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ORBIT CLOSURE HIERARCHIES OF SKEW-SYMMETRIC

MATRIX PENCILS∗

ANDRII DMYTRYSHYN† AND BO KÅGSTRÖM†

Abstract. We study how small perturbations of a skew-symmetric matrix pencil may change

its canonical form under congruence. This problem is also known as the stratification problem of

skew-symmetric matrix pencil orbits and bundles. In other words, we investigate when the closure

of the congruence orbit (or bundle) of a skew-symmetric matrix pencil contains the congruence orbit

(or bundle) of another skew-symmetric matrix pencil. The developed theory relies on our main

theorem stating that a skew-symmetric matrix pencil A−λB can be approximated by pencils strictly

equivalent to a skew-symmetric matrix pencil C − λD if and only if A− λB can be approximated by

pencils congruent to C − λD.

Key words. skew-symmetric matrix pencil, stratification, canonical structure information,

orbit, bundle
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1. Introduction. How canonical information changes under perturbations, e.g.,

the confluence and splitting of eigenvalues of a matrix pencil, are essential issues for

understanding and predicting the behaviour of the physical system described by the

matrix pencil. In general, these problems are known to be ill-posed: small perturba-

tions in the input data may lead to drastical changes in the answers. The ill-posedness

stems from the fact that both the canonical forms and the associated reduction trans-

formations are discontinuous functions of the entries of A−λB. Therefore it is impor-

tant to get knowledge about the canonical forms (or canonical structure information)

of the pencils that are close to A − λB. One way to investigate this problem is to

construct the stratification (i.e., the closure hierarchy) of orbits and bundles of the

pencils [13].

The stratification of matrix pencils under strict equivalence transformations [12,

13, 14] as well as the stratification of controllability and observability pairs [15] are

known. StratiGraph [18, 20] is a software tool for computing and visualization of such

∗The work was supported by the Swedish Research Council (VR) under grant A0581501, and by

eSSENCE, a strategic collaborative e-Science programme funded by the Swedish Government via

VR. A preprint appears as Report UMINF 14.02.
†Department of Computing Science and HPC2N, Ume̊a University, SE-901 87 Ume̊a, Sweden.

E-mails: andrii@cs.umu.se, bokg@cs.umu.se

1

mailto:andrii@cs.umu.se
mailto:bokg@cs.umu.se


2 A. Dmytryshyn and B. K̊agström

stratifications. The stratification of full normal rank matrix polynomials has been

studied [19] and implemented in StratiGraph too (available as a prototype now).

Our objective is to stratify orbits and bundles of skew-symmetric matrix pencils,

i.e., A−λB with AT = −A and BT = −B, under congruence transformations. Canonical

forms of skew-symmetric matrix pencils [23, 24] and the structured staircase algorithm

[2, 3] have already been investigated. The codimensions of the congruence orbits

of skew-symmetric matrix pencils are obtained from the solutions of the associated

homogeneous systems of matrix equations in [10] (can also be obtained by computing

the numbers of independent parameters in the miniversal deformations [5]). The

Matrix Canonical Structure (MCS) Toolbox for Matlab was extended by the functions

for calculating these codimensions [9].

In this paper, we develop the stratification theory for skew-symmetric matrix pen-

cils, which (to our knowledge) is a novel contribution. For any problem dimension we

construct the closure hierarchy graph for congruence orbits or bundles. Each node

(vertex) of the graph represents an orbit (or a bundle) and each edge represents a

cover/closure relation. In the graph, there is an upwards path from a node represent-

ing A−λB to a node representing C −λD if and only if A−λB can be transformed by

an arbitrarily small perturbation to a skew-symmetric matrix pencil whose canonical

form is the one of C − λD.

Some steps towards the understanding of stratifications of matrix pencils with

other symmetries have been done recently, e.g., miniversal deformations [7, 8], the

stratifications of 2×2 and 3×3 matrices of bilinear forms which give the stratifications

of 2 × 2 and 3 × 3 symmetric/skew-symmetric matrix pencils are given in [16]. For

matrix pencils with two symmetric matrices see also [6, 11].

The rest of the paper is outlined as follows. In Section 2, we review the Kronecker

canonical form of a general matrix pencil A−λB under strict equivalence transforma-

tions, as well as the corresponding canonical form of skew-symmetric matrix pencils

under structure-preserving congruence transformations. We also state the conditions

when a general matrix pencil can be skew-symmetrized. Section 3 is devoted to the

derivation of the stratification of orbits of skew-symmetric matrix pencils. We obtain

the new results by investigating and proving relations between using strict equiva-

lence transformations versus congruence transformations. In Section 4, an algorithm

based on the theory presented in Section 3 for computing the orbit stratification of

skew-symmetric matrix pencils is described. In addition, Section 4.1 includes a step

by step presentation and illustration of the derivation and computation of the closure

hierarchy graph of the 4×4 case. Finally, the stratification of skew-symmetric matrix

pencil bundles is discussed in Section 5, where the 4×4 case is used again to illustrate

similarities and differences between the orbit and bundle stratifications.
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2. Preliminary results. We start by recalling the Kronecker canonical form

(KCF) of general matrix pencils and canonical forms of skew-symmetric matrix pencils

under congruence. All matrices that we consider have complex entries. Define C ∶=

C ∪∞.

For each k = 1,2, . . ., define the k × k matrices

Jk(µ) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ 1

µ ⋱

⋱ 1

µ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ik ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⋱

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and for each k = 0,1, . . ., define the k × (k + 1) matrices

Fk ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1

⋱ ⋱

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Gk ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0

⋱ ⋱

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

All non-specified entries of Jk(µ), Ik, Fk, and Gk are zeros.

An m×n matrix pencil A−λB is called strictly equivalent to C −λD if and only if

there are non-singular matrices Q and R such that Q−1AR = C and Q−1BR =D. The

set of matrix pencils strictly equivalent to A − λB forms a manifold in the complex

2mn dimensional space. This manifold is the orbit of A − λB under the action of the

group GLm(C) ×GLn(C) on the space of all matrix pencils by strict equivalence:

(2.1) Oe
A−λB = {Q−1

(A − λB)R ∶ Q ∈ GLm(C),R ∈ GLn(C)}.

The dimension of Oe
A−λB is the dimension of the tangent space to this orbit

TeA−λB ∶= {(XA −AY ) − λ(XB −BY ) ∶X ∈ Cm×m, Y ∈ Cn×n}

at the point A − λB. The orthogonal complement to TeA−λB , with respect to the

Frobenius inner product

(2.2) ⟨A − λB,C − λD⟩ = trace(AC∗
+BD∗

),

is called the normal space to this orbit. The dimension of the normal space is the

codimension of the strict equivalence orbit of A − λB and is equal to 2mn minus

the dimension of the strict equivalence orbit of A − λB. Explicit expressions for the

codimensions of strict equivalence orbits are presented in [4].

Theorem 2.1. [17, Sect. XII, 4] Each m × n matrix pencil A − λB is strictly

equivalent to a direct sum, uniquely determined up to permutation of summands, of

pencils of the form

Ek(µ) ∶= Jk(µ) − λIk, in which µ ∈ C, Ek(∞) ∶= Ik − λJk(0),

Lk ∶= Fk − λGk, and LTk ∶= F
T
k − λGTk .
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The canonical form in Theorem 2.1 is known as the Kronecker canonical form. The

blocks Ek(µ) and Ek(∞) correspond to the finite and infinite eigenvalues, respectively,

and altogether form the regular part of A−λB. The blocks Lk and LTk correspond to

the column and row minimal indices, respectively, and form the singular part of the

matrix pencil.

A sequence of integers N = (n1, n2, n3, . . . ) such that n1 + n2 + n3 + ⋅ ⋅ ⋅ = n and

n1 ⩾ n2 ⩾ . . . ⩾ 0 is called an integer partition of n (for more details and references see

[13]). For any a ∈ Z we defineN+a as the integer partition (n1+a,n2+a,n3+a, . . . ) and

for positive b ∈ Q we define bN to be (bn1, bn2, bn3, . . . ) assuming that we take only

b such that bni are integers for i = 1,2, . . . The difference of two integer partitions

N = (n1, n2, n3, . . . ) and M = (m1,m2,m3, . . . ) where ni ⩾ mi, i ⩾ 1, is defined as

N −M = (n1 −m1, n2 −m2, n3 −m3, . . . ). The set of all integer partitions forms a

poset (even a lattice) with respect to the following order N ≽ M if and only if

n1 + n2 + ⋅ ⋅ ⋅ + ni ⩾m1 +m2 + ⋅ ⋅ ⋅ +mi, for i ⩾ 1.

With every matrix pencil P ≡ A−λB (with eigenvalues µj ∈ C) we associate the set

of integer partitions R(P ),L(P ), and {Jµj(P ) ∶ j = 1, . . . , d}, where d is the number

of distinct eigenvalues of P (e.g., see [13]). Altogether these partitions, known as the

Weyr characteristics, are constructed as follows:

● For each distinct µj we have Jµj(P ) = (j
µj

1 (P ), j
µj

2 (P ), . . . ) ∶ the kth position

is the number of Jordan blocks of the size greater or equal to k (the position

numeration starting from 1).

● R(P ) = (r0(P ), r1(P ), . . . ) (or, respectively, L(P ) = (l0(P ), l1(P ), . . . )): the

kth position is the number of L-blocks (or, respectively, LT -blocks) with the

indices greater or equal to k (the position numeration starting from 0).

Example 2.2. Let P = 2E3(µ1) ⊕ 2E1(µ1) ⊕ 2E2(∞) ⊕ L4 ⊕ L1 ⊕ L
T
4 ⊕ LT1 be a

24 × 24 matrix pencil in KCF. The associated partitions are:

Jµ1(P ) = (4,2,2), J∞(P ) = (2,2),

R(P ) = (2,2,1,1,1), L(P ) = (2,2,1,1,1).

Matrices with specific characteristics should be treated with structure preserving

transformations to keep their physical meaning. Therefore it is natural to consider

skew-symmetric matrix pencils under congruence. An n × n skew-symmetric matrix

pencil A − λB is called congruent to C − λD if and only if there is a non-singular

matrix S such that STAS = C and STBS = D. The set of matrix pencils congruent

to a skew-symmetric matrix pencil A − λB forms a manifold in the complex n2 − n
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dimensional space (A has n(n − 1)/2 independent parameters and so does B). This

manifold is the orbit of A − λB under the action of the group GLn(C) on the space

of skew-symmetric matrix pencils by congruence:

(2.3) Oc
A−λB = {ST (A − λB)S ∶ S ∈ GLn(C)}.

The dimension of Oc
A−λB is the dimension of the tangent space to this orbit

TcA−λB ∶= {(XTA +AX) − λ(XTB +BX) ∶X ∈ Cn×n}

at the point A−λB. The orthogonal complement (in the space of all skew-symmetric

matrix pencils) to TcA−λB with respect to (2.2) is the normal space to this orbit. The

dimension of the normal space is the codimension of the congruence orbit of A − λB

and is equal to n2 − n minus the dimension of the congruence orbit of A − λB.

Recently, explicit expressions for the codimensions of congruence orbits of skew-

symmetric matrix pencils were derived in [10]. Since even the number of free param-

eters in the spaces, where we consider skew-symmetric matrix pencils under strict

equivalence and congruence, are different, so are the orbit dimensions and codimen-

sions of the pencils (illustrated by the example in Section 4.1).

Theorem 2.3. [24] Each skew-symmetric n×n matrix pencil A−λB is congruent

to a direct sum, determined uniquely up to permutation of summands, of pencils of

the form

Hh(µ) ∶= [
0 Jh(µ)

−Jh(µ)
T 0

] − λ [
0 Ih
−Ih 0

] , µ ∈ C,

Kk ∶= [
0 Ik
−Ik 0

] − λ [
0 Jk(0)

−Jk(0)
T 0

] ,

Mm ∶= [
0 Fm

−FTm 0
] − λ [

0 Gm
−GTm 0

] .

Therefore every skew-symmetric pencil A − λB is congruent to one in the following

direct sum form

(2.4) A − λB =⊕
j
⊕
i

Hhi(µj) ⊕⊕
i

Kki ⊕⊕
i

Mmi ,

where the first direct (double) sum corresponds to all d distinct eigenvalues µj .

We say that a matrix pencil can be skew-symmetrized if its strict equivalence orbit

contains a skew-symmetric matrix pencil (e.g., P from Example 2.2 can be skew-

symmetrized).

Theorem 2.4. A matrix pencil P can be skew-symmetrized if and only if the

following conditions hold:
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1. For each distinct µj and every k its KCF contains an even number of blocks

Ek(µj);

2. For every k its KCF contains an even number of blocks Ek(∞);

3. For every k the number of blocks Lk is equal to the number of blocks LTk in

its KCF.

Proof. Follows from the form of the canonical blocks of matrix pencils under

congruence given in Theorem 2.3.

3. Orbit closure relations for skew-symmetric matrix pencils: strict

equivalence vs. congruence. A classical result, see [17, Theorem 6, p.41] or [21,

Theorem 3, p.275], is that two skew-symmetric matrix pencils are strictly equivalent

if and only if they are congruent. In this section, we generalize this fact, proving

that a skew-symmetric matrix pencil A−λB can be approximated by pencils strictly

equivalent to a skew-symmetric matrix pencil C − λD if and only if A − λB can be

approximated by pencils congruent to C − λD. First, we present three equivalent

formulations of our main result: Theorems 3.1, 3.2, and 3.3. We also recall some

known and provide some auxiliary results needed for the proof of the theorems. The

proof of the main result is presented at the end of this section.

By X we denote the closure of a set X in the Euclidean topology.

Theorem 3.1. Let A − λB and C − λD be two skew-symmetric matrix pencils.

Then the following holds:

(3.1) Oe
C−λD ⊃ Oe

A−λB if and only if Oc
C−λD ⊃ Oc

A−λB .

Assuming A − λB ≢ C − λD, the condition Oe
C−λD ⊃ Oe

A−λB implies that Oe
A−λB

is a part of the boundary of the orbit Oe
C−λD . Therefore there is an arbitrarily small

perturbation of A−λB that brings it to a pencil nearby which is equivalent to C−λD.

The same is true for the congruence orbits. This leads to the following reformulation

of Theorem 3.1.

Theorem 3.2. Let A − λB and C − λD be two skew-symmetric matrix pencils.

There exists an arbitrarily small (entry-wise) matrix pencil F −λF ′, and non-singular

matrices Q and R such that

(3.2) Q−1
(A + F − λ(B + F ′

))R = C − λD

if and only if there exists an arbitrarily small (entry-wise) matrix pencil F̃ −λF̃ ′ where

F̃T = −F̃ and F̃
′T = −F̃ ′, and a non-singular S such that

(3.3) ST (A + F̃ − λ(B + F̃ ′))S = C − λD.
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From (3.2) we have Q(C − λD)R−1 − (A − λB) = F − λF ′. The corresponding

equality for congruence follows from (3.3). Since F − λF ′ can be arbitrarily small we

have another reformulation of Theorem 3.1.

Theorem 3.3. Let A − λB and C − λD be two skew-symmetric matrix pencils.

There exists a sequence of non-singular matrices {Qk,R
−1
k } such that

(3.4) Qk(C − λD)R−1
k → A − λB

if and only if there exists a sequence of non-singular matrices {Sk} such that

(3.5) STk (C − λD)Sk → A − λB.

Remark 3.4. Note that if X ⊃ Y for some sets of matrices X and Y then X ⊃ Y.

Thus Oe
C−λD ⊃ Oe

A−λB implies Oe
C−λD ⊃ Oe

A−λB. The same implication holds for the

congruence orbits. The rest of the section is dedicated to the proof of Theorem 3.1.

First we recall the result which describes all the possible changes in the KCF under

small perturbations. These changes are structure transitions based on six different

rules (see Theorem 3.5). By the structure transition X ↝ Y we mean that in the

canonical form of a matrix pencil the blocks represented by X are replaced by the

blocks Y . Note that X and Y must have the same dimensions.

Theorem 3.5. [1] Let P1 and P2 be two matrix pencils such that Oe
P1

⊃ Oe
P2

(i.e., there is an upwards path from P2 to P1 in the corresponding closure hierarchy

graph). Then P1 can be obtained from P2 changing canonical blocks of P2 by applying

a sequence of structure transitions and each transition is one of the six types below:

1. Lj−1 ⊕Lk+1 ↝ Lj ⊕Lk, 1 ⩽ j ⩽ k;

2. LTj−1 ⊕L
T
k+1 ↝ LTj ⊕L

T
k , 1 ⩽ j ⩽ k;

3. Lj ⊕Ek+1(µ) ↝ Lj+1 ⊕Ek(µ), j, k = 0,1,2, . . . and µ ∈ C;

4. LTj ⊕Ek+1(µ) ↝ LTj+1 ⊕Ek(µ), j, k = 0,1,2, . . . and µ ∈ C;

5. Ej(µ) ⊕Ek(µ) ↝ Ej−1(µ) ⊕Ek+1(µ), 1 ⩽ j ⩽ k and µ ∈ C;

6. Lp ⊕L
T
q ↝⊕

t
i=1Eki(µi), if p + q + 1 = ∑

t
i=1 ki and µi ≠ µi′ for i ≠ i′, µi ∈ C.

Remark 3.6. By Theorem 3.5 the number of column and row minimal indices,

respectively, may only decrease when we go upwards in the closure hierarchy.
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Lemma 3.7. Let P1 and P2 be two skew-symmetric n × n matrix pencils and

Oe
P1

⊃ Oe
P2
. Then the difference in the number of the column minimal indices (or

associated L-blocks) of P1 and P2 is an even number (might be zero). The same

even number is the difference in the number of the row minimal indices (or associated

LT -blocks) of P1 and P2.

Proof. Let P1 and P2 have the canonical blocks {Lp1 , Lp2 , . . . , Lpr0(P1)
} and

{Lq1 , Lq2 , . . . , Lqr0(P2)
}, respectively, that correspond to the column minimal indices.

By Theorem 2.3 the sets of the row minimal indices with associated canonical blocks

are {LTp1 , L
T
p2 , . . . , L

T
pr0(P1)

} and {LTq1 , L
T
q2 , . . . , L

T
qr0(P2)

}. Since the regular part of a

skew-symmetric matrix pencil has always an even dimension (also see Theorem 2.3)

we obtain:

r0(P1)

∑
i=1

(2pi + 1) ≡ n (mod 2) and
r0(P2)

∑
i=1

(2qi + 1) ≡ n (mod 2),

or equivalently

r0(P1) ≡ n (mod 2) and r0(P2) ≡ n (mod 2),(3.6)

respectively. Subtracting the equations in (3.6) we get

r0(P1) − r0(P2) ≡ 0 (mod 2).

Obviously, the same holds for the row minimal indices.

Lemma 3.8. Let Pi = [
0 Wi

−WT
i 0

] , where Wi ≡Xi−λYi are arbitrary p×q pencils,

p + q = n, for i = 1,2. If Oe
W1

⊃ Oe
W2

then Oc
P1

⊃ Oc
P2

.

Proof. Assuming Oe
W1

⊃ Oe
W2

, we have the existence of non-singular Q and R and

arbitrarily small (entry-wise) E such that

Q−1
(W2 +E)R =W1.

After transposing both sides and multiplying with −1, we get

RT (−WT
2 −ET )Q−T

= −WT
1 .

Altogether, we obtain

[
Q−1 0

0 RT
]([

0 W2

−WT
2 0

] + [
0 E

−ET 0
])[

Q−T 0

0 R
] = [

0 W1

−WT
1 0

] ,

i.e., Oc
P1

⊃ Oc
P2

.
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Define the normal rank [13] of an m × n matrix pencil P as

nrk(P ) = n − r0(P ) =m − l0(P ).

Recall that r0(P ) and l0(P ) are the total number of column and row minimal indices,

respectively, in the KCF of P .

Lemma 3.9. Let P be a matrix pencil, taken in the KCF, i.e., it is a direct sum of

the blocks Eai(λ),Ebi(∞), Lci , and LTdi , see Theorem 2.1. Then the normal rank of

P (or nrk(P )) is equal to the sum of the indices, ai, bi, ci, and di, of all its Kronecker

canonical blocks.

The following theorem characterizes the closure relations in terms of the Kronecker

invariants.

Theorem 3.10. [13, 22] Oe
P1

⊃ Oe
P2

if and only if the following relations hold:

R(P1) + nrk(P1) ≽ R(P2) + nrk(P2),(3.7)

L(P1) + nrk(P1) ≽ L(P2) + nrk(P2),(3.8)

Jµj(P1) + r0(P1) ≼ Jµj(P2) + r0(P2),(3.9)

for all µj ∈ C, j = 1, . . . , d.

Equipped with the results in theorems (2.4, 3.5, 3.10), lemmas (3.7, 3.8, 3.9), and

associated remarks (3.4, 3.6), we are ready to prove our main result.

Proof. [Proof of Theorem 3.1] To show the sufficiency, note that (3.5), which

is equivalent to the inclusion of the congruence orbits in (3.1), immediately implies

(3.4), which is equivalent to the inclusion of the strict equivalence orbits in (3.1), with

Qk ∶= S
T
k and R−1

k ∶= Sk.

Let us prove the necessity. By permutations of the rows and corresponding per-

mutations of the columns, the matrix pencils Pi, i = 1,2 taken in the canonical form

(2.4), can be written as

(3.10) P̃i = Q
T
i PiQi = [

0 Wi

−WT
i 0

] ,

where Wi ≡ Xi − λYi is a p × q pencil, p + q = n, and Qi is a permutation matrix for

i = 1,2. Note that the choice of the pencils Wi, i = 1,2 is not unique. Below we explain

how to chose W1 and W2 in such a way that Oe
W1

⊃ Oe
W2

and thus to get Oc
P̃1

⊃ Oc
P̃2

by Lemma 3.8. Since P̃1 and P̃2 are congruent to P1 and P2, respectively, see (3.10),

we will have the desired inclusion Oc
P1

⊃ Oc
P2
.

We define the pencil W1 to be a direct sum of the top-right corner blocks of the

H-, K-, and M -summands (see Theorem 2.3) in the skew-symmetric canonical form
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(2.4) of P1. In terms of the KCF presented in Theorem 2.1, these top-right corner

blocks are the E-blocks for the H- and K-summands, and the L-blocks for the M -

summands. All the remaining blocks, i.e., the bottom-left corner blocks of the H-,

K-, and M -summands (−ET -blocks and −LT -blocks in terms of KCF) in (2.4) of P1,

obviously form −WT
1 . The integer partitions associated with W1 and their relations

to the integer partitions associated with P1 are as follows (the first elements of the

partitions are used frequently and therefore listed in the right column):

R(W1) = R(P1), r0(W1) = r0(P1),

L(W1) = 0, l0(W1) = 0,

Jµj(W1) =
1

2
Jµj(P1), j = 1, . . . , d, j

µj

1 (W1) =
1

2
j
µj

1 (P1), j = 1, . . . , d.

By Lemma 3.7, the number of L-blocks of P1 is smaller by 2s (s is a non-negative

integer) compared to P2, i.e.,

(3.11) r0(P1) + 2s = r0(P2).

Then from Theorem 2.4, it follows that the number of LT -blocks of P1 is also smaller

by 2s compared to P2, i.e., l0(P1) + 2s = l0(P2). In fact, P1 has −LT -blocks but since

−LTk is strictly equivalent to LTk we can omit the minus sings.

Now we define the pencil W2 to be a direct sum of all the top-right corner blocks

of the H- and K-summands in the skew-symmetric canonical form (2.4) of P2, the

bottom-left corner blocks of the s largest M -summands (i.e., the s largest LT -blocks)

in (2.4) of P2, and the top-right corner blocks of the r0(P2)−s smallest M -summands

(i.e., the r0(P2) − s smallest L-blocks) in (2.4) of P2. All the remaining blocks form

−WT
2 . The integer partitions associated with W2 and their relations to the integer

partitions associated with P2 are as follows (with the first elements of the partitions

in the right column):

R(W2) = R(P2) − SR, r0(W2) = r0(P2) − s,

L(W2) = SL, l0(W2) = s,

Jµj(W2) =
1

2
Jµj(P2), j = 1, . . . , d, j

µj

1 (W2) =
1

2
j
µj

1 (P2), j = 1, . . . , d,

where the s largest LT -blocks in P2, moved to W2, form L(W2) = SL and the r0(P2)−s

smallest L-blocks in P2 moved to W2 form R(W2) = R(P2) − SR. Note that SR = SL
and we use both partitions to specify whether the partition corresponds to L- or LT -

blocks. Let us also recall that the minus sign between partitions (i.e., element-wise

subtraction) represents the following: from the pencil that corresponds to R(P2) we

take away all the canonical summands that are in the pencil corresponding SR. We

can express the normal ranks of P1, P2,W1, and W2 via n, s, and r0(P2). By definition:

nrk(P1) = n − r0(P2) + 2s and nrk(P2) = n − r0(P2).
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Recall that the sets of the indices of L- and LT -blocks are exactly the same (R(P2) =

L(P2)), see Theorem 2.4. The indices (but not the blocks) are equally distributed in

both the cases, i.e., between the blocks W1 and −WT
1 in P1, and between the blocks

W2 and −WT
2 in P2. Being more precise, a block Jk(µ) is in Wi if and only if there is

a block −JTk (µ) in −WT
i and a block Lk (or LTk ) is in Wi if and only if a block −LTk

(or −Lk) is in −WT
i . Therefore, using Lemma 3.9 we have

nrk(W1) =
n − r0(P2)

2
+ s and nrk(W2) =

n − r0(P2)

2
.

Since Oe
P1

⊃ Oe
P2

, the conditions (3.7)–(3.9) hold by Theorem 3.10. By (3.7) we have

R(P1) + n − r0(P2) + 2s ≽ R(P2) + n − r0(P2).

Subtracting n − r0(P2) + s from both sides we obtain

R(P1) + s ≽ R(P2) − s.

The last majorization is equivalent to

(3.12)
j

∑
k=0

(rk(P1) + s) ⩾
j

∑
k=0

(rk(P2) − s), j = 0,1,2, . . . , n.

The partition that corresponds to subtracting the s largest blocks from R(P2) is:

(3.13) R(P2) − SR = (r0(P2) − s, r1(P2) − s, . . . , rγ(P2) − s,0, . . . ,0),

where γ is the position of the last non-zero entry in the partition, i.e., rγ(P2) − s > 0

(recall that we start the position numeration from 0). Then we obtain

R(P1) + s ≽ R(P2) − SR,

since the corresponding inequalities for j = 0, . . . , γ are exactly like in (3.12) and for

j = γ + 1, . . . , n they follow immediately from rj(R(P2) − SR) = 0 (see (3.13)). In

terms of partitions for Wi, i = 1,2 we have

R(W1) + s ≽ R(W2),

R(W1) +
n − r0(P2)

2
+ s ≽ R(W2) +

n − r0(P2)

2
,

or equivalently

(3.14) R(W1) + nrk(W1) ≽ R(W2) + nrk(W2).

To prove the majorization for the L-partitions we note that (s, s, . . . ) ≽ SL. Therefore

L(W1) + s ≽ L(W2),

L(W1) +
n − r0(P2)

2
+ s ≽ L(W2) +

n − r0(P2)

2
,



12 A. Dmytryshyn and B. K̊agström

or equivalently using the normal ranks:

(3.15) L(W1) + nrk(W1) ≽ L(W2) + nrk(W2).

Using (3.9) for each distinct µj we have

Jµj(P1) + r0(P2) − 2s ≼ Jµj(P2) + r0(P2),

2Jµj(W1) − 2s ≼ 2Jµj(W2),

Jµj(W1) + r0(W2) − s ≼ Jµj(W2) + r0(W2).

By (3.11) we have that r0(W2) − s = r0(W1). Therefore

(3.16) Jµj(W1) + r0(W1) ≼ Jµj(W2) + r0(W2).

Summing up: (3.14), (3.15), and (3.16) imply Oe
W1

⊃ Oe
W2

by Theorem 3.10.

4. Orbit stratification of skew-symmetric matrix pencils. The stratifica-

tion algorithm of complex skew-symmetric matrix pencils under congruence is mainly

based on Theorem 3.1 and the closure hierarchy graph for matrix pencils under strict

equivalence.

Let us recall that in the orbit stratification graph each node represents an orbit

and each edge represents the closure/cover relation. There is an upwards path from

OA−λB to OC−λD if and only if OC−λD ⊃ OA−λB (here either all the orbits are under

strict equivalence or under congruence).

Algorithm 4.1 (Stratification of skew-symmetric matrix pencils).

Step 1. Construct the stratification of n × n matrix pencils under strict equivalence

[12, 13] (e.g., using StratiGraph [18]).

Step 2. Extract from the stratification in Step 1 the nodes corresponding to the matrix

pencils that can be skew-symmetrized (Theorem 2.4). They are in one to one

correspondence with the congruence orbits of skew-symmetric matrix pencils.

Step 3. Replace the Kronecker canonical forms with the canonical forms under con-

gruence (it is possible because we chose only the orbits of matrix pencils that

can be skew-symmetrized) and place them according to the codimensions com-

puted separately [10].

Step 4. Put an edge in-between two nodes obtained in Step 3 if there is an upwards

path (may be through other nodes) in-between the corresponding orbits in the

graph obtained in Step 1 and no edge otherwise. We do not put an edge in-

between two nodes (obtained at Step 3) if there is already an upwards path

from one to another via some other nodes.
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In the following, we explain why the obtained subgraph is the stratification of

skew-symmetric matrix pencils under congruence, i.e., the correctness of Algorithm

4.1.

Step 2 is justified by the fact that two skew-symmetric matrix pencils are congruent

if and only if they are equivalent [21]. Thus all congruent skew-symmetric matrix

pencils have the same KCF which is easily determined from the canonical form under

congruence (see Theorem 2.3). Matrix pencils that can be skew-symmetrized can be

found using Theorem 2.4.

The legality of Step 4 follows from Theorem 3.1 which ensures that for each pair

of two skew-symmetric n × n matrix pencils A − λB and C − λD there is an upwards

path from A − λB to C − λD in the stratification of n × n matrix pencil orbits under

strict equivalence if and only if there is an upwards path from A − λB to C − λD in

the stratification of skew-symmetric n × n matrix pencil orbits under congruence.

4.1. Orbit stratification of the 4 × 4 case. Using Algorithm 4.1 we stratify

orbits of skew-symmetric 4 × 4 matrix pencils.

Step 1. The stratification (or closure hierarchy graph) of 4 × 4 matrix pencils

under strict equivalence is constructed using StratiGraph, see Figure 4.1. Nodes

corresponding to orbits with the same codimensions (left column) are listed on the

same level in the graph.

Step 2. The matrix pencils in Figure 4.1 (with codimensions) that can be skew-
symmetrized are:

4L0 ⊕ 4LT
0 , codim. 32; L1 ⊕L0 ⊕LT

1 ⊕LT
0 , codim. 12;

2L0 ⊕ 2LT
0 ⊕ 2J1(µ1), codim. 20; 2J2(µ1), codim. 8;

4J1(µ1), codim. 16; 2J1(µ1) ⊕ 2J1(µ2), codim. 8.

Step 3. We replace the Kronecker canonical forms by the canonical forms under

congruence. For example, 2L0 ⊕ 2LT0 ⊕ 2J1(µ1) is replaced by 2M0 ⊕ H1(µ1) and

L1 ⊕ L0 ⊕ LT1 ⊕ LT0 is replaced by M1 ⊕M0. We also compute the corresponding

codimensions under congruence using formulas from [10].

Step 4. We check all the possible pairs of nodes. For example, there is a path

from 2L0 ⊕ 2LT0 ⊕ 2J1(µ1) to L1 ⊕ L0 ⊕ LT1 ⊕ LT0 (it is going through the orbits

2L0 ⊕ 2LT0 ⊕ J2(µ1) and 2L0 ⊕ L
T
0 ⊕ LT1 ⊕ J1(µ1)) therefore we have an edge from

2M0 ⊕ H1(µ1) to M1 ⊕M0 in the stratification of skew-symmetric matrix pencils

under congruence. We leave the straightforward verification of the other edges (or

their absence) to the reader. In summary, we get the stratification with the congruence
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Fig. 4.1. Orbit stratification of 4 × 4 matrix pencils under strict equivalence. In the bottom of

the graph there is the most degenerate orbit corresponding to the zero pencil. In the top of the graph

there are five types of the most generic orbits. The other orbits are placed in-between with respect

to their codimensions (4 − 32 listed on the left). Note that in StratiGraph pencils Jn(µ) − λIn and

In − λJn(0) are denoted by Jn(µ) in which µ ∈ C, Fn − λGn by Ln, and FT
n − λG

T
n by LT

n .

orbit codimensions listed to the right:

H2(µ1) H1(µ1) ⊕H1(µ2) codim. 2

M1 ⊕M0

OOii

codim. 3

2H1(µ1)

OO

codim. 6

2M0 ⊕H1(µ1)

OO

<<

codim. 7

4M0

OO

codim. 12
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Since µ1 and µ2 represent distinct eigenvalues we can take either µ1 = ∞ or µ2 = ∞.

In order to correspond to the notation in Theorem 2.3, and if we take one eigenvalue

being infinite we have to replace H1(µ1) and H2(µ1) by K1 and K2, respectively, or

H1(µ2) by K1 in the stratification graph above.

The complete stratification process is illustrated in Figure 4.2.

Fig. 4.2. Orbit stratification of skew-symmetric 4 × 4 matrix pencils under congruence (right

graph) extracted from the orbit stratification of all 4× 4 matrix pencils under strict equivalence (left

graph) using Algorithm 4.1.

5. Bundle stratification of skew-symmetric matrix pencils. As in the

case of matrix pencils under strict equivalence [12, 13], we also consider stratification

of congruence bundles. A bundle BcA−λB is a union of skew-symmetric matrix pencil

orbits with the same singular structures and the same Jordan structures except that

the distinct eigenvalues may be different. This definition of bundle is analogous to the

one for matrix pencils under strict equivalence [13]. Therefore we have that two skew-

symmetric pencils are in the same bundle under strict equivalence if and only if they

are in the same bundle under congruence. This together with Theorem 3.1 ensures

that for skew-symmetric matrix pencils, the stratification algorithm for bundles is
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analogous to the one for orbits (Algorithm 4.1). So we extract the skew-symmetrized

bundles from the stratification of matrix pencil bundles and put an edge between two

of them if there was a path between them in the matrix pencil graph. As in the

graphs for orbits we do not write an edge between two nodes if there is already a

path from one to another via some other nodes. In addition, the codimension of a

skew-symmetric matrix pencil bundle of A − λB under congruence is defined as

codim BcA−λB = codim Oc
A−λB − #{distinct eigenvalues of A − λB} .

Example 5.1. In Figure 5.1, we stratify bundles of skew-symmetric 4 × 4 matrix

pencils. Each node in the closure hierarchy graph to the right represents a bundle

under congruence and each edge a closure/cover relation. Perturbing arbitrarily small

an element from a given bundle in the closure hierarchy we can get an element of any

bundle to which we have an upwards path in the graph.

Fig. 5.1. Bundle stratification of skew-symmetric 4× 4 matrix pencils under congruence (right

graph) extracted from the bundle stratification of all 4 × 4 matrix pencils under strict equivalence

(left graph).

Notably, in the orbit stratification the eigenvalues may appear and disappear but
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they are fixed (cannot change). Contrary, in the bundle stratification the eigenvalues

may coalesce or split apart. As a consequence, each of the two bundle graphs in

Figure 5.1 has only one most generic node (bundles with 4 and 2 distinct eigenvalues,

respectively) while the two orbit graphs in Figure 4.2 have more than one most generic

case (5 and 2 orbits, respectively).
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