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Abstract

This thesis focuses primarily on constructing voice-only pedestrian guidance sys-
tems using spatial database techniques. In the process of doing this we first
explored how to use authoring tools to build natural language interfaces over
large databases. Specifically we built a natural language interface over the Mu-
sicBrainz database of 1.5GB and confronted the resulting scalability issues. We
then explored vague querying, specifically spatial queries using ‘near’. Assuming
‘language as a set of conventions’, we proposed an approach for handling vagueness
by defining contexts that are compiled to crisp SQL view definitions. In our recent
work, as partners in the Spacebook project (http://www.spacebook-project.
eu), we have focused on how to build reliable, scalable and extensible text-to-
speech (TTS) based navigation systems for pedestrians. Technical aspects we
have worked on include building the system Janus (http://janus-system.eu),
with sensor reports and bidirectional voice channels. Experimental work has been
mostly focused on measuring accuracies and latencies with available hardware.
We have also, very recently, started human usability experiments. Our theoretical
work has been in defining models for how a system can interact with pedestrians
over high latency data links with poor GPS quality using prediction of pedes-
trian positions and scheduling utterances to mask latencies. To allow for scalable
deployment, we have only used standard smart phones and inexpensive servers.
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Preface

This thesis consists of an introduction and five papers. In the introduction back-
ground and earlier works in natural language interfaces, spatial databases and
pedestrian navigation systems are discussed as well as some of the practical con-
tributions of this thesis and a direction for future work. The papers making up
this thesis are the following:

Paper I Johan Granberg1 and Michael Minock, ”A Natural Language Inter-
face over the MusicBrainz Database”, proceedings of the first Work-
shop on Question Answering over Linked Data (QALD-1), pages
38-43. May 2011.

Paper II Michael Minock and Johan Mollevik. Context-dependent ’near’ and
’far’ in spatial databases via supervaluation. Journal of Data and
Knowledge Engineering (DKE), Elsevier 86:295-305, 2013

Paper III Michael Minock, Johan Mollevik and Mattias Åsander: ”Toward an
Active Database Platform for Guiding Urban Pedestrians” Technical
Report Ume̊a Universiy UMINF-12.18 October 2012

Paper IV Michael Minock, Johan Mollevik, Mattias Åsander and Marcus Karls-
son: ”A Test-Bed for Text-to-Speech-Based Pedestrian Navigation
Systems.” proceedings of the International Conference on Applica-
tions of Natural Language to Information Systems (NLDB), pages
396-399. June 2013

Paper V Michael Minock and Johan Mollevik. ”Prediction and scheduling
in navigation systems.” In Proceedings of the Geographic Human-
Computer Interaction (GeoHCI) workshop at CHI, April 2013

1Name changed from Granberg to Mollevik in 2012 due to marriage.
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Chapter 1

Introduction

This thesis explores how to build reliable, scalable and extensible natural language
interfaces to databases, focusing mostly on spatial databases. Natural language
interfaces (NLIs) have many applications in our everyday lives, for example when
we want to control computers with our eyes and hands free or in cases where
we want to avoid learning yet another cryptic user interface for some rarely used
system. To illustrate, consider the applications demonstrated in the papers. In
the MusicBrainz domain we allow for searches of music meta-data. Here a good
natural language interface could allow for construction of playlists using either
voice or text input. Or for more leisurely browsing of music meta data (See fig 1.1
for an example interface). For example, answering questions like who performs on
the currently playing music track, where the track itself is queried from the user’s
music player.

Figure 1.1: A screenshot of our MusicBrainz interface

In the spatial domain, our primary focus, two use-cases have been more closely
studied. The first one is the issues of vagueness in geographical information (GIS)
systems. Specifically capturing the meaning of ‘near’ is hard; there is no hard
limit when things are not near any more. The crisp counterpart ‘nearest’ is more
straightforward and is the focus of much recent research in spatial databases. The
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CHAPTER 1. INTRODUCTION

second use-case, a tourist application, is an NLI based guide using audio as the sole
means of user communication. This allows the users to keep looking at attractions
around them while simultaneously querying about their surroundings. They can
either ask for information about what they see or to ask for route guidance (See
figure 1.2). In this domain an NLI can also be envisioned as an interface for a GIS
system.

Figure 1.2: A pedestrian using our natural language guidance system

All of the above use cases have similar requirements: 1.) the systems in question
must be very reliable. A system that does not work half the time will send the
users back to manually clicking in their GUI application or to take up their tourist
map; 2.) such systems need to be scalable. They should work on large datasets
such as a map of an entire city or over music collections of several terabytes. This
also means that such systems should be able to run on hardware that is available
to the user, such as old home PCs or cheap smart phones. At the same time the
system must not require massive servers that do all work remotely; 3.) These
systems must be easily extensible. If the systems are not extensible it will be
very hard to correct their limitations. And limitations will arise when users use
the systems in unexpected ways. This rules out designs that can not handle, for
example, new types of objects that the user wants to find or new categories of
meta information. Of course the new functionality has to be implemented but old
functionality should not have to be rewritten.

While there are more things that are important for such systems to succeed these
are the three that are the focus of my work.
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Chapter 2

Natural Language Interfaces

Natural Language Interfaces (NLIs) are interfaces where the computer understands
human language rather than humans learning the computer’s interface. When
building a natural language interface there are two directions to consider, the
analysis direction where the system analyses what the user wrote or said and the
generation direction where the system conveys relevant information in natural lan-
guage. Work on NLIs has been conducted since the late sixties [2] with Lunar [45]
and Rendezvous [10] being well known examples. More recent examples are
TEAM [17], ORAKEL [9], C-Phrase [32, 29] and, very recently, the multi-
domain capable Wolfram Alpha [26]. (http://www.wolframalpha.com/)

One thing that remains important when constructing NLIs is restricting the inter-
face to a limited domain [11, 30]. Copestake states in [11] that to use the restricted
domain property the domain must be communicated to the user in a clear way.
Failure by the user to understand the limitations of the domain will result in both
questions the NLI can not handle and users that avoid asking questions that the
NLI could manage. It is also stated that communicating the limitations is the
correct solution, the other alternative of adding information from neighbouring
areas leads recursively to the need to cover all of English. The size of the domain
can be restricted in different ways. One can restrict the types of things the sys-
tem knows about, mapping to verbs and nouns etc. The work in [30] discusses
the requirements of viable applications of restricted domain natural language in-
terfaces on today’s web. Additionally one can restrict the types of sentences the
system can handle. In [8] Boye and Wirén argue that by limiting expressiveness
to a semantic less powerful than first order logic robustness can be increased while
retaining enough expressive power to be usable.

For the generation direction of an NLI there is a need to decide how the output
is going to be generated. The simplest solution, which is often sufficient, is to
simply use pre-written text templates. This works if the types of things the user
can ask for are few, for example if the only thing the user can ask for is upcoming
flights between different airports. If the output is more complex, other strategies
will be needed. Reiter and Dale [36], propose an architecture consisting of three
phases, document planing, micro planing and surface realization. The idea is to
separate the decisions of which communication goals to accomplish, what inform-
ation should be used to accomplish them and how to fit that into a grammatical
sentence in a natural language. This decomposes one hard problem into three
easier problems. Of course there is more to it than that, the decomposition is not
random but is derived from careful design.
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CHAPTER 2. NATURAL LANGUAGE INTERFACES

2.1 Natural language interfaces to databases

Databases are a convenient data store for a natural language interface as well
as providing well defined query languages to compile user request into. As such
natural language interfaces to databases are an important sub-domain of natural
language interfaces in general. One motivation for the creation of natural language
interfaces to databases is to allow humans to explore structured data without
learning a query language. Additionally almost any computer system can be made
to use database tables to represent input and output. For example many basic
applications can be modeled as an append only database with tables for input,
output and system logs. Also note that database in this context need not refer
only to SQL databases, other forms of structured data such as XML can employ
the same or similar techniques.

When creating a natural language interface to a database the parsing of the hu-
man’s request has far more potential for ambiguity than the computer’s response,
which is more directly under the system builder’s control. In the generation direc-
tion the system can use standardised language to ensure that the natural language
response answers the question as the system understood it. The system can also
use query paraphrase techniques (See [10, 31]).

The analysis direction is more difficult. The system has to understand the user’s
request as best as it can and answer the question it believes it got or engage in
clarification dialog. The measures of precision, recall and willingness [32] , defined
below, can be used to measure the quality analysis.

willingness =
#correct+ #incorrect

#total

precision =
#correct

#correct+ #incorrect

recall = willingness ∗ precision =
#correct

#total

Willingness is the percentage of requests the system answers, in this case an answer
‘I did not understand that’ does not count, only answers to the actual question.
Precision on the other hand concerns itself only with the answered queries and is
the percentage of those that where correctly answered. Recall is the product of
the two and is the percentage of the questions that were answered correctly. To
maintain user trust, the system precision should ideally be one. In any other scen-
ario the user gets the wrong answer without any system indication that anything
is wrong. A low willingness on the other hand can cause frustration as the system
rejects a large number of requests out of hand.

In trying to design NLI frontends to databases that have high precision,willingness
and recall, the community has come up with a number of approaches to the input
analysis problem.

Some early experiments used what we can call the pattern matching approach.
The idea is that there are a number of patterns the system understands. An
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CHAPTER 2. NATURAL LANGUAGE INTERFACES

example would be a city name followed by a country name, which is interpreted
as a question whether the city is in the country. A common technique is to ignore
some words such as ‘the’ and ‘in’ if they do not exist in the pattern. Doing this will
increase recall but at the risk of decreasing precision. By creating a large number
of such rules the builder of such an interface can make the system give reasonable
answers within its domain [2], however such a large number of rules are costly to
build, especially for larger databases. And of course the approach has difficulty
with more syntactically complicated sentences as well.

A more sophisticated approach is used in Syntax based systems which work by
parsing the input sentence into a parse tree. Each node in the tree is then mapped
into a query language expression. An example of this approach is Lunar [45] from
1972. A problem with the approach is that domain specific mappings are usually
needed as it is hard to map to general languages like SQL [2].

A similar approach to the Syntax based systems is the semantic grammar approach.
Like the Syntax based systems they use a parse tree. Unlike the Syntax based
systems the parse tree is not structured based on the word classes of the natural
language but on structures of a formal language query language used to query the
database. A problem with these systems is the need to construct new rules when
switching domains, as the rules for parsing becomes tied to the domain by the
coupling of natural language with a formal language grammar specialized to the
domain. An early system of this type was Ladder [23]. More recently we have
work by Mooney and Wong on the λ-Wasp algorithm [44] and the C-Phrase
system [32, 29].

In an attempt to solve the problems of being tightly tied to the domain, the
transportable approach was conceived. The idea here is to do the analysis in two
steps. First the query is translated into a logical form independent of databases.
This allows the use of wide coverage parsers built by professional linguists. This
logical form is then, in a second step, transformed into a query for a specific
database. Two examples of these types of systems are Cle [1] and Team [17].

Apart from the classifications of pattern matching approach, syntax based system,
semantic grammar approach and transportable approach there is an orthogonal
classification. Here we make the distinction between rule-based systems and stat-
istical systems [14]. Rule based systems (like C-Phrase [32, 29]) are systems
where a developer has to manually write the rules for the system. The rules might
be at any level of abstraction and there might be limited auto generation but ul-
timately it is the system designer/developer/operator who decides which rules are
included [33]. By contrast, a statistical system (like λ-Wasp [44]), which might
be based on rules, is constructed automatically. In statistical systems a set of
examples is presented to the system which uses them for training. In the same
sense as a rule based system might have some automation, a statistical system
might have some hand crafted rules. An example of this is to manually encode
the rules for function words in the target language while letting the system learn
the domain vocabulary. See [16] for a study in which we attempted to replicate
results in [44].
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CHAPTER 2. NATURAL LANGUAGE INTERFACES

In the work in this thesis we have focused on rule based, semantic grammar type
systems. They are easier to control than the statistical variant making them
more reliable. They are also computationally faster as the rule bases tend to
be smaller. Finally they are more predictable, thus extending them it is less
likely to break what is already working. The negative side of this trade-off is
that rule based systems take longer to construct than statistical systems. We
argue that this exchange of construction time versus extensibility, scalability and
reliability is worth the cost. We expect users to be more annoyed by system
bugs than by smaller domains (due to construction costs). This has not, as of
yet, been validated empirically. The choice of a semantic grammar approach as
opposed to a transportable approach is motivated by having a better knowledge
of semantic grammar type technology and not seeing compelling evidence that the
transportable approach is better with current wide coverage parsers.

The main contributions this thesis makes to the area is the following. Demon-
strating a way to quickly build an NLI over a large database using authoring (see
Paper I). We are conducting evaluations on how to build a minimal NLI to guide
pedestrians efficiently (See Paper IV). Apart from this we have been involved in
the development of an meaning representation language (MRL) to handle dialog
in a tourist guidance context (see section 5.3) in collaboration with the authors
of [43].
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Chapter 3

Spatial Databases

Figure 3.1: The Bedolina map, a stone carving from around 1500BC picture Luca
Giarelli / CC-BY-SA 3.0

Historically the format for storing geo-spatial data has been maps. While we can
not say for sure when the first map was created, we know of maps from about
1500BC from finds in Val Camonica in northern Italy [6] (See figure 3.1). The
maps carved into stone at this site show houses, fields and irrigation channels
represented as outlines clearly recognizable as a map of a village. Since then,
numerous advances have been made in cartography. During the renaissance various
projections were used to represent the earth with more mathematical accuracy [25]
(See figure 3.2 for comparison with a map in an older style). In more modern times
other types of spatially related data have been developed. For example, in the
sixties, the US Bureau of the Census operated in a mail out/mail in manner [12];
they had a lot of data that was spatially related, keyed by postal address.

An early recognition of the possibilities of using computers to store, process and
display geo-spatial data comes from Tobler in 1959 [42]. He states that

It seems that some basic tasks, common to all cartography, may in the
future be largely automated, and that the volume of maps produced
in a given time will be increased while the cost is reduced.

Early systems [12] working with spatial data were mostly driven by the need to
solve large tasks using whatever technology was at hand despite its limitations.
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CHAPTER 3. SPATIAL DATABASES

Figure 3.2: (left) A recreation of a map by roman cartographer Pomponius Mela.
(right) The Mercator world map of 1569.

The trend was to implement a system to solve a task that was otherwise infeasible
and then leave it as a legacy system after the task was done. In short spatial data
processing was a means to an end, not the focus of research in its own right.

It is unclear exactly when the term ‘spatial databases’ was coined, but in a paper
from 1994 Güting [18] defines the following properties needed for a system to be
a spatial database system.

• A spatial database system is a database system.

• A spatial database offers spatial data types (SDTs) in its data model and
query language.

• A spatial database supports spatial data types in its implementation, provid-
ing at least spatial indexing and efficient algorithms for spatial join.

Given that we have these features, a host of spatial problems becomes easily ex-
pressible.

An example would be the following query “what’s the longest any resident has to
walk from home to the closest bus stop”. As long as we have a digital map of
the city including information about bus-stops and which buildings are homes and
what paths are walkable, we can compute the answer with a spatial database. Or
similarly “which street has the most cramped households” can be answered if you
have a city map where the area of homes is apparent and some non-spatial data
of how many residents each house have.

A key issue however is that queries should be declared declaratively. While Güting
does not declare that the database must be relational, we, and many others, see
no viable alternatives. Let us review what it means for a database to be relational.

For a database to be relational it has to have at least the following properties:

• Must store its data as a set of relations (also called tables).
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CHAPTER 3. SPATIAL DATABASES

• Each relation is a set of tuples (also called rows) of the same structure and
with the same names. That means that all tuples in the same relation have
the same number of elements and that elements named the same are of the
same type in all tuples in the same relation. (Tuple elements sharing a name
in a relation form a column.)

• The database system must be able to join together relations to form new
relations at runtime and filter them by specifying constraints on the tuples
in the computed relation.

• It should be possible to specify constraints on relations such that the data-
base system can guarantee that the tuples stored in them do not violate these
constraints. Constraint types should include at least:

– Primary key constraints: the specified columns in each tuple are enough
to uniquely distinguish the tuple among all tuples in the relation.

– Foreign key constraints: the specified columns have the same value as
the primary key of some existing tuple in a specified relation.

While not strictly needed by the definition most major database systems also
include the following for performance and ease of use:

• Indices: a device to speed up queries, works by taking a subset of the columns
in a relation and computing a typically tree-base data structure in some
ordering that makes joins and/or condition testing faster. It is worth noting
that the database system figures out by itself if using an existing index will
speed up a query. Commonly the developer is responsible for creating the
indices.

• Server-side functions: having code run within the database system allows for
more complex queries to be written and thus simplify development.

A query to the database engine is declarative. The developer does not have to
bother with how the database will access the underlying storage nor with enforcing
that the constraints are not being violated on data modifications. This is a huge
strength of relational databases, the fact that the developer can formulate his
query in a relatively compact manner and know that the result is correct. In the
absence of a declarative approach the developer has to specify the disk or memory
storage formats himself, implement search algorithms himself, check consistency
himself.

Looking more closely at queries we can discern the following common cases:

• Singleton query: the query returns one or zero tuples as its result. In some
database systems you can use the result of a singleton query as a value in a
condition, allowing for more complex queries.

• Bounded queries: these queries return between zero and some fixed number
of results, a special condition is formulated that restricts the number of
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CHAPTER 3. SPATIAL DATABASES

returned tuples to at most that amount. These are interesting as they can
often be optimized to run faster. For example if the database system has an
index over salaries ordered from highest to lowest, and is asked to retrieve
the ten highest salaries, it only has to pick them directly from the top of the
index instead of searching the entire index.

• Range queries: some conditions are specified to return the tuples whose value
of some columns is between a lower and upper bound. These too can take
advantage of indices.

When extending a relational database system to be spatial we have to, according
to Gütings criteria, add spatial types and indices as well as efficient spatial joins.
This can be accomplished by adding the following.

• Data types for points, linestrings and polygons.

– A point can be represented as a pair of floats. (or triple if the database
is working with 3D data)

– A linestring is a sequence of connected lines, the end of the first con-
necting to the beginning of the next one and so on.

– A polygon is an area. For 2D this can be represented as linestring that
has the same startpoint as endpoint and does not cross its own path.

• Indices that work with points, linestrings and polygons. The common types
are R-Trees [19] or GIST [22] indices.

• Efficient algorithms for joins filtered by distance between spatial objects,
spatial object containment and spatial object overlap.

Something that is also desirable to add to the spatial database system, is support
for the following query types:

• k-nearest-neighbour (knn) queries: this is a type of bounded query which
returns the K tuples that are closest to some reference geometry, while also
matching other filter conditions.

• Route queries: this query type will return a linestring from an original point
to a point matching some goal condition, while observing conditions on which
path it may take. For example, one such condition might be, ‘must not
intersect any polygon in the building table’. Or ‘must be contained by the
linestrings in the road table’. In this later case A* [21] is a suitable algorithm
to implement this query.

Let us look at the example “what’s the longest any resident has to walk from
home to the closest bus stop”. This query can be encoded as: take the relations
containing residences and for each of them, make a (knn) query against the relation
containing bus stops, filter the resulting table to find the maximum distance. This
will be the maximum distance of any resident to their closest bus stop. Note
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CHAPTER 3. SPATIAL DATABASES

that strictly speaking distance should be related as network distance. All to often
euclidian distance is used in practice.

To work with spatial data it is of course not enough to have a spatial database,
of equally large importance is sources of ‘good’ data. The determination of ‘good’
is complex. For example the following can affect how ‘good’ data is in a given
application:

• Does it support 2D or 3D?

• What is the granularity? (only buildings or everything down to every lamp
post, does it include trees and other natural features)

• How many objects of represented types are missing?

• What is the accuracy of object placement?

• How small details of an object are discernible?

• How old is the data?

• Is temporal data present? i.e. can we see what it looked like in the past?

• Is the data being updated, how often?

• Is the data consistently represented?

• Is the data freely available?

The work in Paper II-V has used OpenStreetMap [20] data (See figure 3.3 for
an example rendering of this data). OpenStreetMap is a project to provide
geographical data under a licence that allows anyone to use it. It is built by
volunteers contributing data. In many cases by going around their neighbourhood
with a GPS and annotating the data points gathered, improving the map quality
of their local area. OpenStreetMap provides 2D map data and in some cases
simple 3D data (building heights and which road is an overpass/underpass). It
has an accuracy for object placement similar to consumer GPS devices with a
human doing sanity checks meaning it is quite good for the pedestrian navigation
we are doing. OpenStreetMap also covers a huge range of object types including
pedestrian crossings, ATMs and bus stops which have been useful. On the negative
side, from a pedestrian guidance point of view OpenStreetMap does have a lot
of objects missing from its data, how much varies with location, but outside central
areas in many cases only streets are present.

Another data source we consider is the government, for example United Kingdoms
Ordinance Survey and Swedish Lantmäteriet have similar data available. In both
cases they have maps of all buildings and streets in the area and in addition to 2D
information height above the sea level are available. On the negative side many
small details are not present such as ATMs and benches. The resolution for height
data is about 1 point every 2 × 2m which is slightly too low to accurately detect
sidewalks and similar features. A major problem with these kinds of data sources
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Figure 3.3: Renderings of OpenStreetMaps data (left) Stockholm (right) Ume̊a

is that they are not freely available. Pricing may vary and getting free access for
research is feasible but the data can not be freely redistributed.

The spatial database implementation we have used in this work is PostGIS [35]
which is an extension that spatially enables PostgreSQL [37].

The contributions of this thesis to this area are mainly: A method for storing
and querying vague data including spatial vagueness in databases in Paper II. A
tool for plotting the result of SQL queries against a PostGIS database described
in more detail in section 5.2. And ideas of how to use bi-temporal databases for
working with pedestrian movement prediction in Paper V and section 6.1.
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Chapter 4

Pedestrian Navigation Systems

Early work on computer based navigation systems focused on vehicle navigation.
This includes the Electronic Route Guidance System (ERGS) [39] de-
veloped in 1970. Since then the number of car navigation systems have become
ubiquitous with commercial systems from, for example, TomTom. Then, as well
as now, the goal of a navigation system is to guide its user in an efficient and safe
manner to some target destination. When the mode of transportation is automot-
ive this consists of advising the driver which turns to take and in more advanced
systems which lanes to be in. Typically this is done with a device displaying a
map fixed to the cars dashboard augmented with voiced instructions.

For a system to know user location some kind of position sensor is required. In
early work or work focusing on indoor scenes, a variety of devices are employed,
passive ones such as accelerometers or local radio beacons or active ones such as
radar, lidar or sonar. For outdoor use, global navigation satellite systems (GNSS)
like NAVSTAR GPS or GLONASS are a cheap choice (See figure 4.1 for pictures)
Even with their inaccuracies, GPS devices are a huge improvement over earlier
alternatives. When hand-held GPS (globally available in 1994) receivers became
commercially available in the late eighties/early nineties the accuracy was orders
of magnitude better than the alternative. And this was despite the US policy to
slightly degrade the GPS signals for civilian use. Since the degeneration of signals
has been suspended, GPS devices are now accurate to within a few meters, but
there is a catch. This applies if the receiver is good enough and with a reasonably
clear view of the sky. Among high buildings the signals bounce reducing accuracy.
To get higher precision GNSS can be complemented with other sensors, doing this
can yield a very accurate position, but tends to require expensive sensors. GPS
devices are well suited for pedestrian navigation as modern GPS devices are cheap,
small and light, as they are built into mobile phones.

When looking at pedestrian navigation as opposed to vehicle navigation, the prob-
lem gets more challenging. In general vehicles turn rather slowly and have a
reasonably predictable speed. In most cases vehicle guidance needs relatively low
precision position measures. A car driver will not be overly inconvened if his nav-
igation system believes his position is 15m from where he is. For a pedestrian
the same error can cause major problems. Errors on that scale can for example
mean that the system thinks the pedestrian is on the other side of a building. The
pedestrian’s ability to stop or change movement direction almost instantly also
introduces challenges. Unstable GPS readings make it hard to tell if a pedestrian
turned or if the measure was sensor just noise. Interpolation over time can make
the position clearer but that will also mean that the system has to work with old
information making it slow to react. Another aspect of the slower movement speed
of pedestrians is that the landmarks they are looking at are a lot smaller than a car
driver’s. This is mainly an issue of map quality. Getting a map showing buildings

23
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Figure 4.1: (left) 24 satellite GPS constellation, as can be seen the satellites are
spread out in multiple orbital planes (right) an artistic rendering of an GPS satellite

and streets is quite easy. Maps showing trees and benches, on the other hand, are
not generally available.

When looking at the history of pedestrian navigation systems, early systems fo-
cused on navigational aides for the blind (for example [27]). After 2000, work
focusing on a broader audience becomes more common. In 2003, May, Ross, Bayer
and Tarkiainen [28] write about navigation strategies for pedestrians as opposed to
car drivers. Their main conclusion is that landmarks are more efficient in guiding
pedestrians than turn instructions. The NAVIO project [15] works on building a
system that works both indoors and outdoors by fusing sensor data from different
sensor types to handle GPS blackouts. In Japan the NAVITIME [3] system has
been successfully deployed to guide pedestrians through the railway system and
at street level through the use of a map interface running on mobile phones.

Looking more specifically at tourist navigation, IKAROS project [41] criticize
the branding of navigation systems designed for car navigation as “suitable for
pedestrians”.

The concept of car navigation is not appropriate for pedestrian nav-
igation. Pedestrians can pass lanes, cut across open spaces and use
one-way-streets in both directions. A pedestrian navigator should take
that into consideration. [41]

A slightly different approach to tourist navigation is“I Did It My Way” [38] that
instead of displaying a map uses a hand held device that gives haptic feedback when
held in the bearing of the target location. This approach is intended to keep the
eyes of the pedestrian free and support more free form exploration. Another similar
project using a tactile display to guidance is PocketNavigator [34]. Pocket-
Navigator combines a traditional map display with tactile feedback allowing the
user to choose which mode of operations they want to use at the time.
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The Spacebook project [24] shares the goal of “I Did It My Way”and Pock-
etNavigator to allow more free form exploration of the city than holding a map
displaying device in hand allows. The approach taken here is to use speech for both
input and output directions. This enables the pedestrian to be eyes and hands free,
while still getting both guidance instructions and interesting information about the
locations as they pass them. This builds on work in natural language generation
of route descriptions, for example the CORAL system [13]. It also builds on
earlier audio only interfaces like EARS [5]. The Spacebook project has ex-
plored other issues as well, such as spatial grounding to compensate for unreliable
GPS readings [7].

This thesis contributions to this area are the following. The Janus experimental
platform in Paper III and IV (see section 5.1 for more details) which abstracts the
hardware and network communication parts of an pedestrian guidance system.
This abstraction greatly simplifies the creation of quick experiments testing usab-
ility and user interaction. Coupled with this contribution are the test protocols
in Paper IV. Finally this thesis contributes work on the use of prediction to mask
latencies and to prioritize system responses in Paper V (see section 6.1 for more
detail).
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Chapter 5

Software Contributions

Several different software systems, both large and small, have been constructed
during this thesis. The most significant system is the Janus experimental platform
for two way audio pedestrian guidances, a joint effort of our group in Ume̊a. Apart
from that, I have developed a tool for rendering query results from PostGIS
graphically, a parser/validator/unification system for the Spacebook Meaning
Representation Language (MRL) and software to combat clisp stability problems
during our MusicBrainz work.

5.1 The Janus experimental platform

To be able to run experiments outside of Edinburgh we have developed an experi-
mental platform that can run anywhere OpenStreetMap data is available. This
requires us to drop Ordinance Survey data, thus loosing height information. This
has worked surprisingly well since the locations we have wanted to run the system
in have been in central places in medium to large cities, coinciding with the places
where OpenStreetMap has good coverage.

The experimental system will be released as open source under the name Janus1

will be used in my future Ph.D. studies and beyond. It consists of an Android
App that relays sound and sensor data as well as pictures from the phone’s camera,
the later is used during wizard of Oz (WoZ) studies2. On the backend we are using
a PostgreSQL database with PostGIS, a SIP server called Freeswitch and a
server application running on the JVM. With the exception of the SIP server, the
system is easy to deploy on Debian 7 amd64 and work is being done to deprecate
the SIP server to make deployment trivial. The JVM server application is based
on the design and component model used in Spacebook but several modules have
been reimplemented in Java or Scala to facilitate portability.

For WoZ studies and system testing, Janus contains a GUI application that can
observe pedestrian movement on a map, as well as hearing the pedestrian and
seeing pictures from the phone’s camera (See figure 5.1). This last feature requires
mounting the phone so that the camera is not blocked. During studies in Ume̊a
a harness has been used to mount the phone on the pedestrian’s chest. This GUI
can be used either for WoZ studies with a wizard guiding the user or an automatic
controller can be attached to the system and the tool can be used to observe
pedestrian interactions.

The GUI application can also simulate a pedestrian for testing. In this mode no
phone is connected to the system and instead the GUI application is injecting

1See www.janus-system.eu for a video demonstration of Janus.
2In a wizard of Oz study the experimenter tells the user they will interact with their system

but in reality the system is controlled by a human.
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Figure 5.1: An image of the Janus WoZ GUI. To the left is the map area, in the
middle a picture from the pedestrian’s phone and to the right is a log of what has
been spoken to the pedestrian. Finally there is a text box to send instructions to
the pedestrian with.

simulated sensor data into the system (see figure 5.2). All other components are
unaware of this and act as normal. This is useful primarily for testing components
during development. This practice has lead to most bugs being caught early and
has helped us avoid crashes during trials with subjects.

5.2 PostGIS graphical query tool

Second to the Janus platform the most interesting tool developed in this work is
the PostGIS graphical query tool called sb2png as it was originally employed
against the Spacebook database (build by another command line tool called
osm2sb from OpenStreeMap data). The way it works is taking a command line
containing SQL queries and formating directives and outputting a PNG image
with the geometries returned by the queries rendered onto the image.
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Figure 5.2: The GUI in virtual mode. Note how the picture has disappeared and
a ‘compass’ like device has appeared in the lower right. This device can be clicked
to move the virtual pedestrian.

For example:

./sb2png cm_3.1_stockholm_1 1600 1200 \

-c 1 0 0 -p 2 0 \

-fs 30 -t 10 -c 0 0 1 -fc 1 1 1 \

-q "select * from hasShape natural join \

isNamed natural join isA where type=’restaurant’" \

-c 0.7 0.7 0.7 -t 1

-q "select geom from hasShape natural join isA where \

type=’street’ or type=’building’" \

-z 0.8 > foo.png

yields the picture in figure 5.2.
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Figure 5.3: Rendering of a part of Stockholm, a GPS trace shown in red, restaur-
ants shown as blue dots. Rendered using the sb2png tool.

5.3 Meaning representation language (MRL)
parsing and unification library

In the Spacebook project we have developed an extensible meaning represent-
ation language (MRL) library over conjunctive logic extended with handles [43].
The class of MRL languages have the following structure:

• A sentence in these languages is a set of statements all joined by conjunction.

• A statement in these languages has a name an optional handle and a set of
named and typed parameters.

• If a parameter is a free variable all occurrences of that variable must have
types with an non-empty intersection.

• If a parameter is a handle there must exist some statement with that handle.

An example sentence would be

dialogAct(act:instruct,prop:H),H:pursueLeg(agent:8,leg:1008).

where dialogAct and pursueLeg are statements, H is a handle, act, prop, agent
and leg are parameter names, instruct is a constant value and 8 and 1008 are
integer values.

Our library is capable of defining a schema that defines a language from this class
by listing the statements with their arguments as well as types and also create
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the types. The types the system can handle are literal constants, strings, integers,
floating point values as well as types that are the union of those types. Having
the unions of types allows for types that can partially overlap in allowed values
which is useful, for example for defining units. Consider the case of three types
TimeUnit, LengthUnit and TimeOrLengthUnit where the last one is the union of
the other two. When defining a predicate such as

remainingRoute(route:Id,amountLeft:TimeOrLengthUnit)

the union feature allows for handling the format of, in this case, the remaining
route independently of whether we are representing time or distance remaining.
In total this schema feature allows us to determine if a string is in our defined
language.

The final piece of the puzzle is the ability to do unification between sentences.
Consider the following two sentences.

dialogAct(act:inform,prop:H),H:distance(distance:X,unit:Y).

dialogAct(act:inform,prop:H),H:distance(distance:545.6,unit:meters).

here if we unify the first with the second we get.

{{X->545.6,

Y->meters}}

This allows us to de-construct complex sentences and find the values of selected
variables. More importantly it allows us to define equality of sentences independ-
ently of variable names. Also note that the unification shown is a set of sets, this
is because in some cases there is more than one assignment of free variables that
will unify the sentences.

5.4 Remote-hashing for Clisp

During our work with the MusicBrainz database we found some reliability and
performance problems in the clisp interpreter, the lisp interpreter used by C-
Phrase [32]. The problem was that when using more than a couple of MB of
stack memory, clisp would crash with a segmentation fault. As a workaround
we developed a C++ program implementing hash maps that could be remotely
accessed by sending data over (stdin) and getting answers from (stdout). This
worked very well and ‘solved’ the problem. In a similar situation when compu-
tations were taking a long time we developed a C program that started another
clisp instance on another host accessible with ssh and sent packages of work there
to utilize more compute power.
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Conclusions and Future Work

A conclusion from experiments in Paper I and my master’s thesis [16], contrasted
against the performance of the system in Paper IV is that rule-based hand crafted
NLIs are easier to get usable for such a dynamic domain as navigation systems.
Even if a rule-based system understands fewer alternative ways of expression we
expect that it will also detect hard to parse sentences more reliably. We claim that
it is better that the user must learn how to phrase themselves to be understood by
the system than using a statistical system that might, by some quirk in the parser
or bias in the training set, select the wrong meaning for an utterance. On top of
that, statistical systems have another problem. When trying to extend the domain
of a statistical system one has to give it more training data, the added training
data increases the risk that the statistical system will learn something incorrect
and in the end this becomes an issue in terms of both extensibility and reliability.
The more you extend the system, the less reliable it becomes. A hand crafted
system can combat this with either some restricted language grammar that can
be formally verified or by resorting to different hand crafted parsers for different
contexts.

As can be seen from the later papers in this thesis, my primary focus has become
pedestrian guidance using text-to-speech (TTS). Taking Paper V as a direction,
three foci of future work are Prediction Models, Utterance Timing and Evaluation.

6.1 Prediction models

Considering Paper V, the need for prediction models becomes apparent. While
the basic idea of predicting where a user will be at some time in the near future is
quite simple, initial experiments have shown that the problem can be approached
from many angles and which one to choose seems non-trivial. This looks like a
promising area of future research and required to construct a system like the one
envisioned in Paper V. Some preliminary work has already been accomplished. See
figure 6.1 for a view of our ‘marble-model’ predictor as currently implemented. The
marble-model predictor is based on an idea on page 15-16 in [4] where the areas
the pedestrian is most likely to be, like sidewalks, are ‘lowest’. The predicted or
measured position is allowed to roll a bit downhill to correct for measurement errors
or in the case of prediction for roads not being perfectly straight and pedestrian
measurements not being in a perfectly straight line. There are challenges both in
terms of getting a predictor efficient enough to be used in sub-second decisions,
especially when attempting to scale to more than one user. The reliability of the
predictor is also a challenge. Early experiments with gravity imitating models1

1In our gravity model, each time step every point on the road network attracted the predicted
position by a force decreasing quadratically with distance, apart from that the pedestrian was
predicted to keep moving in their current speed and direction.
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that initially looked promising and were tweakable to a point ended up failing too
often to be usable. The ‘marble-predictor’ has performed better but that has not
been fully evaluated yet.

Figure 6.1: Red dots in the picture extend out from the black dots representing
positions. The red dots are updated in real time allowing a detailed analysis of
predictor behaviour.

An interesting fact about prediction is that it is by nature bi-temporal [40], that is
at each point in time you can predict what the state will be at some future points in
time. If this data is stored it allows asking questions like is the route now predicted
similar to the one predicted 5 seconds ago? This can be useful for example in the
following case. If the answer is that the current predicted route is not similar to
the route predicted 5 seconds ago, that means circumstances somehow changed.
Depending on what is going on in the application now might be the time to tell
the user that some earlier instruction can be disregarded or that they seem to be
going the wrong way.
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6.2 Utterance Timing

Another important consideration is utterance timing. This includes both when to
send utterances from the server so that the phone receives it at an appropriate
time and how much in advance instructions should be given to pedestrians. One
consideration in this area is what to run on the phone and on the server. Running
code on the phone hugely reduces latencies while limiting storage and processing
resources. So the decision of what to run on the phone and what to run on the
server is an important issue when building reliable and extensible guidance systems.
Moving computations to the slower compute unit on the phone might make the
system more scalability by reducing server load. Even when the phone by itself
is slower than the server, if the phone can handle some of the computations the
server can handle more connected clients at once.

6.3 Evaluation

Human usability evaluations of Janus are only now starting. We have begun
testing various configurations of our automatic controllers to guide subjects on a
fixed tour around Ume̊a Universities campus. Figure 6.2 shows the flier we are
using to attract subjects. We have run 5 subjects thus far through WoZ trials.
Without exception the subjects were successfully guided. We are now starting
evaluations to see if an automated system will be as successful.

Evaluation has been delayed in favor of perfecting a stable implementation. We will
evaluate reliability by measuring task success rates. Scalability will be tested by
connecting many devices at once. Extensibility is not a quality that is amenable
to evaluation during user studies. Rather it can be evaluated using qualitative
studies, studying how much has to be changed to add new features, etc.

A Free* Lunch!

* Of course we are told, 'there is no free lunch'. 

Here is the deal: You try out our pedestrian
navigation system on a 10 minute walk on 
the Umeå University campus and you get 
a coupon for a lunch at Universum. 

Not only a tasty meal, but an interesting 
experience too!

If interested, send an email to janus@cs.umu.se where you state your name, 
gender, age, and field of study (or occupation). Also try to specify the 
dates and start times (11, 12, 13, or 14) in November 2013 or December 2013
when you could participate. We are looking for multiple particiants.

Figure 6.2: The flier we are using to recruit subjects for evaluation
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Summary of Papers

All of the papers in this thesis are concerned with building extensible, reliable and
scalable natural language interfaces over databases. Paper I is the most general
and the later papers are progressively more focused. Already in Paper II the work
specialises in spatial databases only to be refined further by focusing on guidance
in Paper III and IV. Finally in Paper V we identify the problem of control latency
and propose the use of prediction and planing to maintain reasonable response
times.

Paper I:

A Natural Language Interface over the MusicBrainz Database

This paper describes how to via authoring build a natural language query ap-
plication over the MusicBrainz dataset. It starts by identifying that when the
user’s conceptual model mismatches with the way it is stored in the database the
task of constructing an NLI gets much more complicated. The solution the paper
takes to that problem is to define a set of PostgreSQL views that transform the
database representation into one that more closely matches what the user expects.
This proved to simplify the creation of an NLI over the database. Paper I also
describes various technical problems encountered when working with databases of
this size (1.5GB), such as computational speed of views and how different equival-
ent SQL queries have different performance characteristics. The paper concludes
that the approach of authoring an NLI over this domain is feasible after technical
difficulties where resolved.

Paper II:

Context-dependent ‘near’ and ‘far’ in Spatial Databases via
Supervaluation

This paper is the first in this thesis that handles spatial issues. The focus is on
producing definitions of near and far that can be used in a database. This is a
problem dependent on context and the paper approaches this by supplying data
points into the database via a teacher tool. The points are then used to define
bounds for near and not-near keyed on their context (similarly for far and
not-far). If an unseen object is closer than some near object in the same context
then it is near and similarly for far. This is done by compiling the contexts into
SQL views.
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Paper III:

Toward an Active Database Platform for Guiding Urban Pedestrians

This technical report describes the system we are using in the last three papers of
this thesis. The system in question is made for guiding pedestrians either using
an automatic controller or by having an operator typing instructions to the user.
Our system runs on Android for the client application and JVM for the server.
We also present initial observations about the system’s responsiveness in regard to
latency in reports from the phone to the server, which were found adequate. This
report describes our understanding of the system as of October 2012.

Paper IV:

A Test-Bed for Text-to-Speech-Based Pedestrian Navigation Systems

This paper is a shorter conference paper version of Paper III. To the system in Pa-
per III we have added two-way audio and ability to send pictures from the phone’s
camera to the operator. We also discuss experimental protocols for evaluating
guidance efficiency.

Paper V:

Prediction and Scheduling in Navigation Systems

Paper V’s main contribution is identifying an interesting future direction of im-
provements to pedestrian guidance systems. The paper observes shortcomings in
a reactive approach to guidance, where the decision to voice an utterance happens
when the system detects the user is at a decision point. We propose an alternative
scheme where the system predicts future pedestrian positions. Using this predic-
tion the system creates a schedule of things to say, accounts for priorities, time
and positional constraints.
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A Natural Language Interface over the

MusicBrainz Database

Johan Granberg and Michael Minock

Department of Computing Science: Ume̊a University

Abstract. This paper demonstrates a way to build a natural language
interface (NLI) over semantically rich data. Specifically we show this
over the MusicBrainz domain, inspired by the second shared task of the
QALD-1 workshop. Our approach uses the tool C-Phrase [4] to build an
NLI over a set of views defined over the original MusicBrainz relational
database. C-Phrase uses a limited variant of X-Bar theory [3] for syntax
and tuple calculus for semantics. The C-Phrase authoring tool works
over any domain and only the end configuration has to be redone for
each new database covered – a task that does not require deep knowledge
about linguistics and system internals. Working over the MusicBrainz
domain was a challenge due to the size of the database – quite a lot
of effort went into optimizing computation times and memory usage to
manageable levels. This paper reports on this work and anticipates a live
demonstration1 for querying by the public.

Keywords: Natural Language Interfaces, Relational Databases,MusicBrainz,
C-Phrase

1 Introduction

It has often been noted that natural language interfaces to databases suffer when
the manner in which data is stored does not correspond to the user’s conceptual
view of such data [1, 2, 5]. This mismatch between the way data is structured
and the user’s conceptual model can be for a variety of reasons, but here we
speculate that the three most common reasons are:

1. The database is highly normalized (e.g. to BCNF) for the sake of eliminating
update anomalies.

2. The database is highly abstracted, including many attributes per relation so
as to avoid cost associated with joins.

3. The database is stored in a semi-structured form corresponding to RDF
triples.

It is the thesis of this paper that the user would prefer to query the data in a
conceptual form similar to what is represented in the entity-relationship diagram

1 http://www.cs.umu.se/~johang/research/brainz/public/
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of the database domain (see figure 1). Naturally if we are given a database in
one of the three forms above, we assume that it is possible, via standard view
definitions, to transform the data so that it may be accessed (and perhaps even
updated) via the conceptual model.

This paper explores these ideas and shows some preliminary results over
the MusicBrainz database paired with the 50 natural language queries in the
shared task for MusicBrainz in the QALD-1 workshop. In section 2 we present
our approach to building a natural language interface supporting queries over
MusicBrainz. Section 3 discusses our initial results and some anecdotes from
our development efforts. Section 4 summarizes our findings and points toward
near term and longer term plans, including the fielding of a live interface to
MusicBrainz for querying by the public.

2 Approach

2.1 The conceptual model

After looking at the set of 50 natural language queries to be supported over
MusicBrainz, we defined the conceptual model appearing in figure 1. This
diagram is traditional except that it shows a form of conceptual aggregation.
For example a group or a person can release an album, soundtrack or single. A
traditional ER diagram would require six relationship diamonds instead of one
to depict this.

Single
Soundtrack

Album

name

type

Song
name

length

year

"with"

"on"

genre

"of"

"with"
name

Group

start date

end date

name

Person

birth date

death date

"with"

"in"

start date

end date

"married"

"child of""parent of"

start date

end date

"worked with""by" "released"

"wrote""written by"

"produced by" "produced"

"composed""composed by"

Fig. 1. Conceptual model of MusicBrainz.

2.2 The data source

We had two choices for what we used as the data source for the actual Mu-
sicBrainz data. The first was the original data stored in a PostgreSQL
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database and the second was the RDF dump of the data built for the QALD-1
shared task. Because of our rooting in relational databases, we chose to simply
draw on the data in the original MusicBrainz PostgreSQL database.

The schema of the underlying MusicBrainz database is primarily designed
according to option 2 from section 1 above. That is, several highly abstracted re-
lations with many attributes represent abstract entities such as L_ARTIST_ARTIST
and LT_ARTIST_ARTIST which has tuples that represent both individual artists
(e.g. Bob Dylan) as well as bands (e.g. REM). The database itself is rather large.
There are approximately 10.6 million songs, 0.8 million albums and 0.6 million
individual and bands. In our experiment we remove the tuples containing non-
ASCII characters and arrive at 9.7 million songs, 0.7 million albums and 0.4
million artists.

2.3 The view definitions

Views were defined in the standard way over the base relations of the Mu-
sicBrainz database. One consideration was whether to materialize these views
for quicker access to the data. This essentially doubles the database size. Our
findings are that this leads to a speed up factor of approximately 3. For exam-
ple using regular views the test query, “which singles did the Dead Kennedys
release?” took 2.0 ms on average. Using materialized views it took an average of
0.7 ms. Considering other performance issues in the system (e.g. natural language
parsing times), we concluded that querying through the views is not currently a
bottleneck. Thus we did not elect to materialize views.

2.4 Authoring with the C-Phrase administration interface

Once several errors were dealt with (see section 3.1) the authoring process pro-
ceeded well. It followed the name, tailor and define method laid out in [4]. Well
over half the training set can be authored for within 90 minutes. With our new
enhancements to the parser to better handle WH-movement, this may be further
reduced. We intend to produce series of YouTube videos that demonstrate this
process.

3 Preliminary Results

3.1 Difficulties

There were several difficulties we encountered that, while perhaps anecdotal, are
still worth mentioning. To date the C-Phrase system has been applied only
over small databases. MusicBrainz is a sizable database, so this brought up
some scalability issues that we had not earlier experienced. We assume other
NLIs attempting to scale to this size of a database might face similar problems.
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Large main-memory hash tables The first issue related to memory manage-
ment issues in CLISP, the version of LISP that C-Phrase is implemented over.
There are some unfortunate memory bugs that corrupt CLISP memory when
utilization climbs over a certain threshold. It is difficult to track, because the
corruption generally causes a Segmentation Fault at later steps when memory
is accessed. Under normal circumstances this problem does not surface. However
to allow for named entity recognition, C-Phrase materializes string values from
the database into hash tables to scan for matching values in the user’s typed
request. In the case of MusicBrainz this means building main memory hash
tables containing millions of constants. This was too much for CLISP to handle.

After several false starts, the solution to this problem was to implement a
remote hash facility that maintained the main memory hash tables remotely
outside of CLISP. The overhead access time for these hash tables is negligible
and the implementation is stable and scalable, bounded ultimately by the size
of virtual memory.

Limitations of the PostgreSQL query optimizer C-Phrasemaps English
to logical expressions in Codd’s tuple calculus. From such logical expressions,
SQL is in turn generated. Before our experiment we would generate SQL such
as the following to answer the query, ”Which singles did the Dead Kennedys
release?”

SELECT DISTINCT NAME

FROM SINGLE AS x

WHERE

EXISTS(

SELECT *

FROM BAND as y1

WHERE

x.artist = y1.id AND

y1.name = ’Dead Kennedys’).

Unfortunately such queries are not taken up by PostgreSQL’s optimizer.
This query in fact takes 23 minutes to answer on an older Solaris server where
we run our database. In contrast the equivalent query

SELECT DISTINCT x.NAME

FROM SINGLE AS x,BAND as y1

WHERE x.artist = y1.id AND y1.name = ’Dead Kennedys’"

takes 0.7 seconds on the same server. Here the query time is entirely dominated
by the time to establish the connection, the actual query execution is reported
as 2 ms. We assume that the speed-up is due to the fact that the optimizer has
access to both relations on the second line of the query and can plan accordingly.
Instead of pestering PostgreSQL about ‘improving their optimizer’, we altered
our translator to produce SQL of the later variety.
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3.2 Performance

We are still in the process of collecting performance data. The running example
query of ”Which singles did the Dead Kennedys release?” shows that the perfor-
mance is adequate in the case of single join queries. We have run additional tests
on queries that exercise more joins and are convinced that the current approach
is feasible. The time it takes to parse natural language queries is typically in the
range of one to three seconds.

3.3 Current coverage

Unfortunately recent extensions to C-Phrase have introduced system instabil-
ity and have blocked a systemic precision, recall and f-measure study on the
50 unseen queries released as part of the QALD-1 shared task. The problems
are mostly due to unanticipated parser bugs and performance problems when
extending our parser to handle gap threading. Work continues to resolve these
problems. In the meantime we have elected not to read the 50 new unseen queries
in anticipation of doing a clean coverage test in the future.

As for the original 50 queries for the MusicBrainz example, in our prior
working version of C-Phrase, we covered all but 5 of these queries. The 5
problematic queries (in order of estimated level of difficulty) are those involving
implied time intervals (“How many bands broke up in 2010”), types (e.g. “Is
Liz Story a person or a group?”), complex time calculations (“Which artists
have their 50th birthday on May 30, 2011?”), computed comparison values with
ellipsis (e.g. “Which artists died on the same day as Michael Jackson”), and
queries involving non-quoted, non-domain string values (e.g. “Are the members
of the Ramones that are not called Ramone”). Time permitting, we will extend
C-Phrase to handle these types of queries. It will be interesting to learn about
how other groups at QALD-1 approached these queries.

4 Conclusions

We were very pleased when we heard of the QALD-1 shared task. We decided to
focus our efforts on the more closed-domain task of queries over MusicBrainz.
We based our data on the original MusicBrainz relational database and, after
confronting several technical difficulties in scaling C-Phrase, we managed to
build a natural language interface that covered 45 of the 50 training examples
in the QALD-1 shared task for MusicBrainz.

Unfortunately technical problems have delayed a systematic evaluation. We
still intend to perform and report an evaluation of how well we cover the 50
unseen queries, but perhaps more tellingly we intend to field a natural language
interface2 for real-time querying of MusicBrainz by the public.

2 http://www.cs.umu.se/~johang/research/brainz/public/
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Abstract

Often we are interested to know what is ‘near’ and what is ‘far’ in spatial
databases. For instance we would like a hotel ‘near’ to the beach, but ‘far’ from
the highway. It is not always obvious how to answer such nearness questions by
reducing them to their crisp counterparts ‘nearer’ or ‘nearest’. Thus we confront
the vague and context-dependent relation of near (and far). Our approach fol-
lows a supervaluation tradition with a limited representation of context. The
method is tractable, learnable and directly suitable for use in natural language
interfaces to databases. The approach is based on logic programs supervalu-
ated over a set of context-dependent threshold parameters. Given a set of rules
with such unconstrained threshold parameters, a fixed parameter tractable al-
gorithm finds a setting of parameters that are consistent with a training corpus
of context-dependent descriptions of ‘near’ and ‘far’ in scenes. The results of
this algorithm may then be compiled into view definitions which are accessed
in real-time by natural language interfaces employing normal, non-exotic query
answering mechanisms.

1. Introduction

A difficulty in natural language interfaces to databases (or knowledgebases)
has been an adequate treatment of vagueness. For example when we ask for “a
near by Indian restaurant”, what exactly do we mean? While related questions
involving the comparative and superlative forms (e.g. “is Ghandi’s nearer than
Taj Mahal?”,“which Indian restaurant is the nearest?”) have crisp answers,
which restaurants qualify as ‘near’ seems open to interpretation and arbitrary.
In short, ‘near’ is vague.

Figure 1 depicts the general situation we model. A speaker asks for objects
of type R (e.g. Restaurants) that qualify as members in the vague predicate V
(e.g. Near). As a result a subset A of R is reported back to the speaker using
the description C (e.g. “Ghandi’s and Taj Mahal are both within 300 meters
of your current position.”). One obvious truism is that the determination of A
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Figure 1: The basic framework

is context dependent. For example how much time does the speaker have for
lunch? Is the answer different when it is raining? What if the speaker requests
near by hospitals rather than near by restaurants? Does requesting hospitals
make a difference in the determination of what distance qualifies as near? Does
the number of restaurants in the vicinity of the speaker influence the distance
threshold of what qualifies as Near? These questions hint at the strong role of
context in the interaction depicted in figure 1. Of course context is a rather
broad notion so let us stipulate the following three types:

Speaker context involves the speaker’s goals, capacities and preferences.
In the case of ‘near’, we may ask if the speaker is walking or driving, if
they are in good health, if they are under time pressure, etc.

World context involves every thing that holds in the world external to
the speaker’s mind. In practice this will either be recorded in the modeled
reality of the database or not be explicitly modeled. For example our
database might track the location of the speaker and restaurants, but not
track the weather.

Communication context involves the actual request of the speaker.
Because we restrict the form of communication so rigidly in figure 1, this
context is simply what type of objects the speaker is requesting (i.e. R)
and the vague predicate (i.e. V ).

While representing communication context has been largely handled by re-
stricting our attention to only types of communication depicted in figure 1, we
still have the daunting task of representing speaker and world context. Surely
we must feel some trepidation [23]. Are we really prepared to build rich models
of the user’s wants, needs and capabilities? Likewise are we prepared to attempt
to formally describe how our database relates to the greater world? Perhaps we
could try, but then again perhaps we should just give up and refer to separate
contexts in the simplest possible way. That is by merely stipulating that con-
texts (e.g. c1) exists, whatever they are, and by giving them descriptive names
(e.g. c1 is named “a 5 minute walk”).

In essence we elect this simple approach to context by extending our vague
predicate V (x) to V (x, c). Thus, assuming that I am standing at the capital
building in Washington DC, we might assert ¬Near(WhtHouse, ‘5-min-walk’)

2
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but Near(WhtHouse, ‘afternoon-day-trip’). We might elect to say neither
Near(WhtHouse, ‘15-min-walk’) nor ¬Near(WhtHouse, ‘15-min-walk’) if it is
not clear either way. Other questions might be to ask whether there exists a
context ci where Near(Tokyo, ci)? Sure, when ci = ‘inter-galactic-space-travel’.
In fact it seems that for any vague predicate, we can say that there is some
context that makes it true and some context that makes it false.

Now that we have largely side-stepped context, this paper will focus on rep-
resenting vagueness of ‘near’ and ‘far’ in spatial databases. There has been a
wealth of prior work in vagueness stretching from antiquity to comprehensive
modern treatments (see [20] for an overview). The present work is informed
by these developments, but adopts, in the terms of [6], a computational rather
than a cognitive perspective. That is we seek to support simple aspects of
vagueness through leveraging modern relational database systems and theorem
provers limited to tractable classes of first-order logic. Our long term goal is
to robustly and efficiently support important and well circumscribed classes of
vagueness without necessary recovering all the nuances of the phenomena. The
work described in this paper is part of this project and addresses the special case
of representing ‘near’ and ‘far’ in spatial databases. The practical motivation
for focussing on ‘near’ and ‘far’ is that questions to GISs are often couched in
such terms (e.g. “which Indian restaurants are near to the university?”, “which
hotels are near to the white house but far from a highway?”) and answers or
descriptions of spatial scenes could be described using such vague spatial predi-
cates (e.g. “It’s the Starbucks near to the Chinatown metro stop.”). Practically
all natural language interfaces to GIS eschew this problem and instead focus
on qualitative relations (e.g. give the objects that overlap one another) or they
work hard to answer ‘near’ questions using their crisp counterparts of ‘nearer’
and ‘nearest’.

1.1. Organization of this article

This article is an extension of an earlier conference article [14] and holds
a similar structure, but presents at greater depth and with a wider discussion
of alternative and future work. The work is also more focussed on the case of
‘near’ and ‘far’, and does not follow up on the more extended cases of ‘next-to’
and ‘between’ that were briefly entertained in the conference paper. Section 2
provides a review of work in vagueness and in particular vague relations in spatial
databases. Section 3 presents our approach basing it on a concrete example for
the North Western Washington DC portion of the OpenStreetMap database.
The example illustrates the essence of our approach. Section 4 discusses our
prototype implementation. Section 5 presents a wide ranging discussion of the
work as well as criticisms and future directions. Section 6 summarizes and
concludes.

3
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2. Background

2.1. General accounts of vagueness
Vague relations are characterized by borderline cases and inquiry resistance.

Borderline cases means that there are cases that don’t seem to be clearly in
or out of the relation and inquiry resistance means that no amount of further
information can decide the case. Inquiry resistance distinguishes vagueness from
ambiguity for, in general, ambiguity can be resolved with further dialogue. If
a user requests “list the buses that travel down D st.” does this include buses
that don’t actually stop on D street? Once that issue is decided the question
essentially becomes crisp, thus it does not resist inquiry. But in a given context
if a restaurant is neither ‘near’, nor ‘far’ from me, then giving a more accurate
measure of the distance does not often help. Although it can be argued that
making the context of the question more specific might bring the relation closer
to being crisp, we assume here that even under precise contexts vague relations
are still inquiry resistant.

A comprehensive treatment of vagueness is Kees van Deemter’s recent book
Not Exactly: In Praise of Vagueness [20]. The book is an informative and
entertaining look at vagueness in many of it guises and it reviews the main
theoretical approaches to representing the phenomena. The book bases its defi-
nition of vagueness on the sorites paradox of Eubulides of Miletus of the fourth
century B.C.E. The sorites paradox (also known as the paradox of the stone
heap) asks how many stones make a heap. Since one stone does not make a
heap, and since in general adding one stone to a collection should not change
its status, then paradoxically we should be able to continue adding stones to
the collection with it never attaining the status of a ‘heap’. A more modern
version of this paradox that makes explicit the notion of perceived differences,
starts with assuming that we have a person that is 151 centimeters tall that we
refer to as ‘short’. If we stand this person next to a person that is only a hair’s
width taller (perceptually the two subjects appear to be the same height), then
we must state that the other person is also ‘short’. Of course by this line of
reasoning we will conclude that people of arbitrarily large height are ‘short’.
Clearly somewhere the induction step must break down.

More abstractly, in van Deemter’s terminology, there are three fundamen-
tal properties of vague relations (such as tall(x) or near(x, y)) based on grad-
able measures (such as height and distance): admissibility, tolerance and non-
transitivity. In the example of nearness:

Admissibility states that if some object is ‘near’ at a given distance,
then if it were moved to a shorter distance away, then it too would be
‘near’.

Tolerance states that if an object is ‘near’, then if it is moved an imper-
ceptible distance away, it still remains ‘near’.

Non-transitivity states that if object x is ‘near’ to object y and object
y is ‘near’ to object z, then it is not necessarily the case that object x is
‘near’ to object z.

4
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We will adhere easily to admissibility and non-transitivity, though as we will
see, we will struggle later with tolerance.

Van Deemter’s book does a thorough job of presenting and contrasting the
linguistic and semantic approaches to handling sorites problems, with special
focus on the example of tall. This includes the naive method of specifying
thresholds, supervaluation, Kamp’s notion of incoherent contexts, introspective
accounts, fuzzy logic based approaches, and finally probabilistic logic based
approaches. We refer the interested reader to [20].

2.2. Supervaluation

The tradition which guides the present work, is supervaluation (see [7, 12]
for a philosophical description and [8, 18, 15, 3] for practical approaches that,
broadly speaking, can be classified as employing supervaluationistic techniques).
From [12],

According to [supervaluationist] theory, a sentence is true if and only
if it is true on all ways of making it precise. This yields borderline
case predications that are neither true nor false, but classical logic
is preserved almost entirely.

In this paper this is captured by parameterizing the definition of vague pred-
icates with various thresholds constants which are not explicitly set. A precisifi-
cation of the vague predicate is a setting of the relevant threshold parameters to
numerical values that are consistent with observations. A statement is supertrue
if it is true over all possible precisifications. To illustrate, let us define ‘near’ as
(∀x)(x < n1 ⇔ near(x)) and assume observations near(2) and ¬near(10). For
simplicity, let us assume that our universe of distances is the whole numbers
between 0 and 20. Given the observations we have 8 consistent precisifications
of our rule. But no matter what the actual setting of n1 is, the rules above are
sufficient to deduce that near(1). Thus near(1) is supertrue, near(11) is super-
false and near(5) is neither supertrue or superfalse, being either true or false
with different consistent settings of the parameter n1. This formulation enforces
the property of admissibility and non-transitivity, but does not directly address
tolerance. Issues of tolerance aside, what we have is a fairly reasonable formula-
tion for practical application. While one can solve for consistent settings of n1

in a straight forward way (e.g. n1 = 3 is consistent with the observations), this
is not necessary if one wishes to simply use the system to deduce membership
or non-membership in vague relations.

There is a limitation of the above system that should be mentioned. Al-
though the formulas given do not determine a specific value for n1, each model
does set a specific value for the threshold. Where this becomes tricky is when
we introduce another parameter that determines when a distance is definitely
not ‘near’. Let us say for example that we introduce the rule: (∀x)(x > n2 ⇔
¬near(x)). Under this system, because for each model a given distance must
be either near or ¬near, we unwittingly induce the constraint that n2 = n1−1.
This is unfortunate, because once we determine parameter settings, we would

5
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like for the resulting logic to model inquiry resistance by remaining agnostic
about the determination of the vague predicates for values in some gap. For
example in the most conservative setting1 of parameters for the above exam-
ple is n1 = 3 and n2 = 9. Instead of embracing partial logic, a work around
is to simply introduce an ‘opposite’ vague predicate far(x) so that we have
the rule, (∀x)(x > n2 ⇔ far(x)) and the rule that determines mutual exclu-
sion: (∀x)(near(x) → ¬far(x)). Thus we can now have consistent settings of
threshold parameters under classical first-order logic where a distance is prov-
ably near, provably far or neither. This gives us our ‘gaps’ that are needed to
model inquiry resistance.

There has been a series of practical works that model vagueness via super-
valuation. The work in [8] was one of the first attempts to fix parameters in rule
based systems by letting domain knowledge interact with rules to give tighter
bounds on intervals. The work is similar to the work carried out here, but no
attempt to identify tractable classes of problems was undertaken. Other impor-
tant work in supervaluation is Bennett’s work on VAL (Vague Adjective Logic)
[2] and Pulman’s work on vague predicates and degree modifiers [15].

2.3. Vague relations in spatial databases

Typically spatial databases represent regions by adding geometric types
(POINT, LINE, POLYGON, etc.) to the basic attribute types (e.g. INT, VARCHAR,
DATE, etc.). Such geometric types (e.g. as proposed in SQL/MM) have a host of
well-defined operators (e.g. overlaps, contains, disjoint, strictly-above, does-not-
extend-to-the-right-of, etc.) and functions (distance, area, etc.) that can be used
as conditions or terms in queries. The canonical types of crisp queries are point
queries (e.g. “what park am I currently in”), range queries (e.g. “what are the
Chinese restaurants between H and F streets and 9th and 11th streets?”), near-
est neighbors (e.g. “Where is the nearest ATM from the corner of 9th street and
F street?”) and spatial joins (e.g. “give Indian restaurants within 100 meters
of a metro stop.”). The use of R-tree indexes [10] and their generalization ([11])
give log-based access to spatially arranged objects, by indexing on the bounding
rectangle of polygon regions and line segments. While spatial databases provide
a standard set of basic spatial operators and functions we seek to support spatial
predicates ‘near’ and ‘far’ which are of a vague, context-dependent nature.

While many researchers have pursued fuzzy logic approaches [5, 1, 21] in
spatial databases, it should be remarked that most of these approaches have
focussed on what could be called indeterminate spatial relations [17] of fuzzy
objects, rather than focus on the vague relations near (and far) that obtain
between crisp objects. An indeterminate relation considers an object that has
unknown shape, such as a river that may widen during rainy season or a forest
whose boundary may taper off into a clearing. While such objects have un-
known exact shape, there does exist some shape and thus, in principle, there

1A conservative setting of parameters selects the widest gaps between opposite relations
consistent with observations.
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are answers to basic spatial predicates (e.g. RCC8 relations [16]) and functions
(e.g. distance) evaluated over them. A common way to represent such inde-
terminate regions is through the so-called egg yolk method [4]. The greatest
possible extent of a region is represented as well as the most compact possible
region and the calculus of the exact spatial predicates and functions gives rise
to three-valued logics and intervals of possible values. Some recent work that
flirted more directly with vague spatial relations is [13]. While they explicitly
side step “vague, ambiguous and context dependent expressions” via a controlled
language approach, they provide an interesting definition of ‘between’ that can
be thought of as being on the cusp of becoming a vague relation.

3. An Approach to Context-Dependent Near and Far

Our approach to represent Near is based on supervaluation over multiple
contexts. Returning to figure 1, given a user’s question for Rs that are V (e.g.
“Restaurants that are near”) under context c, we apply the vague predicates at
the intensional level. That is the set of answers A is:

λc.{x|R(x) ∧ V (x, c)} where V (x, c) ⇔ n(c) < val(x)

We focus on the case where R is a basic type predicate (for example Church,
Pub or Museum and V is a binary (as opposed to unary) vague predicate
near (or far) extended with a context argument. Specifically near(x, y, c) and
far(x, y, c) are true when object x is ‘near’ to (or ‘far’ from) object y in context
c. The val function represents the ‘distance’ between the geometries of two
objects. For now let us assume this distance function is the straight line distance
metric ∆sld and that the function geo maps from object ids to their associated
geometries (i.e. points, polygons or lines).

3.1. The definition of the context-dependent Near and Far

Ignoring types for now, the main rules that define the vague predicates are:

(∀x)(∀y)(∀c)(near(x, y, c) ⇔ ∆sld(geo(x), geo(y)) < low(c))

(∀x)(∀y)(∀c)(far(x, y, c) ⇔ high(c) < ∆sld(geo(x), geo(y)))

These rules provide the necessary and sufficient conditions2 for near(x, y, c)
and far(x, y, c). The necessary conditions state that if two objects are ‘near’
to (or ‘far’ from) one another in a given context, then the distance between
their associated geometries must be less than some threshold low (or greater
than some threshold high) for the context. The sufficient conditions state that
if the distance between two objects associated geometries is less than some
threshold low (or greater than some threshold high) for a given context, then
two objects are ‘near’ to (or ‘far’ from) one another in that context. Nowhere

2An error in the conference paper [14] was that only sufficient conditions were included.
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do we explicitly set these parameters low(c) and high(c), for they are to be
constrained by observations.

Note that the functions we are using in our system are partial and have
rigid signature restrictions: geo(x) maps object ids to geometries, ∆sld(gi, gj)
maps two geometries to a numeric value, and low(c) and high(c) map contexts
to numerical values. The relation < is defined over a finite set of numerical
values under active domain. The function signature requirements give a finite
Herbrand universe for any system specifying a finite set of contexts and a finite
set of observations. This along with the fact that rules are limited to the Horn
property gives us a tractable algorithm3.

Finally we model the ‘opposite’ relation between near and far in a given
context via:

(∀x)(∀y)(∀c)(near(x, y, c) ⇒ ¬far(x, y, c)).

3.2. Calculating thresholds from context-dependent observations

By way of example let us consider observations over the contexts c1 =
’10 minute stroll’, c2 = ’five minute sprint in rain’ and c3 = ’short bicycle ride’.
In the scene4 in Figure 2 we may have observations of the following sort:

near(m2, s1, c1) ∧ far(m2, s4, c1) ∧ ¬near(m4, s5, c2) ∧ far(s6, s2, c2) ∧ ...

Based on a set of such observations, the most conservative setting of the
thresholds could be low(c1) = 240, high(c1) = 600, low(c2) = 750, high(c2) =
5000 and low(c3) = 780, high(c3) = 4500. As will be discussed in Section 4, we
have a tractable algorithm to calculate these parameters.

3.3. Representing and comparing contexts

While the near(x, y, c) and far(x, y, c) predicates include a context argu-
ment, we also wish to associate facts as being true (or false) in contexts. To
achieve this we include a predicate ist(p, c) (standing for ‘is true’) that records
that a proposition p ∈ P holds in a particular context c. These facts are
propositions from an arbitrary finite set P . For example let us say that the
propositions are on-foot, raining, day-time, on-bike. Thus we might have the fol-
lowing facts: ist(on-foot, c1), ist(on-foot, c2) ¬ist(on-foot, c3), ¬ist(on-bike, c1),
¬ist(on-bike, c2), ist(on-bike, c3), ist(raining, c2). If a context ci makes no
claims about raining, then neither ist(raining, ci) nor ¬ist(raining, ci) will
be asserted.

Given the ist predicate and a set of context dependent observations, we are
able to calculate several useful relationships between contexts:

3Technically this is a fixed parameter tractable algorithm based fixing the arities of the
functions and predicates. See formal definitions and proofs developed in [14]

4We use OpenStreetMap data in PostgreSQL extended with PostGIS. The scene in 2
represents a section of Washington, DC and consists of over a thousand unique objects. Each
of these has an associated geometry type (e.g. a polygon, line or point) and a set of descriptive
attributes that associates name and types.
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Figure 2: Museums definitely near (•) and possibly near (◦) to a metro (∗) in the context of
a ’10 minute stroll’

Possibly Equal (ci ≈ cj)

When we take into account both observations as well as ist facts we may
calculate whether two contexts are possibly equal. We say that two contexts
ci and cj are possibly equal (denoted ci ≈ cj) if their equality is consistent
with the observations and ist facts. This can be tested by merely stating their
equality and testing whether the observations and ist facts are consistent. In our
example ist and observations in Section 3.2, none of the contexts can possibly
be equal to one another.

Generality (ci ❂ cj)

Ignoring observations we can speak of context ci being at least as general as
a context cj (denoted ci ⊒ cj) if and only if (∀p)(p ∈ P ∧ ist(p, cj) ⇒ ist(p, ci))
and (∀p)(p ∈ P ∧ ¬ist(p, cj) ⇒ ¬ist(p, ci)). This can be tested efficiently for
each context pair by testing the consistency of these rules with the ist facts. A
context ci is more general than cj (denoted ci ❂ cj) if ci ⊒ cj, but not cj ⊒ ci.
In our example c1 ❂ c2.

More Discerning (ci ≺ cj)

Ignoring ist facts, a relationship we calculate is what we call a context being
more discerning than another context. A context ci is at least as discerning as
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cj (denoted ci � cj) if everything that is ‘near’ in ci is ‘near’ in cj and everything
‘far’ in ci is ‘far’ in cj . A context ci more discerning as cj (denoted ci ≺ cj)
if ci � cj , but not cj � ci. Formally we can compute if ci � cj if we add the
following rules to above rules and observations and test for consistency:

(∀x)(∀y)((near(x, y, cj) ⇒ near(x, y, ci)) ∧ (far(x, y, cj) ⇒ far(x, y, ci)))

In our example above, it is the case that c1 ≺ c2.

3.4. Generating views

Based on the set of contexts, observations, and then the calculated high and
low parameters, we can generate views that capture what is ‘near’ and ‘far’ in a
given context. Thus the view definition of NEAR(XID, YID, CONTEXT) provides
the objects that are ‘near’ to one another in the given context. Its form is a
straightforward result of pairs 〈ci, low(ci)〉:
CREATE VIEW NEAR(id1,id2,context) AS

(SELECT x.osm_id,y.osm_id,’10 minute stroll’ FROM

planet_osm_point AS X, planet_osm_point AS Y

WHERE ST_Distance(x.way,y.way) < 240)

UNION

(SELECT x.osm_id,y.osm_id,’10 minute stroll’ FROM

planet_osm_polygon AS X, planet_osm_point AS Y

WHERE ST_Distance(x.way,y.way) < 240)

...

UNION

(SELECT x.osm_id,y.osm_id,’5 sprint in rain’

...

This view can be accessed via natural language through the natural language
interface system. An analogous view is defined for FAR(XID, YID, CONTEXT)

3.5. Multiple distance metrics

In practice, it is often the case that a straight line distance measure is an
unreliable metric of ‘real’ distance. Certainly the existence of a subway sys-
tem warps the notion of what is ‘near’. Modern GIS treatments are getting
more sophisticated in calculating such alternative distances. For example tak-
ing into consideration the road network and approximate travel times, it is fairly
straightforward to develop a metric ∆driving, it is even feasible that we can de-
velop ∆walking or ∆metro. Given this we could then imagine composing these
to generate metric functions such as ∆walking&metro.

Although we have not yet performed any experiments with these alternative
distance metrics, we note here that the impact of this will be to make the dis-
tance function definition based on input context. Thus the basic vague predicate
definition rules from above become:

(∀x)(∀y)(∀c)(near(x, y, c) ⇔ ∆(geo(x), geo(y), c) < low(c))

(∀x)(∀y)(∀c)(far(x, y, c) ⇔ high(c) < ∆(geo(x), geo(y), c))
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This will then necessitate the assignment of distance metrics to various con-
texts:

(∀x)(∀y)(∆(geo(x), geo(y), c1) = ∆sld(geo(x), geo(y)))

...

(∀x)(∀y)(∆(geo(x), geo(y), c10) = ∆driving(geo(x), geo(y)))

While this requires slightly more knowledge engineering, it does not alter
the tractability of the approach.

3.6. Type dependence
Based on our intuition that a person being ‘near’ to a waste paper basket and

a person being ‘near’ to a park should be accorded different distance thresholds,
let us entertain the possibility of extending our approach with types (e.g. a
restaurant, ATM, park, road, etc.). With respect to the definition of near (and
far) this would lead to a proliferation of rules including:

(∀x)(∀y)(∀c)(near(x, y, c) ⇔ ATM(X) ∧Restaurant(Y )∧
∆(geo(X), geo(Y ), c) < low(ATM,Restaurant, c))

Note that the low parameters now take types as well as the named context
as arguments. This is a straight forward extension to the basic case although it
results in many more rules – quadratic in the number of types.

A serious limitation with this approach is that monotonicity of logic will
result in the most restrictive threshold bounds to be induced between types.
This will likely quickly lead to hard to explain inconsistencies that render the
approach unworkable. A possible fix would be to stipulate that pairwise disjoints
between types. For example the types could included restaurants, ATMs, etc.
For example:

(∀x)(Restaurant(x) ⇒ ¬Road(x) ∧ ¬ATM(x) ∧ ...)

...

Even if we were able to work with a set of mutually exclusive types, the whole
approach suffers from requiring many more observations to fully constrain the
thresholds across all type combinations. For this reason we largely dismiss the
idea (originally proposed in [14]) of including types in the rules.

4. Prototype Implementation

The approach of section 3 is implemented in an initial LISP prototype in-
tegrated with the theorem prover SPASS and PostgreSQL extended with
PostGIS over OpenStreetMap data. The implementation consists of two
web-based tools: the teaching tool and the query tool. The teaching tool lets
an administrator build and manage contexts (see Figure 4). The output of the
learning tool is a set calculated relationships between contexts and the view
expressions that define the context-dependent NEAR and FAR relations. The
query tool lets casual users obtain answers to ‘near’ and ‘far’ queries via limited
natural language dialogue (see Figure 5).
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Figure 3: The overall architecture

4.1. The teacher tool

The teacher tool enables an administrator (hereafter referred to as the teacher)
to add and name contexts, set associated propositions in contexts to true, false
or unknown, and then to make statements of what is ‘near’ and ‘far’ in con-
texts. Additionally the teacher must specify which distance metric is relevant
in the context and must also specify a descriptive name for the context. These
descriptive names (e.g. a ’5 minute sprint in the rain’) will be used to identify
the context to casual users.

As the teacher builds up a library of contexts, the system alerts the teacher
to related contexts that are possibly equal (see ci ≈ cj) above to a new context
that they are asserting. The teacher is encouraged to refrain from defining a
context ci if there already exists a context cj, where ci ≈ cj and cj ❁ ci and
cj ≺ ci (see Section 3.3 for a formal definition of these terms). This captures
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Figure 4: The interface to the teacher tool

the intuition that if a context is more specific, but in being so it widens a gap
between opposite predicates, then it is probably irrelevant. Likewise a new
context ci that is more general than a prior context cj (ci ❁ cj) and more
discerning ci ≺ cj should probably supersede cj and cj should be removed
from the library. These are just recommendations to the teacher however. The
teacher can author contexts as they see fit.

Once the teacher has defined a library of contexts, they generate a view
definition for the context library. This starts by calculating the most conserva-
tive settings of the parameters, followed by a translation of the entire body of
contexts into view definitions. This is achievable in polynomial time (see [14]).

Core reasoning services

The core reasoning services in the teaching tool are carried out by the first or-
der resolution theorem prover SPASS [22]. We encode the vague observations,
the ist statements, the unique names assumption and < over numerical con-
stants (under active domain) in first order logic limited to Horn clauses. These
encodings are confirmed to be consistent via a satisfiability check. One tricky
issue worth mentioning around the definition of <, is that must discretize the
active domain of ordered numerical values d1, ..., dn. This includes Horn-based
constraints such as:

x = di ⇐ x < di + 1 ∧ di − 1 < x

Assuming consistency of the defined contexts and observations, based on
the reasoning question we are seeking to answer, we encode constraints such
as the value of a parameter, or whether two contexts are equal, or any of the
other questions from Section 3.3, and test for consistency. The view compilation
routine which finds consistent settings of all the high and low function values is
the most expensive of the operations. However this does not require interaction
and, again based on the Horn case it is tractable. Further experiments are
underway to improve our prototype’s performance.
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4.2. The query tool

Figure 5: A dialog over the query tool.

Given that we have the view, materialized or otherwise, that defines the
vague predicate NEAR and FAR, the question is how do we use such a view in
querying the underlying database. A common use case is that we are unaware of
the user’s context and they then ask a nearness query. Now given the assumption
that the true context of the user matches a context defined in the context library,
this will mean that a family of possible thresholds will be possible.

To resolve a more discerning notion of near the system will need to obtain
from the user their context. This may involve setting predicates based on world
state (e.g. the weather or time of day) or via explicit questions (e.g. “Are you
driving, walking, or biking?”, “Can you take a metro?”, etc.) and using this to
narrow the set of possible contexts. This could also be based on users stating
that objects are definitely near or far, or the user even suggesting the actual
threshold values explicitly. The key point is that as the set of possible contexts
becomes more constrained, the boundary low and high parameters will become
more and more constrained. The dialogue in Figure 5 follows a strategy where
the set of answers common to all possible contexts are identified first, followed
by questions that systematically rule out contexts and progressively report all
answers in the next less restrictive context, etc. until all possible contexts are
addressed or ruled out.

5. Discussion

The original ambition of this article was to cover a wide class of vague
spatial preposition including ‘between’,‘on’,‘next to’,‘at’, etc. As it turned out,
we decided to focus our attention on the more limited case of ‘near’ (and ‘far’).
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Now that we have developed what we feel to be a concrete and practical approach
to this simpler case we will be generalizing our approach to more complex and
varied cases.

The general interpretation of vague language in this article has been as
‘convention’. In general this leads to difficulties. For example consider the
non-spatial request for “large cities in Alaska.” If we assume that the only
relevant gradable measure for a large city is it’s population, where would we
set the threshold? Obviously this depends on the comparison set. For example
do we want a large city by Alaskan standards, or do we want large cities by
more conventional standards – in which case perhaps the correct answer is that
Alaska does not have any large cities. A possible way to extend vague predicates
is with definitions such as “tall means above n1 standard deviations from the
mean.” The n1 here remains as a parameter, but one that becomes folded up
within a complex calculation that takes the distributional context into account.
Formally, in relation to figure 1, this would be:

λc.{x|x ∈ V ∗({y|R(y)}, c)} where x ∈ V ∗(S, c) when val(x) is at least n∗(c)

standard deviations above the mean val for members of S

This paper has based its approach on relational database technology and the-
orem provers applied over tractable cases of Horn clauses with a finite Herbrand
universes. No doubt our approach to context can be criticized for its simplicity
given the more sophisticated options [9, 19]. While we slightly extended our
notions of context to make certain propositions true or false in context, adding
a context argument to predicates is essentially our approach to context in this
paper. The main virtue of this is its simplicity and its representation in tractable
first-order logic.

Conventional wisdom says that limiting approaches to vagueness to classical
first-order logic is too restrictive. In fact Kees van Deemter concludes his book
[20] with the analogy of giving up classical logic with the expulsion of Adam and
Eve from paradise. It’s a painful, but necessary. While we acknowledge that this
is probably ultimately true to capture advanced cognitive aspects of vagueness,
in this paper we are fighting the expulsion on computational grounds.

6. Conclusions

The approach detailed in this paper treats vagueness in spatial databases
as a set of conventions, based on context. The approach is based on definite
logic programs with contexts represented as first-class objects and a type of
supervaluation over a set of threshold parameters. Given a set of context-
dependent rules with open threshold parameters, a tractable algorithm finds a
setting of the parameters that are consistent with a training corpus of vague
spatial statements. The results of this algorithm may then be compiled into
view definitions that may be integrated into normal SQL-based databases. And
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in turn such view definitions may be exploited by natural language interfaces
employing, normal, non-exotic relational query answering mechanisms.

The need to map vague spatial descriptions to precise logical formulas over
spatial databases is a problem that is quite relevant as we develop natural lan-
guage interfaces for communicating with anything, anywhere. This article has
presented a scalable approach to support vague spatial relations for querying
spatial databases using natural language phrases such as ‘near’ and ‘far’. In
doing so, it has brought to bear work in supervaluation based approaches to
vagueness and treatments of context. Experiments have been encouraging and
efforts are underway to turn our prototype into a system.
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1The research leading to these results has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 270019 (SpaceBook project
www.spacebook-project.eu) as well as a grant through the Kempe foundation (www.kempe.com).

73



ABSTRACT

We present an Android-based platform for incrementally presenting spoken route directions
to guide pedestrians to destinations. Our approach makes heavy use of stored procedures
and triggers in an underlying PostGIS spatial database. In fact most of the ’intelligence’
of our prototype resides in database stored procedures and tables. As such it represents
an example of a challenging real world case study for the use of persistent stored modules
(PSM) in a complex mobility application. It also provides a platform to study performance
tradeoffs for complex event processing over spatial data streams.
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1 Introduction

The automated generation of route directions has been the subject of many recent academic
studies [2, 11, 9, 8, 13, 3, 12, 7] and commercial projects (e.g. products by Garmin, TomTom,
Google, Apple, etc.). While most focus has been dedicated to automobile drivers, there has
also been an effort to provide route directions to pedestrians (e.g. Google and SIRI). The
pedestrian case is particularly challenging because the location of the pedestrian is not just
restricted to the road network and the pedestrian is able to quickly face different directions.
In addition the scale of the pedestrian’s world is much finer, thus requiring more detailed data
representation. Finally the task is complicated by the fact that the pedestrian, for safety,
should endeavor to keep their eyes and hands free – there is no room for a fixed dashboard
screen to assist in presenting route directions. We take this last constraint at full force –
in our prototype there is no map display; the only mode of presentation is text-to-speech
instruction heard incrementally through the pedestrian’s earpiece.

We focus here on the problem of providing incremental spoken route directions to guide
a pedestrian from their current position to a given destination. Such a problem yields
two related metrics of evaluation: (1) what is the system’s effectiveness in actually guiding
pedestrians from a given initial position to a given destination position? ; (2) how many
simultaneous users can a system scale to?. These two metrics most certainly trade off against
one another. While our initial focus has mostly been on improving metric 1 measures, metric
2 is increasingly a consideration.

1.1 Organization of this report

This report describes a test-bed prototype that we implemented to explore the pure nav-
igation case. Section 2 of this report introduces the terminology and concepts we use in
our work. The terminology is based largely on that of Richer and Klippel [11], although we
limit ourselves to only a subset of their terms and adapt the terminology slightly. Section
3 presents the overall architecture of the prototype. Because of the centrality of the Spa-
tialDB in our prototype, section 4 describes the table definitions and dynamic state within
the spatial database. These tables correspond to the concepts presented in section 2. Sec-
tion 4 shows how we implement a ’policy’ that maps from complex spatial/temporal state
to commands to generate route directions. Section 5 informally reports on how our system
initially performs for several tests carried out in Ume̊a in October 2012, Sweden. Section 6
concludes.

2 Terminology

The path network upon which a pedestrian may be directed to travel is made up of branching
points and path segments, as illustrated in figure 1. For example the points labeled ’5401’
and ’5522’ are branching points and the line from point 5401 to point 5522 represents a
path segment. Path segments are directed and are often not straight line edges, but rather
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Figure 1: Guiding a pedestrian on a route on Ume̊a University’s campus

are defined as a sequence of directed elementary segments that, chained together, represent
curves or the meandering of a path segment. The path segment from branching point 5401
to branching point 5522 consists of 3 elementary segments. A path is a connected sequence of
path segments that would take a pedestrian from some origin branching point to a destination
branching point. In figure 1 we see a marked path with an origin and a destination that is
off the map. A route demarcates a path, consisting of route segments and decision points
which in turn demarcate associated path segments and branching points of the path.

Landmarks are entities in space that have associated point, linear or polygonal geome-
tries. Landmarks also have associated types (restaurant, bar, museum, street, park, uni-
versity building, etc.) and names (e.g. ’MIT-Huset’, ’Fysikhuset’, etc.). There is a general
linking relation that allows arbitrarily named properties and values to be associated with
landmarks (color, architectural style, etc.).

3 System Overview

In figure 2 we see the main components of our architecture. The key components are the
PhoneApp, the SpatialDB, the RoutePlanner and finally the Controller.

The PhoneApp runs on the user’s Android phone and logs GPS measurements as longi-
tude, latitude, antenna error triples every second to the SpatialDB. The PhoneApp likewise
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Figure 2: The basic architecture

accepts text messages from the Controller that are voiced using Google’s text-to-speech
engine running on Android.

The SpatialDB is the single repository for all state in the system. This means that the
SpatialDB represents the path network, the landmarks, the GPS measures, routes and a log
of previously issued utterances. In addition there is a state table that is dynamically derived
via stored procedures. These state tuples capture the complex spatial and communication
state of the pedestrian through time. Finally the SpatialDB contains a set of communication
rules that select the utterance, if any, that should be voiced to the pedestrian. The SpatialDB
is implemented within PostGIS/PostgreSQL, using both PostgreSQL triggers and rules with
stored procedures implemented in PL/pgSQL.

The RoutePlanner is a simple component that plans a route from the branching point
closest to the pedestrian’s current position to a destination branching point within the path
network. The method used is simply A* search using a straight line distance heuristic run
over the path network with cost based on path segment length[10]. To set up the search, the
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RoutePlanner issues an SQL query to the SpatialDB to bring in the relevant part of the
path network. After performing the search, the RoutePlanner inserts the result into the
Route table in the SpatialDB.

The Controller runs a very simple (less than 20 lines of Java code) control loop that
polls the database for what utterance message to send next to the PhoneApp and when it
is necessary to invoke the RoutePlanner for a new goal.

There are two infrastructure components that do not appear in figure 2, but should be
mentioned for the sake of completeness: the PhoneServer and the IceBroker. The
PhoneServer represents the PhoneApp in the back end and shunts GPS position reports
to the SpatialDB as well as shunting text message issued by the Controller onward to
the PhoneApp for voicing. The IceBroker allows components to publish and subscribe
to data streams (e.g. GPS data) or to issue remote procedure calls on other components
(e.g. executing SQL queries, etc). It represents a slightly higher level of abstraction and
functionality than a pure socket-based client server protocol would support [4].

4 The SpatialDB

Because of the centrality that the SpatialDB plays in our prototype, we describe in some
detail the tables in the SpatialDB, how they are initially populated or dynamically generated.

4.1 The base tables

Figure 3 shows the base tables of the database from figure 2 grouped into tables representing
the path network, landmarks, routes and the pedestrian name and time series of reported
GPS positions1. These tables mirror exactly the terminology of section 2. Attributes named
point or line and geom are PostGIS geometry types.

The base tables are populated by external processes that add data either at database
build time or at run-time. Specifically the landmark and path network tables of figure 3 are
populated at database build time by converting OpenStreetMaps XML data[1]2 to tuples
in our schema. The pedestrian tables are populated by a very simple pedestrian registration
process as well as the run-time GPS logging at one update per second from PhoneApp.
The route tables are populated at run-time by the RoutePlanner once a call for a new
goal is made by the Controller.

4.2 Pedestrian state table

Pedestrian ‘state’ is represented as a tuple in a single table with many attributes
(PedestrianState). The attributes have varied types (boolean, integer, real, PostGIS ge-
ometry types, time stamps, etc.) and are described below:

1Note that the table and attribute names used here are slightly different in the actual implementation. We
document these differences in the README file accompanying our (future) open-source software distribution.

2Obtained at http://openstreetmaps.org.
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Figure 3: The base tables

uid: This is the pedestrian’s id.

session: This is the session of the pedestrian.

phone time: This is the time-stamp recorded on the phone by PhoneApp.

insert time: This is the actual time at which the state tuple is inserted into the database.
The difference between phone time and insert time represents the position report
latency plus the clock difference between the PhoneApp and the SpatialDB.

position: This is the smoothed and filtered position that is the best guess as to the
actual position of the pedestrian. Currently this smoothing and filtering process is
very simplistic.

GPS error: This is the GPS error measure reported by the PhoneApp.

speed: This is a smoothed value that estimates the pedestrian’s speed in meters per second.

heading: This is a smoothed angle value (in degrees, with North at 0◦, East at 90◦, etc)
that represents the direction in which the user is facing under the assumption that
pedestrians always face in the direction that they are traveling. Quite often this field
has the NULL value to represent that we do not have a reliable heading value for example
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at the start of a session, when the user is at a stand still, when we are not getting
consistent GPS measures, etc.

on path: This is a boolean value that is true if the pedestrian’s position is within a distance
threshold (currently set at 10 meters) to an elementary segment of a path segment of
the current route.

at branching point: This is a boolean value that is true if the pedestrian’s position is
within a distance threshold (currently set at 5 meters) to a branching point on the
path demarcated by the current route.

in path segment: This is a boolean value that is true if on path is true and
at branching point is false. In other words in path segment is true if the pedes-
trian is positioned on a path segment between two branching points.

at goal: This is true if the pedestrian is within a distance threshold (currently set at 10
meters) of the currently pursued goal.

standing still: This is true if the last three seconds show an average speed of less than
some constant, currently .5 meters per second.

receiving TTS: This is true when an utterance is being voiced on the PhoneApp.

heading correction: This is a computed angle that gives the clockwise rotation necessary
to align the pedestrians heading with the heading of the elementary segment that they
are currently on. In the case that the pedestrian is not on an elementary segment of a
path segment, this angle is the ’overland’ best correction to their current heading.

current goal: This is the id of the current goal.

current tour: This is the id of the current tour.

euclidean distance to goal: This is the current distance ’as the crow flies’, from the
pedestrians position to the goal.

path distance to goal: This is the current summed distance of all elementary path seg-
ments between the pedestrian and the goal (plus any additional distance required to
get on a path segment in the case that the user is not already there).

heading toward goal: This is the angle heading that the goal is in from the user as the
crow flies.

A PostgreSQL trigger on inserts into the GPSMeasure table executes a stored procedure
that builds and inserts a state tuple into PedestrianState. Although this requires a fair
bit of calculation, given that states only need to be calculated once per second, currently the
representation is being calculated well under budget in single user trials. Since inserts into
the GPSMeasure table are once per second, so too are inserts into into the PedestrianState
table. Thus we record a pedestrian state for every second of their session, when testing the
system with a single pedestrian.
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4.3 Communication rules

As we monitor pedestrian state, we need to decide when and which utterances to voice
to the pedestrian to guide them to their goal. In this initial prototype we model this as
a simple reactive system implemented in a set of event-condition-action (ECA) rules [6]
on the PedestrianState table. We term these communication rules where the events are
inserts into PedestrianState table, conditions are queries on the inserted tuple possibly
joined with additional tables and actions are inserts into an Utterance table (see figure 5).
The Utterance table records exactly which utterances will be, or have been, voiced to the
pedestrian.

1 CREATE RULE TurnThroughDecisionPoint AS

2 ON insert TO PedestrianState

3 WHERE NEW.onPath AND NEW.atBranchingPoint

4 AND NOT NEW.receivingTTS

5 DO ALSO (

6 INSERT INTO Utterance(uid, session, time, utterance)

7 VALUES(

8 NEW.uid,

9 NEW.session,

10 NEW.time,

11 currentTurnUtterance(NEW.uid));

12 );

Figure 4: An example communication rule

An example communication rule appears in figure 4. Following the syntax of PostgreSQL,
rules are named (turnThroughDecisionPoint in line 1) with specification of events (e.g. line
2), conditions (e.g. lines 3-4) and actions (e.g. lines 6-11). The purpose of this rule is to
direct the pedestrian on to the next route segment as they arrive at a decision point.

Additional rules are:

continueRouteSegment: The action is to encourage the pedestrian to continue following
the route segment they are in. The conditions for this are that the pedestrian is
making good progress on a route segment. An analogous rule is defined over elementary
segments.

correctHeadingToLeft: The action is to tell the pedestrian to correct their course
to the left. The condition is that the pedestrian is veering off the current ele-
mentary segment to the right. Analogous rules are correctHeadingToRight and
correctHeadingTurnAround.

offPathHeadingCorrection Given to direct the pedestrian toward the most appropriate
path segment. The condition is that the pedestrian is not on any path segment of the
current route.
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distanceReport given to report how much further to the goal.

orientToGoal given to report that the pedestrian is facing the direction of their goal.

encourageMovement given to inform the pedestrian that they need to walk so that a heading
can be calculated.

When multiple communication rules simultaneously have true conditions, only one is
allowed to generate an utterance. This is guaranteed by implementing a separate Post-
greSQL rule on inserts into the Utterance table. Lexicographic order on rule names
determines an a precedence relation among communication rules.

4.4 Generation and realization of utterances

When a communication rule inserts an utterance into the Utterance table, it must be voiced
(i.e. realized) to the pedestrian. This is achieved by the Controller which polls the the
Utterance table, shunting new utterances to the PhoneApp. The Controller currently
does this once per second.

Figure 5: The utterance and pre-generated instructions tables

Currently utterances are pre-generated via an off-line natural language generation pack-
age that systematically computes route instructions (possibly including references to land-
marks) over all possible decision points and route segments. Authoring tools enable us to
override default generated utterances with human written content. For example utterances
16-20 in figure 1 were authored into the system.

No matter their source, pre-generated utterances are stored in
the tables DecisionPointInstruction, RouteSegmentInstruction and
ElementarySegmentInstruction shown in figure 5. Stored procedures (e.g.
currentTurnUtterance in figure 4) retrieve these utterances and insert them into
the Utterance table for immediate realization.

5 Initial Observations

We have implemented the prototype described in this report and conducted a series of pilot
tests. Most of our tests were dedicated to validating capabilities and confirming bug fixes.
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While we we have not yet run any formal experiments, as of October 2012 we have devel-
oped the system to a state that will soon be sufficiently robust and effective for navigation
experiments with random human subjects.

5.1 Run time performance and stability

The run time performance of the system is adequate. For a typical test under the conditions
depicted in figure 1, the average time to calculate the pedestrian states was well under the
1 second budget. The average lag time of GPS reports are approximately 60 ms.

The stability of the system has improved substantially from our first running prototype
(in June 2012) to the prototype at the end of our latest development phase (in October 2012).
These stability issues were addressed mostly by redesigning and recoding initial components.
In addition we have systematically tracked known problems and feature requests using the
redmine bug tracker. Our prototype must be very reliable before we commit substantial
resources to evaluation.

5.2 Effectiveness of navigation

To be blunt, our initial implementation, before any experiences were gathered and parameters
tweaked, would not have been able to reliably guide a user to a goal. For example problems
like the quantity and timing of utterances (too much or too little speech, utterances issued
too late or too early) and oscillations in the calculation of facing direction led to a frustrating
user experience. Thus much effort was directed toward fixing parameters in the underlying
system, coding alternative phrasings, adding further communication rules and state variables,
etc. In addition we determined that scheduling of utterances in synchronization with user
position is a critical capability that is not easily finessed in our purely reactive approach.
This orients our future efforts toward the challenging problem of predicting user position
and scheduling utterances accordingly.

Testing with the VirtualPedestrian

While figure 1 shows the display of our VirtualPedestrian tool in tracker mode, figure
6 shows our VirtualPedestrian tool in a ’virtual mode’. In this mode the user controls
the heading and speed of the pedestrian on a map. The map portion of the tracker shows
the plot of the GPS positions along with their inferred position. The portion to the right
gives the log of utterances that the system generates. The VirtualPedestrian in ’virtual’
mode engages in exactly the same protocol that the PhoneApp engages in with the system.
Moreover the tool can simulate GPS error and the route can be hidden from the human
operator and text can be voiced as text-to-speech. In this mode we can run tests and
perhaps even evaluation without having to go out in the streets.
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Figure 6: A human subject using VirtualPedestrian to follow a virtual route.

Actual field tests

No matter how many virtual pedestrian tests we run, what counts is how the system actually
performs with real users in the field who do not know the system, but can only follow the
instructions that the system voices. Our plan here is to start field testing by generating
random tours unknown to a single human tester. Since the field tester will be unaware of
the destination that they are currently being guided to, the system will need to be effective
in guiding the tester through route following instructions. Even if the tester is one of the
authors of this report, this will give us insight into the effectiveness of various communication
strategies. No doubt other unforeseen issues will also come up. Only after performing this
cheaper form of auto-evaluation (or testing) shall we consider a larger evaluation with random
human subjects.

6 Conclusions

This report has provided a snap-shot description (as of October 2012) of our work on building
a pedestrian navigation system based on active database technology. Although we have
only performed cursory testing so far, we believe that the system holds out promise as a
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scalable platform to effectively guide pedestrians to goals in the city. The ability to author
content directly into the system gives a practical approach to override machine generated
descriptions. Moreover this authoring approach may underlie a future method by which
textual descriptions (or perhaps even audio content) may be crowd sourced.

The work here also brought to the surface some interesting query processing issues.
Because of the noisy nature of position reports, we have found statistical time-series queries
of particular use. For example time series queries such as “Is the standard deviation of
heading less than 10 degrees over the last 10 seconds?” are the basis of determining facts like
whether we have a stable heading, which in turn is a condition for rules like orientToGoal

of section 4.3. One can imagine even more complex time-series queries that could determine,
for example, if the pedestrian is likely to be waiting for a traffic light (“Has the user walked
straight up to a road and waited longer than 3 seconds in stand still?”), is disoriented (“Has
the user returned to this spot after walking in a ’circle’ lasting 3-4 minutes?”), is making
progress (“Over the last minute has the user moved at least 30 meters nearer to the goal?”),
etc.

Thus far we have not yet been forced off a traditional relational approach in favor of a
stream-based approach. Since our focus has been on boosting scores on metric 1 (see section
1), we have in fact been limited to running 30 minute tests with single users – in essence
isolating our attention to windows of no more than 2000 tuples in the PedestrianState

table. As we transition to larger scale studies and in particular explore methods to crowd
source audio route instructions, we anticipate transitioning to a stream based approach [5].
With our attention firmly focused on our two evaluation metrics, it will be interesting to see
how this project progresses.
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Abstract. This paper presents an Android system to support eyes-free,
hands-free navigation through a city. The system operates in two distinct
modes: manual and automatic. In manual, a human operator sends text
messages which are realized via TTS into the subject’s earpiece. The
operator sees the subject’s GPS position on a map, hears the subject’s
speech, and sees a 1 fps movie taken from the subject’s phone, worn as
a necklace. In automatic mode, a programmed controller attempts to
achieve the same guidance task as the human operator.

We have fully built our manual system and have verified that it can
be used to successfully guide pedestrians through a city. All activities are
logged in the system into a single, large database state. We are building
a series of automatic controllers which require us to confront a set of
research challenges, some of which we briefly discuss in this paper. We
plan to demonstrate our work live at NLDB.

1 Introduction

The automated generation of route directions has been the subject of many
recent academic studies (See for example the references in [1], or the very re-
cent works [2,3]) and commercial projects (e.g. products by Garmin, TomTom,
Google, Apple, etc.). The pedestrian case (as opposed to the automobile case)
is particularly challenging because the location of the pedestrian is not just re-
stricted to the road network and the pedestrian is able to quickly face different
directions. In addition, the scale of the pedestrian’s world is much finer, thus
requiring more detailed data. Finally the task is complicated by the fact that
the pedestrian, for safety, should endeavor to keep their eyes and hands free –
there is no room for a fixed dashboard screen to assist in presenting route di-
rections. We take this last constraint at full force – in our prototype there is no
map display; the only mode of presentation is text-to-speech instruction heard
incrementally through the pedestrian’s earpiece.

We present a system to support eyes-free, hands-free navigation through a city1.
Our system operates in two distinct modes: manual and automatic. In manual
1 The research leading to these results has received funding from the European Commu-

nity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no.
270019 (SpaceBook project www.spacebook-project.eu) as well as a grant through
the Kempe foundation (www.kempe.com).

E. Métais et al. (Eds.): NLDB 2013, LNCS 7934, pp. 396–399, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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mode, an operator guides a subject via text-to-speech commands to destinations
in the city. The operator, working at a stationary desktop, receives a stream of
GPS, speech and camera image data from the subject which is displayed in real
time to the operator (see figure 1). In turn the operator types quick text mes-
sages to guide the subject to their destination. The subject hears the operator’s
instructions via the text-to-speech engine on their Android. In automatic mode
the human operator is missing, replaced by a programmed controller.

Fig. 1. Operator’s interface in manual mode guiding a visitor to ICA Berghem, Umeå

The technical specification and design of our system, with an initial reactive
controller, is described in a technical report [1]. That report gives a snap-shot
of our system as of October 2012. In the ensuing months we have worked to
optimize, re-factor and stabilize the system in preparation for its open source
release – working name janus (Interested readers are encouraged to contact
us if they wish to receive a beta-release). We have also further developed the
infrastructure to integrate FreeSWITCH for speech and some extra mechanism
to handle image streams. Finally we have added a facility that logs phone pic-
tures to PostgreSQL BLOBs, the TTS messages to PostgreSQL text fields, and
the audio-streams to files on the file system. Aside for server-side PL/pgSQL
functions, the system is written exclusively in Java and it uses ZeroC ICE for
internal communication. Detailed install instructions exists for Debian “wheezy”.

2 Field Tests

We have carried out field tests since late Summer 2012. The very first tests
were over an area that covered the Umeå University campus extending North
to Mariahem (An area of roughly 4 square kilometers, 1788 branching points,
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3027 path segments, 1827 buildings). For a period of several weeks, the first au-
thor tested the system 3-4 times per week while walking or riding his bicycle to
work and back. The system was also tested numerous times walking around the
Umeå University campus. A small patch of the campus immediately adjacent
to the MIT-Huset was authored with explicit phrases, overriding the automat-
ically generated phrases of a primitive NLG component (see the example in
[1]). These initial tests were dedicated to validating capabilities and confirming
bug fixes and getting a feel for what is and is not important in this domain.
For example problems like the quantity and timing of utterances (too much or
too little speech, utterances issued too late or too early) and oscillations in the
calculation of facing direction led to a frustrating user experience. Much effort
was directed toward fixing parameters in the underlying system, adding further
communication rules and state variables, etc.

In addition to these tests, in November 2012 we conducted an initial test of our
manual interface in Edinburgh (our database covered an area of roughly 5 square
kilometers, 4754 branching points, 9082 path segments, 3020 buildings) – walk-
ing the exact path used in the Edinburgh evaluations of the initial SpaceBook
prototype developed by SpaceBook partners Heriot-Watt and Edinburgh Uni-
versity [2]. With the PhoneApp running in Edinburgh and all back-end compo-
nents running in Umeå, the latencies introduced by the distance did not render
the system inoperable. Note that we did not test the picture capability at that
time, as it had not yet been implemented.

Due to the long Winter, we have conducted only a few outdoor tests with
the system from November 2012 to April 2013. What experiments we have run,
have been in an area surrounding KTH in Stockholm (An area slightly over 2
square kilometers, 1689 branching points, 3097 path segments, 542 buildings),
the center of Åkersberga, and continued tests on the Umeå University campus.
With the warming of the weather we look forward to a series of field tests and
evaluations over the Spring and Summer of 2013.

3 System Performance

Our optimization efforts have been mostly directed at minimizing latencies and
improving the performance of map rendering in our virtual pedestrian/tracking
tool. There are three latencies to consider from the PhoneApp to the controller
(GPS report, speech packet, image) and one latency to consider from the con-
troller to the PhoneApp (text message transmission). We are still working on
reliable methods to measure these latencies and, more importantly, their vari-
ability. In local installations (e.g. back-end components and PhoneApp running
in Umeå) the system latencies are either sub-second or up to 1-2 seconds – a
perfectly adequate level of performance. Running remotely (e.g. back-end com-
ponents running in Umeå and PhoneApp in Edinburgh) appears to simply add
a fixed constant to all four latencies.

All the map data is based on XML exports of OpenStreetMap data con-
verted to SQL using the tool osm2sb (see [1]). We have limited our attention
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to what may be downloaded as XML exports via OpenStreetMap’s web-site.
This has covered large enough portions of the city for our purposes. That said,
we strongly believe that inefficient access to larger maps is not a significant risk.

4 Some Future Challenges

Evaluations: We have a very natural metric of evaluation: what is a controller’s
effectiveness in actually guiding pedestrians from a given initial position to a
given destination position? To minimize expense, we will first employ what we
term auto evaluation. In auto evaluation one generates random tours, unknown
to the subject, over a large number of possible destinations. Because destinations
are hidden, even if one of the authors serves as a subject, we will gain insight into
the relative effectiveness of various controller strategies. Only after performing
this cheaper form of evaluation shall we carry out a larger classical evaluations
with testable hypotheses, large cohorts of random subjects, control groups, etc.

Scheduling of Utterances in Synchronization with User Position: Early
in our testing we found that scheduling of utterances in synchronization with user
position is a critical capability that is not easily finessed in a reactive controller.
Thus we have started work on the challenging problem of predicting user position
and scheduling utterances accordingly. This is briefly discussed in [4] and will be
presented in greater detail in a future conference paper.

Reuse of Operator Utterances in Automatic Controllers: Our current
controllers fetch pre-compiled utterances populated via primitive NLG routines
run off-line. While we will explore techniques to integrate run-time NLG sys-
tems, we are interested in techniques to re-use utterances expressed by human
operators (in manual mode) within our automatic controllers. We seek large col-
lections of human authored utterance variations, where, given a large number of
user trials, we might learn a policy to select when and where to issue utterances
to maximize expected utility over our metric of evaluation.
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Umeå, Sweden
mollevik@cs.umu.se

ABSTRACT
This position paper makes a case for the need topredict
pedestrian position andschedule communication acts in mo-
bile navigation systems. In our work, carried out in the con-
text of a voice guided city navigation system, we have found
that improperly timed route instructions are a major cause of
failure in guiding pedestrians in unknown environments. Fur-
thermore, the need to communicate other information while
guiding users on routes, as well as complications caused by
network latencies, occurs often enough to require that we be
able synchronize communication acts with user position as
they follow a route. This has led us to focus our efforts on
scheduling utterances to maximize route following success.

In this position paper we motivate this problem and present
our initial approach and findings which should be of interest
to others engaged in similar efforts in both the Geography and
HCI communities.

Author Keywords
location-based systems; natural user interfaces; navigation
systems; pedestrian interfaces; open street maps

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Algorithms, Design, Human Factors, Reliability

INTRODUCTION
The automated generation of route directions has been the
subject of many recent academic studies (see, for example
[10, 9, 4, 8, 11, 5, 2, 6]) and commercial projects (e.g. prod-
ucts by Garmin, TomTom, Google, Apple, etc.). While most
focus has been dedicated to automobile drivers, there has
also been an effort to provide route directions to pedestrians
(e.g. Google and SIRI). The pedestrian case is particularly
challenging because the location of the pedestrian is not just
restricted to the road network and the pedestrian is able to
quickly face different directions. In addition the scale ofthe
pedestrian’s world is much finer, thus requiring more detailed
data representation. Finally the task is complicated by the
fact that the pedestrian, for safety, should endeavor to keep

Copyright is held by the author/owner(s).
GeoHCI Workshop atCHI 2013, April 2728, 2013, Paris, France.

Figure 1. Guiding a pedestrian on a route near GeoHCI’s venue.

their eyes and hands free – there is no room for a fixed dash-
board screen to assist in presenting route directions. We take
this last constraint at full force – following [1], in our proto-
type there is no map display; the only mode of presentation
is text-to-speech instructions heard incrementally through the
pedestrian’s earpiece.

Thus we focus on the problem of providing incremental spo-
ken route directions to guide a pedestrian from their current
position to a given destination. Such a problem yields a direct
metric of evaluation:what is the system’s effectiveness, mea-
sure in time to destination or minimized deviation from route,
in guiding pedestrians from a given initial position to a given
destination position?; The narrow position that we argue in
this paper is that measures on this metric will be boosted con-
siderably for systems that explicitly predict user positions and
use scheduling to synchronize utterances with user position.
We shall ultimately test this position by systematically com-
paring ascheduling approach with a reactive approach. The
broader position argued for in this paper is that general user
position prediction and scheduling of communication actions
can be supported in modular components that can, without
difficulty, be integrated into a variety of location-based navi-
gation applications.

CONCEPTS
Consider Figure1. Here we see a map, based on an export
of OPENSTREETMAPS data[3], of a portion of Paris near to
CHI’s conference venue. We also observe a path that demar-
cates a route that the user is following (we shall follow the
terminology of [10]). On the right-hand-side of Figure1 we
see a record of utterances that have been issued to the pedes-
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trian to guide them along their path. Since our goal is to max-
imize the probability that the user follows the path, there is a
mix of simultaneousstrategies that are employed with little
rest between utterances.

While the main strategy is to describe the turning actions
(turn sharp right now!, you will be turning right in about 20
seconds), another strategy is to give positive feedback to en-
courage the user that they are pursuing the right path (e.g.You
are going the right way, continue walking.). Another strategy
is designed to inform the user that they are walking in the
direction of their goal (e.g.You are facing directly in the di-
rection of your goal. It is approximately 400 meters away).
Yet another strategy provides descriptions of what the user
should be seeing along the way (e.g.you should see a large
white building about 200 meters in the distance.).

THE SCHEDULED APPROACH
Let us consider how one could support these simultaneous
strategies and contrast two primary approaches: areactive
approach versus ascheduled approach. In the reactive ap-
proach, the system waits until the user arrives at certain points
or, more generally, their trajectories meet certain conditions.
At such points events are triggered which result in utterances
being generated and voiced on the device. If this is imple-
mented on the server side, then there will be some latency
before the actual voicing of the utterance. Also if a particu-
larly long utterance is being voiced, or if the user is moving
more quickly than anticipated (e.g. on a bicycle), then the
system may in fact miss presenting turn instructions in time.
We have implemented a reactive approach earlier [7] and it
often had such problems.

We contrast a reactive approach with a more sophisticated,
scheduled approach. In such an approach, a schedule of fu-
ture utterances is maintained. The most important utterances
are associated with turning actions at decision points. Still,
given that often the user will be traversing a path segment,
other strategies also have room for their associated utterances
to be scheduled. Utterances have start times, durations and
pragmatic effects (e.g. enabling the user to correctly turnat
a given branching point). The start times are projections into
the future for when a given utterance will be issued. Once
this time becomes equal to the current time, plus predicted
latency, the call to voice the utterance is invoked. Obviously
scheduled utterances may not overlap in time.

An interesting aspect of the scheduled approach is that within
it one must represent a model of the user from which to gener-
ate predictions. This includes predicting the pace that theuser
will follow the route as well as the effect that utterances will
have on their path. Such models can be more or less sophis-
ticated. A simple model, that we terminertial, assumes that
the user follows instructions perfectly and that their speed is
constant (determined by sampling). That is the user contin-
ues in their given direction at their given pace, and responds
perfectly to turn commands. Strictly speaking, such a model
does not compel anything other than the most basic turning
utterances. A slightly more complex model, where we as-
sume that the user has a probability of making wrong turns

(or failing to make turns), will explain the addition of ex-
tra utterances so long as these utterance’s pragmatic effect is
modeled as decreasing the probability that the user makes a
wrong decision. There are many interesting user models to
be developed around this problem, and much to be evaluated
empirically with real pedestrians. One particularly interesting
avenue of work will involve learning probabilistic models of
the user from large samples of observed user data.

Other interesting issues are algorithmic and systems oriented.
For example, in the most general case, we will wish to calcu-
late a schedule that maximizes expected utility over a prob-
abilistic user model. Note that the given user model may be
considered orthogonal to the scheduling algorithmic, so long
as it (the user model) is probabilistic. The computational
complexity of the scheduling algorithm must be reduced to
within bounds that allow real-time deliberation on modern
hardware. In addition we will consider what parts of the cal-
culation should occur on the mobile client and which on the
server. Finally there are a whole host of issues around decid-
ing when we should call for rescheduling of utterances.

INITIAL TECHNIQUES AND DEMONSTRATION
We have developed an Android-based platform for incremen-
tally presenting spoken route directions to guide pedestrians
to destinations. Our approach [7] makes heavy use of stored
procedures and triggers in an underlying POSTGIS spatial
database. In fact most of the ’intelligence’ of our prototype
resides in database stored procedures and tables. We have
a base line reactive system as well as an initial scheduling
approach. The initial scheduling approach uses an inertial
user model for predictions. We are actively developing newer
more sophisticated user models and we are also improving
our scheduling and rescheduling algorithms.

We will be able to demonstrate our system live to interested
GeoHCI participants in Paris. That we will guide interested
persons on a tour around the region of the conference venue.
In addition we will present a video demonstrating how we
built the spatial database for Paris including the definition of
tours and the authoring of various utterances.

CONCLUSIONS
We have presented here our ideas on the necessity to schedule
utterances for users of navigation systems. Embedded within
this requirement is developing user models that can be the
basis of prediction. We suspect that this argument will also
apply to more general multimodal interfaces as well. Finally
we anticipate that the scheduling part of the algorithm will
cleanly separate from the predictive user model part, and that
alternative configurations of these components will suit dif-
ferent architectures, platforms and applications.
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