
Ahmed Aleyeldin (Ali-Eldin) Hassan

LICENTIATE THESIS, JUNE 2013
DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY
SWEDEN



Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

ahmeda@cs.umu.se

Copyright c© 2013 by authors
Except Paper I, c© IEEE, 2012

Paper II, c© ACM, 2012

ISBN 978-91-7459-688-5
ISSN 0348-0542
UMINF 09.15

Printed by Print & Media, Umeå University, 2013



Abstract

Cloud computing is becoming one of the the key enabling technologies for a range
of applications used every day by hundreds of millions of people. Cloud computing
emerged from the industry as an economic way that allows better management, higher
utilization and reduced operating costs for datacenters while providing on demand
resource provisioning for a set of services that share the datacenter resources. Data
centers are enormous in size and complexity. In order to fully realize the cloud com-
puting model, efficient Cloud management softwares need to be deigned and built.
These management softwares need to deal with the datacenter size and complexity.

This thesis studies automated cloud elasticity, one of the main and crucial datacen-
ter management issues managed by the Cloud management softwares. Elasticity can
be defined as the ability of the cloud infrastructure to change the amount of resources
allocated to an application running on the cloud according to the application’s demand
rapidly. This work introduces scalable algorithms, techniques and tools that a Cloud
provider can use to automate dynamic elastic provisioning allowing the provider to
better manage the datacenter resources.

iii



iv



Preface

This thesis consists of a brief introduction to the field, a short discussion of the main
problems studied, and the following papers.

Paper I Ahmed Ali-Eldin, Johan Tordsson and Erik Elmroth.
An adaptive hybrid elasticity controller for cloud infrastructures. In
NOMS 2012, Proceedings of the 13th IEEE/IFIP Network Operations and
Management Symposium, pages 204-212. IEEE, 2012.

Paper II Ahmed Ali-Eldin, Maria Kihl, Johan Tordsson and Erik Elmroth. Effi-
cient provisioning of bursty scientific workloads on the cloud using adap-
tive elasticity control. In ScienceCloud 2012, Proceedings of the 3rd
workshop on Scientific Cloud Computing Date, pages 31–40. ACM, 2012.

Paper III Ahmed Ali-Eldin, Johan Tordsson, Erik Elmroth and Maria Kihl. Work-
load Classification for efficient auto-scaling of cloud resources. UMINF
13.13, Department of Computing Science, Umeå University, Sweden. To
be submitted, 2013.

Financial support has been provided in part by the European Community’s Sev-
enth Framework Programme OPTIMIS project under grant agreement #257115, the
Swedish Government’s strategic effort eSSENCE and the Swedish Research Council
(VR) under contract number C0590801 for the project Cloud Control.

v



vi



Acknowledgements

This work would have been impossible if it was not for a number of people to whom
I am greatly indebted. First of all, I would like to thank my advisor Erik Elmroth
for his endurance, patience, inspiration and great discussions. Erik has created a very
unique positive research environment that is rare to find any where. I would also like
to thank my coadvisor Johan Tordsson for the hard work, the great ideas, the long
discussions, and the great feedback. The past a few years have been very unique, I got
married, a revolution happened back home and I got my first kid. Erik and Johan have
been considerate, helpful and supportive. They are not just advisors, they are mentors,
teachers and above all friends. It has been a privilege working with you. Your positive
impact will stay with me for the rest of my life.

I would also like to thank Daniel Espling and Wubin Li for their great help with
OPTIMIS, Per-Olov Östberg, Peter Gardfjäll and Lars Larsson for the inspiring dis-
cussions and the great feedback, Ewnetu Bayuh my office mate for the great time
we spend together, Christina Igasto for helping me settle, Petter Svärd, Francisco
Hernández, Mina Sedaghat, Selome Kosten, Gonzalo Rodrigo, Cristian Klein, Luis
Tomas, Amardeep Mehta, Lei Xu, Tomas Forsman, Emad Hassan for the great time.

I would like to thank Maria Kihl at Lund university for the interesting collabora-
tion, positive feedback and inspiring discussions. Four years ago, when I started my
postgraduate studies, I met Sameh El-Ansary who hired me as a research assistant. He
taught me a lot about research. He was a great mentor and now he is a dear friend ! I
would also like to express my deep appreciation for my thesis committee, Alexandru
Iosup, Frank Drewes and Leonid Freidovich for their time and effort.

On a more personal level, I would like to thank my parents for their love and their
support. This work would have not been possible if it was not for them explaining
to me Maths and physics 24 years ago! I was 4 when they started teaching me the
multiplication table. By the time I was five I knew a little bit more than my peers! I
love you both and I pray that I will always be a source of happiness to you! I fell in
love with a girl one week before I started my PhD studies. We got married 3 months
after I started my PhD. Hebatullah, thank you for being there for me always with love,
support and care. I would also like to thank the rest of my family for their love and
support. Last but not least, I would like to thank Salma my little daughter. She is the
most precious thing I have ever had and the main source of joy in life!

Thank you all !

vii



viii



Contents

1 Introduction 1
1.1 Cloud computing characteristics 2
1.2 Cloud Computing models 3

1.2.1 Cloud Computing service models 3
1.2.2 Cloud Computing deployment models 3

1.3 Cloud Middlewares 4

2 Rapid Elasticity: Cloud Capacity Auto-Scaling 7
2.1 Controller Required Characteristics 7
2.2 Cloud Middlewares and Elasticity Algorithms 8

2.2.1 Elasticity and Monitoring 8
2.2.2 Elasticity and Placement 9
2.2.3 Elasticity and Security 9
2.2.4 Elasticity and Admission Control 9
2.2.5 Elasticity and Accounting 10

2.3 Thesis Contributions 10

3 Paper Summary and Future Work 11
3.1 Paper I 11
3.2 Paper II 12
3.3 Paper III 12
3.4 Future Work 13

Paper I 23

Paper II 37

Paper III 51

ix



x



Chapter 1

Introduction

The idea of having computing power organized as a utility dates back to the
1960s. In a speech in 1961, John McCarthy predicted that “computation may
someday be organized as a public utility” just like electricity and water [19].
His idea did not gain popularity until the late 1990s when research on Grid
computing started. The term Grid computing was used to describe technologies
that enable on demand usage of computing power [19]. Grid computing has
been used mainly for scientific applications within the scientific community
and did not gain popularity outside that community. No commercial Grids
emerged.

Driven originally by economic needs, Cloud computing can be considered
as an evolution of Grid computing that gained popularity during the last a few
years. The Cloud computing model strives for the efficient use of datacenter
resources by increasing resource utilization and reducing the operating costs
while providing on demand computing resources. In contrast to Grid comput-
ing, Cloud computing has mainly been used for commercial systems with some
interest from the scientific community [52]. Most grid systems are used mainly
for batch jobs which are very common for scientific applications. Clouds on
the other hand support the deployment of more application types including
webservers, data-processing applications and batch systems.

There is no agreement on how to define Cloud computing [9, 13, 19]. The
definition used in this thesis is aligned with the NIST definition [28] which
describes Cloud computing as a resource utilization model that enables ubiq-
uitous, convenient, on-demand network access to a shared pool of configurable
computing resources. The computing resources can be rapidly provisioned and
released with minimal management effort or service provider interaction. There
are many technologies that contributed directly to the possibility of building
Cloud systems. Advances in virtualization technologies [1, 10], advances in
server power management techniques [17] and increased network bandwidth
are the main enabling technologies for Cloud computing.

Customers lease resources from a Cloud service provider to run their ap-

1

1



plications, services, computations or store their data on the leased resources.
Often, the resources are used to deploy a web service accessible by other enti-
ties, e.g, Reddit runs a social news and entertainment service on Amazon [33].
For the rest of this work, we interchangeably use the terms ’service’ and ’ap-
plication’ to describe the customer’s use of the resources.

1.1 Cloud computing characteristics

There are five essential characteristics of Cloud computing identified by NIST [28].
These five characteristics are:

1. On demand provisioning of resources requiring no human interaction with
the service provider.

2. Broad network access able to handle users of different network clients
such as, mobile phones and workstations.

3. Resource pooling between multiple customers having different resource
requirements. The Cloud is abstract to the costumers generally. Cus-
tomers have no control or knowledge over the exact location of their
resources except at a higher level of abstraction.

4. Rapid elasticity which is the ability to vary allocated capacity depend-
ing on the load, sometimes automatically. The resources available for
provisioning often appear unlimited for the service user.

5. Transparent resource usage monitoring where running applications are
actively monitored. Usage and performance reports should be reported
transparently.

We add to the previous list two more characteristics that we believe are essential
for the Cloud service model.

1. Fault tolerance is important for Cloud platforms since Cloud platforms
are built using commodity hardware [11]. The Cloud provider should
provide transparent fault tolerance mechanisms that mask failures from
the customers.

2. The Cloud provider has to provide Quality-of-Service (QoS) guarantees
for the customers.

Although these two characteristics are not unique to Clouds, they are essential
for the realization of the Cloud computing model.

2

2



1.2 Cloud Computing models

Cloud systems can be categorized based on their service models or deploy-
ment models. Service models describe the type of service offered by the Cloud
provider. Deployment models describe the way a service running on the Cloud
is deployed on the actual infrastructure.

1.2.1 Cloud Computing service models

Cloud computing systems are often classified into three main service models,
namely:

1. The Infrastructure-as-a-Service (IaaS) model, where the service provider
leases raw computing resources. These resources can be either physical
(sometimes referred to as Hardware-as-a-Service) or virtual [35]. This
model enables the Cloud service user to specify the needs of an application
in terms of raw computing resources. The Cloud user is responsible for
deploying and configuring the operating systems, the applications and
any required software packages to run on the infrastructure. The user
does not control the Cloud infrastructure, e.g., the user has no control
over where the assigned resources are in a datacenter. Amazon EC2 [35]
and RackSpace [41] are two examples of IaaS platforms.

2. The Platform-as-a-Service (PaaS) model, where the service provider of-
fers a platform that supports certain programming languages, libraries,
services and tools. The Cloud service user can use the platform to develop
and/or deploy applications using the provided tools and/or environments.
The user does not manage the operating system, the underlying hardware
or the software packages supported by the PaaS provider. Google’s App
Engine [38] and Windows Azure [39] are two examples of PaaS platforms.

3. The Software-as-a-Service (SaaS) model, where the service provider offers
an application running on a Cloud infrastructure to the customers. The
application is used by the Cloud service user as is. Oracle Cloud [40] and
salesforce [43] are two examples of SaaS providers.

These models are not mutually exclusive. They can coexist in the same data-
center. Some IaaS providers host Paas and SaaS Clouds in the IaaS Cloud [34].

1.2.2 Cloud Computing deployment models

Cloud deployment models describe how and where services running in a Cloud
are deployed. It also describes who can access the resources of a Cloud. The
deployment models identified by NIST are:

1. Private Clouds: Owned, managed and used by a single organization.
Access to the Cloud is restricted to entities within the organization. This

3

3



model provides higher security for the organization since all sensitive
data is kept internal. The National Security Agency in the USA recently
revealed that they are operating a private Cloud [12].

2. Community Clouds: shared between multiple organizations having com-
mon interests. Access to the Cloud is restricted to entities within the
organizations. The G-Cloud project in the UK started as a community
Cloud [37].

3. Public Clouds are infrastructures that lease computing resources to the
public. They are typically operated and managed by business or aca-
demic organizations. The Cloud resources are shared between the cus-
tomers. Amazon’s EC2, RackSpace and salesforce are all examples of
public Clouds.

4. Hybrid Clouds describes distinct Cloud systems (public, private or com-
munity) that have mutual agreements and technologies enabling data and
application portability. The model allows one Cloud entity to extend its
capacity by using resources from another Cloud entity. In addition, the
model allows load balancing between the partner Clouds. The recently
announced hybrid Cloud between Netapp, Equinix and Amazon [36] is
an example of hybrid Clouds.

1.3 Cloud Middlewares

Cloud middlewares are software systems used to manage Cloud computing
systems. These middlewares should be designed to provide the essential char-
acteristics of the Cloud computing model. Cloud middlewares should provide
APIs and abstraction layers through which the customer can submit requests
for resources and monitor resource usage. The middlewares need to manage
admission control, resource pooling, fault tolerance, on demand provisioning,
resource placement and possibly rapid elasticity. In addition, there should be
enough hardware resources to enable efficient resource pooling and rapid elas-
ticity. The middleware is also responsible for enforcing all QoS guarantees.
The service and deployment models supported by the Cloud also affects the
middleware design.

Current Cloud datacenters are huge in size. For example, Rackspace has
more than 94000 servers hosted in 9 datacenters serving more than 200000 cus-
tomers. Typically, a server has between 4 cores and 128 cores. Management of
such huge and complex systems requires some automation in the management
software. On demand provisioning and resource pooling requires the middle-
ware to be able to handle the provisioning demands for the customer and
allocate the resources required by the service automatically and transparently.
Fault tolerance should be transparent to the user and the applications with
minimal effect on the QoS of the service. Resource usage monitoring should

4

4



be done periodically and transparently. The main focus of this thesis is the
design of algorithms that enable the automation of Cloud middlewares with an
emphasis on algorithms for automated rapid elasticity.

5

5



6

6



Chapter 2

Rapid Elasticity: Cloud
Capacity Auto-Scaling

NIST describes rapid elasticity as a Cloud essential characteristic that enables
capabilities to be elastically provisioned and released, to scale rapidly according
to the demand size. To the Cloud user, the resources available often appear
unlimited. The NIST definition does not require elasticity to be automated
although it can be automated in some cases [28]. There are two main elasticity
types, namely, vertical elasticity and horizontal elasticity. Vertical elasticity is
the ability of the Cloud to rapidly change configurations of virtual resources
allocated to a service to vary with demand, e.g., adding more CPU power,
memory or disk space to already running VMs [51]. Horizontal elasticity is the
ability of the Cloud to rapidly vary the number of VMs allocated to a service
according to demand [4]. This thesis focuses on automated horizontal elasticity
or resource auto-scaling and the challenges associated with the automation.

2.1 Controller Required Characteristics

Considered by some as the game-changing characteristic of Cloud comput-
ing [31], elasticity has gained considerable research interest [7, 25, 29, 46, 49].
Most of the research on Cloud elasticity has focused on the design of auto-
mated elasticity controllers. We believe there are essential characteristics for
automated elasticity [3] controllers to be useful, namely,

1. Scalability: It has been estimated recently that Amazon’s EC2 operates
around half a million servers [27]. One single service can have up to
a few thousand machines [15]. Some services run on the Cloud for a
short period of time while others services can run for years entirely on
the Cloud, e.g., reddit has been running on EC2 entirely since 2009 [33].
Algorithms used for automated elasticity must be scalable with respect

7

7



to the amount of resources running, the monitoring data analyzed and
the time for which the algorithm has been running.

2. Adaptiveness: Workloads of Internet and Cloud applications are dynamic
[22, 5]. An automated elasticity controller should be able to adapt to the
changing workload dynamics or changes in the system models, e.g., new
resources added or removed from the system.

3. Rapid: An automated elasticity algorithm should compute the required
capacity rapidly enough to preserve the QoS requirements. Sub-optimal
decisions that preserves the QoS requirements are better than optimal de-
cisions that might take longer to process than can be tolerated. Limited
lookahead control is a very accurate technique for the estimation of the
required resources that takes almost half an hour to come up with an ac-
curate solution for 15 physical machines each hosting 4 Virtual Machines
(VMs) [24].

4. Robustness: The changing load dynamics might lead to a change in the
controller behavior [30]. A robust controller should prevent oscillations
in resource allocation.

5. QoS and Cost awareness: The automated elasticity algorithm should be
able to vary the capacity allocated to a service according to demand while
enforcing the QoS requirements. If the algorithm provisions resources less
than required, then QoS may deteriorate leading to possible losses. When
the algorithm provisions extra capacity that is not needed by the service,
then there is a waste of resources. In addition, the costs of the extra
unneeded capacity increases the costs of running a service in the Cloud.

We note that some of these requirements were also identified by Padala et.
al. [32] as design goals for their controller design.

2.2 Cloud Middlewares and Elasticity Algorithms

Cloud middlewares typically have different components managing different func-
tionalities such as elasticity, resource and data placement, security, monitoring,
admission control, accounting and billing. We discuss the effect of having an
automated elasticity component on different middleware components.

2.2.1 Elasticity and Monitoring

Monitoring is an integral part of datacenter management. Almost all compo-
nents of a Cloud middleware are dependent on the presence of reliable moni-
toring data. Monitoring of Cloud services has been identified as a significant
challenge to Cloud systems adoption [19].

Elasticity algorithms are dependent on the available monitoring data since
the data is used to calculate and predict the current and future load based on

8

8



the monitored demand. There are significant challenges when the automated
elasticity component is managed by the Cloud provider. Different services
have different measures of performance, e.g., response time, CPU utilization,
memory utilization, network bandwidth utilization, request arrival rates or any
specific metric for that particular service. The monitoring component should
have the ability to monitor different metrics for different services running on
the Cloud.

2.2.2 Elasticity and Placement

Resource placement and elasticity are two complementary problems that highly
affect each other. The placement component is responsible for the assignment
of actual hardware in the datacenter to a service, i.e., where the VMs of a
service run. When the required capacity is predicted and new VMs are to be
deployed, the placement component chooses where should these VMs run in
the datacenter. Similarly, when the decision is to remove some VMs allocated
to a service, the placement component is responsible for choosing which VMs
to remove. Therefore, intelligent placement algorithms are required to make
sure that the QoS does not deteriorate due to bad placement decisions, e.g.,
placing a VM on an already overloaded physical machine.

2.2.3 Elasticity and Security

Almost all the security threats to traditional online systems are present for
services running on a Cloud. Automatic elasticity adds a new dimensionality
to Denial-of-Service attacks (DoS). DoS attacks are usually performed by satu-
rating the servers of a service by bogus requests. In traditional online systems,
when the servers are saturated, the service responsiveness deteriorates and the
service may crash. In Cloud environments having automated elasticity, if such
attacks are not discovered early on, resources will be added to the service to
serve the bogus requests. These resources are paid for while not doing any
actual work resulting in an economical Denial of Service attack [2, 23, 47]

2.2.4 Elasticity and Admission Control

Admission control is the component responsible for accepting new customer
services. Admission control mechanisms aim to keep the Cloud infrastructure
highly utilized while avoiding overloading that may results in QoS deterioration.
Admission control can be easily done when all the deployed services are static
and no changes occur in the amount of resources allocated to any of the services.
On the other hand, for elastic application, admission control becomes more
complex since the admission control mechanism has to take into account the
current and predicted future load for all services running on the Cloud [50].

9

9



2.2.5 Elasticity and Accounting

Since the amount of resources allocated to a service change dynamically, the
accounting component must be designed to handle these volatile resource us-
ages [16]. Current Cloud providers typically charge for resources in billing
cycles of length one hour each [44, 42]. For a public Cloud, An automated
elasticity algorithm should be aware of the billing cycle length. Removing a
VM before the end of its billing cycle is a waste of resources since the price for
that VM is already paid.

2.3 Thesis Contributions

Research on automated elasticity algorithms extends on the research done on
dynamic resource provisioning that started more than a decade ago [6, 14]. De-
signing an automated elasticity controller that meets the desired requirements
for a wide spectrum of applications and workloads is not an easy task. Most of
the proposed elasticity controllers lack at least one of the identified properties.
Some elasticity controller designs assume a certain model for the infrastruc-
ture and certain operating conditions [8, 25]. These controllers lack robustness
against changes in the infrastructure and changes in workload dynamics. Some
controller designs are not scalable with respect to time [20]. Other designs
are not scalable with respect to the amount of resources allocated to a ser-
vice [24, 45]. Some of the proposed solutions do not take into account costs
associated with dropped requests [26] or neglects overprovisioning costs by not
scaling down the extra resources [48]. Almost all the controllers proposed in
the literature we are aware off were evaluated with less than three real work-
loads [26], typically one or less [20, 21, 45, 48] sometimes for a period equivalent
to less than a day [20].

The first contribution of this thesis is the design of an automated adaptive
hybrid elasticity controller that uses the slope of a workload to predict its future
values [4, 18]. The controller’s design is further extended [3]. The controller
is tested on three different real workload traces of different natures. Since no
controller is able to have good performance on all different workloads, our sec-
ond contribution is a workload analysis and classification tool that assigns a
workload to the most suitable controller out of a set of implemented elasticity
controllers [5]. The assignment is calculated based on the workload character-
istics and service level objectives defined by the Cloud customer. Thesis contri-
butions include scientific publications addressing the design of algorithms for
Cloud capacity auto-scaling and the design and implementation of a tool for
workload analysis and classification. In addition, software artifacts using the
proposed algorithms for auto-scaling were developed.

10

10



Chapter 3

Paper Summary and
Future Work

As previously stated, the main focus of this thesis is the design and implemen-
tation of algorithms that enable the automation of Cloud middlewares with an
emphasis on algorithms for auto-scaling. Although all our publications assume
that the middleware is for an IaaS public or private Cloud, the algorithms
and techniques developed are suitable for all Cloud models since auto-scaling
depends on the load dynamics rather than the Cloud model.

3.1 Paper I

The first paper in the thesis [4] introduces two proactive elasticity algorithms
that can be used to predict future workload for an application running on the
Cloud. Resources are then provisioned according to the controllers’ predictions.
The first algorithm predicts the future load based on the workload’s rate of
change with respect to time. The second algorithm predicts future load based
on the rate of change of the workload with respect to the average provisioned
capacity. The designs of the two algorithms are explained.

The paper also discusses the nine approaches to build hybrid elasticity con-
trollers that have a reactive elasticity component and a proactive component.
The reactive elasticity component is a step controller that reacts to the changes
in the workload after they occur. The proactive component is a controller that
has a prediction mechanism to predict future load based on the load’s history.
The two controllers introduced are used as the proactive component in the nine
approaches discussed. The performances of the resulting hybrid controllers are
compared and analyzed. Best practices in designing hybrid controllers are dis-
cussed. The performance of the top performing hybrid controllers is compared
to a state-of-the-art hybrid elasticity controller that uses a different proactive
component. In addition, the effect of the workload size on the performance of

11

11



the proposed controllers is discussed.

3.2 Paper II

The design of the algorithms proposed in the first paper made some simplifying
assumptions that ignored multiple important aspects of the Cloud infrastruc-
ture and the workload’s served. Aspects such as VM startup time, workload
heterogeneity and the changing request service rate of a VM are not considered
in the first paper. In addition, it is assumed that delayed requests are dropped.

The second paper [3] extends on the first paper by enhancing the Cloud
model used for the controller design. The new model uses a G/G/N queuing
model, where N is variable, to model a Cloud service provider. The queuing
model is used to design an enhanced hybrid elasticity controller that takes into
account the VM startup time, workload heterogeneity and the changing re-
quest service rate of a VM. The new controller allows the buffering of delayed
requests and takes into account the size of the delayed requests when predicting
the amount of resources required for the future load. The designed controller’s
performance is evaluated using webserver traces and traces from a Cloud com-
puting cluster with long running jobs. The results are compared to a controller
that only has reactive components.

3.3 Paper III

The third paper extends on the first two papers. The performance of the de-
signed controllers in the first two papers varies with different workloads due
to different workload characteristics. Paper III discusses the effect of different
workload characteristics on the performance of different elasticity controllers.
The design and implementation of an automatic workload analysis and classi-
fication tool is proposed as a solution to the performance variations. The tool
can be used by Cloud providers to assign workloads to elasticity controllers
based on the workloads’ characteristics. The tool has two main components,
the analyzer and the classifier. The detailed designs of both components are
described.

The analyzer analyzes a workload and extracts it periodicity and burstiness.
Periodicity is measured using the autocorrelation of the workload. The use of
Sample Entropy (SampEn) as a measure of burstiness is proposed. SampEn
has been used in biomedical systems research for more than a decade and has
proven robust. To the best of our knowledge, this is the first paper proposing
SampEn usage for characterizing bursts in Cloud computing workloads. The
classifier component uses a K-Nearest-Neighbors (KNN) algorithm to assign a
workload to the most suitable elasticity controller based on the results from the
analysis. The classifier requires training using training data. Three different
training datasets are used for the training. The first set consists of 14 real
workloads, the second set consists of 55 synthetic workloads and the third set

12

12



consists of the previous two sets combined. The analysis results of 14 real
workloads are described. In addition, the generation of the synthetic traces is
briefly explained.

Paper III also proposes a methodology to compare the performance of an
application’s workload on different elasticity controllers based on a set of pre-
defined business level objectives by the application’s owner. The performance
of the training set is the workloads in the training set is discussed using the
proposed method. The paper then describes the training of the classifier com-
ponent and the classification accuracy and results.

3.4 Future Work

There are several directions identified for future work starting from this thesis,
some of which already started while others are planned. The design of more
efficient Cloud management systems depends on better understanding of the
workloads running on the Cloud systems. The workload analysis and classifi-
cation component proposed in Paper III has used only two characteristics to
analyze the different workloads. We have currently started investigating what
other additional characteristics can be used for workload analysis. We plan
to use the identified important characteristics to analyze longer workloads to
better understand the evolution of a workload with time. Since the available
real Cloud workloads are scarce, the analysis results will be used to improve
the workload generator used in Paper III to generate synthetic traces.

The algorithms presented in Paper I and Paper II are useful for short term
predictions. The proposed algorithms do not predict long term capacity re-
quirements. Predictions of long term capacity requirements are important
for different reasons such as admission control of new services and resource
placement. Admission control requires some knowledge about the predicted
aggregate load on the infrastructure in order to preserve QoS guarantees for
the running services. Since resources are typically consolidated in a Cloud, the
middleware should consolidate orthogonal loads on the same physical machine
in order to preserve the QoS requirements, e.g., computationally intensive work-
loads with predicted high peaks in CPU usage should not be consolidated on
the same physical server but rather with memory intensive workloads. We are
currently working on a design of an elasticity controller that can predict short
term and long term capacity requirements with high accuracy. The workload
analysis results will also be taken in to consideration for the new controller’s
design. Resource provisioning should be based on a combination of both the
short term and long term predictions.

The workload analysis and classification tool described in Paper III is used
to assign workloads to elasticity algorithms. In principle, the tool can be used
to assign workloads to a group of predefined classes in general, e.g., elasticity
algorithms, placement algorithms or even different computing environments.
We plan to extend and adapt the current tool to cover different use-cases.

13

13



14

14



Bibliography

[1] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In ACM SIGOPS Operating Systems
Review, pages 2–13. ACM, 2006.

[2] Fahd Al-Haidari, Mohammed H Sqalli, and Khaled Salah. Enhanced
EDoS-shield for mitigating EDoS attacks originating from spoofed IP
addresses. In IEEE 11th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), 2012, pages
1167–1174. IEEE, 2012.

[3] Ahmed Ali-Eldin, Maria Kihl, Johan Tordsson, and Erik Elmroth. Efficient
provisioning of bursty scientific workloads on the cloud using adaptive
elasticity control. In Proceedings of the 3rd workshop on Scientific Cloud
Computing Date, pages 31–40. ACM, 2012.

[4] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. An adaptive hy-
brid elasticity controller for cloud infrastructures. In Network Operations
and Management Symposium (NOMS), 2012 IEEE, pages 204–212. IEEE,
2012.

[5] Ahmed Ali-Eldin, Johan Tordsson, Erik Elmroth, and Maria Kihl. Work-
load classification for efficient auto-scaling of cloud resources. Technical
report, Ume̊a University, 2013.

[6] Guillermo A Alvarez, Elizabeth Borowsky, Susie Go, Theodore H Romer,
Ralph Becker-Szendy, Richard Golding, Arif Merchant, Mirjana Spasoje-
vic, Alistair Veitch, and John Wilkes. Minerva: An automated resource
provisioning tool for large-scale storage systems. ACM Transactions on
Computer Systems (TOCS), 19(4):483–518, 2001.

[7] Ganesh Ananthanarayanan, Christopher Douglas, Raghu Ramakrishnan,
Sriram Rao, and Ion Stoica. True elasticity in multi-tenant data-intensive
compute clusters. In Proceedings of the Third ACM Symposium on Cloud
Computing, page 24. ACM, 2012.

[8] Ala Arman, Ahmad Al-Shishtawy, and Vladimir Vlassov. Elasticity con-
troller for cloud-based key-value stores. In Parallel and Distributed Systems

15

15



(ICPADS), 2012 IEEE 18th International Conference on, pages 268–275.
IEEE, 2012.

[9] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, and Matei Zaharia. A view of cloud computing. Communica-
tions of the ACM, 53(4):50–58, 2010.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. ACM SIGOPS Operating Systems Review, 37(5):164–177,
2003.

[11] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How
is the weather tomorrow?: towards a benchmark for the cloud. In Proceed-
ings of the Second International Workshop on Testing Database Systems,
page 9. ACM, 2009.

[12] Nathanael Burton. ”Keynote: OpenStack at the National Security Agency
(NSA)”. Accessed: May, 2013.

[13] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
and Ivona Brandic. Cloud computing and emerging it platforms: Vision,
hype, and reality for delivering computing as the 5th utility. Future Gen-
eration computer systems, 25(6):599–616, 2009.

[14] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, and R.P. Doyle.
Managing energy and server resources in hosting centers. In Proceedings
of the eighteenth ACM symposium on Operating systems principles, pages
103–116. ACM, 2001.

[15] CycleComputing. New CycleCloud HPC Cluster Is a Triple Threat,
September 2011.

[16] Erik Elmroth, Fermin Galan Marquez, Daniel Henriksson, and
David Perales Ferrera. Accounting and billing for federated cloud infras-
tructures. In Eighth International Conference on Grid and Cooperative
Computing, 2009. GCC’09., pages 268–275. IEEE, 2009.

[17] EN Mootaz Elnozahy, Michael Kistler, and Ramakrishnan Rajamony.
Energy-efficient server clusters. In Power-Aware Computer Systems, pages
179–197. Springer, 2003.

[18] Ana Juan Ferrer, Francisco Hernandez, Johan Tordsson, Erik Elmroth,
Ahmed Ali-Eldin, Csilla Zsigri, Raul Sirvent, Jordi Guitart, Rosa M.
Badia, Karim Djemame, Wolfgang Ziegler, Theo Dimitrakos, Srijith K.
Nair, George Kousiouris, Kleopatra Konstanteli, Theodora Varvarigou,
Benoit Hudzia, Alexander Kipp, Stefan Wesner, Marcelo Corrales, Niko-
laus Forgo, Tabassum Sharif, and Craig Sheridan. Optimis: A holistic

16

16



approach to cloud service provisioning. Future Generation Computer Sys-
tems, 28(1):66 – 77, 2012.

[19] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and
grid computing 360-degree compared. In Grid Computing Environments
Workshop, 2008. GCE’08, pages 1–10. IEEE, 2008.

[20] Waheed Iqbal, Matthew N Dailey, David Carrera, and Paul Janecek.
Adaptive resource provisioning for read intensive multi-tier applications
in the cloud. Future Generation Computer Systems, 27(6):871–879, 2011.

[21] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical pre-
diction models for adaptive resource provisioning in the cloud. Future
Generation Computer Systems, 28(1):155–162, 2012.

[22] X. Kang, H. Zhang, G. Jiang, H. Chen, X. Meng, and K. Yoshihira. Un-
derstanding internet video sharing site workload: A view from data cen-
ter design. Journal of Visual Communication and Image Representation,
21(2):129–138, 2010.

[23] Soon Hin Khor and Akihiro Nakao. spow: On-demand cloud-based ed-
dos mitigation mechanism. In Fifth Workshop on Hot Topics in System
Dependability, 2009.

[24] D. Kusic, J.O. Kephart, J.E. Hanson, N. Kandasamy, and G. Jiang. Power
and performance management of virtualized computing environments via
lookahead control. Cluster Computing, 12(1):1–15, 2009.

[25] Harold C Lim, Shivnath Babu, and Jeffrey S Chase. Automated control
for elastic storage. In Proceedings of the 7th international conference on
Autonomic computing, pages 1–10. ACM, 2010.

[26] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska.
Online dynamic capacity provisioning in data centers. In 49th Annual
Allerton Conference on Communication, Control, and Computing (Aller-
ton), 2011, pages 1159–1163. IEEE, 2011.

[27] Huan Liu. ”Amazon data center size”. Accessed: May, 2013.

[28] Peter Mell and Timothy Grance. The NIST definition of cloud computing.
NIST special publication, 800:145, 2011.

[29] Shicong Meng, Ling Liu, and Vijayaraghavan Soundararajan. Tide:
achieving self-scaling in virtualized datacenter management middleware.
In Proceedings of the 11th International Middleware Conference Industrial
track, pages 17–22. ACM, 2010.

[30] M. Morari. Robust stability of systems with integral control. IEEE Trans-
actions on Automatic Control, 30(6):574–577, 1985.

17

17



[31] Dustin Owens. Securing elasticity in the cloud. Commun. ACM, 53(6):46–
51, June 2010.

[32] Pradeep Padala, Kai-Yuan Hou, Kang G Shin, Xiaoyun Zhu, Mustafa
Uysal, Zhikui Wang, Sharad Singhal, and Arif Merchant. Automated
control of multiple virtualized resources. In Proceedings of the 4th ACM
European conference on Computer systems, pages 13–26. ACM, 2009.

[33] Amazon AWS. AWS Case Study: reddit. Accessed: May, 2013.

[34] Amazon Web Service. ”Case Studies”. Accessed: May, 2013.

[35] Amazon Web Services. ”Amazon EC2 instances”. Accessed: May, 2013.

[36] Equinix. ”Rethink Your Storage Strategy for the Digital Economy”. Ac-
cessed: May, 2013.

[37] G-Cloud. ”The G-Cloud Programme”. Accessed: May, 2013.

[38] Google. ” google app engine”. Accessed: May, 2013.

[39] Microsofot. Windows Azure. Accessed: May, 2013.

[40] Oracle. ”Oracle Cloud”. Accessed: May, 2013.

[41] Rackspace. ” The Rackspace Cloud”. Accessed: May, 2013.

[42] Rackspace. ”cloud servers pricing”. Accessed: May, 2013.

[43] Salesforce. ”CRM and Cloud Computing To Grow Your Business”. Ac-
cessed: May, 2013.

[44] Windows Azure. ”pricing at-a-glance”. Accessed: May, 2013.

[45] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient au-
toscaling in the cloud using predictive models for workload forecasting.
In IEEE International Conference on Cloud Computing (CLOUD), 2011,
pages 500–507. IEEE, 2011.

[46] D. Schatzberg, J. Appavoo, O. Krieger, and E.V. Hensbergen. Why elas-
ticity matters. Technical report, Boston University, 2012.

[47] Mohammed H Sqalli, Fahd Al-Haidari, and Khaled Salah. EDoS-shield-a
two-steps mitigation technique against EDoS attacks in cloud computing.
In Fourth IEEE International Conference on Utility and Cloud Computing
(UCC), 2011, pages 49–56. IEEE, 2011.

[48] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal,
and Timothy Wood. Agile dynamic provisioning of multi-tier internet
applications. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 3(1):1, 2008.

18

18



[49] David Villegas, Athanasios Antoniou, Seyed Masoud Sadjadi, and Alexan-
dru Iosup. An analysis of provisioning and allocation policies for
infrastructure-as-a-service clouds. In 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), 2012, pages
612–619. IEEE, 2012.

[50] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. Sla-based ad-
mission control for a software-as-a-service provider in cloud computing en-
vironments. Journal of Computer and System Sciences, 78(5):1280–1299,
2012.

[51] Lenar Yazdanov and Christof Fetzer. Vertical scaling for prioritized vms
provisioning. In Second International Conference on Cloud and Green
Computing (CGC), 2012, pages 118–125. IEEE, 2012.

[52] K. Yelick, S. Coghlan, B. Draney, and R.S. Canon. The magellan report
on cloud computing for science. Technical report, Technical report, US
Department of Energy, Office of Science, Office of Advanced Scientific
Computing Research (ASCR), 2011.

19

19



20

20



I





Paper I

An Adaptive Hybrid Elasticity Controller for Cloud
Infrastructures∗

Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth

Dept. Computing Science, Umeå University, SE-901 87 Umeå, Sweden
{ahmeda,tordsson,elmroth}@cs.umu.se

http://www.gird.se

Abstract: Cloud elasticity is the ability of the cloud infrastructureto rapidly change
the amount of resources allocated to a service in order to meet the actual varying
demands on the service while enforcing SLAs. In this paper, we focus on horizontal
elasticity, the ability of the infrastructure to add or remove virtual machines allocated
to a service deployed in the cloud. We model a cloud service using queuing theory.
Using that model we build two adaptive proactive controllers that estimate the future
load on a service. We explore the different possible scenarios for deploying a proactive
elasticity controller coupled with a reactive elasticity controller in the cloud. Using
simulation with workload traces from the FIFA world-cup webservers, we show that
a hybrid controller that incorporates a reactive controller for scale up coupled with our
proactive controllers for scale down decisions reduces SLAviolations by a factor of 2
to 10 compared to a regression based controller or a completely reactive controller.

∗ By permission of the IEEE

33



24



An Adaptive Hybrid Elasticity Controller
for Cloud Infrastructures
Ahmed Ali-Eldin, Johan Tordsson and Erik Elmroth

Department of Computing Science, Umeå University
Umeå, Sweden

Email:{ahmeda, tordsson, elmroth}@cs.umu.se

Abstract—Cloud elasticity is the ability of the cloud infras-
tructure to rapidly change the amount of resources allocated
to a service in order to meet the actual varying demands on
the service while enforcing SLAs. In this paper, we focus on
horizontal elasticity, the ability of the infrastructure to add or
remove virtual machines allocated to a service deployed in the
cloud. We model a cloud service using queuing theory. Using that
model we build two adaptive proactive controllers that estimate
the future load on a service. We explore the different possible
scenarios for deploying a proactive elasticity controller coupled
with a reactive elasticity controller in the cloud. Using simulation
with workload traces from the FIFA world-cup web servers,
we show that a hybrid controller that incorporates a reactive
controller for scale up coupled with our proactive controllers for
scale down decisions reduces SLA violations by a factor of 2 to
10 compared to a regression based controller or a completely
reactive controller.

I. INTRODUCTION

With the advent of large scale data centers that host out-
sourced IT services, cloud computing [1] is becoming one
of the key technologies in the IT industry. A cloud is an
elastic execution environment of resources involving multiple
stakeholders and providing a metered service at a specified
level of quality [2]. One of the major benefits of using cloud
computing compared to using an internal infrastructure is
the ability of the cloud to provide its customers with elastic
resources that can be provisioned on demand within seconds or
minutes. These resources can be used to handle flash crowds.
A flash crowd, also known as a slashdot effect, is a surge
in traffic to a particular service that causes the service to be
virtually unreachable [3]. Flash crowds are very common in
today’s networked world. Figure I shows the traces of the
FIFA 1998 world cup website. Flash crowds occur frequently
before and after matches. In this work, we try to automate
and optimize the management of flash crowds in the cloud by
developing an autonomous elasticity controller.

Autonomous elastic cloud infrastructures provision re-
sources according to the current actual demand on the in-
frastructure while enforcing service level agreements (SLAs).
Elasticity is the ability of the cloud to rapidly vary the allo-
cated resource capacity to a service according to the current
load in order to meet the quality of service (QoS) requirements
specified in the SLA agreements. Horizontal elasticity is the
ability of the cloud to rapidly increase or decrease the number
of virtual machines (VMs) allocated to a service according to
the current load. Vertical elasticity is the ability of the cloud to

Fig. 1. Flash crowds illustrating the rapid change in demand for the FIFA
world cup website.

change the hardware configuration of VM(s) already running
to increase or decrease the total amount of resources allocated
to a service running in the cloud.

Building elastic cloud infrastructures that scale up and down
with the actual demand of the service is a problem far from
being solved [2]. Scale up should be fast enough in order
to prevent breaking any SLAs while it should be as close
as possible to the actual required load. Scale down should
not be premature, i.e., scale down should occur when it is
anticipated that the service does not need these resources in
the near future. If scale down is done prematurely, resources
are allocated and deallocated in a way that causes oscillations
in the system. These resource oscillations introduce problems
to load balancers and add some extra costs due to the fre-
quent release and allocation of resources [4]. In this paper
we develop two adaptive horizontal elasticity controllers that
control scale up and scale down decisions and prevent resource
oscillations.

This paper is organized as follows; in Section II, we describe
the design of our controllers. In Section III we describe our
simulation framework, our experiments and discuss our results.
In Section IV we describe some approaches to building elas-
ticity controllers in the literature. We conclude in Section V.

II. BUILDING AN ELASTIC CLOUD CONTROLLER

In designing our controllers, we view the cloud as a control
system. Control systems are either closed loop or open loop
systems [5]. In an open loop control system, the control action
does not depend on the system output making open loop
control generally more suited for simple applications where no

25



Fig. 2. Adaptive Proactive Controller Model.

feedback is required and no system monitoring is performed.
Contrarily, a closed loop control system is more suited for
sophisticated application as the control action depends on the
system output and on monitoring some system parameters. The
general closed-loop control problem can be stated as follows:
The controller output µ(t) tries to force the system output
C(t) to be equal to the reference input R(t) at any time t
irrespective of the disturbance ∆D. This general statement
defines the main targets of any closed loop control system
irrespective of the controller design.

In this work, we model a service deployed in the cloud as
a closed loop control system. Thus, the horizontal elasticity
problem can be stated as follows: The elasticity controller
output µ(t) should add or remove VMs to ensure that the
number of service requests C(t) is equal to the total number
of requests received R(t) + ∆D(t) at any time unit t with an
error tolerance specified in the SLA irrespective of the change
in the demand ∆D while maintaining the number of VMs to
a minimum. The model is simplified by assuming that servers
start up and shut down instantaneously.

We design and build two adaptive proactive controllers to
control the QoS of a service as shown in Figure 2. We add an
estimator to adapt the output of the controller with any change
in the system load and the system model.

A. Modeling the state of the service

Figure 3 shows a queuing model representing the cloud
infrastructure. The infrastructure is modeled as a G/G/N
stable queue in which the number of servers N required is
variable [6]. In the model, the total number of requests per
second Rtotal is divided into two inputs to the infrastructure,
the first input R(t) represents the total amount of requests the
infrastructure is capable of serving during time unit t. The
second input, ∆D represents the change in the number of
requests from the past time unit. Since the system is stable,
the output of the queue is the total service capacity required
per unit time and is equal to Rtotal. P represents the increase
or decrease in the number of requests to the current service
capacity R(t).

Fig. 3. Queuing Model for a service deployed in the cloud.

The goal of a cloud provider is to provide all customers with
enough resources to meet the QoS requirements specified in
the SLA agreements while reducing over provisioning to a
minimum. The cloud provider monitors a set of parameters
stated in the SLA agreements. These parameters represent the
controlled variables for the elasticity controller. Our controllers
are parameter independent and can be configured to use any
performance metric as the controlled parameter. For the eval-
uation of our controllers, we choose the number of concurrent
requests received for the past time unit to be the monitored
parameter because this metric shows both the amounts of
over provisioned and under provisioned resources which is
an indicator to the costs incurred due to the elasticity engine.
Most of the previous work on elasticity considers response
time to be the controlled parameter. Response time is software
and hardware dependent and is not well suited for comparing
the quality of different elasticity approaches [7].

B. Estimating future usage

From Figure 3, the total future service capacity required per
unit time, C(t+ 1), is C(t+ 1) = ∆D(t) +R(t), where R(t)
is the current service capacity and ∆D(t) is the change in
the current service capacity required in order to meet the SLA
agreement while maintaining the number of VMs to minimum.
A successful proactive elasticity engine is able to estimate
the change in future demand ∆D(t) and add or remove VMs
based on this proactive estimation. ∆D(t) can be estimated
by

∆D(t) = P (t)C(t) (1)

where P (t) is the gain parameter of the controller. P (t) is
positive if there is an increase in the number of requests,
negative if there is a decrease in the number of requests, or
zero if the number of requests is equal to the current service
capacity.

We define Ĉ to be the infrastructure’s average periodical
service rate over the past Td time units. Ĉ is calculated

26



for the whole infrastructure and not for a single VM. Thus,

Ĉ =

∑Td

i
niti

Td
, where Td is a system parameter specifying the

period used for estimating the average periodical service rate
and ti is the time for which the number of requests received
per unit time for the whole infrastructure stay constant at
ni requests per unit time before the demand changes. Thus,∑Td

i ti = Td. We also define n, the average service rate over

time as n =

∑
t
n(t)

T .
From equation 1 and since the system is stable ,

F = Ĉ P, (2)

where F , the estimated increase or decrease of the load, is
calculated using the gain parameter of the controller P every
time unit. The gain parameter represents the estimated rate of
adding or removing VMs. We design two different controllers
with two different gain parameters.

For the first controller PC1, the gain parameter P1 is chosen
to be the periodical rate of change of the system load,

P1 =
∆DTd

TD
. (3)

As the workload is a non-linear function in time, the periodical
rate of change of the load is the derivative of the workload
function during a certain period of time. Thus, the gain
parameter represents the load function changes over time.

For the second controller PC2, the gain parameter P2 is the
ratio between the change in the load and the average system
service rate over time,

P2 =
∆DTd

n
. (4)

This value represents the load change with respect to the aver-
age capacity. By substituting this value for P in Equation 1, the
predicted load change is the ratio between the current service
rate and the average service rate multiplied by the change in
the demand over the past estimation period.

C. Determining suitable estimation intervals

The interval between two estimations, Td, represents the
period for which the estimation is valid, is a crucial parameter
affecting the controller performance. It is used for calculating
Ĉ for both controllers and for P1 in the case of the first
controller. Td controls the controllers’ reactivity. If Td is set
to one time unit, the estimations for the system parameters
are done every time unit and considers only the system load
during past time unit. At the other extreme, if Td is set to ∞,
the controller does not perform any predictions at all. As the
workload observed in data centers is dynamic [8], setting an
adaptive value for Td that changes with the load dynamics is
one of our goals.

We define K to be the tolerance level of a service i.e. the
number of requests the service does not serve on time before
making a new estimation, in other words,

Td =
K

Ĉ
. (5)

TABLE I
OVERVIEW OF THE NINE DIFFERENT WAYS TO BUILD A HYBRID

CONTROLLER.

Engine Name Scale up mechanism Scale down mechanism
UR-DR Reactive Reactive
UR-DP Reactive Proactive

UR-DRP Reactive Reactive and Proactive
URP-DRP Reactive and Proactive Reactive and Proactive
URP-DR Reactive and Proactive Reactive
URP-DP Reactive and Proactive Proactive
UP-DP Proactive Proactive
UP-DR Proactive Reactive

UP-DRP Proactive Reactive and Proactive

K is defined in the SLA agreement with the service owner.
If K is specified to be zero, Td should always be kept lower
than the maximum response time to enforce that no requests
are served slower by the system.

D. An elasticity engine for scale-up and scale-down decisions

The main goal of any elasticity controller is to enforce the
SLAs specified in the SLA agreement. For today’s dynamical
network loads [3], it is very hard to anticipate when a flash
crowd is about to start. If the controller is not able to estimate
the flash crowd on time, many SLAs are likely to be broken
before the system can adapt to the increased load.

Previous work on elasticity considers building hybrid con-
trollers that combines reactive and proactive controllers [9]
and [10]. We extend on this previous work and consider all
possible ways of combining reactive and proactive controllers
for scaling of resources in order to meet the SLAs. We define
an elasticity engine to be an elasticity controller that considers
both scale-up and scale-down of resources. There are nine
approaches in total to build an elasticity engine using a reactive
and a proactive controller. These approaches are listed in
Table I. Some of these combinations are intuitively not good,
but for the sake of completeness we evaluate the results of
all of these approaches. In order to facilitate our discussion,
we use the following naming convention to name an elasticity
engine; an elasticity engine consists of two controllers, a scale
up (U ) and a scale down (D) controller. A controller can be
either reactive (R) or proactive (P ). PC1 and PC2 are a special
case from proactive controllers e.g. URP-DRP elasticity engine
has a reactive and proactive controller for scale up and scale
down while a UR-DPC1 is an engine having a reactive scale
up controller and PC1 for scale down.

III. EXPERIMENTAL EVALUATION

In order to validate the controllers, we designed and built
a discrete event simulator that models a service deployed in
the cloud. The simulator is built using Python. We used the
complete traces from the FIFA 1998 world cup as input to our
model [11]. The workload contains 1.3 billion Web requests
recorded in the period between April 30, 1998 and July 26,
1998. We have calculated the aggregate number of requests per
second from these traces. They are by far the most used traces
in the literature. As these traces are quite old, we multiply the

27



number of requests received per unit time by a constant in
order to scale up these traces to the orders of magnitude of
today’s workloads. Although there are newer traces available
such as the Wikipedia trace [12], but they do not have the
number of peaks seen in the FIFA traces. We assume perfect
load balancing and quantify the performance of the elasticity
engines only.

A. Nine Approaches to build an elasticity engine

In this experiment we evaluate the nine approaches to a
hybrid controller and quantify their relative performance using
PC1 and PC2. We use the aggregate number of requests per
unit time from the world cup traces multiplied by a constant
equal to 50 as input to our simulator. This is almost the
same factor by which the number of Internet users increased
since 1997 [13]. To map the number of service requests
to the number of servers, we assume that each server can
serve up to 500 requests per unit time. This number is an
average between the number of requests that can be handled
by a Nehalem Server running the MediaWiki application [14]
and a Compaq ProLiant DL580 server running a database
application [15]. We assume SLAs that specify the maximum
number of requests not handled per unit time to be fewer than
5% of the maximum capacity of one server.

The reactive controller is reacting to the current load while
the proactive controller is basing its decision on the history
of the load. Whenever a reactive controller is coupled with a
proactive controller and the two controllers give contradicting
decisions, the decision of the reactive controller is chosen. For
the UR-DR controller, scale down is only done if the number
of unused servers is greater than two servers in order to reduce
oscillations.

To compare all the different approaches, we monitor and
sum the number of servers the controllers fail to provision on
time to handle the increase in the workload, S−. This number
can be viewed as the number of extra servers to be added
to avoid breaking all SLAs, or as the quality of estimation.
S− is the average number of requests the controller fails to
provision per unit time. Similarly, we monitor the number
of extra servers deployed by the infrastructure at any unit
time. The summation of this number indicates the provisioned
unused server capacity, S+. S+ is the averaged value over
time. These two aggregate metrics are used to compare the
different approaches.

Table II shows the aggregate results when PC1 and PC2

are used for the proactive parts of the hybrid engine. The two
right-most columns in the table show the values of S− and S+

as percentages of the total number of servers required by the
workload respectively. We compare the different hybridization
approaches with a UR-DR elasticity engine [16].

The results shown in the two tables indicate that using an
UR-DPC2 engine reduces S− by a factor of 9.1 compared
to UR-DR elasticity engine, thus reducing SLA violations
by the same ratio. This comes at the cost of using 14.33%
extra servers compared to 1.4% in the case of a UR-DR
engine. Similar results are obtained using a URPC2-DPC2

engine. These results are obtained because the proactive scale
down controller does not directly release resources when the
load decreases instantaneously but rather makes sure that this
decrease is not instantaneous. Using a reactive controller for
scale down on the other hand reacts to any load drop by
releasing resources. It is also observed that the second best
results are obtained using an UR-DPC1 elasticity engine. This
setup reduces S− by a factor of 4, from 1.63% to 0.41%
compared to a UR-DR engine at the expense of increasing the
number of extra servers used from 1.4% to 9.44%.

A careful look at the table shows that elasticity engines with
reactive components for both scale up and scale down show
similar results even when a proactive component is added. We
attribute this to the premature release of resources due to the
reactivity component used for the scale down controller. The
premature release of resources causes the controller output
to oscillate with the workload. The worst performance is
seen when a proactive controller is used for scale up with a
reactivity component in the scale down controller. This engine
is not able to react to sudden workload surges. In addition it
releases resources prematurely.

Figures 4(a), 4(b) and 4(c) shows the performance of a UR-
DR, UR-DPC1 and a UR-DPC2 elasticity engines over part of
the trace from 06:14:32, the 21st of June,1998 to 01:07:51
27th of June,1998. Figures 4(d), 4(e) and 4(f) shows an in
depth view of the period between 15:50:00 the 23rd of June,
1998 till 16:07:00 on the same day (between time unit 208349
and 209349 on the left hand side figures).

The UR-DR elasticity engine releases resources prematurely
as seen in Figure 4(d). These resources are then reallocated
when there is an increase in demand causing resource al-
location and deallocation to oscillate. The engine is always
following the demand but is never ahead. On the other
hand, figures 4(e) and 4(f) show different behavior where the
elasticity engine tries not to deallocate resources prematurely
in order to prevent oscillations and to be ahead of the demand.
It is clear in Figure 4(f) that the elasticity engine estimates the
future load dynamics and forms an envelope over the load.
An envelope is defined as the smooth curve that takes the
general shape of the load’s amplitude and passes through its
peaks [17]. This delay in the deallocation comes at the cost
of using more resources. These extra resources improve the
performance of the service considerably as it will be always
ahead of the load. We argue that this additional cost is well
justified considering the gain in service performance.

1) Three classes of SLAs: An infrastructure provider can
have multiple controller types for different customers and
different SLA agreements. The results shown in table II
suggest having three classes of customers namely, gold, silver
and bronze. A gold customer pays more in order to get
the best service at the cost of some extra over-provisioning
and uses a UR-DPC2 elasticity engine. A silver customer
uses the UR-DPC1 elasticity engine to get good availability
while a bronze customer uses the UR-DR and gets a reduced,
but acceptable, QoS but with very little over-provisioning.
These three different elasticity engines with different degrees

28



TABLE II
S− AND S+ FOR PC1 AND PC2

Name S− S− S+ S+ S−% S+%
UR-DR -1407732 -0.3 120641 0.026 -1.63% 1.4%

PC1 results
UR-DPC1 -354814 -0.077 8159220 1.78 -0.41% 9.44%

UR-DRPC1 -1412289 -0.3 1202806 0.26 -1.63% 1.4%
URPC1-DRPC1 -1411678 -0.3 1203170 0.26 -1.63% 1.4%

URPC1-DR -1407036 -0.3 1206391 0.26 -1.62% 1.4%
URPC1-DPC1 -354127 -0.077 8160627 1.78 -0.41% 9.4%
UPC1-DPC1 -4147953 -0.9 1827431 0.399 -4.8% 2.1%

UPC1-DR -8474040 -1.85 408447 0.399 -9.8% 2.1%
UPC1-DRPC1 -11408704 -2.49 190427.0 0.041 -10% 0.27%

PC2 results
UR-DPC2 -159029 -0.0347 12386346.0 2.7 -0.18% 14.33%

UR-DRPC2 -1418949.0 -0.31 1176239.0 0.257 -1.64% 1.36%
URPC2-DRPC2 -1419269.0 -0.31 1175393.0 0.257 -1.64% 1.35%

URPC2-DR -1407732.0 -0.31 1206407.0 0.263 -1.63% 1.4%
URPC2-DPC2 -159029 -0.0347 12386346.0 2.707 -0.18% 14.33%
UPC2-DPC2 -4350841.0 -0.951 2216866.0 0.485 -5.03% 2.6%

UPC2-DR -11245521 -2.458 396697 0.0867 -13% 0.46%
UPC2-DRPC2 -11408704 2.49 190427 0.0416 -13.2% 0.22%

(a) UR-DR performance in a period of 6 days. (b) UR-DPC1 performance in a period of 6 days. (c) UR-DPC2 performance in a period of 6 days.

(d) UR-DR: Zooming on a period of 17 minutes. (e) UR-DPC1: Zooming on a period of 17 minutes. (f) UR-DPC2: Zooming on a period of 17 minutes.

Fig. 4. Performance of UR-DR, UR-DPC1 and, UR-DPC2 elasticity engines with time: The Figures show how the different engines detect future load. It
can be observed that the UR-DR engine causes the capacity to oscillate with the load while UR-DPC1 and UR-DPC2 predict the envelope of the workload.

29



TABLE III
COMPARISON BETWEEN THE UR-DREGRESSION, UR-DPC1 , UR-DPC2 ,

AND UR-DR ELASTICITY ENGINES

Name S− S+ S− S+

UR-DRegression -74791.7 1568047.8 -2.24% 47%
UR-DPC1 -50307.2 1076236.3 -1.51% 32.24%
UR-DPC2 -35818.6 1326841.7 -1.07% 39.75%

UR-DR -99801.8 653082.9 -2.99% 19.57%

of over provisioning and qualities of estimation give cloud
providers convenient tools to handle customers of different
importance classes and thus increase their profit and decrease
their penalties. Current cloud providers usually have a general
SLA agreement for all their customers. RackSpace [18] for
example guarantees 100% availability with a penalty equal
to 5% of the fees for each 30 minutes of network or data
center downtime for the cloud servers. It guarantees 99.9%
availability for the cloud files. The network is considered not
available in case of [18]: (i) The Rackspace Cloud network
is down, or (ii) the Cloud Files service returns a server
error response to a valid user request during two or more
consecutive 90 second intervals, or (iii) the Content Delivery
Network fails to deliver an average download time for a 1-byte
reference document of 0.3 seconds or less, as measured by The
Rackspace Cloud’s third party measuring service. For an SLA
similar to the RackSpace SLA or Amazon S3 [19], using one
of our controllers significantly reduces penalties paid due to
server errors, allowing the provider to increase profit.

B. Comparison with regression based controllers

In this experiment we compare our controllers with the
controller designed by Iqbala et al. [10] who design a hy-
brid elasticity engine with a reactive controller for scale-up
decisions and a predictive controller for scale-down decisions.
When the capacity is less than the load, a scale up decision is
taken and new VMs are added to the service. For scale down,
their predictive component uses second order regression. The
regression model is recomputed for the full history every time
a new measurement data is available. If the current load is
less than the provisioned capacity for k time units, a scale
down decision is taken using the regression model. If the
predicted number of servers is greater than the current number
of servers, the result is ignored. Following our naming conven-
tion, we denote their engine UR-DRegression. As regression
is recomputed every time a new measurement data is available
on the full history, simulation using the whole world cup traces
would be time consuming. Instead, in this experiment we used
part of the trace from 09:47:41 on the 13th of May, 1998 to
17:02:49 on the 25th of May, 1998. We multiply the number
of concurrent requests by 10 and assume that the servers can
handle up to 100 requests. We assume that the SLA requires
that a maximum of 5% of the capacity of a single server is
not serviced per unit time.

Table III shows the aggregated results for four elasticity
engines; UR-DRegression, UR-DPC1, UR-DPC2 and UR-DR.
Although all the proactive approaches reduce the value of

S− compared to a UR-DR engine, PC2 still shows superior
results. The number of unused server that get provisioned by
the regression controller S+ is 50% more than for PC1 and
15% more than PC2 although both PC1 and PC2 reduces S−

more. The UR−DR controller has a higher SLA violation rate
( 3%) while maintaining a much lower over-provisioning rate
(19.57%). As we evaluate the performance of the controller on
a different part of the workload and we multiply the workload
by a different factor, the percentages of the capacity the
controller fail to provision on time and the unused provisioned
capacity changed from the previous experiment.

Figures 5(a), 5(b) and 5(c) show the load compared to
the controller outputs for the UR-DR, UR-DPC2, and UR-
DRegression approaches. The amount of unused capacity
using a regression based controller is much higher than the
unused capacity for the other controllers. The controller output
for the UR-DRegression engine completely over-estimates the
load causing prediction oscillations between the crests and the
troughs. One of the key advantages of PC1 and PC2 is that
they depend on simple calculations. They are both scalable
with time compared to the regression controller. The highest
observed estimation time for the UR-DRegression is 6.5184
seconds with an average of 0.97695 seconds compared to
0.000512 seconds with an average of 5.797 × 10−6 in case
of PC1 and PC2.

C. Performance impact of the workload size

In this experiment we investigate the effect of changing the
load and server power on the performance of our proposed
elasticity engines. We constructed six new traces using the
world cup workload traces by multiplying the number of
requests per second in the original trace by a factor of
10, 20, 30, 40, 50, and 60. We ran experiments with the
new workloads using the UR-DR, UR-DPC1 and UR-DPC2

elasticity engines. For each simulation run, we assume that
the number of requests that can be handled by any server is
10 times the factor by which we multiplied the traces, e.g., for
an experiment run using a workload trace where the number of
requests is multiplied by 20, we assume that the server capacity
is up to 200 requests per second. We also assume that for
each experiment the SLA specifies the maximum unhandled
number of requests to be 5% of the maximum capacity of a
single server.

Figure 6(a) shows the percentage of servers the engines
failed to provision on time to handle the increase in demand
for each workload size (S−) while Figure 6(b) shows the
percentages of extra servers provisioned for each workload
size. It is clear that the UR-DR engine exhibits the same
performance with changing workloads. For the UR-DPC1 and
the UR-DPC2 engines on the other hand, the performance
depends on the workload and the server capacity. As the
factor by which we multiply the workload increases, the
percentage of servers the two engines failed to provision
on time decreases. Inversely, the percentage of extra servers
provisioned increases. These results indicate that the quality
of estimation changes with any change in the workload. We

30



(a) UR-DRegression elasticity engine. (b) UR-DPC2 elasticity engine. (c) UR-DR elasticity engine

Fig. 5. Performance Comparison of UR-DR, UR-DPC2 and UR-DRegression elasticity engines. The UR-DRegression controller over-provisions many servers
to cope with the changing workload dynamics.

(a) The effect of changing load size on the percentage of S− to the
total number of servers.

(b) The effect of changing load size on the percentage of S+ to the
total number of servers.

Fig. 6. The effect of changing the workload size and the server capacity on the UR-DR, UR-DPC1 and UR-DPC2 elasticity engines.

attribute the improvement in the quality of estimation when
the load increases using the UR-DPC1 and UR-DPC2 engines
to the ability of both estimators to predict the envelope of the
workload, thus decreasing the number of prematurely deallo-
cated resources. Although the number of requests increases in
the different workloads, the number of times the controllers
deallocate resources prematurely also increases, but at a slower
rate than the load. We have performed similar experiments
with the Wikipedia traces [12] and obtained similar results
[20]. Due to lack of space we omit those results.

D. Discussion

Although our proactive controllers PC1 and PC2 are de-
signed using the change in the load as the controller parameter,
they can be generalized to be used with any hardware param-
eter such as CPU load, memory consumption, network load
and disk load or any server level parameter such as response
time. When PC1 or PC2 controller is used with hardware
measured parameter, e.g., CPU load, C(t) becomes the total
CPU capacity needed by the system to handle the CPU load
per unit time. ∆D is the change in the load. Ĉ becomes
the average periodical measurement of the CPU load and n

the average measurement of the CPU load over time. The
definition of the two controllers remains the same.

Both the UR-DPC1 and UR-DPC2 engines can be integrated
in the model proposed by Lim et al. [21] to control a storage
cloud. In storage clouds, adding resources does not have an
instantaneous effect on the performance since data must be
copied to the new allocated resources before the effect of the
control action takes place. For such a scenario, PC1 and PC2

are very well suited since they predict the envelope of the
demand. The engines can also replace the elasticity controllers
designed by Urgaonkar et al. [9] or Iqbala et al. [10] for a
multi-tier service deployed in the cloud.

IV. RELATED WORK

The problem of dynamic provisioning of resources in com-
puting clusters has been studied for the past decade. Cloud
elasticity can be viewed as a generalization of that problem.
Our model is similar to the model introduced in [22]. In that
work, the authors tried to estimate the availability of a machine
in a distributed storage system in order to replicate its data.

Toffetti et al. [23] use Kriging surrogate models to ap-
proximate the performance profile of virtualized, multi-tier
Web applications. The performance profile is specific to an

31



application. The Kriging surrogate model needs offline train-
ing. A change in the workload dynamics results in a change
in the service model. Adaptivity of the service model of an
application is vital to cope with the changing load dynamics
in todays Internet [3].

Lim et al. [21] design an integral elasticity controller with
proportional thresholding. They use a dynamic target range for
the set point. The integral gain is calculated offline making this
technique suitable for a system where no sudden changes to
the system dynamics occur as the robustness of an integral
controller is affected by changing the system dynamics [24].

Urgaonkar et al. [9] propose a hybrid control mechanism
that incorporates both a proactive controller and a reactive
controller. The proactive controller maintains the history of
the session arrival rate seen. Provisioning is done before each
hour based on the worst load seen in the past. No short term
predictions can be done. The reactive controller acts on short
time scales to increase the resources allocated to a service
in case the predicted value is less than the actual load that
arrived. No scale down mechanism is available.

In [25], the resource-provisioning problem is posed as one
of sequential optimization under uncertainty and solved using
limited look-ahead control. Although the solution shows very
good theoretical results, it exhibits an exponential increase in
computation time as the number of servers and VMs increase.
It takes 30 minutes to compute the required elasticity decision
for a system with 60 VMs and 15 physical servers. Similarly,
Nilabja et al. use limited lookahead control along with model
predictive control for automating elasticity decisions. Improv-
ing the scalability of their approach is left as a future direction
to extend their work.

Chacin and Navaro [26] propose an elastic utility driven
overlay network that dynamically allocate instances to a
service using an overlay network. The instances of each
services construct an overlay while the non-allocated instances
construct another overlay. The overlays change the number
of instances allocated to a service based on a combination
of an application provided utility function to express the
service’s QoS, with an epidemic protocol for state information
dissemination and simple local decisions on each instance.

There are also some studies discussing vertical elasticity
[27]. Jung et al. [4] design a middleware for generating cost
sensitive adaptation actions such as elasticity and migration
actions. Vertical elasticity is enforced using adaptation action
in fixed steps predefined in the system. To allocate more
VMs to an application a migration action is issued from a
pool of dormant VMs to the pool of the VMs of the target
host followed by an increase adaptation action that allocates
resources on the migrated VM for the target application. These
decisions are made using a combination of predictive models
and graph search techniques reducing scalability. The authors
leave the scalability of their approach for future work.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the problem of autonomic dy-
namic provisioning for a cloud infrastructure. We introduce

two adaptive hybrid controllers PC1 and PC2, that use both re-
active and proactive control to dynamically change the number
of VMs allocated to a service running in the cloud based on the
current and the predicted future demand. Our controllers detect
the workload envelope and hence do not deallocate resources
prematurely. We discuss the different ways of designing a
hybrid elasticity controller that incorporates both reactive and
proactive components. Our simulation results show that using
a reactive controller for scale up and one of our proactive
controllers for scale down improves the SLA violations rate
two to ten times compared to a totally reactive elasticity
engine. We compare our controllers to a regression based
elasticity controller using a different workload and demon-
strate that our engines over-allocate between 32% and 15%
less resources compared to a regression based engine. The
regression based elasticity engine SLA violation rate is 1.48
to 2.1 times the SLA violation rate for our engines. We also
investigate the effect of the workload size on the performance
of our controllers. For increasing loads, our simulation results
show a sublinear increase in the number of SLAs violated
using our controllers compared to a linear increase in the
number of SLAs violations for a reactive controller. In the
future, we plan to integrate vertical elasticity control in our
elasticity engine and modify the controllers to consider the
delay required for VM start up and shut down.

VI. ACKNOWLEDGMENTS

This work is supported by the OPTIMIS project
(http://www.optimis-project.eu/) and the Swedish govern-
ment’s strategic research project eSSENCE. It has been partly
funded by the European Commissions IST activity of the 7th
Framework Program under contract number 257115 . This re-
search was conducted using the resources of High Performance
Computing Center North (http://www.hpc2n.umu.se/).

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, vol. 53, no. 6, 2009.

[2] D. Kossmann and T. Kraska, “Data management in the cloud: Promises,
state-of-the-art, and open questions,” Datenbank-Spektrum, vol. 10,
pp. 121–129, 2010, 10.1007/s13222-010-0033-3. [Online]. Available:
http://dx.doi.org/10.1007/s13222-010-0033-3

[3] I. Ari, B. Hong, E. Miller, S. Brandt, and D. Long, “Managing flash
crowds on the Internet,” 2003.

[4] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu, “A
cost-sensitive adaptation engine for server consolidation of multitier ap-
plications,” in Proceedings of the 10th ACM/IFIP/USENIX International
Conference on Middleware, ser. Middleware ’09. Springer-Verlag New
York, Inc., 2009, pp. 9:1–9:20.

[5] K. Ogata, Modern control engineering. Prentice Hall, 2009.
[6] H. Li and T. Yang, “Queues with a variable number of servers,”

European Journal of Operational Research, vol. 124, no. 3, pp. 615
– 628, 2000.

[7] P. Bodık, “Automating datacenter operations using machine learning,”
Ph.D. dissertation, University of California, 2010.

[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data
center network,” in Proceedings of the ACM SIGCOMM 2009 conference
on Data communication, ser. SIGCOMM ’09. New York, NY, USA:
ACM, 2009, pp. 51–62.

32



[9] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier Internet applications,” ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS), vol. 3, no. 1, p. 1,
2008.

[10] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871 – 879,
2011.

[11] M. Arlitt and T. Jin. (1998, August) ”1998 world cup web site access
logs”. [Online]. Available: http://www.acm.org/sigcomm/ITA/

[12] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Elsevier Computer Networks, vol. 53, no. 11,
pp. 1830–1845, July 2009, http://www.globule.org/publi/WWADH
comnet2009.html.

[13] (2011, July) Internet growth statistics. [Online]. Available: http:
//www.internetworldstats.com/emarketing.htm

[14] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz,
“Napsac: design and implementation of a power-proportional web clus-
ter,” ACM SIGCOMM Computer Communication Review, vol. 41, no. 1,
pp. 102–108, 2011.

[15] P. Dhawan. (2001, October) Performance comparison: Exposing existing
code as a web service. [Online]. Available: http://msdn.microsoft.com/
en-us/library/ms978401.aspx

[16] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma,
“Towards autonomic workload provisioning for enterprise grids and
clouds,” in Grid Computing, 2009 10th IEEE/ACM International Con-
ference on. IEEE, 2009, pp. 50–57.

[17] W. M. Hartmann, Signals, sound, and sensation. Amer Inst of Physics,
1997.

[18] (2009, June) Rackspace hosting: Service level agreement. [Online].
Available: http://www.rackspace.com/cloud/legal/sla/

[19] (2007, October) Amazon S3 service level agreement. [Online].
Available: http://aws.amazon.com/s3-sla/

[20] A. J. Ferrer, F. Hernndez, J. Tordsson, E. Elmroth, A. Ali-Eldin,
C. Zsigri, R. Sirvent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler,
T. Dimitrakos, S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou,
B. Hudzia, A. Kipp, S. Wesner, M. Corrales, N. Forg, T. Sharif, and
C. Sheridan, “Optimis: A holistic approach to cloud service provision-
ing,” Future Generation Computer Systems, vol. 28, no. 1, pp. 66 – 77,
2012.

[21] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic
storage,” in Proceeding of the 7th international conference on Autonomic
computing, ser. ICAC ’10. New York, NY, USA: ACM, 2010, pp. 1–10.

[22] A. Duminuco, E. Biersack, and T. En-Najjary, “Proactive replication in
distributed storage systems using machine availability estimation,” in
Proceedings of the 2007 ACM CoNEXT conference, ser. CoNEXT ’07.
New York, NY, USA: ACM, 2007, pp. 27:1–27:12.

[23] G. Toffetti, A. Gambi, M. Pezzé, and C. Pautasso, “Engineering auto-
nomic controllers for virtualized web applications,” Web Engineering,
pp. 66–80, 2010.

[24] M. Morari, “Robust stability of systems with integral control,” Automatic
Control, IEEE Transactions on, vol. 30, no. 6, pp. 574–577, 1985.

[25] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and performance management of virtualized computing environments
via lookahead control,” Cluster Computing, vol. 12, no. 1, pp. 1–15,
2009.

[26] P. Chacin and L. Navarro, “Utility driven elastic services,” in Distributed
Applications and Interoperable Systems. Springer, 2011, pp. 122–135.

[27] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and
self-configured cpu resource provisioning for virtualized servers using
kalman filters,” in Proceedings of the 6th international conference on
Autonomic computing, ser. ICAC ’09. New York, NY, USA: ACM,
2009, pp. 117–126.

33



34



II





Paper II

Efficient Provisioning of Bursty Scientific Workloads
on the Cloud Using Adaptive Elasticity Control∗

Ahmed Ali-Eldin1, Maria Kihl2, Johan Tordsson1, and Erik Elmroth1

1 Dept. Computing Science, Umeå University
{ahmeda,tordsson,elmroth}@cs.umu.se, http://www.gird.se

2Dept. of Electrical and Information Technology, Lund University,
Maria.Kihl@eit.lth.se

Abstract: Elasticity is the ability of a cloud infrastructure to dynamically change the
amount of resources allocated to a running service as load changes. We build an au-
tonomous elasticity controller that changes the number of virtual machines allocated
to a service based on both monitored load changes and predictions of future load.
The cloud infrastructure is modeled as a G/G/N queue. This model is used to con-
struct a hybrid reactive-adaptive controller that quicklyreacts to sudden load changes,
prevents premature release of resources, takes into account the heterogeneity of the
workload, and avoids oscillations. Using simulations withWeb and cluster workload
traces, we show that our proposed controller lowers the number of delayed requests
by a factor of 70 for the Web traces and 3 for the cluster traceswhen compared to a
reactive controller. Our controller also decreases the average number of queued re-
quests by a factor of 3 for both traces, and reduces oscillations by a factor of 7 for the
Web traces and 3 for the cluster traces. This comes at the expense of between 20%
and 30% over-provisioning, as compared to a few percent for the reactive controller.

∗ By permission of the ACM

29



38



Efficient Provisioning of Bursty Scientific Workloads on
the Cloud Using Adaptive Elasticity Control

Ahmed Ali-Eldin
Dept. of Computing Science

Umeå University, Sweden
ahmeda@cs.umu.se

Maria Kihl
Dept. of Electrical and

Information Technology,
Lund University

Maria.Kihl@eit.lth.se

Johan Tordsson
Dept. of Computing Science

Umeå University, Sweden
tordsson@cs.umu.se

Erik Elmroth
Dept. of Computing Science

Umeå University, Sweden
elmroth@cs.umu.se

ABSTRACT
Elasticity is the ability of a cloud infrastructure to dynami-
cally change the amount of resources allocated to a running
service as load changes. We build an autonomous elasticity
controller that changes the number of virtual machines al-
located to a service based on both monitored load changes
and predictions of future load. The cloud infrastructure is
modeled as a G/G/N queue. This model is used to con-
struct a hybrid reactive-adaptive controller that quickly re-
acts to sudden load changes, prevents premature release of
resources, takes into account the heterogeneity of the work-
load, and avoids oscillations. Using simulations with Web
and cluster workload traces, we show that our proposed con-
troller lowers the number of delayed requests by a factor of
70 for the Web traces and 3 for the cluster traces when com-
pared to a reactive controller. Our controller also decreases
the average number of queued requests by a factor of 3 for
both traces, and reduces oscillations by a factor of 7 for
the Web traces and 3 for the cluster traces. This comes at
the expense of between 20% and 30% over-provisioning, as
compared to a few percent for the reactive controller.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4 [Performance of systems]

General Terms
Algorithms, Performance, Reliability

Keywords
Cloud computing, Elasticity, Proportional Control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ScienceCloud’12, June 18, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-1340-7/12/06 ...$10.00.

1. INTRODUCTION
Elasticity of the cloud infrastructure is the ability of the

infrastructure to allocate resources to a service based on the
running load as fast as possible. An elasticity controller aims
to allocate enough resources to a running service while at the
same time avoiding costly over-provisioning. The problem
for an elasticity controller is thus to decide when, and how
much, to scale up or down. Scaling can be done either hor-
izontally, by increasing or decreasing the number of Virtual
Machines (VMs) allocated, or vertically, by changing the
hardware configuration for CPU, memory, etc. of already
running VMs. The resources allocated to a service can vary
between a handful of VMs to tens of thousands of VMs de-
pending on the load requirements. Most Infrastructure as a
Service (IaaS) providers does not host a single service but
rather quite a few scalable services and applications. Given
the scale of the current and future cloud datacenters and
services, these are impossible to manage manually, making
autonomic management a key issue for clouds.

Recently, the scientific computing community started dis-
cussing the potential use of cloud computing infrastructures
to run scientific experiments such as medical NLP process-
ing [6] and workflows for astronomical data released by the
Kepler project [25]. Most of the applications are embarrass-
ingly parallel [11]. There are some limitations to the wide
adoption of the cloud paradigm for scientific computing as
identified by Truong et al. [23] such as the lack of cost eval-
uation tools, cluster machine images and, as addressed in
this paper, autonomic elasticity control.

There are many approaches to solve the elasticity problem
[5, 7, 10, 17, 18, 20, 24, 27, 28], each with its own strengths
and weaknesses. Desired properties of an elasticity controller
include the following:

• Fast: The time required by the controller to make a
decision is a key factor for successful control, for ex-
ample, limited look-ahead control is shown to have su-
perior accuracy but requires 30 minutes to control 60
VMs on 15 physical servers [14].

• Scalable: The controller should be scalable with re-
spect to the number of VMs allocated to a service
and with respect to the time of running the algorithm.
There are many techniques that can be used for esti-39



mation of the load and elasticity control which are not
scalable with either time or scale e.g., regression based
control is not scalable with respect to the algorithm
execution time [1].

• Adaptive: Scientific workloads and Internet traffic are
very dynamic in nature [2, 15]. Elasticity controllers
should have a proactive component that predicts the
future load to be able to provision resources a priori.
Most prediction techniques such as neural networks
build a model for the load in order to predict the fu-
ture. Another desired property of an adaptive con-
troller is the ability to change the model whenever the
load dynamics change.

• Robust and reliable: The changing load dynamics might
lead to a change in the controller behavior [9, 19]. A
controller should be robust against changing load dy-
namics. A robust controller should prevent oscillations
in resource allocation i.e., the controller should not re-
lease resources prematurely. A reactive controller (step
controller) is a controller that only allocates new VMs
to a service when the load increases and deallocates
the VMs once the load decreases beyond a certain level.
This type of controller thus reduces the number of VMs
provisioned and minimizes the provisioning costs, at
the expense of oscillations.

Our previous work [1] studies different ways to combine
reactive and proactive control approaches for horizontal elas-
ticity. The two simple hybrid controllers proposed combine
reactive scaling up with proactive scale-down. These con-
trollers act on the monitored and predicted service load,
but ignore multiple important aspects of infrastructure per-
formance and service workload. In this paper, our previous
work is extended by an enhanced system model and con-
troller design. The new controller takes into account the
VM startup time, workload heterogeneity, and the changing
request service rate of a VM. It thus controls the allocated
capacity instead of only the service load. The controller de-
sign is further improved by adding a buffer to the controller
to store any delayed requests for future processing. This
buffer model characterizes many scientific workloads where
jobs are usually queued for future processing. The proposed
controller can be used by both the cloud service provider
and the cloud user to reduce the cost of operations and the
cost of running a service or an experiment in the cloud. The
controller can be used also to control the elasticity of a pri-
vately run cloud or cluster.

The performance of the controller is tested using two sets
of traces, a Web workload from the FIFA world cup [3] and a
recently published workload from a Google cluster composed
of around 11 thousand machines [26]. The Web trace is
selected as it is a well known and rather bursty workload
and thus challenging for an elasticity controller. The cluster
traces, consisting mostly of MapReduce jobs, are chosen to
evaluate the behavior of our approach on traces more similar
to scientific workloads.

The rest of this paper is organized as follows. Section 2
describes the system model and the design of the proposed
controller. In Section 3, the simulation framework and the
experiments are described and the results are discussed. Sec-
tion 4 discusses some of the different approaches available
in the literature for building elasticity controllers. Section 5
contains the conclusions.

�

�����������	�
�

��
�	���������

������������
	
����
����
������

��

�� � ���

��������������

�����

������

��
�����������

��	��	� �

��
�����������

��!

��
�������

"��� ��#������

��
�����$�����$���
�

%�����"�����

����������

��������

��
�����

Figure 1: Queueing model and elasticity control for
a cloud service.

2. CONTROLLER DESIGN

2.1 System model
In this work, the cloud infrastructure is modeled as a

closed loop control system and queueing models are used
to design a feedback elasticity controller. The cloud infras-
tructure is modeled as a G/G/N stable queue in which the
number of servers N required is variable [16] as shown in
Figure 1. This is a generalization of the work by Khazaei
et al. [13] where a cloud is modeled as an M/G/m queue
with a constant number of servers, m. We assume that the
system serves generic requests that can be anything from a
Web query to Pubmed [12] to a job in a workflow to process
astronomical data [25].

The number of VMs allocated to a service at any time
unit, N , changes according to the controller output. When
the load increases, VMs are added and when it decreases
VMs are removed. We assume that it takes one time unit
for a VM to boot and get intialized. In practice, it also takes
time to shut-down a VM, but for most applications, no more
requests are sent to a VM after a shutdown command is
issued. It is thus assumed that the effect of VM shut down
on capacity is instantaneous.

In our model, requests not served are buffered and de-
layed as shown in Figure 1. We make no assumptions about
a finite buffer size, but the designed controller uses the num-
ber of buffer requests as one criteria for adding VMs. The
buffer length is also used as a performance metric in the
evaluation section. A buffered request is delayed and thus
the larger the number of buffered requests, the slower the
request response time. Assuming the queue is stable, the
average service rate over time is equal to the average arrival
rate over time. Whenever the system is at risk of instability
due to increase in the demand, the elasticity controller in-
creases N to enforce system stability. The elasticity control
problem can be stated as follows: the elasticity controller
should add or remove VMs to ensure system stability, i.e.,
over a long period of time, the number of serviced requests
(the service capacity) is equal to the total number of re-
ceived requests received with an error tolerance (number of40



Table 1: Overview of used notation.
Variable Description

N Number of VMs deployed
L(t) Total service load at time t
R(t) Total service capacity available at time t
C(t) Service capacity required at time t
A(t) Arriving (new) requests at time t
D(t) Increase/decrease in required capacity at time t
B(t) Size of buffer at time t
E(t) Amount of already processing requests at time t
K Number of queued requests before starting a new

VM
r Number of time units needed to start all buffered

requests
Td Estimation interval (time between two estima-

tions)

LTd Average load over the last estimation interval

Lt Average load over all time

D̃ Predicted value for request change rates over next
Td time units

P Estimated ratio between D̃ and average load
MAvg The average of the median request service rates

per unit time over the the Td

buffered requests). This should be achieved irrespective of
the change in the request arrival rate and while maintaining
the number of VMs to a minimum.

2.2 Estimating future usage
The optimal total service capacity, C(t), required for time

t is:

C(t) = C(t− 1) +D(t), (1)

where C(t− 1) is the capacity required in the last time step
and D(t) is the increase or decrease in capacity needed in
order to meet SLAs while maintaining the number of VMs to
a minimum. The controller is activated each Td time units.
When evoked at time t, it estimates the change in workload
for the next Td time units, D(t+1), D(t+2), . . . , D(t+Td).
VM allocations are adjusted at times t+ 1, t+ 2, . . . , t+ Td

according to these predictions, followed by a new prediction
for t + Td . . . t + 2Td. We define A(t) as the arrival rate
of new requests to the service. A suitable initial service
configuration could be C(0) = A(0).

We define the total workload of the service, L(t), as the
sum of the arriving requests, the existing, already processing
requests, E(t), and any buffered requests to be served. No
assumptions are thus made about the time needed to serve a
request, which can vary from seconds to hours. We use B(t)
to denote the number of requests in the buffer at time t. If
enough VMs are allocated to initialize all buffered requests
in the next time unit, these machines may become idle and
be released shortly after, causing oscillations in resource al-
locations. We thus define r, a system parameter specifying
over how many time units the currently buffered load should
be started. Now, the total workload at time t can be written
as:

L(t) = A(t) + E(t) +
B(t)

r
. (2)

The capacity change required can be written as

D(t) = L(t)−R(t) (3)

where R(t) denotes the currently allocated capacity. Assum-
ing that A(t) remains constant for the next time unit, the
estimated change in the current service capacity required,
D̃ for the future Td time units can be estimated by

D̃ = PLTd (4)

where P represents the estimated rate of adding or removing
VMs. We define LTd to be the average periodical service load
over the past Td time units,

LTd =

∑Td
i=0 L(t− i)

Td
. (5)

Similarly, we define Lt, as the average load over all time as
follows:

Lt =

∑t
i=0 L(i)

t
. (6)

Now, P represents the estimated ratio of the average change
in the load to the average load over the next Td time units
and LTd is the estimated average capacity required to keep
the buffer size stable for the next Td time units. P is pos-
itive if there is an increase in total workload (new service
requests, buffered requests, and requests that need to be
processed longer); negative if this sum decreases (with the
buffer empty); and zero if the system is at a steady state
and the buffer is empty.

We define P to be the ratio between D(t) and the average
system load over time,

P =
D(t)

Lt

. (7)

This value represents the change in the load with respect to
the average capacity. By substituting Equations 7 in Equa-
tion 4,

D̃ =
LTd

Lt

D(t). (8)

This formulation is a proportional controller [21] where D(t)
is the error signal and LTd/Lt, the normalized service capac-
ity, is the gain parameter of the controller. By substituting
Equation 5 in Equation 8, we obtain

D̃ =

∑Td
i=0 L(t− i)

Lt

D(t)

Td
. (9)

If Td is optimal, i.e., estimations occur when the rate of
change of the load changes, then D(t)/Td is the slope of the
changing load multiplied by the ratio between the instanta-
neous load and the overtime average load.

2.3 Determining suitable estimation intervals
The interval between two estimations, Td, is a crucial pa-

rameter affecting the controller performance. It is used to
calculate P and D̃ and Td also controls the reactivity of the
controller. If Td is set to one, the controller performs pre-
dictions every time unit. At the other extreme, if Td is set
to ∞, the controller performs no predictions at all. As the
workloads observed in datacenters are dynamic [2], setting
an adaptive value for Td that changes according to the load
dynamics is important. 41



We define the maximum number of buffered requests, K,
as the tolerance level of a service i.e., the maximum number
of requests queued before making a new estimation or adding
a new VM, thus:

Td =

{
K/|D̃| if K>0 and |D̃| 6= 0

1 if K=0 or D̃ = 0
(10)

The value of K can be used to model SLAs with availability
guarantees. A low value for K provides quicker reaction to
load changes, but will also result in oscillations as resources
will be provisioned and released based on the last few time
units only. Conversely, K is large, the system reacts slowly
to changing load dynamics. Similarly, r affects the rate with
which buffered requests should be started, and thus impose
similar tradeoffs between oscillations and quickly reacting to
load increases.

2.4 Hybrid elasticity control
The main goal of an elasticity controller is to allocate

enough resources to enforce the SLAs while decreasing total
resource usage. It is very hard to anticipate whether an ob-
served increase in load will continue to rise to a large peak
[2] as there are no perfect estimators or controllers. Using
pure estimation for scale-up decisions is dangerous as it can
lead to system instability and oscillations if the load dynam-
ics change suddenly while the controller model is based on
the previous load.

Data: r, K
Result: Perform resource (de)allocation to keep the

system stable

1 Proactive Aggregator← 0;
2 Td ← 1;
3 for each time step t do
4 Update R(t),A(t), B(t), and E(t) from monitoring

data;
5 Calculate D(t) using Equation 3;
6 if Time from last estimation ≥ Td then
7 Calculate LTd from Equation 5;

8 Calculate Lt from Equation 6;
9 Calculate P from Equation 7;

10 Calculate D̃ from Equation 8;
11 Update MAvg;
12 Calculate Td from Equation 10;

13 NReactive ← ⌈D(t)/MAvg⌉;
14 Proactive Aggregator+= D̃/MAvg;
15 NProactive ← ⌊Proactive Aggregator⌋;
16 Proactive Aggregator−= NProactive;
17 if NReactive > K then
18 if NProactive > 0 then
19 Deploy NProactive +NReactive servers
20 else
21 Deploy NReactive servers

22 else
23 (Un)deploy NProactive servers

Algorithm 1: Hybrid elasticity controller with both proac-
tive and reactive components.

Our design is a hybrid controller where a reactive com-
ponent is coupled with the proposed proactive component
for scale up and a proactive only component for scale down.

The details of the implementation are given in Algorithm
1. The controller starts by receiving monitoring data from
the monitoring subsystem in Line 4. If Td time units passed
since the last estimation, the system model is updated by
reestimating D̃ and Td as shown from Line 6 to Line 12. The
unit of D̃ is requests per time unit.

The actual calculation of the number of VMs to be added
or removed by the different controllers is done between lines
13 and 16. In some applications, D̃ is divided by MAvg in
Line 14 to find the number of servers required. The rate of
the proactive controller can be steered by multiplying D̃ by
a factor, e.g., to adding double the estimated VMs for some
critical applications. The reactive controller is coupled with
the proactive controller to reach a unified decision as shown
from Line 17 to Line 22. For scale up decisions, when the
decisions of both the reactive component and the proactive
component are to scale up, the decisions are added. For
example, if the reactive component decides that two more
VMs are required while the proactive component decides
that three VMs are needed, five VMs are added. The re-
active component is reacting for the current load while the
proactive component is estimating the future load based on
the past load. If the reactive component decides that a scale
up is needed while the proactive decides that a scale down
is needed then the decision of the reactive component alone
is performed because the reactive component’s decision is
based on the current load while the proactive component’s
decision may be based on a skewed model that needs to be
changed.

For the reactive and proactive components to calculate
the number of VMs required for a given load, the controller
needs to know the service capacity of a VM i.e., the number
of requests serviced per VM every time unit. This number
is variable as the performance of a VM is not constant.

In addition, there are different request types and each
request takes different time to service. As a solution, we
calculate MAvg, the average of the median request service
rates per VM per unit time over the past estimation period
Td. MAvg is used by the reactive and proactive components
to calculate the number of VMs required per unit time to
service all the requests while meeting the different SLAs.
The median is chosen as it is a simple and efficient statistical
measure which is robust to outliers and skewed distributions.
No assumptions are made about the service rate distribution
for a VM. MAvg is a configurable parameter which can be
changed based on deployment requirements.

3. EXPERIMENTAL EVALUATION
To validate the controller, a three-phase discrete-event

simulator [4] was built using python that models a service
deployed in the cloud. Two different workloads are used
for the evaluation, the complete traces from the FIFA 1998
world cup [3] and a set of Google cluster traces [26].

In all evaluations, the controller time step, i.e., the time
it takes to start a VM is selected to be 1 minute, which is
a reasonable assumption [22]. The effects of the controller’s
decision to increase the resources provisioned does thus not
appear until after one minute has elapsed and the new VMs
are running. The granularity of the monitoring data used
by the controller is also 1 minute.

The controller’s performance is compared to a completely
reactive controller similar to the one proposed by Chieu et
al. [8]. The design of the reactive controller is shown in42



Data: r, K
Result: Perform resource (de)allocation to keep the

system stable

1 for each time step t do
2 Update R(t),A(t), B(t), and E(t) from monitoring

data;
3 Calculate MAvg ;
4 Calculate D(t) using Equation 3;
5 NReactive ← ⌈D(t)/MAvg⌉;
6 if NReactive > 0 and D(t) > K then
7 Deploy NReactive servers
8 if NReactive < −2 then
9 Undeploy NReactive servers

Algorithm 2: Reactive elasticity controller.

Algorithm 2. The calculation of the median service rate
is done every minute as this is the time between two load
estimations. In order to reduce oscillations in the reactive
controller, scale down is not done until the capacity change
D(t) is less than the current provisioned capacity C(t) by
2MAvg , i.e., scale down is only done when there are more
than two extra VMs provisioned. In the experiments, we
refer to our controller in Algorithm 1 as CHybrid and the
reactive controller in Algorithm 2 as CReactive.

With a few exceptions, most of the work available on elas-
ticity control compares performance with static provision-
ing. However, we chose to compare our controller with a
reactive controller to highlight the tradeoffs between over-
provisioning, SLA violations, and oscillations.

3.1 Performance Metrics
Different metrics can be used to quantify the controller

performance. We define OP to be the number of over-
provisioned VMs by the controller per time unit aggregated
over the whole trace. OP is the average number of over-
provisioned VMs by the controller per minute. Similarly,
UP and UP are the aggregate and the average number of
under-provisioned VMs by the controller per minute. We
also define V , the average number of servers required to ser-
vice the buffered load per minute,

V = Σ
Buffered Load

Median Service rate of a VM
. (11)

V represents the way the buffers get loaded. It does not
represent the optimal number of servers required to service
the load but rather represents average required number of
VMs due to the queue build up. We use N to denote the
average number of VMs deployed over time.

3.2 Web workload performance evaluation
TheWeb workload contains 1.3 billion Web requests recorded

at servers for the 1998 FIFA world cup in the period between
April 30, 1998 and July 26, 1998. The aggregate number of
requests per second were calculated from these traces. In the
simulation, the requests are grouped by time of arrival. The
focus is not on individual requests but rather on the macro-
system performance. For the experiments, the average ser-
vice rate of a VM is drawn from a Poisson distribution with
an average equal to λ requests per second. It is assumed
that the time required to process one request is 1 second.
The tolerance level K is chosen to be 5, i.e., 5 requests may
be buffered before the controller reacts.

Assuming perfect load balancing, the performance of the
controller is the only factor affecting performance in the sim-
ulation. We set r to 60 seconds, i.e., queued requests are
emptied over one minute.

The controller is configured for the worst case scenario by
using the maximum load recorded during the past minute
as the input request arrival rate to the controller. This as-
sumption can be relaxed by monitoring the average or me-
dian load for the past minute instead. Using the median or
the average will result in provisioning less resources for most
workloads.

As the Web traces are quite old, we have multiplied the
number of requests by a factor F in order to stress test the
controller performance under different load dynamics. For
different experiments, λ is also changed. Table 2 shows the
performance of the two controllers when F takes the values
of 1, 10, 20, 30, and 40 while λ takes the values of 100, 200,
300, and 400. Due to the size of the trace, the aggregate
metrics UP and OP are quite large.

For the over-provisioning metrics, OP and OP , it is clear
that CHybrid has a higher over-provisioning rate compared
to CReactive. This is intuitive because CHybrid provisions re-
sources ahead in time to be used in the future and delays the
release of resources in order to decrease oscillations. When
λ changes such that the ratio between λ and F is constant
at 10, OP and OP are reduced for both controllers com-
pared to when only F increases and the rate of increase of
both values is lower. Notably, these values are quite small if
we compare them to static provisioning. If capacity would
be statically provisioned for the workload, 42 servers would
be needed when F = 1 and λ = 100, whereas using the
proactive controller or even the reactive controller, the av-
erage number of provisioned servers is around 3, reducing
resource use by around 92.5% compared to static provision-
ing but at the cost of an increase in the number of delayed
requests.

Looking at the aggregate and the average under-provisioning
metrics, UP and UP , CHybrid is superior to CReactive. Since
CHybrid scales up and down proactively, it prevents oscil-
lations. It proactively allocates VMs to and does not re-
lease resources prematurely, thus decreasing the amount of
buffered and delayed requests. In fact, CReactive shows a
very high rate of under-provisioning due to the fact that all
delayed requests are buffered. The average number of under-
provisioned servers of CReactive is 70 times that of CProactive

when F = 1 and λ = 100. Since CReactive is always lagging
the load and releases resources prematurely causing oscilla-
tions, the performance of the controller is quite bad. In real
life, the buffer is not infinite and thus requests are dropped.
In comparison, using the proposed controller, CHybrid, the
request drop rate is quite low. Again, we note that for a
ratio between λ and F of 10, under-provisioning (UP and
UP ) is reduced for both controllers compared to when only
F increases. Actually, for CHybrid, UP and UP , are almost
constant while for CReactive, they decrease significantly with
the increase of λ and F while having a constant internal ra-
tio. We attribute this to the higher service capacity of the
VMs allowing the system to cope with higher system dy-
namics. For future work, we plan to investigate the effect
of the VM capacity on the performance of an elasticity con-
troller with different system dynamics and if the property
we have just noted is general for any arrival process.

The V columns in Table 2 show the average number of43



(a) CProactive (b) CReactive

Figure 2: Number of buffered requests over time for the Web workload.

(a) CHybrid (b) CReactive

Figure 3: Load and the provisioned capacity over time for the Web workload.

(a) CHybrid (b) CReactive

Figure 4: Load and the provisioned capacity for 1.5 hours of the Web workload.44



Table 2: Web workload performance overview.

CHybrid results CReactive results

F λ OP OP UP UP V N OP OP UP UP V N
1 100 41905 0.548 3883 0.05 2.5 3 35600 0.47 267402 3.49 5.98 2.95
10 100 535436 6.99 8315 0.1 19.7 26.09 206697 2.7 8835898 115.45 135.97 23.28
20 100 1075447 14.05 98678 1.29 38.9 51.76 380059 4.966 19611571 256.26 297.29 46.14
30 100 1617452 21.14 148896 1.9 58.1 77.46 555503 7.25 30944637 404.35 466 69.15
40 100 2155408 28.16 197660 2.58 77.3 103.11 732157 9.567 42265699 552.28 634.57 92.14
20 200 654596 8.55 35380 0.46 19.3 27.57 225979 2.95 5187614 67.78 87.63 22.86
30 300 761956 9.96 30951.0 0.4 19.3 28.94 235436 3.07 3783052 49.4 69 22.71
40 400 857608 11.2 30512 0.4 19.3 30.16 241854 3.16 3180898 41.56 61.04 22.7

Table 3: Number of VMs added and removed for
the Web workload with F = 1 and λ = 100.

XR XP

CProactive 1141 1152
CReactive 15029 N/A

VMs required to empty the buffer in one minute or the av-
erage number of minutes required by a single VM to empty
the buffer. This is illustrated by figures 2(a) and 2(b) that
show the average buffered requests per VM at any second
for CHybrid and CReactive respectively when N = 100 and
K = 1. In Figure 2(a) there are three major peaks when
the buffered load per VM is above 1000 requests resulting
in a relatively small V and UP in the table. These three
peaks are a result of sudden large load increases. On the
other hand, Figure 2(b) shows more peaks with buffered
load more than 50000 requests per VM, resulting in a rela-
tively high V and UP . The average required buffer size for
CReactive per VM in order to service all requests is almost
3 times the buffer size required by CProactive. Thus, for a
limited buffer size, CReactive drops many more requests than
CHybrid.

Figures 3(a) and 3(b) show the load and the provisioned
capacity using both controllers for the full trace when λ =
100 and F = 1. These plots show the macro behavior of
the controllers. The total number of buffered requests is the
reason for having very high load peaks for CReactive. The
largest spike seen in Figure 3(a) was around the fifth of
May at 11:15. For ten minutes, the load suddenly increases
tenfold and then starts oscillating causing some instability
in CProactive. Notable, as the buffered load is emptied over
r time units, the capacity does not increase with the same
rate as the numbered of buffered requests increase.

To study the micro behavior of the controllers, figures
4(a) and 4(b) show the load and controller output for one
and half hour from 21:21:12 on 25 June, 1998 to 22:44:31
on the same day. These figures show that CProactive tracks
the envelope of the load by keeping the provisioned capacity
slightly higher than the load while CReactive oscillates the
provisioned capacity with the increase or decrease of the
load. Note that as the capacity of a single VM is variable,
the capacity in Figure 4(a), which is measured in number of
requests, appears to be oscillating. What actually happens
is that the number of provisioned VMs drops gradually from
13 to 6 with no oscillations.

Table 4: Properties of the cluster workload.
execution time queue time total time

Median 347.4 s 3.6 s 441.6 s
Average 3961.8 s 220.76 s 4182.5 s
90th percentile 3803 s 3325 s 4409 s

Table 3 shows XR, the total number of servers added and
removed by the reactive component of a controller, and XP ,
the total number of servers added and removed by the proac-
tive component, using CHybrid and CReactive for a simulation
run with F = 1 and λ = 100. The total number of server
added or removed by CProactive is 2293 servers almost one
seventh of the total number of server added or removed by
the reactive controller. These results illustrate how the re-
active controller increases resource oscillations.

3.3 Cluster workload performance evaluation
Recently, Google published a new sample dataset of re-

source usage information from a Google production cluster
[26]. The traces are from an cluster with 11000 servers. As
this cluster is used to run a mixture of MapReduce and other
computationally intensive jobs, the traces are representative
for scientific workloads.

In this experiment, there is no risk of causing oscillations
if r = 1 since most of the requests take more than 1 minute
to serve. The median job length in the workload is 347.5
seconds or almost 6 minutes. Table 4 summarizes the sta-
tistical properties of the tasks in the workload. Due to lack
of space we do not comment more on the properties of the
workload. K is set to 5 jobs also for this experiment. We
define that a job is delayed if it remains in the queue for
more than 1 minute. The median number of tasks that can
be processed on a single machine in the trace is 170, while
the minimum is 120. To be more conservative, we set the
number of tasks assigned to a server to 100.

Table 5 shows the performance of the proactive and reac-
tive controllers. The amount of under-provisioning using the
CReactive is almost three times that of CProactive. This comes
at the cost of over-provisioning on average 164 VMs com-
pared to around 1.4 VMs for the reactive controller. How-
ever, the amount of over-provisioning is still low, around
25%, as CProactive used 847 VMs on average, as compared
to 687 VMs for the reactive controller.

While OP and UP may be crucial for a workload like
the Web trace, they are less important for a workload of
jobs like the cluster trace where a job can wait in the queue45



(a) CProactive (b) CReactive

Figure 5: Number of buffered requests over time for the cluster workload.

��

�������

�������

�������

�������

���	��

��
��	��

�� ����� ������ ������ ������ ������ ������ ������ ������ ������


���
��������

(a) CProactive (b) CReactive

Figure 6: Load and the provisioned capacity over time for the cluster workload.

(a) CHybrid (b) CReactive

Figure 7: Load and the provisioned capacity for 3 hours of the cluster workload.46



Table 5: Cluster workload performance overview.
CProactive CReactive

OP 164 1.369

UP 1.76 5.384

N 847 686.9
V 3.48 10.22
XR 75415.0 505289
XP 78564.0 N/A

for minutes. More importantly for this workload type is V ,
the average number of buffered tasks. CProactive keeps the
average number of buffered tasks below K. On the contrary,
the reactive controller’s average buffer length is double the
allowed buffer size K and three times that of the proactive
controller. This is illustrated in figures 5(a) and 5(b) that
show the number of buffered requests over time.

We also note that in total, the number of VMs added and
removed by the reactive controller is 505289 compared to
153979 by the proactive controller. This means that the
reactive controller results in more oscillations also for the
cluster workload.

Figures 6(a) and 6(b) show the load and provisioned ca-
pacity for CProactive and CReactive. The proactive controller
tracks the envelope of the workload, i.e., the capacity stays
ahead of the load most of the time, whereas the reactive con-
troller always lags the load by at least one time unit. Due
to the large number of points plotted, the load appears as
if it is completely covered with the capacity. In order to see
the micro behavior of the two controllers we plot the load
and capacity for both controllers for the first 3 hours of the
trace in figures 7(a) and 7(b). The figures show how oscilla-
tions are reduced using the proactive controller. For exam-
ple, for the sudden decreases in load at minutes 15 and 30,
CReactive quickly deallocated VMs followed by reallocations
as load increased again. In contrast, CProactive kept most of
the allocated VMs, causing less oscillations. To summarize
the experiments, the workload characteristics and the SLA
requirements influence the performance of both controllers
considerably. We also note that our elasticity controller is
highly scalable with respect to service workload and infras-
tructure size. In the performed evaluations, the controller
required on average a few milliseconds to make a decision.

4. RELATED WORK
Elasticity is an incarnation of the dynamic provisioning

problem which has been studied for over a decade [7] from
the perspectives of both server provisioning and cloud com-
puting. Different approaches have been proposed to solve
the problem in both its old and new incarnations. Some
previous research considered only vertical elasticity [17, 27].
while many others considered horizontal elasticity in differ-
ent contexts [20, 28].

Urgaonkar et al. [24] were among the first to discuss the
effect of virtualization on the provisioning problem or what
we call horizontal elasticity. They proposed an adaptive con-
troller composed of a predictive and a reactive components.
The predictive component acts in the time scale of hours or
days. It provisions resources based on the tail distribution
of the load. The reactive component acts in the time scale of
minutes to handle flash crowds by scaling up the resources
provisioned. The model of the predictive controller is tuned

according to the under-provisioning of resources seen in the
past a few hours. Scale down is not considered.

Gandhi et al. [10] propose a similar controller. The main
difference is in the predictive controller design. Their pre-
dictive controller identifies patterns in the workload using
a workload forecaster which discretizes it into consecutive,
disjoint time intervals with a single representative demand
value. Workload forecasting is done on the time scale of
days i.e., the model of the predictive controller is changed
at most once a day. In their approach there is no way to
tune the model of the predictive controller and they do not
consider scale down of resources.

Malkowski et al. [18] propose a controller for n-tiered
applications. They add to the predictive and reactive con-
troller a database of previous system states with good con-
figurations. The elasticity controller starts by looking up
if the current state of the system in the database. If the
state is found then the configuration corresponding to the
state is used. Otherwise, the reactive controller determines
the underutilized state or over-utilized state and provisions
resources according to the load. In addition, the predic-
tive controller uses Fourier transforms to forecast the future
workload for each tier from the past.

A much simpler approach is proposed by Calheiros et al.
[5]. They model a cloud provider using basic queueing the-
ory techniques. They assume heterogeneous requests that
take constant time to process.

5. CONCLUSION
In this paper, we consider the problem of autonomic elas-

ticity control for cloud infrastructures. The infrastructure
is modeled as a G/G/N queue with variable N . The model
is used to design an adaptive proportional controller that
proactively adapts based on the changes in the load dynam-
ics. The controller takes into account resource heterogeneity,
delayed requests, and variable VM service rates. A hybrid
controller combines the designed controller with a reactive
controller that reacts to sudden increases in the load. The
combined controller tries to follow the workload envelope
and avoids premature resource deallocation.

Using simulations we compare the proposed controller to
a completely reactive controller. Two traces with different
characteristics are used, Web traces from the FIFA world
cup that are quite bursty in nature with simple requests
and cluster traces from Google with jobs as long as 1 hour.
Simulation results show that our proposed controller outper-
forms the reactive controller by decreasing the SLA violation
rate by a factor between 70 for the Web workload and 3 for
the cluster one. The reactive controller required three times
larger buffers compared to our controller. The results also
show that the proposed controller reduces resource oscilla-
tions by a factor of seven for the Web workload traces and
a factor of three for the cluster traces. As a tradeoff, the
hybrid controller over-provisions between 20% and 30% re-
sources as compared to a few percent for the reactive one.

6. ACKNOWLEDGMENTS
We would like to thank the reviewers for their constructive

comments. Financial support has been provided in part by
the European Community’s Seventh Framework Programme
under grant agreement #257115, the Lund Center for Con-47



trol of Complex Engineering Systems, and the Swedish Gov-
ernment’s strategic effort eSSENCE.

7. REFERENCES
[1] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An

adaptive hybrid elasticity controller for cloud
infrastructures. In NOMS 2012, IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2012.
in press.

[2] I. Ari, B. Hong, E. Miller, S. Brandt, and D. Long.
Managing flash crowds on the Internet. 2003.

[3] M. Arlitt and T. Jin. ”1998 world cup web site access
logs”, August 1998.

[4] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol.
Discrete-Event System Simulation. Prentice-Hall,
Upper Saddle River, N.J., fourth edition, 2005.

[5] R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual
machine provisioning based on analytical performance
and qos in cloud computing environments. In
International Conference on Parallel Processing
(ICPP), pages 295 –304, sept. 2011.

[6] K. Chard, M. Russell, Y. Lussier, E. Mendonca, and
J. Silverstein. Scalability and cost of a cloud-based
approach to medical nlp. In Computer-Based Medical
Systems (CBMS), 2011 24th International Symposium
on, pages 1–6. IEEE, 2011.

[7] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M.
Vahdat, and R. P. Doyle. Managing energy and server
resources in hosting centers. In Proceedings of the
eighteenth ACM symposium on Operating systems
principles, pages 103–116. ACM, 2001.

[8] T. Chieu, A. Mohindra, A. Karve, and A. Segal.
Dynamic scaling of web applications in a virtualized
cloud computing environment. In e-Business
Engineering, 2009. ICEBE ’09. IEEE International
Conference on, pages 281 –286, oct. 2009.

[9] A. J. Ferrer, F. HernÃa֒ndez, J. Tordsson, E. Elmroth,
A. Ali-Eldin, C. Zsigri, R. Sirvent, J. Guitart, R. M.
Badia, K. Djemame, W. Ziegler, T. Dimitrakos, S. K.
Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou,
B. Hudzia, A. Kipp, S. Wesner, M. Corrales,
N. ForgÃş, T. Sharif, and C. Sheridan. Optimis: A
holistic approach to cloud service provisioning. Future
Generation Computer Systems, 28(1):66 – 77, 2012.

[10] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and
M. Marwah. Minimizing data center sla violations and
power consumption via hybrid resource provisioning.
In International Green Computing Conference and
Workshops (IGCC), pages 1 –8, july 2011.

[11] T. Gunarathne, T. Wu, J. Qiu, and G. Fox. Cloud
computing paradigms for pleasingly parallel
biomedical applications. In Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing, pages 460–469. ACM, 2010.

[12] J. Herskovic, L. Tanaka, W. Hersh, and E. Bernstam.
A day in the life of PubMed: analysis of a typical
day’s query log. Journal of the American Medical
Informatics Association, 14(2):212, 2007.

[13] H. Khazaei, J. Misic, and V. Misic. Modelling of cloud
computing centers using m/g/m queues. In Distributed
Computing Systems Workshops (ICDCSW), 2011 31st
International Conference on, pages 87 –92, june 2011.

[14] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and
G. Jiang. Power and performance management of
virtualized computing environments via lookahead
control. Cluster Computing, 12(1):1–15, 2009.

[15] H. Li. Realistic workload modeling and its
performance impacts in large-scale escience grids.
IEEE Transactions on Parallel and Distributed
Systems, 21(4):480–493, 2010.

[16] H. Li and T. Yang. Queues with a variable number of
servers. European Journal of Operational Research,
124(3):615–628, 2000.

[17] X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal.
Optimal multivariate control for differentiated services
on a shared hosting platform. In 46th IEEE
Conference on Decision and Control, pages 3792–3799.
IEEE, 2007.

[18] S. J. Malkowski, M. Hedwig, J. Li, C. Pu, and
D. Neumann. Automated control for elastic n-tier
workloads based on empirical modeling. In Proceedings
of the 8th ACM international conference on
Autonomic computing, pages 131–140. ACM, 2011.

[19] M. Morari. Robust stability of systems with integral
control. IEEE Transactions on Automatic Control,
30(6):574–577, 1985.

[20] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety,
and A. Rowstron. Everest: Scaling down peak loads
through i/o off-loading. In Proceedings of the 8th
USENIX conference on Operating systems design and
implementation, pages 15–28. USENIX Association,
2008.

[21] K. Ogata. Modern control engineering. Prentice Hall
PTR, 2001.

[22] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth.
Evaluation of delta compression techniques for
efficient live migration of large virtual machines.
SIGPLAN Not., 46:111–120, Mar. 2011.

[23] H. Truong and S. Dustdar. Cloud computing for small
research groups in computational science and
engineering: current status and outlook. Computing,
pages 1–17, 2011.

[24] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and
T. Wood. Agile dynamic provisioning of multi-tier
internet applications. ACM Trans. Auton. Adapt.
Syst., 3:1:1–1:39, March 2008.

[25] J. Vöckler, G. Juve, E. Deelman, M. Rynge, and
G. Berriman. Experiences using cloud computing for a
scientific workflow application. In Proceedings of the
2nd international workshop on Scientific cloud
computing, pages 15–24. ACM, 2011.

[26] J. Wilkes. More google cluster data, November 2011.

[27] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and
M. Yousif. On the use of fuzzy modeling in virtualized
data center management. International Conference on
Autonomic Computing, page 25, 2007.

[28] Q. Zhu and G. Agrawal. Resource provisioning with
budget constraints for adaptive applications in cloud
environments. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, pages 304–307. ACM, 2010.

48



III





Paper III

Workload Classification for Efficient Auto-Scaling of
Cloud Resources

Ahmed Ali-Eldin1, Johan Tordsson1,
Erik Elmroth1, and Maria Kihl2

1Department of Computing Science, Umeå University, Sweden
{ahmeda, tordsson, elmroth}@cs.umu.se

2Department of Electrical and Information Technology,
Lund University, Sweden

Maria.Kihl@eit.lth.se

Abstract: Elasticity algorithms for cloud infrastructures dynamically change the
amount of resources allocated to a running service according to the current and pre-
dicted future load. Since there is no perfect predictor, andsince different applications’
workloads have different characteristics, no single elasticity algorithm is suitable for
future predictions for all workloads. In this work, we introduce WAC, a Workload
Analysis and Classification tool that analyzes workloads and assigns them to the most
suitable elasticity controllers based on the workloads’ characteristics and a set of busi-
ness level objectives. WAC has two main components, the analyzer and the classifier.
The analyzer analyzes workloads to extract some of the features used by the clas-
sifier, namely, workloads’ autocorrelations and sample entropies which measure the
periodicity and the burstiness of the workloads respectively. These two features are
used with the business level objectives by the classifier as the features used to assign
workloads to elasticity controllers. We start by analyzing14 real workloads available
from different applications. In addition, a set of 55 workloads is generated to test
WAC on more workload configurations. We implement four stateof the art elasticity
algorithms. The controllers are the classes to which the classifier assigns workloads.
We use a K nearest neighbors classifier and experiment with different workload com-
binations as training and test sets. Our experiments show that, when the classifier is
tuned carefully, WAC correctly classifies between 92% and 98.3% of the workloads
to the most suitable elasticity controller.

17



52



Workload Classification for Efficient Auto-Scaling

of Cloud Resources

Ahmed Ali-Eldin1, Johan Tordsson1,
Erik Elmroth1, and Maria Kihl2

1Department of Computing Science, Ume̊a University, Sweden
{ahmeda, tordsson, elmroth}@cs.umu.se

2Department of Electrical and Information Technology,
Lund University, Sweden
Maria.Kihl@eit.lth.se

May 21, 2013

Abstract
Elasticity algorithms for cloud infrastructures dynamically change the

amount of resources allocated to a running service according to the current
and predicted future load. Since there is no perfect predictor, and since
different applications’ workloads have different characteristics, no single
elasticity algorithm is suitable for future predictions for all workloads. In
this work, we introduce WAC, a Workload Analysis and Classification tool
that analyzes workloads and assigns them to the most suitable elasticity
controllers based on the workloads’ characteristics and a set of business
level objectives.

WAC has two main components, the analyzer and the classifier. The
analyzer analyzes workloads to extract some of the features used by the
classifier, namely, workloads’ autocorrelations and sample entropies which
measure the periodicity and the burstiness of the workloads respectively.
These two features are used with the business level objectives by the clas-
sifier as the features used to assign workloads to elasticity controllers. We
start by analyzing 14 real workloads available from different applications.
In addition, a set of 55 workloads is generated to test WAC on more
workload configurations. We implement four state of the art elasticity
algorithms. The controllers are the classes to which the classifier assigns
workloads. We use a K nearest neighbors classifier and experiment with
different workload combinations as training and test sets. Our experi-
ments show that, when the classifier is tuned carefully, WAC correctly
classifies between 92% and 98.3% of the workloads to the most suitable
elasticity controller.

1 Introduction

Elasticity or auto-scaling can be defined as the ability of a cloud infrastructure
(datacenter) to dynamically change the amount of resources allocated to a run-
ning application. Resources should be allocated according to the changing load

1

53



2

(a) Workload trace for the Wikipedia workload. (b) Workload trace for the Google Cluster workload.

Figure 1: Workload traces of the Wikipedia workload and the Google cluster
workload.

allowing the addition and removal of resources to preserve Quality of Service
(QoS) requirements at reduced cost. Typically, a variety of different applications
with different workloads run in a cloud [1]. Even when a single application is
running on the infrastructure, in the case for Software-as-a Service [2], different
users usually have different usage patterns.

Some workloads have repetitive patterns. For example, the Wikipedia work-
load shown in Figure 1(a) has a diurnal pattern where the request arrival rate
is higher during the day than at night. Other workloads have seasonal patterns,
e.g., the workload of an online store may increase drastically before Christ-
mas [3]. Some uncorrelated spikes and bursts can occur in a workload due to an
unusual event, e.g., when Michael Jackson died 15% of all requests directed to
Wikipedia where to the article about him [4] causing a significant spike. On the
other hand, some workloads have some weak patterns or no patterns at all such
as the workload shown in Figure 1(b) for a Google cluster workload. Cloud in-
frastructure providers do not usually know the characteristics of the workloads
their customers are planning to run.

Elasticity controllers are used to predict future workload and provision re-
sources based on the prediction [5, 6, 7, 8, 9]. In our previous work, we have
designed three adaptive autonomic elasticity controllers and tested them with
three different workload traces; the FIFA worldcup 1998 workload trace [10, 11],
Wikipedia traces from 2009 [2, 12] and a recently released workload from a pro-
duction Google cluster [13, 14]. The proposed controllers showed variations in
performance with different workloads. These variations are attributed to the
different characteristics of different workloads.

Since there are no perfect controllers [15] or perfect estimators [16], design-
ing a general elasticity controller for all workloads and scenarios running on a
datacenter is infeasible. Elasticity controllers’ performance varies with the dif-
ferent workloads and changing system dynamics. A controller tuned for certain
workload scenarios can become unrobust if the conditions change [17] leading
to wrong predictions and thus wrong capacity provisioning decisions. There is

54



3

Figure 2: WAC: A Workload Analysis and Classification Tool.

a cost if a controller adds more resources to a service than actually required
by the service’s workload since these extra resources are not utilized, although
paid for by the customer. Similarly, if the resources provisioned for a service
are not sufficient for its load, the service performance deteriorates and part of
the workload is dropped. The service can become unresponsive or crash. Thus,
analyzing workloads is an important first step towards choosing the appropri-
ate elasticity controller for each workload. Based on this analysis, the service
provider can assign the workload to the most suitable elasticity controller.

This work presents WAC, a Workload Analysis and Classification tool for
cloud infrastructure providers. The tool analyzes workloads of different applica-
tions and based on the analysis it classifies the workloads into a set of predefined
classes. Each class is then assigned to the most suitable elasticity controller for
that class, reducing the risk of wrong predictions and improving the Quality
of Service (QoS) provided then. It is assumed that there is some historical
data available for the workloads. While not the case for all applications, many
applications will have this data if they have been running in the past.

Figure 2 shows the two main components of WAC; the analyzer and the
classifier. The analyzer analyzes historical data of a workload to discover some
of its statistical properties that can be used by the classifier to find the most
suitable elasticity controller for the workload of an application. There are many
properties that can be used to characterize a workload such as the mean request
arrival rate, the variance of the request arrival rate, average request processing
time, the workload’s periodicity and the workload’s burstiness.

55



4

In this work, we concentrate on periodicity and burstiness to characterize
a workload. Periodicity describes how certain parts of the workload repeat
with time, i.e., the similarity between the value of a workload at any point in
time to the workload’s history. Such similarity, if discovered, can be used by
the elasticity controller to predict the future values of the workload. Burstiness
measures load spikes in the system, when a running service suddenly experiences
huge increases in the number of requests. Bursty workloads where the workload
does not follow any pattern for these bursts, are hard to predict. We discuss
our choice of these two properties and the methods we use to quantify them in
more detail in Section 2.

Classification is a form of supervised learning used to predict the type or
class of some input data object based on a group of features [18]. A data object
can be anything from a single network request to a data stream [19]. For WAC,
the data object is a workload and the classes or types are the different elasticity
controllers. Supervised learning algorithms require training using labeled train-
ing data, i.e., objects for which we know the classes. The training data should
be sufficient to enable the classifier to generalize to future inputs that arrive
after training, i.e., new applications and workloads which will start running on
the infrastructure in the future. To construct our training set, we collect and
analyze a set of 14 real workloads. Since available real workloads are scarce [4],
and the accuracy of any classifier depends on the size of the training set, we
generate 55 additional synthetic workloads that have more general character-
istics compared to the real workloads. Workload analysis and generation are
discussed in Section 3.

Each class maps to an available elasticity controller implemented and pro-
vided by the cloud provider. This enables a cloud provider or a cloud user to
choose the right controller for a certain workload reducing the aggregate pre-
diction errors and allowing an improvement in QoS. Many designs for elasticity
controllers are suggested in literature using different approaches such as Con-
trol theory [5], Neural networks [20], second order regression [7], histograms [6]
and the secant method [21]. A cloud provider has to choose which controllers
to implement. We have selected and implemented four controllers to use with
WAC as discussed in more details in Section 4.

There are plenty of classifiers suggested in the machine learning literature,
out of these Support Vector Machines (SVMs) and K-Nearest-Neighbors (KNN)
are very popular [22]. KNN is chosen as the classification algorithm for WAC.
We discuss the underlying principles of the two methods and our choice of KNN
over SVMs in Section 5. We also present the training of the classifier, the
classifier accuracy and discuss our results. Section 6 reviews the related work.
We conclude in Section 7.

2 The Analyzer: Workload Characterization Tech-

niques

Characterization of workloads is not an easy task since there are many param-
eters that can be used for the characterization [23]. With respect to predic-
tion and elasticity, the two main characteristics that affect the performance of
workloads are periodicity and burstiness. As will be discussed later, these two

56



5

measures are normalized for different workloads making their measurements
depending only on workloads’ patterns and trends.

2.1 Measuring Periodicity and Burstiness

The most common method to measure periodicity is to use autocorrelation.
Autocorrelation is the cross-correlation of a signal with a time-shifted version
of itself [16]. A signal can be any measurement, observation or function that
changes with respect to time, space or any other dimension, e.g., a workload, an
audio signal or a time series [24]. Autocorrelation takes values between−1 and 1.
An autocorrelation of 0 at a time lag of τ means there is no relation between the
signal and itself at this time lag. A random signal has an autocorrelation of 0 at
all time lags. An autocorrelation of 1 means that the signal strength is exactly
the same for this time lag while an autocorrelation near −1 means that the
signal has an opposite direction of influence, i.e., if the signal strength is above
average, the next value will be likely less than average. The autocorrelation
function (ACF) describes the autocorrelation as a function of the time-lag τ .
The ACF, R(τ), for a signal X is,

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2
, (1)

where E is the expected value operator, Xt is the value of the signal at time t,
µ is the mean of the signal and σ is the variance of the signal. We use the ACF
as a measure of workload periodicity. For the rest of the paper we use the terms
autocorrelation and correlation coefficient interchangeably.

There are many methods to measure burstiness [25], non of them prevalent
though. Gusella [26] suggested the use of the index of dispersion. Minh et.
al. [27] suggested the use of normalized entropy. We propose the use of Sam-
ple Entropy (SampEn) as a measure of burstiness [28]. Sample entropy is a
modification of the Kolmogrov Sinai entropy. It is the negative natural loga-
rithm of the conditional probability that two sequences similar for m points are
similar at the next point. It has been used successfully in classifying abnormal
(bursty) EEG signals and other physiological signals for over a decade and has
been proven robust [29]. An advantage of sample entropy over the index of
dispersion and normalized entropy is that SampeEn detects periodic bursts.

Two parameters are needed to calculate SampEn for a workload. First pa-
rameter is the pattern length m, which is the size of the window in which the
algorithm searches for repetitive bursty patterns. The second parameter is the
deviation tolerance r which is the maximum increase in load between two con-
secutive time units before considering this increase as a burst. When choosing
the deviation tolerance, the relative and absolute load variations should be taken
in account, For example, a workload increase requiring 25 extra servers for a
service having 1000 VMs running can probably be considered withing normal
operating limits, while if that increase was for a service having only 3 servers
running then this is a significant burst. Thus by carefully choosing an adaptive
r, SampEn becomes normalized for all workloads. The deviation tolerance de-
fines what is considered a normal increase and what is considered a burst. If
SampEn is equal to 0 then the workload has no bursts. The higher the value
for SampEn, the more bursty the workload is.

57



6

Data: r, m, W
Result: SampEn

1 n← Length(W );
2 Bi ← 0;
3 Ai ← 0;
4 Xm = {Xm(i)|Xm(i) = [x(i), x(i+1), ...x(i+m−1)] ∀ 1 < i < n−m+1};
5 for (Xm(i), Xm(j)) in Xm: i < j do
6 Calculate d[Xm(i), Xm(j)] = max(|x(i + k)− x(j + k)|) ∀ 0 ≤ k < m;
7 if d[Xm(i), Xm(j) ≤ r then
8 Bi = Bi + 1;

9 Bm(r) = 1
n−m

∑n−m
i=1

1
n−m−1Bi;

10 m = m+ 1
Xm = {Xm(i)|Xm(i) = [x(i), x(i+1), ...x(i+m−1)] ∀ 1 < i < n−m+1};

11 for (Xm(i), Xm(j)) in Xm: i < j do
12 Calculate d[Xm(i), Xm(j)] = max(|x(i + k)− x(j + k)|) ∀ 0 ≤ k < m;
13 if d[Xm(i), Xm(j) ≤ r then
14 Ai = Ai + 1;

15 Am(r) = 1
n−m

∑n−m
i=1

1
n−m−1Ai;

16 SampEn= lim{− log[A
m(r)

Bm(r)}
Algorithm 1: The algorithm for calculating SampEn.

We implemented the sample entropy algorithm as described by Aboy et.
al. [30]. The algorithm is shown in Algorithm 1. W is the workload for which
SampEn is calculated. The first loop in the algorithm calculates Bm(r), the
probability that two sequences (parts) in the workload having m measurements
do not have bursts. The second loop in the algorithm calculates Am(r), the
probability that two sequences in the workload having m+ 1 measurements do
not have bursts. Then SampEn is calculated as the negative logarithm of the
conditional probability that two workloads sequences of length m that do not
have bursts, also have no bursts when the sequence length is increased by 1.

3 Workload Analysis

Typically, cloud providers such as Amazon [1] and Rackspace [31] host many ser-
vices with different workloads. These services typically vary from services that
use a handful of machines to services that use a few thousand machines [32].
With the exception of a recently released workload trace from a production
cluster at Google [13], no cloud provider provides publicly available cloud work-
loads [4]. On the other hand there are a few publicly available workloads for
various types of Internet applications. We have analyzed some of these work-
loads in addition to the Google cluster workload in order to understand better
the characteristics of the different workloads. We believe that these workloads
are representative for many of the workloads running on typical clouds.

Recently, cloud providers started supplying resources for High performance
computing and grid applications [33]. Many similar workloads are publicly avail-
able of which we use the DAS-2 system workload, the Grid-5000 workload, Nor-

58



7

duGrid traces, SHARCNET traces, Large hydrogen collider Computing Grid
(LCG) traces and the AuverGrid traces, all available from the grid workload
archive [34]. Caching services are another type of application running on cloud
infrastructures [1]. We use traces from the IRCache [35] project as represen-
tative workloads for this class of applications. The IRCache traces maintain
traces from 10 different caching service sites in the USA. We only use traces
from 4 sites. In addition, we analyze a one month trace of PubMed server us-
age [36], traces from the FIFA 1998 world cup [37], the Google cluster data
released [13] and traces from Wikipedia [12]. We also deployed a crawler that
crawled YouTube during the Olympics and the Paralymics for video view count
but this data is not used. Appendix A contains the graphs for the analyzed
traces.

3.1 Periodicity of Real Workloads

A correlogram is a type of plot that shows the ACF of a signal at different lags.
The X axis of the plot represents the lag in minutes while the Y axis represents
the autocorrelation. Figures 3, 4 and 5 show the correlograms of the analyzed
workloads. Figures 3(a) and 3(b) show high ACFs for short lags meaning that for
these workloads the value of the workload depends on its value in the near past.
Figures 3(c), 3(d), 5(a), 5(c) and 5(d) show high autocorrelation coefficients
meaning that their corresponding workloads have strong periodicity. Figures
4 and 5(b) show that their corresponding workloads are almost random. The
second column in Table 1 describes the ACFs for the all workloads qualitatively.

The coefficient of determination is defined as the squared value of the cor-
relation coefficient at a certain lag. It measures the proportion of variance in
a dependent variable that can be explained by the independent variable, i.e.,
the dependence of the future data on the historical data of the workload [38].
Workloads with higher autocorrelation coefficients at certain time lags are easier
to predict at these time lags since their coefficient of determination is high.

3.2 Burstiness of Real Workloads

There are two main limitations of SampEn. First, SampEn is expensive to cal-
culate both CPU-wise and memory-wise. The computational complexity (in
both time and memory) of SampEn is O(n2) where n is the number of points in
the trace. Second, workload characteristics can change during operation, e.g.,
when Michael Jackson died 15% of all requests directed to Wikipedia where to
the article about him creating spikes in the load [4]. If SampEn is calculated for
the whole past, then such recent changes will not be discovered easily. To over-
come these two limitations, we divide a trace into smaller equal sub-traces and
calculate SampEn for each sub-trace allowing to calculate a weighted average
for SampEn giving more weight to more recent SampEn values. This reduces
the time required for computing SampEn for a long trace spanning months or
years to just a few hours. It is also suitable for online characterization of a
workload since SampEn does not have to be recomputed for the whole history
but rather for the near past which is much more efficient and fast. Our approach
of dividing the signal into smaller sub-traces is similar to the approach used by
Costa et. al [39] where they divide a signal to calculate its multi-scale entropy.
The main difference between the two approaches is after SampEn is computed

59



8

(a) Correlogram for IRCache service runnings at Boulder,
Colorado (Bo).

(b) Correlogram for IRCache service running at Silicon Val-
ley, California (SV).

(c) Correlogram for IRCache service running at San Diego,
California (SD).

(d) Correlogram for IRCache service running at Urbana-
Champaign, Illinois (UC).

Figure 3: Correlograms of the different Caching Services.

60



9

(a) Correlogram for the DAS workload. (b) Correlogram for Grid5000 workload.

(c) Correlogram for the LCG workload. (d) Correlogram for LPC workload.

(e) Correlogram for the NorduGrid workload. (f) Correlogram for SharcNet workload.

Figure 4: Correlograms of the Grid workloads analyzed.

61



10

(a) Correlogram for the world cup workload. (b) Correlogram for the Google Cluster workload.

(c) Correlogram for PubMed access traces. (d) Correlogram for the Wikipedia workload.

Figure 5: Correlograms of web-hosting workloads and the Google cluster work-
load analyzed.

62



11

Table 1: Workload analysis results.

Workload ACF SampEn
Bo-IRCache Very low. Almost a random signal 0.0
SV-IRCache Very low. Almost a random signal 0.0017
SD-IRCache High for small lags. Medium for large lags 1.062
UC-IRCache High for small lags. Medium for large lags 0.0

DAS Random signal 0.0
Grid5000 Random signal 236.16
LCG Random signal 134.0
LPC Random signal 2.827

NorduGrid Random signal 8.43
SharcNet Random signal 2.803
FIFA High for small lags. Medium for large lags 0.0
Google Almost a random signal 235.70
PubMed High 0.0
Wikipedia High 0.0014

for the smaller sub-trace. Costa et.al plot the results while we take a weighted
average.

As already mentioned, there are two main parameters needed to calculate
SampEn, the pattern length m and the deviation tolerance r. In addition to
these two parameters we add L, the size of each sub-trace when the whole trace
is divided. These 3 parameters are set as following:

1. The pattern length m is set to 1 hour.

2. The deviation tolerance r is set to 30% of the seventieth percentile of the
workload values, e.g, if the seventieth percentile of the workload values
seen is 20000 requests per second, then r is set to 6000 requests. If the
number of servers required to handle the load is less than 10 server, i.e.,
30% of the maximum workload can be less than the load handled by one
server, then the deviation tolerance is set to double the average requests
served be a server per unit time.

3. The value of L is set to 1 day.

The third column in Table 1 shows the average SampEn computed for the
different workloads. From the table we can see that workloads vary greatly in
the amount of burstiness they have. With the exception of the DAS workload,
workloads with ACFs around zero have significant burstiness as SampEn is
greater than 1 for all of them, while the ones with high or medium ACFs do not
show significant burstiness.

3.3 Workload Generation

To obtain accurate classification from a classifier, enough training samples are
needed. Available real workloads are scarce and using them only as a training
set for a classifier could result in poor ability to generalize and accurately clas-
sify newly deployed applications’ workloads. We have generated 55 synthetic

63



12

Table 2: Average Sample Entropy computed for the sample generated work-
loads.

Workload SampEn
WL1 0.0
WL2 236.0
WL3 2.5
WL4 0.002
WL5 0.0014
WL6 0.069

workloads using a mixture of functions and probability distributions. Due to
space limitations and since this is not the main focus of this work, we omit
most of the details on workload generation. For illustration purpose, Equation
2 shows how WL1 whose ACF is shown in Figure 6(a) is generated.

x(i) = log(i+103)(| sin( 3i

104
)+100|)(| sin( i

104
))+2∗104|)+W (0.3), ∀ i ∈ [0, n],

(2)
where x(i) is the workload value at time i, W (0.3) is Weibull distribution with
a shape parameter equal to 0.3 and n is the length of the synthetic workload
required. The log function is used to simulate a workload evolving with time
but having similar periodicity. The sinusoids are used to give the workload
a pattern similar to diurnal patterns and the Weibull distribution adds some
uncertainty in the workload. This is similar to the pattern seen in the Wikipedia
workload trace. Figures 6(b) and 6(c) show the correlograms for WL2 and
WL3. The two workloads are generated with an equation similar to Equation 2,
but with an added component that increases the uncertainty (SampEn) in the
workload thus decreasing the ACF. Figures 6(b) and 6(d) show that the ACFs
for WL2 and WL4 resemble the ACFs of the DAS, Grid5000 and LCG real
workloads whose ACFs are shown in figures 4(a)–4(c) respectively. Figures 6(e)
and 6(f) have ACFs different from the ones seen in the 14 investigated workloads.
The equations used to generate the 55 synthetic workloads have mostly similar
structures, but using different periods for the sinusoids, different amplitudes
and different probability distributions such as log normal distributions, gamma
distributions and chi-squared distributions as sources of uncertainty.

Table 2 shows the SampEn values for the six generated workloads above.
Similar to the real workloads, the generated workloads have burstiness levels
ranging from no burstiness to very bursty.

4 On the Performance of Different Elasticity Con-
trollers

Since different elasticity controllers exhibit different performance with different
workloads, a cloud infrastructure provider has to select a number of elasticity
controllers to implement. These controllers are the classes to which WAC assigns
the different workloads. We implement 3 state-of-the-art elasticity controllers
plus a step controller (the vanilla elasticity controller). These controllers repre-

64



13

(a) Correlogram for a sample generated workload WL1. (b) Correlogram for a sample generated workload WL2.

(c) Correlogram for a sample generated workload WL3. (d) Correlogram for a sample generated workload WL4.

(e) Correlogram for a sample generated workload WL5. (f) Correlogram for a sample generated workload WL6.

Figure 6: Correlograms of 6 of the generated workloads.

65



14

sent the classes to which WAC assigns workloads. The implemented controllers
are:

1. The step controller (hereafter called React) is a simple reactive controller
where the capacity provisioned follows the load changes when they happen
and does not predict the required future capacity. If the load is constant,
no VMs are added or removed. If the load increases by ∆Load, the con-
troller reacts to the load increase by provisioning S servers that can handle
this load increase. Similarly if the load decreases by ∆Load which is less
than a certain threshold, the controller reacts by removing the extra ma-
chines. This is similar to the controller described by Chieu et al. [40]. If
the controller computes the required capacity every time the load changes,
the controller never allocates more resources than required since resources
are only allocated when the load increases and are removed once the load
decreases below a certain threshold.

2. A Histogram based controller (thereafter called Hist). This controller
builds histograms for the workload observed within a defined time inter-
val (e.g. between 9:00 and 10:00 on Monday) based on the past values
observed. The controller estimates the peak demand of the workload to
occur within the defined time interval before the defined time interval
begins. The histogram stores the history of the maximum arrival rates
observed during the defined period over the past several periods. For
each period there is a corresponding histogram which can be used to find
the probability distribution of the arrival rate for that period. The con-
troller can predict the capacity required based on a higher percentile of
the tail, e.g., the 99th percentile, of the distribution. This design allows
the controller to capture seasonal trends such as diurnal or yearly trends
depending on the period chosen for building the histograms. The period
length chosen for the histogram is 1 hour. The controller has a correction
mechanism in case the provisioned capacity is less than the actual required
capacity. When the service load becomes more than the provisioned ca-
pacity can handle, the correction mechanism provisions more resources to
the service. This controller was described by Urgaonkar et. al. [6].

3. A Regression based controller (thereafter called Reg) proposed by Iqbal
et. al. [7]. The controller is a hybrid controller with a reactive controller
for scale-up decisions and a predictive controller for scale-down decisions.
When the capacity is less than the load, a scale up decision is taken and
new VMs are added to the service in a way similar to React. For scale
down, the predictive component uses second order regression trained using
past workload values to predict future workload. The regression model
is recomputed using the complete history of the workload every time a
new measurement data is available. If the current load is less than the
provisioned capacity, a scale down decision is taken using the regression
model. If the regression predicts an increase in the number of servers, the
results from the regressor are ignored.

4. An adaptive hybrid controller (thereafter called AKTE) that uses the
workload slope to predict the future workload. This controller is proposed
by Ali-Eldin et. al. [14]. The controller is a hybrid controller having

66



15

a reactive component similar to React and a predictive component that
predicts the future workload from the rate of change of the workload. The
slope calculations are adaptive depending on the rate of change of the
workload. If the load is increasing or decreasing rapidly and thus the rate
of change is closer to ±1, then the rate at which the controller makes
decisions is increased in order to adapt to the rapid workload changes.

4.1 How to Compare Elasticity Controllers’ Performance

While most of the body of work on elasticity control uses the request response
time or service latency as a measure of a controller’s performance, Bodik et.
al. [41] argued that this is not the correct reference signal that an elasticity
control policy should use since latency have very high variance even for fixed
workloads. If this is the reference signal used, the elasticity controller ends up
oscillating resources due to noise in the reference signal. Smoothing the noise
does not help since it leads to significant control delays.

Bodik et. al. also raise another concern for which they give an example.
Suppose there are two workloads running on two different machines and each
of them experiences an average service latency of 50 ms for the requests. If
the required QoS is that the average service latency is kept below 100 ms, can
the two loads be migrated on a single server shutting down one of the servers?
This is not true since service latencies do not depend linearly on the amount of
resources provisioned.

They also point out to the fact that latency does not show under-provisioning
and over-provisioning levels even for non noisy response times that do not vary.
This is specially true when we compare the performance of different controllers
since two controllers might be achieving the required latency but one of them
uses one tenth of the resources used on average by the other controller or one
of them can be dropping, on average, less requests than the second one.

We add to their analysis that different applications have different processing
requirements and a cloud infrastructure provider should not make any assump-
tions on how the resources are used, e.g., serving a static web page page hosted
on the cloud is different from sorting a Tera-byte of data. In addition, any
change in the workload mix changes the achievable latency [9]. Cloud comput-
ing promises resources on demand, so the measure of performance should be
resource usage, e.g., average CPU and memory consumption or network utiliza-
tion, or a metric that can be directly mapped to resource usage, e.g., number
of requests, which is not the case for latency. These metrics enable the provider
to be as generic as possible when specifying the QoS in the Service Level agree-
ments with the customers. We choose to use the request arrival rate as the
reference signal in the implementation of the different controllers.

4.1.1 Performance Comparison Metrics

To compare the performance of different controllers, we use the following cost
metrics:

1. Average Overprovisioning rate (OP ) is the average number of overprovi-
sioned VMs by the controller per unit time. This is calculated by summing
the number of overprovisioned VMs over time and dividing the number

67



16

by the total number of time units for which the controller was running.
A machine is considered overprovisioned if it is of no use for the next 10
minutes. This reduces the penalty of an algorithm that predicts the future
workload well in advance. This is a configurable parameter that can be
changed.

2. Average Underprovisioning rate (UP ) is the average number of under-
provisioned VMs by the controller per unit time. This is calculated by
summing the number of underprovisioned VMs over time and dividing
the number by the total number of time units for which the controller was
running. Underprovisioning means that the controller failed to provision
the resources required to serve all requests on time.

3. Average number of Oscillations (O) which is the average number of VMs
started or shut-down per unit time. The reason to consider (O) as an
important parameter is the cost of starting/stopping a VM. From our
experience, starting a machine (physical or virtual) typically takes from 1
minute up to several minutes (almost 20 minutes for an ERP application
server) depending on the application running. This time does not include
the time required to transfer the images and any data needed but is rather
the time for machine boot-up, recontextualization of the images [42] and
network setup. Similar time may be required when a machine is shutdown
for workload migration and load balancer reconfiguration. In addition,
for physical servers, machines consume more energy during bootup and
shutdown while not doing any useful work [43].

Since different applications have different provisioning requirements, some
applications running on a cloud infrastructure will give more weight to one of the
three parameters. For example, a traditional database system might care more
about O since each change in the number of machines results in a heavy penalty
in terms of synchronization to preserve consistency. While an application that
uses VM cloning [44] might care more about UP .

When comparing different controllers, the values of OP , UP and O are
weighted in order to consider the different scenarios and combinations that an
application might have. OP is multiplied by a constant α. UP is multiplied by
a constant β. Similarly, O is multiplied by a constant γ. The values for these
three weights should be set based on the business level objectives [45] required
by the application owner and the quality of service requirements of a service.

We refer to the set of implemented controllers as CI . To choose the best
performing controller for a given workload and a given set of weights, the cost
metrics have to be calculated for each implemented controller X . The total cost
for using that controller is,

CostX = αOP + βUP + γO. (3)

The best controller for the given setup CZ is thus,

CZ = {χ|χ ∈ CI & Costχ ≤ CostY ∀ Y ∈ CI}. (4)

68



17

4.2 Performance of the Controllers with Various Work-
loads

Classification is a supervised learning algorithms, therefore, it requires training
using labeled data. For each object in the labeled training set, the object’s
class in known. For WAC, an object is a workload and a class is one of the
implemented elasticity algorithms. In order to label each workload in the train-
ing set, we need to know the best performing controller for that workload. We
have built a discrete event simulator using Python, numpy and scipy [46] to
simulate a cloud provider and test the four controllers and their performance
on the workloads. The Regression controller was performing badly on almost
all workloads for all three metrics. We have modified the design described in
the original paper such that the provisioned capacity is always 1.2 times the
suggested capacity by the controller output. This modification improves the
performance of the controller considerably.

In our experiments, α varies between 0 to 1 for the real workloads and 0 to
0.5 for the generated workloads, with a step of 0.01, β varies between 1 to 20 for
the generated workloads and 1 to 10 for the real workloads with a step of 1 and
γ varies between 0 to 20 for the generated workloads and 0 to 10 for the real
workloads, with a step of 0.5. The combinations of these values with the ACFs
and the SampEn of the different workloads form the different scenarios with
which we test WAC. For the real workloads, there are in total 280000 scenarios,
while for the synthetic workloads there are in total 2090000 scenarios. Using
all combinations of the three weighted metrics for both the real and generated
workloads, the controller with the best performance for each combination is
labeled. Table 3 shows the percentages of scenarios in which every controller
outperforms the other controllers for the different workloads. From the table
we see that, Reg and AKTE outperform the other controllers considerably for
both the real and the synthetic traces. React is the least performing controller
for both workload types.

We attribute the performance of the controllers to the way they are designed.
AKTE is designed with the aim of reducing UP and O at the cost of higher
OP . It is more suitable for applications where the cost of underprovisioning
and the cost of oscillations should be minimized. Hist is designed for work-
loads that have periodical patterns and low burstiness. Hist does not give any
importance to OP since scale down mechanisms when the controller provisions
extra resources are absent. React has no predictive component. It provisions
resources after they are needed. This reduces the amount of OP at the cost of
increased UP and O. The modified Reg uses a second order regressor which
is suitable for capturing patterns in the workload. Reg scales down resources
faster Hist, thus reducing OP , but slower than React.

5 Workload Classification

We evaluateWAC with both a KNN classifier and an SVM classifier [22]. SVM is
a supervised learning method introduced by Boser et. al. [47]. It constructs sep-
arating hyperplanes to separate the training data such that the distance between
the constructed hyperplanes and any training point is maximized. Training an
SVM classifier and tuning its different parameters is complex [48]. We have

69



18

Table 3: Number of scenarios in which every controller outperforms the other
controllers for the different workloads.

Controller Real workloads scenarios Generated workloads scenarios
React 6.55% 0.1%
Reg 33.72% 61.33%

AKTE 47.17% 34.3%
Hist 12.56% 4.27%

tried using an SVM classifier but the training was very time consuming and was
giving low classification accuracy. This means that the classifier parameters
required tuning which is even more time consuming. We choose to use KNN
since it is less complex, fast to train and fast to calculate an assignment once
trained.

The KNN algorithm is quite simple. A training set is used to train the
classifier. The training set is a set of samples for which the correct classification
in known. When a new unknown sample arrives, a majority vote of its K-nearest
neighbors is taken. The new sample is then assigned to the class with a majority
vote. K is a configurable parameter. The distance to a neighbor is usually the
Euclidean distance between the sample and that point. There are two versions of
the KNN algorithm. One version gives more weights to votes of closer neighbors
while the second version gives equal weights to all K neighbors [22].

In the experiments, we consider the case when a cloud provider has four
controllers deployed and the case when only two controllers, AKTE and Reg,
are deployed. AKTE and Reg perform better than Hist and React for more
than 80% of the workload scenarios considered. Each scenario in the training
set is labeled with the top performing controller out of AKTE and Reg for the
experiments with only two controllers.

In order to test the accuracy of KNN, the available workload scenarios are
divided into a training set and a test set. The training set is used for training
the classifier while the test set is used to evaluate the accuracy of the classifier
after training. Both sets are labeled with the right answer for each scenario.
When the classifier assigns a workload to an elasticity controller, the assignment
is compared to the label. If the assignment matches the label, then the classifi-
cation is correct. The accuracy of the classifier is calculated by calculating the
ratio of correct classifications of the test set to the total size of the test set.

5.1 Classification of Real Workloads

In the experiments, the scenarios described in Section 4 are randomly split into
a training set and a test set. The training set contains 90% of all the scenarios
while the test set has the remaining 10% . Both the training set and the test set
are balanced such that no single class dominates the training set thus skewing
the classifier.

We test the KNN classifier using both its versions, the one that gives equal
weights to all K neighbors and the one that gives more weight to closer neigh-
bors. For each version, we repeat the experiment with K ranging from 1 to 100
and calculate the classification accuracy.

70



19

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50  60  70  80  90  100

A
cc

ur
ac

y

K

KNN accuracy for different K

(a) Effect of changing K on the classifier accuracy when all
neighbors’ votes are given equal weight.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50  60  70  80  90  100

A
cc

ur
ac

y

K

KNN accuracy for different K

(b) Effect of changing K on the classifier accuracy when
closer neighbors’ votes are given higher weight.

Figure 7: Effect of K on the classifiers’ accuracy with only 2 classes considered,
AKTE and Reg, for real workloads.

Figure 7 shows the classification accuracy of the classifier when there are only
two classes, AKTE and Reg. The X axis of the figure is the value of K. The Y
axis of the figure is the accuracy of classification. Figure 7(a) shows the accuracy
of the classifier with changing K when all K neighbors’ votes are given equal
weights. Significant oscillations occur in the accuracy as K increases until K is
around 50. When closer neighbors’ votes are given higher weight, oscillations are
much smaller as shown in Figure 7(b) where the accuracy stabilizes at around
0.92 when K is equal to 25. The maximum accuracy achieved is 0.983 using
equal weights for all neighbors for K = 5.

Figure 8 shows the classification accuracy of the classifier when there are
four classes, AKTE, React, Histo and Reg, against K when K is varied from 1
to 200. Figures 8(a) and 8(b), show less oscillations compared to Figure 7. The
maximum accuracy achieved is 0.91 using equal weights for all neighbors for
K = 4. The accuracy of classification is reduced by more than 7% when more
controllers are available. This might be due to not having enough training data
in the training set for the classifier to be able to generalize for four classes. An
accuracy of 91% is still considered good. For the service provider it means that
instead of having just one controller, the provider can have 4 controllers with
only 9% of the workloads assigned in a non optimal way. Since more training
data, means more experience, the provider can still decrease the percentage of
workloads assigned sup-optimally by constantly adding feedback to the clas-
sifier by adding more training points based on new workload behaviors seen.
Figures 7(a) and 8(a) show that accuracy decreases with increasing K when all
K neighbors’ votes are given equal weights. When neighbors’ votes are weighted
such that closer neighbors have a higher weight, the accuracy stabilizes as K
increases as shown in Figures 7(b) and 8(b).

5.2 Classification of Generated Workloads

We repeat the tests described above using only the generated workloads. Fig-
ure 9 shows the classification accuracy of the classifier when there are only two

71



20

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160  180  200

A
cc

ur
ac

y

K

KNN accuracy for different K

(a) Effect of changing K on the classifier accuracy when all
neighbors’ votes are given equal weight.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160  180  200

A
cc

ur
ac

y

K

KNN accuracy for different K

(b) Effect of changing K on the classifier accuracy when
closer neighbors’ votes are given higher weight.

Figure 8: Effect of K on the classifiers’ accuracy with 4 classes considered,
mapping to the four implemented controllers, for real workloads.

classes, AKTE and Reg, against K. The maximum accuracy achieved is 0.92
using equal weights for all neighbors for K = 3. Figure 10 shows the classi-
fication accuracy of the classifier when there are four classes, AKTE, React,
Histo and Reg, against K. The maximum accuracy achieved is 0.94 using equal
weights for all neighbors for K = 3.

Comparing Figure 7(a) to figures 9 and 10, oscillations in the classifier’s
accuracy with increasing K is much lower when classifying synthetic workloads
compared to when classifying real workloads.

5.3 Classification of Mixed Workloads

In our last experiment, we combine the scenarios using real and generated work-
loads in a single set. This set is again randomly shuffled and divided into a
training set and a test set. Figure 11 shows the classification accuracy of the
classifier when there are only two classes, AKTE and Reg, against K. The
maximum accuracy achieved is 0.92 using any of the two versions of the KNN
for K = 5. Figure 12 shows the classification accuracy of the classifier when
there are four classes, AKTE, React, Histo and Reg, against K. The maxi-
mum accuracy achieved is 0.92 using equal weights for all neighbors for K = 3.
Again, we note that the oscillations in the classifier’s accuracy with changing K
in figures 11 and 12 are not as severe as in the case of classifying real workloads.

5.4 Discussion of the Results

The oscillations seen in the figures for lower values of K can be attributed to
the nature of the KNN algorithm. Let F be the number of features used for
classification. KNN constructs an F -dimensional space and places each train-
ing point in that space according to the point’s features values. It divides the
F -dimensional space into neighborhoods where each neighborhood is a group of
points neighboring each other and having the same class. These neighborhoods
can be scattered in the F -dimensional space. Some of these neighborhoods can

72



21

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50  60  70  80  90  100

A
cc

ur
ac

y

K

KNN accuracy for different K

(a) Effect of changing K on the classifier accuracy when all
neighbors’ votes are given equal weight.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50  60  70  80  90  100

A
cc

ur
ac

y

K

KNN accuracy for different K

(b) Effect of changing K on the classifier accuracy when
closer neighbors’ votes are given higher weight.

Figure 9: Effect of K on the classifiers’ accuracy with only 2 classes considered,
AKTE and Reg, for generated workloads.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160  180  200

A
cc

ur
ac

y

K

KNN accuracy for different K

(a) Effect of changing K on the classifier accuracy when all
neighbors’ votes are given equal weight.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160  180  200

A
cc

ur
ac

y

K

KNN accuracy for different K

(b) Effect of changing K on the classifier accuracy when
closer neighbors’ votes are given higher weight.

Figure 10: Effect of K on the classifiers’ accuracy with 4 classes considered,
mapping to the four implemented controllers, for generated workloads.

73



22

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160  180  200

A
cc

ur
ac

y

K

KNN accuracy for different K

(a) Effect of changing K on the classifier accuracy when all
neighbors’ votes are given equal weight.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160  180  200

A
cc

ur
ac

y

K

KNN accuracy for different K

(b) Effect of changing K on the classifier accuracy when
closer neighbors’ votes are given higher weight.

Figure 11: Effect of K on the classifiers’ accuracy with only 2 classes considered,
AKTE and Reg, for a mixed set.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50  60  70  80  90  100

A
cc

ur
ac

y

K

KNN accuracy for different K

(a) Effect of changing K on the classifier accuracy when all
neighbors’ votes are given equal weight.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50  60  70  80  90  100

A
cc

ur
ac

y

K

KNN accuracy for different K

(b) Effect of changing K on the classifier accuracy when
closer neighbors’ votes are given higher weight.

Figure 12: Effect of K on the classifiers’ accuracy with 4 classes considered,
mapping to the four implemented controllers, for a mixed set.

74



23

be small and surrounded completely by a larger neighborhood of a different
class. Picking a small value for K results in correctly classifying these smaller
neighborhoods for the training data. On the other hand, it can result in over-
fitting the training data and forming nasty decision boundaries, e.g., a small
neighborhood laying completely surrounded within a large neighborhood of a
different class. This makes the classifier more sensitive to noise in the training
set. On the other hand, a large value of K results in a less noise sensitive classi-
fier and smoother decision boundaries but at the cost of increased training data
error, increased computational burden and loss of locality of the estimations
since far away points affect the decision. risk of making the classifier more bi-
ased towards the class with more training points and having the neighborhood
boundaries oversimplified.

Oscillations are more obvious when the distance to all K neighbors have
equal weights, When closer neighbors are given more weight, the classification
accuracy is more stable with increasing K. By looking at figures 7–11, it can
be seen that for all of them, the accuracy of classification decreases with the
increasing K for a while and then tends to stabilize for a range of K and then
sometimes starts to decrease again. The stabilization for the KNN version with
weighted distance is faster and with a stable accuracy higher than the other
version.

When setting K in real life deployments, a cloud provider should either
choose K with the best accuracy regardless of stability or least K with highest
stable accuracy depending on the confidence in the training set. If the training
set is comprehensive with most workload characteristics expected, K can be
chosen to be the one that gives best accuracy on the training set regardless of
the stability. Otherwise, if the training set is not comprehensive K should be
chosen to be the least K with the highest stable accuracy.

6 Related Work

Previous work on workload characterization has mainly focused on identifying
the different properties of different workload traces collected from running sys-
tems. Calzarossa and Serazzi [49] discuss the steps for modeling a workload. As
a first step, the characterization level, e.g., the sampling rate of the workload,
the basic components, the parameters that describe them and the criteria for
evaluating the model accuracy of the workload has to be identified. Then, the
system is monitored to log the workload. The measured data is statistically
analyzed to know if there are any natural partitions in the workload, e.g., long
running requests and short running requests. Statistical analysis involves re-
moval of any outliers having one or more parameters with values greater than
a certain percentile, workload sampling to be able to process the recorded trace
within reasonable time, static analysis which partitions the workload using a
clustering algorithm such as K-means and dynamic analysis using techniques
such as time series analysis. The authors discuss a large number of workload
modeling studies spanning different systems, namely, centralized batch and in-
teractive systems, centralized database systems, network based systems, and
multiprocessor systems such as parallel systems and supercomputers.

Downey and Feitelson [23] discuss the problems in generalizing a model based
on data from specific observations to an abstract model of the workload. They

75



24

start by giving some examples on the problems and the difficulties faced when
creating a multi-level model for a workload. They focus on the problems of
single-level models.

The aim of modeling is to find the summary statistics of the different work-
loads. These fall into three families:

1. Moment-based: e.g., mean, variance and the coefficient of variance, skew
(3rd moment) and kurtosis (4th moment).

2. Percentile-based, e.g., median, quartiles and the semi-interquartile range
(Measure of Dispersion)..

3. Mode-based: e.g., the most common value observed for distributions hav-
ing discrete components.

According to the authors, reporting the moments for non-symmetric distribu-
tions is misleading and might be meaningless since moments are not robust to
outliers. In addition, for some distributions such as the Pareto distribution, the
moment of a sample does not converge on the moments of the population. One
of the warning signs of non convergence is the failure to achieve sample invari-
ance. To test whether a hypothesis about a distribution is right or not, the
Chi-square test or the Kolmogorov-Smirnov test (for continuous distributions)
can be used [50]. These tests usually fail for workload characterization since
they assume that the testing data should converge to the distribution when a
large number of points are used. This is not true for most workloads.

The authors discuss the importance of weighing data points. They give an
example with the characterization of parallel jobs when it is assumed that all
jobs are of the same weight, when the jobs are weighed by the duration and
when the jobs are weighed by the area (duration and the number of cores used).
They discuss the correlation between these different attributes and the different
ways to include them in the model.

Arlit and Jin presented a detailed workload study of the 1998 FIFA World
Cup website [37]. The site logs from May 1st, 1998 until July 23rd, 1998 were
analyzed. The logs contain 1.35 Billion requests and almost 5 TB of data
were sent to the clients. Data was accessed by more than 2 million unique
IP addresses.

Kang et. al. crawled Yahoo! videos website for 46 days [51]. They recorded
data for 9986 unique videos in total with video durations ranging from 2 to 7518
seconds. Around 76% of the videos are shorter than 5 minutes and almost 92%
are shorter than 10 minutes. They discuss the predictability of the arrival rate
with different time granularities. A load spike typically lasted for no more than
1 h and the load spikes are dispersed widely along the time making them hard
to predict. They also find that the workload is highly correlated in short term.
While the cost could be high if a video site operator over-provisioned the data
center based on the over-provisioning factor at a small time scale, these load
spikes can be provisioned on a cloud on demand to service the extra load while
not over-provisioning the Video site datacenter.

Chen. et. al. analyze a short workload trace that was publicly realized by
Google [52]. The trace is 6 hours and 15 minutes long with data collected every
5 minutes, i.e., having just 75 points. The short workload makes it hard to infer
the true characteristics of the jobs running on Google’s backend cluster.

76



25

Mishra et. al. take a first step towards modeling the workload running on
Google’s backend servers by grouping resources with similar task consumptions
in classes (task classification) [53]. They define a multidimensional representa-
tion of the resources (task shape) used by the tasks using the average memory in
GB and the average number of cores used by a task every five minutes. During
scheduling, tasks are assigned such that their shape (time in seconds, memory
usage and number of cores) fits the free space on the assigned machine.

They discuss the problems with using a coarse grained classification and
explain their approach for task classification. First, they identify the workload
dimensions, e.g., task duration, average core usage and average memory usage.
Second, they use k-means clustering algorithms to construct preliminary task
classes. Third step is to manually identify the break points for the qualitative
coordinates of the workload dimensions. Finally, they merge classes to form the
final set of task classes which define the workload. They use this approach to
identify the load mix of the tasks.

This work is extended by Zhang et. al. [54]. The authors suggest to model
task usage shapes by modeling the mean values of run-time tasks resource con-
sumption. They call this model ”the mean usage model of tasks usage shapes“.
This simple model captures the characteristics of the workload running on
Google’s backend cluster to a high extent. They attribute these results to the
low variability of task resource usage in the workload and the characteristics of
evaluation metrics.

The authors also analyze six month of Map-Reduce traces from a Facebook
cluster and a two weeks Map-Reduce trace from another Internet company [55].
They built a Map-Reduce workload synthesizer that analyzes a Map-Reduce
workload and uses the results to produce a synthetic but realistic workload that
mimics the original seed workload.

A longer trace provided by Google that spans 29 days and around 650000
jobs [13] was analyzed by Reiss et. al. [56]. While the system is over-booked,
the actual CPU and memory utilization is rarely higher than 50% and never
exceeds about 60%. The workload is dominated by ’normal production’ tasks
which have regular patterns and a daily peak to mean ratio of 1.3. Lower
priority tasks make up between 10% to 20% of the CPU usage in the cluster.
These tasks have no regular patterns and are very bursty. Over 80% of the total
utilization of the cluster comes from long running jobs which constitute 2% of
the total number of jobs.

Iosup and Epema analyze 15 different grid workloads [57]. They report that
the average system utilization of some research grids was as low as 10 to 15%
but considerably high on production grids. All 15 grids experienced overloads
during some short term periods. A few users dominate the workloads. In most
workloads, there is a little intra-job parallelism and even parallel jobs running
have low parallelism. They note that loosely coupled jobs are dominating most
of the workloads. Loosely coupled jobs are suitable to run on the cloud [58].
Similar findings are reported by Zhang et. al. [54] and the Magellan project [58].

Khan et. al. try to discover from the workload running on different servers
which servers frequently have correlated workload patterns. They use a greedy
algorithm to solve a computationally intractable problem to find the clusters
that constitutes correlated workloads on different servers. Their proposed so-
lution is slow. It takes more than 6 hours to train the algorithm using data
collected every 15 minutes for 17 days and doing predictions every 15 minutes.

77



26

Viswanatha et al [59], introduce a provisioning system for private clouds that
uses an application’s resource usage pattern to place applications on servers with
appropriate level of configuration capabilities. The authors use the coefficient
of variation to identify unstable workloads. Unstable workloads requires place-
ment on clusters that allow dynamic placement. They base their placement
decisions on the different elastic capabilities of the clusters and the expected
peak workload for each application.

There has been a lot of interest in data stream classification and cluster-
ing [60, 61, 62, 19]. Beringer and Hullermeier modify the K-means clustering
algorithm to be able to cluster online data streams efficiently. Their work is
considered the first work to try to cluster the data streams themselves, com-
pared to for example the work by Guha et. al. [62] who cluster the elements of
the stream. Due to their complexity, the computational costs of clustering data
streams is high. In addition, the algorithm has to be adaptive in the sense that
new clusters may be created at any time when new data points arrive. Simi-
larity between data streams is calculated using the Euclidean distance between
their normalization for a given sliding time window.

Keogh and Kasetty discuss the quality of the published work on time-series
data mining [63]. They show that much of the published work is of very little
utility. They implement the contributions of more than two dozen papers and
test them on 50 real workloads. For classification, they implement 11 published
similarity measures and compare their performance to the Euclidean distance
measure. Non of the 11 proposed similarity measures is able to outperform the
Euclidean distance. They show that the error rate for some of the published
work was 0.695, that is 69.5% of all classifications was wrong.

Herbst et. al. [64] propose a novel forecasting methodology that self-adaptively
correlates workload characteristics classes and existing time series based fore-
casting approaches. The authors smooth the noise in a times-series before fore-
casting. They use a decision tree to assign the smoothed time-series to one of
several forecasting methods based on time-series analysis. They show that their
approach can be used for resource provisioning.

Our work complements the previous studies and uses their finding to build
an automated workload analyzer and classifier tool that can identify the classes
of the different workloads running on the cloud. Although our main focus is
elasticity control, the tool also be used for placement of orthogonal workloads
(e.g. computationally intensive workloads and I/O intensive workloads). The
tool can also provide admission controllers with insights that can be used when
admitting a workload.

7 Conclusion and Future work

In this work, we introduce WAC, a Workload Analysis and Classification tool
for assigning workloads to different elasticity controllers in order to improve
workload predictions. The tool uses autocorrelation and sample entropy to an-
alyze the workload periodicity and burstiness respectively. This analysis is used
for classifying workloads and assigning them to the most suitable elasticity con-
troller for each of them. In addition, the tool allows assignment of an elasticity
controller to a workload based on specific quality of service objectives. We have
collected a set of 14 real workloads and generated a set of 55 synthetic workloads

78



27

to test the tool. We have implemented 4 state-of-the-art elasticity controllers
and a step controller. The tool was used to assign the workloads with different
quality of service requirements to the implemented controllers in different ex-
periments. The tool shows an accuracy of classification ranging from 91% up
to 98% in different experiments.

Acknowledgment

The authors would like to thank the Advanced School for Computing and Imag-
ing at Vrije Universiteit, Amestrdam for providing the DAS workloads, the
Grid’5000 team for providing the Grid’5000 traces, the AuverGrid team for
providing the AuverGrid traces, John Morton and Clayton Chrusch for provid-
ing the SHARCNET traces, the e-Science Group of HEP at Imperial College
London for providing the LPC traces and the NorduGrid team for providing the
NorduGrid traces. We would also like to thank the Grid Workloads Archive for
providing access to these traces. Financial support has been provided in part by
the European Community’s Seventh Framework Programme under grant agree-
ment #257115, the Lund Center for Control of Complex Engineering Systems,
the Swedish Government’s strategic effort eSSENCE and the Swedish Research
Council (VR) under contract number C0590801 for the project Cloud Control.

References

[1] Amazon Elastic Compute Cloud (amazon ec2). [Online]. Available:
https://aws.amazon.com/solutions/case-studies/

[2] A. J. Ferrer, F. Hernndez, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri,
R. Sirvent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimi-
trakos, S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia,
A. Kipp, S. Wesner, M. Corrales, N. Forg, T. Sharif, and C. Sheridan, “Op-
timis: A holistic approach to cloud service provisioning,” Future Generation
Computer Systems, vol. 28, no. 1, pp. 66 – 77, 2012.

[3] J. Garside. (2013, January) Amazon’s record $21bn christ-
mas sales push shares to new high. [Online]. Avail-
able: http://www.guardian.co.uk/technology/2013/jan/30/amazon-
christmas-record-sales-profits

[4] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for stateful
services,” in Proceedings of the 1st ACM symposium on Cloud Computing,
ser. SoCC ’10. New York, NY, USA: ACM, 2010, pp. 241–252. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807166

[5] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic stor-
age,” in Proceedings of the 7th international conference on Autonomic com-
puting. ACM, 2010, pp. 1–10.

[6] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile dy-
namic provisioning of multi-tier internet applications,” ACM Transactions
on Autonomous and Adaptive Systems (TAAS), vol. 3, no. 1, p. 1, 2008.

79



28

[7] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,” Future
Generation Computer Systems, vol. 27, no. 6, pp. 871–879, 2011.

[8] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma,
“Towards autonomic workload provisioning for enterprise grids and clouds,”
in 10th IEEE/ACM International Conference on Grid Computing, 2009.
IEEE, 2009, pp. 50–57.

[9] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy, “Autonomic mix-aware
provisioning for non-stationary data center workloads,” in Proceedings of
the 7th international conference on Autonomic computing. ACM, 2010,
pp. 21–30.

[10] M. Arlitt and T. Jin. (1998, August) ”1998 world cup web site access
logs”. [Online]. Available: http://www.acm.org/sigcomm/ITA/

[11] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in Network Operations and Manage-
ment Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp. 204–212.

[12] G. Urdaneta, G. Pierre, and M. Van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks, vol. 53, no. 11, pp. 1830–
1845, 2009.

[13] J. Wilkes. (2011, November) More google cluster data. [Online]. Avail-
able: http://googleresearch.blogspot.com/2011/11/more-google-cluster-
data.html

[14] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Efficient provisioning
of bursty scientific workloads on the cloud using adaptive elasticity control,”
in Proceedings of the 3rd workshop on Scientific Cloud Computing. ACM,
2012, pp. 31–40.

[15] M. Morari and E. Zafiriou, Robust process control. Morari, 1989.

[16] B. Abraham and J. Ledolter, Statistical methods for forecasting. Wiley,
2009, vol. 234.

[17] M. Morari, “Robust stability of systems with integral control,” IEEE
Transactions on Automatic Control, vol. 30, no. 6, pp. 574–577, 1985.

[18] D. Barber, Bayesian reasoning and machine learning. Cambridge Univer-
sity Press, 2012.

[19] C. Aggarwal, J. Han, J. Wang, and P. Yu, “On demand classification of
data streams,” in Proceedings of the tenth ACM SIGKDD International
conference on Knowledge Discovery and Data mining. ACM, 2004, pp.
503–508.

[20] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for
adaptive resource provisioning in the cloud,” Future Generation Computer
Systems, vol. 28, no. 1, pp. 155–162, 2012.

80



29

[21] S. Meng, L. Liu, and V. Soundararajan, “Tide: Achieving self-scaling in
virtualized datacenter management middleware,” in Proceedings of the 11th
International Middleware Conference, Industrial track. ACM, 2010, pp.
17–22.

[22] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The elements of
statistical learning: Data mining, inference and prediction,” The Mathe-
matical Intelligencer, vol. 27, no. 2, pp. 83–85, 2005.

[23] A. Downey and D. Feitelson, “The elusive goal of workload characteriza-
tion,” ACM SIGMETRICS Performance Evaluation Review, vol. 26, no. 4,
pp. 14–29, 1999.

[24] B. Girod, R. Rabenstein, and A. Stenger, Signals and systems. John Wiley
& Sons Inc, 2001.

[25] R. Takano, Y. Kodama, T. Kudoh, M. Matsuda, F. Okazaki, and
Y. Ishikawa, “Realtime burstiness measurement,” in 4th Intl. Workshop
on Protocols for Fast Long-Distance Networks (PFLDnet2006), 2006.

[26] R. Gusella, “Characterizing the variability of arrival processes with indexes
of dispersion,” Selected Areas in Communications, IEEE Journal on, vol. 9,
no. 2, pp. 203–211, 1991.

[27] T. N. Minh, L. Wolters, and D. Epema, “A realistic integrated model of
parallel system workloads,” in Cluster, Cloud and Grid Computing (CC-
Grid), 2010 10th IEEE/ACM International Conference on. IEEE, 2010,
pp. 464–473.

[28] J. S. Richman and J. R. Moorman, “Physiological time-series analysis
using approximate entropy and sample entropy,” American Journal of
Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039–
H2049, 2000.

[29] J. S. Richman, D. E. Lake, and J. R. Moorman, “Sample entropy,” Methods
in enzymology, vol. 384, pp. 172–184, 2004.

[30] M. Aboy, D. Cuesta-Frau, D. Austin, and P. Micó-Tormos, “Characteriza-
tion of sample entropy in the context of biomedical signal analysis,” in 29th
Annual International Conference of the IEEE, Engineering in Medicine and
Biology Society, 2007. EMBS 2007. IEEE, 2007, pp. 5942–5945.

[31] The Rackspace Cloud. [Online]. Available:
http://www.rackspace.com/cloud

[32] CycleComputing. (2011, September) New CycleCloud
HPC Cluster Is a Triple Threat. [Online]. Available:
http://blog.cyclecomputing.com/2011/09/new-cyclecloud-cluster-is-a-
triple-threat-30000-cores-massive-spot-instances-grill-chef-monitoring-
g.html

[33] Amazon Web Services. (2010, July) High performance computing (HPC)
on AWS. [Online]. Available: http://aws.amazon.com/hpc-applications/

81



30

[34] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. H.
Epema, “The grid workloads archive,” Future Generation Computer Sys-
tems, vol. 24, no. 7, pp. 672–686, 2008.

[35] IRCache. Access to trace files. [Online]. Available: http://www.ircache.net/

[36] NCBI. PubMed. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/

[37] M. Arlitt and T. Jin, “A workload characterization study of the 1998 world
cup web site,” Network, IEEE, vol. 14, no. 3, pp. 30–37, 2000.

[38] A. Rubin, Statistics for evidence-based practice and evaluation.
Brooks/Cole, 2012.

[39] M. D. Costa, C.-K. Peng, and A. L. Goldberger, “Multiscale analysis of
heart rate dynamics: Entropy and time irreversibility measures,” Cardio-
vascular Engineering, vol. 8, no. 2, pp. 88–93, 2008.

[40] T. Chieu, A. Mohindra, A. Karve, and A. Segal, “Dynamic scaling of web
applications in a virtualized cloud computing environment,” in IEEE In-
ternational Conference on e-Business Engineering, 2009. ICEBE ’09., oct.
2009, pp. 281 –286.

[41] P. Bodık, “Automating datacenter operations using machine learning,”
Ph.D. dissertation, University of California, 2010.

[42] D. Armstrong, D. Espling, J. Tordsson, K. Djemame, and E. Elmroth,
“Runtime virtual machine recontextualization for clouds,” in Proceedings
of the 18th international conference on Parallel processing workshops, ser.
Euro-Par’12. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 567–576.

[43] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam,
“Managing server energy and operational costs in hosting centers,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 33, no. 1. ACM, 2005,
pp. 303–314.

[44] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. De Lara, M. Brudno, and M. Satyanarayanan, “Snowflock:
Rapid virtual machine cloning for cloud computing,” in Proceedings of the
4th ACM European conference on Computer systems. ACM, 2009, pp.
1–12.

[45] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[46] T. E. Oliphant, “Python for scientific computing,” Computing in Science
& Engineering, vol. 9, no. 3, pp. 10–20, 2007.

[47] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the fifth annual workshop on
Computational learning theory. ACM, 1992, pp. 144–152.

82



31

[48] G. Bakır, L. Bottou, and J. Weston, “Breaking SVM complexity with cross
training,” Advances in neural information processing systems, vol. 17, pp.
81–88, 2005.

[49] M. Calzarossa and G. Serazzi, “Workload characterization: A survey,” Pro-
ceedings of the IEEE, vol. 81, no. 8, pp. 1136–1150, 1993.

[50] H. W. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean
and variance unknown,” Journal of the American Statistical Association,
vol. 62, no. 318, pp. 399–402, 1967.

[51] X. Kang, H. Zhang, G. Jiang, H. Chen, X. Meng, and K. Yoshihira, “Un-
derstanding internet video sharing site workload: A view from data cen-
ter design,” Journal of Visual Communication and Image Representation,
vol. 21, no. 2, pp. 129–138, 2010.

[52] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “Analysis and lessons
from a publicly available Google cluster trace,” University of California,
Berkeley, CA, Tech. Rep, 2010.

[53] A. Mishra, J. Hellerstein, W. Cirne, and C. Das, “Towards characterizing
cloud backend workloads: Insights from Google compute clusters,” ACM
SIGMETRICS Performance Evaluation Review, vol. 37, no. 4, pp. 34–41,
2010.

[54] Q. Zhang, J. Hellerstein, and R. Boutaba, “Characterizing task usage
shapes in Googles compute clusters,” 2011.

[55] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “Towards understanding
cloud performance tradeoffs using statistical workload analysis and replay,”
University of California at Berkeley, Technical Report No. UCB/EECS-
2010-81, 2010.

[56] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in Proceedings of the Third ACM Symposium on Cloud Computing, 2012,
pp. 7:1–7:13.

[57] A. Iosup and D. Epema, “Grid computing workloads,” Internet Computing,
IEEE, vol. 15, no. 2, pp. 19–26, 2011.

[58] K. Yelick, S. Coghlan, B. Draney, and R. Canon, “The Magellan report
on cloud computing for science,” Technical report, US Department of En-
ergy, Office of Science, Office of Advanced Scientific Computing Research
(ASCR), Tech. Rep., 2011.

[59] B. Viswanathan, A. Verma, and S. Dutta, “Cloudmap: Workload-aware
placement in private heterogeneous clouds,” in Network Operations and
Management Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp. 9–16.

[60] J. Beringer and E. Hüllermeier, “Online clustering of parallel data streams,”
Data & Knowledge Engineering, vol. 58, no. 2, pp. 180–204, 2006.

83



32

[61] P. Rodrigues, J. Gama, and J. Pedroso, “Hierarchical clustering of time-
series data streams,” IEEE Transactions on Knowledge and Data Engi-
neering,, vol. 20, no. 5, pp. 615–627, 2008.

[62] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan, “Clus-
tering data streams: Theory and practice,” IEEE Transactions on Knowl-
edge and Data Engineering,, vol. 15, no. 3, pp. 515–528, 2003.

[63] E. Keogh and S. Kasetty, “On the need for time series data mining bench-
marks: A survey and empirical demonstration,” in Proceedings of the
eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data mining. ACM, 2002, pp. 102–111.

[64] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-adaptive
workload classification and forecasting for proactive resource provisioning,”
in Proceedings of the 4th ACM/SPEC International Conference on Perfor-
mance Engineering, ser. ICPE ’13. New York, NY, USA: ACM, 2013, pp.
187–198. [Online]. Available: http://doi.acm.org/10.1145/2479871.2479899

84



33

A Graphs for the Real Workloads

Figures 13, 14 and 15 show the plots of the real workload traces.

85



34

(a) Workload trace for IRCache service runnings ar at Boul-
der, Colorado (Bo).

(b) Workload trace for IRCache service running at Silicon
Valley, California (SV).

(c) Workload trace for IRCache service running at San
Diego, California (SD).

(d) Workload trace for IRCache service running at Urbana-
Champaign, Illinois (UC).

Figure 13: Workload traces of the different Caching Services.

86



35

(a) Workload trace for the DAS workload. (b) Workload trace for Grid5000 workload.

(c) Workload trace for the LCG workload. (d) Workload trace for LPC workload.

(e) Workload trace for the NorduGrid workload. (f) Workload trace for SharcNet workload.

Figure 14: Workload traces of the Grid workloads analyzed.

87



36

(a) Workload trace for the world cup workload. (b) Workload trace for the Google Cluster workload.

(c) Workload trace for PubMed access traces. (d) Workload trace for the Wikipedia workload.

Figure 15: Workload traces of web-hosting workloads and the Google cluster
workload analyzed.

88


