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Abstract

Appearing frequently in applications, generalized eigenvalue problems represent one of
the core problems in numerical linear algebra. The QZ algorithm by Moler and Stewart
is the most widely used algorithm for addressing such problems. Despite its importance,
little attention has been paid to the parallelization of the QZ algorithm. The purpose
of this work is to fill this gap. We propose a parallelization of the QZ algorithm that
incorporates all modern ingredients of dense eigensolvers, such as multishift and aggressive
early deflation techniques. To deal with (possibly many) infinite eigenvalues, a new parallel
deflation strategy is developed. Numerical experiments for several random and application
examples demonstrate the effectiveness of our algorithm on two different distributed memory
HPC systems.

Key words. generalized eigenvalue problem, nonsymmetric QZ algorithm, multishift,
bulge chasing, infinite eigenvalues, parallel algorithms, level 3 performance, aggres-
sive early deflation.

AMS subject classifications. 65F15, 15A18.

1 Introduction

This paper is concerned with the numerical solution of generalized eigenvalue problems, which
consist of computing the eigenvalues and associated quantities of a matrix pair (A,B) for general
complex or real n× n matrices A,B.

The QZ algorithm proposed in 1973 by Moler and Stewart [33] is the most widely used
algorithm for addressing generalized eigenvalue problems with dense matrices. Since then, it has
undergone several modifications [15, 36]. In particular, significant speedups on serial machines
have been obtained in [24] by extending multishift and aggressive early deflation techniques [9,
10]. In this work, we propose a parallelization of the QZ algorithm that incorporates these
techniques as well. Our developments build on preliminary work presented in [1, 2] and extend
recent work [20, 21] on parallelizing the QR algorithm for standard eigenvalue problems. In
our parallelization, we also cover aspects that are unique to the QZ algorithm, such as the
occurrence of possibly many infinite eigenvalues.
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Apart from the QZ algorithm, other approaches for solving generalized eigenvalue problems
have been considered for parallelization. This includes usage of a synchronous linear proces-
sor array [8], nonsymmetric Jacobi algorithms [11, 14] as well as spectral divide-and-conquer
algorithms [5, 22, 32, 34].

1.1 Generalized Schur decomposition

Throughout this work, we assume that the pair (A,B) is regular, that is, det(A − λB) is not
zero for all λ. Otherwise, (A,B) needs to be preprocessed to deflate the corresponding singular
part in its Kronecker canonical form, either by exploiting underlying structure of applying the
GUPTRI algorithm [16].

In the following, we restrict our discussion to matrices with real entries: A,B ∈ Rn×n; the
complex case is treated in an analogous way. The goal of the QZ algorithm consists of computing
a generalized Schur decomposition

QTAZ = S, QTBZ = T, (1)

where Q,Z ∈ Rn×n are orthogonal and the pair (S, T ) is in (real) generalized Schur form. This
means that T is upper triangular and S is quasi-upper triangular with diagonal blocks of size
1 × 1 or 2 × 2. A 1 × 1 block sjj corresponds to the real eigenvalue λ = sjj/tjj of (A,B). In
fact, the LAPACK [3] implementation DHGEQZ of the QZ algorithm does not even form this
ratio but directly returns the pair (α, β) = (sjj , tjj). This convention has the advantage that it
covers infinite eigenvalues in a seamless manner, by letting β = 0, and it is used in our parallel
implementation as well. A 2 × 2 diagonal block in S corresponds to a complex conjugate pair
of eigenvalues, which can be computed from the eigenvalues of([

sjj sj,j+1

sj+1,j sj+1,j+1

]
,

[
tjj tj,j+1

0 tj+1,j+1

])
.

This is performed by the LAPACK routine DLAGV2, which also normalizes T such that tj,j+1 = 0
and tjj ≥ tj+1,j+1 > 0, using a procedure described in [35].

1.2 Structure of the QZ algorithm

The QZ algorithm proceeds by first computing a decomposition of the form

QTAZ = H, QTAZ = T, (2)

where Q,Z ∈ Rn×n are orthogonal and T is again upper triangular, but H is only in upper
Hessenberg form, that is, hij = 0 for i ≥ j + 2. Two different types of algorithms have been
proposed to reduce (A,B) to such a Hessenberg-triangular form. After an initial reduction of
B to triangular form, the original algorithm by Moler and Stewart [33] uses Givens rotations to
zero out each entry below the subdiagonal of A. Its memory access pattern lets this algorithm
perform rather poorly on standard computing architectures. To address this, a blocked two-
stage approach has been proposed by Dackland and K̊agström [15]. The first stage reduces
(A,B) to block Hessenberg-triangular form only, which can be achieved by means of blocked
Householder reflectors. The second stage reduces (A,B) further to Hessenberg-triangular form
by applying sweeps of Givens rotations. While the first stage can be parallelized quite well, the
complex data dependencies make the parallelization of the second stage a more difficult task.
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Recently, significant progress has been made in this direction on shared-memory architectures,
in the context of reducing a single matrix to Hessenberg form [27]. In the numerical experiments
of this paper, we make use of a preliminary parallel implementation of the two-stage algorithm
described in [1]. However, it has been demonstrated in [25] that a serial blocked implementation
of the rotation-based algorithm by Moler and Stewart outperforms the two-stage approach. We
therefore plan to incorporate a parallel implementation of this algorithm as well.

Prior to any reduction, an optional preprocessing step called balancing can be used. The
balancing described in [37] and implemented in the LAPACK routine DGGBAL consists of per-
muting (A,B) to detect isolated eigenvalues and applying a diagonal scaling transformation to
remedy bad scaling. The scaling part is by default turned off in most implementations, such as
the LAPACK driver routine DGGEV and the Matlab command eig(A,B). We will therefore not
consider it any further.

The computation of eigenvectors or, more generally, deflating subspaces of (A,B) requires to
postprocess the matrix pair (S, T ) in the generalized Schur decomposition (1). More specifically,
if the (right) deflating subspace associated with a set of eigenvalues is desired, then these
eigenvalues need to be reordered to the top left corners of (S, T ). Such a reordering algorithm
has been proposed in [26] and its parallelization is discussed in [19].

In this paper, we focus on parallelizing the iterative part of the QZ algorithm which reduces
a pair (H,T ) in Hessenberg-triangular form to generalized Schur form (S, T ). This iterative part
consists of three ingredients: bulge chasing, (aggressive early) deflation, and deflation of infinite
eigenvalues. In the following we will refer to three different algorithms, with the abbreviations
below, all of which use the above three ingredients (see also Appendix A):

• PDHGEQZ: This contribution.

• PDHGEQZ1 : Modified version of parallel QZ algorithm described in Adlerborn et al. [2].

• KKQZ: Serial QZ algorithm proposed by K̊agstrom and Kressner [24].

2 Parallel algorithms

In what follows, we assume that the reader is familiar with the basics of the implicit shifted QZ
algorithm, see [31, 39] for introductions.

2.1 Data layout

We follow the convention of ScaLAPACK [7] for the distributed data storage of matrices. Sup-
pose that P = Pr ·Pc parallel processors are arranged in a Pr×Pc rectangular grid. The entries
of a matrix are then distributed over the grid using a 2-dimensional block-cyclic mapping with
block size nb in both row and column dimensions. In principle, ScaLAPACK allows for different
block sizes for the row and column dimensions but for simplicity we assume that identical block
sizes are used.

2.2 Multishift QZ iterations

2.2.1 Chasing one bulge

Consider a Hessenberg-triangular pair (H,T ) and two shifts σ1, σ2, such that either σ1, σ2 ∈ R
or σ1 = σ2. For the moment, we will assume that T is invertible. Then the first step of the
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classic implicit double shift QZ iteration consists of computing the first column of the shift
polynomial:

v = (HT−1 − σ1I)(HT−1 − σ2I)e1 =


X
X
X
0
...
0

 ,
where e1 denotes the first unit vector and the symbol X denotes arbitrary, typically nonzero,
entries. Now an orthogonal transformation Q0 is constructed such that QT

0 v is a multiple of e1.
This can be easily achieved by a 3 × 3 Householder reflector. Applying Q0 from the left to H
and T affects the first three rows and creates fill-in below the (sub-)diagonal:

H ← QT
0H =



X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0 X X X X X · · ·
0 0 0 X X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
...

...
...

...
...

...
...


, T ← QT

0 T =



X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0 0 X X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
0 0 0 0 0 0 X · · ·
...

...
...

...
...

...
...


.

Here, X̂ is used to denote entries that are affected by the current transformation. To annihilate
the two new entries in the first column of T , we use a trick introduced by Watkins and Elsner [40]
and shown to be numerically backward stable in [24]. Let Z0 be a Householder reflector that
maps T−1e1 to a multiple of the first unit vector. Then applying Z0 from the right affects the
first three columns and results in the nonzero pattern

H ← HZ0 =



X̂ X̂ X̂ X X X X · · ·
X̂ X̂ X̂ X X X X · · ·
X̂ X̂ X̂ X X X X · · ·
X̂ X̂ X̂ X X X X · · ·
0 0 0 X X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
...

...
...

...
...

...
...


, T ← TZ0 =



X̂ X̂ X̂ X X X X · · ·
0̂ X̂ X̂ X X X X · · ·
0̂ X̂ X̂ X X X X · · ·
0 0 0 X X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
0 0 0 0 0 0 X · · ·
...

...
...

...
...

...
...


.

The region
(
H(2 : 4, 1 : 3), T (2 : 4, 1 : 3)

)
is called the bulge pair. This encodes the information

contained in the shifts σ1, σ2, in a way made concrete in [38]. By an analogous procedure, the
trailing two entries in the first column of H are annihilated by a Householder transformation
from the left and, subsequently, the subdiagonal entries in the second column of T are annihi-
lated by a Householder transformation from the right. In effect, the bulge pair is moved one
step towards the bottom right corner:

H ← QT
1HZ1 =



X X̂ X̂ X̂ X X X · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 X̂ X̂ X̂ X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
...

...
...

...
...

...
...


, T ← QT

1 TZ1 =



X X̂ X̂ X̂ X X X · · ·
0 X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0 0 0 X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
...

...
...

...
...

...
...


. (3)
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Figure 1: Three bulge chains, where each chain consists of three bulges (black boxes). The
black 3× 3 blocks in the H-part are dense, while the associated blocks in the T -part have zero
elements in the last row and first column, respectively. Only parts of the matrices are displayed.
The solid red lines represent block/process borders.

2.2.2 Chasing several bulges in parallel

In principle, the described process of bulge chasing can be continued until the bulge pair disap-
pears at the bottom right corner, which would complete one double shift QZ iteration. However,
the key to efficient serial and parallel implementations of the QZ algorithm is to chase several
bulges at the same time. For example, after the bulge pair in (3) has been chased two steps fur-
ther, we can immediately introduce another bulge pair belonging to another two shifts, without
disturbing the existing bulge pair. We then have a chain of two tightly1 packed bulges, which
can be chased simultaneously. In practice, we will work with chains containing significantly
more than two bulges to attain good node performance.

Another key to create potential for good parallel performance is to delay updates as much as
possible. We chase bulges within a window (i.e., a principal submatrix), similar to the technique
described in [20]. Only after the bulges have been chased to the bottom of the window we update
the remaining parts of the matrix pair (H,T ) outside the window, to the right and above, using
level-3 BLAS. After the off-diagonal update, the window is placed on a new position so that the
bulges can be moved further down the diagonal of (H,T ). As in [20] we use several windows,
up to min(Pr, Pc), each containing a chain of bulges, and deal with them in parallel.

Figure 1 illustrates the described technique for three active windows, each containing a bulge
chain consisting of three bulges. Each window is owned by a single process, leading to intra-
block chases. Windows that overlap process borders lead to inter-block chases. In the algorithm,
we alternate between intra-block and inter-block chases, see [20] for more details.

Generally, we use the undeflatable eigenvalues returned by aggressive early deflation de-
scribed in § 2.3 as shifts for the QZ iteration. Exceptionally, it may happen that there are not
sufficiently many undeflatable eigenvalues available. In such cases, we apply the QZ algorithm

1In fact, as recently shown in [29] for the QR algorithm, it is possible and beneficial to pack the bulges even
closer.
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(PDHGEQZ or PDHGEQZ1) to a sub-problem for obtaining additional shifts.
Each bulge consumes two shifts, and occupies a 3 × 3 principal submatrix. Assuming that

each window is of size nb×nb, we will pack at most nb/6 bulges in a window to be able to move
all bulges across the process border during a single inter-block chase. The number of active
windows is then given by

min(d3nshifts/nbe, Pr, Pc),

where nshifts is the total number of shifts to be used.

2.3 Aggressive early deflation (AED)

Classically, the convergence of the QZ algorithm is monitored by inspecting the subdiagonal
entries of H. A subdiagonal entry hk+1,k is declared negligible if it satisfies

|hk+1,k| ≤ u× (|hk,k|+ |hk+1,k+1|), (4)

where u denotes the unit roundoff (≈ 10−16 in double precision arithmetic). Negligible
subdiagonal entries can be safely set to zero, deflating the generalized eigenvalue problem into
smaller subproblems. Aggressive early deflation (AED) is a technique proposed by Brahman,
Byers and Mathias [10] for the QR algorithm, that goes beyond (4) and significantly speeds up
convergence.

2.3.1 Basic algorithm

In the following, we give a brief overview of AED for the QZ algorithm as proposed in [24].
First, the Hessenberg-triangular pair is partitioned as

(H,T ) =

 H11 H12 H13

H21 H22 H23

0 H32 H33

 ,
 T11 T12 T13

0 T22 T23
0 0 T33

 ,

such that H32 ∈ RnAED×1 and H33, T33 ∈ RnAED×nAED , where nAED � n denotes the size of the so
called AED window (H33, T33).

By applying the QZ algorithm, the AED window is reduced to (real) generalized Schur form:

QT
33H33Z33 = Ĥ33, QT

33T33Z33 = T̂33.

Performing the corresponding orthogonal transformation of (H,T ) yields

(H,T )←

 H11 H12 Ĥ13

H21 H22 Ĥ23

0 s Ĥ33

 ,
 T11 T12 T̂13

0 T22 T̂23
0 0 T̂33

 , (5)

where s = QT
33H32 is the so called spike that contains the newly introduced nonzero entries

below the subdiagonal of H. If the last entry of the spike satisfies

|snAED
| ≤ u× ‖H‖F , (6)

it can be safely set to zero. This deflates a real eigenvalue of the matrix pair (5), provided that
the diagonal block at the bottom right corner of Ĥ33 is 1× 1. If this diagonal block is 2× 2, the
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corresponding complex conjugate pair of eigenvalues can only be deflated if the last two entries
of the spike both satisfy (6).

If deflation was successful, the described process is repeated for the remaining nonzero
entries of the spike. Otherwise, the generalized Schur form (H33, T33) is reordered to move the
undeflatable eigenvalue to the top left corner. In turn, an untested eigenvalue is moved to the
bottom right corner. After all eigenvalues of (H33, T33) have been checked for convergence by
this procedure, the last step of AED consists of turning the remaining undeflated part of the
pair (H,T ) back to Hessenberg-triangular form.

2.3.2 Parallel implementation

As already demonstrated in [21], a careful implementation of AED is vital to achieving good
overall parallel performance. From the discussion above, we identify three computational tasks:

1. Reducing an nAED × nAED Hessenberg-triangular matrix pair to generalized Schur form.

2. Reordering the eigenvalues of an nAED × nAED matrix pair in generalized Schur form.

3. Reducing a general matrix pair of size at most nAED × nAED to Hessenberg-Triangular
form.

Only for very small values of nAED, say nAED ≤ 201, it makes sense to perform these tasks serially
and call the corresponding LAPACK routines. For larger values of nAED, parallel algorithms
are used for all three tasks.

To perform Task 1, we call our, now modified, parallel implementation PDHGEQZ1 [2] of the
QZ algorithm with (serially performed) AED for moderately sized problems, say nAED ≤ 6000,
and recursively call the parallel implementation PDHGEQZ described in this paper for larger
problems.

To perform Task 2, we make use of ideas described in [19] for reordering eigenvalues in
parallel. To create potential for parallelism and good node performance, we work with groups
of undeflatable eigenvalues instead of moving them individually. Such a group is reordered
to the top left corner by an algorithm quite similar to the parallel bulge chasing discussed in
§ 2.2.2. We refer to [20, Sec. 2.3] for more details.

To perform Task 3, we call the parallel implementation of Hessenberg-triangular reduction
described in [1].

After all three tasks have been performed, it remains to apply the corresponding orthogonal
transformations to the off-diagonal parts of (H,T ), above and to the right of the AED window.
These updates are preformed by calls to the PBLAS routine PDGEMM.

2.3.3 Avoiding communication via data redistribution

Since nAED � n, the computational intensity of AED is comparably small and the parallel
distribution of the matrices on a grid of Pr × Pc of processors may lead to significant commu-
nication overhead. This has been observed for the parallel QR algorithm [21] and holds for the
parallel QZ algorithm as well.

A simple cure to this phenomenon is to redistribute data before performing AED, to limit
the amount of participating processors and to keep the communication overhead under control.
More specifically, the nAED × nAED AED window is first redistributed across a smaller PAED ×
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PAED grid, then Tasks 1 to 3 discussed above are performed, and finally the AED window is
distributed back to the Pr × Pc grid. The choice of PAED depends on nAED, see § 3.2.

To get an impression of the benefits from this technique: Without redistribution, the total
time spent on AED is 2095 seconds when solving a 32 000×32 000 random generalized eigenvalue
problems on a 8×8 grid of Akka (see § 3.1). When using PAED = 4, which means redistributing
the AED window to a 4× 4 grid, the total time for AED reduces to 1283 seconds.

2.4 Deflation of infinite eigenvalues

If B is (nearly) singular, it can be expected that one or several diagonal entries of the trian-
gular matrix T in the Hessenberg-triangular form are (nearly) zero. Following the LAPACK
implementation of the QZ algorithm, we consider a diagonal entry tii negligible if

|tii| ≤ u · ||T ||F (7)

holds. Setting such an entry to zero and reordering it to the bottom right or top left corner
allows to deflate an infinite eigenvalue. In the absence of roundoff error, this reordering is
automatically effected by QZ iterations [38]. However, to avoid unnecessary iterations and
the loss of infinite eigenvalues due to roundoff error, it is important to take care of infinite
eigenvalues separately.

2.4.1 Basic algorithm

In the following, we briefly sketch the mechanism for deflating infinite eigenvalues proposed
in [33]. Suppose that H is unreduced, i.e. hk+1,k 6= 0 for all subdiagonal elements, and that the
third diagonal entry of T is zero:

H =


X X X X X X · · ·
X X X X X X · · ·
0 X X X X X · · ·
0 0 X X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
...

...
...

...
...

...

 , T =


X X X X X X · · ·
0 X X X X X · · ·
0 0 0 X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
0 0 0 0 0 X · · ·
...

...
...

...
...

...

 .
Applying a Givens rotations to columns 2 and 3 makes the second diagonal entry zero as well,
but introduces an additional nonzero in H:

H ←


X X̂ X̂ X X X · · ·
X X̂ X̂ X X X · · ·
0 X̂ X̂ X X X · · ·
0 X̂ X̂ X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
...

...
...

...
...

...

 , T ←


X X̂ X̂ X X X · · ·
0 0 X̂ X X X · · ·
0 0 0 X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
0 0 0 0 0 X · · ·
...

...
...

...
...

...

 .

This nonzero entry can be annihilated by applying a Givens rotations to rows 3 and 4:

H ←


X X X X X X · · ·
X X X X X X · · ·
0 X̂ X̂ X̂ X̂ X̂ · · ·
0 0 X̂ X̂ X̂ X̂ · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
...

...
...

...
...

...

 , T ←


X X X X X X · · ·
0 0 X X X X · · ·
0 0 0 X̂ X̂ X̂ · · ·
0 0 0 X̂ X̂ X̂ · · ·
0 0 0 0 X X · · ·
0 0 0 0 0 X · · ·
...

...
...

...
...

...

 .
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By an analogous procedure, the zero diagonal entries of T can be moved one position further
upwards. A Givens rotation can then be applied to rows 1 and 2 in order to annihilate the first
subdiagonal entry of H, finally yielding

H =


X X X X X X · · ·
0 X X X X X · · ·
0 X X X X X · · ·
0 0 X X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
...

...
...

...
...

...

 , T =


0 X X X X X · · ·
0 X X X X X · · ·
0 0 X X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
0 0 0 0 0 X · · ·
...

...
...

...
...

...

 .

Thus, an infinite eigenvalue can be deflated at the top left corner. An analogous procedure can
be used to deflate infinite eigenvalues at the bottom right corner. This reduces the required
operations if the zero diagonal entry of T is closer to that corner.

2.4.2 Parallel implementation

A number of applications lead to matrix pencils with a substantial fraction of infinite eigenvalues,
see § 3 for examples. In this case, applying the above procedure to deflate each infinite eigenvalue
individually is clearly not very efficient in a parallel environment.

Instead, we aim at deflating several infinite eigenvalues simultaneously. To do this in a
systematic manner and attain good node performance, we proceed similarly as in the parallel
multishift QZ iterations and parallel eigenvalue reordering algorithm discussed in § 2.2.2 and
§ 2.3.2, respectively. Up to min(Pr, Pc) computational windows are placed on the diagonal of
(H,T ), such that each window is owned by a single diagonal process. Within each window, the
negligible diagonal entries of T are identified according to (7), zeroed, and they are all moved
either to the top left corner or to the bottom right corner of T , depending which corner is
nearest. Only then we perform the corresponding updates outside the windows, by accumulating
the rotations into orthogonal matrices and performing matrix-matrix multiplications.

Figure 2: Crossborder layout of three windows during the parallel deflation of infinite eigen-
values. Computational windows and process borders indicated by black and red solid lines,
respectively. Darker-gray areas indicate regions that need to be updated after the windows
have been processed.

9



In the next step, all computational windows are shifted upwards or downwards. In effect,
the zero diagonal entries of T are located in the bottom or top parts of the windows. Moreover,
as illustrated in Figure 2, the windows now overlap process borders. To move the zero diagonal
entries in the first computational window across the process border, we proceed as follows:

1. The two processes on the diagonal (P00 and P11) exchange their parts of the window and
receive the missing off-diagonal parts from the other two processes (P01 and P10). In
effect, two identical copies of the computational window are created.

2. Each of the two diagonal processes (P00 and P11) identifies and zeroes negligible diagonal
entries of T within the window, and moves all of them to the top left corner (or the bottom
right corner, whichever is nearest the top left or bottom right corner of T .).

3. The two off-diagonal processes (P01 and P10) receive the updated off-diagonal parts of the
window from one of the on-diagonal processes (P00 or P11). The accumulated orthogonal
transformation matrices generated in Step 2 are broadcasted to the blocks on both sides
of the process borders (to P00, P01 and to P02, P03, P11, P12, P13).

For updating the parts of the matrix outside the window, neighboring processes holding
cross-border regions exchange their data in parallel and compute the updates in parallel.

To achieve good parallel performance, the above procedure needs to be applied to several com-
putational windows simultaneously. However, some care needs to be applied in order to avoid
intersecting scopes of the diagonal processes in Steps 1 and 2. Following an idea proposed
in [20], this can be achieved as follows. We number the windows from bottom to top, starting
with index 0. First all even-numbered windows are treated and only then all odd-numbered
windows are treated in parallel.

When the zero diagonal entries of T have been moved across the process borders, the next
step again consists of shifting all computational windows upwards or downwards such that they
are owned by diagonal processes. This allows to repeat the whole procedure, until all zero
diagonal entries of T arrive at one of the corners and admit deflation. The parallel procedure
of chasing zeros along the diagonal of T and deflating infinite eigenvalues is illustrated and
described in some more detail in Figures 3–7.
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Figure 3: Example where 8 zeros have been identified on the diagonal of T, indicated by filled
red squares. The grid is of size 5× 5 and process borders are indicated by red solid lines.

Figure 4: Intra-block chase where all diagonal blocks are processed in parallel. The 4 active
diagonal blocks, within which the zero diagonal entries of T are moved up or down, are marked
in green. The old positions of the zero diagonal entries are marked by white squares, while
the new positions or (so far) not moved zeros are marked by red squares. Three and two
deflations are performed at the top left and bottom right diagonal blocks, respectively, leading
to the zero subdiagonal entries of H marked by red squares on the subdiagonal of H. The
chase is followed by horizontal and vertical broadcasts of accumulated transformations, so that
off-diagonal processors can update their parts of H and T in parallel. The area affected by the
off-diagonal updates is marked in dark grey.
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Figure 5: Inter-block chase, phase one, where all even-numbered diagonal blocks, indexed by
0 . . . nblock−1 from bottom to top, are processed in parallel. In this case there is only one active
diagonal block. See Figure 4 for an explanation of the color marking.

Figure 6: Inter-block chase, phase two, where all odd-numbered diagonal blocks are processed
in parallel. See Figure 4 for an explanation of the color marking.
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Figure 7: Intra-block and inter-block chases are repeated until all zeros on the diagonal of T
have been moved to the top left or bottom right corners. A total of 8 deflations can be made.
The remaining problem size is decreased accordingly, indicated by the black square on H and
T .

3 Computational Experiments

3.1 Computing environment

The algorithms described in § 2 have been implemented in a Fortran 90 routine PDHGEQZ.
Following the ScaLAPACK style, we use BLACS [7] for communication and call ScaLAPACK
/ PBLAS or LAPACK / BLAS routines whenever appropriate.

We have used the two HPC2N computer systems Akka and Abisko, see Table 1, for our
computational experiments. For all our experiments on Akka, we used the Fortran 90 compiler
mpif90 version 4.0.13 from the PathScale EKOPath(tm) Compiler Suite with the optimization
flag -O3. For all our experiments on Abisko, we used the Intel compiler mpiifort version 13.1.2
with the optimization flag -O3.

On Abisko, each floating point unit (FPU) is shared between two cores. To attain near to
optimal performance, we only utilize 50% of the cores within a compute node. For example, a
grid Pr × Pc = 10 × 10 is allocated on 5 compute nodes, using up to 24 cores on each node.
Although each core on Akka has its own FPU, we also do not utilize more than 50% of the
cores on Akka either, for memory capacity reasons. Each compute node on Akka has 8 cores,
so a 10× 10 grid is allocated on 25 compute nodes, using 4 cores on each node.

3.2 Selection of nb and nAED

Our implementation PDHGEQZ of the parallel QZ algorithm is controlled by a number of param-
eters, in particular the AED window size nAED and the number of shifts nshifts. For choosing
these parameters, we follow the strategy proposed in [20, 21] for the parallel QR implementa-
tion. The block size nb, which determines the data distribution block size, is set to nb = 130
when n > 2000. If n ≤ 2000, an nb value of 60 is near optimal. This is the same for both Akka
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Table 1: Akka and Abisko at the High Performance Computing Center North (HPC2N)
Akka 64-bit low power Intel Xeon Linux cluster

672 dual socket quadcore L5420 2.5GHz nodes
256KB dedicated L1 cache, 12MB shared L2 cache,
16GB RAM per node
Cisco Infiniband and Gigabit Ethernet, 10 GB/sec
bandwidth
OpenMPI 1.4.4, GOTO BLAS 1.13
LAPACK 3.4.0, ScaLAPACK/BLACS/PBLAS 2.0.1

Abisko 64-bit AMD Opteron Linux Cluster
322 nodes with a total of 15456 CPU cores
Each node is equipped with 4 AMD Opteron 6238 (Interlagos)
12 core 2.6 GHz processors
10 ’fat’ nodes with 512 GB RAM each, as well as 312
’thin’ nodes with 128 GB RAM each
40 Gb/s Mellanox Infiniband
Intel-MPI 13.1.2, ACML package 5.3.1 (includes LAPACK 3.4.0)
ScaLAPACK/BLACS/PBLAS 2.0.2

and Abisko.
As explained in § 2.3.3, the nAED × nAED AED window is redistributed to a PAED × PAED

grid before performing AED. The redistribution itself requires some computation and commu-
nication, but the cost is small compared to the whole AED process, see [21]. The local size
of the AED window is set to a new value nlocal during the data redistribution. On Akka and
Abisko, we choose nlocal = nbd384/nbe, implying that each process involved in the AED should
own at least a 384× 384 block of the whole AED window. The value 384 is taken from the QR
implementation, see [21]. Then PAED is chosen as the smallest value that satisfies

nAED ≤ (1 + PAED) · nlocal. (8)

Before the redistribution, we also adjust nb to a value better suited for the problem size, i.e. 60
or 130 depending on nAED. When nAED ≤ 6 000, we use PDHGEQZ1 to compute the generalized
Schur decomposition of the adjusted AED window, otherwise PDHGEQZ is called recursively.

3.3 Accuracy

All experiments have been performed in double precision arithmetic (εmach ≈ 2.2× 10−16). For
each run of the parallel QZ algorithm, we have verified its backward stability by measuring

Rr = max

{
‖QTAZ − S‖F

‖A‖F
,
‖QTBZ − T‖F

‖B‖F

}
,

where (A,B) is the original matrix pair before reduction to generalized Schur form (S, T ). The
numerical orthogonality of the transformations has been tested by measuring

Ro = max

{
‖QTQ− In‖F

εmachn
,
‖ZTZ − In‖F

εmachn

}
.

For all experiments reported in this paper, we have observed Rr ∈ [10−14, 10−15] and Ro ∈
[0.5, 2.5].
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To verify that the matrix pair (S, T ) returned by PDHGEQZ is indeed in real generalized
Schur form, we have checked that the subdiagonal of S does not have two subsequent nonzero
entries and that eigenvalues of two-by-two blocks correspond to a complex conjugate pair of
eigenvalues. All considered matrix pairs passed this test.

3.4 Performance for random problems

We consider four different models of n × n pseudo-random matrix pairs (H,T ) in Hessenberg-
triangular form.

Hessrand1 For j = 1, . . . , n− 2, the subdiagonal entry hj+1,j is the square root of a chi-squared
distributed random variable with n− j degrees of freedom (∼ χ(n− j)). For the diagonal
entries of T , we choose t11 ∼ χ(n) and tjj ∼ χ(j − 1) for j = 2, . . . , n. All other nonzero
entries of H and T are normally distributed with mean zero and variance one (∼ N(0, 1)).
This corresponds to the distribution obtained when reducing a full matrix pair (A,B)
with entries ∼ N(0, 1) to Hessenberg-Triangular form; see [9] for a similar model. Such
a matrix pair (H,T ) has reasonably well-conditioned eigenvalues and, in turn, the QZ
algorithm obeys a fairly predictable convergence behaviour.

Hessrand2 In this model, the nonzero entries of the Hessenberg matrix H and the triangular
matrix T are all chosen from a uniform distribution in [0, 1]. The eigenvalues of such matrix
pairs are notoriously ill-conditioned and lead to a more erratic convergence behaviour of
the QZ algorithm.

Hessrand3 The Hessenberg matrix H is chosen as in the Hessrand2 model, but the upper
triangular matrix T is chosen as in the Hessrand1 model. The eigenvalues tend to be less
ill-conditioned compared to Hessrand2, but the potential ill-conditioning of T causes some
eigenvalues to be identified as infinite eigenvalues by the QZ algorithm.

Infrand This model is identical to Hessrand1, with the notable exception that we set each
diagonal element of T with probability 0.5 to zero. This yields a substantial number of
infinite eigenvalues; around 1/3 of the eigenvalues are infinite.

3.4.1 Serial execution times

To verify that our parallel implementation PDHGEQZ also performs well on a single core, we
have compared it with the serial implementations DHGEQZ (LAPACK version 3.4.0) and KKQZ

(prototype implementation of serial multishift QZ algorithm with AED [24]). Figure 8 shows
the timings obtained on a single core for Hessrand1 matrix pairs. The serial performance of
PDHGEQZ turns out to be quite good. It is even faster than KKQZ, although this is mainly due
to the fact that KKQZ represents a rather preliminary implementation with little performance
tuning. We expect the final version of KKQZ to be at least en par with PDHGEQZ. Similar results
have been obtained for Hessrand2, Hessrand3, and Infrand.

3.4.2 Parallel execution time

Tables 2–4 show the parallel execution times obtained on Akka and Abisko for random matrix
pairs of size n = 4 000–32 000.
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Figure 8: Serial execution times of PDHGEQZ, DHGEQZ, and KKQZ for Hessrand1 matrix pairs on
Akka (left figure) and Abisko (right).

The figures for the Hessrand1 model in Table 2 indicate a parallel performance comparable
to the one obtained for the parallel QR algorithm [21] on the same architecture. Analogous to
the parallel QR algorithm, the execution time T (·, ·) of the parallel QZ algorithm, as a function
of n and p, satisfies

2T (n, p) ≤ T (2n, 4p) < 4T (n, p), (9)

provided that the local load per core is fixed to n/
√
p = 4000. This indicates that PDHGEQZ

scales rather well, see also § 3.4.3.
As expected, the results for the Hessrand2 model in Table 3 are somewhat erratic. Compared

to the Hessrand1 model, significantly smaller execution times are obtained for larger n, due to
the greater effectiveness of AED.

Table 2: Parallel execution time (in seconds) of PDHGEQZ for Hessrand1 model. Numbers within
parentheses are the execution time ratios of PDHGEQZ over PDHSEQR [21] for similar random
problems.

Akka Abisko

Pr × Pc n = 4k n = 8k n = 16k n = 32k n = 4k n = 8k n = 16k n = 32k

1× 1 114(1.0) 73(1.5)

2× 2 76(1.4) 403(1.4) 37(1.8) 226(2.5)

4× 4 35(1.0) 181(1.1) 598(0.8) 23(1.8) 134(2.1) 418(1.5)

6× 6 28(0.7) 127(1.1) 432(1.0) 2188(1.0) 20(1.8) 85(2.2) 316(1.9) 1218(1.4)

8× 8 25(0.7) 91(0.9) 367(1.1) 1754(1.2) 19(1.6) 72(1.9) 251(1.9) 1051(1.5)

10× 10 24(0.7) 88(0.7) 298(0.9) 1486(0.9) 18(2.0) 66(1.7) 208(1.9) 919(1.8)

Finally, Table 4 reveals good parallel performance also for matrix pairs with a substantial
fraction (roughly 1/3) of infinite eigenvalues. Interestingly, for n ≥ 8 000, the execution times
for the Infrand model are often larger compared to the Hessrand1 model, especially for a smaller
number of processes. This effect is due to the success of AED already in the very beginning of
the QZ algorithm: Deflating a converged finite eigenvalue in the bottom right corner with AED
requires significantly less operations than deflating an infinite eigenvalue located far away from
the top left and bottom right corners.
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Table 3: Parallel execution time (in seconds) of PDHGEQZ for Hessrand2 model.
Akka Abisko

Pr × Pc n = 4k n = 8k n = 16k n = 32k n = 4k n = 8k n = 16k n = 32k

1× 1 143 46

2× 2 79 82 48 55

4× 4 45 29 102 33 22 71

6× 6 43 31 90 335 21 21 66 199

8× 8 28 26 87 303 22 21 58 193

10× 10 37 26 83 291 29 22 63 187

Table 4: Parallel execution time (in seconds) of PDHGEQZ for Infrand model.
Akka Abisko

Pr × Pc n = 4k n = 8k n = 16k n = 32k n = 4k n = 8k n = 16k n = 32k

1× 1 117 67

2× 2 64 534 34 259

4× 4 30 194 1153 18 110 691

6× 6 21 126 627 3748 16 73 380 2024

8× 8 19 81 441 3235 15 58 310 1636

10× 10 18 74 342 2322 16 55 238 1272

3.4.3 Parallel execution time: n = 100 000 benchmark

To test the performance for larger matrix pairs, we performed a few runs for n = 100 000 for
the Hessrand1 and Hessrand3 models. The obtained execution times (in seconds) on Akka and
Abisko are shown in the first row of Table 5 and Table 6, respectively. Moreover, the following
runtime statistics for PDHGEQZ are shown:
#AED number of times AED has been performed
#sweeps number of multishift QZ sweeps
#shifts/n average number of shifts needed to deflate a finite eigenvalue
%AED percentage of execution time spent on AED
#redist number of times a redistribution of data has been performed

On Akka and for Hessrand1, see Table 5, we have included a comparison with the parallel QR
algorithm applied to the fullrand model [21]. For the timings the ratios PDHGEQZ/PDHSEQR are
listed, while absolute values are reported for the other statistics. The number for redistributions
is available only for the QZ algorithm. Although the QZ algorithm is expected to performs about
3.5 more flops than the QR algorithm [18], the execution time ratios vary between 0.8 and 2.1.
This is explained by a more effective AED wihtin PDHGEQZ for this problem type. The execution
times on Abisko are substantially lower than on Akka, for both Hessrand1 and Hessrand3. Even
though the per core computing power is roughly the same on both machines, the network used
on Abisko is faster than on Akka, and this in conjunction with using Intel-MPI instead of
OpenMPI give faster execution times on Abisko for these random problems.

It turns out that only a few multishift QZ sweeps are performed for Hessrand1. For Hess-
rand3, the ill-conditioning makes AED even more effective and no multishift QZ sweep needs
to performed.
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Table 5: Execution time and statistics for PDHGEQZ on Akka for n = 100 000. Numbers within
parentheses provide a comparison to PDHSEQR for a similar random problem.

Pr × Pc = 16× 16 Pr × Pc = 24× 24 Pr × Pc = 32× 32 Pr × Pc = 40× 40
Hessrand1 Hessrand3 Hessrand1 Hessrand3 Hessrand1 Hessrand3 Hessrand1 Hessrand3

Time 22093(1.6) 2725 13165(1.6) 1614 9326(1.4) 1450 7028(0.8) 2539
#AED 26(35) 17 27(31) 17 26(27) 17 25(23) 17
#sweeps 2(5) 0 2(6) 0 4(13) 0 9(12) 0
#shifts/n 0.08(0.20) 0 0.07(0.23) 0 0.11(0.35) 0 0.15(0.49) 0
%AED 83%(48%) 100% 81%(43%) 100% 78%(39%) 100% 73%(54%) 100%
#redist 1(-) 1 26(-) 17 25(-) 17 24(-) 17

Table 6: Execution time and statistics for PDHGEQZ on Abisko for n = 100 000.
Pr × Pc = 16× 16 Pr × Pc = 24× 24 Pr × Pc = 32× 32 Pr × Pc = 40× 40

Hessrand1 Hessrand3 Hessrand1 Hessrand3 Hessrand1 Hessrand3 Hessrand1 Hessrand3

Time 10259 1053 8031 1463 6092 1367 5680 2163
#AED 32 17 26 17 24 17 28 17
#sweeps 1 0 2 0 4 0 9 0
#shifts/n 0.04 0 0.07 0 0.11 0 0.16 0
%AED 79% 100% 74% 100% 70% 100% 66% 100%
#redist 2 1 25 17 23 17 25 17

3.5 Impact of infinite eigenvalues on performance and scalability

The purpose of this experiment is to investigate the impact of a varying fraction of infinite
eigenvalues on the performance, additional to the observations already made in Table 4.

We consider n× n matrix pairs (A,B) of the form

A = Q

[
A11 0
0 A22

]
ZT , B = Q

[
B11 0
0 0

]
ZT ,

where A11, B11 ∈ R(n−m)×(n−m) and H22 ∈ Rm×m are full matrices with entries randomly
chosen from a uniform distribution in [0, 1]. The orthogonal transformation matrices Q and Z
are randomly chosen as well. Such a matrix pair will have m infinite eigenvalues of index 1
(corresponding to Jordan blocks of size 1× 1).

Table 7 shows the execution time on Akka of PDHGEQZ applied to (A,B), after reduction to
Hessenberg-triangular form. In all tests, the induced m infinite eigenvalues have been correctly
identified by the parallel QZ algorithm. The fact that the execution times decrease as the
number of infinite eigenvalues increases confirms the good performance of our parallel algorithm
for deflating infinite eigenvalues. Regardless of how many infinite eigenvalues we have, equation
9 still holds, except when considering 40% infinite eigenvalues and comparing execution times
on a 2× 2 grid for n = 4000 with a grid of size 4× 4 for n = 8000.

Similar observations have been made on Abisko.

3.6 Performance for benchmark examples

In the following, we present performance results for PDHGEQZ run on a number of different
benchmarks, see Tables 9 – 16. The benchmarks are described in Table 8; most of them come
from real world problems, while a few are constructed examples. The benchmarks are stored
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Table 7: Execution time for PDHGEQZ on Akka for a varying fraction of infinite eigenvalues.
Pr × Pc n 10% inf 20% inf 30% inf 40% inf

1× 1 4 000 88 69 56 50

2× 2 4 000 38 33 26 20

4× 4 4 000 31 28 21 16

6× 6 4 000 24 19 16 13

8× 8 4 000 20 17 14 10

2× 2 8 000 235 185 153 149

4× 4 8 000 140 116 100 81

6× 6 8 000 101 85 67 58

8× 8 8 000 82 70 59 46

in files using the Matrix Market format, see [4], and to be able to process these benchmark
files effectively, specialized routines were developed that parse the files so that every process in
the grid store their specific part of the globally distributed matrix pair (A,B). A and B are
treated as dense in all benchmarks, although some of the samples are very sparse, and reduced
to Hessenberg-Triangular form, except for the BBMSN benchmark which is stored in HT-form,
before PDHGEQZ is called.

Table 8: Description of benchmark problems
Name Size n # ∞ Description Ref

BBMSN scalable 0 academic example [24]

BCSST25 15 439 0 Columbia Center skyscraper [4]
MHD4800 4 800 0 Alfven spectra in Magnetohydrodynamics [4]

xingo6u, Bz1 20 738 17769 Brazilian Interconnect Power System [23]
xingo3012, Bz2 20 944 17910 Brazilian Interconnect Power System [23]
bips07 1998, Bz3 15 066 13046 Brazilian Interconnect Power System [17]
bips07 2476, Bz4 16 861 14336 Brazilian Interconnect Power System [17]
bips07 3078, Bz5 21 128 18017 Brazilian Interconnect Power System [17]

railtrack2, RTR[1..5] scalable - Palindromic quadratic eigenvalue problem [6]

convective 11 730 0 2D convective thermal flow problems [30]
gyro 17 361 0 butterfly gyroscope [30]
steel1 5 177 0 heat transfer in steel profile [30]
steel2 20 209 0 heat transfer in steel profile [30]
supersonice 11 730 407 supersonic engine inlet [30]
t2dal 4 257 0 2D micropyros thruster, linear FE [30]
t2dah 11 445 0 2D micropyros thruster, quadratic FE [30]
t3dl 20 360 0 3D micropyros thruster, linear FE [30]

mna2 9 223 1146 modified nodal analysis [13]
mna3 4 863 416 modified nodal analysis [13]
mna5 10 913 123 modified nodal analysis [13]

The first column in Table 8 shows the benchmark names and, in some cases, acronyms
used in the result tables. Column two holds the problem sizes n for the benchmarks. For
the benchmarks marked scalable, the problem sizes considered are marked in the result tables.
Column three shows the average of the number of infinite eigenvalues identified. Columns 4 and
5 give a brief description of and reference to each benchmark.

The BBMSN benchmark, see Table 9 for execution times on Akka and Abisko, is constructed
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Table 9: Execution time, in seconds, on Akka and Abisko for BBMSN.

n Pr × Pc Akka Abisko

5000 1× 1 6 7
10000 2× 2 23 18
20000 4× 4 53 32

in such a way that the AED should be very successful. It turns out that the scaling is not
optimal, but equation (9) still holds. Compared with the Hessrand1 model in Table 2 we
observe drastically reduced run-times, explained by the fact that no QZ sweeps are needed to
compute the generalized Schur-form.

Table 10: Execution time, in seconds, on Akka and Abisko for Matrix market examples.

Akka Abisko
Pr × Pc MHD4800 BCSST25 MHD4800 BCSST25

1× 1 304 121
2× 2 82 35
4× 4 26 1195 19 840
6× 6 23 701 16 550
8× 8 24 602 16 536

10× 10 23 492 16 518

BCSST25 and MDH4800 are two benchmarks with nonsingular B, i.e. only finite eigenval-
ues; see Table 10. For MDH4800 we observe good scaling, using a grid size up to 4 × 4, but
the problem is too small to be solved effectively on larger grid sizes. BCSST25 is a somewhat
larger problem, and PDHGEQZ therefore show better scaling.

Table 11: Execution time, in seconds, on Akka and Abisko for Brazilian interconnect bench-
marks.

Akka Abisko

Pr × Pc Bz1 Bz2 Bz3 Bz4 Bz5 Bz1 Bz2 Bz3 Bz4 Bz5

4× 4 228 333 164 232
6× 6 117 165 306 339 559 96 126 220 226 234
8× 8 123 125 186 192 199 64 99 143 146 160

10× 10 78 102 155 157 152 61 74 113 123 120

The Brazillian interconnect power system benchmarks have a large ratio of infinite eigenval-
ues; see Table 11 for execution times. We observe good overall scaling properties. The initial
Hessenberg-Triangular reduction moves tiny or zero elements in B up to the upper left corner,
making the deflation of infinite eigenvalues particularly cheap. Table 12 reports the number of
identified infinite eigenvalues for two different benchmarks and five different grid sizes. These
problems have quite unbalanced A and B, leading to greater impact from rounding errors, and
hence, the number of identified infinite eigenvalues will vary, even for the same grid and problem
sizes if the same problem is executed more than once.
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Table 12: Number of deflated infinte eigenvalues for Bz3 and Bz4 on Akka.
Pr × Pc #∞ Bz3 #∞ Bz4

4× 4 13004 14305

6× 6 13028 14263

8× 8 13041 14333

10× 10 13046 14336

Results for the scalable railtrack benchmark are reported in Table 13 for five different prob-
lem sizes and six different grid sizes, both for Akka and Abisko. These problems have a high
fraction of infinite eigenvalues, which is reflected in the measured execution times. On aver-
age, PDHGEQZ identified 1409, 2813, 4212, 6963, and 8320 infinite eigenvalues for RT1, RT2, RT3,
RT4, and RT5, respectively.

Table 13: Execution time, in seconds, on Akka and Abisko for the railtrack benchmark. n is
5640, 8640, 11280, 16920, 19740 for RT1, RT2, RT3, RT4, and RT5 respectively.

Akka Abisko

Pr × Pc RT1 RT2 RT3 RT4 RT5 RT1 RT2 RT3 RT4 RT5

1× 1 98 69
2× 2 43 70 22 36
4× 4 19 29 30 60 12 19 24 48
6× 6 15 20 25 45 58 10 15 17 38 58
8× 8 13 18 23 44 67 10 12 16 33 47

10× 10 12 18 20 43 63 9 12 15 30 45

All benchmarks related to the Oberwolfach test suite, except one (supersonic), have a non-
singular B part. Execution times on Akka are displayed in Table 14; corresponding results on
Abisko are found in Table 15. Most of these problems are rather small, and therefore PDHGEQZ

only reveals good scaling properties for smaller grid sizes.

Table 14: Execution time, in seconds, on Akka for Oberwolfach benchmarks.

Pr × Pc t2dal steel1 connective t2dah supersonic gyro steel2 t3dl

1× 1 243 606
2× 2 108 297
4× 4 76 197 883 735 661
6× 6 73 190 616 343 328 1052 2164 2066
8× 8 68 182 523 304 309 854 1847 1921

10× 10 71 175 437 357 300 732 1509 1450

In Table 16, execution times are reported for the modified nodal analysis benchmark group,
both for Akka and Abisko. These problems have a moderate fraction of infinite eigenvalues.
Some of the problems are too small to be solved effectively on the larger grid sizes.
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Table 15: Execution time, in seconds, on Abisko for Oberwolfach benchmarks.

Pr × Pc t2dal steel1 convective t2dah supersonic gyro steel2 t3dl

1× 1 117 249
2× 2 42 135
4× 4 24 70 353 315 305
6× 6 20 56 193 179 163 737 1567 1348
8× 8 18 50 175 152 147 621 1293 1140

10× 10 17 47 176 158 151 345 1161 1013

Table 16: Execution time, in seconds, on Akka and Abisko for modified nodal analysis bench-
marks.

Akka Abisko
Pr × Pc mna3 mna2 mna5 mna3 mna2 mna5

1× 1 113 67
2× 2 61 30
4× 4 25 203 984 16 143 629
6× 6 21 130 614 14 91 360
8× 8 17 109 560 13 78 402

10× 10 16 106 351 13 101 363

4 Conclusions

We have presented a new parallel algorithm and implementation PDHGEQZ of the multishift QZ
algorithm with aggressive early deflation for reducing a matrix pair to generalized Schur form.
To the best of our knowledge, this is the only parallel implementation capable of handling
infinite eigenvalues. Our extensive computational experiments demonstrate robust numerical
results and scalable parallel performance, comparably to what has been achieved for a recent
parallel implementation of the QR algorithm [21].

There is certainly room to improve the tuning of the parameters used in PDHGEQZ and the in-
terplay of the different components, including trade-offs between algorithm variants used in the
implementation that targets distributed memory architectures. However, from the experience
gained in the experiments, we do not expect this to lead to any further dramatic performance
improvements. To boost the performance much more, the coarse-grain parallelism has to be
combined with a fine-grained and strongly scalable parallel QZ algorithm that effectively man-
ages the shared memory hierarchies of multicore nodes. Such initiatives for the parallel QR
algorithm has recently started, see [28]. A critical part not addressed in this paper is the initial
reduction to Hessenberg-triangular form. If this part is not handled properly, it will dominate
the overall execution time. A parallel implementation of the Hessenberg-triangular reduction,
based on ideas from [25], is currently in preparation.
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A Implementation aspects

Our software is written in Fortran 90. It is a ScaLAPACK-style implementation, using BLACS
for communication and ScaLAPACK/LAPACK/PBLAS/BLAS routines where appropriate.

Figure 9 shows an overview of the main routines related to our parallel QZ software. One-
directed arrows indicate that one routine calls other routines. For example, PDHGEQZ1 is called by
PDHGEQZ and PDHGEQZ3 and calls four routines: PDHGEQZ2, PDHGEQZ4, PDHGEQZ5, and PDHGEQZ7.
Calls to LAPACK, ScaLAPACK, BLACS etc. are not show in Figure 9. Main entry routine
is PDHGEQZ, see Figure 10 for an interface description, but the call might be directly passed on
to PDHGEQZ1 if the problem is small enough, i.e. n ≤ 6000. PDHGEQZ3 is responsible for doing
parallel AED.

For the QZ sweeps, both PDHGEQZ and PDHGEQZ1 call PDHGEQZ5 and provide shifts, number
of computational windows to chase and the number of shifts to use within each window as
parameters. PDHGEQZ5 then sets up and moves the windows until they are chased off the
diagonal of (H,T ).

Figure 9: Software hierarchy for PDGEHQZ.

The interface for PDHGEQZ is similar to the existing (serial) LAPACK routine DHGEQZ, see
Figure 10. The main difference between PDHGEQZ and DHGEQZ is the use of descriptors to define
partitioning and globally distributed matrices across the Pr×Pc process grid, instead of leading
dimensions, and that PDHGEQZ requires an integer workspace. RLVL indicates what level of
recursion current execution is running in, and should initially be set to 0. We do not allow for
more than two levels, that is, PDHGEQZ can call itself, but not more than one time. We follow the
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RECURSIVE SUBROUTINE PDHGEQZ(JOB, COMPQ, COMPZ,
$ N, ILO , IHI , A, DESCA, B, DESCB,
$ ALPHAR, ALPHAI, BETA, Q, DESCQ, Z , DESCZ,
$ WORK, LWORK, IWORK, LIWORK, INFO, RLVL)

∗ . .
∗ . . S ca l a r Arguments . .
∗ . .

CHARACTER COMPQ, COMPZ, JOB
INTEGER IHI , ILO , INFO, LWORK, N
INTEGER LIWORK
INTEGER RLVL

∗ . .
∗ . . Array Arguments . .
∗ . .

DOUBLE PRECISION A(∗ ) , B(∗ ) , Q(∗ ) , Z(∗ )
DOUBLE PRECISION ALPHAI(∗ ) , ALPHAR(∗ ) , BETA(∗ )
DOUBLE PRECISION WORK(∗ )
INTEGER IWORK(∗ )
INTEGER DESCA( 9 ) , DESCB(9)
INTEGER DESCQ( 9 ) , DESCZ(9)

Figure 10: Interface for PDGEHQZ

convention in LAPACK/ScaLAPACK for workspace queries, allowing −1 in LWORK or LIWORK.
Optimal workspace is then returned in WORK(1) and IWORK(1).
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