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Abstract

Elasticity algorithms for cloud infrastructures dynamically change the

amount of resources allocated to a running service according to the current

and predicted future load. Since there is no perfect predictor, and since

different applications’ workloads have different characteristics, no single

elasticity algorithm is suitable for future predictions for all workloads. In

this work, we introduce WAC, a Workload Analysis and Classification tool

that analyzes workloads and assigns them to the most suitable elasticity

controllers based on the workloads’ characteristics and a set of business

level objectives.

WAC has two main components, the analyzer and the classifier. The

analyzer analyzes workloads to extract some of the features used by the

classifier, namely, workloads’ autocorrelations and sample entropies which

measure the periodicity and the burstiness of the workloads respectively.

These two features are used with the business level objectives by the clas-

sifier as the features used to assign workloads to elasticity controllers. We

start by analyzing 14 real workloads available from different applications.

In addition, a set of 55 workloads is generated to test WAC on more

workload configurations. We implement four state of the art elasticity

algorithms. The controllers are the classes to which the classifier assigns

workloads. We use a K nearest neighbors classifier and experiment with

different workload combinations as training and test sets. Our experi-

ments show that, when the classifier is tuned carefully, WAC correctly

classifies between 92% and 98.3% of the workloads to the most suitable

elasticity controller.

1 Introduction

Elasticity or auto-scaling can be defined as the ability of a cloud infrastructure
(datacenter) to dynamically change the amount of resources allocated to a run-
ning application. Resources should be allocated according to the changing load
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(a) Workload trace for the Wikipedia workload. (b) Workload trace for the Google Cluster workload.

Figure 1: Workload traces of the Wikipedia workload and the Google cluster
workload.

allowing the addition and removal of resources to preserve Quality of Service
(QoS) requirements at reduced cost. Typically, a variety of different applications
with different workloads run in a cloud [1]. Even when a single application is
running on the infrastructure, in the case for Software-as-a Service [2], different
users usually have different usage patterns.

Some workloads have repetitive patterns. For example, the Wikipedia work-
load shown in Figure 1(a) has a diurnal pattern where the request arrival rate
is higher during the day than at night. Other workloads have seasonal patterns,
e.g., the workload of an online store may increase drastically before Christ-
mas [3]. Some uncorrelated spikes and bursts can occur in a workload due to an
unusual event, e.g., when Michael Jackson died 15% of all requests directed to
Wikipedia where to the article about him [4] causing a significant spike. On the
other hand, some workloads have some weak patterns or no patterns at all such
as the workload shown in Figure 1(b) for a Google cluster workload. Cloud in-
frastructure providers do not usually know the characteristics of the workloads
their customers are planning to run.

Elasticity controllers are used to predict future workload and provision re-
sources based on the prediction [5, 6, 7, 8, 9]. In our previous work, we have
designed three adaptive autonomic elasticity controllers and tested them with
three different workload traces; the FIFA worldcup 1998 workload trace [10, 11],
Wikipedia traces from 2009 [2, 12] and a recently released workload from a pro-
duction Google cluster [13, 14]. The proposed controllers showed variations in
performance with different workloads. These variations are attributed to the
different characteristics of different workloads.

Since there are no perfect controllers [15] or perfect estimators [16], design-
ing a general elasticity controller for all workloads and scenarios running on a
datacenter is infeasible. Elasticity controllers’ performance varies with the dif-
ferent workloads and changing system dynamics. A controller tuned for certain
workload scenarios can become unrobust if the conditions change [17] leading
to wrong predictions and thus wrong capacity provisioning decisions. There is
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Figure 2: WAC: A Workload Analysis and Classification Tool.

a cost if a controller adds more resources to a service than actually required
by the service’s workload since these extra resources are not utilized, although
paid for by the customer. Similarly, if the resources provisioned for a service
are not sufficient for its load, the service performance deteriorates and part of
the workload is dropped. The service can become unresponsive or crash. Thus,
analyzing workloads is an important first step towards choosing the appropri-
ate elasticity controller for each workload. Based on this analysis, the service
provider can assign the workload to the most suitable elasticity controller.

This work presents WAC, a Workload Analysis and Classification tool for
cloud infrastructure providers. The tool analyzes workloads of different applica-
tions and based on the analysis it classifies the workloads into a set of predefined
classes. Each class is then assigned to the most suitable elasticity controller for
that class, reducing the risk of wrong predictions and improving the Quality
of Service (QoS) provided then. It is assumed that there is some historical
data available for the workloads. While not the case for all applications, many
applications will have this data if they have been running in the past.

Figure 2 shows the two main components of WAC; the analyzer and the
classifier. The analyzer analyzes historical data of a workload to discover some
of its statistical properties that can be used by the classifier to find the most
suitable elasticity controller for the workload of an application. There are many
properties that can be used to characterize a workload such as the mean request
arrival rate, the variance of the request arrival rate, average request processing
time, the workload’s periodicity and the workload’s burstiness.
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In this work, we concentrate on periodicity and burstiness to characterize
a workload. Periodicity describes how certain parts of the workload repeat
with time, i.e., the similarity between the value of a workload at any point in
time to the workload’s history. Such similarity, if discovered, can be used by
the elasticity controller to predict the future values of the workload. Burstiness
measures load spikes in the system, when a running service suddenly experiences
huge increases in the number of requests. Bursty workloads where the workload
does not follow any pattern for these bursts, are hard to predict. We discuss
our choice of these two properties and the methods we use to quantify them in
more detail in Section 2.

Classification is a form of supervised learning used to predict the type or
class of some input data object based on a group of features [18]. A data object
can be anything from a single network request to a data stream [19]. For WAC,
the data object is a workload and the classes or types are the different elasticity
controllers. Supervised learning algorithms require training using labeled train-
ing data, i.e., objects for which we know the classes. The training data should
be sufficient to enable the classifier to generalize to future inputs that arrive
after training, i.e., new applications and workloads which will start running on
the infrastructure in the future. To construct our training set, we collect and
analyze a set of 14 real workloads. Since available real workloads are scarce [4],
and the accuracy of any classifier depends on the size of the training set, we
generate 55 additional synthetic workloads that have more general character-
istics compared to the real workloads. Workload analysis and generation are
discussed in Section 3.

Each class maps to an available elasticity controller implemented and pro-
vided by the cloud provider. This enables a cloud provider or a cloud user to
choose the right controller for a certain workload reducing the aggregate pre-
diction errors and allowing an improvement in QoS. Many designs for elasticity
controllers are suggested in literature using different approaches such as Con-
trol theory [5], Neural networks [20], second order regression [7], histograms [6]
and the secant method [21]. A cloud provider has to choose which controllers
to implement. We have selected and implemented four controllers to use with
WAC as discussed in more details in Section 4.

There are plenty of classifiers suggested in the machine learning literature,
out of these Support Vector Machines (SVMs) and K-Nearest-Neighbors (KNN)
are very popular [22]. KNN is chosen as the classification algorithm for WAC.
We discuss the underlying principles of the two methods and our choice of KNN
over SVMs in Section 5. We also present the training of the classifier, the
classifier accuracy and discuss our results. Section 6 reviews the related work.
We conclude in Section 7.

2 The Analyzer: Workload Characterization Tech-

niques

Characterization of workloads is not an easy task since there are many param-
eters that can be used for the characterization [23]. With respect to predic-
tion and elasticity, the two main characteristics that affect the performance of
workloads are periodicity and burstiness. As will be discussed later, these two
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measures are normalized for different workloads making their measurements
depending only on workloads’ patterns and trends.

2.1 Measuring Periodicity and Burstiness

The most common method to measure periodicity is to use autocorrelation.
Autocorrelation is the cross-correlation of a signal with a time-shifted version
of itself [16]. A signal can be any measurement, observation or function that
changes with respect to time, space or any other dimension, e.g., a workload, an
audio signal or a time series [24]. Autocorrelation takes values between−1 and 1.
An autocorrelation of 0 at a time lag of τ means there is no relation between the
signal and itself at this time lag. A random signal has an autocorrelation of 0 at
all time lags. An autocorrelation of 1 means that the signal strength is exactly
the same for this time lag while an autocorrelation near −1 means that the
signal has an opposite direction of influence, i.e., if the signal strength is above
average, the next value will be likely less than average. The autocorrelation
function (ACF) describes the autocorrelation as a function of the time-lag τ .
The ACF, R(τ), for a signal X is,

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2
, (1)

where E is the expected value operator, Xt is the value of the signal at time t,
µ is the mean of the signal and σ is the variance of the signal. We use the ACF
as a measure of workload periodicity. For the rest of the paper we use the terms
autocorrelation and correlation coefficient interchangeably.

There are many methods to measure burstiness [25], non of them prevalent
though. Gusella [26] suggested the use of the index of dispersion. Minh et.
al. [27] suggested the use of normalized entropy. We propose the use of Sam-
ple Entropy (SampEn) as a measure of burstiness [28]. Sample entropy is a
modification of the Kolmogrov Sinai entropy. It is the negative natural loga-
rithm of the conditional probability that two sequences similar for m points are
similar at the next point. It has been used successfully in classifying abnormal
(bursty) EEG signals and other physiological signals for over a decade and has
been proven robust [29]. An advantage of sample entropy over the index of
dispersion and normalized entropy is that SampeEn detects periodic bursts.

Two parameters are needed to calculate SampEn for a workload. First pa-
rameter is the pattern length m, which is the size of the window in which the
algorithm searches for repetitive bursty patterns. The second parameter is the
deviation tolerance r which is the maximum increase in load between two con-
secutive time units before considering this increase as a burst. When choosing
the deviation tolerance, the relative and absolute load variations should be taken
in account, For example, a workload increase requiring 25 extra servers for a
service having 1000 VMs running can probably be considered withing normal
operating limits, while if that increase was for a service having only 3 servers
running then this is a significant burst. Thus by carefully choosing an adaptive
r, SampEn becomes normalized for all workloads. The deviation tolerance de-
fines what is considered a normal increase and what is considered a burst. If
SampEn is equal to 0 then the workload has no bursts. The higher the value
for SampEn, the more bursty the workload is.
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Data: r, m, W
Result: SampEn

1 n← Length(W );
2 Bi ← 0;
3 Ai ← 0;
4 Xm = {Xm(i)|Xm(i) = [x(i), x(i+1), ...x(i+m−1)] ∀ 1 < i < n−m+1};
5 for (Xm(i), Xm(j)) in Xm: i < j do

6 Calculate d[Xm(i), Xm(j)] = max(|x(i + k)− x(j + k)|) ∀ 0 ≤ k < m;
7 if d[Xm(i), Xm(j) ≤ r then

8 Bi = Bi + 1;

9 Bm(r) = 1
n−m

∑n−m
i=1

1
n−m−1Bi;

10 m = m+ 1
Xm = {Xm(i)|Xm(i) = [x(i), x(i+1), ...x(i+m−1)] ∀ 1 < i < n−m+1};

11 for (Xm(i), Xm(j)) in Xm: i < j do

12 Calculate d[Xm(i), Xm(j)] = max(|x(i + k)− x(j + k)|) ∀ 0 ≤ k < m;
13 if d[Xm(i), Xm(j) ≤ r then

14 Ai = Ai + 1;

15 Am(r) = 1
n−m

∑n−m

i=1
1

n−m−1Ai;

16 SampEn= lim{− log[A
m(r)

Bm(r)}

Algorithm 1: The algorithm for calculating SampEn.

We implemented the sample entropy algorithm as described by Aboy et.
al. [30]. The algorithm is shown in Algorithm 1. W is the workload for which
SampEn is calculated. The first loop in the algorithm calculates Bm(r), the
probability that two sequences (parts) in the workload having m measurements
do not have bursts. The second loop in the algorithm calculates Am(r), the
probability that two sequences in the workload having m+ 1 measurements do
not have bursts. Then SampEn is calculated as the negative logarithm of the
conditional probability that two workloads sequences of length m that do not
have bursts, also have no bursts when the sequence length is increased by 1.

3 Workload Analysis

Typically, cloud providers such as Amazon [1] and Rackspace [31] host many ser-
vices with different workloads. These services typically vary from services that
use a handful of machines to services that use a few thousand machines [32].
With the exception of a recently released workload trace from a production
cluster at Google [13], no cloud provider provides publicly available cloud work-
loads [4]. On the other hand there are a few publicly available workloads for
various types of Internet applications. We have analyzed some of these work-
loads in addition to the Google cluster workload in order to understand better
the characteristics of the different workloads. We believe that these workloads
are representative for many of the workloads running on typical clouds.

Recently, cloud providers started supplying resources for High performance
computing and grid applications [33]. Many similar workloads are publicly avail-
able of which we use the DAS-2 system workload, the Grid-5000 workload, Nor-
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duGrid traces, SHARCNET traces, Large hydrogen collider Computing Grid
(LCG) traces and the AuverGrid traces, all available from the grid workload
archive [34]. Caching services are another type of application running on cloud
infrastructures [1]. We use traces from the IRCache [35] project as represen-
tative workloads for this class of applications. The IRCache traces maintain
traces from 10 different caching service sites in the USA. We only use traces
from 4 sites. In addition, we analyze a one month trace of PubMed server us-
age [36], traces from the FIFA 1998 world cup [37], the Google cluster data
released [13] and traces from Wikipedia [12]. We also deployed a crawler that
crawled YouTube during the Olympics and the Paralymics for video view count
but this data is not used. Appendix A contains the graphs for the analyzed
traces.

3.1 Periodicity of Real Workloads

A correlogram is a type of plot that shows the ACF of a signal at different lags.
The X axis of the plot represents the lag in minutes while the Y axis represents
the autocorrelation. Figures 3, 4 and 5 show the correlograms of the analyzed
workloads. Figures 3(a) and 3(b) show high ACFs for short lags meaning that for
these workloads the value of the workload depends on its value in the near past.
Figures 3(c), 3(d), 5(a), 5(c) and 5(d) show high autocorrelation coefficients
meaning that their corresponding workloads have strong periodicity. Figures
4 and 5(b) show that their corresponding workloads are almost random. The
second column in Table 1 describes the ACFs for the all workloads qualitatively.

The coefficient of determination is defined as the squared value of the cor-
relation coefficient at a certain lag. It measures the proportion of variance in
a dependent variable that can be explained by the independent variable, i.e.,
the dependence of the future data on the historical data of the workload [38].
Workloads with higher autocorrelation coefficients at certain time lags are easier
to predict at these time lags since their coefficient of determination is high.

3.2 Burstiness of Real Workloads

There are two main limitations of SampEn. First, SampEn is expensive to cal-
culate both CPU-wise and memory-wise. The computational complexity (in
both time and memory) of SampEn is O(n2) where n is the number of points in
the trace. Second, workload characteristics can change during operation, e.g.,
when Michael Jackson died 15% of all requests directed to Wikipedia where to
the article about him creating spikes in the load [4]. If SampEn is calculated for
the whole past, then such recent changes will not be discovered easily. To over-
come these two limitations, we divide a trace into smaller equal sub-traces and
calculate SampEn for each sub-trace allowing to calculate a weighted average
for SampEn giving more weight to more recent SampEn values. This reduces
the time required for computing SampEn for a long trace spanning months or
years to just a few hours. It is also suitable for online characterization of a
workload since SampEn does not have to be recomputed for the whole history
but rather for the near past which is much more efficient and fast. Our approach
of dividing the signal into smaller sub-traces is similar to the approach used by
Costa et. al [39] where they divide a signal to calculate its multi-scale entropy.
The main difference between the two approaches is after SampEn is computed
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(a) Correlogram for IRCache service runnings at Boulder,
Colorado (Bo).

(b) Correlogram for IRCache service running at Silicon Val-
ley, California (SV).

(c) Correlogram for IRCache service running at San Diego,
California (SD).

(d) Correlogram for IRCache service running at Urbana-
Champaign, Illinois (UC).

Figure 3: Correlograms of the different Caching Services.
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(a) Correlogram for the DAS workload. (b) Correlogram for Grid5000 workload.

(c) Correlogram for the LCG workload. (d) Correlogram for LPC workload.

(e) Correlogram for the NorduGrid workload. (f) Correlogram for SharcNet workload.

Figure 4: Correlograms of the Grid workloads analyzed.
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(a) Correlogram for the world cup workload. (b) Correlogram for the Google Cluster workload.

(c) Correlogram for PubMed access traces. (d) Correlogram for the Wikipedia workload.

Figure 5: Correlograms of web-hosting workloads and the Google cluster work-
load analyzed.
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Table 1: Workload analysis results.

Workload ACF SampEn
Bo-IRCache Very low. Almost a random signal 0.0
SV-IRCache Very low. Almost a random signal 0.0017
SD-IRCache High for small lags. Medium for large lags 1.062
UC-IRCache High for small lags. Medium for large lags 0.0

DAS Random signal 0.0
Grid5000 Random signal 236.16
LCG Random signal 134.0
LPC Random signal 2.827

NorduGrid Random signal 8.43
SharcNet Random signal 2.803
FIFA High for small lags. Medium for large lags 0.0
Google Almost a random signal 235.70
PubMed High 0.0
Wikipedia High 0.0014

for the smaller sub-trace. Costa et.al plot the results while we take a weighted
average.

As already mentioned, there are two main parameters needed to calculate
SampEn, the pattern length m and the deviation tolerance r. In addition to
these two parameters we add L, the size of each sub-trace when the whole trace
is divided. These 3 parameters are set as following:

1. The pattern length m is set to 1 hour.

2. The deviation tolerance r is set to 30% of the seventieth percentile of the
workload values, e.g, if the seventieth percentile of the workload values
seen is 20000 requests per second, then r is set to 6000 requests. If the
number of servers required to handle the load is less than 10 server, i.e.,
30% of the maximum workload can be less than the load handled by one
server, then the deviation tolerance is set to double the average requests
served be a server per unit time.

3. The value of L is set to 1 day.

The third column in Table 1 shows the average SampEn computed for the
different workloads. From the table we can see that workloads vary greatly in
the amount of burstiness they have. With the exception of the DAS workload,
workloads with ACFs around zero have significant burstiness as SampEn is
greater than 1 for all of them, while the ones with high or medium ACFs do not
show significant burstiness.

3.3 Workload Generation

To obtain accurate classification from a classifier, enough training samples are
needed. Available real workloads are scarce and using them only as a training
set for a classifier could result in poor ability to generalize and accurately clas-
sify newly deployed applications’ workloads. We have generated 55 synthetic
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Table 2: Average Sample Entropy computed for the sample generated work-
loads.

Workload SampEn
WL1 0.0
WL2 236.0
WL3 2.5
WL4 0.002
WL5 0.0014
WL6 0.069

workloads using a mixture of functions and probability distributions. Due to
space limitations and since this is not the main focus of this work, we omit
most of the details on workload generation. For illustration purpose, Equation
2 shows how WL1 whose ACF is shown in Figure 6(a) is generated.

x(i) = log(i+103)(| sin(
3i

104
)+100|)(| sin(

i

104
))+2∗104|)+W (0.3), ∀ i ∈ [0, n],

(2)
where x(i) is the workload value at time i, W (0.3) is Weibull distribution with
a shape parameter equal to 0.3 and n is the length of the synthetic workload
required. The log function is used to simulate a workload evolving with time
but having similar periodicity. The sinusoids are used to give the workload
a pattern similar to diurnal patterns and the Weibull distribution adds some
uncertainty in the workload. This is similar to the pattern seen in the Wikipedia
workload trace. Figures 6(b) and 6(c) show the correlograms for WL2 and
WL3. The two workloads are generated with an equation similar to Equation 2,
but with an added component that increases the uncertainty (SampEn) in the
workload thus decreasing the ACF. Figures 6(b) and 6(d) show that the ACFs
for WL2 and WL4 resemble the ACFs of the DAS, Grid5000 and LCG real
workloads whose ACFs are shown in figures 4(a)–4(c) respectively. Figures 6(e)
and 6(f) have ACFs different from the ones seen in the 14 investigated workloads.
The equations used to generate the 55 synthetic workloads have mostly similar
structures, but using different periods for the sinusoids, different amplitudes
and different probability distributions such as log normal distributions, gamma
distributions and chi-squared distributions as sources of uncertainty.

Table 2 shows the SampEn values for the six generated workloads above.
Similar to the real workloads, the generated workloads have burstiness levels
ranging from no burstiness to very bursty.

4 On the Performance of Different Elasticity Con-

trollers

Since different elasticity controllers exhibit different performance with different
workloads, a cloud infrastructure provider has to select a number of elasticity
controllers to implement. These controllers are the classes to which WAC assigns
the different workloads. We implement 3 state-of-the-art elasticity controllers
plus a step controller (the vanilla elasticity controller). These controllers repre-
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(a) Correlogram for a sample generated workload WL1. (b) Correlogram for a sample generated workload WL2.

(c) Correlogram for a sample generated workload WL3. (d) Correlogram for a sample generated workload WL4.

(e) Correlogram for a sample generated workload WL5. (f) Correlogram for a sample generated workload WL6.

Figure 6: Correlograms of 6 of the generated workloads.
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sent the classes to which WAC assigns workloads. The implemented controllers
are:

1. The step controller (hereafter called React) is a simple reactive controller
where the capacity provisioned follows the load changes when they happen
and does not predict the required future capacity. If the load is constant,
no VMs are added or removed. If the load increases by ∆Load, the con-
troller reacts to the load increase by provisioning S servers that can handle
this load increase. Similarly if the load decreases by ∆Load which is less
than a certain threshold, the controller reacts by removing the extra ma-
chines. This is similar to the controller described by Chieu et al. [40]. If
the controller computes the required capacity every time the load changes,
the controller never allocates more resources than required since resources
are only allocated when the load increases and are removed once the load
decreases below a certain threshold.

2. A Histogram based controller (thereafter called Hist). This controller
builds histograms for the workload observed within a defined time inter-
val (e.g. between 9:00 and 10:00 on Monday) based on the past values
observed. The controller estimates the peak demand of the workload to
occur within the defined time interval before the defined time interval
begins. The histogram stores the history of the maximum arrival rates
observed during the defined period over the past several periods. For
each period there is a corresponding histogram which can be used to find
the probability distribution of the arrival rate for that period. The con-
troller can predict the capacity required based on a higher percentile of
the tail, e.g., the 99th percentile, of the distribution. This design allows
the controller to capture seasonal trends such as diurnal or yearly trends
depending on the period chosen for building the histograms. The period
length chosen for the histogram is 1 hour. The controller has a correction
mechanism in case the provisioned capacity is less than the actual required
capacity. When the service load becomes more than the provisioned ca-
pacity can handle, the correction mechanism provisions more resources to
the service. This controller was described by Urgaonkar et. al. [6].

3. A Regression based controller (thereafter called Reg) proposed by Iqbal
et. al. [7]. The controller is a hybrid controller with a reactive controller
for scale-up decisions and a predictive controller for scale-down decisions.
When the capacity is less than the load, a scale up decision is taken and
new VMs are added to the service in a way similar to React. For scale
down, the predictive component uses second order regression trained using
past workload values to predict future workload. The regression model
is recomputed using the complete history of the workload every time a
new measurement data is available. If the current load is less than the
provisioned capacity, a scale down decision is taken using the regression
model. If the regression predicts an increase in the number of servers, the
results from the regressor are ignored.

4. An adaptive hybrid controller (thereafter called AKTE) that uses the
workload slope to predict the future workload. This controller is proposed
by Ali-Eldin et. al. [14]. The controller is a hybrid controller having
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a reactive component similar to React and a predictive component that
predicts the future workload from the rate of change of the workload. The
slope calculations are adaptive depending on the rate of change of the
workload. If the load is increasing or decreasing rapidly and thus the rate
of change is closer to ±1, then the rate at which the controller makes
decisions is increased in order to adapt to the rapid workload changes.

4.1 How to Compare Elasticity Controllers’ Performance

While most of the body of work on elasticity control uses the request response
time or service latency as a measure of a controller’s performance, Bodik et.
al. [41] argued that this is not the correct reference signal that an elasticity
control policy should use since latency have very high variance even for fixed
workloads. If this is the reference signal used, the elasticity controller ends up
oscillating resources due to noise in the reference signal. Smoothing the noise
does not help since it leads to significant control delays.

Bodik et. al. also raise another concern for which they give an example.
Suppose there are two workloads running on two different machines and each
of them experiences an average service latency of 50 ms for the requests. If
the required QoS is that the average service latency is kept below 100 ms, can
the two loads be migrated on a single server shutting down one of the servers?
This is not true since service latencies do not depend linearly on the amount of
resources provisioned.

They also point out to the fact that latency does not show under-provisioning
and over-provisioning levels even for non noisy response times that do not vary.
This is specially true when we compare the performance of different controllers
since two controllers might be achieving the required latency but one of them
uses one tenth of the resources used on average by the other controller or one
of them can be dropping, on average, less requests than the second one.

We add to their analysis that different applications have different processing
requirements and a cloud infrastructure provider should not make any assump-
tions on how the resources are used, e.g., serving a static web page page hosted
on the cloud is different from sorting a Tera-byte of data. In addition, any
change in the workload mix changes the achievable latency [9]. Cloud comput-
ing promises resources on demand, so the measure of performance should be
resource usage, e.g., average CPU and memory consumption or network utiliza-
tion, or a metric that can be directly mapped to resource usage, e.g., number
of requests, which is not the case for latency. These metrics enable the provider
to be as generic as possible when specifying the QoS in the Service Level agree-
ments with the customers. We choose to use the request arrival rate as the
reference signal in the implementation of the different controllers.

4.1.1 Performance Comparison Metrics

To compare the performance of different controllers, we use the following cost
metrics:

1. Average Overprovisioning rate (OP ) is the average number of overprovi-
sioned VMs by the controller per unit time. This is calculated by summing
the number of overprovisioned VMs over time and dividing the number
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by the total number of time units for which the controller was running.
A machine is considered overprovisioned if it is of no use for the next 10
minutes. This reduces the penalty of an algorithm that predicts the future
workload well in advance. This is a configurable parameter that can be
changed.

2. Average Underprovisioning rate (UP ) is the average number of under-
provisioned VMs by the controller per unit time. This is calculated by
summing the number of underprovisioned VMs over time and dividing
the number by the total number of time units for which the controller was
running. Underprovisioning means that the controller failed to provision
the resources required to serve all requests on time.

3. Average number of Oscillations (O) which is the average number of VMs
started or shut-down per unit time. The reason to consider (O) as an
important parameter is the cost of starting/stopping a VM. From our
experience, starting a machine (physical or virtual) typically takes from 1
minute up to several minutes (almost 20 minutes for an ERP application
server) depending on the application running. This time does not include
the time required to transfer the images and any data needed but is rather
the time for machine boot-up, recontextualization of the images [42] and
network setup. Similar time may be required when a machine is shutdown
for workload migration and load balancer reconfiguration. In addition,
for physical servers, machines consume more energy during bootup and
shutdown while not doing any useful work [43].

Since different applications have different provisioning requirements, some
applications running on a cloud infrastructure will give more weight to one of the
three parameters. For example, a traditional database system might care more
about O since each change in the number of machines results in a heavy penalty
in terms of synchronization to preserve consistency. While an application that
uses VM cloning [44] might care more about UP .

When comparing different controllers, the values of OP , UP and O are
weighted in order to consider the different scenarios and combinations that an
application might have. OP is multiplied by a constant α. UP is multiplied by
a constant β. Similarly, O is multiplied by a constant γ. The values for these
three weights should be set based on the business level objectives [45] required
by the application owner and the quality of service requirements of a service.

We refer to the set of implemented controllers as CI . To choose the best
performing controller for a given workload and a given set of weights, the cost
metrics have to be calculated for each implemented controller X . The total cost
for using that controller is,

CostX = αOP + βUP + γO. (3)

The best controller for the given setup CZ is thus,

CZ = {χ|χ ∈ CI & Costχ ≤ CostY ∀ Y ∈ CI}. (4)
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4.2 Performance of the Controllers with Various Work-

loads

Classification is a supervised learning algorithms, therefore, it requires training
using labeled data. For each object in the labeled training set, the object’s
class in known. For WAC, an object is a workload and a class is one of the
implemented elasticity algorithms. In order to label each workload in the train-
ing set, we need to know the best performing controller for that workload. We
have built a discrete event simulator using Python, numpy and scipy [46] to
simulate a cloud provider and test the four controllers and their performance
on the workloads. The Regression controller was performing badly on almost
all workloads for all three metrics. We have modified the design described in
the original paper such that the provisioned capacity is always 1.2 times the
suggested capacity by the controller output. This modification improves the
performance of the controller considerably.

In our experiments, α varies between 0 to 1 for the real workloads and 0 to
0.5 for the generated workloads, with a step of 0.01, β varies between 1 to 20 for
the generated workloads and 1 to 10 for the real workloads with a step of 1 and
γ varies between 0 to 20 for the generated workloads and 0 to 10 for the real
workloads, with a step of 0.5. The combinations of these values with the ACFs
and the SampEn of the different workloads form the different scenarios with
which we test WAC. For the real workloads, there are in total 280000 scenarios,
while for the synthetic workloads there are in total 2090000 scenarios. Using
all combinations of the three weighted metrics for both the real and generated
workloads, the controller with the best performance for each combination is
labeled. Table 3 shows the percentages of scenarios in which every controller
outperforms the other controllers for the different workloads. From the table
we see that, Reg and AKTE outperform the other controllers considerably for
both the real and the synthetic traces. React is the least performing controller
for both workload types.

We attribute the performance of the controllers to the way they are designed.
AKTE is designed with the aim of reducing UP and O at the cost of higher
OP . It is more suitable for applications where the cost of underprovisioning
and the cost of oscillations should be minimized. Hist is designed for work-
loads that have periodical patterns and low burstiness. Hist does not give any
importance to OP since scale down mechanisms when the controller provisions
extra resources are absent. React has no predictive component. It provisions
resources after they are needed. This reduces the amount of OP at the cost of
increased UP and O. The modified Reg uses a second order regressor which
is suitable for capturing patterns in the workload. Reg scales down resources
faster Hist, thus reducing OP , but slower than React.

5 Workload Classification

We evaluateWAC with both a KNN classifier and an SVM classifier [22]. SVM is
a supervised learning method introduced by Boser et. al. [47]. It constructs sep-
arating hyperplanes to separate the training data such that the distance between
the constructed hyperplanes and any training point is maximized. Training an
SVM classifier and tuning its different parameters is complex [48]. We have
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Table 3: Number of scenarios in which every controller outperforms the other
controllers for the different workloads.

Controller Real workloads scenarios Generated workloads scenarios
React 6.55% 0.1%
Reg 33.72% 61.33%

AKTE 47.17% 34.3%
Hist 12.56% 4.27%

tried using an SVM classifier but the training was very time consuming and was
giving low classification accuracy. This means that the classifier parameters
required tuning which is even more time consuming. We choose to use KNN
since it is less complex, fast to train and fast to calculate an assignment once
trained.

The KNN algorithm is quite simple. A training set is used to train the
classifier. The training set is a set of samples for which the correct classification
in known. When a new unknown sample arrives, a majority vote of its K-nearest
neighbors is taken. The new sample is then assigned to the class with a majority
vote. K is a configurable parameter. The distance to a neighbor is usually the
Euclidean distance between the sample and that point. There are two versions of
the KNN algorithm. One version gives more weights to votes of closer neighbors
while the second version gives equal weights to all K neighbors [22].

In the experiments, we consider the case when a cloud provider has four
controllers deployed and the case when only two controllers, AKTE and Reg,
are deployed. AKTE and Reg perform better than Hist and React for more
than 80% of the workload scenarios considered. Each scenario in the training
set is labeled with the top performing controller out of AKTE and Reg for the
experiments with only two controllers.

In order to test the accuracy of KNN, the available workload scenarios are
divided into a training set and a test set. The training set is used for training
the classifier while the test set is used to evaluate the accuracy of the classifier
after training. Both sets are labeled with the right answer for each scenario.
When the classifier assigns a workload to an elasticity controller, the assignment
is compared to the label. If the assignment matches the label, then the classifi-
cation is correct. The accuracy of the classifier is calculated by calculating the
ratio of correct classifications of the test set to the total size of the test set.

5.1 Classification of Real Workloads

In the experiments, the scenarios described in Section 4 are randomly split into
a training set and a test set. The training set contains 90% of all the scenarios
while the test set has the remaining 10% . Both the training set and the test set
are balanced such that no single class dominates the training set thus skewing
the classifier.

We test the KNN classifier using both its versions, the one that gives equal
weights to all K neighbors and the one that gives more weight to closer neigh-
bors. For each version, we repeat the experiment with K ranging from 1 to 100
and calculate the classification accuracy.
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(b) Effect of changing K on the classifier accuracy when
closer neighbors’ votes are given higher weight.

Figure 7: Effect of K on the classifiers’ accuracy with only 2 classes considered,
AKTE and Reg, for real workloads.

Figure 7 shows the classification accuracy of the classifier when there are only
two classes, AKTE and Reg. The X axis of the figure is the value of K. The Y
axis of the figure is the accuracy of classification. Figure 7(a) shows the accuracy
of the classifier with changing K when all K neighbors’ votes are given equal
weights. Significant oscillations occur in the accuracy as K increases until K is
around 50. When closer neighbors’ votes are given higher weight, oscillations are
much smaller as shown in Figure 7(b) where the accuracy stabilizes at around
0.92 when K is equal to 25. The maximum accuracy achieved is 0.983 using
equal weights for all neighbors for K = 5.

Figure 8 shows the classification accuracy of the classifier when there are
four classes, AKTE, React, Histo and Reg, against K when K is varied from 1
to 200. Figures 8(a) and 8(b), show less oscillations compared to Figure 7. The
maximum accuracy achieved is 0.91 using equal weights for all neighbors for
K = 4. The accuracy of classification is reduced by more than 7% when more
controllers are available. This might be due to not having enough training data
in the training set for the classifier to be able to generalize for four classes. An
accuracy of 91% is still considered good. For the service provider it means that
instead of having just one controller, the provider can have 4 controllers with
only 9% of the workloads assigned in a non optimal way. Since more training
data, means more experience, the provider can still decrease the percentage of
workloads assigned sup-optimally by constantly adding feedback to the clas-
sifier by adding more training points based on new workload behaviors seen.
Figures 7(a) and 8(a) show that accuracy decreases with increasing K when all
K neighbors’ votes are given equal weights. When neighbors’ votes are weighted
such that closer neighbors have a higher weight, the accuracy stabilizes as K

increases as shown in Figures 7(b) and 8(b).

5.2 Classification of Generated Workloads

We repeat the tests described above using only the generated workloads. Fig-
ure 9 shows the classification accuracy of the classifier when there are only two
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Figure 8: Effect of K on the classifiers’ accuracy with 4 classes considered,
mapping to the four implemented controllers, for real workloads.

classes, AKTE and Reg, against K. The maximum accuracy achieved is 0.92
using equal weights for all neighbors for K = 3. Figure 10 shows the classi-
fication accuracy of the classifier when there are four classes, AKTE, React,
Histo and Reg, against K. The maximum accuracy achieved is 0.94 using equal
weights for all neighbors for K = 3.

Comparing Figure 7(a) to figures 9 and 10, oscillations in the classifier’s
accuracy with increasing K is much lower when classifying synthetic workloads
compared to when classifying real workloads.

5.3 Classification of Mixed Workloads

In our last experiment, we combine the scenarios using real and generated work-
loads in a single set. This set is again randomly shuffled and divided into a
training set and a test set. Figure 11 shows the classification accuracy of the
classifier when there are only two classes, AKTE and Reg, against K. The
maximum accuracy achieved is 0.92 using any of the two versions of the KNN
for K = 5. Figure 12 shows the classification accuracy of the classifier when
there are four classes, AKTE, React, Histo and Reg, against K. The maxi-
mum accuracy achieved is 0.92 using equal weights for all neighbors for K = 3.
Again, we note that the oscillations in the classifier’s accuracy with changing K

in figures 11 and 12 are not as severe as in the case of classifying real workloads.

5.4 Discussion of the Results

The oscillations seen in the figures for lower values of K can be attributed to
the nature of the KNN algorithm. Let F be the number of features used for
classification. KNN constructs an F -dimensional space and places each train-
ing point in that space according to the point’s features values. It divides the
F -dimensional space into neighborhoods where each neighborhood is a group of
points neighboring each other and having the same class. These neighborhoods
can be scattered in the F -dimensional space. Some of these neighborhoods can
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Figure 9: Effect of K on the classifiers’ accuracy with only 2 classes considered,
AKTE and Reg, for generated workloads.
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Figure 10: Effect of K on the classifiers’ accuracy with 4 classes considered,
mapping to the four implemented controllers, for generated workloads.
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Figure 11: Effect of K on the classifiers’ accuracy with only 2 classes considered,
AKTE and Reg, for a mixed set.
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Figure 12: Effect of K on the classifiers’ accuracy with 4 classes considered,
mapping to the four implemented controllers, for a mixed set.
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be small and surrounded completely by a larger neighborhood of a different
class. Picking a small value for K results in correctly classifying these smaller
neighborhoods for the training data. On the other hand, it can result in over-
fitting the training data and forming nasty decision boundaries, e.g., a small
neighborhood laying completely surrounded within a large neighborhood of a
different class. This makes the classifier more sensitive to noise in the training
set. On the other hand, a large value of K results in a less noise sensitive classi-
fier and smoother decision boundaries but at the cost of increased training data
error, increased computational burden and loss of locality of the estimations
since far away points affect the decision. risk of making the classifier more bi-
ased towards the class with more training points and having the neighborhood
boundaries oversimplified.

Oscillations are more obvious when the distance to all K neighbors have
equal weights, When closer neighbors are given more weight, the classification
accuracy is more stable with increasing K. By looking at figures 7–11, it can
be seen that for all of them, the accuracy of classification decreases with the
increasing K for a while and then tends to stabilize for a range of K and then
sometimes starts to decrease again. The stabilization for the KNN version with
weighted distance is faster and with a stable accuracy higher than the other
version.

When setting K in real life deployments, a cloud provider should either
choose K with the best accuracy regardless of stability or least K with highest
stable accuracy depending on the confidence in the training set. If the training
set is comprehensive with most workload characteristics expected, K can be
chosen to be the one that gives best accuracy on the training set regardless of
the stability. Otherwise, if the training set is not comprehensive K should be
chosen to be the least K with the highest stable accuracy.

6 Related Work

Previous work on workload characterization has mainly focused on identifying
the different properties of different workload traces collected from running sys-
tems. Calzarossa and Serazzi [49] discuss the steps for modeling a workload. As
a first step, the characterization level, e.g., the sampling rate of the workload,
the basic components, the parameters that describe them and the criteria for
evaluating the model accuracy of the workload has to be identified. Then, the
system is monitored to log the workload. The measured data is statistically
analyzed to know if there are any natural partitions in the workload, e.g., long
running requests and short running requests. Statistical analysis involves re-
moval of any outliers having one or more parameters with values greater than
a certain percentile, workload sampling to be able to process the recorded trace
within reasonable time, static analysis which partitions the workload using a
clustering algorithm such as K-means and dynamic analysis using techniques
such as time series analysis. The authors discuss a large number of workload
modeling studies spanning different systems, namely, centralized batch and in-
teractive systems, centralized database systems, network based systems, and
multiprocessor systems such as parallel systems and supercomputers.

Downey and Feitelson [23] discuss the problems in generalizing a model based
on data from specific observations to an abstract model of the workload. They
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start by giving some examples on the problems and the difficulties faced when
creating a multi-level model for a workload. They focus on the problems of
single-level models.

The aim of modeling is to find the summary statistics of the different work-
loads. These fall into three families:

1. Moment-based: e.g., mean, variance and the coefficient of variance, skew
(3rd moment) and kurtosis (4th moment).

2. Percentile-based, e.g., median, quartiles and the semi-interquartile range
(Measure of Dispersion)..

3. Mode-based: e.g., the most common value observed for distributions hav-
ing discrete components.

According to the authors, reporting the moments for non-symmetric distribu-
tions is misleading and might be meaningless since moments are not robust to
outliers. In addition, for some distributions such as the Pareto distribution, the
moment of a sample does not converge on the moments of the population. One
of the warning signs of non convergence is the failure to achieve sample invari-
ance. To test whether a hypothesis about a distribution is right or not, the
Chi-square test or the Kolmogorov-Smirnov test (for continuous distributions)
can be used [50]. These tests usually fail for workload characterization since
they assume that the testing data should converge to the distribution when a
large number of points are used. This is not true for most workloads.

The authors discuss the importance of weighing data points. They give an
example with the characterization of parallel jobs when it is assumed that all
jobs are of the same weight, when the jobs are weighed by the duration and
when the jobs are weighed by the area (duration and the number of cores used).
They discuss the correlation between these different attributes and the different
ways to include them in the model.

Arlit and Jin presented a detailed workload study of the 1998 FIFA World
Cup website [37]. The site logs from May 1st, 1998 until July 23rd, 1998 were
analyzed. The logs contain 1.35 Billion requests and almost 5 TB of data
were sent to the clients. Data was accessed by more than 2 million unique
IP addresses.

Kang et. al. crawled Yahoo! videos website for 46 days [51]. They recorded
data for 9986 unique videos in total with video durations ranging from 2 to 7518
seconds. Around 76% of the videos are shorter than 5 minutes and almost 92%
are shorter than 10 minutes. They discuss the predictability of the arrival rate
with different time granularities. A load spike typically lasted for no more than
1 h and the load spikes are dispersed widely along the time making them hard
to predict. They also find that the workload is highly correlated in short term.
While the cost could be high if a video site operator over-provisioned the data
center based on the over-provisioning factor at a small time scale, these load
spikes can be provisioned on a cloud on demand to service the extra load while
not over-provisioning the Video site datacenter.

Chen. et. al. analyze a short workload trace that was publicly realized by
Google [52]. The trace is 6 hours and 15 minutes long with data collected every
5 minutes, i.e., having just 75 points. The short workload makes it hard to infer
the true characteristics of the jobs running on Google’s backend cluster.
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Mishra et. al. take a first step towards modeling the workload running on
Google’s backend servers by grouping resources with similar task consumptions
in classes (task classification) [53]. They define a multidimensional representa-
tion of the resources (task shape) used by the tasks using the average memory in
GB and the average number of cores used by a task every five minutes. During
scheduling, tasks are assigned such that their shape (time in seconds, memory
usage and number of cores) fits the free space on the assigned machine.

They discuss the problems with using a coarse grained classification and
explain their approach for task classification. First, they identify the workload
dimensions, e.g., task duration, average core usage and average memory usage.
Second, they use k-means clustering algorithms to construct preliminary task
classes. Third step is to manually identify the break points for the qualitative
coordinates of the workload dimensions. Finally, they merge classes to form the
final set of task classes which define the workload. They use this approach to
identify the load mix of the tasks.

This work is extended by Zhang et. al. [54]. The authors suggest to model
task usage shapes by modeling the mean values of run-time tasks resource con-
sumption. They call this model ”the mean usage model of tasks usage shapes“.
This simple model captures the characteristics of the workload running on
Google’s backend cluster to a high extent. They attribute these results to the
low variability of task resource usage in the workload and the characteristics of
evaluation metrics.

The authors also analyze six month of Map-Reduce traces from a Facebook
cluster and a two weeks Map-Reduce trace from another Internet company [55].
They built a Map-Reduce workload synthesizer that analyzes a Map-Reduce
workload and uses the results to produce a synthetic but realistic workload that
mimics the original seed workload.

A longer trace provided by Google that spans 29 days and around 650000
jobs [13] was analyzed by Reiss et. al. [56]. While the system is over-booked,
the actual CPU and memory utilization is rarely higher than 50% and never
exceeds about 60%. The workload is dominated by ’normal production’ tasks
which have regular patterns and a daily peak to mean ratio of 1.3. Lower
priority tasks make up between 10% to 20% of the CPU usage in the cluster.
These tasks have no regular patterns and are very bursty. Over 80% of the total
utilization of the cluster comes from long running jobs which constitute 2% of
the total number of jobs.

Iosup and Epema analyze 15 different grid workloads [57]. They report that
the average system utilization of some research grids was as low as 10 to 15%
but considerably high on production grids. All 15 grids experienced overloads
during some short term periods. A few users dominate the workloads. In most
workloads, there is a little intra-job parallelism and even parallel jobs running
have low parallelism. They note that loosely coupled jobs are dominating most
of the workloads. Loosely coupled jobs are suitable to run on the cloud [58].
Similar findings are reported by Zhang et. al. [54] and the Magellan project [58].

Khan et. al. try to discover from the workload running on different servers
which servers frequently have correlated workload patterns. They use a greedy
algorithm to solve a computationally intractable problem to find the clusters
that constitutes correlated workloads on different servers. Their proposed so-
lution is slow. It takes more than 6 hours to train the algorithm using data
collected every 15 minutes for 17 days and doing predictions every 15 minutes.
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Viswanatha et al [59], introduce a provisioning system for private clouds that
uses an application’s resource usage pattern to place applications on servers with
appropriate level of configuration capabilities. The authors use the coefficient
of variation to identify unstable workloads. Unstable workloads requires place-
ment on clusters that allow dynamic placement. They base their placement
decisions on the different elastic capabilities of the clusters and the expected
peak workload for each application.

There has been a lot of interest in data stream classification and cluster-
ing [60, 61, 62, 19]. Beringer and Hullermeier modify the K-means clustering
algorithm to be able to cluster online data streams efficiently. Their work is
considered the first work to try to cluster the data streams themselves, com-
pared to for example the work by Guha et. al. [62] who cluster the elements of
the stream. Due to their complexity, the computational costs of clustering data
streams is high. In addition, the algorithm has to be adaptive in the sense that
new clusters may be created at any time when new data points arrive. Simi-
larity between data streams is calculated using the Euclidean distance between
their normalization for a given sliding time window.

Keogh and Kasetty discuss the quality of the published work on time-series
data mining [63]. They show that much of the published work is of very little
utility. They implement the contributions of more than two dozen papers and
test them on 50 real workloads. For classification, they implement 11 published
similarity measures and compare their performance to the Euclidean distance
measure. Non of the 11 proposed similarity measures is able to outperform the
Euclidean distance. They show that the error rate for some of the published
work was 0.695, that is 69.5% of all classifications was wrong.

Herbst et. al. [64] propose a novel forecasting methodology that self-adaptively
correlates workload characteristics classes and existing time series based fore-
casting approaches. The authors smooth the noise in a times-series before fore-
casting. They use a decision tree to assign the smoothed time-series to one of
several forecasting methods based on time-series analysis. They show that their
approach can be used for resource provisioning.

Our work complements the previous studies and uses their finding to build
an automated workload analyzer and classifier tool that can identify the classes
of the different workloads running on the cloud. Although our main focus is
elasticity control, the tool also be used for placement of orthogonal workloads
(e.g. computationally intensive workloads and I/O intensive workloads). The
tool can also provide admission controllers with insights that can be used when
admitting a workload.

7 Conclusion and Future work

In this work, we introduce WAC, a Workload Analysis and Classification tool
for assigning workloads to different elasticity controllers in order to improve
workload predictions. The tool uses autocorrelation and sample entropy to an-
alyze the workload periodicity and burstiness respectively. This analysis is used
for classifying workloads and assigning them to the most suitable elasticity con-
troller for each of them. In addition, the tool allows assignment of an elasticity
controller to a workload based on specific quality of service objectives. We have
collected a set of 14 real workloads and generated a set of 55 synthetic workloads
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to test the tool. We have implemented 4 state-of-the-art elasticity controllers
and a step controller. The tool was used to assign the workloads with different
quality of service requirements to the implemented controllers in different ex-
periments. The tool shows an accuracy of classification ranging from 91% up
to 98% in different experiments.

Acknowledgment

The authors would like to thank the Advanced School for Computing and Imag-
ing at Vrije Universiteit, Amestrdam for providing the DAS workloads, the
Grid’5000 team for providing the Grid’5000 traces, the AuverGrid team for
providing the AuverGrid traces, John Morton and Clayton Chrusch for provid-
ing the SHARCNET traces, the e-Science Group of HEP at Imperial College
London for providing the LPC traces and the NorduGrid team for providing the
NorduGrid traces. We would also like to thank the Grid Workloads Archive for
providing access to these traces. Financial support has been provided in part by
the European Community’s Seventh Framework Programme under grant agree-
ment #257115, the Lund Center for Control of Complex Engineering Systems,
the Swedish Government’s strategic effort eSSENCE and the Swedish Research
Council (VR) under contract number C0590801 for the project Cloud Control.

References

[1] Amazon Elastic Compute Cloud (amazon ec2). [Online]. Available:
https://aws.amazon.com/solutions/case-studies/

[2] A. J. Ferrer, F. Hernndez, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri,
R. Sirvent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimi-
trakos, S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia,
A. Kipp, S. Wesner, M. Corrales, N. Forg, T. Sharif, and C. Sheridan, “Op-
timis: A holistic approach to cloud service provisioning,” Future Generation
Computer Systems, vol. 28, no. 1, pp. 66 – 77, 2012.

[3] J. Garside. (2013, January) Amazon’s record $21bn christ-
mas sales push shares to new high. [Online]. Avail-
able: http://www.guardian.co.uk/technology/2013/jan/30/amazon-
christmas-record-sales-profits

[4] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for stateful
services,” in Proceedings of the 1st ACM symposium on Cloud Computing,
ser. SoCC ’10. New York, NY, USA: ACM, 2010, pp. 241–252. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807166

[5] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic stor-
age,” in Proceedings of the 7th international conference on Autonomic com-
puting. ACM, 2010, pp. 1–10.

[6] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile dy-
namic provisioning of multi-tier internet applications,” ACM Transactions
on Autonomous and Adaptive Systems (TAAS), vol. 3, no. 1, p. 1, 2008.



28

[7] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,” Future
Generation Computer Systems, vol. 27, no. 6, pp. 871–879, 2011.

[8] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma,
“Towards autonomic workload provisioning for enterprise grids and clouds,”
in 10th IEEE/ACM International Conference on Grid Computing, 2009.
IEEE, 2009, pp. 50–57.

[9] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy, “Autonomic mix-aware
provisioning for non-stationary data center workloads,” in Proceedings of
the 7th international conference on Autonomic computing. ACM, 2010,
pp. 21–30.

[10] M. Arlitt and T. Jin. (1998, August) ”1998 world cup web site access
logs”. [Online]. Available: http://www.acm.org/sigcomm/ITA/

[11] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in Network Operations and Manage-
ment Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp. 204–212.

[12] G. Urdaneta, G. Pierre, and M. Van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks, vol. 53, no. 11, pp. 1830–
1845, 2009.

[13] J. Wilkes. (2011, November) More google cluster data. [Online]. Avail-
able: http://googleresearch.blogspot.com/2011/11/more-google-cluster-
data.html

[14] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Efficient provisioning
of bursty scientific workloads on the cloud using adaptive elasticity control,”
in Proceedings of the 3rd workshop on Scientific Cloud Computing. ACM,
2012, pp. 31–40.

[15] M. Morari and E. Zafiriou, Robust process control. Morari, 1989.

[16] B. Abraham and J. Ledolter, Statistical methods for forecasting. Wiley,
2009, vol. 234.

[17] M. Morari, “Robust stability of systems with integral control,” IEEE
Transactions on Automatic Control, vol. 30, no. 6, pp. 574–577, 1985.

[18] D. Barber, Bayesian reasoning and machine learning. Cambridge Univer-
sity Press, 2012.

[19] C. Aggarwal, J. Han, J. Wang, and P. Yu, “On demand classification of
data streams,” in Proceedings of the tenth ACM SIGKDD International
conference on Knowledge Discovery and Data mining. ACM, 2004, pp.
503–508.

[20] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for
adaptive resource provisioning in the cloud,” Future Generation Computer
Systems, vol. 28, no. 1, pp. 155–162, 2012.



29

[21] S. Meng, L. Liu, and V. Soundararajan, “Tide: Achieving self-scaling in
virtualized datacenter management middleware,” in Proceedings of the 11th
International Middleware Conference, Industrial track. ACM, 2010, pp.
17–22.

[22] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The elements of
statistical learning: Data mining, inference and prediction,” The Mathe-
matical Intelligencer, vol. 27, no. 2, pp. 83–85, 2005.

[23] A. Downey and D. Feitelson, “The elusive goal of workload characteriza-
tion,” ACM SIGMETRICS Performance Evaluation Review, vol. 26, no. 4,
pp. 14–29, 1999.

[24] B. Girod, R. Rabenstein, and A. Stenger, Signals and systems. John Wiley
& Sons Inc, 2001.

[25] R. Takano, Y. Kodama, T. Kudoh, M. Matsuda, F. Okazaki, and
Y. Ishikawa, “Realtime burstiness measurement,” in 4th Intl. Workshop
on Protocols for Fast Long-Distance Networks (PFLDnet2006), 2006.

[26] R. Gusella, “Characterizing the variability of arrival processes with indexes
of dispersion,” Selected Areas in Communications, IEEE Journal on, vol. 9,
no. 2, pp. 203–211, 1991.

[27] T. N. Minh, L. Wolters, and D. Epema, “A realistic integrated model of
parallel system workloads,” in Cluster, Cloud and Grid Computing (CC-
Grid), 2010 10th IEEE/ACM International Conference on. IEEE, 2010,
pp. 464–473.

[28] J. S. Richman and J. R. Moorman, “Physiological time-series analysis
using approximate entropy and sample entropy,” American Journal of
Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039–
H2049, 2000.

[29] J. S. Richman, D. E. Lake, and J. R. Moorman, “Sample entropy,” Methods
in enzymology, vol. 384, pp. 172–184, 2004.

[30] M. Aboy, D. Cuesta-Frau, D. Austin, and P. Micó-Tormos, “Characteriza-
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A Graphs for the Real Workloads

Figures 13, 14 and 15 show the plots of the real workload traces.
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(a) Workload trace for IRCache service runnings ar at Boul-
der, Colorado (Bo).

(b) Workload trace for IRCache service running at Silicon
Valley, California (SV).

(c) Workload trace for IRCache service running at San
Diego, California (SD).

(d) Workload trace for IRCache service running at Urbana-
Champaign, Illinois (UC).

Figure 13: Workload traces of the different Caching Services.
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(a) Workload trace for the DAS workload. (b) Workload trace for Grid5000 workload.

(c) Workload trace for the LCG workload. (d) Workload trace for LPC workload.

(e) Workload trace for the NorduGrid workload. (f) Workload trace for SharcNet workload.

Figure 14: Workload traces of the Grid workloads analyzed.
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(a) Workload trace for the world cup workload. (b) Workload trace for the Google Cluster workload.

(c) Workload trace for PubMed access traces. (d) Workload trace for the Wikipedia workload.

Figure 15: Workload traces of web-hosting workloads and the Google cluster
workload analyzed.


