observe that the Greedy algorithm seems to perform very well.

VI. CONCLUDING REMARKS

In this contribution, we study a series of algorithms for
cost-optimal cloud service deployment under dynamic pricing
schemes. We perform an experimental evaluation using simu-
lated deployments on cloud providers with dynamic pricing
schemes. We then compare the algorithms with respect to
execution time, ratio of successfully solved deployment cases,
and the quality of the solution. Our experiments suggest that
the greedy algorithm is a promising approach as it is very fast
and also finds good solutions in most cases.

We believe that results of this research could be helpful in
the design of scheduling algorithms and mechanisms in cloud
environments with dynamic pricing schemes.
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Abstract: Virtual machine placement is the process of mapping virtual machines
to available physical hosts within a datacenter or on a remote datacenter in a cloud
federation. Normally, service owners cannot influence the placement of service com-
ponents beyond choosing datacenter provider and deployment zone at that provider.
For some services, however, this lack of influence is a hindrance to cloud adoption.
For example, services that require specific geographical deployment (due e.g. to leg-
islation), or require redundancy by avoiding collocation of critical components. We
present an approach for service owners to influence placement of their service compo-
nents by explicitly specifying service structure, component relationships, and place-
ment constraints between components. We show how the structure and constraints can
be expressed and subsequently formulated as constraints that can be used in placement
of virtual machines in the cloud. We use an integer linear programming scheduling
approach to illustrate the approach, show the corresponding mathematical formulation
of the model, and evaluate it using a large set of simulated input. Our experimental
evaluation confirms the feasibility of the model and shows how varying amounts of
placement constraints and data center background load affects the possibility for a
solver to find a conclusion satisfying all constraints within a certain time-frame. Our
experiments indicate that the number of constraints affects the ability of finding a so-
lution to a higher degree than background load, and that for a high number of hosts
with low capacity, component affinity is the dominating factor affecting the possibility
to find a solution.
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Modeling and Placement of
Cloud Services with Internal Structure

Daniel Espling, Lars Larsson, Wubin Li, Johan Tordsson, and Erik Elmroth
Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden

Abstract—Virtual machine placement is the process of map-
ping virtual machines to available physical hosts within a
datacenter or on a remote datacenter in a cloud federation.
Normally, service owners cannot influence the placement of
service components beyond choosing datacenter provider and
deployment zone at that provider. For some services, however,
this lack of influence is a hindrance to cloud adoption. For
example, services that require specific geographical deployment
(due e.g. to legislation), or require redundancy by avoiding
collocation of critical components. We present an approach for
service owners to influence placement of their service com-
ponents by explicitly specifying service structure, component
relationships, and placement constraints between components.
We show how the structure and constraints can be expressed
and subsequently formulated as constraints that can be used
in placement of virtual machines in the cloud. We use an
integer linear programming scheduling approach to illustrate the
approach, show the corresponding mathematical formulation of
the model, and evaluate it using a large set of simulated input.
Our experimental evaluation confirms the feasibility of the model
and shows how varying amounts of placement constraints and
data center background load affects the possibility for a solver to
find a conclusion satisfying all constraints within a certain time-
frame. Our experiments indicate that the number of constraints
affects the ability of finding a solution to a higher degree than
background load, and that for a high number of hosts with low
capacity, component affinity is the dominating factor affecting
the possibility to find a solution.

Index Terms—service management, service structure, place-
ment, affinity, collocation

I. INTRODUCTION

IN cloud computing, infrastructure providers offer rapidly
provisioned hosting of services (applications). Software

providers provide and own the services and are the consumers
of the infrastructure providers’ resources. A service may be
comprised of several components, each of a specific type. This
can be, for example, a database server, a front-end, and a
logic tier in a typical three-tier Web application. A type in this
paper corresponds loosely to launch configurations used in
Amazon EC2 and server templates used by RightScale. Each
instance of a type shares a type-specific base virtual machine
(VM) image containing the startup state (operating system and
installed applications) and configuration. The total amount of
capacity of a service can be adjusted by changing the number
of running instances of each type. In this paper, we use the
term VM to denote VM instance, and explicitly state when we
refer to a VM type.

Manuscript submitted January 27, 2014.
Corresponding author: D. Espling (espling@cs.umu.se).

An infrastructure provider may collaborate with other remote
providers on workload sharing and resource subcontracting
to easier cope with spikes in resource consumption or other
unexpected events that affects hosting of services. There are
several different collaboration models [1], [2] and different
levels of collaboration between different sites [3]. Each
collaboration scenario has its own set of challenges, but in all
cases the general problem of performing placement (mapping
resources to VMs) locally is extended to also include resources
offered by collaborating sites.

In a collaborative cloud setting, the service owner cannot
normally affect on which site in the collaboration the different
instances comprising a service will be hosted. Instead, the
responsibility for placing the service components is delegated to
the infrastructure provider, and in some cases the infrastructure
provider may outsource components to a partner provider [1],
[2]. Many services can function well despite this lack or
influence, but the lack of control may have a negative effect
on services that need to be hosted in a specific fashion. For
example, some services are not allowed to be hosted in or
outside specific regions either for legislative reasons [4] or to
ensure that they are located close to end users. Furthermore,
fault-tolerance can be greatly improved by enforcing that
replicas of the same service component are not deployed on
the same physical hardware. Conversely, host-level co-location
of certain components may be essential to achieve low-latency.
These scenarios are the main motivations behind our work.

In [5], we presented early work on representing the structure
of services explicitly, making it possible for placement algo-
rithms and procedures to take the structure and internal place-
ment constraints (such as explicit co-hosting) into consideration
when performing service placement. In this paper we extend
on our previous work by (I) showing how the hierarchical
graph structure can be converted into formalized placement
constraints; (II) presenting a mathematical model for placement
optimization with constraints that can be used to extend existing
placement procedures with support for detailed and service
owner-controlled placement directives; and (III) demonstrating
the feasibility of this model and its performance through a set
of experiments.

II. BACKGROUND AND RELATED WORK

This section has been divided into two subsections: back-
ground and related work material concerning service placement,
and the same concerning inter-component affinities. This divi-
sion is due to the large body of research that has been performed
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in service placement, but without concern for inter-component
affinities, and the relatively small body of research that focuses
mostly on the latter. Our work is positioned in the middle of
these two fields, as it leverages service placement research and
extends it to include not merely affinity but a more holistic
view on service structuring.

Notably, our aim in this paper is not to design another
placement algorithm to tackle the scalability issues, but rather
to define a mechanism that makes it possible to model
dependencies between components of a service, including
hierarchies, affinities, and anti-affinities. Our work should be
seen as a complement to existing work on cloud placement
algorithms, as presented by e.g., Lampe et al. [6] and Genez
et al. [7]. We also remark that in our work, we use the
Integer Linear Programming (ILP) approach as an example
of how our service structure mechanisms can be used as a
set of constraints in cloud VM placement (as presented in the
following sections). However, our mechanism is not limited to
ILP formulations of the placement problem. Moreover, service
reallocation scenarios are not in the scope. A multi-cloud
scenario closed to this topic is studied in our previous work [8],
which presents a linear integer programming model for dynamic
cloud VM placement with expressibility of service reallocation
overhead.

A. Service Placement

The problem of optimizing placement of virtual machines
in cloud environments has lately attracted research both from
academia and industry [9], [10], [11], [12], [13]. However, a
potential problem from the perspective of service providers
that so far has received little attention is the loss of control
over how their services are deployed.

The need for the SP to affect how the service is de-
ployed is actualized by federations and other multi-site cloud
deployments as demonstrated by the RESERVOIR [1] and
OPTIMIS [2] projects. Data and computation provisioning
in multi-site clouds raises concerns regarding locality, both
from a performance, fault-tolerance, and a legislative point
of view [14], [15]. Currently, public clouds at best offer
coarse-grained mechanisms of specifying where application
components should be placed (e.g., choosing in which continent
components should be deployed [16]), but this functionality
does not extend to a finer level of detail and control, and is
furthermore not enforceable if clouds are part of a collaboration.

1) Split Service Deployment: Emerging technology in cloud
service placement supports automatically splitting a service
into several smaller sub-services, in order to spread the service
across different infrastructures. Although not yet reflected
in the literature, OPTIMIS [2] is one of the projects with
early results on splitting of services. Our ongoing work in
this context includes permutation-pack based optimization for
service deployment in multi-cloud environments [17].

We foresee that split service deployment could benefit greatly
from the service structure presented and discussed within
this paper, as the inherit graph structure can be used as a
good starting point for educated decomposition of a service
manifest (description) into smaller parts, while still retaining

critical relations between the different components making up
the service.

Mathematically, the service placement problem in cloud
environments can be formulated as a variant of the class
constrained multiple-knapsack problem that is known to be
NP hard. Approximation algorithms are proposed to tackle
the scalability issue and, e.g., Breitgand et al. [18] pro-
pose an integer linear program formulation for policy-driven
service placement optimization in federated clouds, and a
2-approximation algorithm based on a rounding of a linear
relaxation of the problem. Li et al. [17] have also suggested
a general approach to automatic service deployment in cloud
environments. An in-depth analysis of scalability of ILP solvers
is out of scope for this paper, but has been studied extensively
in the operations research community, e.g., by Atamtürk et. al.
in [19], and Koch et. al. in [20].

B. Inter-component Affinities

Brandic et al. proposed the concept of affinity (forced co-
placement of components) in [14]. Their work focused on
expressing inter-component affinity relations between grid
jobs in grid workflows, and the work presented in this paper
uses similar inter-component relationships for cloud service
components. In the management software provided by the
RESERVOIR project, host-level anti-affinity is supported [1].
Breitgand et al. [18] present a model and placement algorithm
framework with support for both anti-affinity and cross-
federation capabilities. They model the scheduling problem
using integer linear program formulations for placement strate-
gies, and focus on presenting a complete objective function to
be optimized.

In [5] we presented a model that allows service providers
to specify the structure and deployment directives for a
service using a directed acyclic graph structure with nodes
representing either service components or placement constraints.
This structure allows modeling of the cloud services inherent
structure, making it possible to preserve conditions and relations
throughout the lifecycle of the service.

Since the publication of our previous paper on this topic [5],
Jayasinghe et al. have published an alternative approach [21]
to solve a similar problem. Their work aims to solve three
related problems: (I) communication-aware VM clustering,
(II) mapping of VM groups to server racks, and (III) VM
to physical host machine mapping. Our work focuses on
Problem III, since we do not expressly take into account
the communication delays, but rather assume that a service
with tight communication delay bounds will use placement
constraints to ensure suitable hosting (VM group to server rack
mapping is in the cited work used to ensure this co-location).
The work published in this paper presents an approach to
extract and represent placement constraints in a mathematical
model solvable using integer-linear programming.

In theory, either the work earlier published by us [5] or
by Jayasinghe [21] can be modeled in this manner. However,
in the latter, the solution to the problem is found using an
explicit divide-and-conquer methodology while we investigate
an integer-linear programming approach that hopefully presents
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a stronger starting point for future work including costs for re-
placement. Our previous work [5] touched upon this subject, but
did not investigate it in detail. More recent work by Hermenier
et al. [22] formulates the rescheduling problem (finding a new
VM to physical host mapping that takes a prior mapping into
account) and present a constraints programming-based solution
and implementation based on the Entropy [23] autonomous
VM manager.

Alicherry and Lakshman [24], [25] have studied optimizing
the placement of VMs to minimize data access latencies
between pairs of processing VMs and data nodes, and between
sets of VMs, respectively. In the former case [24], they present
algorithms based on linear assignment algorithms for deploying
processing VMs close to data nodes with the objective to
minimize the total access time. In the later case [25], a new
algorithm based on 2-approximation is used with the goal to
minimize the traffic between VMs in a set (and hence also
between datacentres). Compared to our work, Alicherry and
Lakshman provide interesting solutions to find the optimal
solutions for these problems (subject to heuristics), whereas
our work strives for a more generally applicable approach
considering many kinds of constraints and scenarios, but where
the fully optimal solution might be harder to find.

In this work we extend upon previous work by supporting
several levels of constraints (both for affinity and anti-affinity),
by showing how they may be specified prior to deployment
using service structure graphs, and by showing how they
can be extracted and modeled as constraints in a placement
optimization algorithm. The constraints model developed in
this work and the comprehensive utility function from [18] are
complementary. We also provide an evaluation of the constraints
model using simulations.

C. Structured Services
As this paper extends on the work on presented in [5], this

section only briefly presents concepts from that work that
forms the foundation for the work presented in the upcoming
sections of this paper. We also revisit the example given in
that work and use it in the upcoming sections as input to our
placement optimization model that takes placement constraints
into account.

Where both affinity and anti-affinity are applicable we use
the term AA-constraints, and each term alone if something
applies only to either affinity or anti-affinity. AA-constraints, as
illustrated in Figure 1, are used to express either the affinity or
anti-affinity between two types, or between a type and a specific
placement, and allows the SP to instruct the IP how (but not
exactly where) each part of the service should be placed. We
consider three levels of AA-constraints, namely host, (cloud)
site, and geographical region due to clear real-world semantics
and implied relationships between these levels and due to prior
work in this area ([1], [14]). Hosts belong to a site and sites
reside in a region, thus, there is a clear hierarchical relation
between these levels. These levels are specifications of a more
general grouping mechanism for virtual machines: by extending
this work, arbitrary groupings can be supported.

As outlined in the previous work, for an affinity level l, if
VM types A and B are in the relation, all instances of these

types must be placed so that placement restrictions are adhered
to. Affinity is used to express that several service components
must be co-placed at a given level. Conversely, anti-affinity
requires that VM instances may not be placed on the same
level. Using several AA-constraints, it is possible to restrict
placement such that, e.g., all VMs must be placed on different
hosts, avoid a certain site, and may not be placed in a certain
region.

1) Service Example: An example of a service represented
using this model is presented in Figure 1. In this three-tier
Web application, immediately below the service root node an
affinity constraint states that all descendants of all resource
types must be located within the EU. An internal network
resource node specifies that all its descendants are connected
to a single local network instance. In addition, instances
of the front end compute resource type are accessible via
per-instance individual external IP addresses. An anti-affinity
constraint forbids placement of instances of the primary and
secondary database servers at the same physical host. For the
secondary database servers, an anti-affinity constraint explicitly
forbids placement of instances at the same host, for fault-
tolerance reasons. An individual block storage is attached to
each compute node instance.

Figure 1. A three-tier Web application service [5]. The uppermost affinity
constraint is expressed in a more compact set notation to improve readability
(cf. Section III).

III. PLACEMENT CONSTRAINTS

Extending the previous work, we present a more formal
definition of AA-constraints. They are specified using rules of
the following form:
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Affinity(L, A, B) (1)
Affinity(L, A) (2)

Affinity(L, A, l) (3)
AntiAffinity(L, A, B) (4)

AntiAffinity(L, A) (5)
AntiAffinity(L, A, l) (6)

Where L 2 {Region, Site, Host}, A and B are types of
VMs, and l is a specific region, site, or host (as appropriate,
considering the value of L). The semantics are as follows.
Equation (1) states that for the level L, an instance of type A
must be placed at the same location as at least one instance
of type B. Note that there is no such relation from B to A
unless explicitly stated, i.e., specifying that instances of type
B need not be placed at the same location as an instance of
type A. Equation (2) states that all instances of type A must
be co-placed at the given level L. Note that there is a semantic
difference between applying Equation (1) to the same type (i.e.,
Affinity(L, A, A)), compared to using Equation (2). The former
would enforce a pair-wise deployment of VM instances of type
A, while the latter would cluster all available VM instances of
type A. Equation (3) states that all instances of type A must
be placed at the named location l. Similar interpretations hold
for anti-affinity (expressed in Equation (4) – (6)), with the
difference that they prevent placement rather than require it.

We conclude this section with an example. The following
four rules specify that VMs of type A cannot be placed in
Sweden, an instance of type A must be placed at the same site
as some instance of type B, that all instances of B must be
placed at the same site, and that instances of type A must be
placed at distinct hosts.

1) AntiAffinity(Region, A, Sweden)
2) Affinity(Site, A, B)
3) Affinity(Site, B)
4) AntiAffinity(Host, A)

Thus, a placement optimization engine has to further infer
that: all instances of type A must be placed at the same site
as all instances of type B (Rule 2 and 3) and; the (single)
site on which all instances of type A and B are placed may
not be located in Sweden (Rule 1). Rule 4 does not allow the
placement engine to infer any new information, but does specify
rules that must be taken into consideration when placement is
performed.

In the upcoming section, we show how these AA-constraints
can be expressed prior to deployment using a simple to
understand graph structure.

IV. STRUCTURE-AWARE SERVICE PLACEMENT

Using the structure of a service it is possible to formulate
and subsequently enforce constraints and conditions to be con-
sidered when placing service components across collaborating
infrastructures. This is effectively a two step process where the
first step is to extract information from the service structure
and convert this into a suitable format, and the second step is to
utilize the structured data when performing service placement.

A. Structure Representation

Service structure conceptually constitutes a directed acyclic
graph of nodes, representing both types and constraints. Current
popular choices for representing cloud service definitions are
based on either XML or JSON formats, both of which are
hierarchical (tree-based, rather than graph-based) in nature.
This slight mismatch can easily be overcome, however, using
element identifiers and identifier references. An extension to,
e.g., the XML-based Open Virtualization Format [26] can be
constructed in the following way:

• Introduce a Structure element, which is the parent that
holds all structure-related information.

• As a child of Structure, introduce a Types element, which
in turn lists a set of Type elements that contain unique
element identifiers and human-readable names (such as
“Primary Database”).

• As a child of Structure, introduce a Constraints element,
which in turn lists a set of elements that are of subtypes of
a Constraint element, representing the various constraint
types that are listed in Section III, e.g. AntiAffinity-
Constraint. Such Constraint elements all have mandatory
attributes stating their direction (from/to) between types
using references to their corresponding element identifiers.

It is evident that such a representation can easily be both
generated and parsed and that the resulting data structure can
easily be converted into something equivalent. We do not
present a full representation XML Schema here for space
reasons, rather just note that the step between Figure 1 and
the matrices that follow is not as long as it may seem upon a
first glance.

B. Placement Constraint Extraction

Placement constraints between different VM types and
those between VM types and specific named locations can
be extracted from the service structure graph. Table I shows a
representation of host-level AA-constraints for the types of VMs
in the example of Figure 1. The table illustrates the relations
between four different VM types: Front End (FE), Logic (LO),
Primary DB (PDB), and Secondary DB (SDB). The relations
shown are extracted from the service structure and the values in
the matrix show in Table I are either 1 for affinity, �1 for anti-
affinity or 0 to denote that no specific constraints are present.
This notation lends itself well to ILP-based solutions (illustrated
later), and is a more compact alternative to having two separate
binary matrices (one for affinity and one for anti-affinity). This
approach can also be extended in the future to support soft
constraints with higher or lower values to indicate preference
or to be more easily integrated with other approaches not based
on ILP.

The second set of relations are those between VM types
and named elements of the three levels of AA-constraints, e.g.
to a specific region. These constraints are represented using
the same values and semantics as before. Table II shows the
region-level affinity relations extracted from the example in
Figure 1. It shows that the service has an affinity to the EU,
and therefore may not be placed in any of the other regions.
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Table I
HOST-LEVEL VM TYPE CONSTRAINTS EXTRACTED FROM FIGURE 1.

FE LO PDB SDB
FE 0 0 0 0
LO 0 0 0 0

PDB 0 0 0 0
SDB 0 0 -1 -1

Table II
EXTRACTED REGION-LEVEL AFFINITY RELATIONS FROM FIGURE 1.

US-E US-W EU Asia-S Asia-T
FE 0 0 1 0 0
LO 0 0 1 0 0

PDB 0 0 1 0 0
SDB 0 0 1 0 0

C. Constraint Model

Placement constraints extracted from the service structure
can be enforced by a placement engine with ability to handle
various constraints, e.g. [27], [12], making it structure-aware.
In this section, we present as an example a typical binary
integer programming formulation of the placement problem
that takes placement constraints into consideration. Without
loss of generality, we have chosen to provide a simple model
and straight-forward objective function to more clearly focus
on the important aspects of the formulation. Most notably, we
represent capacity by a single one-dimensional value, rather
than a multidimensional one (e.g. separate storage, network,
CPU, memory requirements).

The model does not permit omission of any VM in the set of
VMs that are to be placed. In effect, it is not allowed to avoid
placing any parts of the service. Such decisions are on a higher
administrative level, and we focus on finding a placement plan
that places all VMs.

Equation (7) is the objective function, minimizing the total
cost of hosting a set of VMs by placing them across a set of
hosts with different associated costs. In multi-site clouds, the
inherent differences in hosting cost may have a great impact
on the final placement solution. In single clouds, the cost
function may instead focus on consolidation to lower power
consumption. In this work we focus on a simple objective
function representing the multi-site case, as this is the scenario
where placement constraints has the largest impact. Future work
involves developing and modeling a more complex objective
function, also incorporating local VM consolidation.

Constraints derived from the service structure are modeled
in equations (8 - 14) and can be interpreted as follows:
(8) each VM has to be placed at exactly one host;
(9) the total required capacity for all VMs placed at a host

may not exceed the total capacity of the host;
(10) if there is a host-level anti-affinity constraint from one

VM type to another, there may not exist a mapping such
that a VM instance of the first type and a VM instance
of the second type are placed on the same host;

(11) if a VM instance is of a certain type, and there is a host-
level affinity constraint from that type to another, there
must exist a mapping such that the VM is placed on a
host along side a VM instance of the other type;

Given: V = set of VMs
T = set of VM types
H = set of hosts
Ih = index of h 2 H

vt = type of v, v 2 V, vt 2 T

ch = cost per capacity unit at h 2 H

caph = capacity of host h 2 H

reqv = requirements of v 2 V

typev,t = 1 if vt = t, 0 otherwise
vconst,u = host-level constraints between

t and u where t, u 2 V

hconst,h = host-level constraints between
t and h where t 2 T, h 2 H

Variable: mv,h = mapping of v to h, v 2 V, h 2 H

1 if v is mapped to h, 0 otherwise

Minimize:
X

v2V,h2H

(mv,h ⇤ reqv ⇤ ch) (7)

Subject to:

8v 2 V :
X

h2H

mv,h = 1 (8)

8v 2 V :
X

h2H

mv,h ⇤ reqv  caph (9)

8v, w 2 V, 8t, u 2 T, 8h 2 H :

vconst,u = �1 ^ vt = t ^ wt = u =)
mv,h + mw,h  1 (10)

8v 2 V, 8t, u 2 T, t 6= u :

vconst,u = 1 ^ vt = t =)
9w 2 V, wt = u, w 6= v :

8h 2 H : mv,h = mw,h (11)
8v, w 2 V, 8t 2 T, 8h 2 H :

vconst,t = 1 ^ vt = t ^ wt = t =)
mv,h = mw,h (12)

8v 2 V, 8t 2 T, 8h 2 H :

hconst,h = �1 ^ vt = t =) mv,h = 0 (13)
8v 2 V, 8t 2 T, 8h 2 H :

hconst,h = 1 ^ vt = t =) mv,h = 1 (14)

(12) if there is a host-level affinity relation within a VM type
(c.f. Equation (2)) and two VM instances both are of that
type, then both instances must be placed at the same host;

(13) if there is a host-level anti-affinity constraint from a VM
type to a host, instances of that VM type may not be
placed at that host; and

(14) if there is a host-level affinity constraint from a VM type
to a host, instances of that VM type must be placed at
that host.

For clarity we have presented only the constraints and
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equations for host-level constraints. The constraints for the other
levels are very similar: expressions similar to (Equations (10)
– (14)) have to be added to account for sites and regions to
support these levels of AA-constraints. We have chosen to omit
these here because the extracted data and mathematical model
for host-level are sufficiently similar to the other levels so
presenting only host-level constraints makes the model easier
to read. Furthermore, we again note that the type of relationship
here (host-level placement constraints) is merely a specification
of a more general arbitrary grouping of VMs for placement
constraints.

Also note that anti-affinity is expressed using one rule (Equa-
tion (10)) while affinity is expressed using two (Equations (11)
and (12)). This is because an anti-affinity rule that prevents
co-placement with at least one other instance implies a rule
preventing co-placement with all other instances. Concerning
affinity, these cases are not equivalent and hence two separate
rules are required.

As previously discussed, one of the specific challenges
related to cloud collaborations is that a local site has no control
over (and rarely has access to information about) host-level
specifics of remote sites: how many hosts are available, what
their performance capabilities are, etc. Because the ultimate
goal of a placement engine is to map VMs to specific hosts,
creating a placement mapping that works without access to
this information can be done in two ways:

1) Model the remote site as single (local) host with sufficient
capacity to host all v 2 V . AA-constraints between VM
types hosted at this host are assumed to be enforced by
the remote site and can therefore be disregarded.

2) Model the remote site as a set of (local) hosts with
sufficient capacity and create a valid mapping assuming
these hosts exist at the remote site.

The difference between these two alternatives is twofold:
where the placement mapping is constructed (either at both
sites or just the first), and that the second option does not
make placement at remote sites a special case where the
placement host-level AA-constraints are to be deferred to the
remote site. For clarity we have chosen to model according to
the second option as it avoids special cases. Investigating which
option is best suited for implementation in production systems
remains as future work. Notably, these abstractions are used
for modelling reasons, but the actual agreement for resource
exchange between two sites would normally be stipulated using
Service Level Agreements (SLAs).

D. Scalability of ILP-based Scheduling
In general, scheduling of VMs onto resources is an NP-

hard problem [25], [28] and heuristics are used to mitigate
the effects of scale on the solvability and solution time. In
this work we employ ILP techniques which provides the
optimal solution without heuristics, and so scalability becomes
a major concern. It has been previously shown that ILP
based scheduling approaches can achieve very good results for
scheduling, especially for medium-sized problems [29].

Improving the scalability of ILP solutions and solvers is
outside scope of this work, and instead we mitigate the problem

of scalability by performing scheduling on a per-service level.
For each scheduling iteration, the background load on hosts is
comprised of the capacity requirements of other services that
have been deployed previously. Hence, a truly optimal solution
that maximizes resource usage needs to consider all components
of all services. This is, however, not feasible to do in reasonable
time, since it is merely the original NP-hard scheduling problem
in a slightly different form. Furthermore, re-scheduling already
deployed VMs can cause service interruptions, and the resulting
downtime may lead to SLA violations. The relaxation of
considering each service in isolation, and only regarding the
capacity consumption of all others as background load, makes
the input to the scheduler sufficiently small to be manageable.

As previously outlined, our ILP model contains a set of VM
types, a set of VM instances, and a set of hosts. The number
of VM types in a service rarely exceeds a handful, and does
therefore not have a major impact on scalability. The number
of VM instances may be in the order of houndreds, but as
they are spawned from the same (small set of) VM types, the
number of permutations needed to be explored is very much
reduced. The critical factor is therefore the number of available
hosts, which in a cloud environment may be very large. This
results in a trade-off between scalability and optimality of the
solution. Subdividing the servers of the data center by, e.g.,
cluster by racks or by applying a heuristic gives scalability,
but not a globally optimal solution.

V. EXPERIMENTAL EVALUATION

To assess the applicability of the proposed approach, we
have conducted an extensive evaluation. The overall goal of
the experiments is to investigate the impact of affinity and anti-
affinity on service placement algorithms in terms of feasibility,
time-outs, and execution time. As there are no real-world
systems available with dependencies among components, we
use synthetic data. The main focus is not to evaluate the
performance of the proposed approach, but rather to investigate
the impact of various factors involved, and thus we believe
that synthetic data can fit this goal.

The experimental setup is a scenario consistent with the
example presented in Figure 1, where a service comprised
of four different types of VMs is analyzed. The number of
VMs instances of each type and their capacity requirements
are shown in Table IIIa. As shown in Table IV, hardware
discretization metrics are adopted to categorize VMs with
different computation capacities in a similar approach as used
by Amazon EC2. In the evaluation, we strive to place the entire
service across a set of hosts with discrete hardware capabilities
corresponding to the capacity requirements of the VM types. To
add another dimension, we have also assigned different costs to
local and remote hosts and the objective function is to reduce
the total cost of hosting the service. The host configuration
parameters are shown in Table IIIb. The host set is assumed
to only contain a subset of hosts from the infrastructure (see
Section IV-D), and only include local and remote hosts which
are eligible for placement in this scenario, i.e., located within
the EU.

The evaluation is carried out by generating a large set of cases
with varying amounts of AA-constraints and background load
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Table III
EXPERIMENTAL CONFIGURATION

(a) VM configuration.

Instance Type FE LO PDB SDB
Number of instances 40 20 20 20
Capacity req. / instance 2 4 8 8

(b) Host configuration.

Host Type Local Remote
Number of hosts 60 20
Capacity / host 32 32
Cost / capacity unit 10 15

Table IV
HARDWARE METRICS FOR INSTANCE TYPES.

Instance Size Small Medium Large XLarge XXLarge
CPU (# cores) 1 1 2 4 8
CPU (GHz/core) 1 2 2 2 2
Memory (GB) 1.7 3.5 7.5 15 30
Capacity 2 4 8 16 32

on the hosts. The AA-constraints are generated by assigning
constraint values to random coordinates in a 4 ⇥ 4 host-level
constraint matrix corresponding to the one illustrated in Table I.
The dataset is generated with the following properties:

1) Background load in the range of [0%, 10%, ..., 90%] of
the total host capacity (load is randomly distributed across
the set of hosts).

2) Affinity-constraints ranging between 0 and 16 elements
in the constraints matrix (randomly placed).

3) Anti-affinity-constraints ranging between 0 and 16 ele-
ments in the constraints matrix (randomly placed).

4) Cases where the number of elements needed for affin-
ity and anti-affinity combined exceeds the size of the
constraint-matrix (in effect, requiring 17 or more elements)
are ignored to improve simulation time.

5) Conflicting distributions (i.e., cases with conflicting
AA-constraints) are avoided by regenerating the input until
a valid distribution can be found.

6) N iterations of the above distributions, where N = 10
for these tests.

The dataset is thus comprised of 15300 input permutations,
each one encoded using the AMPL [30] modeling language
and solved with the Gurobi [31] solver. All experiments
are performed on a workstation with 2.70 GHz quad-core
CPU and 8 GB of memory. The problem set size (100 VM
instances to be placed across 80 hosts) is, to the best of our
knowledge, considerably larger than then amount of VMs
required to host a typical three-tier Web application. We forsee
that AA-constraints as a concept is more interesting for owners
of large and complex services than for those running services
with fewer components. Large services with AA-constraints are
also more difficult to place compared to smaller services, and
therefore provide a more interesting case for testing. To avoid
introducing unreasonably long delays in the placement process,
we specify a 30 seconds execution time limit for each problem
case. Cases that can not be solved within 30 seconds count as
timeouts.

Table V
OVERALL TENDENCY AS IMPACT FACTORS INCREASE.

Observation
Factor Load Affinity Anti-Affinity

Feasibility & & &
Time-outs & & %
Execution Time & % %

A. Results and Discussion

The results of the evaluation as such are highly dependent
on a number of factors, e.g. quality of the solver, number of
VM instances, requirements of VM types, random distribution
of background load, and randomly allocated AA-constraints.
Therefore, the discussion instead focus on how certain factors
such as affinity and anti-affinity affect the overall scheduling
process with respect to solvability, execution time, etc.

As previously mentioned we have elected to focus on three
main parameters; background load, affinity, and anti-affinity
while keeping the other factors constant. We have analyzed
these parameters in terms of how they affect the feasibility,
the amount of time-outs, and the execution time of the solver.
A summary of the results is presented in Table V, and further
analysis of the factors follows.

1) Impact of Background Load: As the background load
of the hosts increases, less residual capacity can be used to
schedule the current service, which also means that there
are fewer plausible placement options for the solver. In this
evaluation, the total capacity requirements for the service is
40⇥ 2+20⇥ 4+20⇥ 8+20⇥ 8 = 480 units. At 32 capacity
units per host, the total available capacity is 2560 units. This
means that the service requires at least 480/2560 = 18.75%
of the total host capacity, and thus the service can only be
placed at all if the hosts are running at 81.25% capacity or
less. Figures 2 and 4 confirm that feasible solutions are only
found when the background load is 80% or less.

2) Impact of Affinity Constraints: In our experimental
setting, affinity turns out to be the most dominating factor with
regards to feasibility. Figure 2 shows a varying background
load at different amounts of affinity (anti-affinity is set to zero).
As illustrated in the figure, the background load is dominated
by affinity, and only has a noticeable impact on the results
when it reaches very high numbers (80-90%).

Recall that affinity can be interpreted in two different ways;
affinity between two different types means that each instance
has to be co-hosted with at least one instance of the other type,
while affinity within the same type means that all instances of
that type needs to be co-hosted. Due to the large scale of the
service used in this evaluation, no single host has the capacity
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to do such co-hosting as the maximum capacity per host (32
units) is not sufficient to host all instances of any type (with a
combined required capacity of 80 or 160 units). In effect, this
means that if a random affinity distribution contains a constraint
on the diagonal (within the same type), then that particular
distribution cannot be solved using the range of available hosts.
This behavior is further discussed in the evaluation summary.
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Figure 2. Feasibility depending on affinity constraints and background load.

Figure 3 shows affinity when combined with anti-affinity
(at a constant background load of zero). As is evident when
comparing Figure 2 and 3, the results are very similar and
affinity is the dominating factor also in this case. The major
difference is when anti-affinity reaches over 30%, at which
point the anti-affinity has a considerably stronger impact than
affinity.
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Figure 3. Feasibility depending on affinity- and anti-affinity constraints.

3) Impact of Anti-Affinity Constraints: Another analysis was
performed to compare the impact between anti-affinity and
background load (illustrated in Figure 4). Based on this, we can
conclude that the large number of available hosts (80) compared

to the number of VM instances in the service (100) is able to
sustain a higher percent of anti-affinity constraints (compared
to affinity constraints) before the ability to successfully place
the service is affected.
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Figure 4. Feasibility depending on anti-affinity constraints and average
background load.

4) Timeouts and Execution Time: Figure 5 summarizes the
impact of affinity on timeouts and execution time. In this figure,
the execution time line is the average of all cases that could be
solved within 30 seconds, either by finding an optimal solution
or concluding that no solution is possible. The line marked
timeout shows the percent of experiments that could not be
solved within 30 seconds.

We can examine the data in three different segments:
• At zero affinity, the execution time and number of timeouts

are both very low. In this case, finding the optimal solution
is trivial for the solver as it can simply maximize the use
of the cheapest available resources.

• When affinity increases, the number of candidate optimal
solutions increases rapidly and the solver needs to evaluate
many more alternatives before concluding which place-
ment is optimal. As affinity increases to the 30% range,
the amount of feasible solutions (as shown in Figure 2)
decreases rapidly, which results in fewer timeouts.

• Above 30% affinity the execution time increases linearly
with regards to the amount of affinity (and hence the
number of constraints in the model). At the same time,
the solver can more accurately determine that no solution
will be found and the number of timeouts decreases.

5) Evaluation Summary: This evaluation has served to
illustrate how AA-constraints under varying background load
affect the placement of VM instances across as set of hosts.
As illustrated in Table V, the feasibility of placing a service
decreases as the background load and number of AA-constraints
increase. This is expected, as any service is easier to place
without any restrictions and with a lower background load
resulting in more available resources. The amount of time outs
increases with a higher number of anti-affinity constraints,
while it decreases as the number of affinity constraints
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Figure 5. Timeouts and execution time vs. affinity constraints

and the percentage of background load increase. Increased
background load and increased amounts of affinity constraints
reduce the amount of possible solutions and thereby also the
amount of time outs, while a higher number of anti-affinity
constraints will generate a large set of cases that the solver
can optimize. This is consistent with the results discussed
in Section V-A4. Finally, the execution time increases with
a higher number of AA-constraints (although not linearly, as
shown in Section V-A4), while it decreases with a higher
percentage of background load as the search space of candidate
hosts is smaller.

We have elected to count any case that cannot be solved
within 30 seconds as a time out failure. In realistic scenarios, it
is likely that the best solution found within the time-frame will
be used, even if it is suboptimal. The only way to determine
how far from optimality such suboptimal solutions are is to let
the solver run (possibly indefinitely) until an optimal solution
has been found, and compare the two according to the objective
function. Further experiments of this kind using our model
would be interesting as part of future work.

The relative impact of background load and AA-constraints
in these tests indicate that affinity is the most restrictive factor
followed by anti-affinity, and that placement feasibility is only
marginally affected by background load. It is very likely that
anti-affinity would instead be the dominating factor in a test
environment with fewer hosts but with a higher capacity per
host, as that would allow more instances to be co-placed at the
same host while making it harder to achieve anti-affinity with
fewer physical hosts. This observation can be turned into a
model used to quantify the ability of an existing infrastructure
to cope with AA-constraints by analyzing the number and
capacity of available hosts. Creating and evaluating such a
model is also a part of future work.

VI. CONCLUSIONS AND FUTURE WORK

This work is motivated by the current lack of influence
offered to service providers regarding placement of their service
components in clouds. This limitation makes cloud hosting
inappropriate for several service categories depending on, e.g.,
certain legislation, geographical proximity, and fault-tolerance.

Based on previous work on structured services, we have
in this paper (I) showed how hierarchical graph structures
can be converted into placement constraints, modeled as
matrices; (II) presented a mathematical model for service owner-
controlled placement directives, and; (III) demonstrated the
feasibility of this model using a large set of simulated cases
with varying amounts of background load and AA-constraints.
Together, the contributions of this paper enables infrastructure
providers to extend their placement engines and algorithms to
offer service providers influence over how services are placed
without giving up control over their own infrastructure. This en-
ables cloud adoption also for services with the aforementioned
requirements.

We have identified several interesting subjects for future
work, including support for arbitrary groupings and level divi-
sions for AA-constraints; to consider also inter-service relations;
studying how to best overcome the uncertainty of not having
access to complete information from collaborating remote sites;
and support for soft constraints (e.g. preferences) as exemplified
for network distances by Alicherry and Lakshman [24], [25].
We would also like to compare using suboptimal results (the
best found within a certain amount of time) to using the optimal
results obtained by allowing the solver to run uninterrupted.

There are also interesting tasks regarding the adoption of
AA-constraints into cloud infrastructure offerings. The added
complexity of supporting service owner-controlled placement
directives needs to be economically compensated for, and
devising such compensation models is a necessary step toward
adoption.
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science at Umeå University in 2008 with a 4.9 of
5 grade average. Mixing software development with
post-graduate studies that started in 2009, his research
interest is cloud computing infrastructure manage-
ment. He has worked on the European Commis-
sion’s RESERVOIR project, has taught the advanced
course at Distributed Systems at the Department
of Computing Science at Umeå University, and is
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Abstract—Efficient mapping of Virtual Machines (VMs) onto
physical servers is a key problem for cloud infrastructure
providers as hardware utilization directly impacts revenue.
Today, this mapping is commonly only performed when new
VMs are created, but as VM workloads fluctuate and server
availability varies, any initial mapping is bound to become
suboptimal over time. We introduce a set of heuristic methods
for continuous optimization of the VM-to-server mapping based
on combinations of fundamental management actions, namely
suspending and resuming physical machines, migrating VMs,
and suspending and resuming VMs. Using these methods cloud
infrastructure providers can continuously optimize their server
resources regardless of the predictability of the workload. To
verify that our approach is applicable in real-world scenarios,
we build a proof-of-concept datacenter management system that
implements the proposed algorithms. The feasibility of our
approach is evaluated through a combination of simulations and
real experiments where our system provisions a workload of
benchmark applications. Our results indicate that the proposed
algorithms are feasible, that the combined management approach
achieves the best results, and that the VM suspend and resume
mechanism has the largest impact.
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I. INTRODUCTION

To date, most research on Virtual Machine (VM) provision-
ing for cloud datacenters has focused on deploy time schedul-
ing, typically formulated as assignment problems where VMs
are mapped to Physical Machines (PMs). Common objectives
for these formulations are to optimize criteria such as Service
Level Agreements (SLAs) [5], provider revenue [9], perfor-
mance [23], utilization [37] etc. or a combination thereof.
Notably, there are several factors that complicates this prob-
lem. First of all, VM scheduling is an online problem as
both the arrival rate of new VM requests and the completion
time for provisioned VMs is unknown. In addition, resource
usage of individual VMs also varies over time. Changes to
the server pool, due to failures or energy-management actions
such as power-off and frequency-scaling, can also impact the
performance of deployed VMs.

These factors imply that any scheduling solution may be-
come suboptimal over time. To address this, we propose a
continuous VM remapping approach to optimize VM provi-
sioning as a complement to VM scheduling. Our approach
consists of a set of algorithms that enable cloud infrastructure
providers to automatically reconfigure the mapping of VMs to
PMs and adapt to the changes in workloads and the physical

environment. These algorithms are based on a combination
of management actions, i.e., suspend and resume of PMs,
live VM migration, and suspend and resume of VMs. This
continuous datacenter consolidation approach aims to maxi-
mize cloud provider revenue over time by minimizing power
consumption, maximizing PM utilization, and prioritizing im-
portant VM requests.

The remainder of the paper is organized as follows. Sec-
tion II describes our system model and the assumptions made.
Section III briefly elaborates on the problem and outlines our
optimization algorithms. Section IV describes the architecture
and implementation of our continuous datacenter consolida-
tion engine. Section V presents the experimental evaluation
on synthetic workload. Section VI surveys the related work
on datacenter management, autonomic computing, and VM
scheduling. Our conclusions are given in Section VII followed
by a presentation of future work, acknowledgments, and a list
of references.

II. SYSTEM MODEL OVERVIEW

This work is based on a model where a datacenter consists
of a set of PMs that are used to provision VMs on behalf
of users. For each time unit the datacenter provisions a VM
for a user, a profit r is generated, whereas a penalty f is
imposed to the provider if the VM is not running for a time
unit. In addition to any such SLAs, penalties, cloud providers
pay electricity costs for running the PMs. To model the power
consumption P of a physical server, as a function of the
CPU utilization u, we adopt the following model presented
by Blackburn [24]:

P (u) = Pidle + (Pmax � Pidle)u, (1)

where Pmax and Pidle are the power consumption for a server
at full load and at idle respectively. In this model, server
power consumption scales linearly with CPU utilization. So for
example, a server with Pidle = 200 W, Pmax = 300 W, and
10% CPU utilization requires P (10%) = 200 W + (300 W�
200 W)⇥ 10% = 210 W. Through empirical measurement of
various servers, this approximation has proven by Baroso et
al. to be accurate to within ±5% across all CPU utilization
rates [4]. They also argue that although the power consumption
of the CPU only accounts for roughly 40% of the power usage
of a server, it can be used to model the total usage [4].
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Finally, the power consumption of the whole data center can
be expressed as

Ptot =
X

i|physical machine pmi is active

P (ui),

where ui denotes the CPU utilization of physical machine
pmi. The monetary cost of running the data center during
a time interval (0, t) is therefore given by

C =
m

1000

Z t

0
Ptot,

where m represents the unit cost per kWh.
When mapping VMs to PMs it is possible to provision

more virtual resources than what is physically available in
the PM, a concept known as overbooking [33]. However,
some infrastructure providers e.g., Amazon EC2, provide a
one-to-one mapping between virtual and physical CPU and
memory resources [10], which means that PMs are not being
overbooked. Within the context of this work, we assume that
no overbooking is taking place.

Research on proactive optimization based on the historical
data and workload prediction has been performed extensively,
by e.g. Ali-Eldin et al. [2]. In our model, we assume that
the infrastructure provider has no knowledge of the future
workload and no prediction is taking place. However, we
believe that it is possible to enhance our approach with such
prediction techniques.

A core technology to optimize the mapping of VMs to PMs
during operation of the datacenter is live VMs migration [6].
Live VM migration allows a running VM to be moved from
one PM to another without shutting it down. Live migration
thus reduces SLA penalties as the VM is accessible by
users during migration, but at the cost of migration taking
considerable time to complete and consuming much hardware
resources. To reduce both migration time and resource usage,
we use the KVM XBZRLE delta compression migration algo-
rithm [32] in our work as delta compression can significantly
reduce the migration downtime, migration time and the amount
of transmitted data during live migration for memory-intensive
workloads [32], [36]. The total migration time of a VM is
given by

dt = ti + tc + ts + tr,

where ti, tc, ts, and tr denote the time for iteratively transfer-
ring memory pages, the time for suspending the VM at source,
time for CPU/BIOS transfer and the time for resuming the
VM at destination, and pulling respectively. The three latter
operations are usually fast and vary little between VMs, that
is, tc, ts, and tr are typically small. The iterative transfer
time is harder to predict, but is usually a function of the
active memory usage and the memory size of the VM and
the network bandwidth b.

III. THE PROPOSED APPROACH AND HEURISTIC METHODS

At any point in time, multiple events can take place. We
define three events and prioritize them in descending order as

PM crash, VM exit, and VM arrival. Our proposed approach
dynamically handle these events according to their priori-
ties, and adapts the cloud infrastructure to the environmental
changes in a reactive manner. Simple management actions are
used for optimization of the datacenter, i.e., (i) suspend/resume
VMs, (ii) VM migration, and (iii) suspend/resume PMs. For
an event of PM crash, a crashed PM not only affects all VMs
hosted, but it must also be excluded as a potential destination
for VMs. Upon an event of PM crash, we simply suspend all
VMs hosted on that PM. A VM exit event has a higher priority
than a VM arrival event, as capacity released by a terminated
VM can be used to accept more VMs into the datacenter.
When a VM terminates, the occupied resources are released,
increasing the residual capacity of a PM. All VMs arriving
are added to a list, namely, candidateList, which also may
include VMs suspended in the past. VMs in candidateList
can be prospectively executed depending on the decision by
the optimization process. A summary of the actions taken on
the occurrence of events is shown in Algorithm 1.

Algorithm 1: handleEvents(events)
1 for e 2 events do
2 if PM pm crash then
3 Exclude pm and all VMs hosted;
4 else if VM vm quits then
5 Release capacity occupied by vm;
6 else if VM vm arrives then
7 Add vm to candidateList;

Once the event handling procedure is completed, a con-
solidation action presented in Algorithm 2 is triggered to
optimize the profit gained by VM provision. In particular, if
an infrastructure provider has too limited capacity, the profit
can be maximized by selecting which VMs to run. In order to
make an optimal selection, the following two questions need
to be answered.
1. Which VM should be placed first?

Intuitively, given a set of VMs, the ones that are most
profitable should be placed with higher priorities. However,
in our model, we also need to consider the penalty of
suspending a VM. In this contribution, we prioritize a
VM using the sum of its associate profit and penalty. For
example, given two VMs, vm1 with profit r1 and penalty
f1, and vm2 with profit r2 and penalty f2, our algorithms
place vm1 prior to vm2 if r1 � f2 > r2 � f1 (even
when r2 > r1).

TABLE I
EXAMPLE OF VM PRIORITIZATION.

Option Profit Penalty Gain
Run vm1, and suspend vm2 r1 f2 r1 � f2
Run vm2, and suspend vm1 r2 f1 r2 � f1

Table I compares two different options with respect to
potential gains from the perspective of the infrastructure
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provider. In this case, the first option is preferable if
r1 � f2 > r2 � f1, or equivalently r1 + f1 > r2 + f2.

2. Which VM should be selected to be replaced?
Given a VM vm (with profit r and penalty f ) that can
not be hosted by any PM, it is possible to suspend another
already running VM vm0 (with profit r0 and penalty f 0)
in PM pm and instead run vm if (i) pm is capable of
running vm (after the suspension of vm0) and (ii) it is
more profitable to run vm than vm0. Following the strategy
aforementioned, the VM with minimum (r0+f 0) is selected
as the victim VM, i.e., the VM to be suspended.

Algorithm 2: consolidation()
/

*

consolidation

*

/

1 if suspend/resume VM is allowed then
2 Add all suspended VMs to candidateList;
3 Sort VMs in candidateList by (price + penalty) in

descending order;
4 for vm 2 candidateList do
5 handleVM(vm);
6 if suspend/resume PM is allowed then
7 if VM migration is allowed then

// Release PMs via VM migration.

8 releasePMsbyMigration();
9 else

// Suspend PMs without VM running.

10 suspendIdlePMs();

In order to optimize the datacenter operation, our approach
is to generate a list of consolidation actions according to
Algorithm 2. If the used algorithm allows for suspend/resume
of VMs, the first step is to recycle all the currently suspended
VMs and enable them to be possibly resumed by adding
them to candidateList (see Line 2). All VMs (also referred
to as object VMs) in candidateList are to be handled
sequentially, in a descending order that they are ranked by
(price + penalty). There are two possible outcomes of the
action handleVM, i.e., either suspend the current VM, or place
and start VM in some physical server. The final step in a
round of optimization is to suspend idle PMs if the feature is
enabled (see Line 6–10). More PMs may be released and then
suspended, depending on whether VM migration is allowed.

As depicted in Line 2 in Algorithm 3, we use best-fit as
the baseline strategy to find an active PM for a VM. The
motivation for this is to load each PM as much as possible,
maximizing the utilization of the PMs and thus minimizing
the residual capacity of the whole infrastructure. If this is not
feasible (i.e., no PM can host the VM), a simple solution
is to try starting a suspended (or a new) PM (see Line 6)
and place the VM there. However, in order to decrease the
total number of active PMs, prior to starting a new PM, the
proposed algorithm strives to readjust the placement of VMs,
to see if there exists a PM that can host the VM after migrating
some VMs to other PMs (see Line 4). The details of this can
be found in Algorithm 4).

Algorithm 3: handleVM(vm)
/

*

This function is for handling newly

arrival VMs and VMs that were

suspended in the previous period.

*

/

1 pms active PMs;
// Find a PM for vm using the best-fit

strategy.

2 pm best-fit(vm, pms);
3 if pm not found and VM migration is allowed then
4 pm findPMbyMigration(vm);
5 if pm not found then
6 pm attempt to start a new PM;
7 if pm not found and suspend/resume VM is allowed then

// Find a victim VM and replace it

with vm.

8 pm findPMwithVictimVM(vm);
9 if pm found then

10 placeVM(vm, pm);
11 else
12 suspendVM(vm);

Finally, if no suitable PM is found after trying all of
the above approaches, an aggressive approach is applied to
pick one of the running VMs as the victim, suspend it, and
replace it with the object VM (see Line 8, as described in
Algorithm 5). This step is conducted only if replacing the
victim with the object VM is feasible and more profitable.
Note that our algorithm currently only selects one VM as
victim, it is however possible to extend this to enable selection
of multiple VMs as victims instead.

To find if re-arranging the mapping of VMs by live mi-
gration them can make room for vm on some PM, all active
PMs are sorted by residual capacity in descending order in
Algorithm 4. The PMs are then evaluated by looking at the
feasibility of migrating a set of VMs to other PMs. When
evaluating a PM, we only consider migrating VMs that are
smaller than vm (see Line 6), as testing a VM larger than vm
is meaningless (namely, if a PM can be found for this case,
just place vm there without adjusting any VM placement).
Also, note that as a machine can be represented by multiple
dimensions (CPU, memory, storage, etc), the size function in
Algorithm 4 can have different definitions depending on the
application scenarios. In this work, it is defined in terms of
CPU cores while other dimensions (memory, storage, etc.)
are used as constraints when evaluating the feasibility of
placement on PMs. The algorithm also strives to minimize
the number of migrated VMs, as migration takes time and
consumes resources. In addition, to further reduce the number
of VMs migrated, all potential VMs are sorted by size in
descending order (see Line 7). VMs to be migrated are added
to a plan by function addToMigratitonPlan (see Line 13).
The evaluation procedure stops when the first suitable PM is
found, and the migration plan is executed by commitMigrati-
tonPlan (see Line 20). If a PM is not suitable, the migration
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Algorithm 4: findPMbyMigration(vm)
/

*

Find a PM that can host vm after

migrating some VMs to other PMs.

*

/

1 pms all active PMs;
2 Sort pms by residual capacity in descending order;
3 for p 2 pms do
4 feasible FALSE;
5 vmSet VMs hosted in p;
6 vms {v 2 vmSet | size(v) < size(vm)};
7 Sort vms by capacity in descending order;
8 pmset pms \ {p};
9 for v 2 vms do

// Find a PM (not p) to host v
using the best-fit strategy.

10 pm best-fit(v, pmset);
11 if pm not found then
12 break;
13 addToMigratitonPlan(v, pm);
14 if p can host vm then
15 feasible TRUE;
16 break;
17 if not feasible then
18 cancelMigratitonPlan();
19 continue;
20 commitMigratitonPlan();
21 return p;

plan is canceled by cancelMigratitonPlan (see Line 18).
Algorithm 5 introduces the strategy of finding a victim VM

to be replaced by a VM in candidateList. The basic idea is to
select the VM with the minimum value of (price + penalty)
among all selectable VMs (see Line 9-13). Once a VM is
selected as a victim VM, it is suspended and moved to a
waiting list and may potentially be resumed depending on the
future optimization decision.

The final action in each consolidation process is to try
to reduce the power consumption of the infrastructure by
suspending all idle PMs, or by releasing more PMs by VM
migration. To empty an active PM, all hosted VMs need to be
migrated to other PM(s). Intuitively, PMs with higher residual
capacity are more likely able to be emptied, and thus PMs
are evaluated in the order of residual capacity (see Line 2 in
Algorithm 6). Once again, we use a best-fit strategy whenever
finding a new location for a VM (see Line 8).

Finally, by enabling or disabling the three management
actions identified, we end up with 8 algorithms to evaluate
in Section V, as listed in Table II.

Notably, scheduling algorithms based on bin-packing [7] or
knapsack approaches are exponential in complexity, limiting
their applicability for large-scale problems. As our algorithms
are all with polynomial complexity this means that they can
be used for larger problem sizes than what is studied in our
simulations.

Algorithm 5: findPMwithVictimVM(vm)
/

*

Find a PM that can host vm after

suspending a vm hosted.

*

/

1 destination null;
2 minRF  price(vm) + penalty(vm);
3 pms all active PMs;
4 for p 2 pms do
5 vmSet VMs hosted in p;
6 vms {v 2 vmSet | price(v) + penalty(v) <

minRF};
7 Sort vms by (price + penalty) in ascending order;
8 for v 2 vms do
9 if p can host vm after suspending v then

10 victim  v;
11 destination p;
12 minRF  price(v) + penalty(v);
13 break;
14 if destination is not null then
15 suspendVM(victim);
16 return destination;

Algorithm 6: releasePMsbyMigration()
/

*

Release PMs through VM migration

*

/

1 pms all active PMs;
2 Sort pms by residual capacity in descending order;
3 for p 2 pms do
4 feasible TRUE;
5 vms VMs hosted in p;
6 pmset pms \ {p};
7 for vm 2 vms do

// Find a PM (not p) to host vm
using the best-fit strategy.

8 pm best-fit(vm, pmset);
9 if pm not found then

10 feasible FALSE;
11 break;
12 addToMigratitonPlan(vm, pm);
13 if not feasible then
14 cancelMigratitonPlan();
15 continue;
16 commitMigratitonPlan();

// Suspend PM p when it is idle.

17 suspendPM(p);
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TABLE II
ALGORITHMS AND MANAGEMENT DIMENSIONS

algorithm suspend/resume suspend/resume VM
PMs VMs migration

baseline
pmSR X
vmSR X
vmM X
vmSRpmSR X X
vmMpmSR X X
vmMvmSR X X
combined X X X

IV. ARCHITECTURE AND IMPLEMENTATION.

To verify that our algorithms are valid in real-world scenar-
ios, we design and implement a software package, Automatic
Continuous Datacenter Consolidation (ACDC), capable of
managing PMs and VMs using the algorithms described in
Section III. PMs can be suspended and resumed, and VMs
can be started, shutdown and migrated. The ACDC is built on
the open-source KVM [18] hypervisor in combination with
libvirt [22] to provide the virtualization backend.

The architecture consists of three components, as shown in
Figure 1. All components are implemented in Java and the
complete package runs on one PM, the controller. To perform
consolidation actions on the worker PMs, where ACDC is
not running, ssh remote invocation by means of shared key
authentication is used. This means that remote libvirt virsh [22]
commands for suspending and resuming VMs and migration
of VMs, as well as scripts to suspend and resume PMs, can
be executed by the controller PM.

PM1
PM...

KVM Hypervisor

sysstatvirt-top

VM1
VM2 VMk

...

PMn

VM...

...

...

CollectorAggregator

ConsolidationEngine

TaskExecutor

ACDC

DCMonitor

Fig. 1. Architecture overview.

A. DCMonitor.

To continuously collect the state information of the data
center, we implement a monitoring system that consists of
two subcomponents. A Collector installed in each phys-
ical machine, and an Aggregator is co-located with the
ConsolidationEngine. The collector is built on two libraries,
virt-top [13] and sysstat [1]. virt-top is a top1-like utility for
showing stats of virtualized domains. It is employed to collect

1top is a task manager program inherent in many Unix-like operating
systems.

the cpu, memory and IO usage info of virtual machines. Note
that virt-top only collects the total memory allocated to the
guest, not the memory being used. The sysstat utilities are a
collection of performance monitoring tools for Linux hosts.
They are used to gather the resource usage info of physical
hosts. Using the statistics collected by the Collector in each
physical host, the Aggregator constructs a global view of the
state of the data center.

B. ConsolidationEngine.

The ConsolidationEngine analyzes the data from the DC-
Monitor and decides on what actions to take in order to opti-
mize the operation of the datacenter, according to the selected
algorithm. All algorithms in Table II are evaluated through
simulation. In addition to this, the combined algorithm and
the baseline algorithm are also used to verify the simulation
results for small-scale real experiments. The output from the
ConsolidationEngine is an Execution Plan which is an ordered
list of optimization actions.

C. TaskExecutor.

The TaskExecutor is designed to perform the actions pro-
duced by the ConsolidationEngine. It is running as a daemon,
waiting to accept Execution Plans from the Consolidatio-
nEngine. Once an Execution Plan arrives, it is processed and
the tasks are performed in order. The TaskExecutor controls
the underlying virtualized infrastructure by using libvirt virsh
commands.

V. EVALUATION

We compare the eight algorithms defined in Table II by
comparing the impact of each management action in isolation
and combination on provider profit, PM utilization, number of
running and suspended VMs. This is done both through sim-
ulations and real experiments. Note that, in order to increase
the readability of the figures, data values are aggregated for
each hour, unless otherwise specified.

A. Overall experiment setup.

We model the datacenter as a set of PMs where each server
has 32 cores and 56G of memory. A limitation factor (� = 0.9)
is set to restrict the maximum number of cores loaded for each
PM, i.e., for each PM, 28 cores are allowed to be occupied by
VMs. This is reasonable as some resources are needed by the
hypervisor, for example to emulate the underlying hardware
environment and to migrate VMs, and by the host operating
system. The server power consumption is 100 W when idle
and 560 W when fully utilized, which is consistent with power
usage for the HP ProLiant DL165G7 servers used in the real
tests. The price of electricity is set to be $0.07 per kW/h.

We consider 7 different VM instance types similar to
offerings by Amazon EC2. Their hardware characteristics are
illustrated in Figure 2, and their hourly prices as well as the
associated SLA penalties for downtime are listed in Table III.
VM arrival is modeled using one Poisson process for each
instance type, seven processes in all. A parameter associated
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with these processes is �, which indicates the average arrival
interval. Note that the time unit used in simulation is hours,
while minutes are used in real test.
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Fig. 2. VM instance types.

TABLE III
SETTING OF PRICES AND PENALTIES FOR VM INSTANCES.

VM types S S+ M M+ L L+ XL
Price ($/h) 0.04 0.06 0.09 0.14 0.20 0.31 0.46
Penalty ($/h) 0.40 0.60 0.90 1.40 2.00 3.10 4.60

B. Simulations.

For the simulations, we use 48 PMs, which is a common
size for a rack in a datacenter [4]. We study three different
scenarios with � = 0.4 (high load scenario), � = 0.5 (medium
load scenario), and � = 0.6 (low load scenario), respectively.
Each new VM instance is assigned a lifetime ranging from 1
hour to 60 hours, uniformly distributed. By aggregating the
capacity over all cores for each instance type (22 cores), we
arrive at an average capacity requirement of 22

� ⇥
1+60

2 = 1342
cores per hour for the medium load scenario. These parameters
are selected to make the average workload demand (1342/(48⇤
32) = 87.4%) close to the selected infrastructure limitation
factor (� = 0.9). All VMs arrive during the first 252 hours,
and then terminate within 60 hours after its arrival.

To compare the performances of algorithms on increasing
the profit for the infrastructure provider, we run 10 tests for
each value of �. Note that the workload in each test case is
the same for all eight algorithms. However, the workloads for
any two tests are different, although they have the same VM
arrival interval parameter.

1) Simulation Results: In the following sections we use one
of the 10 medium load tests (� = 0.5) as an example to
investigate the behavior of the algorithms in detail. We study
the profit (p0) for each of the seven other algorithms compared
with the profit (p) achieved by the baseline algorithm using
a metric defined by ↵ = (p0 � p)/p. The average ↵ values
of the 10 medium load tests are presented in Figure 3. Some
interesting findings can be observed in Figure 3, including
(i) that algorithms with suspend/resume of VMs enabled
show more significant improvements with average ↵ values
higher than 20%, (ii) enabling suspend/resume PMs increase
profit only slightly, by less than 5%, and (iii) using live VM
migration can improve the profit by more than 10%.
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Fig. 3. Average profit improvement (all other algorithms vs. baseline).
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Fig. 7. VM migration cost: with/without suspend/resume PMs.

We next study the impact of the suspend/resume PM man-
agement action in more detail. Figure 4 shows that the average
PM CPU usage with suspend/resume of PMs enabled is higher
than without. In particular after 252 hours, these differences
become larger, as there are no arriving VM requests resulting
in a larger number of PMs that can be suspended. This is
evident when VM migration is enabled (see subgraphs (c)
and (d) in Figure 4, and subgraphs (c) and (d) in Figure 5).
Enabling suspend/resume of PMs is also beneficial for the
power consumption of the whole infrastructure. Similar to the
CPU usage and number of active PMs, the differences are
larger when the PMs are under low load compared with when
the load is high, as illustrated in Figure 6. Also as expected, the
difference for PM expenses is even larger when VM migration
is enabled (see subgraphs (c) and (d) Figure 6);

Figure 7 demonstrates the collected average migration cost
over time for algorithms with VM migration enabled. In order
to improve the readability the migration costs are aggregated
every 2 hours. Even so, we see that the migration costs are
very low due to the short migration times. For example, it
only takes 8 seconds to migrate an XL instance, resulting in
a monetary cost of $0.0102. From Figure 7, we also observe
that, for algorithms with suspend/resume PMs, VM migration
costs are much higher than others, as Algorithm 6 migrates all
VMs before suspending an active PM. Looking at subgraphs
(c) and (d) in Figure 5, it is observed that benefiting from VM
migration, more PMs can be suspended compared with other
algorithms without VM migration.
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Fig. 4. CPU usage: with/without suspend/resume PMs.
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Fig. 5. No. of active PMs: with/without suspend/resume PMs.

Regarding the impact of VM migration, Figure 8 illustrates,
for each policy, how CPU usage changes when migration
is used. The impact is largest for the policies that allow
suspend/resume of VMs (vmM)pmSR, and for the combined
policy (as compared to vmSRpmSR). Looking at subgraph (c),
we can see that there is almost no difference between vmSR
and vmMvmSR. This is because in our current settings,
suspend/resume VM is much more profit-efficient than VM
migration, and it is dominating. This is also consistent with
the data plot in Figure 3, where the differences among vmSR,
vmSRpmSR, vmMvmSR, and combined are very small.

Turning to the impact of suspending and resuming VMs,
Figure 9 plots the number of VMs suspended over time, as
well as the their total number of cores. The subgraph (a) shows
that, in general, the algorithms without the feature of resuming
VMs (e.g., pmSR, and vmMpmSR) suspend fewer VMs than
others. In particular, looking at the combined algorithm, we
can see that it suspends the largest number of VMs most of
the time (see the curve in bold). However, the total number
of cores that belongs to suspended VMs is usually fewer than
other algorithms (see subgraph (b) in Figure 9).

This observation indicates that VMs suspended by al-
gorithms with this feature enabled are comparably smaller
instances. This is consistent with our algorithm design, as

when the capacity of the infrastructure is tight, Algorithm 5
selects VMs with smaller values of (price + penalty) to
suspend in order to release more capacity and run VMs with
higher (price + penalty) values. According to the settings in
Figure 2 and Table III, smaller instances are using smaller
(price + penalty) values (but this is not a necessity). This is
also consistent with the penalty plots in Figure 10.

Finally, we study the impact of the data center workload
by varying the datacenter workload parameter (�). Table IV
presents aggregated results of 10 runs each with parameters
� = 0.4 (high load), � = 0.5 (medium load), and � = 0.6
(low load), respectively. In the high load scenario, the number
of active PMs is high along with CPU usage. As there are
quite a few VMs not running, the datacenter pays significant
penalties and the profits are negative. Here, we note that base-
line, pmSR, vmM, and vmMpmSR all perform very similar,
with an average loss around $50 per hour. In contrast, the
algorithms that can start and resume VMs (vmSR, vmMvmSR,
vmSRpmSR, and combined) and thus replace low-profit VMs
when more important VM workload arrive, all perform much
better with average losses around $11 per hour. In the medium
load case, we observe similar resource usage in the high load
scenario, but for medium load, there are only a few VMs that
are suspended as the average penalties are much lower and the
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Fig. 6. PM expenses: with/without suspend/resume PMs.
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Fig. 8. CPU usage: with/without VM migration.
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Fig. 9. No. of VMs suspended and No. of VM cores suspended.
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Fig. 10. Penalties with/without suspend/resume VMs.

TABLE IV
AGGREGATED RESULTS FOR DIFFERENT WORKLOADS.

� metrics baseline pmSR vmSR vmM vmSRpmSR vmMpmSR vmMvmSR combined

0.4

profit ($/h) -56.15 -56.13 -11.33 -48.60 -11.31 -49.73 -11.40 -11.30
penalty ($/h) 118.20 118.20 77.42 111.32 77.42 112.39 77.48 77.42
no. act. PMs 45.7 43.3 45.7 45.7 43.2 39.4 45.7 39.2
CPU usage (%) 74.20 74.71 76.74 75.07 77.29 84.36 76.75 84.94

0.5

profit ($/h) 48.10 49.72 58.80 53.28 59.46 53.96 59.50 59.80
penalty ($/h) 12.05 12.05 1.72 9.67 1.72 9.67 1.66 1.61
no. act. PMs 45.1 43.1 45.0 45.1 42.6 38.8 45.1 38.6
CPU usage (%) 72.73 73.47 73.85 73.00 74.53 84.24 73.87 85.31

0.6

profit ($/h) 50.66 50.68 50.66 50.66 50.68 50.71 50.66 50.71
penalty ($/h) 0 0 0 0 0 0 0 0
no. act PMs 39.7 36.6 39.7 39.7 36.7 31.8 39.7 31.8
CPU usage (%) 69.88 71.66 69.88 69.89 71.66 83.72 69.89 83.72

datacenter is profitable. Regarding the different algorithms, we
note that also here, the ability to suspend and resume VMs is
the key, with these four algorithms keeping penalties around
$1.7 per hours and profits around $59 per hour. Notably, as
the PMs are less loaded in this scenario, migration of VMs
actually make a difference, with vmM and vmMpmSR having
penalties of $9.7 as compared to $12 for baseline and pmSR.
In the low load scenario, no penalties are paid as there for
all algorithms always are enough resources to run all VMs.
There are some differences in average number of PMs used
and subsequently in CPU usage. The ability to suspend and
resume PMs brings the average number of PMs down from
39.7 (algorithms baseline, vmSR, vmM, and vmMvmSR) to
36.7 (pmSR) and 36.7 (vmSRpmSR). Combining this with
VM migration to be able to achieve consolidation has even
greater impact, with 31.8 PMs used on average for vmMpmSR
and the combined algorithm.

C. Real-world Demonstration.
In order to verify the validity of our approach, we perform

a real-world test on a small testbed with 5 nodes, using our
software described in Section IV. The PMs used are HP
ProLiant DL165G7 @ 2.1 GHz with 32 cores and 56 GB of
RAM each, connected by a top-of-the-rack Gigabit Ehternet
switch. One node is functioning as controller and the other
four nodes are worker nodes, hosting VMs. The setup of the
testbed in terms of nodes and installed software is shown in
Figure 11.

One debatable point is the setting of the peer-to-peer

connection bandwidth among PMs, as network congestion
issues can reduce the available bandwidth. However, we argue
that by tuning the over-subscription factor and constructing
the network topology in a proper manner [4] the effect of
this problem can be reduced. Also, as VM migrations are
carried out in a sequential order using our approach, network
congestion potentially introduced by parallel VM migration
can be mitigated.

Controller Node
ACDC

NFS Server

Worker Nodes
KVM/Libvirt
NFS Client

Fig. 11. Setup of the testbed.

With a limitation factor � = 0.9, the maximum number of
cores available for VM provisioning is 4⇤32⇤0.9 = 115. The
test starts with an empty datacenter with new VMs arriving
at an average rate of 6 minutes per instance type, namely,
following a Poisson process with � = 0.1. The VM lifetime
is set to 24� 36 minutes normally distributed and the number
of VMs to be provisioned during 96 minutes is 69. All VMs
arrive in the first 60 minutes. For the real-world demonstration
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we use the same instance types as in the simulation and the
number of instances of each type is limited to 10. Using this
configuration, the average demand of cores during the test
duration of 96 minutes is 105 which is close to the maximum
115.

Each VM is running a synthetic benchmark bw mem, which
is a memory write benchmark from the LMBench [25] suite.
The bw mem benchmark allocates twice the specified amount
of memory, zeros it, and then copies the first half to the second
half. For each of the instance types, the amount of memory
allocated to bw mem and the number of parallel threads used
is tuned in order to consume 50% of the VMs memory and
100% of the vCPU.
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Fig. 12. CPU usage with combined: simulation vs. real.
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Fig. 13. CPU usage with baseline: simulation vs. real.

Figure 12 and Figure 13 present the CPU usage of the whole
testbed over time in simulation and real tests. First of all, we
remark that the behaviour of our algorithms (combined and
baseline) in simulation is consistent with that in real tests.
Another observation is that, in most cases the CPU usage in
the real-world test is lower than in the simulation. The reason
for this is that, in the simulation the CPU usage of a PM is
defined by the proportion of cores occupied by VMs and these
numbers are constant. However, in the real test, the workload
fluctuates a bit, for example it takes up to 60 seconds from
when a VM is provisioned until it is consuming the maximum
amount of resources, because of the boot-up delay. Due to the
same reason, it is also illustrated that there is a lag (around

60 seconds) between the curves representing the results in real
tests and that of simulations.
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Fig. 14. No. of active PMs (real): combined vs. baseline.

Figure 14 presents the number of active PMs over time
during the tests. We can see that the combined algorithm
suspends one PM roughly between 35th minute and 36th
minute and one PM roughly between the 54th minute and
the 57th minute, resulting in higher CPU usage of the whole
testbed, which is consistent with Figure 12. Additionally,
benefiting from VM migration, some PMs can be suspended
by the combined algorithm and the CPU usage can stay at a
high level even after the 60th minute. In contrast, CPU usage
achieved by the baseline algorithm keeps dropping as no new
VMs arrive after the 60th minute and more PMs become idle
when VMs terminate.

TABLE V
COMPLEMENTARY RESULTS FOR REAL TESTS: COMBINED VS. BASELINE.

VMs suspended Cores suspended CPU usage (%)
combined 0.001% <0.0001% 73.58
baseline 1.642% 6.103% 52.96

Table V summarizes some complementary results for the
real tests. For the baseline algorithm, an average of 1.642%
of VM instances are suspended per minute, while it is only
0.001% for the combined. Looking at the average percentage
of VM cores suspended, the difference between the combined
and the baseline algorithm is even larger. The reason behind
this is that, if it is necessary to suspend VMs, the combined
algorithm tends to suspend small instances that with fewer
cores. Regarding the average CPU usage during the test, the
combined algorithm also outperforms the baseline algorithm.

Finally, we also remark that in the simulations, the total
time spent on VM migration was 77 seconds, while the
duration in the real-world was 178.2 seconds. This difference
is because migration time in the simulations are modeled on
post-copy migration which transfers each memory page only
once. The real-world tests are run using the standard KVM
hypervisor, version 1.5.0, which does not include a post-copy
migration algorithm. Because of this, pre-copy migration is
used and this type of live migration algorithm uses an iterative
transfer where memory pages can be sent multiple times, thus
increasing migration time and making it hard to predict the
migration time [32].
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VI. RELATED WORK

Optimal mapping of admitted VMs to a set of PMs in order
to gain maximum profit while complying to all SLAs specified
by customers is challenging for cloud providers as it is in
general a NP-hard problem [20], [27]. Various algorithms have
been proposed to produce near-optimal placement schemes,
e.g., by Jing et al. [38], who present an improved genetic
algorithm aimed to optimize possibly conflicting objectives,
including making efficient usage of multidimensional re-
sources, avoiding hotspots, and reducing power consumption.
On the other hand, given the dynamic nature of clouds, with
significant changes over time both in workload demands and
available resources, the mapping of VMs to PMs need to
be revisited regularly. Live migration of running VMs is
therefore a necessity. A comprehensive study on principles
and performance of live migration mechanisms (including
precopy, postcopy and hybrid) is presented in [26], which
also discusses how migration downtime can be reduced. Li
et al.[21] define a framework for joint optimization of data
center deployment, VM assignment, and migration. Based on
fluctuations in network performance (latency), they propose
a method based on network flow maximization to estimate
VM migration cost by amortizing it to the latency of every
access. Song et al.[30] define a bin packing approach to
allocation and migration of VMs in data centers and similarly,
Sato et al.[28] combine bin packing with resource usage
prediction to dynamically optimize VM placement. Auto-
regressive models are used for predictions and the number
of VM migrations is minimized (avoiding ping-pong effects)
based on the predictions. Li et al. [19] aim to minimize
VM completion time using a knapsack formulation for VM
placement. A hybrid on-line off-line scheme is used where
VM migrations are combined with the knapsack placement
algorithm. A defragmentation approach by Shanmuganathan et
al. [29] include two algorithms whereas Avin et al. [3] propose
simple destination swap strategies for VMs in order to reduce
network traffic.

A large amount of effort has been devoted to server
consolidation methods based on workload analysis, aiming
at improving efficiency in cloud infrastructures [14], [31],
[35]. Additional mechanisms for isolation of resources in
hardware [12], [15], or software [34] have been developed
to reduce the performance degradation introduced by consol-
idation of multiple VMs on a same server. Further, Roytman
et al. present a polynomial time algorithm to determine the
best suited VM combinations to be co-located [27], yielding
server energy saving and VM performance preservation. How-
ever,these approaches commonly operate in off-line manners
which are not able to dynamically and efficiently adapt the
cloud to the changes (including workload variations, system
failures, etc). They neither take VM pricing schemes and mon-
etary penalty for SLA violation into consideration. Khanna et
al. [17] propose a framework to detect application performance
deviations and a VM migration mechanism to handle these.
They proposed a set of server consolidation heuristics based

on VM migration costs and server residual capacity. Xiao
et al. [37] introduce some skewness metrics and use these
to avoid hot and cold spots in datacenters and migrate VMs
around.

In 2001, the Autonomic Computing [11] initiative was
initiated by IBM, who also introduced the MAPE-K refer-
ence model. Its goal is to build computing systems that can
manage themselves given high-level objectives from admin-
istrators [16]. In the MAPE-K model, with the support of a
Knowledge base, the system Monitors the managed elements,
analyzes the data monitored, and finally Plans and Executes
suitable actions to ensure the system is in a desired state.
Although considerable progress has been achieved in the past
few years, the original vision remains unfulfilled as even more
complexity is added to the system due to the convergence
of new technologies and new applications [8]. The main
goal of this work is to maximize the monetary profit of
running a datacenter by automatic adaption to both internal and
external changes, and thus it is within the scope of autonomic
computing. The design and implementation of the proposed
system (see Section IV) follows the MAPE-K model.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we present a continuous management approach
for cloud infrastructure providers to maximize their PM uti-
lization and increase profits. Based on a set of fundamental
management actions, our approach can rearrange the VM
to PM mapping during operation to increase the resource
utilization of the cloud infrastructure, thereby increase the rev-
enue by prioritizing more profitable workloads and reducing
energy consumption. The feasibility and performance of our
work, consisting of optimization algorithms and a continuous
datacenter consolidation software, is evaluated by simulations
and real-world experiments on a testbed. Results indicate
that overall utilization of the datacenter is increased using
out approach and that power consumption is reduced. The
testbed results are consistent with the simulation results, which
validates our simulation and indicates that our approach is
applicable in real-world scenarios.

We have identified several interesting subjects for the future
work, e.g., (i) to investigate the impact of the penalty model
on our algorithms, (ii) to extend our work to support other
pricing models and to integrate our algorithms in open-source
cloud middlewares such as CloudStack and OpenStack, and
(iii) to study the feasibility of incorporating our work with
auto-scaling and workload prediction techniques, targeting
proactive optimization and even better performance.
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