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Abstract

Learning techniques are drawing extensive attention in the robotics community.
Some reasons behind moving from traditional preprogrammed robots to learning
robots are to save time and energy, and allow non-technical users to easily work
with robots. Learning from Demonstration (LfD) and Imitation Learning (IL), in
which the robot learns by observing a human or robot tutor, are among the most
popular learning techniques.

Flawlessly teaching robots new skills by LfD requires good understanding of all
challenges in the field. Studies of imitation learning in humans and animals show
that several cognitive abilities are engaged to correctly learn new skills. The most
remarkable ones are the ability to direct attention to important aspects of demon-
strations, and adapting observed actions to the agents own body. Moreover, a clear
understanding of the demonstrator’s intentions is essential for correctly and com-
pletely replicating the behavior with the same effects on the world. Once learning
is accomplished, various stimuli may trigger the cognitive system to execute new
skills that have become part of the repertoire.

Considering identified main challenges, the current thesis attempts to model im-
itation learning in robots, mainly focusing on understanding the tutor’s intentions
and recognizing what elements of the demonstration need the robot’s attention.
Thereby, an architecture containing required cognitive functions for learning and
reproducing high-level aspects of demonstrations is proposed. Several learning
methods for directing the robot’s attention and identifying relevant information
are introduced. The architecture integrates motor actions with concepts, objects
and environmental states to ensure correct reproduction of skills. This is further
applied in learning object affordances, behavior arbitration and goal emulation.

The architecture and learning methods are applied and evaluated in several real
world scenarios that require clear understanding of goals and what to look for in
the demonstrations. Finally, the developed learning methods are compared, and
conditions where each of them has better applicability is specified.
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Sammanfattning

Tekniker för inlärning uppmärksammas alltmer inom robotikforskningen. Några
av fördelarna med robotar som kan lära sig saker, jämfört med traditionella för-
programmerade robotar, är att man sparar tid och kraft, och att icke-tekniska
användare enkelt kan arbeta med robotar. Två av de mest populära är Inlärning
genom demonstration (Learning from Demonstration – förkortat LfD) och Inlär-
ning genom imitation (Imitation Learning – förkortat IL). Med dessa tekniker lär
sig roboten nya färdigheter genom att observera en människa eller robot.

För att utveckla robotar som använder LFD krävs god förståelse av alla utma-
ningar inom området. Studier av imitationsinlärning hos människor och djur visar
att flera kognitiva förmågor är inblandade för korrekt inlärning av nya färdigheter.
De mest anmärkningsvärda är förmågan att rikta uppmärksamheten mot de viktiga
aspekterna av en demonstration, och att översätta observerade rörelser till robotens
speciella fysiska uppbyggnad. Dessutom är en tydlig förståelse av lärarens avsikter
viktig för att korrekt och fullständigt kunna replikera ett demonstrerat beteende.
När inlärningen är fullbordad, kan olika stimuli utlösa de inlärda färdigheterna.

Med dessa utmaningar i beaktande försöker denna avhandling modellera ro-
botinlärning genom imitation, med fokus främst på att förstå lärarens intentioner
och vilka delar av demonstrationen som är viktiga. En arkitektur som innehåller
nödvändiga kognitiva funktioner för inlärning och återgivning av högnivåaspekter
av demonstrationer presenteras. Flera inlärningsmetoder för att kontrollera robo-
tens uppmärksamhet och identifiera relevant information presenteras. Arkitekturen
integrerar motorkommandon med koncept, objekt och tillståndsvariabler för om-
givningen. Detta appliceras även på så kallade affordances, behavior arbitration
and goal emulation.

Den utvecklade arkitekturen och inlärningsmetoderna används och utvärderas i
flera scenarier som kräver att roboten förstår lärarens avsikt, och vad man ska leta
efter i demonstrationerna. Slutligen jämförs de utvecklade metoder för inlärning,
och de förhållanden under vilka var och en av dem är tillämpliga specificeras.
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Preface

This thesis presents techniques and cognitive architectures for Learning from Demon-
stration (LfD) and Imitation Learning (IL) challenges. High-level learning and re-
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Paper II: Benjamin Fonooni, Thomas Hellström and Lars-Erik Janlert. Towards
Goal Based Architecture Design for Learning High-Level Representation of
Behaviors from Demonstration, IEEE International Multi-Disciplinary Con-
ference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA), San Diego, CA, USA, pp. 67-74, 2013.

Paper III: Benjamin Fonooni, Aleksandar Jevtić, Thomas Hellström and Lars-
Erik Janlert. Applying Ant Colony Optimization algorithms for High-Level
Behavior Learning and Reproduction from Demonstrations, to be submitted,
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In addition to above papers, the following paper has been produced during the
PhD studies:

• Benjamin Fonooni. Sequential Learning From Demonstration Based On Se-
mantic Networks, Umeå’s 15th Student Conference in Computing Science
(USCCS), Umeå, Sweden, 2012.

This work was partly financed by the EU funded Initial Training Network (ITN)
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Chapter 1

Introduction

Robots have already found their way into our lives, and their prospect influence
on our daily tasks is irrefutable. Personal robots that can help out with home or
office chores are getting popular, and a trend to move away from preprogrammed
robots operating in well-defined controlled environment has started. Programming
robots for different tasks most often requires considerable cost and energy, and
has to be done by experts. Therefore, finding proper solutions based on human’s
natural ways of learning for efficiently teaching robots new skills can reduce the
complexity for end-users as well as saving resources. Humans usually acquire their
skills through direct tutelage, observational conditioning, goal emulation, imitation
and other social interactions (Scassellati, 1999b). This has opened a new area in
human-robot interaction such that even non-roboticist users may teach robots to
perform a task by simply showing how to accomplish it with a demonstration. The
task can vary from a very simple action of “picking up a cup” to a complex one
like “assisting human agent to uncover victim from rubble in debris”. The general
technique is called Learning from Demonstration (LfD) or Imitation Learning (IL),
and has been studied widely over the past decade.

LfD provides a powerful way to speed up learning new skills, as well as blend-
ing robotics with psychology and neuroscience to answer cognitive and biological
questions, brought to attention by for instance Schaal (Schaal, 1999) and Demiris
(Demiris & Hayes, 2002). Despite all its benefits, a number of challenges have to
be tackled from different abstraction levels. These challenges and an overview of
related works are discussed in chapter 2.

1.1 True imitation
In theory and practice, there are different levels of complexities in imitating behav-
iors that has been investigated in many studies (Meltzoff, 1988; Miklósi, 1999). A
few social learning mechanisms from biological systems have been introduced to ex-
trapolate each complexity. Sometimes these mechanisms are erroneously considered
imitation while they are categorized as pseudo-imitation. Such mechanisms are re-
sponse facilitation, stimulus enhancement, goal emulation and mimicking (Fukano
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Introduction

et al., 2006).
Response facilitation: A process which observer starts to exhibit a behavior

from his existing repertoire by observing others performing the same behavior.
Stimulus enhancement: A mechanism by which an observer starts to exhibit a

behavior from his existing repertoire, due to exposure to an object with affordances
that draw the observer’s attention.

Goal Emulation: A process of witnessing others interacting with an object to
achieve certain results without understanding how it is achieved, and then trying
to produce the same results with the same object by its own action repertoire.

Mimicking: A mechanism by which an observer starts to copy all actions per-
formed by others without understanding their intentions.

True imitation is gained by reproducing observed actions of others using the
same strategy to achieve the same goals. Thus, depending on what type of imitation
is concerned, different requirements are needed.

In the current thesis we are interested in understanding intentions of a demon-
strator interacting with an object and reproducing the same goals by motor-actions
that are hard-coded or learned during observation. Hence, stimulus enhancement
and goal emulation are mostly studied.

1.2 Low-level vs. high-level
Imitation learning in robots consists of different abstraction levels that each one
refers to one aspect of imitation. Mapping of sensory-motor information that pro-
duces an action to be performed by actuators is referred to low-level. In other
words, a low-level representation of a learned skill is a set of sensory-motor map-
pings (Billard et al., 2008). These mapping can produce the same trajectories as
observed during demonstrations or might be adapted to robot’s morphology but
still result in the same actions. A lot of research has addressed the problem of
low-level learning and reproduction of behaviors. Among them, (Dillmann, 2004;
Ekvall & Kragic, 2005; Calinon et al., 2007; Pastor et al., 2009; Billing & Hellström,
2010; Ijspeert et al., 2013) are especially worth mentioning.

Another aspect of imitation is related to the demonstrator’s intentions, goals
and objects of attention, which here are considered high-level representations of
skills, and sometimes referred to conceptualization or symbolic learning (Billard
et al., 2008). Various techniques for learning purpose of demonstration, understand-
ing tutor’s intentions and identifying what objects or elements in demonstration
are more important have been developed (Mahmoodian et al., 2013; Hajimirsadeghi
et al., 2012; Cakmak et al., 2009; Erlhagen et al., 2006; Chao et al., 2011; Jansen
& Belpaeme, 2006).

1.3 Objectives
This thesis heads for designing an architecture for learning high-level aspects of
demonstrations. Our architecture includes methods to learn tutor’s intentions as
well as employing techniques to sequentially learn and reproduce motor-skills in

2



1.4 Outline

order to achieve the same goals. The architecture contains four learning methods
coupled with an attentional mechanism to identify the most important elements
of the demonstration. These methods are also used to learn object affordances,
thereby helping the robot to select appropriate sensory-motor actions in accordance
with high-level perceptions. The architecture is then used for behavior arbitration
and robot shared control.

1.4 Outline
The remaining chapters are organized as follows: Chapter 2 presents an overview
of Imitation learning in robots, challenges and related works. Chapter 3 focuses
on cognitive architectures and frameworks proposed in different studies and how
they influence the current work. Chapter 4 is about learning methods and how
attention mechanism has been developed. Finally, some notes about future works
along with summary of contributions are discussed in chapter 5 and 6.
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Chapter 2

Learning from
Demonstration and
Imitation Learning

In order to overcome the challenges in LfD, “Big Five” central questions have
to be answered: Who to imitate? When to imitate? How to imitate? What to
imitate? How to evaluate a successful imitation? A thorough investigation of
these research questions may lead to construct robots that are able to benefit from
utmost potential of imitation learning (Dautenhahn & Nehaniv, 2002). Among
these questions “Who” and “When” to imitate are mostly left unexplored and the
majority of approaches are proposed to tackle “What” and “How” to imitate, which
basically refer to learning and encoding skills respectively. In the current thesis we
are addressing “What” and “When” while employing techniques from the “How”
question.

2.1 Who to imitate
Finding a proper solution for this question requires exhaustive studies in social
sciences, since it is strongly connected to the social interactions between an imitator
and a demonstrator. Choosing a demonstrator whose behavior can benefit the
imitator is essential. Identifying which demonstrator’s task is relevant and serves
the imitator in some way requires evaluating the performance of the behaviors
shown by the selected demonstrator (Alissandrakis et al., 2002).

2.2 When to imitate
This aspect of imitation learning is also tied to social sciences, and is about iden-
tifying an appropriate time period to imitate. The imitator has to identify the
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beginning and end of a shown behavior, as well as deciding if the observed behav-
ior fits in the current context (Alissandrakis et al., 2002).

2.3 What to imitate
Depending on what aspects of a behavior are of interest, different approaches should
be applied. In case of actions, the demonstrator’s movements are relevant, so
copying the exact trajectories is important. In other situations, the result and
the effects of actions are considered important. This means that, the imitator may
reproduce the observed behavior with a different set of actions, but the same goal is
achieved (Zentall, 2001). According to Byrne and Russon (Byrne et al., 1998) there
are two different modes of imitation that are distinct from each other: action level
imitation is about matching minor details and style of sequential acts (i.e. pushing
a lever) and program level imitation is about copying the structural organization of
a complex process (i.e. picking, folding and chewing herbaceous plants shown by
apes). The later one requires an ability in imitator to build hierarchical structures
in order to learn coordinated sequence of actions to fulfill a goal.

When the robot attempts to imitate, it is crucial to understand which percep-
tual aspects of the behavior is more relevant. Having the ability to detect saliency
and focus on the relevant elements of a demonstrated behavior requires a sophisti-
cated attentional mechanism (Breazeal & Scassellati, 2002b). Different attentional
models have been proposed and evaluated. Some models use fixed criteria to se-
lectively direct all computational resources to the elements of the behavior that
has the most relevant information (Mataric, 2002), such as a specific color, motion
speed or various depth cues (Breazeal & Scassellati, 1999).

In another model that has been used in imitation learning, simultaneous at-
tention to the same object or state in the environment is provided by concept of
shared attention (Hoffman et al., 2006; Scassellati, 1999a).

2.4 How to imitate
Once perception is completed and the robot has decided what to imitate, it has to
engage an action within its repertoire to exactly replicate the same trajectories or
achieve the same results. In case it does not know how to perform the observed
action, the robot has to learn it by mapping perceptions into a sequence of motor
actions related to its own body. Therefore, embodiment of the robot and its body
constraints determine how observed action can be imitated (Alissandrakis et al.,
2002). The mismatch between the robot’s and the demonstrator’s morphology
during the mapping process leads to the so called correspondence problem (Ne-
haniv & Dautenhahn, 2002). From a neuroscience perspective, the correspondence
problem is explained by mirror neurons (Brass & Heyes, 2005; Iacoboni, 2009),
which create shared context and understanding of affordances between imitator
and demonstrator.

Most robotics research is a priory that allows focusing on finding solutions for
“How to imitate” by constraining design space and thereby fixing what, when and

6



2.5 How to evaluate successful imitation

who to imitate (Dautenhahn & Nehaniv, 2002).

2.5 How to evaluate successful imitation
Evaluation of reproduction of a demonstrated behavior determines if the robot was
able to correctly answer the questions described above. Sometimes, imitation is
considered successful if the correct motor actions have been employed by the robot
(Scassellati, 1999b). Most often, evaluation is based on the specific experimental
setup and thus it is difficult to make comparisons of different results (Dautenhahn
& Nehaniv, 2002). The evaluation might be done by the demonstrator or by an
observer with vocal feedback, facial expressions or any other social interactions.

In case of goal oriented imitation, successful imitation is interpreted as achieving
the same results by executing correct actions from the observer’s repertoire.

2.6 Other challenges
Within the “Big Five” questions described above, lie additional challenges that a
learning and reproduction system has to provide solutions. These challenges are
generalization, learning object affordances and sequence learning that are consid-
ered as parts of big five and may or may not addressed separately, but resolving
them leads to designing more social and believable robots.

2.6.1 Generalization
An essential feature of any learning system is its ability to generalize. Generaliza-
tion is a process of observing a set of training examples, identifying the significantly
important features common to these examples and forming a concept definition
based on these common features (Mitchell et al., 1986). Once a robot has learned
to execute a task in a particular situation, should be able to generalize and re-
produce the task in different and unseen situations (Calinon & Billard, 2007). In
the real world with a dynamic environment, it is crucial to be able to adapt and
perform appropriate actions depending on the perceived situation. In contrast to
early works in imitation learning that attempted to simply reproduce behaviors
that are copies of what have been observed, recent works attempt to generalize
across a set of demonstrations.

Generalization can be considered at the sensory-motor level (sometimes referred
to as trajectory level), and at the level of sequences of pre-defined motion prim-
itives that accomplishes a task (Billard et al., 2008). In generalization at trajec-
tory level, robot actuator movements are generalized such that the system creates
generic representation of the motion for encoding different related movements. The
generalization at level of sequences of pre-defined motion primitives is about recog-
nizing task structure in terms of what actions are involved and create generic task
structure to execute other related tasks.

For a robot working close to humans in a dynamic environment with several
objects and concepts, the capability to generalize one concept to another is essen-
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tial. This high-level type of generalization is considered in this thesis. For instance,
the robot may learn to clean the table when an empty cup is placed on it. The
generalization ability helps the robot to perform the cleaning task also when an
empty mug is observed on the table. In this way, object affordances are generalized
such that even by perceiving objects of different type, the robot correctly performs
the correct task.

2.6.2 Sequence learning
Most complex tasks performed by humans comprise sequences of actions executed
in the proper order. Therefore, sequence learning plays an important role in hu-
man skill acquisition and high-level reasoning (Sun & Giles, 2001). According to
Clegg et al when humans learn sequences, the learned information consists of both
sequences of stimuli and corresponding sequences of responses (Clegg et al., 1998).
Thus, humans react to a stimuli based on the associated learned response. The
same principals are considered while developing sequence learning in robots. In
robotics, low-level sequence learning of sensory-motor states is done by utilizing
Hidden Markov Models (HMM) (Vakanski et al., 2012), Artificial Neural Networks
(ANN) (Billard & Hayes, 1999) and Fuzzy Logic (Billing et al., 2012). High-level
aspects, such as task goals, are learned by for instance conceptual spaces, which
are knowledge representation models for intentions behind demonstrations (Cubek
& Ertel, 2012). The Chain Model, a biologically inspired spiking neuron model
that aims at reproducing the functionalities of the human mirror neuron system, is
proposed by Chersi to encode the final goal of action sequences (Chersi, 2012). In
another study, based on reinforcement learning and implicit imitation, sequences of
demonstrator’s states (e.g. demonstrator’s location and limb positions) is used to
learn how to combine set of action hierarchies to achieve subgoals and eventually
reach the desired goal (Friesen & Rao, 2010). Lee and Demiris (Lee & Demiris,
2011) used stochastic context-free grammars (SCFGs) to represent high-level ac-
tions and model human behaviors. First they trained the system with a set of
multipurpose low-level actions with HMMs, and then they defined high-level task-
independent actions (goals) that comprised previously learned low-level actions as
vocabulary. A human-behavior model, with low-level actions associated to symbols,
was then created by utilizing SCFG.

In the current thesis, we propose an architecture for goal-based sequence learn-
ing and reproduction of high-level representations of behaviors. In our novel ap-
proach, semantic relations between observed concepts/objects and executed actions
are learned and generalized in order to achieve demonstrated goals (Fonooni et al.,
2013a). In Chapter 3, the proposed architecture and related works are discussed.

2.6.3 Learning object affordances
The quality of an object defines its potential for motor actions to be performed
on it and obtained upon execution of an action towards the object (Gibson, 1979).
Affordances are defined as relations between actions, objects and effects that are
used to predict the outcome of an action, plan to reach a goal or to recognize an
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2.6 Other challenges

object and an action. A noteworthy feature of affordances is its dependability on
the world and the robot’s sensory-motor capabilities. Moreover, it requires a set of
primary actions as prior information. In robot imitation learning, affordances have
been used for action recognition while interacting with the demonstrator (Monte-
sano et al., 2008). Lopes and colleagues (Lopes et al., 2007) propose a framework
for robot imitation based on an affordances model using Bayesian networks to iden-
tify the relation between actions, object features and the effects of those actions.
Dogar and colleagues (Dogar et al., 2007) developed a goal-directed affordance
based framework to allow the robot to observe effects of its primitive behavior on
the environment, and create associations between effects, primitive behaviors and
environmental situations. The learned associations helped the robot to perform
more complex behaviors in the reproduction period. In work by Thomaz and col-
leagues (Thomaz & Cakmak, 2009), Socially Guided Machine Learning (SGML)
was used to investigate the role of the teacher in physical interaction with the robot
and the environment in order to learn about objects and what actions or effects
they afford. Lee and colleagues (Lee et al., 2009) showed the efficiency of using
object affordances in measuring the relevancy of objects to a task and thus helping
the robot to engage appropriate low-level action.

In the current thesis we introduce techniques to learn object affordances and
employ them to arbitrate a behavior. These techniques are discussed in chapter 4.
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Chapter 3

Cognitive Architecture for
Robot Imitation Learning

Inside an intelligent system lies a cognitive architecture that defines its infrastruc-
ture. In many robotics applications, especially those regarding imitation learning,
structures are defined and guidelines for information flow are specified in this ar-
chitecture. Depending on objectives, hardware design, behavioral repertoire and
perceptual inputs, different architectures have been proposed (Breazeal & Scassel-
lati, 2002a; Chella et al., 2006; Gienger et al., 2010; Bandera et al., 2012; Demiris &
Khadhouri, 2006). Apart from basic principles of all cognitive architectures, there
are common key components in most architectures for robot imitation learning.
According to Langley and colleagues (Langley et al., 2009), principles are aspects
of an agent which are essential for all mechanisms to work in different application
domains: i) short and long-term memories ii) representation of elements residing
in these memories iii) functional processes operating on these structures.

Architectures for robot imitation learning contain common key components for
cognitive and motor capabilities of the robots. These components are perception,
knowledge management, learning and motor command generation. In the following
section the above mentioned architectures are discussed briefly.

3.1 Related works
In the study by Breazeal and colleagues (Breazeal & Scassellati, 2002a), several
research problems regarding robot imitation learning are outlined. Their generic
control architecture was developed for the Cog and Kismet robots. The architec-
ture discriminates low and high-level perceptions based on how much processing
requires for the information delivered by each sensor. Learning functionality is not
explicitly handled in one specific component but exist in each one of the compo-
nents. The Attention System is responsible for regulating attention preferences
according to motivational states while learning new motor skills. The Behavior
System is designed to infer goals and select appropriate behaviors based on percep-
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tions and motivational states. The result of the behavior selection is transferred to
the Motor System for execution on the robot. Figure 3.1 depicts the architecture
and involved components.

Figure 3.1: Architecture proposed by Breazeal and Scassellati (Breazeal & Scassellati, 2002a)
intended to be used on Cog and Kismet.

Chella and colleagues (Chella et al., 2006) proposed an architecture that cou-
pled visual perception with knowledge representation for the purpose of imitation
learning. Conceptual space theory (Gärdenfors, 2000) is used in their architecture
to learn movement primitives from demonstrations and then represent them in
generated complex tasks. The architecture functionality has been evaluated on a
robotic arm equipped with a camera. Figure 3.2 illustrates the architecture and its
components. The architecture consists of three main components. The Subconcep-
tual Area is responsible for perception of data from vision sensors, and processing
to extract features and controlling robotic system. The Conceptual Area is respon-
sible for organizing information provided by the Subconceptual Area into categories
by using conceptual spaces. Finally, high-level symbolic language has been used
to represent sensor data in the Linguistic Area. The architecture was designed to
work in both observation and imitation modes.
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Figure 3.2: Architecture proposed by Chella and colleagues (Chella et al., 2006).

Gienger and colleagues (Gienger et al., 2010) proposed a three-layered architec-
ture based on prior works in the field of imitation learning focusing on movement
control and optimization. The aim was to provide solutions for the generalization
problem and accomplishing a task in different situations. Figure 3.3 depicts mod-
ules that are included within the architecture. The Reactive layer is responsible for
handling perceptions in the system. Persistent Object Memory (POM) was used
as an interface between the system and the real world, and includes a model of
the world as well as of the robot. While the teacher demonstrates a behavior, the
Movement Primitives layer normalizes observed movements using Gaussian Mix-
ture Model (GMM) and represents them by mean value and variance. Finally, in
the Sequence layer, which acts as a procedural memory, sequences of movement
primitives are maintained. In the described experiments, predefined primitives for
different tasks such as grasping were used, and all learned movements were embed-
ded within predefined locations in the sequence.
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Figure 3.3: Architecture proposed by Gienger and colleagues (Gienger et al., 2010).

In another study by Demiris and Khadhouri (Demiris & Khadhouri, 2006),
a hierarchical architecture named HAMMER based on attentive multiple models
for action recognition and execution was introduced. As illustrated in Figure 3.4,
HAMMER utilizes several inverse and forward models that operate in parallel.
Once the robot observes execution of an action, all action states are delivered
to the system’s available inverse models. Thus, corresponding motor commands
representing the hypotheses of which action was demonstrated will be generated
and delivered to the related forward model so it can predict the teacher’s next
movement.
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Figure 3.4: The basic architecture proposed by Demiris and Khadhouri (Demiris & Khadhouri,
2006).

Since there might be several possible hypotheses, the attention system is de-
signed to direct the robot’s attention to the elements of the action to confirm one
of the hypotheses. Figure 3.5 depicts the complete design of the architecture in-
cluding forward and inverse models together with the attention system for saliency
detection. The architecture was tested and evaluated on an ActiveMedia Peoplebot
with camera as the only sensor.

Figure 3.5: The complete architecture proposed by Demiris and Khadhouri (Demiris &
Khadhouri, 2006).
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In addition to aforementioned studies, other works regarding general cognitive
architectures such as ACT-R (Anderson et al., 2004) and SOAR (Laird, 2008),
model for reading intentions (Jansen & Belpaeme, 2006) and goal-directed imitation
learning frameworks (Tan, 2012) have been reviewed. Furthermore, works by Kopp
and Greaser (Kopp & Graeser, 2006) and Buchsbaum and Blumberg (Buchsbaum
& Blumberg, 2005) also inspired the design of our novel architecture.

3.2 Proposed Architecture

The rationale behind developing a new architecture while several well-proven ones
already exist is a set of new requirements and a new approach to emulating goals
in the framework of imitation learning. In the design of our architecture we have
considered the hardware setup, robots capabilities and the domain in which they
are intended to be used.

Our approach to goal emulation and learning high-level representation of be-
haviors is to employ a semantic network that contains an ontology of the domain in
which the robot is operating, to build semantic relations between robot perceptions
and a learned behavior. We named this coupling context, and also refer to it as
sub-behavior. A context includes presence of objects, concepts and environmen-
tal states. During high-level learning, contexts are formed by observing a tutor’s
demonstration. A complex behavior, also denoted goal, consists of several sub-
behaviors that are executed in sequence. Not only context formation is taken into
consideration during learning but also sequencing. Sequencing is semi-automatic,
and comprises one part related to how the tutor conducts the demonstration, and
one part related to the system that associates the subsequent context to the pre-
ceding one. At the current stage of our architecture development, by finalizing
learning of one context and starting learning of another, the system connects both
contexts together according to their order in the demonstration.

Once high-level learning is completed, low-level actions will be associated to
each one of the learned contexts. Depending on which low-level controller mecha-
nism has been used, the contexts and low-level actions are associated differently.
This task is elaborated in section 3.2.3.2. Low-level actions can be learned simul-
taneously to the contexts, or they can be hard-coded primitives existing in the
robot’s repertoire. When the complex behavior is reproduced, the actions of each
context are executed in the right sequence, initiated by a context selection process.

We have proposed different variations of our architecture, first with low-level
learning and control for behavior arbitration (Fonooni et al., 2012) and also with
action-primitives and a goal management system to understand the tutor’s inten-
tions, as well as behavior arbitration (Fonooni et al., 2013a). Figure 3.6 illustrates
the complete architecture and is followed by a description of the individual com-
ponents.
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Figure 3.6: The complete architecture developed in the work described in the thesis.

3.2.1 Hardware setup
In all our experiments we used the Robosoft Kompai robot, which is based on
the RobuLAB10 platform and robuBOX software (Sallé et al., 2007), as well as
Husky A200 Mobile Platform operated by ROS (Quigley et al., 2009). Additional
information about our robotic platforms and exhaustive scenario descriptions are
well presented in an article written by Jevtić and colleagues from the INTRO
project (Jevtic et al., 2012). In order to facilitate the process of object recognition,
RFID sensing on the Kompai, and marker recognition tools on the Husky A200
platform were utilized. A database of known objects was linked to the RFID and
marker sensors to retrieve properties of the perceived objects. Finally, for mapping
and navigation, a laser scanner was used.
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3.2.2 Perception unit
All used sensors are included in the perception unit. Sensors are categorized into
high and low-level according to the type of information they provide and which
controller is the main consumer. Laser data is considered low-level while RFID
and marker recognition, included in visual input, are considered high-level. Use-
ful information is extracted from all available input channels by high or low-level
controller’s request and delivered to the caller in the required format.

3.2.3 Cognition unit
As mentioned earlier, the most common components of all cognitive architectures
for imitation learning are knowledge management, learning and control which are
also considered in designing of our architecture. The cognition unit is designed
such that it can act as the robot’s memory for storing both learned and prepro-
grammed information. It also provides learning facilities with attention mecha-
nisms for recognizing the most relevant cues from perceptions. Making decisions
on what actions to perform such that the behavior complies with a specific goal,
and providing required structure for behavior arbitration are other tasks for the
cognition unit.

3.2.3.1 High-level controller

This module has strong impact on both learning and reproduction of behaviors.
Learning a new context, which is an association between the behavior to be learned
and perceptions the system regard as relevant, requires an attentional mechanism to
identify the most important cues in the demonstrated behavior. Semantic network
functions as a long term memory of the robot. The mechanisms for storing and
retrieving information from semantic networks are discussed in chapter 4. Each
context is part of the semantic network and is represented by a node and semantic
relations to all related perceptions represented by links. The learning module is
connected to the perception unit and also to the semantic network.

Reproduction of a behavior starts by behavior arbitration mechanism which
is one of the key aspects of the proposed architecture. By definition, behavior
arbitration is a process of taking control from one component of an architecture
and delegate it to another (Scheutz, 2002). The robot should reproduce learned
behaviors when relevant cues such as environmental states, perceived objects or
concepts are present. These cues affect the activation of learned contexts, which
control the arbitration process. This is done by recognizing all possible contexts
that conforms to the assigned goal, and selecting the most relevant one to be handed
over to low-level controller for action execution. Context learning and the selection
processes are thoroughly explained in chapter 4.

3.2.3.2 Low-level controller

This module is responsible for learning and selecting motor actions that are associ-
ated to the contexts. In case of learning new action in parallel to learning context,
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Predictive Sequence Learning (PSL) is used. This technique is designed to build
a model of a demonstrated sub-behavior from sequences of sensor and motor data
during teleoperation, and results in building a hypotheses library. The learned
sequences are used to predict which action to expect in the next time step, based
on the sequence of passed sensor and motor events during the reproduction phase
(Billing et al., 2010). Learning is finalized by associating the learned context with
set of hypothesis in the hypotheses library.

In another alternative, learning of motor actions is not considered, and a set
of pre-programmed Action-Primitives are used. Such a primitive is the simplest
movement of an actuator in the robot’s repertoire that requires a set of parame-
ters for execution. As an example, grasping is a primitive with set of parameters
identifying where and how strong to do gripping action with robot’s wrist actu-
ator. Depending on the robot’s capabilities, different primitives are defined and
developed. The Action module is an interface between contexts and primitives and
retrieves information about the object of attention from the context and passes it
as parameters to the primitive in required format. The rationale behind defining
actions is the different abstraction levels of contexts and primitives. There are no
intersections between the two but they need to be integrated in order to successfully
perform a behavior. The main responsibility of the low-level controller during the
learning period and using action-primitives, is to identify which primitive has been
executed while teleoperating. Thereby, the system can automatically associate the
learned context and executed primitive through its action. Every primitive has
association to an action which is preprogrammed as well, therefore context is only
associated to an action.

In the reproduction phase, once an identified context is delivered from the
high-level controller, its corresponding action or hypothesis (depending on whether
Action-Primitives or PSL are used) is identified and passed to the output unit for
execution in the robot’s actuators.

3.2.3.3 Goal management

This component serves two purposes: i) handling sequences in learning and re-
production of behaviors ii) motivating the robot to reproduce previously learned
behaviors by understanding the tutor’s intention. As mentioned earlier, throughout
the learning process, a complex behavior is decomposed into sub-behaviors, which
are demonstrated individually and stored as contexts in the semantic network. Se-
quence of contexts is also learned while finalizing learning of a sub-behavior and
start learning the next one. Therefore, a goal which represents a whole behavior,
is created and all contexts in their exact orders are associated to the goal.

Throughout the reproduction phase, a user might explicitly specify a goal for the
robot through the designed application user interface. Hence, the robot explores
the environment in search for stimuli that activates contexts and thus executes
their corresponding actions. The contexts must activate in the same orders as they
learned, therefore the robot constantly explores until the required stimulus for ac-
tivating the right context is perceived. Another form of behavior reproduction is to
use the motivation system to implicitly specify a goal for the robot. The motivation
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system contains response facilitation and priming mechanisms that put the robot
into different tracks. In response facilitation, the robot might initiate a behavior
from its repertoire by observing the user exhibiting the same behavior. Therefore,
understanding the user’s intention and activating the related set of contexts is ac-
complished through the response facilitation module. Priming is a mechanism that
biases the robot to exhibit certain behavior by stimulating the robot with a cue.
According to Neely (Neely, 1991) priming is defined as an implicit memory effect
that speeds up the response to stimuli because of exposure to a certain event or
experience. Anelli and colleagues showed that within the scope of object affor-
dances, priming increases the probability of exhibiting a behavior by observing a
related object or concept (Anelli et al., 2012). Once the robot is primed, contexts
related to the priming stimuli are activated and, through a bottom-up search from
the contexts, the most plausible goal will be identified and selected. Thereby, the
actions of the relevant contexts in the selected goal will be engaged in sequence.

3.2.4 Output unit
All actions performed by the robot are executed through the output unit, which
retrieves a selected primitive and its set of parameters to generate appropriate
motor commands. The ability of robot teleoperation is also critical since this is the
way of teaching the robot motor-skills in the proposed architecture.
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Chapter 4

Learning high-level
representation of behaviors

This chapter presents our learning methods along with attentional mechanism to
learn high-level representation of behaviors. The high-level representation of a
behavior refers to the aspects of the behavior that consist of goals, intentions and
objects of attention. Hence, learning high-level representation of behaviors relates
to understanding the tutor’s intentions and what elements of the behavior require
more attention.

As mentioned earlier, most of the works on high-level learning deal with concep-
tualization and symbolization. Our approach to conceptualize observed behaviors
is to employ Semantic Networks. The robot’s perception and understanding of
the high-level aspects of behaviors are represented by nodes and their semantic
relations. The learning process aims at forming semantic relations of noteworthy
concepts, manipulated objects and environmental states throughout the demon-
stration which we define as context. The role of context is twofold: i) it retains
important elements of the learned behavior and thus answers the question of “what
to imitate” ii) it contains necessary conditions to exhibit a behavior and thus an-
swers the question of “when to imitate”. The later one is utilized when the robot
perceives the same, or similar, objects or concepts as during learning. This leads
to context activation and execution of corresponding actions on the robot.

4.1 Why Semantic Networks
Depending on the field of study, semantics is defined differently. In linguistics it
refers to the meaning of words and sentences. In cognitive science it often refers
to knowledge of any kind, including linguistic, non-linguistic, objects, events and
general facts (Tulving, 1972). Many cognitive abilities like object recognition and
categorization, inference and reasoning along with language comprehension are
powered by semantic abilities working in semantic memory. Therefore, questions
like “How to understand the purpose of an action?” or “How to understand which
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items or events must treated the same?” without investigating role of semantics
ability cannot be answered adequately (Rogers, 2008).

Semantic Networks is a powerful tool to visualize and infer semantic knowledge
which is expressed by concepts, their properties and hierarchies of sub and super-
class relationships. Semantic Networks have been widely used in many intelligent
and robotic systems. In early days hierarchical model of semantic memory was
implemented, based on the fact that semantic memory contains variety of simple
propositions. An inference engine based on syllogisms was used to deduce new
propositional knowledge. Empirical assessment of the proposed model showed that
verifying a proposition that is much more common takes more time depending on
the number of nodes traversed in the hierarchy (Collins & Quillian, 1969). The
typicality was not modeled efficiently in early implementations. For instance, a
system could not infer that a chicken is an animal, as fast as it infers that a chicken
is a bird. This is due to the hierarchies in the defining semantic relations. But
according to Rips and colleagues (Rips et al., 1973), humans are inferring “chicken
is an animal” faster due to the typicality that influences the judgment. By revising
the early implementations, Collins and Loftus (Collins & Loftus, 1975) introduced
a new spreading activation framework that allows direct links from any node to
any concept, but with different strengths. This was particularly efficient since it
speeded up retrieval of typical information due to their stronger connection, com-
pared to less typical concepts.

4.1.1 Spreading Activation theory
Spreading activation is a process based on a theory of human memory operations
that allows propagation of activation from a source node to all its connections
according to their strength. Figure 4.1 illustrates the process.

Figure 4.1: The processing technique of spreading activation (Crestani, 1997).
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The pre-adjustment and post-adjustment phases are arbitrary since they are
both used for activation decay, which may not be applicable in all cases. These
phases are responsible for preventing the system to constantly activate certain
nodes, and thus implement the concept of “loss of interest” (Crestani, 1997). In
the spreading phase, the amount of activation to be propagated will be calculated,
and all connecting nodes will receive activation according to their strength which
is represented by weights.

The pure spreading activation has a few drawbacks, the most remarkable one
is the uncontrollable activation propagation that causes the whole network to re-
ceive activation (Berthold et al., 2009). To overcome this problem, a system may
implement proper pre-adjustment or post-adjustment strategies to avoid spreading
activation forever, or may use termination condition to stop spreading at a certain
point. But even this is often not sufficient and some other heuristic constraints
are commonly used. These constraints are distance, fan-out, path and activation,
which also can be used together with termination conditions (Crestani, 1997).

In the current work we use a distance constraint that relates to decreasing acti-
vation while spreading in farther levels (distance) from initial node. The rationale
behind this constraint is that semantic relations get weaker by distance. We use a
decay factor as distance constraint to control how much energy or activation must
be subtracted while spreading to each level. For termination condition, an energy
value for each node is defined to limit the number of levels the spreading activation
process may proceed. This means that spreading continues until a target node not
has sufficient energy to continue spreading. The amount of propagated activation
is calculated as follows:

aj(t + ∆t) =


aj(t) + d

∑
wiai(t) ei > e0

aj(t) otherwise

(4.1)

where aj(t) is activation value of node j at time t,
ai(t) is activation value of node i, parent of node j, at time t,
∆t is duration of a time step,
d ∈ [0, 1] is decay factor,
and wi is the weight value of the connection from node i to j and wi ∈ [0, 1].
The energy level of each node is calculated as follows:

ei(t + ∆t) =


ei(t) + d

∑
wnen(t) i ∈ Cn

0 otherwise

(4.2)

where en(t) is energy level of parent of node i and ei(t) ∈ [0, 1],
Cn is a set consist of child nodes of node n.

23



Learning high-level representation of behaviors

Since nodes can be connected in loops, firing activation from a node can run
forever unless updating of energy values is limited. e0 denotes an energy threshold
that is used to avoid firing activation within a loop of nodes.

4.2 Learning methods

Learning high-level representation of a behavior requires prerequisites including
prior knowledge about the domain where the robot is intended to operate. In
our case, this knowledge is maintained in a predefined Semantic Network and en-
compasses many aspects of the domain, such as available objects to manipulate
with their respective properties, concepts, environmental states and learned sub-
behaviors (contexts). The contexts are also become part of the predefined Semantic
Network after learning is complete. Since Semantic Network is used as a model of
the world, all items are represented as nodes that have certain properties such as ac-
tivation values and energy levels that are used for the spreading activation process.
Links define semantic relations and contain weight values that are also used in the
spreading. Some nodes represent perceivable objects in the environment and are
connected to RFID or marker sensors. After each readout, these nodes receive ac-
tivation and propagate it according to the applied settings. Through the spreading
activation mechanism, this results in activation of several nodes, including object
features and categories.

The learning process begins with decomposition of the behavior by the tutor
into sub-behaviors. Teleoperation is used to demonstrate a sub-behavior to the
robot that observes the environment with the sensors. During observation, a learn-
ing network is created that contains a new context node connected to all perceived
objects and features. Due to the spreading activation process, even non-perceived
objects may receive activation and are connected to the context node. All sensors
are read within a certain frequency and at each time step, the learning network is
updated and activation values of all affected nodes are stored in arrays. In case of
demonstrating the same sub-behavior multiple times, learning network and activa-
tion arrays of each demonstration are saved separately for further processing. Once
all the demonstrations are finished, the system decides on which elements of the
demonstrations are most relevant. Since the robot is able to perceive many things
that may not be relevant to the goals of the sub-behavior, there is a need for an
attentional mechanism to extract important information from the demonstrations.
Thereby, we introduced different methods for identifying and removing irrelevant
nodes from the final learning network. Based on which method is selected, weight
values for remained nodes are calculated. Finally, the predefined Semantic Network
is updated according to the remained connections and their corresponding weight
values from the learning network. Figure 4.2 depicts all steps in the learning pro-
cess regardless of which method has been used.
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Figure 4.2: Steps of the learning process.

In this thesis, four different context learning methods including mechanisms for
directing robot’s attention to the relevant elements of demonstrations are intro-
duced.

4.2.1 Hebbian learning
This method is inspired by the well-known Hebbian learning algorithm for artificial
neural networks. Its basic tenet is that neurons that fire together, wire together
(Hebb, 2002). Hebb suggested that the weight value for the connection between
two neurons is proportional to how often they are activated at the same time. In
this work, neurons are replaced by nodes in the Semantic Network, and all robot’s
perceptions are mapped to their corresponding nodes and connected to the context
node. This method does not contain any attentional mechanism to identify relevant
information but rather keeps all the nodes and strengthen connection of those that
are activated together more often.

4.2.2 Novelty Detection
This method is inspired by techniques for detecting novel events in the signal
classification domain. While there are many Novelty Detection models available,
in practice there is no single best model since it depends heavily on the type of
data and statistical features that are handled (Markou & Singh, 2003). Statistical
approaches of novelty detection use statistical features to conclude whether data
comes from the same distribution or not.

Our approach begins with environment exploration guided by teleoperation to
create a history network. In this phase, no demonstrations of desired behaviors
are conducted by the tutor, and the history network only contains environmental
states. In the next phase, the tutor performs the demonstration and the system
builds a learning network accordingly. After collecting required data, a t-test is
run to check which nodes have activation values with similar distribution in both
history and learning networks. Nodes with different distribution are considered
relevant, and thus remain connected to the context node. The weight value of each
connection is calculated based on the average node’s activation value, and how
often the node was received activation during both history and learning phases.
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With this approach, the attentional mechanism looks for significant changes
between history and learning phases. Nodes that were less, or not at all, activated
during the history phase are considered important and most relevant.

In our first paper (Fonooni et al., 2012), we elaborate this technique in detail
and evaluate it using a Kompai platform. The test scenario is to teach the robot
to push a moveable object to a designated area labeled as storage room.

4.2.3 Multiple Demonstrations
An alternative technique, to some extent the opposite of Novelty Detection is Mul-
tiple Demonstrations.The main differences are the number of demonstrations and
the way attentional mechanism works. The history phase is removed, and the
tutor repeats the demonstration at least two times. In the course of each demon-
stration, a learning network and activation arrays of nodes are formed and stored.
Afterwards, a one-way ANOVA test (Howell, 2011) is run on the datasets of activa-
tion values to determine which nodes have different distributions. The attentional
mechanism of this method searches for insignificant changes in all demonstrations.
Therefore, nodes with least variation in their activations throughout all demon-
strations are considered relevant. Weight values are calculated according to nodes
average activation values and their presence in all demonstrations.

Paper II (Fonooni et al., 2013a) describes the Multiple Demonstrations tech-
nique in an Urban Search And Rescue (USAR) scenario with a Husky A200 plat-
form.

4.2.4 Multiple Demonstrations with ant algorithms
In a variation of the Multiple Demonstrations technique, Ant System (Dorigo et al.,
2006) and Ant Colony System (Dorigo & Gambardella, 1997) are used as substitu-
tion of the one-way ANOVA test. This technique is showed to be more intuitive and
efficient when ANOVA cannot be used to successfully determine the relevant nodes
due to statistical constraints. The purpose of applying ant algorithms is to find
and strengthen shortest paths that can propagate more activation to the context
node. In case of having less intermediate connections (less hierarchies) between the
source node that receive activation and the context node, the decay factor has low
effect on the amount of propagated activation. Therefore, the closest nodes to the
context node are considered more relevant, and thus weight values of remaining
connections are calculated based on the amount of laid pheromones.

Paper III (Fonooni et al., 2013b) describes incorporation of Multiple Demon-
strations with ant algorithms and presents results from our experiments on learning
object shape classification using Kompai robot.

4.2.5 Comparison of methods
Due to the differences between the introduced learning methods, there is no single
best method for learning all kinds of behaviors. Therefore, methods have been
evaluated according to the type of data they are able to process and scenarios in
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which they can be more efficient. Table 4.1 lists our learning methods with their
respective features and in what conditions they can serve best.

Method Number of
Demonstra-

tions

Core al-
gorithm

Attentional
mechanism

Condition

Hebbian
Learning

One Hebbian
Learning

None - Nodes
that fire
together,

wire together

When every
observation is
relevant to
the behavior

Novelty
Detection

One Statistical
T-test

Looks for
significant
changes in
the history
and learning

phases

When the
robot

perceives
numerous en-
vironmental
states that
are not

relevant to
the behavior

Multiple
Demonstra-

tions

At least two One-way
ANOVA

test

Looks for
insignificant
changes in all
demonstra-

tions

Not noisy
environment
with only
slight

differences
between

demonstra-
tions

Multiple
Demonstra-
tions with

ACO
algorithms

At least two Ant
System
(AS) and

Ant
Colony
System
(ACS)

Looks for the
nodes which

can
propagate

more
activation to
the context

node

Noisy
environment
where the

robot can be
easily

distracted

Table 4.1: Comparison of learning methods

As Table 4.1 shows, the Hebbian learning approach is used when all perceptions
are relevant to the learned sub-behavior. Basically every perception is considered
important and must remain connected.

Novelty Detection is mostly successful in situations where the robot is equipped
with several sensors and may perceive a large amount of information that is not
directly relevant to the behavior. As an example, an ambient light or environment
temperature can be sensed if the robot has proper sensors, but this information may
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not be relevant to the goals of the demonstration. Therefore, the Novelty Detection
technique determines what has been static during the history and learning phases
and regards these features as unimportant.

Multiple Demonstrations is the best solution if the demonstrations are con-
ducted almost in the same way, and the environment is free from noise. However,
if the demonstrations differ significantly, the risk of not recognizing relevant nodes
increases dramatically.

Multiple Demonstrations with ant algorithms is more noise tolerant, but still
requires that the demonstrations are very similar.

An important limitation with all introduced methods is that none of them are
able to learn a behavior that requires understanding of objects absence. Also,
quantitative values cannot be handled in a simple way. For instance, learning to
clean a table when no human is seated, or to approach a group of people exactly
three persons, needs special considerations to be possible with the given techniques.

4.3 Generalization
One of the main challenges in imitation learning is the ability to generalize from
observed examples and extend it to novel and unseen situations. Generalization
in this work refers to extending associations of objects and concepts that already
connected to the context node to less-specific ones. Figure 4.3 shows an example
of generalization in terms of extending concepts for learning to find human.

Figure 4.3: Concept generalization example.

In the given example, the robot learns to look for a human and stop exploration
when it reaches “John”. This will associate the “John” node to the “Find Human”
context node. The system correctly associates perceptions to the context, but what
the robot learned cannot be used in any other situation. Therefore, generalization
of the “John” concept is needed if the intention is to teach the robot to repeat
the behavior when any humans observed. Generalization is achieved by spread-
ing activation from “John” node to the less-specific “Human” node. As a result
of spreading activation, “Human” is also considered part of the context and thus
observing any humans will trigger the “Find Human” context. According to equa-
tions (1) and (2), the degree of generalization is controlled by each node’s energy
value and decay factor. Setting the decay factor to 1.0 leads to generalization to
the entire network, and setting it to 0.0 results in no generalization.
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Chapter 5

Future Works

Based on the current achievements on designing and implementing an architecture
for robot’s imitation learning including methods for high-level learning and control,
several directions are considered as future works:

• Extension of current learning methods: As stated earlier there are known
limitations to our learning methods that make them inefficient under certain
circumstances. To overcome the issues, all abilities of Semantic Networks
must be employed. This includes implementing new type of links such as
inhibitory to define negations.

• Designing new learning methods: Although spreading activation along with
energy values and decay factor are showed to be efficient in our learning
strategy, designing a new method based on Fuzzy Logic is also of interest.
In this method, membership values assigned to each node determine their
relevancy to different contexts. Therefore, all nodes are connected to all
contexts but with different membership values.

• Dealing with ambiguity in demonstrations: From the outset and throughout
this thesis we have assumed that the tutor demonstrates behaviors completely
and correctly. However, in reality there are major issues that restraint the
robot from perfect learning. One important issue is ambiguity, which in the
robotics community has several different meanings. Often it is related to
insufficient sensing or perception, such that one demonstration maps to sev-
eral possible behaviors. Differences in robot and teacher perspectives during
demonstration may lead to ambiguity due to visual occlusion (Breazeal et al.,
2006). Multiple, inconsistent, demonstrations is another cause for ambigu-
ity (Argall et al., 2009). We will investigate ambiguity that occurs when a
demonstration contains irrelevant information such that the intention of the
tutor is not uniquely described by a single demonstration (Bensch & Hell-
ström, 2010). Since we are mostly interested in high-level representations of
behaviors, a solution can be implemented in the developed cognitive archi-
tecture. The priming mechanism for implicitly specifying goals during the
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reproduction phase can act as a bias in the identification of the tutor in-
tentions during the learning phase. The robot may be primed with objects,
features, or concepts that directly or indirectly relate to the main objectives
of the demonstration. In this way, the attention is directed towards elements
that are relevant for the learning. This makes it possible to recognize the
tutor’s intentions in a less ambiguous way.

• Robot shared control and imitation learning: One way to make a robot per-
form a learned or pre-programmed behavior is to let it observe a user starting
to demonstrate the behavior. The robot then attempts to predict the user’s
next actions based on its repertoire of behaviors. Depending on how success-
ful the predictions are, the robot may then take over control from the user.
This gives the user more freedom to engage with other tasks. The user may
at any time take over control of the robot.
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Chapter 6

Contributions

As stated earlier, the main contribution of this thesis is the design of an architec-
ture for robot’s imitation learning that specializes in learning and reproduction of
high-level representations of behaviors. The architecture involves learning methods
with attention mechanisms based on Semantic Networks and spreading activation
theory for identifying important elements of demonstrations as well as recogniz-
ing the tutor’s intentions. Furthermore, integration of low and high-level learning,
techniques for sequence learning and reproduction of skills considering the tutor’s
goals are described. This infrastructure has been employed for the purpose of
behavior arbitration.

The included papers mainly focus on elaborating learning methods and archi-
tecture design plus their applicability in real scenarios.

6.1 Paper I
In this paper (Fonooni et al., 2012), a rudimentary architecture for learning high-
level representation of behaviors is introduced. The aim is to integrate Predictive
Sequence Learning (PSL) as low-level learning and control mechanism with a high-
level controller that focuses on replicating demonstrated tasks with no knowledge
about goals or intentions. The Novelty Detection technique with attentional mech-
anism based on semantic networks, spreading activation and statistical t-test is
introduced.

The system is tested and evaluated with a scenario, in which the goal is to push
a movable object towards a designated area. While the task is demonstrated with a
certain object, with its particular features, the system is able to generalize, and re-
produce the task by observing different, but similar, types of objects. Thereby, the
proposed architecture and Novelty Detection showed to be suitable for the purpose
of learning and generalizing object affordances. Reproduction of learned behaviors
is engaged by exploring the environment and observing any related object. There-
fore, stimulus enhancement is applied as a mechanism to trigger behaviors in the
robot’s repertoire.
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6.2 Paper II
In the second paper (Fonooni et al., 2013a), general challenges of LfD at both low
and high levels are investigated. Several improvements are made to the architec-
ture, with the aim of facilitating intention recognition and goal emulation. In the
developed architecture, PSL is replaced by hard-coded action-primitive pairs that
do not require learning. The Multiple Demonstrations technique that uses one-way
ANOVA test and spreading activation theory is presented. The attention mecha-
nism with the same impact on learning behaviors as presented in the first paper,
is applied with the slight changes in the way relevant information is detected in
demonstrations. The goal management module with goal creation and inference
capabilities is added. Motivating the robot to exhibit a previously learned behav-
ior with priming mechanism is elaborated. The whole architecture showed to be
efficient for sequence learning and reproduction, by decomposing sequences into
sub-behaviors that are associated to action-primitive pairs.

Finally, an Urban Search and Rescue (USAR) scenario is defined to evaluate the
applicability of the proposed architecture and the learning method. The goal is to
assist a human agent to uncover a victim from a pile of rubble in an environment
damaged by an earthquake. Results show the system’s ability in learning and
reproduction of such complex tasks.

6.3 Paper III
The third paper (Fonooni et al., 2013b), attempts to answer the question “What
to imitate?”, by extending the Multiple Demonstrations technique introduced in
the second paper. This technique has practical limitations that prevent the robot
to correctly determine what elements of demonstration are mostly important. In
this paper, this is viewed as an optimization problem. The one-way ANOVA test is
replaced by ant colony optimization algorithms and thus Ant System (AS) and Ant
Colony System (ACS) have been utilized. The main contribution of the paper is
to investigate the applicability of AS and ACS for identification of relevant nodes,
and thereby optimizing the context formation process. Moreover, generalization of
concepts by means of spreading activation and ant colony optimization algorithms
is investigated.

Although low-level learning and control is not directly addressed, the proposed
method can be applied with both PSL and action-primitive pairs.

The whole learning and reproduction mechanisms is tested in a scenario in
which the robot learns to identify cylindrical, square and triangular shapes and
put them in their respective baskets. Results show that both the AS and ACS
algorithms prove to be powerful alternatives to the previously developed Multiple
Demonstrations techniques combined with one-way ANOVA test.
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Abstract: In this paper we present an approach for high-level behavior recognition and selection integrated with a 

low-level controller to help the robot to learn new skills from demonstrations. By means of Semantic 

Network as the core of the method, the robot gains the ability to model the world with concepts and relate 

them to low-level sensory-motor states. We also show how the generalization ability of Semantic Networks 

can be used to extend learned skills to new situations.  

1 INTRODUCTION 

Learning from Demonstration (LfD) is a technique 
to teach robots new behaviors by having a human or 
robot teacher performing sequences of actions that 
are either observed or perceived by the robot. 
Several algorithms have been proposed. Most of 
them distinguish between low and high-level 
representations of a behavior (see for instance 
Billard et al., 2008). In our approach, the low-level 
is represented by sensory-motor mappings and the 
high-level by combinations of concepts represented 
in Semantic Networks.  

One of the hard problems in LfD is how to 
generalize a demonstrated behavior such that it can 
be performed also in new, previously unseen 
situations. This issue exists from both high and low-
level perspectives and there are several ways to 
approach it (Nehaniv and Dautenhahn, 2000; Byrne 
and Russon, 1998). The purpose of this paper is to 
introduce a technique that integrates high and low-
level learning and control in a way that supports 
generalization. A high-level controller deals with 
concepts represented and processed in Semantic 
Networks (SN). This controller is interfaced to a 
low-level controller that learns and performs 
behaviors defined at the sensory-motor level. The 
glue, interfacing the two levels, is learned contexts, 
describing the necessary high-level conditions for a 
low-level behavior to be performed.  

Behavioral studies of animals and humans 
provide several sources for ideas on how low and 

high-level learning may be combined. For instance, 
Goal emulation (Whiten and Ham, 1992) is 
interesting for learning how to direct focus of 
attention towards favorable goals. Stimulus 
enhancement is the implicit memory effect when 
stimuli in the environment bias the agent’s behavior 
towards receiving similar stimuli in the future. 
Response facilitation is a mechanism that describes 
how motor responses already in the repertoire be 
repeated after observing the performance of the 
same action (Kopp and Graeser, 2006). In a broad 
sense, the work presented in this paper may be seen 
as a realization of response facilitation. All 
mechanisms described above may be seen as 
examples of priming, aiming at guiding animal 
behavior and learning (Byrne, 1994). 

In section 2, the proposed architecture with its 
major units is described. Section 3 is an overview on 
Semantic Networks and its features. Section 4 
elaborates the learning and performing phases based 
on proposed architecture and Semantic Networks. In 
section 5, an example is shown to evaluate learning 
and performing phases. 

2 OVERVIEW OF THE 

ARCHITECTURE 

A number of architectures and frameworks for LfD 

have been developed during passed years which 

influenced the current research in this field (Kasper 

et al., 2001; Nicolescu, 2003). These works are 

43



 

introducing architectures for learning low-level 

sensory-motor behaviors. The purpose of designing 

a new architecture is to interface the low-level 

behavior learning and control which introduces an 

integration and behavior arbitration techniques by 

means of high-level control. Figure 1 depicts the 

proposed architecture. The major units are described 

below. 

Motor Command 

Generation

RFID

Low-Level Learning and 

Action

Input

Visual Input

Spatial Info

Perception Unit

Output Unit

Motor Output

Semantic Networks

Cognition Unit

Behavior 

Selection

Behavior 

Recognition
Learning

Behavior A

Behavior B

Behavior C

.

.

.

Context

High-Level ControllerLow-Level Controller

Laser Scanner

Tele-operation

 
Figure 1: Proposed Architecture 

2.1 Perception Unit 

This unit collects and pre-processes sensor data 

from the environment. In our experimental set-up, 

the robot is equipped with laser scanner, ultrasonic 

transducers, infra red sensors and an RFID reader 

that acts as a high-level sensor which delivers 

identity (and to some extent position) of places, 

objects and people equipped with RFID tags. Every 

tag is associated with a number of properties defined 

in a database. The RFID technique is commonly 

used in robotics to get reliable performance and 

human-robot interaction (Nguyen et al., 2009), and 

should be considered as a complement to other high-

level sensors like face recognizers, emotion 

detectors, gesture recognizers or any other visual 

inputs, and not a replacement. 

2.2 Cognition Unit 

The Cognition Unit is responsible for all robot 

decision making and action selection processes. It 

contains representation of the robot’s cognitive state 

and has functions to modify its internal states.  

Due to the structural differences between low 

and high-level information, the unit is organized in 

two modules running simultaneously.  

 

2.2.1 High-Level Controller 

One of the main tasks for this module is to learn 

contexts that are relevant for the execution of low-

level behaviors. The other task is to arbitrate the 

low-level controller. The module relies on the 

abilities of a Semantic Network with predefined 

concepts and relations describing the environment. 

In learning mode, high-level inputs from the 

Perception unit update the SN such that contexts 

associated with the demonstrated behaviors are 

learned. In execution mode (performing phase), the 

module supports the low-level controller by 

activating the most relevant context(s) according to 

the current environmental conditions. These contexts 

act as bias in the activation of behaviors in the low-

level controller. Basically, the cognitive state of the 

robot, represented in the Semantic Network, is 

updated through perception and a behavior 

recognition process, and acts as a cue for performing 

a behavior. 

2.2.2 Low-Level Controller 

The low-level controller learns and executes 
behaviors that are mappings of sensory-motor data 
to low-level actions (Billing et al., 2010a; Billing 
and Hellström, 2010b). In the presented work, the 
technique for learning is Predictive Sequential 
Learning (PSL) (Billing and Hellström, 2008). PSL 
treats control as a prediction problem and decides 
the next action based on the sequence on recent 
sensory-motor events. This technique allows 
learning of many types of complex behaviors, but 
does only work as long as the recent sensory-motor 
history contains all information necessary to select 
an appropriate action. One way to overcome this 
limitation is to define several contexts for PSL, 
where each context acts as a bias for action 
selection. In this way, actions that are less common 
within the present context are inhibited and the risk 
for selecting inappropriate actions is reduced.  

2.3 Output Unit 

This unit is designed to enable tele-operation of the 
robot. In addition, execution of action selection 
results coming from the Cognition unit into motor 
commands will be performed here. 
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3 SEMANTIC NETWORKS 

Semantic Networks are often used to represent 
abstract knowledge in a human-like fashion. They 
are common within artificial intelligence as well as 
in philosophy, psychology and linguistics (Bagchi et 
al., 2000; Brown and Cocking, 2000; Rodriguez, 
2008). In robotics, Semantic Networks is used for 
concept forming and situational awareness 
(Coradeschi and Saffiotti, 2003). The structured way 
of representing knowledge can in combination with 
visualization tools (Hartley and Barnden, 1997) help 
humans to understand the internal state of the robot 
and what is happening in the robot's cognitive 
system. This may for instance help a tutor to put the 
robot back on track when it is distracted during 
learning or performing phases.  

In our usage of Semantic Networks, high-level 
concepts such as perceived object types and 
properties are represented as nodes while relations 
between concepts are represented as links. The 
initial SN is pre-defined and comprises nodes that 
are connected to the perception unit. These nodes are 
activated through perception. 

3.1 Generalization Ability 

A common reason for using a Semantic Network as 
a model of the environment is its ability to 
generalize (Mugnier, 1995), (Vashchenko, 1977). In 
our case, after a demonstration in LfD, the robot will 
be able to extend the learned context to other, 
related, contexts. Assume for instance that the robot 
learns how to clean the table if there are empty cups 
on it. By generalizing the cup concept to all the 
drinkwares, it will also perform the cleaning 
behavior when perceiving a mug on the table. 

3.2 Interfacing to Low-Level Information 

The success of robots designed to learn and work in 

daily environments with humans, relies on wrapping 

sensory-motor information with high-level concepts. 

This can improve human-robot interaction by 

utilizing Semantic Networks (Galindo et al., 2005). 

As mentioned earlier in section 2.2.2, contexts which 

are activated by the Semantic Network, give 

meaning to low-level information and act as a bias to 

choose suitable behaviors. 

3.3 Spreading and Decaying Activation 

In the proposed approach, each node has an 
activation level. Spreading is a mechanism by which 
activation spreads from one node to another in 

proportion to the strength of their connection. 
Decaying is a mechanism by which the activation 
levels of nodes gradually decrease over time. These 
processes have been implemented in a variety of 
ways to solve different problems in modeling, 
learning and robotics (Bagchi et al., 2000; Brown 
and Cocking, 2000). The spreading activation model 
used in this work, is based on mechanisms of human 
memory operations that originates from 
psychological studies (Rumelhart and Norman, 
1983) and was first introduced in computing science 
in the area of artificial intelligence to provide a 
processing framework for Semantic Networks 
(Crestani, 1997). In order to make spreading 
activation work properly, we made following 
assumptions: 

 Activation spreads in parallel, to all links 

leading out from a node 

 Activation at a node is divided among the 

links that lead from it 

 Activation decays rapidly without 

stimulation from other nodes or inputs 

 Each node has an energy parameter that 

limits the number of link levels for 

spreading 

The degree of generalization depends on the 

amount of energy available for propagation of 

activations. Higher amounts allow spreading along 

several links, which leads to higher connectivity of 

nodes and increase generalization. 

The connections between nodes have weight 

values that limit the propagation of activation 

through the network. Learning is used to modify the 

connection weights and will be discussed in the next 

section.  

4 LEARNING AND 

PERFORMING PHASES 

One of the objectives of the research presented in 

this paper is to develop mechanisms to identify high-

level contexts in a demonstration, and map each 

context to a low-level behavior. The low-level 

controller is assumed to contain learning capability 

based on sensory-motor data, and an ability to 

execute the behaviors on request. In section 4.1 we 

describe how high-level contexts are learned 

simultaneously with the low-level learning. 

4.1 Learning Phase 

Our learning approach is inspired by Novelty 

Detection techniques which are commonly used to 
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detect new situations that did not occur during 

training (Markou and Singh, 2003).  
We assume that we already have a predefined 

Semantic Network based on an ontology of the 
domain in which the robot should operate. This 
network is used to interface to the Perception unit 
and to identify or activate related nodes through 
spreading and decaying activation.  

The learning process starts by generating a 
History Network describing the normal state of the 
world. The environment is observed by sampling the 
high-level sensors at a given frequency. As 
mentioned earlier, RFID tags are used for 
simplifying object detection and identification. Each 
readout gives object identities and properties that are 
perceived in the environment. Each read tag causes 
the corresponding nodes to be activated. For 
instance, if the RFID belonging to a red ball is 
detected, the nodes Red and Ball will be activated. 
Throughout the learning process, activation levels 
propagate to all connected nodes by spreading 
activation.  

Sometimes a node is activated and deactivated 
due to noise and uncertainties in the RFID sensing. 
Therefore, a decaying delay parameter is defined to 
prevent instant deactivation of nodes after the 
disappearance of correspondent object from the 
environment. 
Finally, the updated Semantic Network will be saved 
as the History Network. 
Now learning of a high-level context may start. A 
context node with the name of the new behavior to 
be learned is added to the network. This version of 
the network is called Learning Network. The human 
teacher then demonstrates the wanted behavior by 
tele-operation. The RFID sensors perceive high-
level concepts, at the same time as sensory-motor 
data is learned by the low-level controller. The 
context node will be connected to nodes activated by 
the RFID sensors. To finalize the learning process, 
two issues must be solved. First, the most relevant 
connections must be determined. Secondly, the 
weights between the remaining nodes and the 
context node must be computed. In order to identify 
relevant connections, the algorithm looks for 
significant differences between the History and 
Learning Networks. An unpaired T-Test is used to 
compare mean node activation for all nodes. 
 

   
          

 
     

  
 

     
  

 
(1) 

 
where 

     is mean activation of History Node x 
     is mean activation of Learning Node x 

nH and nL are number of samples for History 
and Learning respectively 

tx tells whether the samples for the two nodes are 
drawn from the same distribution or not. In other 
words: did the node change significantly between 
History and Learning phases. If it did not, the 
connection between the node and the context node 
should be removed. For instance, suppose ambient 
light was always on, during both History and 
Learning phases. In this case, the T-Test will 
consider ambient light as irrelevant because of the 
identical distribution in both phases. 
After the elimination process of irrelevant 
connections, weights (wx) for the remaining nodes 
are calculated. This is done by the following 
equation: 
 

   
      

 
 (2) 

 
where Nx is the number of samples for which node x 
has activation value above 0 during the learning 
phase, and P is the weighted sum for all nodes,  
calculated as follows: 
 

         

 

   

 (3) 

 
Finally, the learned context node will be associated 
with the learned behavior representation in the low-
level controller module. 

4.2 Performing Phase 

In the performing phase, RFID sensors update their 

corresponding network nodes. Whenever a node is 

activated, all other linked nodes are activated 

according to the spreading mechanism.  In this way 

previously learned context nodes may get activated, 

thereby, guiding the low-level controller to execute 

the behaviors. If two or more contexts have high 

activation levels, several behaviors are possible, and 

the final decision will be made by the low-level 

controller. This can be viewed as high-level 

behavior recognition and is performed by Behavior 

Recognition module depicted in Figure 1. Due to the 

pre-defined semantic relations in the semantic 

network, the robot will be able to generalize the 

demonstrated context to similar contexts. As 

previously mentioned, the degree of generalization 

can be controlled by the amount of energy (Huang et 

al., 2006).  
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5 EXPERIMENTS 

For better understanding of the whole approach, an 
example is shown. Assume we are going to teach the 
robot how to move a thing to the storage room. First, 
the robot will start moving around by tele-operation 
and collecting information regarding all the objects 
and places by RFID tags. Due to the characteristics 
of the described technique, the blue box should not 
be present at this stage. Figure 2 depicts the robot's 
perceptions that yield the History Network.  

Figure 2: History Network 
 

Learning will begin by placing the blue box 
somewhere in the middle of the room and tele-
operating the robot towards the box. After grasping, 
the teacher commands the robot to push the box and 
guides it to the storage room that ends the learning 
phase. Figure 3 depicts the learned Moving Object 
behavior. Although we did not illustrate any low-
level learning, this is done simultaneously by the 
low-level controller while tele-operating the robot. 

The number of samplings for the history (NH) and 
learning (NL) is 40 and 60 respectively. In order to 
identify the nodes with the most significant changes, 
the t-test is run and results are shown in Table 1. 
Confidence Interval (CI) of the test is given by the t-
distribution with   value set to 0.05. Degree of 
Freedom (DF) is calculated as follows: 
 

              (4) 
 
According to equation 1,    will be computed and 
nodes which fulfill condition 5 will be removed. 
 

           (5) 
 
Finally, according to equation 2, weights for the 
remaining nodes are calculated, shown in Table 1. 
After finalizing the learning phase, the robot is able 
to perform Moving Object action whenever it 
perceives blue and box1 in the environment. 

Figure 3: Learned Network 
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Table 1: History and Learning Values, T-Test results and Weight Values 

Node                              DF CI       

Living Room 1.51 0.56 36 1.65 0.37 58 -0.48 98 2.0 0% -- 

Sofa 1.82 1.2 28 2.24 0.94 51 -1.0 98 2.0 0% -- 

Table1 1.73 1.16 28 2.15 0.9 51 -1.03 98 2.0 0% -- 

Furniture 2.64 1.62 31 3.21 1.24 54 -0.96 98 2.0 0% -- 

Box 0.0 0.0 0 0.73 0.44 44 -6.52 58 2.02 19.74% 0.1974 

Box1 0.0 0.0 0 0.73 0.44 44 -6.52 58 2.02 19.74% 0.1974 

Bed Room 1.3 0.48 36 1.41 0.32 58 -0.48 98 2.0 0% -- 

Chair2 2.81 1.71 31 3.41 1.31 54 -0.95 98 2.0 0% -- 

Table 2.12 1.40 28 2.61 1.09 51 -1.0 98 2.0 0% -- 

Blue 0.0 0.0 0 0.66 0.47 40 -6.21 58 2.02 16.32% 0.1632 

Chair1 2.26 1.40 31 2.76 1.07 54 -0.97 98 2.0 0% -- 

Kitchen 0.87 0.31 36 0.95 0.20 58 -0.46 98 2.0 0% -- 

Movable Obj. 0.0 0.0 0 0.36 0.22 44 -6.52 58 2.02 9.87% 0.0987 

Green 0.0 0.0 0 0.21 0.15 39 -6.14 58 2.02 5.17% 0.0517 

Chair3 3.21 1.89 31 3.87 1.43 54 -0.93 98 2.0 0% -- 

Sofa1 0.67 0.46 27 0.85 0.35 51 -1.09 98 2.0 0% -- 

Ball1 0.0 0.0 0 0.09 0.05 44 -6.52 58 2.02 2.47% 0.0247 

Red 0.0 0.0 0 0.22 0.15 40 -6.21 58 2.02 5.44% 0.0544 

Storage Room 1.97 0.69 36 2.14 0.43 58 -0.46 98 2.0 0% -- 

Ball 0.0 0.0 0 0.18 0.11 44 -6.52 58 2.02 4.94% 0.0494 

Place 2.62 0.94 36 2.85 0.60 58 -0.46 98 2.0 0% -- 

Chair 3.65 2.13 31 4.39 1.61 54 -0.92 98 2.0 0% -- 

Color 0.0 0.0 0 0.66 0.47 40 -6.21 58 2.02 16.32% 0.1632 

Figure 4: Performing Phase 

 
The robot is not only capable of performing Moving 
Object behavior by observing the same objects 
during the learning phase, but can also generalize 
objects and concepts in the new situations. In order 
to test the system, the robot should recognize a red 
ball and push it to the storage room. This example 
clearly shows the generalization ability mentioned in 
section 3.1. As can be seen in Figure 4, perceiving 
red and ball1 instead of blue and box1, to some 
degree, activates Moving Object context node 
through direct links and other connections to the 
Color and Movable Object nodes.  
The activation level of the context node (  ) is 
calculated by equation 6: 
 

        

 

   

 (6) 

 
n is the number of nodes which are currently 
activated and connected to the context node. A 
selection threshold should be defined for accepting 
the selected behavior as a result of generalization. In 
our example, we set the threshold to 0.6 meaning 
that the result of equation 6 should be at least 60% 
of the maximum value of the context node's 
activation (     ). The maximum value is 
calculated during the learning phase by equation 6 
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and by replacing    with       (maximum 
activation of node i). For this example,        
equals 0.8214 and calculated    is 0.5246 which 
passed our threshold with 63%.  Therefore, red and 
ball1 are also able to trigger Moving Object context 
and cause the low-level controller to execute 
corresponding sensory-motor commands. 

6 CONCLUSION AND FUTURE 

WORKS 

In this paper we proposed an architecture to learn 
and act at a conceptual level by means of Semantic 
Networks. By introducing Semantic Networks and 
their usage in some research projects, a possible 
integration to LfD discussed. These aspects are 
valuable in concept forming and provide support for 
higher level cognitive activities such as behavior 
recognition. This integration is useful not only for 
LfD, but can be utilized in scaffolding, 
reinforcement learning or any other supervised 
learning algorithms. In this work, functionality of 
the system is tested with limited objects in the 
environment. In case of scaling up the number of 
entities in the working ontology, generalization will 
be more applicable. 

Currently, our approach is incapable of handling 

quantities and negations. In our future work, we are 

going to define new link types in the Semantic 

Networks and design the high-level control in a way 

that can learn more complex scenarios.  
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Abstract— This paper gives a brief overview of challenges in 

designing cognitive architectures for Learning from 
Demonstration. By investigating features and functionality of 
some related architectures, we propose a modular architecture 
particularly suited for sequential learning high-level 
representations of behaviors. We head towards designing and 
implementing goal based imitation learning that not only allows 
the robot to learn necessary conditions for executing particular 
behaviors, but also to understand the intents of the tutor and 
reproduce the same behaviors accordingly. 
 

Index Terms— Learning from Demonstration, Cognitive 
Architecture, Goal Based Imitation 
 

I. INTRODUCTION 
EARNING from Demonstration (LfD) is one of the most 
popular learning techniques to teach robots new skills by 

observing a human or robot tutor [2]. LfD involves several 
challenges, such as generalization of learned behaviors, 
representation of behaviors, sequence learning, and 
reproduction of complex behaviors [23], [24], [25]. Some 
researches proposed architectures based on biology and 
psychology of human or animal cognitive systems [3]. 
Examples of biologically inspired models are given by Billard 
et al. [7], Kopp et al. [8] and Demiris et al. [19]. The neural 
model approaches, fundamentally driven by mirror neuron 
systems [10], are also considered by many researchers [18], 
[19]. There are also some recent efforts in modeling goal-
based imitation that infer intents of the tutor rather than 
repeating observed actions and following exact trajectories 
[4], [5], [16]. 

Most of the works referred above, focus on learning and 
reproduction of low-level representations (sensory-motor 
events) of behaviors. In this work we assume that these 
representations are already available as behavior primitives 
(below often referred to as primitives) such that no learning is 
required at the sensory-motor level. Primitives have been 
applied in robot control for several years, and there are 
proposed models describing challenges of connecting 
perception to primitives [13]. Primitives accomplish goal-
directed behaviors and can be formalized as control policies 
 

 

[1]. Primitives may also represent complete temporal 
behaviors [20], [21]. 

The main goal of the work presented in this paper is to 
introduce a novel architecture for learning contexts, which are 
high-level representations of behaviors. Each context is 
associated with a predefined action and contains information 
on necessary perceptual conditions for this action to be 
executed. Actions are part of the architecture and act as 
interfaces between contexts and primitives in order to retrieve 
objects of attention from the contexts, convert them into low-
level information and pass them as parameters to primitives.  

We improve the previously developed architecture [6] by 
implementing cognitive mechanisms to learn intentions of the 
tutor and reproduce the behavior through activating learned 
contexts and recognizing the associated stimuli.  

The remainder of the paper is structured as follows: In the 
next section, the proposed architecture and its components are 
elaborated. Section III introduces a novel algorithm for 
learning new contexts, and mechanisms for reproduction of 
learned behaviors. Section IV describes results from several 
experiments. Section V explains goal inference mechanisms 
which are key factors for behavior reproduction.  

II. ARCHITECTURE OVERVIEW 
Fig. 1 depicts the developed architecture. In the following 

sections all units and modules are described. 

A. Perception Unit 
This unit is responsible for perceiving the environment by 

processing sensor data. Sensors can deliver either low-level 
data, like laser scanners, or high-level data, like gesture 
recognizers, emotion detectors and RFID tag readers. The 
difference between low and high-level data is the amount of 
processing required to connect the output of the sensors with 
concepts. For instance, reading the RFID tag of a cup and 
fetching its properties from a database, requires less 
processing than perceiving the cup and its properties solely by 
a laser scanner.  

The Perception Unit delivers processed information to the 
various modules of the Cognition Unit. 
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Fig. 1. Units and modules of the architecture 

B. Cognition unit 
The Cognition Unit consists of three main modules. The 

High and Low-Level controllers are responsible for learning, 
recognizing and executing contexts. The Goal Management 
module is designed for creating and inferring goals, explicitly 
and implicitly, as well as keeping track of current goal and 
intentions.  
 
High-Level controller 

This module is responsible for learning contexts. A main 
component of this module is the long-term memory 
represented by an, initially predefined, Semantic Network 
(SN). It contains nodes representing concepts and objects 
according to a pre-defined ontology. Each context is a node in 
the SN. By the learning process, it gets associated with a 
behavior primitive, and with concepts and objects in the SN. 
In our previous work we proposed a novel approach that 
creates connections (links) between the context and nodes 
connected to perception [6]. Perceptions are outputs of the 
perception unit, and activate the corresponding nodes in the 
SN. Each node has an activation level that defines how 
strongly it is activated.  

After the learning phase, the robot should be able to 
recognize conditions for triggering a specific context, and 
thereby executing the associated behavior.  This is denoted the 
reproduction phase. The perception mechanisms will change 
activation levels of sensed nodes, which in turn are connected 
to one or more contexts. Due to the spreading activation 
mechanisms in the SN, activation will be propagated to 
connected nodes [11] such that the robot will be able to 
generalize the learned contexts stored in the SN [12]. In this 
way, the Context Recognition module selects one or several 

contexts. 
The most highly activated context will be selected by the 

Context Selection module and made available to the Low-
Level Action Controller. 

 
Low-Level controller 

As mentioned earlier, the robot is equipped with a set of 
pre-defined behavior primitives. In the learning phase, the 
High-Level Controller associates a behavior primitive with the 
newly learned context via actions. This association is 
automatically recognized by the robot during tele-operation. In 
the reproduction phase, the Low-Level Controller is 
responsible for selecting motor commands in accordance with 
the pre-defined scheme in the selected primitive, and passing 
them to the Output Unit for execution. 

 
a) Primitives  

As described above, primitives are pre-defined low-level 
representations of behaviors. In the examples in this paper, we 
use “Grip” (gripping an object with the robot arm) and “Go to 
Location” (moving the robot to a particular location). The 
associations between actions and primitives are pre-defined. 

 
b) Actions  

Actions have an intermediary role in connecting contexts 
with primitives. They retrieve objects of attention from 
contexts and convert them to parameters required by the 
primitives. For instance, if the context “Get the Cup” is 
activated by perceiving the “Cup 1” as an object of attention, 
the associated action will pass “Cup 1” as parameter to the 
“Go to Location” primitive. The concept Object of attention 
refers to an object that the robot is going to work on. In the 
examples in this paper, we use three actions, each one mapped 
to a primitive. “Explore and Reach” is mapped to “Go to 
Location”, “Grab” is mapped to “Grip”, and “Move to Safe 
Location” is also mapped to “Go to Location”. The reason to 
keep actions and primitives separated is due to the possible 
association of several actions to one primitive. This allows 
actions to have different sets of conditions and way of 
providing parameters while primitives are only focusing on 
low-level aspects.  

All actions and primitives are pre-defined in the system. 
The necessary pre-defined actions and primitives depend on 
the scenario and more importantly, the robot’s capabilities. 

 
Goal Management 

For most complex behaviors, several primitives have to be 
activated in sequence. A goal represents a sequence of 
contexts. Each goal has a set of conditions and objects of 
attention that defines what to look for and when to activate a 
specific context. Such a goal can be “Help human rescue a 
victim”, “Moving victim to a safe place” and etc. 

One of the advancements of the current design in 
comparison with the previously developed architecture [6] is 
the Motivation system. It may be triggered by cognitive 
mechanisms such as response facilitation and priming, which 
motivate the robot to choose specific goals and eventually 
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execute desired actions. This is denoted as implicit goal 
determination.  Response facilitation is the phenomenon when 
observing a specific act, which is already in the repertoire of 
the robot, increases the probability of the robot later 
performing the same act [9]. One example is if the robot 
observes a human approaching a cup and grabbing it. This is 
identified as “Grab the Cup” behavior and increases the 
probability of the robot executing the same behavior.  

Priming can be defined as an implicit memory effect that 
speeds up the response to stimuli because of exposure to a 
certain event or experience [22]. In our case, priming is the 
pre-activation of concepts stored in SN, in order to bias the 
learning process or affect the goal selection mechanism. For 
instance, if a “Red Ball” is shown to the robot, the nodes 
“Red” and “Ball” are primed and pre-activated. Therefore, the 
chances to select and satisfy goals that have connections to 
“Red” or “Ball” increase. 

C. Output unit 
This unit converts low-level commands from the Cognition 
unit to motor commands. In addition, it enables tele-
operation of the robot.  

III. LEARNING AND REPRODUCTION PHASES 
In the learning phase, a demonstration of a desired behavior 

is used to associate high-level contexts with perceived 
information. Each context is also mapped to a behavior 
primitive via an action such that the primitive will be executed 
when similar perception occurs during the reproduction phase.  

A. Learning 
The learning process is one of the main tasks of the 

architecture. In our previous work we have developed a 
learning algorithm based on novelty detection technique [6]. 
In this paper we will describe a new context-learning 
algorithm called Multiple Demonstrations (MD). We assume 
that we already have a number of predefined primitives and a 
predefined SN based on an ontology of the domain in which 
the robot should operate. The SN is interfaced to the 
Perception unit and activates related nodes through spreading 
and decaying activation mechanisms [11]. 

 
Context creation 

The learning process starts by a tutor demonstrating the 
wanted behavior through tele-operation.  A new context node 
is added to the SN. The robot observes the environment by 
sampling sensors at a given frequency. In the reported 
experiments, RFID tags are used for simplified object 
detection and identification. Each read-out gives identities and 
properties of objects perceived in the environment and causes 
the corresponding nodes to be activated. For instance, if the 
RFID belonging to a red ball is detected, the nodes “Red” and 
“Ball” will be activated. In this way, the RFID reader emulates 
sensors for object type and color. Throughout the learning 
process, activation levels propagate to all connected nodes by 
spreading activation. This mechanism allows the robot to 
generalize one concept to another. For controlling the degree 

of generalization, we define an energy level variable for each 
node. The energy level of a node determines how far 
activation level will spread from the initial node [15].  

Sometimes nodes are deactivated during the demonstration 
due to noise and uncertainties in the RFID equipment. 
Therefore, a decaying delay parameter is defined to prevent 
immediate deactivation of a node when the corresponding 
object is not longer perceived in the environment. 

The same behavior must be demonstrated to the robot at 
least twice.  A new SN will be created each time, and the 
context node will be connected to nodes activated by the RFID 
read-outs. Due to noise and varying external conditions, these 
nodes may differ between demonstrations. To finalize the 
learning process, two issues must be solved: First, the most 
relevant connections must be determined. Second, suitable 
weights between the remaining nodes and the context node 
must be computed. In order to identify relevant connections, 
the MD algorithm looks for nodes with similar activation 
levels in all demonstrations. One-Way ANOVA [14] is used to 
compare mean node activation values of all nodes. The null 
hypothesis is that there is no significant difference between 
demonstrations for activation of a node. The following 
computations are performed for each one of the nodes 
connected to the new context node. 

For each demonstration, sum of activations (𝑆𝐴𝑥), activation 
mean value (𝜇𝐴𝑥), squares of deviations (d2) and sum of 
squares of deviations (Sd

2) are calculated for each node: 

𝑑2 = (𝐴𝑥  −  𝜇𝐴𝑥)2 (1) 
 

where 𝐴𝑥 is the activation value of node x. 
  

𝑆𝑑2 = �𝐴𝑥2 −
(∑𝐴𝑥)2

𝑛
 

(2) 
 

where 𝑛 is number of samples in the demonstration.  
Grand Total (GT) is calculated as 

 
 

𝐺𝑇 =  ∑𝑆𝐴𝑥 . (3) 
Then we calculate total sum of squares (T) as 

  

𝑇 =  𝐺𝑇 −  
(𝐺𝑇)2

∑ 𝑛𝑖𝑟
𝑖=1

 (4) 

where r is the total number of demonstrations and ni is 
the number of samples in demonstration i. Between 
groups sum of squares (BG) is calculated as 

 

 

𝐵𝐺 =  �
(𝑆𝐴𝑥𝑖)

2

𝑛𝑖

𝑟

𝑖=1

−  
(𝐺𝑇)2

∑ 𝑛𝑖𝑟
𝑖=1

. (5) 

  
Within groups sum of squares (WG) is calculated as 

  

𝑊𝐺 =  𝐺𝑇 −�
(𝑆𝐴𝑥𝑖)

2

𝑛𝑖

𝑟

𝑖=1

. (6) 

The number of degrees of freedom for between 
groups sum of squares (BDF) is calculated as  

 
 

𝐵𝐷𝐹 = 𝑟 − 1. (7) 
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The number of degrees of freedom for within 
groups sum of squares (WDF) is calculated as follows:  

 
 

𝑊𝐷𝐹 = 𝑟 �
∑ 𝑛𝑖𝑟
𝑖=1

𝑟
− 1� . (8) 

The total degree of freedom (TDF) is calculated as 
follows:  

 
 

𝑇𝐷𝐹 = 𝑊𝐷𝐹 + 𝐵𝐷𝐹. (9) 
Finally the F value is calculated as 
  

𝐹 =
𝐵𝐺
𝐵𝐷𝐹
𝑊𝐺
𝑊𝐷𝐹

. (10) 

The F distribution (p=0.05) with the given BDF and WDF 
is then looked up. If the calculated F has higher value, we 
reject the null hypothesis and conclude that there is a 
significant difference between demonstrations for activation of 
the node. The node is then disconnected from the context 
node. The process is repeated for all nodes initially connected 
to the context node. Finally, weight values for the remaining 
nodes are calculated as 

𝑤𝑥 =
∑ 𝑁𝑥𝑖𝜇𝐴𝑥𝑖
𝑟
𝑖=1

𝑃
 (11) 

where 𝑁𝑥𝑖 is the number of samples for which node x has 
activation value above 0 during the ith demonstration, and P is 
the weighted sum for all nodes, calculated as 

𝑃 = ��𝑁𝑗𝑖𝜇𝐴𝑥𝑗𝑖

𝑛

𝑗=1

𝑟

𝑖=1

. (12) 

After the process of context forming, the goals are created 
and related contexts are associated to each one of them. 

 
Goal creation 
The purpose of designing a goal based architecture is to help 
the robot identifying the intentions of the tutor. A goal is a 
sequence of contexts that represents a complex behavior. 
Fulfilling a goal means reproducing the sequence of 
corresponding primitives according to certain conditions set 
by the actions. Some of these conditions can be inferred from 
the predefined SN and are learned during the context learning, 
while the rest are hard-coded in the action associated with the 
learned context. As an example depicted in Fig. 3, “farness” of 
an object in “Explore and Reach” action cannot be inferred 
from the SN since its value changes by each sensor read-outs. 
Therefore, such a dynamic parameter cannot be represented as 
a node in the SN. Thus, part of the condition must be hard-
coded to always check if the robot has sufficient distance to 
the object of attention in order to continue execution of the 
action. The relations between goals, contexts, actions and 
primitives are illustrated in Fig. 2 and elaborated in the next 
section. 

In order to create a new goal, one has to break down a 
complex behavior into a set of contexts such that each one 
represents a behavior primitive. Due to the architectural 
design, each context maps to one action and each action maps 

to one behavior primitive. Therefore, complex behaviors are 
broken down into parts that can be executed by single 
predefined actions. Each such part is learned as a context. This 
is done by matching the tele-operation commands during 
demonstration with hard coded primitives and actions. After 
finishing the learning process of one context, the tutor starts 
demonstrating the next context. Environmental conditions help 
the robot to automatically learn the subsequent context as a 
sequence of the preceding one. 

 
Fig. 2.  Relations between Goal, Context, Action, and Primitive 

 
One of the main assumptions is that actions and behavior 

primitives have a set of pre-defined parameters which applies 
to objects of attention. Both contexts and actions have objects 
of attention, which determine on which object to operate. All 
conditions defined in the actions are checked with the objects 
of attention. 

As long as the conditions are still satisfied, the associated 
behavior primitive will be executed. 

After completion of the high-level learning phase, all 
learned contexts and their corresponding actions are put 
together in a sequence, and a new goal object is created. New 
goals with associated contexts and corresponding actions are 
stored into a database for retrieval during the reproduction 
phase. 

IV. EXPERIMENTS 
 In this section we will present experimental results for 

learning and reproduction of new contexts. Consider, as an 
example, the behavior “Take the Rubble from Human” as part 
of an Urban Search and Rescue (USAR) application. The 
setting is a commercial/residential urban environment 
damaged by a severe earthquake. The goal for the robot is to 
assist a human agent cleaning a pile of rubbles covering a 
victim. The behavior starts with looking for a human agent, 
getting close to him/her, taking the rubble offered by the 
human, turning away and reaching the white sign (safe place). 
Fig. 3 depicts the “Take the Rubble from Human” goal, which 
shows the relations between contexts, their corresponding 
actions and objects of attention. The rest of the section 
explains how the robot can learn each context and reproduce 
the same behavior by perceiving similar environmental 
conditions.  
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The behavior is broken down into sub-behaviors such that 
each context can be associated to one of the pre-defined 
actions and primitives. It is the responsibility of the tutor to 
conduct the learning of each context in such a way that it can 
be associated with an action. The robot starts learning the first 
context “Find Human” as explained in Section III. This is 
illustrated in the left-most column in Figure 3.  

 
Fig. 3.  Structure of “Take rubble from human” goal 

 
The “Human Present” condition refers to a node connected 

to a high-level RFID sensor for detection of humans.  Most of 
the time, an object is detected within a fraction of a second. 
Therefore, by executing “Explore and Reach” action 
frequently via tele-operation until detecting a human, the robot 
will establish connections between the “Find Human” context 
node and objects perceived by the RFID tag reader. The tutor 
must tele-operate the robot until the correct conditions for 
each context is learned. The pre-defined SN used for learning 
all contexts is shown in Fig. 4. Some nodes represent concepts 
and are denoted category nodes, the rest represent real objects 
in the world and are simply denoted nodes. 

 
Fig. 4.  Predefined SN used for learning the contexts 

 
For learning the first context, “Find Human”, the robot 

recognizes “John” by the RFID tag on his bracelet during the 
exploration. As a result, the “John” node in the SN is 
activated and will spread the activation to the connecting 
nodes.  

The tutor tele-operates the robot to get close enough to 

“John” and stops the robot. This signals that learning of the 
first context is completed. Fig. 5 shows the activation levels of 
all nodes during the learning of “Find Human” context. The 
behavior has been demonstrated four times with the same 
person and objects.  

 
Fig. 5.  Node activation levels for learning the “Find Human” context 
perceived in four demonstrations 

 
Based on equations (1) to (10), results are calculated and 
shown in Table I. 

TABLE I 
“FIND HUMAN” CONTEXT LEARNING VALUES 

Node BG WG T BDF WDF TDF Cal. F 
John 0.403 23.25 23.65 3 104 107 0.6017 
Mary 0.016 0.93 0.94 3 104 107 0.6018 
Kate 0.016 0.93 0.94 3 104 107 0.6018 
David 0.016 0.93 0.94 3 104 107 0.6018 
Human 0.403 23.25 23.65 3 104 107 0.6017 
Explorable 0.016 0.93 0.94 3 104 107 0.6018 

 
For all nodes, the calculated F-ratio is less than the 

tabulated value for the F-distribution at significance level 
p=0.05 (2.688), which means that node activations from 
different demonstrations are from the same distribution, and 
all nodes should remain connected to the context node. 

The weight values for connecting nodes are calculated with 
equations (11) and (12) and are shown in Table II. 

TABLE II 
“FIND HUMAN” WEIGHT VALUES 

Node Weight 
John 0.403 
Mary 0.016 
Kate 0.016 
David 0.016 
Human 0.403 
Explorable 0.016 

 
The final relations for the “Find Human” context are shown 

in Fig. 6. The solid links are semantic relations that come from 
the pre-defined SN and the dashed links are learned during the 
demonstration. 
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Fig. 6.  “Find Human” context 

 
Also features, like “Explorable” or “Graspable”, are 

represented as nodes in the SN. This facilitates reasoning and 
allows the system to check if an object of attention can satisfy 
conditions of the actions.  

The learning process of the second context, “Get Rubble”, 
will start after robot reaches “John”. “John” picks up a piece 
of stone (Stone1) and offers it to the robot, while the tutor 
grabs the piece with the robot arm through tele-operation. 
While learning this context, the “Grab” action command and 
its linked primitive are executed by the tutor so the robot can 
recognize the action and associate it with the context.  

Through spreading activation, the concepts “Stone” and 
“John” will be generalized to “Rubble” and “Human” 
respectively. Therefore, the final SN does not only contain the 
objects perceived, but also similar objects. 

For the “Get Rubble” context, the tutor demonstrated the 
behavior four times with the same objects and person. The 
learning values are listed in Table III. 

TABLE III 
“GET RUBBLE” CONTEXT LEARNING VALUES 

Node BG WG T BDF WDF TDF Cal. F 
Concrete 0.004 0.264 0.268 3 82 85 0.429 
Stone 0.323 20.60 20.93 3 82 85 0.429 
Rubble 0.104 6.617 6.720 3 82 85 0.429 
Brick 0.004 0.264 0.268 3 82 85 0.429 
Stone1 0.323 20.60 20.93 3 82 85 0.429 
Human 0.051 6.487 6.538 3 82 85 0.215 
David 0.002 0.221 0.223 3 82 85 0.271 
John 0.054 5.526 5.581 3 82 85 0.271 
Mary 0.002 0.221 0.223 3 82 85 0.271 
Kate 0.002 0.221 0.223 3 82 85 0.271 
Graspable 0.004 0.264 0.268 3 82 85 0.429 
Explorable 0.004 0.645 0.650 3 82 85 0.201 

 
The tabulated value F (p=0.05) is 2.715, which means that 

all node activations are from the same distribution and as for 
the previous context, all nodes should remain connected. The 
weight values for remaining nodes are shown in Table IV. 

TABLE IV 
“GET RUBBLE” WEIGHT VALUES 

Node Weight 
Concrete 0.0149 
Stone 0.1315 
Rubble 0.0745 
Brick 0.0149 
Stone1 0.1315 
Human 0.2241 
David 0.0421 
John 0.2104 
Mary 0.0421 
Kate 0.0421 
Graspable 0.0149 
Explorable 0.057 

 
As illustrated in Fig. 7, the “Get Rubble” context gets 

connected to two categories: Human and Rubble. In the action 
layer shown in Fig. 3, the “Grab” action requires an object 
that is close and graspable. Thus, the only category that meets 
this requirement is the “Rubble”. Therefore, all the conditions 
set in the “Grab” action are applied to objects in the 
“Rubble” category. 

 
Fig. 7.  “Get Rubble” context 

 
The third and the last context to be learned is “Move 

Rubble” which starts when the robot holds the stone. The tutor 
tele-operates the robot to turn away from “John” and searches 
for the “Safe Sign”. After reaching the designated location, 
demonstration of the whole behavior is completed.  

The same computation is done for the “Move Rubble” 
context after four demonstrations. The computed values are 
listed in Table V. 

TABLE V 
“MOVE RUBBLE” CONTEXT LEARNING VALUES 

Node BG WG T BDF WDF TDF Cal. F 
Concrete 0.003 0.878 0.882 3 88 91 0.105 
Stone 0.042 17.75 17.79 3 88 91 0.07 
Rubble 0.005 6.661 6.667 3 88 91 0.026 
Brick 0.003 0.878 0.882 3 88 91 0.105 
Stone1 0.069 14.4 14.47 3 88 91 0.141 
Sign 0.305 23.83 24.13 3 88 91 0.376 
Safe Sign 0.069 14.4 14.47 3 88 91 0.141 
Color 0.069 14.4 14.47 3 88 91 0.141 
White 0.069 14.4 14.47 3 88 91 0.141 
Red 0.141 5.565 5.706 3 88 91 0.743 
Graspable 0.003 0.878 0.882 3 88 91 0.105 
Explorable 0.065 7.166 7.232 3 88 91 0.267 

 
The tabulated value F (p=0.05) is 2.708, which is larger 

than all calculated F. Therefore, all nodes remain connected 
also for this context. The weight values for remaining nodes 
are shown in Table VI. 

TABLE VI 
“MOVE RUBBLE” WEIGHT VALUES 

Node Weight 
Concrete 0.0299 
Stone 0.1652 
Rubble 0.0968 
Brick 0.0299 
Stone1 0.1503 
Sign 0.1091 
Safe Sign 0.1056 
Color 0.0853 
White 0.0853 
Red 0.0426 
Graspable 0.0299 
Explorable 0.0696 

 
What the robot has learned as “Move Rubble” is illustrated 

in Fig. 8. 
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Fig. 8.  “Move Rubble” context 

 
Finally, all learned contexts are grouped together 

automatically to form a new goal that represents the 
demonstrated behavior (Fig. 3). The sequencing is done 
automatically by the learning routine that sets the start of the 
subsequent context to be the end of the preceding one. 

V. GOAL INFERENCE 
During the reproduction phase, the robot pursues a goal that 

is implicitly or explicitly determined by the user. In both 
cases, the robot attempts to infer what goals to pursue and 
activate related contexts in sequence in order to reproduce the 
learned behavior.  

A. Implicit goal determination 
Implicit goal determination is a bottom-up approach. 

Perceived objects or concepts activate contexts which in turn 
activate connected goals. The highest activated goal is 
selected. The motivation system plays a key role in implicit 
goal inference by putting the robot into different tracks by 
stimulating it with cognitive activities such as priming and 
response facilitation. 

Continuing with the USAR scenario, suppose we prime the 
robot by showing a piece of concrete. As described earlier, 
concrete was not used directly in teaching but due to the 
generalization mechanism, contexts with connections to 
concrete or rubble in general will be activated. Goals 
connected to these contexts will be determined and listed. The 
goal connected to the highest activated context will be selected 
and the actions associated with the first context will be 
executed. Fig. 9 illustrates the goals and the effect of priming 
on selecting which goal to execute. In this example, the goal 
“Take the Rubble from Human” is selected. 

 

 
Fig. 9. Implicit goal determination; Priming causes the green goal and 
contexts to be selected for execution. 

 
The reason is the priming effect which activates both “Get 
Rubble” and “Move Rubble” contexts. The activation levels 
of both contexts totally depend on environmental conditions 
and perception, but both belong to the “Take the Rubble from 
Human” goal. After determining the goal, the robot begins 
strolling around and perceiving the environment to fulfill the 
“Human Present” condition for the first context, “Find 
Human”. Then, it starts executing the action assigned to the 
context and its corresponding primitive until the action 
conditions (“Near Object” or “Explorable”) are no longer 
satisfied. This means that the robot is able to find the human. 
Now, the second part of the sequence is selected and executed. 
The robot strolls around again until objects of attention 
required by the second context are perceived. According to 
Fig. 9, there are two possible choices as a second context: 
“Get Rubble” and “Report Victim”. The latter does not 
belong to the “Take the Rubble from Human” goal. As a 
result, “Get Rubble” and its associated action will be executed 
until the conditions (“Near Object” or “Graspable”) are no 
longer satisfied. At this stage, the robot will start the last part 
of the sequence and finally stop when it reaches the “white 
safe sign”. In Fig. 9, the robot’s choices are illustrated by 
green boxes and transitions between the contexts are shown 
with dashed green arrows. The actions and primitives are 
shown in Fig. 3. 

B. Explicit goal determination 
Beside implicit goal determination, the user may explicitly 

specify a goal for the robot. The robot will then select only the 
contexts that fulfill the specified goal. For instance, if a user 
specifies “Take the Rubble from Human” as goal, the robot 
will only check for relevant objects and select contexts that are 
part of the specified goal. Thus, the robot will work top-down 
to identify the first context of the goal and as a result look for 
objects of attention defined by the “Find Human” context. 
Depending on the current state of the robot and environment, 
it may skip executing the first context if it has already reached 
a human. Thus, it checks for the conditions defined by the 
“Get Rubble” context. The process of context activation and 
action reproduction continues until the whole sequence is 
completed. Fig. 10 illustrates the mechanism for explicit goal 
determination. The green boxes and numbers show how the 
robot manages the sequential execution of contexts to achieve 
the selected goal. 
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Fig. 10.  Explicit goal determination 
 

One of the main strengths of the presented design is the 
automatic execution of contexts in the right order. This is 
made possible by the learned conditions that guide the robot to 
do the right thing at the right time. 

VI. CONCLUSION 
In this paper we outlined an architecture for Learning from 

Demonstration. Considering strengths and weaknesses of other 
architectures, we proposed a new design for learning high-
level representation of the behaviors and associating them 
with behavior primitives. The modules of the architecture 
were elaborated and mechanisms for information flow 
discussed. The Multiple Demonstrations context learning 
technique was introduced and a mechanism to detect irrelevant 
nodes was elaborated.  

In this research we headed for goal based imitation learning, 
and by introducing goal creation and inference mechanisms, 
the robot was able to recognize the tutor’s intentions. With the 
help of the motivation system, the robot can reproduce learned 
behaviors and pursue specified goals. Finally, the procedure 
for setting explicit or implicit goals for the robot under the 
USAR application scenario was discussed.  
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Abstract 

In domains where robots carry out human’s tasks, the ability of learning new behaviors 

easily and quickly plays an important role. The idea behind Learning from Demonstration 

(LfD) is to identify what is the important information in the demonstrated behavior that 

requires remarkable attention from the robot. Furthermore, generalizing the learned behavior 

such that the robot is able to exhibit the same behavior under novel and unseen situations is 

another big challenge. 

The main goal of this paper is to incorporate Ant Colony Optimization algorithms into LfD 

in an approach which focuses on understanding tutor's intentions, purpose of demonstrations 

and learning conditions to exhibit a behavior. The proposed method combines Ant Colony 

Optimization algorithms with semantic networks and spreading activation mechanism to 

reason and generalize the knowledge obtained through demonstrations. The approach also 

provides structures for behavior reproduction under new circumstances. Finally, applicability 

of the system in an object shape classification scenario is evaluated. 

1. Introduction 

During the past years robot task learning has received remarkable attention and 

motivated the robotics community to take a deeper interest in a technique based on 

human skill learning from observation (Billard et al., 2008). In robotics, such an 

approach fits in the framework of Learning from Demonstration (LfD). LfD is a 

promising way to naturally and intuitively teach robots new behaviors (skills) by 

demonstrating how to achieve the behavior (Argall et al., 2009). Applying LfD does 

not require any expert knowledge of robotics or domain dynamics, so it can easily be 

applied by non-roboticist users for straightforward or even non-trivial behaviors. 

While there are well known advantages to LfD, number of questions have to be 

answered in order to have true imitation which brought up to attention by Schaal 

Applying Ant Colony Optimization algorithms  

for High-Level Behavior Learning and  

Reproduction from Demonstrations 
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(Schaal, 1999) and Demiris et al. (Demiris and Hayes, 2002). These central questions 

are known as “Big Five” and include “Who to imitate?”, “When to imitate?”, “How 

to imitate?”, “What to imitate?” and “How to evaluate successful imitation?” ( 

Dautenhahn and Nehaniv, 2002). Exhaustive overview of LfD and “Big Five” can be 

found here (Billard et al., 2008; Argall et al., 2009; Breazeal and Scassellati, 2002). 

Among those, How and What are mostly studied in the literature and approaches to 

face these challenges are from both high and low-level. The low-level is referred to 

mapping of sensory-motor information which produces actions that are performed by 

robot's actuators. Works by Mataric (Mataric, 2002), Dillmann (Dillmann, 2004), 

Ekvall et al. (Ekvall and Kragic, 2005), Pastor et al. (Pastor et al., 2009), Billing et al. 

(Billing and Hellström, 2010) and many others addressed the low-level perspective of 

LfD. The other aspect is referred to high-level and focuses on tutor's intention, goal of 

demonstration and to what objects, concepts or environmental states robot must direct 

its attention. In order to fully reproduce observed behaviors, understanding goals and 

results of actions are necessary. Otherwise, robot may produce the same motor 

actions, but they might have different effects to the world. Therefore, developing a 

sophisticated attention mechanism to identify the most important elements of 

demonstrations is essential. Works by Mahmoodian et al. (Mahmoodian et al., 2013), 

Hajimirsadeghi et al. (Hajimirsadeghi et al., 2012), Cakmak et al. (Cakmak et al., 

2009), Erlhagen et al. (Erlhagen et al., 2006) and Chao et al. (Chao et al., 2011) 

addressed challenges of conceptualization and goal identification from 

demonstrations.     

Under the LfD learning mechanism, first, tutor demonstrates a desired behavior to 

the robot so it produces mappings of sensory-motor states and generalizes the 

mappings to new examples. There are mainly two ways of conducting a 

demonstration for the robot (Ekvall, 2007): 

1. Direct-learning: In this approach the tutor demonstrates a behavior directly by 

manually steering the robot using some devices such as a joystick. 

2. Indirect-learning: In this approach the tutor enacts a behavior and the robot 

learns it by observation. Usually, vision and some other remote sensing methods are 

applied to record the demonstration. In this work indirect-learning has been applied 

and RFID sensing is used to record environmental states containing objects that 

appeared during demonstrations. This method is explained in detail in section 4. 

Generalization is not only applied to low-level skills, but also in learning concepts 

and high-level representation of behaviors has a significant role. According to 

Mitchell et al. (Mitchell et al., 1986), generalization defined as a process of 

identifying common features from observing a set of training examples and forming a 

concept definition based on these features. We are interested in designing learning 

methods that are able to extend the knowledge from learned behaviors under known 

circumstances, to novel and unseen situations.  

In the current paper, we address the What and When questions from high-level 

perspective while employing methods to learn and reproduce motor actions from 
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demonstrations. Therefore, our proposed methods are only able to learn and reproduce 

high-level aspects of demonstrated behaviors. For this purpose, we utilized Semantic 

Network (SN) as a model to represent behaviors by nodes and linked them to a set of 

other nodes which are basically corresponding to concepts and objects in the real 

world. The network contains list of concepts, objects and their properties required for 

learning and reproduction of behaviors and must be provided prior to 

learning/reproduction process. The learned behaviors are then used as object 

affordances as well as preparing the ground for behavior arbitration. Our learning 

methods also provide techniques to learn conditions that result in the behavior and 

thus answer the question of When to imitate. These conditions can be environmental, 

objects to use, and concepts related to demonstrated behavior. Therefore, depending 

on the amount of knowledge available in the SN, robot may perceive enormous 

amounts of information during the learning. In so many cases when the desired 

behavior has a high degree of complexity or is demonstrated in an ambiguous manner, 

the robot requires a bias in order to focus on the right aspects of demonstration 

(Bensch and Hellström, 2010). By having a controller from a higher abstraction level 

to guide the robot especially during the learning phase, the robot’s attention can be 

directed to aspects of demonstration that are significant for the behavior it is learning. 

This controller is a part of an architecture that has been proposed and developed in our 

previous works (Fonooni et al., 2012; Fonooni et al., 2013) and is employed in the 

current paper. However, we will not go through details of the used architecture. 

Our learning method from previous paper (Fonooni et al., 2013) is based on one-

way ANOVA test and has limitations due to the imposed statistical constraints. This 

prevents it from being successfully applicable in learning behaviors that are performed 

in noisy environments. Hence, to overcome this issue, our new method views the 

problem of behavior learning as an optimization problem and attempts to apply ACO 

algorithms to determine the most related elements of demonstrations.  

Ant Colony Optimization (ACO) is a metaheuristic that has been used to solve 

numerous complex engineering problems that can be represented as discrete 

optimization problems (Dorigo and Stützle, 2002). ACO implements the pheromone-

laying behavior that natural ant colonies use to store the information about the 

environment, which can then be locally accessed by any member of the colony. In 

most of the cases, the goal of applying the ACO is to find the shortest path between 

the points in the solution space or to extract the accumulated pheromone pattern 

(Jevtić, 2011).  

This work proposes, as an original contribution, the use of semantic networks for 

biasing the robot and use of ACO algorithms to learn new behaviors and define degree 

of generalization in order to exhibit the learned behaviors in new and unseen 

situations.  

The general design methodology for Swarm Intelligence tools proposed in (Jevtić, 

2011) is used to develop the ACO-based learning algorithm. The proposed 

methodology consists of the following steps: 
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• Define the nodes that constitute the discrete data space in which the ants move. 

• Define the set of application-specific variables and calculate probabilities of the 

displacement to the neighboring nodes. 

• Apply the roulette rule as the underlying decision-making mechanism. 

• Define the objective function for solutions evaluation. 

The rest of the article is organized in the following manner: section 2 presents 

principal elements of Semantic Networks, section 3 presents the theory of ACO 

algorithms, section 4 presents the descriptions of learning and reproduction of high-

level representation of behaviors, section 5 presents some of the tests and results, and 

finally section 6 presents conclusions. 

2. Semantic Networks 

The main concern in modeling the world is how to structure and generalize 

information. Semantic Networks (SN) are common techniques to represent abstract 

knowledge in systems based on artificial intelligence. In robotics, SN is used more 

often for concept forming, situational awareness (Coradeschi and Saffiotti, 2003) and 

task planning (Galindo et al., 2007). In concept forming, monitoring the robot’s 

attentional state to understand the amount of resources being engaged for each 

element of the demonstration is essential for a tutor during the learning period. 

Therefore, SN has been used to help the tutor check whether the robot is focusing on 

the right elements or if it needs a bias to get back on the right track.  

The initial semantic network is predefined and contains all necessary concepts and 

objects that the robot is able to work with. Fig. 1 is an example of such a network 

used in our experiments. In the current research, high-level concepts such as object 

categories (“Basket”, “Cylindrical”, ...) and objects (“C1”, “B1”, …) are represented 

as nodes while their relations are represented as links in the SN. Nodes are connected 

to their child nodes in both directions, and all bidirectional links are representing 

associations. 

A learned behavior is also represented by node in the SN and in the scope of this 

paper named as context. The context is a node which is formed by the learning 

method due to robot's perceptions and contains associations to all objects, concepts 

and environmental states related to the demonstrated behavior.  

A common reason for using SN as a model of the world is its ability to generalize 

information (Rogers, 2008). After each demonstration, the robot is able to extend the 

learned behavior under known circumstances to new, related situations. Assume that 

the robot learns how to clean the environment from a pile of bricks. By generalizing 

the brick concept to all kinds of rubble, it will also engage the cleaning behavior 

when observing a pile of concrete shards. The generalization is done by spreading 

activation which is a fundamental function in the SN (Crestani, 1997). 
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Figure 1. Example of predefined SN used in our experiments. Green nodes are representing concepts while 

yellow ones are representing objects. 

2.1 Spreading Activation 

The predefined SN is not informative per se, it requires a method to query the 

network and retrieve the information; this method is called Spreading Activation. 

The hierarchical network model is the base for long-term memory which contains 

interconnected nodes of information. The connections implement associations 

between the nodes and can control how to retrieve information.  

When a node is activated by perceptual input, its activation value is set to 1.0, 

which is then propagated to its connections depending on weight values, energy 

levels and decay factor. We suppose all the links have initial weight values 

depending on the number of connections their parents have. For instance, according 

to Fig. 1, the “Color” node has five connections (“Green”, “Blue”, “Yellow”, 

“Red” and “White”), thus connections from “Color” node to each of them have 

initial weight values equal to 0.2. Moreover, “White” has only one connection and 

that sets the initial weight value of the connection from “White” to “Color” to 1.0. 

This example also shows that due to having bidirectional links between nodes, 

weight values of two connected nodes are not necessarily identical. 

The second parameter is the energy level that in combination with the decay factor 

controls how far activation propagates (Huang et al., 2006). These parameters control 
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the degree of generalization, that is, how far the concept is extended to be less 

specific. As an example, “B1” is “Cylindrical” and “Cylindrical” is a “Basket”, so 

we can deduce that “B1” is a “Basket”. In other words, we generalize from “B1” 

which is highly specific to “Basket” which is less specific. The formulation for 

spreading activation used in this article is as follows: 

 

           
               

 

                              

                                                               

  (1) 

where       is activation value of node j at time t,  

      is activation value of node i, parent of node j, at time t, 

Δt is duration of a time step, 

        is decay factor, 

and    is the weight value of the connection from node i to j and         . 

   is energy level of node i and calculated as follows: 

 

           
                

 

                           

                                                                      

  (2) 

where       is energy level of parent of node i and            , Cn is a set consist 

of child nodes of node n. 

e0 is energy threshold, which is used to avoid firing activation in a loop. Since 

nodes can be connected in loops, firing activation from a node can run forever unless 

its energy is limited.  

The decay factor (d) is a distance constraint that is used to control the degree of 

generalization. The rationale behind decay factor is that the strength of relation 

between two nodes decreases with their semantic distance (Crestani, 1997). 

Consequently, setting d close to 1.0 allows the system to generalize the context to the 

whole network while setting it to 0.0 results in more specific context. 

2.2 RFID Sensing and Spreading Activation 

Nodes are activated through perception of their corresponding object, person or 

location in the environment. The set of concepts, objects and their features are 

available as an ontology in the form of a predefined SN. Each object node is mapped 

to a RFID tag number and is detected by a RFID reader. By reading a tag number 

with the RFID reader, the associated object node and all its connected nodes will 

receive activation, meaning that the robot has perceived the object and recalled its 
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features. As mentioned earlier, the number of nodes that the activation spreads to is 

proportionate to energy level of the parent node and the energy threshold. 

There are also other techniques available to apply as a substitute to the RFID 

technique but require much more complicated technology, like image processing and 

vision techniques which are not concerns of the present research.  

3. Ant Algorithms 

The first successful Ant Colony Optimization (ACO) algorithm was introduced by 

Marco Dorigo who was inspired by biological works of Deneubourg and colleagues 

(Dorigo and Stützle, 2004). They proposed stochastic model of ant’s behavior by 

observing ant colonies and how they are searching for the shortest path between food 

sources and their nest (Deneubourg et al., 1990). The algorithm simulates foraging 

behavior of Argentine ants, which is to explore the surrounding area randomly and 

leave a pheromone trail on the ground while moving. In case of finding food, on their 

way back to the nest, they will leave a trail of pheromone whose quantity depends on 

the quality of the found food. This will guide other ants to choose the path that leads 

to high quality food by tracing the paths with strong pheromone concentrations 

(Blum, 2005). This way of indirect communication between the ants is named 

stigmergy (Marsh and Onof, 2008). In order to allow the ants to always search for 

better solutions, negative feedback through pheromone evaporation is applied to 

restrain the ants from taking the same path. 

In the following sections we are going to give an overview of Ant System (AS) and 

Ant Colony System (ACS) meta- heuristic algorithms based on our application of LfD 

using predefined SN. 

3.1 Ant System (AS) Algorithm Description 

ACO is a collection of meta-heuristic techniques in which the Ant System (AS) is 

the first algorithm proposed in the literature (Dorigo et al., 1996). An important 

question about AS technique is how it updates the pheromone values of the paths that 

are explored by all m ants. The pheromone value        associated with the edge 

between node r and s is updated as follows: 

                             

 

   

 (3) 

where   is the pheromone evaporation rate, 

m is total number of ants, 

and          is the quantity of pheromone laid on edge (r,s) by ant k formulated as 

follows: 

          
                                     
                                                        

  (4) 
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  ,    is number of levels traversed by ant k and a is activation value of 

starting node. 

While building a solution, ants choose the next node according to a probability 

distribution: 

         

                  

                          

                                    

    

           

(5) 

where       is the set of feasible nodes containing edges (r, l) where l is a node not 

yet visited by ant k. Parameter   is used to control the relative importance of the 

pheromone versus the heuristic information       , defined as: 

 

   
 

 
 (6) 

where L is number of intermediary connections from the starting node to the 

context node. The context node in SN represents the demonstrated behavior or sub-

behavior that the robot is about to learn. It is set to be a goal for ants, so they leave 

more pheromone trails on a path that leads to the context node. The full explanation of 

AS usage in learning contexts is given in section 4. 

3.2 Ant Colony System (ACS) Algorithm Description 

The ACS is an extension to the Ant System algorithm. The principal differences 

between ACS and AS are changes in the node transition rule and the global 

pheromone updating rule (Dorigo and Gambardella, 1997). In ACS each ant builds a 

feasible solution to the goal node by applying the node transition rule (7) repeatedly. 

By passing each edge, an ant updates the amount of pheromone on the visited edges 

using the local pheromone update rule (8). After all ants have finished their tour, the 

amount of pheromone will be updated once more using the global pheromone update 

rule (9). This only gives the best ants, which were able to construct the best solution 

from the beginning of the trial, the chance to update the pheromone values. The node 

transition rule in ACS is formulated as follows: 

 

   
                                 

                                                      
              (7) 

where q is a random number uniformly distributed in [0,1],    is a parameter 

ranging within 0        1, and S is a random variable selected according to 

probability distribution given in (5). The parameter    determines the relative 

importance of exploitation versus exploration. A random number q is generated and 

according to (7), the best edge is selected (exploitation) or any edge will be selected 

according to (5). All other parameters are as same as the ones explained in AS 

algorithm. The local pheromone updating rule is calculated as: 
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                          (8) 

where    is the initial pheromone level and all parameters are as same as (3). The 

global pheromone updating rule is formulated as: 

                               (9) 

where 

         

 

   
                                 

                                                        

   (10) 

and     is the minimum level of the globally best tour from the beginning of the 

trial. 

4. Learning and Reproducing Behaviors 

4.1 Learning 

The proposed approach is aimed for teaching the robot the necessary conditions 

used for reproducing behaviors, and control the way it generalizes the learned 

conditions. The conditions are environmental states, presence and properties of 

perceived objects, and associations to other nodes in the semantic network. During 

the learning phase, the nodes representing the conditions are linked to a new node, 

denoted context node. What the robot perceives is linked to the context node directly 

and thus activation value of the perceived node spreads simultaneously to all its 

connections according to equations (1) and (2). All other activated nodes are 

conjointly linked to the context node as a result. 

The learning phase starts by demonstrating the desired behavior several times with 

teleoperation. During each demonstration, the robot perceives objects in the 

environment with an RFID sensor, and the corresponding nodes are activated, 

accompanied by spreading activation that activates several other nodes in varying 

degrees. The constructed SN containing context node and all connected nodes are 

sampled every 500ms and the activation values of each node (except the context 

node) are stored. This data may be displayed in activation charts as shown with an 

example in Fig. 2. 
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Figure 2. Activation chart of an object denoted “C1”. The x-axis is the seconds and the y-axis is the 

activation values. 

 

Similar activation charts can be constructed also for nodes that received activation 

through spreading activation. 

In the shown example, the total number of samples is 26 for the first 

demonstration, and object “C1” appeared from the 7th sample. The activation values 

for samples 0 to 6 are set to 0 and the rest are set through the sensing mechanism (in 

our case the RFID tag reader) or propagation from other nodes. 

At the end of each demonstration, the new context node and its connections can be 

established. Fig. 3 shows a sample learned context and its connections after the 

demonstrations. This procedure elaborated in section 5. 
 

 
Figure 3. “Collect Cylindrical Object” context learned as a result of series of demonstrations. 

 

At the end of each demonstration, the constructed network (e.g. Fig. 3) which is a 

small portion of predefined SN (Fig. 1) including the context node is used for 

applying ant algorithms. 

4.1.1 Proposed Methodology 

The ACO-based learning algorithm is developed according to the general design 

methodology for Swarm Intelligence tools (Jevtić, 2011). The methodology steps are 

applied as follows:  

 The nodes of the semantic network constitute the discrete data space in 

which the ants move using as paths the connections between the nodes. 

        is pheromone update function and        corresponds to number of 

connections from the starting node to the context node. Both are used for 

node transition rule in equation (5).   
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 Roulette rule is applied as the underlying decision-making mechanism. 

 The objective is to keep nodes that their connections propagate higher 

amount of activation to the context node. Therefore, provided solutions are 

evaluated by a threshold to identify which nodes in the built path must be 

remained or removed.  

AS and ACS algorithms are applied with the aim to identify and strengthen 

connections which can fire more activation from the activated node to the context 

node. Therefore, we are interested more in nodes with less distance to the context 

node. As an example, according to Fig. 3, “B1” connects directly (one level away) to 

“Collect Cylindrical Object”, while “B1” is 2 levels away from “Basket” to 

“Collect Cylindrical Object”. As a result, “B1” to “Collect Cylindrical Object” 

connection is more attractive to the ants. In this strategy, nodes closer to the context 

node are considered more relevant; therefore their connections will receive higher 

weight values.  

An important point to emphasize is the way in which the ant algorithms are used 

in this paper. We are not only searching for the shortest path with minimum number 

of connections to the context node. Rather, we are interested in the amount of 

pheromone laid on each connection since we can calculate the weight values of the 

connections based on their pheromone levels. In this paper, weights and pheromone 

levels are considered the same; the only parameter that determines which nodes are 

irrelevant is the pheromone threshold. By setting a value between 0 and 1, 

connections below the threshold will be removed and weights are calculated only for 

the remaining connections. According to equations (4) and (10), the amount of 

pheromones laid by each ant on a connection depends on two parameters: i) the 

activation value of the start node ii) the number of levels from the starting node to 

the context node. Therefore, nodes that receive high activation values and are close 

to the context node (few levels) are considered more relevant. This is due to the ants 

that lay more pheromones on these connections, which increase the probability of 

other ants choosing the same path in subsequent iterations.  

The number of ants in each iteration equals the number of samples in each 

demonstration. For each node in the SN shown in Fig. 3, except the context node, 

there will be an ant traversing from the node and finishing in the context node. After 

reaching the context node, the ant is taken out. The procedure is as follows: 

1) The number of samples in the demonstration is determined. 

2) The list of nodes that are activated and assigned to the context node is provided. 

3) For each node in the list and for each sample, an ant will be released to traverse 

the network. 

4) Node transitions and pheromone update are performed according to (5) and (3) for 

AS and (7) and (9) for ACS. 

5) When an ant reaches the context node, it will be taken out. 

6) Steps 3 to 5 will be run with fixed number of iterations. 

7) Repeat steps 1 to 6 for each demonstration. 
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8) Pheromone levels of each connection are normalized between 0 and 1. 

9) Connections with pheromones above a given threshold remain connected and the 

rest are removed. 

10) Weight values of the remained connections are set to the calculated pheromone 

levels. 

Regarding generalization, there are two approaches: 

a) Before applying ACO algorithm, system controls degree of generalization 

according to the energy values and spreading activation mechanism. This will result 

in a learning network based on predefined SN that has only a context node and set of 

activated nodes. So, ACO algorithms are only used for determining the most relevant 

connections in the learning network and calculating their respective weight values. 

b) The ant algorithms determine the amount of generalization and which 

connections should be strengthened.  

In our experiments we used the first approach. 

Since this research does not focus on learning low-level representation of 

behaviors, we applied Predictive Sequential Learning (PSL) algorithm for learning 

and executing low-level behaviors that are mappings of sensory-motor states (Billing 

and Hellström, 2010; Billing et al., 2010; Billing et al., 2008). Furthermore, we have 

developed a cognitive architecture that utilizes hard-coded action-primitive pairs 

instead of PSL to execute simple low-level behaviors (Fonooni et al., 2013). The 

high-level learning technique based on ACO algorithms can be integrated with both 

approaches. Hence, we run the experiments regardless of which approach for low-

level learning and control has been selected. 

4.2 Reproduction and Behavior Arbitration 

In order to reproduce a learned behavior, a context must be activated, which means 

that the conditions learned for the context must be fulfilled. The robot senses the 

environment with the RFID reader and perceived RFID tags activate corresponding 

nodes in the semantic network. Activation levels of nodes propagate according to 

spreading activation mechanism elaborated in section 2, and may in this process 

activate one or several learned contexts. The highest activated context will be 

selected, and the robot executes the associated behavior as described in (Fonooni et 

al., 2013). 

Behavior arbitration refers to process of taking a control from one module of an 

architecture and delegate it to another module (Scheutz, 2002). In our architecture 

design (Fonooni et al., 2013), high-level controller is dominant over low-level 

controller meaning that all actions performed by the robot must initiate from the high-

level controller. However, low-level controller has the ability to learn sensory-motor 

skills and control the robot solely. Therefore, reproduction refers to arbitrating the 

behavior by performing an actuator action according to the corresponding highly 

activated context.  
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5. Experimental Results 

In the presented experiments the robot is taught to collect objects with particular 

shapes, and then place them in designated baskets regardless of their color and size. 

The shapes are cylindrical, triangular and square and the objects should be placed in 

baskets with the same shape. We run the experiment with three objects with the same 

shape such that two of them are used for learning, and one is used for reproduction. 

Each object has associated color, shape and type as depicted in Fig. 1. Collecting and 

placing in the right basket will be demonstrated separately in two consecutive 

demonstrations. For the “Collect Cylindrical Object” context, the robot recognizes 

“C1” and “B1” objects (“C1” is a medium sized blue cylindrical object and “B1” is a 

blue cylindrical basket) by their RFID tags. As a result, the “C1” and “B1” nodes in 

the predefined SN are activated and spread activation to all connected nodes. The 

tutor teleoperates the robot to get close enough to “C1”, grabs it and places it in the 

basket. Finally, the tutor signals the system that learning of the context is completed. 

A similar demonstration is run a second time with the “C2” and “B1” objects. “C2” 

is a small sized red cylindrical object. Activation charts of perceived nodes in both 

demonstrations are shown in Fig. 4.  

 

 
Figure 4. Node activation levels for learning the “Collect Cylindrical Object” context perceived in two demonstrations. 

 

Subsequently, learning of the “Collect Triangular Object” context begins with 

teleoperating the robot to grab “T1” and place it in “B2”. “T1” is an extra small sized 

blue triangular object and “B2” is a red triangular basket. “T2”, a small red triangular 

object is used in the second demonstration along with “B2” as the basket. Activation 

charts of perceived nodes in both demonstrations are shown in Fig. 5. 
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Figure 5. Node activation levels for learning the “Collect Triangular Object” context perceived in two 

demonstrations. 

 

Finally, learning of the “Collect Square Object” context is carried out with 

“SQ1”, a large sized green square object and “B3” which is a square shaped basket. 

In the second demonstration, “SQ2”, a medium sized blue square object is used 

together with “B3”. Fig. 6 shows the activation charts of perceived nodes in both 

demonstrations. 

 

 
Figure 6. Node activation levels for learning the “Collect Square Object” context perceived in two 

demonstrations. 
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AS and ACS are then run on the collected data to identify which nodes to connect 

to each context. These connections will be trimmed and the weight values will be 

calculated for the remaining connections. 

5.1 AS Results 

In the first experiment we used AS algorithm with following parameters: 

     ,    , pheromone threshold = 0.7, iteration = 30. 

Given a predefined SN according to Fig. 1, energy threshold equals 0.2 and 

decaying factor equals 1.0, system generalizes to the whole network. Table I lists 

normalized pheromone values for connections between each node and the “Collect 

Cylindrical Object” context node which are also used as weight values. 

TABLE I.  PHEROMONE VALUES FOR CONNECTIONS TO THE  “COLLECT CYLINDRICAL OBJECT” 

CONTEXT. THE CALCULATED VALUES ARE BASED ON  THE AS ALGORITHM.  

Node Pheromone Value / Weight 

B1 1.0 

Basket 0.9834 

Cylindrical 0.8006 

C2 0.6889 

C1 0.5984 

Blue 0.1433 

M 0.1239 

S 0.0948 

Red 0.0761 

Size 0.0192 

Color 0.0 

 

According to our learning goal, the robot should be able to collect objects and 

place them in the corresponding basket regardless of their color and size. The results 

show that the AS algorithm is capable of distinguishing between relevant and 
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irrelevant nodes by giving highest pheromone level to the “B1”, “Basket” and 

“Cylindrical” nodes. This means the context is activated by any cylindrical object 

together with “B1”, the basket designated for cylindrical objects. Fig. 7 shows the 

final “Collect Cylindrical Object” context formed by AS algorithm. The green 

dashed lines are established during the learning phase and weights are calculated 

only for these links. The red lines are showing associations which are provided in the 

pre-defined SN. 

 

 
Figure 7. “Collect Cylindrical Object” context learned with AS algorithm after two demonstrations. 

 

Table II lists pheromone values of connections between each node and the 

“Collect Triangular Object” context node. The same scenario as cylindrical objects 

has been arranged with the slight change in the type of objects to collect. 

TABLE II.  PHEROMONE VALUES FOR CONNECTIONS TO THE “COLLECT TRIANGULAR OBJECT” 

CONTEXT. THE CALCULATED VALUES ARE BASED ON  THE AS ALGORITHM. 

Node Pheromone Value / Weight 

Basket 1.0 

B2 0.8826 

Triangular 0.7563 

T2 0.5954 

T1 0.4654 

XS 0.0989 

S 0.0337 

Blue 0.033 

Size 0.0025 

Color 0.0 
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Fig. 8 shows the final “Collect Triangular Object” context formed by AS 

algorithm. 

 

 
Figure 8. “Collect Triangular Object” context learned with AS algorithm after two demonstrations. 

 

In the same way as for cylindrical objects, the AS algorithm identifies the 

irrelevant nodes. Conditions to be fulfilled in order to activate the context are any 

triangular object together with “B2”. 

The last context is “Collect Square Object”, for which the results are listed in 

Table III and Figure 9.  

TABLE III.  PHEROMONE VALUES FOR CONNECTIONS TO THE “COLLECT SQUARE OBJECT” CONTEXT. 
THE CALCULATED VALUES ARE BASED ON  THE AS ALGORITHM.  

Node Pheromone Value / Weight 

B3 1.0 

Basket 0.9793 

Square 0.7583 

SQ1 0.6425 

SQ2 0.5924 

Green 0.1566 

M 0.1127 

L 0.099 

Blue 0.0649 

Size 0.002 

Color 0.0 
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Figure 9. “Collect Square Object” context learned with AS algorithm after two demonstrations. 

5.2 ACS Results 

In this experiment we used the same provided data and run ACS with following 

parameters: 

      ,      ,    ,       , threshold=0.7, iteration=30. 

The energy threshold and decay factor are set as in for AS, so the system 

generalizes to the same level. Table IV lists the results of the trimming process for 

“Collect Cylindrical Object” context. 

TABLE IV.  PHEROMONE VALUES FOR CONNECTIONS TO THE  “COLLECT CYLINDRICAL OBJECT” 

CONTEXT. THE CALCULATED VALUES ARE BASED ON  THE ACS ALGORITHM. 

Node Pheromone Value / Weight 

Basket 1.0 

B1 0.8869 

C2 0.8804 

C1 0.872 

Cylindrical 0.7784 

Red 0.2495 

Blue 0.2484 

M 0.2412 

Size 0.1917 

Color 0.1346 
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Node Pheromone Value / Weight 

S 0.0 

 

Fig. 10 depicts the final “Collect Cylindrical Object” context formed by ACS 

algorithm. 

 

 
Figure 10. “Collect Cylindrical Object” context learned with ACS algorithm after two 

demonstrations. 

 

While learning the context resulted in almost the same network topology as the 

one provided by the AS algorithm, ACS identified “C1” and “C2” nodes as relevant 

which are not considered relevant by AS. The rationale behind this is that ACS 

strengthens connections by giving ants that were able to construct the best solution 

from the beginning of the trial the opportunity to update the pheromone values. 

Conforming to ACS formulations, nodes with fewer intermediate connections to the 

context node are considered more relevant and since both “C1” and “C2” nodes are 

directly connected to the context node, ants were choosing these paths more often as 

the others.  

Table V lists results of pheromone values of connections between each node and 

the “Collect Triangular Object” context node.  

TABLE V.  PHEROMONE VALUES FOR CONNECTIONS TO THE  “COLLECT TRIANGULAR OBJECT” 

CONTEXT. THE CALCULATED VALUES ARE BASED ON  THE ACS ALGORITHM. 

Node Pheromone Value / Weight 

Basket 1.0 

B2 0.8893 

T1 0.8815 

T2 0.8785 
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Node Pheromone Value / Weight 

Triangular 0.8342 

XS 0.269 

Size 0.2275 

Color 0.2273 

Blue 0.2238 

S 0.0 

 

Fig. 11 shows the final “Collect Triangular Object” context formed by ACS 

algorithm. 

 

 
Figure 11. “Collect Triangular Object” context learned with ACS algorithm after two demonstrations. 

 

Similarly, “T1” and “T2” nodes remain connected as well as the other nodes 

identified previously by the AS algorithm. 

Finally, for the last context, “Collect Square Object”, the results are listed in 

Table VI.  

TABLE VI.  PHEROMONE VALUES FOR CONNECTIONS TO THE  “COLLECT SQUARE OBJECT” CONTEXT. 
THE CALCULATED VALUES ARE BASED ON  THE ACS ALGORITHM. 

Node Pheromone Value / Weight 

Basket 1.0 

B3 0.8725 

SQ1 0.8483 
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Node Pheromone Value / Weight 

Square 0.8109 

Green 0.1893 

SQ2 0.1818 

Blue 0.1805 

L 0.1543 

Color 0.1268 

Size 0.1233 

M 0.0 

 

Fig. 12 shows the final “Collect Square Object” context formed by ACS 

algorithm. 

 

 
Figure 12. “Collect Square Object” context learned with ACS algorithm after two demonstrations. 

 

Unlike the two previous contexts learned by ACS, the “SQ2” node is not 

considered relevant. This will not generate any problems during the reproduction 

phase since the essential nodes are still determined as relevant. 

5.3 Reproduction Results 

In order to evaluate the learned contexts, we put the robot in previously unseen 

situations, thereby showing the generalization ability of the system. The robot should 

identify a new object, determine its shape and other properties, and activate the 

appropriate context to collect the object. Depending on the selected context, a low-

level actuator action based on PSL or action-primitives in the low-level controller 

will be executed. Since both AS and ACS algorithms resulted in almost the same 
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network topology, we used contexts learned by AS for our experiments, and all 

parameters for spreading activation and initial weight values are set as described in 

section 2.1 plus the decay factor which is set to 0.7. 

The “C3” object (extra small yellow cylindrical object), which was not seen by the 

robot during the learning phase was placed in the environment along with “B1”, 

“B2” and “B3”. Perceptions of objects RFID tags activate corresponding nodes in the 

predefined SN and spreads to all connected nodes. The spreading activation is 

controlled by equations (1) and (2), and the amount of activation received by each 

node is illustrated in Fig. 13. 

 

 
Figure 13. Activation levels of all nodes affected while perceiving “C3”, “B1”, “B2” and “B3” 

objects. 

As a result, all three contexts are activated to some extent due to the satisfying 

conditions. The highest activated context is the winner, in this case the “Collect 

Cylindrical Object” with 2.1225 as activation level. 

Replacing the “C3” object with “T3” (medium sized yellow triangular object), 

which is also a new object for the robot, together with “B1”, “B2” and “B3”, resulted 

in activation of nodes as shown in Fig. 14. 
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Figure 14. Activation levels of all nodes affected while perceiving “T3”, “B1”, “B2” and “B3” 

objects. 

The highest activated context in this setup is the “Collect Triangular Object” with 

2.0266 as activation level. 

Replacement of “T3” object with a new object “SQ3” (medium sized red square 

object) in combination with “B1”, “B2” and “B3” resulted in activation of nodes as 

shown in Fig. 15. 

 

 
Figure 15. Activation levels of all nodes affected while perceiving “SQ3”, “B1”, “B2” and “B3” 

objects. 

The highest activated context in this arrangement is the “Collect Square Object” 

with 2.0911 as activation level. 

The results clearly show that the robot is able to characterize each one of the new 

objects correctly and engage the relevant contexts accordingly.  

The context selection also initiates the process of delivering the selected context to 

the low-level controller and thus its corresponding action is exhibited by the robot.  
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6. Conclusions 

This paper addresses the challenge of “What to imitate?” and “When to imitate?” 

from higher level perspective. In the real world scenarios, concepts plus objects of 

attention that surround the robot have severe impact on the learning process. 

Supposing an ambiguous demonstration encompassing numerous distracting objects, 

a technique to draw the robot’s attention to significant aspects of demonstration is 

needed. Therefore, a learning method with ACO algorithms and semantic networks 

for facing the challenges is introduced. The method also employed spreading 

activation mechanism to provide generalization of concepts while learning high-level 

representation of behaviors.  

As mentioned earlier, the method proposed previously (Fonooni et al., 2013), 

utilized one-way ANOVA test as a mechanism for identifying relevant elements of 

demonstrations. This method by its nature is not noise tolerant which makes it 

inapplicable to scenarios with significant amount of noise. Substitution of ACO 

algorithms for one-way ANOVA test allows the system to successfully recognize the 

intentions of the tutor and associate the learned behavior (context) with the correct 

set of nodes activated through robot's perceptions. Although, the AS and ACS have 

slight differences in the produced network topologies of the contexts, both are proved 

to be suitable in learning behaviors. Evaluation of these algorithms is done by the 

tutor or the end user who clearly aware of the purpose of demonstrations. Therefore 

they can check whether the robot has learned the associations correctly or the 

demonstration must be repeated again. In case of learning a behavior correctly, 

robot’s actions must have the same effects to the world as the one demonstrated by 

the tutor and thus have to achieve the same goals. Currently, quantitative evaluations 

are not possible, since there are no other similar methods that can model behaviors in 

the same manner to test the scenarios. 

The high-level learning method is not sufficient for completely reproduce learned 

behaviors. Hence, there has to be a sophisticated infrastructure such that it can 

manage both high and low level representations of behaviors. Such an architecture 

has been proposed in (Fonooni et al., 2013) and tested under a complex scenario for 

behavior arbitration.  

There are several concerns for the future work to take into consideration: i) 

Defining inhibitory links to represent absence of objects such that the robot may 

learn skills that require non-presence of objects and/or concepts. ii) Investigating the 

applicability of priming effects (Neely, 1991) as a bias in determining relevancy of 

observed objects and concepts in demonstrations. The priming effect can act as a pre-

activation method to strengthen desired aspect of demonstration, and to help the 

learning algorithm to make correct adjustments to the learned associations. 
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