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Codimension computations of congruence
orbits of matrices, symmetric and

skew-symmetric matrix pencils using Matlab

Andrii Dmytryshyn∗ Stefan Johansson∗ Bo K̊agström∗

Abstract

Matlab functions to work with the canonical structures for congru-
ence and *congruence of matrices, and for congruence of symmetric
and skew-symmetric matrix pencils are presented. A user can provide
the canonical structure objects or create (random) matrix example
setups with a desired canonical information, and compute the codi-
mensions of the corresponding orbits: if the structural information
(the canonical form) of a matrix or a matrix pencil is known it is
used for the codimension computations, otherwise they are computed
numerically. Some auxiliary functions are provided too. All these
functions extend the Matrix Canonical Structure Toolbox.

AMS classification: 15A21, 15A22, 15A24
Keywords: Congruence; *congruence; Symmetric matrix pencils;

Skew-symmetric matrix pencils; Orbits; Codimension; MATLAB

1 Introduction

This paper presents software to work with the canonical structures for con-
gruence and *congruence of matrices, as well as congruence of symmetric and
skew-symmetric matrix pencils. It also recalls the associated canonical forms
and reviews recent theoretical results about the codimension computations.
The software includes functions that create canonical structure objects or
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(random) matrix example setups with a desired canonical information, the
functions that compute the codimensions of the corresponding orbits, and
a number of auxiliary functions. If the canonical forms of the matrices or
the matrix pencils are known (or specified) we use the associated structural
information for the codimension computations. Otherwise, we determine the
codimensions numerically by computing the rank and nullity of Kronecker
product matrices associated with the problems. These are matrix representa-
tion of the tangent space of the associated orbits. Motivations for computing
codimensions of these matrix structures can be found in [2, 3, 5, 6, 7, 8, 9, 10].
Analogous functions for matrix orbits up to similarity, matrix pencils up
to strict equivalence, controllability and observability pairs up to feedback
equivalence are provided by the Matrix Canonical Structure (MCS) Toolbox
for Matlab1 [18], while the theoretical backgrounds and motivations are given
in [4, 11, 12, 13]. There also exists a Python implementation for computing
codimensions of generalized matrix products (see [21]).

Whenever the canonical forms of matrices or matrix pencils are known,
the explicit formulas for computing codimensions from the canonical struc-
ture information derived in [2, 3, 9, 10] should be applied because this com-
putation is always exact and fast for problems of any sizes.

In this paper, we present new Matlab functions that extend MCS Toolbox
with routines for computing codimensions of congruence and *congruence
orbits of matrices, and congruence orbits of symmetric and skew-symmetric
matrix pencils.

The rest of the paper is organized as follows. Theoretical background is
presented in Section 2. Subsections 2.1 and 2.2 are devoted to the compu-
tations of the codimensions using the canonical information. Subsection 2.3
explains the numerical codimension computations using the associated Kro-
necker product matrices. In Section 3, we give detailed instructions on using
the implemented functions and illustrate them by several examples. Finally,
in the appendices we present a table summary of the main Matlab functions
with compendious descriptions and the possible types of canonical blocks.

2 Theoretical background

In this section, we introduce and review theoretical results needed, e.g.,
canonical forms and the notion of codimension. We include these results

1Matlab is a registered trademark of The MathWorks, Inc.
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to make the paper self-contained and to introduce the notation used (for
more details and proofs see [2, 3, 5, 6, 7, 8, 9, 10, 17, 22]).

2.1 Matrices under congruence and *congruence

Let A be an n × n matrix over the field of complex numbers, denoted by C
and GLn(C) be a group of n×n nonsingular complex matrices. Consider the
congruence transformation

A↦ CTAC,

where C ∈ GLn(C). The set of matrices congruent to A forms a manifold in
the complex n2 dimensional space. This manifold is the orbit of A under the
action of congruence:

orbit(A) = {CTAC ∶ C ∈ GLn(C)}.

The vector space

T (A) ∶= {XTA +AX ∶X ∈ Cn×n}

is the tangent space to the congruence class of A at the point A since

(I + εX)TA(I + εX) = A + ε(XTA +AX) + ε2XTAX

for all n-by-n matrices X and each ε ∈ C.
The dimension of the orbit of A is the dimension of its tangent space at

the point A; it is well-defined because the dimensions of the tangent spaces
at every point of the orbit are equal (e.g., see [1]). The codimension of the
orbit A is the dimension of the normal space of its orbit at the point A which
is equal to n2 minus the dimension of the orbit. Note that it is also equal to
the number of linearly independent solutions of the matrix equation

XTA +AX = 0; (1)

for more details see [2].
By the *congruence transformation we mean

A↦ C∗AC,

where C ∈ GLn(C) and C∗ denotes the conjugate transpose of the matrix
C. Note that the definitions given above for the congruence orbits remain

3



analogous for the *congruence orbits, but the dimensions and codimensions
are defined over R (*congruence orbits are manifolds over R, not over C).

Define a direct sum of two complex matrices A and B as follows

A⊕B ∶= [A 0
0 B

] .

We recall the canonical forms of matrices under congruence and *congruence.
These results were proven in [17]. For each positive integer m define the m-
by-m unit matrix Im and the m-by-m matrices

Jm(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0
λ ⋱

⋱ 1
0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and Γm ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋰
−1 ⋰

1 1
−1 −1

1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Jm(λ) is a Jordan block associated with the eigenvalue λ. We use the
following canonical form of complex matrices for congruence and *congru-
ence.

Theorem 2.1 [17]. Each square complex matrix is congruent to a direct
sum, uniquely determined up to permutation of summands, of canonical ma-
trices of three types

Jp(0), Γq, and Wr(λ) ∶= [ 0 Ir
Jr(λ) 0

] (λ ≠ 0, λ ≠ (−1)r+1), (2)

where λ ∈ C is determined up to replacement by λ−1.

Example 1

The 20×20 canonical matrix Γ3⊕W3(5)⊕W4(5)⊕J3(0), presented
as the direct sum of the blocks (2), can be written explicitly as
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follows (where ⋅ denote zeroes):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 0 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 0 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 5 1 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 5 1 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 5 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 1 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 1 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 1 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5 1 0 0 0 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 5 1 0 0 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 5 1 0 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 5 0 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 2.2 [17]. Each square complex matrix is *congruent to a direct
sum, uniquely determined up to permutation of summands, of canonical ma-
trices of the three types

Jp(0), µΓq (∣µ∣ = 1), and ∗Wr(λ) ∶= [ 0 Ir
Jr(λ) 0

] (∣λ∣ > 1), (3)

where λ,µ ∈ C.

Example 2

The 20×20 canonical matrix Γ3⊕ iΓ6⊕ ∗W4(5)⊕J3(0), presented
as the direct sum of the blocks (3), can be written explicitly as
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follows.
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 0 0 −i ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 0 i i ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 −i −i 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 i i 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 −i −i 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ i i 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 1 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 1 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 1 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5 1 0 0 0 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 5 1 0 0 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 5 1 0 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 5 0 0 0 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the canonical structure information, the following two theorems
provide explicit formulas for computing the codimensions of the congruence
and *congruence orbits.

Theorem 2.3 [2]. Let A ∈ Cn×n and

Acan =
a

⊕
l=1
Jpl(0)⊕

b

⊕
j=1
Γqj ⊕

c

⊕
i=1
Wri(λi), p1 ≥ p2 ≥ ⋅ ⋅ ⋅ ≥ pa (4)

be its canonical form for congruence. The codimension of the orbit of A
under congruence (denoted by cod(A)) can be computed as the sum

cod(A) = cJ + cΓ + cW + cJJ + cΓΓ + cWW + cWΓ + cWJ + cΓJ (5)

whose summands correspond to

• the direct summands of (4):

cJ ∶=
a

∑
i=1

⌈pi
2
⌉ , cΓ ∶=

b

∑
i=1

⌊qi
2
⌋ , cW ∶=

c

∑
i=1
ri + 2∑

j

⌈
rj
2
⌉ ;

where the second sum in cW is taken over the blocks Wrj((−1)rj) in
Acan;
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• the pairs of direct summands of (4) of the same type:

cJJ ∶=
a

∑
i,j=1
i<j

inter(Jpi(0), Jpj(0)),

where

inter(Jpi(0), Jpj(0)) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pj if pj is even,

pi if pj is odd and pi ≠ pj,
pi + 1 if pj is odd and pi = pj;

cΓΓ ∶=∑
i⩽j

min(qi, qj),

where the sum is taken over all pairs of blocks (Γqi , Γqj), i ⩽ j, in Acan

such that qi and qj have the same parity;

cWW ∶= 2∑min(ri, rj) + 4∑min(rs, rt),

where the first sum is taken over all pairs of blocks
(Wri(λi),Wrj(λj)), i ⩽ j, in Acan such that λi ≠ λj and λiλj = 1
or λi = λj ≠ ±1, and the second sum is taken over all pairs
(Wrs(λs),Wrt(λt)), s ⩽ t, of blocks in Acan such that λs = λt = ±1;

• the pairs of direct summands of (4) of different types:

cWΓ ∶= 2∑min(k, l),

where the sum is taken over all pairs (Γk,Wl((−1)k+1)) of blocks in
Acan;

cWJ ∶= 2Nodd

c

∑
i=1
ri, and cΓJ ∶= Nodd

b

∑
i=1
qi,

where Nodd is the number of J blocks with odd size in Acan.

Note that the codimensions of the congruence orbits of matrices can also
be obtained by computing the number of independent parameters in the
miniversal deformations [7].
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Example 3

The codimension of the 20×20 matrix Γ3⊕W4(5)⊕W3(5)⊕J3(0)
from Example 1 can be computed as follows:

cod(A) = cJ + cΓ + cW + cWW + cWΓ + cWJ + cΓJ
= 2 + 1 + 7 + 6 + 0 + 14 + 3

= 33.

Theorem 2.4 [3]. Let A ∈ Cn×n and

Acan =
a

⊕
i=1
Jpl(0)⊕

b

⊕
j=1
µjΓqj ⊕

c

⊕
l=1

∗Wri(λi), p1 ≥ p2 ≥ ⋅ ⋅ ⋅ ≥ pa (6)

be its canonical form for *congruence. The codimension of the orbit of A
under *congruence (denoted by cod∗(A)) can be computed as the sum

cod∗(A) = cJ + cµΓ + c∗W + cJJ + cµΓµΓ + c∗W ∗W + c∗WµΓ + c∗WJ + cµΓJ (7)

whose summands correspond to

• the direct summands of (6):

cJ ∶= 2
a

∑
i=1

⌈pi
2
⌉ , cµΓ ∶=

b

∑
i=1
qi, c∗W ∶= 2

c

∑
i=1
ri;

• the pairs of direct summands of (6) of the same type:

cJJ ∶=
a

∑
i,j=1
i<j

inter(Jpi(0), Jpj(0)),

where

inter(Jpi(0), Jpj(0)) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2pj if pj is even,

2pi if pj is odd and pi ≠ pj,
2(pi + 1) if pj is odd and pi = pj;

cµΓµΓ ∶= 2∑
i<j

min(qi, qj),

8



where the sum is taken over all pairs of blocks (µiΓqi , µjΓqj), i < j, in
Acan such that: (a) qi and qj have the same parity and µi = ±µj, and
(b) qi and qj have different parity and µi = ±iµj;

c∗W ∗W ∶= 4∑min(ri, rj),

where the sum is taken over all pairs of blocks (∗Wri(λi), ∗Wrj(λj)), i <
j, in Acan such that λi = λj;

• the pairs of direct summands of (6) of different types:

c∗WµΓ ∶= 0, c∗WJ ∶= 4Nodd

c

∑
i=1
ri, cµΓJ ∶= 2Nodd

b

∑
i=1
qi,

where Nodd is the number of J blocks with odd size in Acan.

As in the case of congruence orbits, the codimensions of the *congruence
orbits of matrices can be obtained by computing the number of independent
parameters over R in the miniversal deformations [8].

Example 4

The codimension of the 20× 20 matrix Γ3 ⊕ iΓ6 ⊕ ∗W4(5)⊕ J3(0)
from Example 2 can be computed as follows:

cod∗(A) = cJ + cµΓ + c∗W + cµΓµΓ + c∗WµΓ + c∗WJ + cµΓJ
= 4 + 9 + 8 + 6 + 0 + 16 + 18

= 61.

The canonical structure of a complex matrix A under congruence given
in Theorem 2.3 can be expressed as a direct sum of the blocks, as follows:

CTAC ≡ J⊕ �⊕W(λ1)⊕ ⋅ ⋅ ⋅ ⊕W(λt), detC ≠ 0, λi ≠ λj if i ≠ j,

where

J ∶=
a

⊕
i=1
Jpi(0),

� ∶=
b

⊕
j=1

Γqj ,

W(λi) ∶=
ci

⊕
k=1

Wrk(λi).

9



Note that r
(i)
1 , . . . , r

(i)
ci are indices (half of the sizes) of the canonical sum-

mands associated with the eigenvalue λi. We assume that the sequences
p1, . . . , pa, q1, . . . , qb, and r

(i)
1 , . . . , r

(i)
ci , for every i = 1, . . . , t, decrease mono-

tonically. By analogy with the Jordan canonical form we call the following
set of partitions the Segre characteristics associated with a matrix up to
congruence.

J ∶=(p1, . . . , pa),
Γ ∶=(q1, . . . , qb),

W(λi) ∶=(r(i)1 , . . . , r
(i)
ci ), i = 1, . . . , t

Similarly, the canonical structure of a complex matrix A under *congru-
ence given in Theorem 2.4 can be expressed as a direct sum of the blocks as
follows.

C∗AC ≡ J⊕ �(µ1)⊕ ⋅ ⋅ ⋅ ⊕ �(µs)⊕ ∗W(λ1)⊕ ⋅ ⋅ ⋅ ⊕ ∗W(λt),
detC ≠ 0, λi ≠ λj if i ≠ j, and µk ≠ µm if k ≠m,

where

J ∶=
a

⊕
k=1

Jpk(0),

�(µj) ∶=
bj

⊕
l=1
µjΓql ,

∗W(λi) ∶=
ci

⊕
m=1

∗Wrm(λi).

Let r
(i)
1 , . . . , r

(i)
ci be indices (half of the sizes) of canonical summands as-

sociated with the eigenvalue λi and q
(j)
1 , . . . , q

(j)
bj

be the sizes of canonical
summands associated with µj. We assume that the sequences p1, . . . , pa,

q
(j)
1 , . . . , q

(j)
bj
, for every j = 1, . . . , s, and r

(i)
1 , . . . , r

(i)
ci , for every i = 1, . . . , t, de-

crease monotonically. By analogy with the Jordan canonical form we call the
following set of partitions the Segre characteristics associated with a matrix
up to *congruence.

J ∶=(p1, . . . , pa),
Γ (µj) ∶=(q(j)1 , . . . , q

(j)
bj

), j = 1, . . . , s

∗W(λi) ∶=(r(i)1 , . . . , r
(i)
ci ), i = 1, . . . , t
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2.2 Skew-symmetric and symmetric matrix pencils un-
der congruence

Let A and B be symmetric (or both skew-symmetric) n × n matrices over
C. Consider a matrix pencil A− sB and the structure preserving congruence
transformation

A − sB ↦ CT (A − sB)C, where C ∈ GLn(C). (8)

The set of matrix pencils congruent to A−sB forms a manifold in the complex
n2 +n (or, respectively, n2 −n) dimensional space. This manifold is the orbit
of A − sB under the action of congruence

orbit(A − sB) = {CT (A − sB)C ∶ C ∈ GLn(C)}. (9)

The vector space

T (A − sB) ∶= {(XTA +AX) − s(XTB +BX) ∶X ∈ Cn×n} (10)

is the tangent space to the congruence class of A − sB at the point A − sB
since

(I + εX)T (A − sB)(I + εX) = A − sB + ε((XTA +AX) − s(XTB +BX))

+ε2(XTAX − sXTBX)

for all n-by-n matrices X and each ε ∈ C.
Recall that A − sB is a symmetric (or a skew-symmetric) n × n matrix

pencil. The dimension of the orbit of A − sB is the dimension of its tangent
space at the point A − sB. The codimension of the orbit A − sB is the
dimension of the normal space of its orbit at the point A− sB which is equal
to n2 + n (or n2 − n for a skew-symmetric pencil) minus the dimension of
the orbit. Note that it is also equal to the number of linearly independent
solutions of the following system of matrix equations

XTA +AX = 0,

XTB +BX = 0,
(11)

plus n (or minus n). For more details see [9, 10].
We recall the canonical forms of symmetric and skew-symmetric matrix

pencils under congruence, that were proven in [22]. These canonical forms are
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“symmetrized” or “skew-symmetrized” analogies of the Kronecker canonical
forms for matrix pencils under the strict equivalence [15]. Following [22]
we call them Kronecker canonical forms for symmetric and skew-symmetric
matrix pencils.

For each positive integer m define the m ×m matrices

Λm(λ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 λ
λ 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
λ 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and ∆m ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1

⋅ ⋅ ⋅
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

For each non-negative integer define the m × (m + 1) matrices

Fm ∶=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
⋱ ⋱

0 1 0

⎤⎥⎥⎥⎥⎥⎦
and Gm ∶=

⎡⎢⎢⎢⎢⎢⎣

0 1 0
⋱ ⋱

0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

Moreover, define the direct sum of matrix pencils as follows:

(A − sB)⊕ (C − sD) = (A⊕C) − s(B ⊕D).

Theorem 2.5 [22]. Every complex symmetric matrix pencil is congruent to
a direct sum, determined uniquely up to permutation of summands, of pencils
of the form

Hp(λ) ∶= Λp(λ) − s∆p, λ ∈ C, (12)

Kq ∶= ∆q − sΛq(0), (13)

Mr ∶= [ 0 GT
r

Gr 0
] − s [ 0 F T

r

Fr 0
] . (14)

Example 5

The 13 × 13 canonical symmetric matrix pencil H6(7)⊕M3, pre-
sented as the direct sum of the pencils (14)–(13), can be written
explicitly as follows:

12



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 7 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 0 7 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 7 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 7 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 7 1 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
7 1 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 1 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 1 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 −1 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 −1 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 0 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 1 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 1 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 0 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 1 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 1 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 0 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 −1 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 −1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 2.6 [22]. Every complex skew-symmetric matrix pencil is congru-
ent to a direct sum, determined uniquely up to permutation of summands, of
pencils of the form

SHp(λ) ∶= [ 0 Jp(λ)
−Jp(λ)T 0

] − s [ 0 Ip
−Ip 0

] , λ ∈ C, (15)

SKq ∶= [ 0 Iq
−Iq 0

] − s [ 0 Jq(0)
−Jq(0)T 0

] , (16)

SMr ∶= [ 0 Gr

−GT
r 0

] − s [ 0 Fr
−F T

r 0
] . (17)

13



Example 6

The 13 × 13 canonical skew-symmetric matrix pencil SH3(7) ⊕
SM3, presented as the direct sum of the pencils (17)–(16), can be
written explicitly as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 7 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 0 7 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 0 0 7 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−7 0 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−1 −7 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −1 −7 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 1 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 1 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 0 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 −1 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 −1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 0 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 0 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−1 0 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −1 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 −1 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 1 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 1 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 1 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 0 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 −1 0 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 −1 0 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We write the superscripts S in parentheses, i.e., (S)H, (S)K, (S)M, when we
refer to the corresponding symmetric and skew-symmetric canonical blocks,
e.g., (S)H refers to both H blocks for symmetric matrix pencils and SH blocks
for skew-symmetric matrix pencils.

Note also that the indices of (S)H, (S)K, and (S)M in Theorems 2.5 and
2.6 do not always coincide with the dimensions of the matrices. Moreover,
the blocks (S)Hp(λ) correspond to Jordan structures Jp(λ) − sIp associated
with finite eigenvalues, the blocks (S)Kq correspond to Jordan structures
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Iq − sJq(0) associated with the infinite eigenvalue and the blocks (S)Mr are
associated with the singular Kronecker blocks Gr − sFr.
Theorem 2.7 [10]. Let A − sB be a complex symmetric matrix pencil and

(A − sB)can =
a

⊕
i=1
Hpi(λi)⊕

b

⊕
j=1
Kqj ⊕

c

⊕
l=1
Mrl , (18)

be its canonical form for congruence. Then the codimension of the orbit of
A − sB under congruence (denoted by cod(A − sB)) can be computed as the
sum

cod(A − sB) = cH + cK + cM + cHH + cKK + cMM + cHK + cHM + cKM (19)

whose summands correspond to

• the direct summands of (18):

cH ∶=
a

∑
i=1
pi, cK ∶=

b

∑
i=1
qi, cM ∶= 2(c +

c

∑
i=1
ri);

• the pairs of direct summands of (18) of the same type:

cHH ∶= ∑
i⩽j
λi=λj

min(pi, pj), cKK ∶=∑
i⩽j

min(qi, qj),

cMM ∶=∑
j⩽i

(2 max(ri, rj) + εij) , in which εij ∶=
⎧⎪⎪⎨⎪⎪⎩

2 if ri = rj,
1 if ri ≠ rj;

• the pairs of direct summands of (18) of different types:

cHK ∶= 0, cHM ∶=∑
i,j

pi, cKM ∶=∑
i,j

qi.

Example 7

The codimension of the 13× 13 symmetric matrix pencil H6(7)⊕
M3 from Example 5 can be computed as follows:

cod(A − sB) = cH + cM + cHM = 6 + 8 + 6 = 20.
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Theorem 2.8 [9]. Let A − sB be a complex skew-symmetric matrix pencil
and

(A − sB)can =
a

⊕
i=1

SHpi(λi)⊕
b

⊕
j=1

SKqj ⊕
c

⊕
l=1

SMrl , (20)

be its canonical form for congruence. The codimension of the orbit of A−sB
under congruence (denoted by cod(A − sB)) can be computed as the sum

cod(A−sB) = cSH+cSK+cSM+cSHSH+cSKSK+cSMSM+cSHSK+cSHSM+cSKSM ,
(21)

whose summands correspond to

• the direct summands of (20):

cSH ∶=
a

∑
i=1
pi, cSK ∶=

b

∑
i=1
qi, cSM ∶= 0;

• the pairs of direct summands of (20) of the same type:

cSHSH ∶= 4 ∑
i⩽j
λi=λj

min(pi, pj), cSKSK ∶= 4∑
i⩽j

min(qi, qj),

cSMSM ∶=∑
j⩽i

(2 max(ri, rj) + εij) , in which εij ∶=
⎧⎪⎪⎨⎪⎪⎩

2 if ri = rj,
1 if ri ≠ rj;

• the pairs of direct summands of (20) of different types:

cSHSK ∶= 0, cSHSM ∶= 2∑
i,j

pi, cSKSM ∶= 2∑
i,j

qi.

Example 8

The codimension of the 13 × 13 skew-symmetric matrix pencil
SH3(7)⊕ SM3 from Example 6 can be computed as follows:

cod(A − sB) = cSH + cSM + cSHSM = 3 + 0 + 6 = 9.
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The canonical structure can be expressed as the direct sum of the (S)H,
(S)K, and (S)M blocks as follows.

CT (A − sB)C ≡ (S)H(λ1)⊕ ⋅ ⋅ ⋅ ⊕ (S)H(λt)⊕ (S)K⊕ (S)M,

where detC ≠ 0, λi ≠ λj if i ≠ j, and A − sB is a symmetric (or skew-
symmetric) matrix pencil, and

(S)H(λi) ∶=
ai

⊕
j=1

(S)Hpj(λi),

(S)K ∶=
b

⊕
l=1

(S)Kql ,

(S)M ∶=
c

⊕
m=1

(S)Mrm .

Let p
(i)
1 , . . . , p

(i)
ai be the indices of canonical summands associated with the

eigenvalue λi. We assume that the sequences q1, . . . , qb, r1, . . . , rc, and
p
(i)
1 , . . . , p

(i)
ai , for every i = 1, . . . , t, decrease monotonically. By analogy with

Jordan canonical form we call the following set of partitions the Segre char-
acteristics associated with a symmetric (or skew-symmetric) matrix pencil.

(S)H(λi) =(p(i)1 , . . . , p
(i)
ai ), i = 1, . . . , t,

(S)K =(q(∞)1 , . . . , q
(∞)
a∞ ),

(S)M =(r1, . . . , rc).

2.3 Numerical computations of codimensions

Let us recall that the tangent space to the similarity orbit of an n×n matrix
A at the point A, is of the form TA =XA −AX, where X is an n × n matrix
and thus it is associated with the following homogeneous matrix equation:

XA −AX = 0. (22)

Using vec(X), which denotes the n2-long ordered stack of the columns of
X from left to right, we can rewrite the equation (22) in the following form
(e.g., see [11, 19, 20])

(AT ⊗ In)vec(X) − (In ⊗A)vec(X) = 0,
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or equivalently
[AT ⊗ In − In ⊗A]vec(X) = 0. (23)

The n2 × n2 Kronecker product matrix in (23) is a matrix representation of
the tangent space of the similarity orbit of A at the point A. The codimension
of the orbit of A is equal to the nullity of the matrix in (23). This method
of computing codimensions was developed in [12, 14] and used in [18] for the
codimensions of matrices, matrix pencils, and controllability/observability
pairs. It is used in this paper too.

By P we denote the n2 × n2 permutation matrix that can ”transpose”
n × n matrices, i.e., vec(XT ) = P vec(X) for any n × n matrix X.

Numerical computation of the codimension of the congruence orbit of A
is done analogously to the similarity case. For example, the equation (1)
rewritten as the following system of equations:

Y A −AX = 0,

Y = −XT ,
(24)

leads to the Kronecker product matrix

[A
T ⊗ In −In ⊗A
In2 P

] . (25)

Note that the numerical codimension computations are based on calculating
the rank of the matrix (25). Thus we can decrease the computational cost
and the storage requirements by rewriting (25) as the n2 × n2 matrix which
is a matrix representation of the tangent space to the congruence orbit of A
at the point A:

[AT ⊗ In + (In ⊗A)P ] . (26)

Numerical computation of the codimension of the *congruence orbit of
A differs from the previous cases. As it was mentioned in Section 2.1, we
must compute the codimension over the field of real numbers because the
*congruence orbit of a matrix is a manifold over R (not over C), see [3, 8] for
more details.

For a matrix A ∈ Cn×n let Re(A) and Im(A) be its real and imaginary
parts, i.e.,

Re(A) = A + Ā
2

and Im(A) = A − Ā
2i

.
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By considering separately the real and imaginary parts of A,X, and Y we
obtain the following system of equations:

Re(Y A +AX) = 0,

Im(Y A +AX) = 0,

Re(Y ) = Re(XT ),
Im(Y ) = − Im(XT ).

(27)

By constructing the Kronecker product matrix of size 4n2 × 4n2 associated
with (27), we obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎣

In ⊗Re(AT ) Re(A)⊗ In −In ⊗ Im(AT ) − Im(A)⊗ In
In ⊗ Im(AT ) Im(A)⊗ In In ⊗Re(AT ) Re(A)⊗ In

In2 P 0 0
0 0 In2 −P

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

As before, we reduce the size of the matrix and obtain the following 2n2×2n2

matrix

[In ⊗Re(AT ) + (Re(A)⊗ In)P −In ⊗ Im(AT ) + (Im(A)⊗ In)P
In ⊗ Im(AT ) + (Im(A)⊗ In)P In ⊗Re(AT ) − (Re(A)⊗ In)P

] . (28)

The nullity of the matrix (28) is equal to the codimension of the *congruence
orbit of A.

For the cases of square skew-symmetric and symmetric matrix pencils
under congruence the system (11) can be rewritten in the following form

Y A +AX = 0,

Y B +BX = 0,

Y =XT .

(29)

Analogously to (23) the 3n2 × 2n2 Kronecker product matrix associated with
(29) is

⎡⎢⎢⎢⎢⎢⎣

AT ⊗ In In ⊗A
BT ⊗ In In ⊗B
In2 −P

⎤⎥⎥⎥⎥⎥⎦
. (30)

As before, reducing the size we obtain the following 2n2 × n2 matrix which
is a matrix representation of the tangent space to the congruence orbit of
A − sB at the point A − sB:

[A
T ⊗ In + (In ⊗A)P

BT ⊗ In + (In ⊗B)P] . (31)

19



The nullities of (31) plus (or minus) n, i.e., the size of the n × n matrix
pencils, is equal to the codimensions of the congruence orbits of symmetric
(or skew-symmetric) matrix pencils, see [9, Theorem 3] and [10, Theorem 3]
for more details.

3 Implementation in the toolbox

In this section, we present the new Matlab functions in MCS Toolbox based
on the results presented and discussed in Section 2. We illustrate them by
several examples.

We follow the naming convention of MCS Toolbox [18]. The prefixes of
the functions correspond to the type of setup they can be used for, i.e., cm
is used for matrices under congruence, scm for matrices under *congruence,
sp for symmetric matrix pencils, and ssp for skew-symmetric matrix pencils.

For each type of problem setup, there exist functions to create structure
objects that represent canonical structures, to create new, possibly random,
matrix example setups, to compute their codimensions, and a number of
auxiliary functions.

3.1 Creating structure objects for matrices under con-
gruence and *congruence

Structure objects of matrices under the congruence or *congruence transfor-
mations can be created with the cmstruct and scmstruct functions:

cmstruct ( gblocks , wblocksv , e igv , z j b l o c k s )
scmstruct ( sgblocksv , muv, swblocksv , e igv , z j b l o c k s )

The argument gblocks defines the Γ blocks for congruence (see (2)) of the
structure and is given as a row-vector with the indices of the blocks. The
corresponding argument sgblocksv defines µΓ blocks for *congruence (see (3))
and must be a cell-array of row-vectors, each containing the indices of blocks
with the same associated parameter µ. The parameters associated with each
row-vector in sgblocksv are specified in the second argument, muv. The length
of muv must be the same as sgblocksv and the absolute value of each element
must be equal to 1 (see (3)). Note that the values of the parameters must
be specified since the codimension depends on them.
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The arguments wblocksv and swblocksv define the W and ∗W blocks, re-
spectively, generated by Jordan blocks (see (2) and (3)) and must be cell-
arrays of row-vectors. Each row-vector contains the canonical block indices
associated with the same eigenvalue. The eigenvalues associated with each
row-vector in wblocksv (or swblocksv) are specified in the argument, eigv.
The length of eigv must be the same as wblocksv (or swblocksv), and the
eigenvalues must satisfy the restrictions stated in (2) or (3).

The argument zjblocks specifies the indices of J blocks as defined in (2)
and (3), i.e., the sizes of the Jordan blocks with zero eigenvalue.

Another way to create the structure objects cmstruct and scmstruct is
to input the names of the blocks with the corresponding sets of parameters
(indices, eigenvalues, etc.):

cmstruct ( ’ gblock ’ , [ q1 , q2 , . . . ] , . . .
’ wblock ’ , { [ r1 , r2 , . . . ] , e i g1 } , . . .

’ wblock ’ , { [ r1 , r2 , . . . ] , e i g2 } , . . .
’ z jb lock ’ , [ p1 , p2 , . . . ] )

scmstruct ( ’ sgblock ’ , { [ q1 , q2 , . . . ] , mu1} , . . .
’ swblock ’ , { [ r1 , r2 , . . . ] , e i g1 } , ’ z jb lock ’ , [ p1 , p2 , . . . ] )

Example 9

A canonical structure object for the matrix with the following
canonical form under congruence Γ2 ⊕W4(5) ⊕W3(5) ⊕ J1(0),
with one Γ block of size 2 × 2, one W block of size 8 × 8, one W
block of size 6 × 6, both with the eigenvalue equal to 5, and one
block J1(0) of size 1 × 1, is created by one of the following two
equivalent calls.

>> cmstr = cmstruct ( [ 2 ] , [ 4 3 ] , 5 , [ 1 ] )
>> cmstr = cmstruct ( ’ gblock ’ , [ 2 ] , . . .

’ wblock ’ , { [ 4 3 ] , 5} , ’ z jb lock ’ , [ 1 ] )

Both of them create the described object and display the following

cmstr =

G = (2) (2 x2 )
W(5) = (4 3) (14 x14 )
J (0 ) = (1) (1 x1 )
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Any of the calls

>> cmstr = cmstruct ( [ ] , { [ 3 ] [ 1 ] } , [ 3 7 ] , [ 2 ] )
>> cmstr = cmstruct ( ’ wblock ’ { [ 3 ] , 3 } , . . .

’ wblock ’ , { [ 1 ] , 7 } , ’ z jb lock ’ , [ 2 ] )

returns an object with the canonical structure W3(3) ⊕W1(7) ⊕
J2(0), with no Γ blocks:

cmstr =

W(3) = (3) (6 x6 )
W(7) = (1) (2 x2 )
J (0 ) = (2) (2 x2 )

Example 10

In this example we illustrate the *congruence case. The calls

>> scmstr = scmstruct ( { [ 3 ] [ 2 ] } , [ 1 i ] , . . .
{ [ 2 ] [ 3 1 ] } , [ 5 7 ] , [ 2 ] )

>> scmstr = scmstruct ( ’ sgblock ’ , { [ 3 ] , 1 } , . . .
’ sgblock ’ , { [ 2 ] , i } , ’ swblock ’ , { [ 2 ] , 5 } , . . .

’ swblock ’ , { [ 3 1 ] , 7} , ’ z jb lock ’ , [ 2 ] )

both return the canonical structure Γ3⊕ iΓ2⊕ ∗W2(5)⊕ ∗W3(7)⊕
∗W1(7)⊕ J2(0).

scmstr =

SG(1) = (3) (3 x3 )
SG(0+1 i ) = (2) (2 x2 )

SW(5) = (2) (4 x4 )
SW(7) = (3 1) (8 x8 )

J (0 ) = (2) (2 x2 )
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3.2 Creating structure objects for skew-symmetric and
symmetric matrix pencils

Structure objects for symmetric and skew-symmetric matrix pencils are cre-
ated with the functions spstruct and sspstruct, respectively:

s p s t r u c t ( mblocks , hblocksv , e igv , kb locks )
s s p s t r u c t ( smblocks , shblocksv , e igv , skb locks )

The arguments mblocks and smblocks define symmetric M blocks and
skew-symmetric SM blocks, respectively (see (14) and (17)) of the structure
and are given as row-vectors with the canonical block indices.

The arguments hblocksv and shblocksv define the symmetric H blocks and
skew-symmetric SH blocks, respectively, corresponding to Jordan structures
associated with finite eigenvalues (as defined in (12) and (15)). Each of them
must be either a row-vector with the canonical block indices corresponding
to the same eigenvalue or a cell-array of row-vectors, each containing the
canonical block indices for the same associated eigenvalue. The eigenvalues
associated with each row-vector in hblocksv (or shblocksv) are specified in
an optional second argument, eigv. The length of eigv must be the same
as hblocksv (or shblocksv). (S)H blocks generated by Jordan blocks with an
unspecified eigenvalue can be given in hblocksv (or shblocksv) with NaN as
the corresponding eigenvalue in eigv. If the argument eigv is not given, all
eigenvalues are assumed to be unspecified.

The fourth arguments kblocks and skblocks specify the indices of the K
blocks and SK blocks, respectively, as defined in (13) and (16), i.e., the sizes
of the Jordan structures corresponding to blocks with the infinite eigenvalue.

An alternative way to create the spstruct and sspstruct objects is to input
the names of the blocks with the corresponding sets of parameters (analo-
gously to the matrices under congruence and *congruence):

s p s t r u c t ( ’ mblock ’ , [ r1 , r2 , . . . ] , . . .
’ hblock ’ , { [ p1 , p2 , . . . ] , e i g1 } , ’ kblock ’ , [ q1 , q2 , . . . ] )

s s p s t r u c t ( ’ smblock ’ , [ r1 , r2 , . . . ] , . . .
’ shblock ’ , { [ p1 , p2 , . . . ] , e i g1 } , ’ skblock ’ , [ q1 , q2 , . . . ] )

Example 11

A canonical structure object for the skew-symmetric matrix pen-
cil with the following canonical form under congruence SM2 ⊕
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SH3(5)⊕ SH2(5)⊕ SK1, with one singular block of size 5× 5, one
SH block of size 6 × 6, one SH block of size 4 × 4 , both corre-
sponding to the eigenvalue equal to 5, and one SM block of size
2 × 2 associated with the infinite eigenvalue, is created by one of
the following commands:

>> s s p s t r = s s p s t r u c t ( [ 2 ] , [ 3 2 ] , 5 , [ 1 ] )
>> s s p s t r u c t ( ’ smblock ’ , [ 2 ] , . . .

’ shblock ’ , { [ 3 2 ] , 5} , ’ skblock ’ , [ 1 ] )

s s p s t r =

SM = (2) (5 x5 )
SH(5) = (3 2) (10 x10 )

SK = (1) (2 x2 )

Any of the calls

>> s s p s t r = s s p s t r u c t ( [ ] , { [ 1 ] [ 2 ] } , [ 3 7 ] , [ 2 ] )
>> s s p s t r u c t ( ’ shblock ’ , { [ 1 ] , 3 } , . . .

’ shblock ’ , { [ 2 ] , 7 } , ’ skblock ’ , [ 2 ] )

returns an object with the canonical structure, SH1(3)⊕SH2(7)⊕
SK2, with no singular blocks, but with the blocks generated by
Jordan blocks corresponding to different eigenvalues (3,7, and
∞):

s s p s t r =

SH(3) = (1) (2 x2 )
SH(7) = (2) (4 x4 )

SK = (2) (4 x4 )

Example 12

The major difference between defining symmetric and skew-
symmetric pencils is the following: in the symmetric case indices
are equal to the sizes of blocks associated to the Jordan blocks
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while in the skew-symmetric case they are equal to a half of the
actual size of the blocks (see (S)H and (S)K blocks, Theorems 2.5
and 2.6).

Any of the calls

>>s p s t r = s p s t r u c t ( [ 3 ] , { [ 4 ] [ 2 ] } , [ 5 7 ] , [ 2 ] )
>>s p s t r u c t ( ’ mblock ’ , [ 3 ] , ’ hblock ’ , { [ 4 ] , 5 } , . . .

’ hblock ’ , { [ 2 ] , 7 } , ’ kblock ’ , [ 2 ] )

returns an object with the canonical structure, M3 ⊕ H4(5) ⊕
H2(7)⊕K2, with one M block and three blocks associated with
three different eigenvalues (5,7, and ∞):

s p s t r =

M = (3) (7 x7 )
H(5) = (4) (4 x4 )
H(7) = (2) (2 x2 )

K = (2) (2 x2 )

3.3 Displaying structures in different notations

Canonical structures are displayed as any other data type in Matlab by enter-
ing the name of the variable without a trailing semi-colon. Structure objects
can be displayed using four different notations, namely Segre characteristics,
Weyr characteristics, indices, and block structure notation.

To view or change the used notation, the mcsdisplay function exists.

[ arg ] = mcsdisplay
[ arg , i s p e r s i s t e n t ] = mcsdisplay

mcsdisplay ( arg )
mcsdisplay ( arg , p e r s i s t e n t )

Without any arguments, mcsdisplay returns the currently used notation. By
providing the argument arg, a new notation is set. Valid values of arg are
the following.

’segre’ Displays the structure as integer partitions in Segre characteris-
tics, which means that each integer in an integer partition corresponds
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to the index of a canonical block and all integers are ordered as a mono-
tonically decreasing integer sequence. Each block type (e.g., H blocks,
K blocks, J blocks, . . . ) has its own integer partition. Further, the par-
tition has a prefix identifier and a suffix that specifies the total block
size. See Example 13.

’weyr’ This notation is similar to ’segre’ except that the integer par-
titions are in Weyr characteristics. For (S)M blocks, the partition
X = (k0, . . . , kr) means that there are k0 blocks with the indices larger
or equal to 0, k1 blocks with the indices larger or equal to 1, etc. For the
rest of the blocks (with unknown, finite, infinite, or zero eigenvalues)
the partition X = (k1, . . . , kr) instead means that there are k1 blocks
with the indices greater or equal to 1, etc. Notice that the partitions
are still monotonically decreasing.

’sizes’ This notation is similar to ’segre’ except that the indices are dis-
played in the order they were created.

’block’ Displays the structures in canonical block notation. See Example
13.

A second input argument, persistent, tells if the setting should be persistent
between sessions or not. A persistent setting is saved in the Matlab environ-
ment and read the next time Matlab is started. A second output argument
reports if the currently used notation is persistent.

Example 13

The canonical structure of the skew-symmetric matrix pencil
SM0⊕SM3⊕3SH1(α) will be displayed in Matlab as follows using
the four different notations:

>> s s p s t r = s s p s t r u c t ( [ 0 3 ] , [ 1 1 1 ] ) ;
>> mcsdisplay ( ’ segre ’ )
>> s s p s t r

s s p s t r =

SM = (3 0) (8 x8 )
SH(NaN) = (1 1 1) (6 x6 )
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>> mcsdisplay ( ’ weyr ’ )
>> s s p s t r

s s p s t r =

SM = (2 1 1 1) (8 x8 )
SH(NaN) = (3) (6 x6 )

>> mcsdisplay ( ’ s i z e s ’ )
>> s s p s t r

s s p s t r =

SM = (0 3) (8 x8 )
SH(NaN) = (1 1 1) (6 x6 )

>> mcsdisplay ( ’ block ’ )
>> s s p s t r

s s p s t r =

SM3 + SM0 + 3SH1(NaN)

3.4 Block sizes and substructures

The function get returns either an array with the corresponding indices or
a cell-array of such arrays. A cell-array output is used when several integer
partitions corresponding to different parameters need to be returned. The
arrays returned are all in analogy with how the structures have been created.
The admissible arguments for get are all the block names, see Appendix B.

Another important function is size. It returns the sizes of the matrices
that represent the corresponding structure object.
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Example 14

Assume we have a canonical structure object of the skew-
symmetric matrix pencil representing SM0⊕SM1⊕2SH1(α)⊕SK1.
The structure can be created as follows:

>> s s p s t r = s s p s t r u c t ( [ 0 1 ] , [ 1 1 ] ,NaN , [ 1 ] ) ;

The indices of the SM blocks can be obtained with any of the
two analogous calls:

>> mysmblocks = get ( s sp s t r , ’ smblock ’ ) ;
>> mysmblocks = s s p s t r . get ( ’ smblock ’ ) ;

Example 15

Given the same structure as in Example 14, a cell array containing
the canonical information of the SH blocks can be extracted by

>>myshblocks = get ( s sp s t r , ’ shblock ’ ) ;

or

>>myshblocks = s s p s t r . get ( ’ shblock ’ ) ;

Example 16

The sizes of matrices from the structure in Example 14 can be
computed by size using the following call

>>s i z e ( s s p s t r )
ans =

10 10

or equivalently

>>s s p s t r . s i z e
ans =

10 10
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3.5 Conversion between structure objects

New structures can also be created by converting structure objects of different
classes. This can be done by providing a structure object of one class as an
input argument to the constructor function of another class. The admissible
conversions are the following:

• from a skew-symmetric matrix pencil structure object to a correspond-
ing matrix pencil structure object;

• from a symmetric matrix pencil structure object to a corresponding
matrix pencil structure object.

The command pstruct works analogously to the commands spstruct and ssp-
struct, see [18] for the details.

Example 17

The following commands

>> s s p s t r = s s p s t r u c t ( [ 2 ] , [ 2 1 ] , 4 , [ 3 ] ) ;
>> ps t r = ps t ruc t ( s s p s t r ) ;

convert the canonical structure of a skew-symmetric matrix pencil
object representing SM2⊕SH2(4)⊕SH1(4)⊕SK3, to a Kronecker
structure object representing L2 ⊕ LT2 ⊕ J2(4) ⊕ J2(4) ⊕ J1(4) ⊕
J1(4)⊕J3(∞)⊕J3(∞). The following use of pstruct would create
an equivalent Kronecker structure:

>> ps t r = ps t ruc t ( [ 2 ] , [ 2 ] , [ 2 2 1 1 ] , 4 , [ 3 3 ] ) ;

The call for the conversion of a symmetric matrix pencil structure
object to a corresponding matrix pencil structure object is:

>> ps t r = ps t ruc t ( s p s t r u c t ( . . . ) ) ;
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3.6 Creating example data setups for matrices under
congruence and *congruence

Matrices in the canonical form under congruence and *congruence can be
created using the function ccf (congruence canonical form). The input argu-
ments of ccf are the structure objects cmstruct or scmstruct.

cmstr = cmstruct ( gblocks , wblocksv , e igv , z j b l o c k s )
scmstr = scmstruct ( sgblocksv , muv, swblocksv , . . .

e igv , z j b l o c k s )

The calls to create the setup which is a matrix A are the following

A = c c f ( cmstr )
A = c c f ( scmstr )

Alternatively, we may use the calls

A = cmstr . c c f
A = scmstr . c c f

Example 18

The following call to ccf

>> cmstr=cmstruct ( [ 3 ] , { [ 1 ] [ 2 ] } , [ 7 3 ] )
>> A = c c f ( cmstr )

returns a 9×9 matrix A with the canonical structure Γ3⊕W1(7)⊕
W2(3) under congruence:

A =

0 0 1 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 7 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 3 1 0 0
0 0 0 0 0 0 3 0 0
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The call above can also be done in the following two equivalent
ways:

>> [A] = c c f ( cmstruct ( [ 3 ] , { [ 1 ] [ 2 ] } , [ 7 3 ] ) )

or

>> cmstr = cmstruct ( [ 3 ] , { [ 1 ] [ 2 ] } , [ 7 3 ] )
>> [A] = cmstr . c c f

Example 19

The following call to ccf for a scmstruct object

>> scmstr=scmstruct ( { [ 3 ] [ 2 ] } , [ − 1 i ] , [ 2 ] , [ 3 ] )
>> A = c c f ( scmstr )

returns a 9× 9 matrix A with the canonical structure −Γ3⊕ iΓ2⊕
∗W2(3) under *congruence:

A =

0 0 −1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0 0
0 0 0 0 − i 0 0 0 0
0 0 0 i i 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 3 1 0 0
0 0 0 0 0 0 3 0 0

The following calls are equivalent to the one made above.

>> [A] = c c f ( scmstruct ( { [ 3 ] [ 2 ] } , [ − 1 i ] , [ 2 ] , [ 3 ] ) )

and

>> scmstr = scmstruct ( { [ 3 ] [ 2 ] } , [ − 1 i ] , [ 2 ] , [ 3 ] )
>> [A] = scmstr . c c f
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It is also possible to generate a random matrix with a desired structure
under congruence or *congruence. The ccf function can return the two ma-
trices B and C such that

CTAC = B (respectively, C∗BC = A),

where A is in the specified canonical form and C is a random orthogonal
matrix:

[B, C] = c c f ( cmstr )
[B, C] = c c f ( scmstr )

The ccf function can also return the three matrices B,C, and A defined above:

[B, C, A] = c c f ( cmstr )
[B, C, A] = c c f ( scmstr )

3.7 Creating example data setups for symmetric and
skew-symmetric matrix pencils

Symmetric and skew-symmetric matrix pencils in canonical form are created
using the function kcf (Kronecker canonical form). The input arguments of
kcf are the objects of spstruct and sspstruct.

s p s t r = s p s t r u c t ( mblocks , hblocksv , e igv , kb locks )
s s p s t r = s s p s t r u c t ( smblocks , shblocksv , e igv , skb locks )

The calls to create a matrix pencil A − sB which corresponds to a desired
setup, are as follows:

[A, B] = kc f ( s p s t r u c t )
[A, B] = kc f ( s s p s t r u c t )

Alternatively, we may use the calls

[A, B] = s p s t r . kc f
[A, B] = s s p s t r . kc f

Example 20

The following call to kcf for a spstruct object
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>> s p s t r = s p s t r u c t ( [ 1 ] , { [ 2 ] [ 4 ] } , [ 0 3 ] ) ;
>> [A,B] = kc f ( s p s t r )

returns a 9×9 symmetric matrix pencil A−sB with the canonical
structure M1 ⊕H2(0)⊕H4(3) ∶
A =

0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 3 1 0
0 0 0 0 0 3 1 0 0

B =
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0

For spstruct, the two calls equivalent to the one above are

>> [A,B] = kc f ( s p s t r u c t ( [ 1 ] , { [ 2 ] [ 4 ] } , [ 0 3 ] ) )

and

>> s p s t r = kc f ( s p s t r u c t ( [ 1 ] , { [ 2 ] [ 4 ] } , [ 0 3 ] ) )
>> [A,B] = s p s t r . kc f

Example 21

The following call to kcf for an sspstruct object
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>> s s p s t r = s s p s t r u c t ( [ 1 ] , { [ 1 ] [ 2 ] } , [ 0 3 ] ) ;
>> [A,B] = kc f ( s s p s t r )

returns a 9 × 9 skew-symmetric matrix pencil A − sB with the
canonical structure SM1 ⊕ SH1(0)⊕ SH2(3) ∶
A =

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 0 3
0 0 0 0 0 −3 0 0 0
0 0 0 0 0 −1 −3 0 0

B =
0 1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0

For sspstruct, the two call equivalent to the one above are

>> [A,B] = kc f ( s s p s t r u c t ( [ 1 ] , { [ 1 ] [ 2 ] } , [ 0 3 ] ) )

and

>> s s p s t r = s s p s t r u c t ( [ 1 ] , { [ 1 ] [ 2 ] } , [ 0 3 ] )
>> [A,B] = s s p s t r . kc f

It is also possible to generate a random matrix pencil with a desired structure.
The function kcf can return the three matrices Q,S, and T such that

QT (A − sB)Q = S − sT,

where (A,B) is in the specified canonical form and Q is an orthogonal matrix:
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[ S , T, Q] = kc f ( s p s t r )
[ S , T, Q] = kc f ( s s p s t r )

The function kcf can also return the five matrices S,T,Q,A, and B defined
above:

[ S , T, Q, A, B] = kc f ( s p s t r )
[ S , T, Q, A, B] = kc f ( s s p s t r )

3.8 Codimension and distance functions

The function codim is used to determine the codimension of the correspond-
ing orbit (i.e., congruence or *congruence orbit) of a matrix or matrix pencil
canonical structure object. The codimensions are computed from the canon-
ical structured information as stated in Theorems 2.3 and 2.4 for matrices
and Theorems 2.7 and 2.8 for matrix pencils. The corresponding functions
for the four types of setups are:

codim ( cmstr ) codim ( s p s t r )
codim ( scmstr ) codim ( s s p s t r )

The codimentions of matrix and pencil orbits can also be computed nu-
merically using the results of Section 2.3. In this case, for matrices up to
congruence (or *congruence) the function has the prefix cm (or scm) and
operates on the setup

A, where A ∈ Cn×n.
Note that beside taking a complex matrix A as an argument, the following
functions can operate on a structure object cmstruct (or scmstruct), then the
canonical structure information is used for the computations (i.e., they work
the same as codim).

cmcodim (A) scmcodim (A)
cmcodim (A, t o l ) scmcodim (A, t o l )
cmcodim ( cmstruct ) scmcodim ( scmstruct )

The analogous functions for the symmetric (or skew-symmetric) matrix pen-
cil functions have the prefix sp (or ssp) and operates on the setup

A − sB, where A,B ∈ Cn×n.

Note that as in the matrix case the following functions for matrix pencils can
take a structure object spstruct (or sspstruct) as an input.
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spcodim (A, B) sspcodim (A, B)
spcodim (A, B, t o l ) sspcodim (A, B, t o l )
spcodim ( s p s t r ) sspcodim ( s s p s t r )

In the xcodim functions above an optional rank tolerance parameter, tol, can
be specified. If not, the default tolerance for rank is used.

Example 22

The codimensions calculated in Examples 3, 4, 8, and 7 can be
computed as follows.

>> codim ( cmstruct ( [ 3 ] , [ 4 3 ] , [ 5 ] , [ 3 ] ) )
ans = 33
>> codim ( scmstruct ( { [ 3 ] [ 6 ] } , [ 1 i ] , [ 4 ] , 5 , [ 3 ] ) )
ans = 61
>> codim ( s p s t r u c t ( [ 3 ] , [ 6 ] , [ 7 ] ) )
ans = 20
>> codim ( s s p s t r u c t ( [ 3 ] , [ 3 ] , [ 7 ] ) )
ans = 9
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Appendix A: Summary of Matlab functions

Matrix up to congruence
cmstr = cmstruct (gblocks,
wblocks, eigv, zjblocks)

Returns a new object representing the canon-
ical structure of a matrix under congruence.

[B, C, A] = ccf (cmstr)
[B, C, A] = cmstr.ccf

Returns a matrix A in the canonical form un-
der congruence and matrices B,C, such that
CTAC = B.

size(cmstr)
cmstr.size

Returns the size of the matrix.

cmcodim (A, B, tol)
cmcodim(cmstr)
codim (cmstr)
cmstr.codim

Computes the codimension of the congruence
orbit of a matrix either numerically or from
the canonical structure information.

Matrix up to *congruence
scmstr = scmstruct (sgblocks,
muv, swblocks, eigv, zjblocks)

Returns a new object representing the canon-
ical structure of a matrix under *congruence.

[B, C, A] = ccf (scmstr)
[B, C, A] = scmstr.ccf

Returns a matrix A in the canonical form
under *congruence and matrices B,C, such
that C∗AC = B.

size(scmstr)
scmstr.size

Returns the size of the matrix.

scmcodim(A, B, tol)
scmcodim(scmstr)
codim(scmstr)
scmstr.codim

Computes the codimension of the *congru-
ence orbit of a matrix either numerically or
from the canonical structure information.
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Symmetric matrix pencils up to congruence
spstr = spstruct(mblocks,
hblocks, eigv, kblocks)

Returns a new object representing the canon-
ical structure of a symmetric matrix pencil.

[S, T, Q, A, B] = kcf (spstr)
[S, T, Q, A, B] = spstr.kcf

Returns a symmetric matrix pencil A−sB in
the canonical form and matrices S,T, and Q
such that QT (A − sB)Q = S − sT .

size(spstr)
spstr.size

Returns the size of the matrix pencil.

spcodim(A, B, tol)
spcodim(spstr)
codim(spstr)
spstr.codim

Computes the codimension of the congruence
orbit of a symmetric matrix pencil either nu-
merically or from the canonical structure in-
formation.

Skew-symmetric matrix pencils up to congruence
sspstr = sspstruct (smblocks,
shblocks, eigv, skblocks)

Returns a new object representing the canon-
ical structure of a skew-symmetric matrix
pencil.

[S, T, Q, A, B] = kcf (sspstr)
[S, T, Q, A, B] = sspstr.kcf

Returns a skew-symmetric matrix pencil
A − sB in the canonical form and matrices
S,T, and Q such that QT (A−sB)Q = S−sT .

size(sspstr)
sspstr.size

Returns the size of the matrix pencil.

sspcodim(A, B, tol)
sspcodim(sspstr)
codim(sspstr)
sspstr.codim

Computes the codimension of the congruence
orbit of a skew-symmetric matrix pencil ei-
ther numerically or from the canonical struc-
ture information.
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Appendix B: Summary of canonical blocks

Canonical blocks for matrices under congruence

wblock W blocks with admissible eigenvalues.
gblock Γ blocks.
zjblock Jordan blocks with zero eigenvalues.

Canonical blocks for matrices under *congruence

swblock ∗W blocks with admissible eigenvalues.
sgblock µΓ blocks with admissible parameters.
zjblock Jordan blocks with zero eigenvalues.

Canonical blocks for symmetric matrix pencils

hblock H blocks with specified or unspecified eigenvalues.
kblock K blocks, i.e., blocks associated with an infinite eigenvalue.
mblock M blocks.

Canonical blocks for skew-symmetric matrix pencils

shblock SH blocks with specified or unspecified eigenvalues.
skblock SK blocks, i.e., blocks associated with an infinite eigenvalue.
smblock SM blocks.
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