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Abstract. According to Dung, the sets of arguments which can be considered as
admissible from an argumentation framework can be regarded as logic models of
a given logic program. Clark’s completions defines a basic logic programming se-
mantics which has influenced modern non-monotonic semantics such as Answer
Set Semantics. The Complete Semantics is a fundamental argumentation seman-
tics which identifies a set of admissible sets which contains the grounded, stable,
preferred and ideal semantics. In this paper we introduce a characterization of the
complete semantics in terms of logic models using Clark’s completions. Given
that we use a unique mapping which characterizes the grounded, stable, preferred
and ideal semantics, our characterization argues for a strong bridge between argu-
mentation semantics and logic programming semantics with negation as failure.
This paper also seeks to draw attention to the correspondence we found between
the complete semantics of argumentation frameworks and models of Clark’s com-
pletion, since this correspondence also allowed us to identify the possibility of
computing argumentation frameworks based on integer programming.

1 Introduction

Argumentation theory has become an increasingly important and exciting research topic
in Artificial Intelligence (AI), with research activities ranging from developing theoret-
ical models, prototype implementations, and application studies [3, 18]. The main pur-
pose of argumentation theory is to study the fundamental mechanism humans use in
argumentation and to explore ways to implement this mechanism on computers.

Currently formal argumentation research has been strongly influenced by abstract
argumentation theory of Dung [9]. This approach is mainly orientated to manage the
interaction of arguments by introducing a single structure called Argumentation Frame-
work (AF). An argumentation framework basically is a tuple of sets: a set of arguments
and a set of disagreements between arguments called attacks. Indeed an argumentation
framework can be regarded as a directed graph in which the arguments are represented
by nodes and the attack relations are represented by arrows. In Figure 1, one can see an
example of an argumentation framework and its graph representation.



Fig. 1. Graph representation of AF := 〈{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d), (d, c)}〉.

In [9], four argumentation semantics were introduced: stable semantics, preferred
semantics, grounded semantics, and complete semantics. The central notion of Dung’s
semantics is the acceptability of the arguments. Even though each of these argumen-
tation semantics represents different patterns of selection of arguments, all of them
are based on the basic concept of admissible set. Informally speaking, an admissible
set presents a coherent and defendable point of view in a conflict between arguments.
For instance, by considering the argumentation framework of Figure 1, one can find
six admissible sets: {}, {a}, {b}, {d} {a, d}, {b, d}. The Dung’s semantics essentially
identify subsets of these admissible sets, see Table 1.

Dung showed that argumentation can be viewed as logic programming with nega-
tion as failure. Specially, he showed that the grounded semantics can be characterized
by the well-founded semantics [13], and the stable semantics by the stable model se-
mantics [14]. In this setting, he showed that the sets of arguments which can be consid-
ered as admissible can be regarded as logic models of a given logic program. This result
is of great importance because it introduces a general method for generating metainter-
preters for argumentation systems and regards argumentation semantics from another
point of view in order to identify non-monotonic reasoning features of them. Following
this issue, the preferred semantics was characterized by the p-stable semantics [17] in
[5]. Moreover, the preferred semantics was characterized by the stable model semantics
in [16].

Against this background, in this paper we introduce new results which complete
the understanding of Dung’s semantics in terms of logic programming semantics with
negation as failure. By considering an argumentation framework AF and a uniform
mapping of AF into the logic program Πacc

AF , we show that the Clarks’s completion
models of Πacc

AF characterize the complete extensions of AF . Additionally, this result
makes the connection to use the method defined in [2] to compute complete extensions
of a given AF , by computing the Clark’s completion models of a logic program Πacc

AF

using integer programming.
One of the main features of our approach is that we use a unique theory ( the logic

program Πacc
AF ) for characterizing Dung’s argumentation semantics. By using a unique

theory, we identify an isomorphism between Dung’s argumentation semantics and logic
programming semantics. Therefore, by considering an argumentation framework AF
and the logic program Πacc

AF , we get that:

– the well founded model of Πacc
AF characterizes the grounded extension of AF ,

– the stable models of Πacc
AF characterize the stable extensions of AF ,

– the p-stable models of Πacc
AF characterize the prefer extensions of AF ,



– the Clark’s completion models of Πacc
AF characterize the complete extensions of

AF .

For instance, by considering the argumentation framework of Figure 1, the different
Dung’s semantics can be inferred by the acc(x) atoms which appear in the models of
Πacc

AF , as is shown in Table 1.
Table 1. Applying Dung’s argumentation semantics to the argumentation framework of Figure 1

The different extensions of
AF

Different kinds of Models of Πacc
AF

Grounded extension = {} WFS(Πacc
AF ) = 〈{}, {}〉

Complete extensions =
{{}, {a, d}, {b, d}, {d}}

Clark’s Completion models of Πacc
AF : {def(a),

def(b), def(c), def(d)}, {acc(a), acc(d),
def(b), def(c)}, {acc(b), acc(d), def(a),
def(c)}, {acc(d), def(a), def(b), def(c)}

Stable extensions =
{{a, d}, {b, d} }

Stable models ofΠacc
AF : {acc(a), acc(d), def(b),

def(c)}, {acc(b), acc(d), def(a), def(c)}
Preferred extensions =
{{a, d}, {b, d} }

P-stable models of Πacc
AF : {acc(a), acc(d),

def(b), def(c)}, {acc(b), acc(d), def(a),
def(c)}

The characterization of argumentation semantics in terms of logic programming
semantics does not only contribute to the inference of the well-accepted argumentation
semantics but also this approach contributes by defining a method for studying the non-
monotonic reasoning properties of the argumentation semantics.

It is worth to mentioning that in the literature, we can find different characterizations
of argumentation semantics in terms of logic engines [20, 12]. For instance, in [20],
there was presented another translation from Argumentation Frameworks to Logic Pro-
grams such that the Complete Extensions correspond to 3-valued Stable Models. This
result is important but it goes in different direction from ours approach. First, from a
theoretical point of view, we are interested in the concrete translation that was able to
capture the other three semantics introduced by Dung as explained before. Second, from
a practical point of view our translation as being based on the standard Clark’s Comple-
tion only requires the well known classical logic where very efficient software exists.
Recall that their translation is based on non classical logic (3-valued satble models).

In addition to the four argumentation semantics introduced in [9], in [10], the ideal
semantics was introduced by Dung et al. The ideal semantics has been promoted as
a solid argumentation semantics for performing skeptical reasoning. Indeed, the ideal
semantics is regarded as an extension of the grounded semantics because the maximal
ideal set is a super set of the grounded extension. Recently it was shown that the ideal
sets of an argumentation framework can be characterized by logic models and Πacc

AF .
Moreover, it was shown that the maximal ideal set can be characterized by WFS+

and Πacc
AF [15]. WFS+ (also called the Well-Founded-By-Cases Semantics) [7, 19] has

proved to be a sound logic programming semantics for performing skeptical reasoning.
Indeed, Dix showed that WFS+ is a well-behaved semantics [8] which means that this



semantics satisfies a basic principle of non-monotonic reasoning (see [8] for a formal
definition of a well-behaved semantics).

The rest of the paper is divided as follows: In Section 2, a basic background about
logic programming is introduced. After this, the basic definitions of Dung’s argumen-
tation semantics are presented. In Section 3, our study about the relationship between
Clark’s completion models and complete extensions is presented. In the third section,
our mapping of an argumentation framework into logic programs is also presented. In
the last section, we outline our conclusions and future work.

2 Background

In this section, we first define the syntax of a valid logic program, after that the Clark’s
completion semantics is presented. In the last part of this section, we present some basic
concepts of argumentation theory.

2.1 Basic Notions

A signature L is a finite set of elements that we call atoms. A literal is an atom, a (called
a positive literal), or the negation of an atom not a (called a negative literal). Given
a set of atoms {a1, . . . , an}, we write not {a1, . . . , an} to denote the set of literals
{not a1, . . . , not an}. A normal clause is of the form:

a0 ← a1, . . . , aj , not aj+1, . . . , not an

in which ai is an atom, 0 ≤ i ≤ n. When n = 0 the normal clause is an abbreviation
of a0 ← >, where > and ⊥ are the ever true and ever false propositions respectively. A
normal logic program is a finite set of normal clauses.

Logic consequence in classic logic is denoted by `. Given a set of proposition sym-
bols S and a theory (a set of well-formed formula) Γ , if Γ ` S if and only if ∀s ∈ S
Γ ` s. Whenever we treat a logic program as a logic theory, each negative literal not a
is replaced by ∼ a such that ∼ is regarded as the classical negation in classic logic.

A basic property between logic theories which will be considering in our study
between logic programming semantics and argumentation semantics is the property of
conservative extension. This property between logic theories is defined as follows:

Conservative extension.
In mathematical logic, a logical theory T2 is a conservative extension of a theory T1 if
the language of T2 extends the language of T1, every theorem of T1 is a theorem of T2,
and any theorem of T2 which is in the language of T1 is already a theorem of T1.

The Clark’s Completion of a given logic program is an old concept that has been
intensively explored in logic programming literature in order to identify basic properties
of logic programming semantics with negation as failure [1, 6]. It is defined as follows:
Given a normal logic program P , its completion Comp(P ) is obtained in two steps:

1. each normal clause a0 ← a1, . . . , aj , not aj+1, . . . , not an ∈ P is replaced with
the formula:

a0 ← a1 ∧ · · · ∧ aj∧ ∼ aj+1 ∧ · · · ∧ ∼ an



2. for each symbol a ∈ LP , let Support(a) denotes the set of all formulae with a in
the head. Suppose Support(a) is the set:

{a← Body1, . . . , a← Bodym}

in which eachBodyi(1 ≤ i ≤ m) is of the form a1∧· · ·∧aj∧ ∼ aj+1∧· · · ∧ ∼ an.
Replace Support(a) with the single formula:

a↔ Body1 ∨ · · · ∨Bodym

If Support(a) = ∅ then replace it by ∼ a.

Example 1. Let P be the following normal program:

p← a. p← b. a← not b. b← not a.

One can see that Comp(P ) = {p ↔ a ∨ b, a ↔∼ b, b ↔∼ a}. Comp(P ) has two
models: {a, p} and {b, p}.

An important concept that is closely related to the completion of a normal logic
program is the so called supported model.

Supported Models.
A model M of a given normal logic program P is called a supported model of P if and
only if for every a ∈M there is a rule

a0 ← a1, . . . , aj , not aj+1, . . . , not an ∈ P

such that a = a0, {a1, . . . , aj} ⊆M and {aj+1, . . . , an} ∩M = ∅.
It is well known that given a normal logic program P , the models of Comp(P )

correspond to the supported models of P [6]. The set of supported models of a logic
program defines the so called Clark’s completion semantics [1].

2.2 Argumentation theory

Now, we define some basic concepts of Dung’s argumentation approach. The first one is
an argumentation framework. An argumentation framework captures the relationships
between arguments.

Definition 1. [9] An argumentation framework is a pair AF := 〈AR, attacks〉, where
AR is a finite set of arguments, and attacks is a binary relation on AR, i.e. attacks
⊆ AR×AR.

Any argumentation framework can be regarded as a directed graph. For instance, if
AF := 〈{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d), (d, c)}〉, then AF is represented
as it is shown in Figure 1. We say that a attacks b (or b is attacked by a) if attacks(a, b)
holds. Similarly, we say that a set S of arguments attacks b (or b is attacked by S) if b
is attacked by an argument in S.



Let us observe that an argumentation framework is a simple structure which cap-
tures the conflicts of a given set of arguments. In order to select coherent points of
views from a set of conflicts of arguments, Dung introduced a set of patterns of selec-
tion of arguments. These patterns of selection of arguments were called argumentation
semantics. Dung defined his argumentation semantics based on the basic concept of
admissible set:

Definition 2. [9] A set S of arguments is said to be conflict-free if there are no argu-
ments a, b in S such that a attacks b. An argument a ∈ AR is acceptable with respect
to a set S of arguments if and only if for each argument b ∈ AR: If b attacks a then
b is attacked by S. A conflict-free set of arguments S is admissible if and only if each
argument in S is acceptable w.r.t. S.

By considering the concept of admissible set, in [9], Dung introduced four basic ar-
gumentation semantics: the grounded, stable, preferred and complete semantics. Even
though all of them are based on admissible sets, each of them represent different pat-
tern of selection of arguments. Three of them follow a credulous approach which means
that given a set of conflicts of arguments, these semantics can suggest different sets of
arguments which can be regarded as coherent points of views. These credulous argu-
mentation semantics are defined as follows.

Definition 3. [9] Let AF := 〈AR, attacks〉 be an argumentation framework. An ad-
missible set of argument S ⊆ AR is:

– stable if and only if S attacks each argument which does not belong to S.
– preferred if and only if S is a maximal (w.r.t. inclusion) admissible set of AF .
– complete if and only if each argument, which is acceptable with respect to S, be-

longs to S.

In [9], Dung introduced a skeptical argumentation semantics which means that given
a set of conflicts of arguments this semantics can suggest only one set of arguments
which can be regarded as a coherent points of view. This semantics is called grounded
semantics and is defined in terms of a characteristic function.

Definition 4. [9] The characteristic function, denoted by FAF , of an argumentation
framework AF = 〈AR, attacks〉 is defined as follows:

FAF : 2AR → 2AR

FAF (S) = {A| A is acceptable w.r.t. S }
Definition 5. [9] The grounded extension of an argumentation framework AF, denoted
by GEAF , is the least fixed point of FAF

From the semantics introduced in [9], the grounded semantics was the only seman-
tics which follows a skeptical approach.

Since the first argumentation semantics were introduced in [9], Dung’s argumen-
tation semantics have given place to different formal studies about the properties of
them. One of these formal studies has been to regard them as formal non-monotonic
reasoning inferences. In this setting, one can find that the argumentation semantics are
close related to logic programming semantics with negation as failure. In the following
sections, we will study different relations between argumentation semantics based on
admissible sets and logic programming semantics with negation as failure.



3 Complete Semantics as Logic Programming Semantics

In this section, our main results are presented. In particular, we formalize a characteri-
zation of complete extensions in term of Clark’s completion models. These results com-
plete the relationships between the argumentation semantics introduced in [9] and some
particular logic programming semantics with negation as failure. The formal proofs and
an illustrative example of our results are presented in the appendix.

3.1 Mapping from argumentation frameworks to normal programs

The first step for studying the structure of an argumentation framework as a logic pro-
gram is to manage an argumentation framework as a logic program. To this end, a
mapping from an argumentation framework into a logic program will be presented. Let
us observe that this mapping basically is a declarative representation of an argumen-
tation framework by having in mind the the ideas of conflictfreeness and reinstatement
which are the basic concepts behind the definition of admissible sets.

In this mapping, the predicate def(x) is used, the intended meaning of def(x) is
“x is a defeated argument” which means that x cannot be part of an admissible set. A
transformation function w.r.t. an argument is defined as follows.

Definition 6. Let AF := 〈AR,Attacks〉 be an argumentation framework and a ∈
AR. We define the transformation function Π(a) as follows:

Π(a) =
⋃

b:(b,a)∈Attacks

{def(a)← not def(b)}∪
⋃

b:(b,a)∈Attacks

{def(a)←
∧

c:(c,b)∈Attacks

def(c)}

The transformation function Π with respect to an argumentation framework AF is
defined as follows:

Definition 7. LetAF := 〈AR, attacks〉 be an argumentation framework. We define its
associated normal program as follows:

ΠAF :=
⋃

a∈AR

{Π(a)}

As one can see in ΠAF , the language of ΠAF only identifies the arguments which
can be considered as defeated. By considering total interpretations, as the ones sug-
gested by logic programming semantics as stable model semantics [14], we can assume
that any argument which is not defeated in a model of ΠAF will be acceptable. This
means that given an argumentation framework AF = 〈AR,Attacks〉 if M is a model
of ΠAF , then any atom def(x) which is false in M will identify an argument x which
is acceptable. This assumption suggests a normal clause of the following form:

acc(x)← not def(x).

where acc(x) denotes that the argument x can be considered as accepted. This clause
essentially fixes as acceptable any argument which is not fixed as defeated in ΠAF . On



Fig. 2. Graph representation of AF := 〈{a1, b1, b2, c1, c2, c3, c4, e1, e2}, {(c1, b1), (c2, b1),
(b1, a1), (b2, a1), (c3, b2), (c4, b2), (e1, c3), (e2, c3)}〉.

the other hand, this clause suggests an easy form for inferring the acceptable arguments
of AF . Being aware of these observations, we extend ΠAF as follows:

Πacc
AF := ΠAF ∪

⋃
a∈AR

{acc(a)← not def(a)}

It is important to observe that Πacc
AF is a conservative extension of ΠAF . Informally

speaking, we can say that both ΠAF and Πacc
AF represent the same mapping.

Observation
For sake of simplicity of the proofs some part of the results will be concentrated on
ΠAF ; however, as we have seen, ΠAF and Πacc

AF denote the same mapping of an argu-
mentation framework into a normal logic program.

In order to illustrate ΠAF and Πacc
AF , let us consider the following example.

Example 2. LetAF := 〈AR, attacks〉 be an argumentation framework such thatAR :=
{a1, b1, b2, c1, c2, c3, c4, e1, e2} and attacks := {(c1, b1), (c2, b1), (b1, a1), (b2, a1),
(c3, b2), (c4, b2), (e1, c3), (e2, c3)}. The graph representation of AF is presented in
Figure 2. One can see that ΠAF is:

def(c3)← not def(e1). def(b1)← not def(e2). def(c3)← >.
def(b1)← not def(c1). def(b1)← not def(c2). def(b1)← >.
def(b2)← not def(c3). def(b2)← notdef(c4). def(b2)← >.
def(a1)← not def(b1). def(a1)← def(c1), def(c2).
def(a1)← not def(b2). def(a1)← def(c3), def(c4).

On the other hand, Πacc
AF is ΠAF union with the following set of clauses:

acc(a1)← not def(a1). acc(b1)← not def(b1).
acc(b2)← not def(b2). acc(c1)← not def(c1).
acc(c2)← not def(c2). acc(c3)← not def(c3).
acc(c4)← not def(c4). acc(e1)← not def(e1).
acc(e2)← not def(e2).

Before moving on, let us observe that by considering either ΠAF or Πacc
AF , the

grounded, stable and preferred semantics can be characterized by different logic pro-
gramming semantics [5]. In order to introduce these characterizations, we introduce



the following notation: Given a set of arguments E: tr(E) = {acc(a)|a ∈ E} ∪
{def(b)|b is an argument and b /∈ E}, tracc(E) = {acc(a)|a ∈ E}, trdef (E) =
{def(b)|a ∈ E}.

Theorem 1. [5] Let AF = 〈AR,Attacks〉 be an argumentation framework, E ⊆ AR
and E+ = {b|a ∈ E and (a, b) ∈ Attacks}. Then:

– E is the grounded extension of AF iff 〈tracc(E) ∪ trdef (E+), tracc(E+) ∪
trdef (E)〉 is the well-founded model of Πacc

AF .
– E is a stable extension of AF iff tr(E) is a stable model of Πacc

AF .
– E is a preferred extension of AF iff tr(E) is a p-stable model of Πacc

AF .

Let us observe that this theorem extended Theorem 62 from [9]. Theorem 62 from
[9] introduced the first relationships between argumentation semantics and logic pro-
gramming semantics.

3.2 Complete Extensions as Clark’s Completion Models

In this subsection we first will show that the complete semantics can be understood in
terms of the completion semantics, since the models of Clark’s completion correspond
to supported models, which lead us to our result.

Our characterization will take as starting point an characterization of complete ex-
tensions in terms of logic models introduced in [4].

Proposition 1. [4] Let 〈AR, attacks〉 be an argument framework. A set S ⊆ AR is a
complete extension iff S is a model of the formula∧

a∈AR

((a→
∧

b:(b,a)∈attacks

¬b) ∧ (a↔
∧

b:(b,a)∈attacks

(
∨

c:(c,b)∈attacks

c))).

In order to introduce our results, let us introduce the following notation.

Definition 8. Let AF := 〈AR, attacks〉 be an argumentation framework. Let A ⊆
AR, then m(A) = {acc(x) | x ∈ A} ∪ {def(x) | x ∈ AR \A}.

The appendix provides more insight about the main points of this section by means
of an illustrative example, which lead us to the definition of three lemmas that support
the proof of the following theorem:

Theorem 2. Let AF := 〈AR, attacks〉 be an argumentation framework. Let A ⊆
AR,A is a complete extension of AF , iff m(A) is a model of comp(Πacc

AF ).

Proof. See appendix in order to get a complete picture of the proof.



3.3 Final Connection

Now that we have characterized complete extensions in terms of Clark’s completion
models, we can extend Theorem 1 as follows:

Theorem 3. Let AF = 〈AR, attacks〉 be an argumentation framework and E ⊆ AR.
Then:

– E is the grounded extension of AF iff 〈tracc(E) ∪ trdef (E+), tracc(E+) ∪
trdef (E)〉 is the well-founded model of Πacc

AF .
– E is a stable extension of AF iff tr(E) is a stable model of Πacc

AF .
– E is a preferred extension of AF iff tr(E) is a p-stable model of Πacc

AF .
– E is a complete extension of AF iff tr(E) is a Clark’s completion model of Πacc

AF .

Proof. The proof of Theorem 3 is direct by Theorem 1 and Theorem 2.

Note that Theorem 3 uses the same program used for the characterization of the different
semantics introduced in [9] and some particular logic programming semantics with
negation as failure. Hence, Πacc

AF basically identifies an isomorphism between Dung’s
argumentation semantics and logic programming semantics.

4 Conclusions and Future Work

Since Dung introduced his abstract argumentation approach, he proved that his ap-
proach can be regarded as a special form of logic programming with negation as failure.
In fact, he showed that the grounded and stable semantics can be characterized by the
well-founded and stable models semantics respectively. This result is important because
it defined a general method for generating metainterpreters for argumentation systems
and regards argumentation semantics as non-monotonic reasoning inferences.

In this paper we give a complete characterization of Dung’s argumentation seman-
tics which were introduced in [9] in terms of logic programming semantics. By con-
sidering an argumentation framework AF and a unique mapping of AF into a logic
program Πacc

AF , we show that:

– the well founded model of Πacc
AF characterizes the grounded extension of AF (The-

orem 3),
– the stable models of Πacc

AF characterize the stable extensions of AF (Theorem 3),
– the p-stable models of Πacc

AF characterize the prefer extension of AF (Theorem 3)
and

– the supported models of Πacc
AF characterize the complete extensions of AF (Theo-

rem 3).

The characterization of argumentation semantics in terms of logic programming
semantics does not only contribute in the inference of the well-accepted argumenta-
tion semantics but also this approach contributes to study the non-monotonic reason-
ing properties of the argumentation semantics. Observe that this kind of results also
help to understand the close relationship between two successful approaches of non-
monotonic reasoning: argumentation theory and logic programming with negation as



failure. Hence, one interesting issue in argumentation research is to explore new char-
acterizations of argumentation semantics in terms of logic programming semantics.

It is known that Dung’s semantics have been shown to range from NP-complete to
Π

(p)
2 complete [11]. Hence to identify efficient methods for computing them is a hot

topic. In this concern, as an application of the results of this paper, we are exploring
the use of mixed integer programming methods [2] for computing complete extensions
of an argumentation framework. Indeed we are comparing mixed integer programming
methods and answer set solvers for computing argumentation semantics. It is worth
mentioning that in [2], a method for using integer programming to compute the Clark’s
completion models of a logic program was defined. Hence, this method takes advantage
of the results of this paper for computing the complete semantics. The results of this
study will be reported in a future paper.
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A Appendix

Let us illustrate the proof of our main results using the argumentation framework intro-
duced in Figure 2 from Example 2 and by five steps; additionally, we will state three
lemmas and their respective proofs which support the proof of Theorem 2.

Illustrative Example

Step 1: The argumentation framework from Figure 2 is instantiated with the proposi-
tonal formula from Proposition 1 considering just the atom a1.

(a1 → (∼ b1∧ ∼ b2) ∧ (a1 ↔ (c1 ∨ c2) ∧ (c3 ∨ c4)))

Now for illustration purposes, it will be better to use the same notation as in previous
examples, thus the previous formula becomes:

(acc(a1)→ (∼ acc(b1) ∧ ∼ acc(b2))∧(acc(a1)↔ (acc(c1)∨acc(c2))∧(acc(c3)∨acc(c4)))

Step 2: After decomposing the formula we will add a third one to get a conservative
extension theory:

{acc(a1)→ ∼ acc(b1) ∧ ∼ acc(b2),
acc(a1)↔ ((acc(c1) ∨ acc(c2)) ∧ (acc(c3) ∨ acc(c4)),
def(a1)↔ ∼ acc(a1)}



Step 3: which is logically equivalent to the following set of formulas

{ ∼ def(a1)→ def(b1) ∧ def(b2),
∼ def(a1)↔ (∼ def(c1) ∨ ∼ def(c2)) ∧ (∼ def(c3) ∨ ∼ def(c4)),
acc(a1)↔ ∼ def(a1)}

Step 4: Using De Morgan’s laws and basic logical manipulations, a set of formulas
that represent the argumentation framework’s complete extensions are obtained (we
will drop braces and commas for clarity purposes):

def(a1)← ∼ def(b1) ∨ ∼ def(b2) (I)
def(a1)← (def(c1) ∧ def(c2)) ∨ (def(c3) ∧ def(c4)) (II)
def(a1)→ (def(c1) ∧ def(c2)) ∨ (def(c3) ∧ def(c4)) (III)
acc(a1)↔ ∼ def(a1) (IV)

Step 5: From supported models definition, we know that the supported models of a
program P correspond to the models of Comp(P ); therefore, we will calculate the
Compa1(Π

acc
AF ) from the same example and we get:

def(a1)↔ ∼ def(b1) ∨ ∼ def(b2) ∨ (def(c1) ∧ def(c2)) ∨ (def(c3) ∧ def(c4))

acc(a1)↔ ∼ def(a)

and decomposing the above formulas we have:

def(a1)→ ∼ def(b1) ∨ ∼ def(b2) ∨ (def(c1) ∧ def(c2)) ∨ (def(c3) ∧ def(c4))(1)
def(a1)← ∼ def(b1) ∨ ∼ def(b2) ∨ (def(c1) ∧ def(c2)) ∨ (def(c3) ∧ def(c4))(2)
acc(a1)↔ ∼ def(a1) (3)

So far, we have a set of arguments (I,. . . ,IV) that represents a complete extension
of a given theory if and only if this set is a model of the formula from Proposition 1
with respect to the argumentation framework from Example 2. On the other hand, we
have computed Compa1(Π

acc
AF ) of the same argumentation framework and we got the

formulas (1, 2, 3) which represent its supported models. Now we will see if they are
equivalent:

We can see that 3 is equivalent to IV. 2 implies I, II. I, II imply 2. III implies 1,
then we just need to prove that 1 implies III; to this end, we require to consider the
completion of the arguments that attack a1, namely b1 and b2, which are respectively:

def(b1)↔ ∼ def(c1) ∨ ∼ def(c2) ∨ >.
def(b2)↔ ∼ def(c3) ∨ ∼ def(c4) ∨ >.

thus, Formula 1 supported with the added rules can prove III even in the case where
> was not present within the disjunctions. Now we are ready to formalize what this
example has pointed out.



Formal Proof

Definition 9. Let AF := 〈AR, attacks〉 be an argumentation framework, and a ∈
AR. Let ΓaAF be

{
⋃

a∈AR

acc(a)→
∧

b:(b,a)∈attacks
∼ acc(b)}

⋃
{

⋃
a∈AR

acc(a)↔
∧

b:(b,a)∈attacks

∨
c:(c,b)∈attacks

acc(c)}
⋃

{
⋃

a∈AR

def(a)↔ ∼ acc(a)}

Lemma 1. A set A is a complete extension iff m(A) is a model of ΓaAF .

Proof. Applying the formula of Proposition 1 to an Argumentation Framework AF ,
considering just argument a ∈ AR, and by adding a third formula we got a conser-
vative extension, which then was generalizated to get ΓaAF ; therefore, if S ⊆ A is a
model of the first formula then A, defined as in Definition 8, will also be a model of
ΓaAF , and also it will be a complete extension.
Note that this proof was illustrated in the first and second steps in our illustrative ex-
ample.

Lemma 2. Let AF := 〈AR, attacks〉 be an argumentation framework, and a ∈ AR.
Then the following set of formulas{

acc(a)→
∧

b:(b,a)∈attacks
∼ acc(b)

} ⋃
{
acc(a)↔

∧
b:(b,a)∈attacks

∨
c:(c,b)∈attacks

acc(c)

} ⋃
{def(a)↔ ∼ acc(a)}

is logically equivalent to Γ
′

aAF defined as:{
def(a)←

∨
b:(b,a)∈attacks

∼ def(b)

} ⋃
(I){

def(a)←
∨

b:(b,a)∈attacks
(

∧
c:(c,b)∈attacks

def(c))

} ⋃
(II){

def(a)→
∨

b:(b,a)∈attacks
(

∧
c:(c,b)∈attacks

def(c))

} ⋃
(III)

{acc(a)↔ ∼ def(a)} (IV)

Proof. We used transposition to the first unnumbered formula to get (I), and De Mor-
gan’s laws to the second unnumbered formula to get (II) and (III), and the third
unnumbered formula is the same one than (IV ).
Note that this proof was illustrated in steps three to four in our illustrative example.



Lemma 3. Let AF := 〈AR, attacks〉 be an argumentation framework. Let ΓAF as
defined in Definition 9, then ΓAF is logically equivalent to Comp(Πacc

AF ).

Proof. First of all note that from Lemma 2 we know that ΓAF is equivalent to Γ
′

AF ,
then we will show that Γ

′

AF |= α where α ∈ Comp(Πacc
AF ) for now is enough to note

that for each a ∈ AR,Γ
′

aAF |= Compa(Π
acc
AF ), where Γ

′

aAF denotes its respective
formulas w.r.t. the argument a and Compa(Πacc

AFa
) denotes its respective formulas w.r.t.

the argument a.
Now, consider Γ

′

aAF as defined in Lemma 2 and the following generalization of
Compa(Π

acc
AF ) as it was illustrated in Step 5 in Example 3:{

def(a)→
∨

b:(b,a)∈attacks
∼ def(b)

∨
(

∨
b:(b,a)∈attacks

∧
c:(c,b)∈attacks

def(c))

}⋃
(1){

def(a)←
∨

b:(b,a)∈attacks
∼ def(b)

∨
(

∨
b:(b,a)∈attacks

∧
c:(c,b)∈attacks

def(c))

}⋃
(2)

{acc(a)↔ ∼ def(a)} (3)

Note the following fact about these formulas: 3 ↔ IV. 2 |= I, II. I, II |=
2. III |= 1. Now we need to prove that 1 |= III , and we can do it by consider-
ing Compb(Πacc

AF ) where b : (b, a) ∈ attacks, and doing so, we have two cases:

1. d−AF (a) = 03. The argument a is not attacked by any other one. In this case we
have that ΓbAF is: {acc(a)↔ ∼ d(a), ∼ d(a)→ ⊥}, and on the other hand we
have that Compb(Πacc

AF ) is: {acc(a)↔ ∼ d(a), ∼ d(a)← >}, which are clearly
equivalent.

2. d−AF (a) 6= 0. The argument a do is attacked by other arguments. In this case we
have that Compa(Πacc

AF ) ∪ Compb(Πacc
AF ) |= III.

Note that the idea of this proof was illustrated in step five in our illustrative example.

Proof of Theorem 2

We know by Lemma 1 that A is a complete extension of ΓaAF , and we know by Lemma
3 that ΓAF is equivalent to Πacc

AF , therefore A is also a model of Πacc
AF .

3 Borrowing some notation from graph theory. Bondy, Adrian, Murty, U.S.R., Graph Theory,
Springer, 2008


