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ISBN 978-91-7601-003-7
ISSN 0348-0542
UMINF 14.05

Printed by Print & Media, Umeå University, 2014



Abstract

Investigating the properties, explaining, and predicting the behaviour of a physical
system described by a system (matrix) pencil often require the understanding of how
canonical structure information of the system pencil may change, e.g., how eigenvalues
coalesce or split apart, due to perturbations in the matrix pencil elements. Often these
system pencils have different block-partitioning and / or symmetries.

We study changes of the congruence canonical form of a complex skew-symmetric
matrix pencil under small perturbations. The problem of computing the congruence
canonical form is known to be ill-posed: both the canonical form and the reduction
transformation depend discontinuously on the entries of a pencil. Thus it is important
to know the canonical forms of all such pencils that are close to the investigated pen-
cil. One way to investigate this problem is to construct the stratification of orbits and
bundles of the pencils. To be precise, for any problem dimension we construct the clo-
sure hierarchy graph for congruence orbits or bundles. Each node (vertex) of the graph
represents an orbit (or a bundle) and each edge represents the cover/closure relation.
Such a relation means that there is a path from one node to another node if and only if
a skew-symmetric matrix pencil corresponding to the first node can be transformed by
an arbitrarily small perturbation to a skew-symmetric matrix pencil corresponding to
the second node. From the graph it is straightforward to identify more degenerate and
more generic nearby canonical structures.

A necessary (but not sufficient) condition for one orbit being in the closure of an-
other is that the first orbit has larger codimension than the second one. Therefore we
compute the codimensions of the congruence orbits (or bundles). It is done via the
solutions of an associated homogeneous system of matrix equations.

The complete stratification is done by proving the relation between equivalence
and congruence for the skew-symmetric matrix pencils. This relation allows us to
use the known result about the stratifications of general matrix pencils (under strict
equivalence) in order to stratify skew-symmetric matrix pencils under congruence.

Matlab functions to work with skew-symmetric matrix pencils and a number of
other types of symmetries for matrices and matrix pencils are developed and included
in the Matrix Canonical Structure (MCS) Toolbox.
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Preface

This Licentiate Thesis consists of the following papers:

Paper I A. Dmytryshyn, B. Kågström, and V. V. Sergeichuk. Skew-symmetric ma-
trix pencils: Codimension counts and the solution of a pair of matrix equa-
tions1. Linear Algebra Appl., 438(8) (2013) 3375–3396.

Paper II A. Dmytryshyn, S. Johansson, and B. Kågström. Codimension compu-
tations of congruence orbits of matrices, skew-symmetric and symmetric
matrix pencils using Matlab. Report UMINF 13.18, Dept. of Computing
Science, Umeå University, Sweden, 2013.

Paper III A. Dmytryshyn and B. Kågström. Orbit closure hierarchies of skew-
symmetric matrix pencils. Report UMINF 14.02, Dept. of Computing
Science, Umeå University, Sweden, 2014.

In addition to the papers included in the thesis, the following publications were
written within the studies:

A.R. Dmytryshyn, V. Futorny, and V.V. Sergeichuk. Miniversal deformations of matri-
ces of bilinear forms. Linear Algebra Appl., 436(7) (2012) 2670–2700.

A. Dmytryshyn, B. Kågström, and V.V. Sergeichuk. Symmetric matrix pencils: Codi-
mension counts and the solution of a pair of matrix equations. Electron. J. Linear
Algebra, (accepted 2014).

1 Reprinted by permission of Elsevier.
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Chapter 1

Introduction

Changes of canonical structure information, e.g., confluence and splitting of
eigenvalues, are essential issues for understanding the properties as well as ex-
plaining and predicting the behaviour of a physical system described by a system
(matrix) pencil. In general, these problems are known to be ill-posed, i.e., small
perturbations in the input parameters may lead to big changes in the answers.
Therefore when the matrices (of the system pencil) arise as a result of measures,
i.e., their entries are known with errors, the issues about changes of canonical
structure information become particularly important [36]. Problems related to
these challenges have been in the field of interests of many researchers for several
years. One approach is to construct a closure hierarchy graph (stratification) for
orbits or bundles of system (matrix) pencils. Each node (vertex) of the graph
represents an orbit (or a bundle) and each edge represents a cover/closure re-
lation, i.e., there is an upwards path from a node S1 to a node S2 if and only
if S1 can be transformed by an arbitrarily small perturbation to a system (ma-
trix) pencil whose canonical structure information corresponds to S2. From an
orbit (or bundle) stratification, it is straightforward to identify more degenerate
and more generic nearby canonical structures to a given matrix pencil A − λB.
Such information can give new insight to the model of the underlying physical
problem. Going downwards in the closure hierarchy graph, i.e., moving to more
degenerate matrix pencils, can be achieved by perturbations of finite but not
arbitrarily small sizes.

The stratification theory and algorithms for the computation of the associ-
ated closure hierarchy graph(s) are known for matrix pencils under strict equiva-
lence transformations [23, 24, 27], non-singular controllability and observability
pairs [26], and full normal rank matrix polynomials [34]. The stratifications of
2 × 2 and 3 × 3 matrices of bilinear forms are considered in [28].

For computing and visualization of the closure hierarchy graphs, the Strati-
graph tool [32] has been developed. Furthermore, the Matrix Canonical Struc-
ture (MCS) Toolbox for Matlab1 has been evolved [19, 32] to compute and

1Matlab is a registered trademark of The MathWorks, Inc.
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handle canonical structure information associated with system (matrix) pen-
cils.

This Licentiate Thesis is focused on developing theory and tools for analyzing
skew-symmetric matrix pencils, i.e., A − λB, where A,B ∈ Cn×n, A = −AT and
B = −BT . Skew-symmetric matrix pencils appear in several applications, e.g.,
multisymplectic partial differential equations [7] and in the design of a passive
velocity field controller [35]. Properties of skew-symmetric matrix pencils have
been studied, such as canonical forms [40, 41] and pseudospectra [1].

Consider a skew-symmetric n × n matrix pencil A − λB. The equivalence
transformation

A − λB ↦ P −1(A − λB)Q, P,Q ∈ GLn(C),
where GLn(C) is a group of all nonsingular n × n matrices, does not preserve
skew-symmetry, i.e., the transformed matrix pencil P −1(A − λB)Q may not be
skew-symmetric. Therefore, skew-symmetric matrix pencils should be consid-
ered under the structure preserving congruence transformation

A − λB ↦ CT (A − λB)C, where C ∈ GLn(C).
In this Licentiate Thesis, we explain how the congruence canonical structure

information of skew-symmetric matrix pencils may change under perturbations,
i.e., we solve the stratification problem. Our solution requires the following
main steps:

1. Determine the orbits of skew-symmetric matrix pencils under congru-
ence (i.e., all pencils with the same congruence invariants) and associated
canonical forms; for skew-symmetric matrix pencils see [40, 41]. As for
general matrix pencils in [24], bundles of skew-symmetric matrix pencils
are defined as unions of orbits; see Section 1.1 or Paper III for more details.

2. Compute the codimensions of the orbits and bundles from the structural
information of skew-symmetric matrix pencils; see Papers I and II as well
as [15].

3. Determine the necessary and sufficient conditions that one congruence
orbit of a skew-symmetric matrix pencil is contained in the closure of
another; see Paper III.

Note that Papers I, II, and III are the papers [21], [19], and [20], respectively,
in the reference list.

All matrices that we consider are over the field of complex numbers.

1.1 Codimension computations

The set of skew-symmetric n × n matrix pencils congruent to A − λB forms a
manifold in the complex n2−n dimensional space (both A and B have n(n−1)/2

2



independent parameters). This manifold is the orbit of A−λB under the action
of congruence

Oc
A−λB = {CT (A − λB)C ∶ C ∈ GLn(C)}. (1.1)

The vector space

TA−λB ≡ {(XTA +AX) − λ(XTB +BX) ∶X ∈ Cn×n} (1.2)

is the tangent space to the congruence orbit of A−λB at the point A−λB. The
orthogonal complement to TA−λB , with respect to the Frobenius inner product

⟨A − λB,C − λD⟩ = trace(AC∗ +BD∗),
is called the normal space (denoted by NA−λB) to the congruence orbit. Figure 1
illustrates the geometry of the spaces.

Figure 1: The tangent space TA−λB and the normal space NA−λB to the con-
gruence orbit Oc

A−λB at the point A − λB.

The dimension of the orbit of A − λB is the dimension of its tangent space
at the point A − λB. The codimension of the orbit A − λB is the dimension of
the normal space of its orbit at the point A−λB, which is equal to n2−n minus
the dimension of the orbit.

Since the orbit (bundle) of each matrix pencil has only orbits (bundles) with
lower codimensions in its closure, codimensions provide a coarse stratification.

In the orbit stratification, the eigenvalues are kept fixed so confluence and
splitting of eigenvalues are not allowed (nevertheless, for matrix pencils eigen-
values may appear or disappear). Therefore we also consider stratification
of bundles. Let us illustrate with the Jordan canonical form (JCF) of 3 × 3
matrices. Then an arbitrarily small neighbourhood of J3(0) (a 3 × 3 Jordan
block corresponding to zero eigenvalue) always contains a matrix with the JCF
J1(ε1) ⊕ J1(ε2) ⊕ J1(ε3) with some (small and different) ε1, ε2, and ε3. This
possible change of the canonical structure information appears in the bundle
stratification of 3 × 3 JCF (an edge from J3(0) to J1(ε1) ⊕ J1(ε2) ⊕ J1(ε3) in
the graph) but not in the orbit stratification.

As in the case of matrix pencils under strict equivalence [23, 24], two skew-
symmetric matrix pencils are in the same bundle BcA−λB if and only if they

3



have the same singular structure and the same Jordan structure except that the
distinct eigenvalues may be different. Note that a bundle is a union of orbits.
For each skew-symmetric matrix pencil A − λB we define

cod BcA−λB = cod Oc
A−λB − #{distinct eigenvalues} . (1.3)

To explain the reason for computing codimensions rather than dimensions, let
us refer to the bundle codimensions of Jordan canonical forms in the singularity
theory [3, 5]. For bundles of matrices under similarity (i.e., bundles for JCF)
the codimension formula (1.3) remains true. Thus distinct eigenvalues that cor-
respond to 1 × 1 Jordan blocks do not contribute to the bundle codimension.
Therefore the codimensions of singularities are independent of the matrix di-
mensions, e.g., the bundle of J3(µ1) has the same codimension as the bundles
J3(µ1) ⊕ J1(µ2), J3(µ1) ⊕ J1(µ2) ⊕ J1(µ3), etc. This property remains true
for regular matrix pencils under strict equivalence and regular skew-symmetric
matrix pencils under congruence but in both cases it does not hold for singular
matrix pencils.

Paper I presents how to compute the codimensions of the congruence orbits
of skew-symmetric matrix pencils via the solution of the associated pair of ma-
trix equations. An alternative way to compute the codimensions is to calculate
the number of independent parameters in the corresponding miniversal defor-
mations [15] (see also Section 1.1.2 for the definition). Since the matrices are
partitioned into blocks according to the canonical forms of the skew-symmetric
matrix pencils [41], the diagonal blocks, the off-diagonal blocks that correspond
to the canonical summands of the same type, and the off-diagonal blocks that
correspond to the canonical summands of different types can be treated inde-
pendently.

1.1.1 The solution of a pair of matrix equations

Consider a system of homogeneous matrix equations, associated with the matrix
representation of the tangent space (1.2) to congruence orbit of A − λB at the
point A − λB,

XTA +AX = 0,

XTB +BX = 0,
(1.4)

where A = −AT and B = −BT are skew-symmetric n×n matrices. As it is shown
in Paper I, the number of linearly independent solutions of (1.4) minus n is
equal to the codimension of the congruence orbit of the skew-symmetric matrix
pencil A − λB.

Without loss of generality, we may consider systems (1.4) in which the skew-
symmetric pencil A − λB is in a canonical form under congruence. We use
the canonical forms from [41] that are “skew-symmetrized” analogies of the
Kronecker canonical forms for matrix pencils under strict equivalence [29].

Beside computing the codimensions in Paper I, we also derive the general
solution of (1.4). Recently in a similar way for a square matrix A, the general
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solution of the matrix equations XA + AX⋆ = 0 [9, 11, 12, 31], where ⋆ stays
for the transposition (T ) or conjugate transposition (*), and for matrices A
and B of the corresponding sizes, the general solution of the matrix equations
AX+X⋆B = 0 [13] and AX+BX⋆ = 0 [10] were derived, as well as for the system
(1.4) with both A and B symmetric [22]. The matrix equation XAX = B, where
A and B are both symmetric or skew symmetric, is studied in [37].

1.1.2 Miniversal deformations of skew-symmetric matrix
pencils

We recall that the problem we investigate comes from the fact that reductions
to Jordan and Kronecker canonical forms are unstable operations: both the
corresponding canonical forms and the reduction transformations depend dis-
continuously on the elements of the original matrix or matrix pencil. Therefore
versal deformations [3] were introduced, i.e., a normal form to which not only a
given matrix A (or matrix pencil A − λB), but an arbitrary family of matrices
Ã (or matrix pencils Ã − λB̃) close to it can be reduced by transformations
smoothly depending on the elements of Ã (or Ã − λB̃). If such a form has the
minimal number of independent parameters (as mentioned earlier, this number
is equal to the orbit codimension) it is called miniversal deformation. Versal
deformations help us to understand which canonical forms we may have in a
neighbourhood of a matrix or pencil, i.e., to find the stratification of orbits.

The foundations of this theory were laid by V.I. Arnold (e.g., see [3, 4, 5]).
Now miniversal deformations are known for Jordan matrices [3, 23], matrices
with respect to congruence [17] and *congruence [18], matrix pencils [23, 30],
etc., (a more detailed list of references is given in the introduction of [17]). In
particular, miniversal deformations of skew-symmetric and symmetric matrix
pencils are derived in [15] and [16], respectively.

1.2 Matrix Canonical Structure Toolbox

Matrix Canonical Structure (MCS) Toolbox [32] for Matlab was developed to
work with matrices or matrix pencils under different transformations, e.g., simi-
larity, congruence, equivalence, etc., and the corresponding canonical structures.
It is possible to transfer data from MCS Toolbox to StratiGraph and vice versa.

MCS Toolbox includes functions for matrices up to similarity, matrix pencils
up to strict equivalence, controllability and observability pairs up to feedback
equivalence. The theoretical backgrounds and motivations for these problems
are presented in [14, 23, 24, 26]. In Paper II, we extend MCS Toolbox with func-
tionality for congruence and *congruence of matrices, as well as congruence of
symmetric and skew-symmetric matrix pencils. Examples include functions that
create canonical structure objects or (random) matrix example setups with a
desired canonical information, Matlab functions that compute the codimensions
of the corresponding orbits, as well as a number of auxiliary functions.

5



Whenever the canonical structure information of the matrices or the matrix
pencils is known (or specified) we use the associated structural information for
the codimension computations. Obviously, this computation is always exact
and fast for problems of any sizes. Explicit formulas for computing codimen-
sions via canonical structure information for skew-symmetric matrix pencils are
derived in Paper I (and for some other cases in [11, 12, 14, 22]). Otherwise, the
codimensions are determined numerically by computing the rank and nullity of
Kronecker product matrices associated with the problems. The 2n2 ×n2 matrix
Z (1.5) is a matrix representation of the tangent space to the congruence orbit
of skew-symmetric n × n matrix pencil A − λB at the point A − λB:

Z ≡ [AT ⊗ In + (In ⊗A)P
BT ⊗ In + (In ⊗B)P] , (1.5)

where P is the n2 ×n2 permutation matrix that can “transpose” n×n matrices,
i.e., vec(XT ) = P vec(X) for any n×n matrix X. The nullities of (1.5) minus n
is equal to the codimensions of the congruence orbits of skew-symmetric matrix
pencils.

1.3 Orbit closure hierarchies of skew-symmetric
matrix pencils

In Paper III, we study how the congruence canonical form (canonical structure
information) of a complex skew-symmetric matrix pencil A−λB changes under
small perturbations via constructing the orbit and bundle stratifications, re-
spectively. To be precise, for any problem dimension n we construct the closure
hierarchy graph for congruence orbits or bundles. Also here, each node (vertex)
of the graph represents an orbit (or a bundle) and each edge represents the
cover/closure relation, i.e., there is a path from a node A−λB to a node C −λD
if and only if A − λB can be transformed by an arbitrarily small perturbation
to a skew-symmetric matrix pencil whose canonical form is the one of C − λD.
As a result, we get qualitative information about the nearby matrix pencils and
associated canonical forms. For example, let us consider the closure hierarchy
graph for congruence orbits of skew-symmetric 3 × 3 matrix pencils (only three
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nodes with codimensions 0, 3, and 6):

⎡⎢⎢⎢⎢⎢⎣
0 0 1
0 0 0−1 0 0

⎤⎥⎥⎥⎥⎥⎦
− λ

⎡⎢⎢⎢⎢⎢⎣
0 1 0−1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
codim. 0

⎡⎢⎢⎢⎢⎢⎣
0 µ 0−µ 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
− λ

⎡⎢⎢⎢⎢⎢⎣
0 1 0−1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦

OO

codim. 3

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
− λ

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦

OO

codim. 6

(1.6)

From the graph (1.6) it follows that an arbitrarily small neighbourhood of a
matrix pencil with the skew-symmetric canonical form

⎡⎢⎢⎢⎢⎢⎣
0 µ 0−µ 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
− λ

⎡⎢⎢⎢⎢⎢⎣
0 1 0−1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
contains a matrix pencil with the canonical form

⎡⎢⎢⎢⎢⎢⎣
0 0 1
0 0 0−1 0 0

⎤⎥⎥⎥⎥⎥⎦
− λ

⎡⎢⎢⎢⎢⎢⎣
0 1 0−1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

For a more realistic example, we refer to the closure hierarchy graph for congru-
ence orbits of skew-symmetric 4 × 4 matrix pencils presented in Paper III (see
also the cover of this thesis).

In Paper III, we generalize the fact that two skew-symmetric matrix pencils
are equivalent if and only if they are congruent, e.g., see [29, Theorem 6, p.41] or
[39, Theorem 3, p.275]. This allows us to reduce the problem of stratification of
skew-symmetric matrix pencils to the problem of stratification of matrix pencils
under strict equivalence [24]. We also present the feasible stratification method
for skew-symmetric matrix pencils.

1.4 Future work

In the recent paper [38] skew-symmetric matrix polynomials are investigated, in
particular, a template for the linearization of the skew-symmetric polynomials of
odd degrees or regular skew-symmetric polynomials of any degrees is presented.
These results together with the stratification of skew-symmetric matrix pencils

7



(Paper III) form a background to the stratification of linearizations of skew-
symmetric matrix polynomials.

We are also interested in matrix pencils with other types of symmetries. In
particular, some preparatory work for symmetric matrix pencils has been done
in [16, 22]. For pencils with mixed symmetry properties we refer to [11, 17] (one
symmetric and one skew-symmetric matrix) and [12, 18] (one hermitian and one
skew-hermitian matrix).

Many matrix pencils coming from applications have block structures, e.g.,
system pencils describing descriptor or state-space systems, controllability and
observability pairs. To investigate changes of their invariants is also a part of
our future work. The stratifications of controllability and observability pairs
have been investigated in [26].

An open problem about the distance to more degenerate structures for the
JCF has been posted recently in [2] which strongly intersects and complement
with our field of work [25].
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