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SYMMETRIC MATRIX PENCILS: CODIMENSION COUNTS AND

THE SOLUTION OF A PAIR OF MATRIX EQUATIONS∗

ANDRII DMYTRYSHYN † , BO KÅGSTRÖM† , AND VLADIMIR V. SERGEICHUK‡

Abstract. The set of all solutions to the homogeneous system of matrix equations (XTA +

AX,XTB +BX) = (0,0), where (A,B) is a pair of symmetric matrices of the same size, is charac-

terized. In addition, the codimension of the orbit of (A,B) under congruence is calculated. This

paper is a natural continuation of the article [Linear Algebra Appl. 438:3375–3396, 2013] where the

corresponding problems for skew-symmetric matrix pencils are solved. The new results will be useful

in the development of the stratification theory for orbits of symmetric matrix pencils.
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1. Introduction. The goal of this paper is to present the general parameterized

solution of the system of matrix equations

XTA +AX = 0,

XTB +BX = 0,
(1.1)

in which (A,B) is a pair of complex symmetric n̂×n̂ matrices1. The set of matrices X

that satisfy the system (1.1) forms a vector space whose dimension is also calculated.

This dimension plus n̂ is equal to the codimension of the orbit with respect to the

congruence equivalence relation of (A,B) (see Theorem 2.3).

This article is a logical continuation of the recent paper on skew-symmetric matrix

pencils [14], in which we solved the associated homogeneous system of matrix equa-

tions and computed the codimensions of skew-symmetric matrix pencil orbits under

congruence. Both papers are directed towards the same audience and to facilitate
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the reading and the use of results from [14], we keep the notation, the style and the

structure of them as similar as possible.

Problems of solving matrix equations as well as computing codimensions of corre-

sponding orbits appear in different branches of science. Recent papers that partially

share methods and motivation with this paper include:

● the solution of XA + AXT = 0 or XA + AX∗ = 0 for any square matrix A

[5, 6, 19];

● the solution of AX +XTB = 0 or AX +X∗B = 0 for matrices A and B of

compatible sizes [7];

● the solution of AX + BXT = 0 or AX + BX∗ = 0 for matrices A and B of

compatible sizes [4];

● the solution of a pair of matrix equations (XTA +AX,XTB +BX) = (0,0)

with skew-symmetric A and B [14].

The general parameterized solutions of these matrix equations admit to compute the

codimensions of corresponding orbits (see also [9, 10, 12, 13]). Besides these cases, the

codimensions were computed for contragredient matrix pencils [20] and generalized

matrix products [24]. The dimension of the solution space of generalized coupled

Sylvester matrix equation (A1X − Y A2,B1X − Y B2) = (0,0) was derived in [1].

The results of [14] and [9] will be used to investigate the changes of the canonical

forms of skew-symmetric matrix pencils under small perturbations (i.e., the stratifi-

cation of skew-symmetric matrix pencils).

Symmetric matrix pencils appear often in applications. Examples include the lin-

earization of the quadratic eigenvalue problem coming from the equations of motion

or vibration of structural systems [25, 28], symmetric linearizations for symmetric

matrix polynomials [21], and the dynamic governing equations of a structure sub-

mitted to viscous damping [15]. A Fortran 77 routine for computing a structured

staircase form for symmetric matrix pencils is presented in [3]. Miniversal deforma-

tions of symmetric matrix pencils are presented in [10]. However, the stratification

theory of symmetric matrix pencils is not known yet and is in our field of interests.

We recall that a given matrix pencil orbit has only orbits with higher codimensions in

its closure [26, Part III, Theorem 1.7] and thereby the codimensions define the coarse

(but not the complete fine) structure of the associated closure hierarchy graph. For

more information about deformation and stratification theories, their applications,

and software see [16, 17, 23] and references therein.

Using [5, 6, 14] and the results of this paper, Matlab functions for computing
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codimensions of the congruence and *congruence orbits of matrices, congruence orbits

of symmetric and skew-symmetric matrix pencils have been developed [11] and added

to the Matrix Canonical Structure Toolbox [22].

The rest of the paper is organized as follows. The main results are presented in

Section 2. Without loss of generality, we consider a congruently transformed system

(1.1) where the symmetric pair (A,B) is in canonical form under congruence. The

general solution of the system (1.1) in explicit form is presented in Theorem 2.1. The

dimensions of solution spaces and codimensions of orbits are given in Corollary 2.2

and Theorem 2.3. In Section 3, we prove Theorem 2.1 and Corollary 2.2. Finally, in

Section 4 two examples illustrating our results are presented.

All matrices that we consider are over the field of complex numbers.

2. Main result. A matrix pair (A,B) is said to be congruent to (A′,B′) if

(A′,B′) = ST (A,B)S = (STAS,STBS) for some nonsingular S and the set of all

matrix pairs congruent to (A,B) is called the orbit of (A,B) under congruence and

denoted by orbit(A,B). Multiplying the equations (1.1) by ST on the left and by S

on the right, we obtain

STXTS−T ⋅ STAS + STAS ⋅ S−1XS = 0,

STXTS−T ⋅ STBS + STBS ⋅ S−1XS = 0,

and so the system (1.1) is equivalent to the system

Y TA′
+A′Y = 0,

Y TB′
+B′Y = 0,

where Y ∶= S−1XS,A′ ∶= STAS, and B′ ∶= STBS. Therefore, it suffices to solve

the system (1.1) in which (A,B) is a canonical pair of symmetric matrices under

congruence.

For each positive integer n define the n-by-n unit matrix In and the n-by-n ma-

trices

Jn(λ) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ 1 0

λ ⋱

⋱ 1

0 λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Λn(λ) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 λ

λ 1

⋅ ⋅
⋅
⋅ ⋅
⋅

λ 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ∆n ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

1

⋅ ⋅
⋅

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For each nonnegative integer n define the n-by-(n + 1) matrices

Fn ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

⋱ ⋱

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Gn ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0

⋱ ⋱

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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Define the direct sum of matrix pairs as follows:

(A,B)⊕ (C,D) = (A⊕C,B ⊕D).

The canonical form of a pair of symmetric complex matrices is given in [27]:

such a pair is congruent to a direct sum, determined uniquely up to permutation of

summands, of pairs of the form

Hn(λ) ∶= (∆n,Λn(λ)), λ ∈ C,(2.1)

Kn ∶= (Λn(0),∆n),(2.2)

Ln ∶= ([
0 FTn
Fn 0

] , [
0 GTn
Gn 0

]) .(2.3)

Thus, each pair of symmetric matrices is congruent to a direct sum

(2.4) (A,B) =
a

⊕
i=1
Hhi(λi)⊕

b

⊕
j=1

Kkj ⊕
c

⊕
r=1

Llr ,

consisting of direct summands of three types.

In the following we define several parameter matrices, whose nonzero entries

p1, p2, p3, . . . are independent parameters; they will be used to express the set of

solutions of (1.1), where (A,B) is in canonical form (2.4).

● The m × n Hankel matrices

Pmn ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 p2 p3 p4
p2 p3 p4 ⋅

p3 p4 ⋅

p4 ⋅

⋅ pm+n−2
pm+n−2 pm+n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(a dense Hankel matrix),

P⇘mn ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0 pm
⋰ ⋰ ⋮

⋮ ⋰ ⋰ p2
0 . . . 0 pm . . . p2 p1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

or

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0 pm
⋮ ⋰ ⋰

0 ⋰ ⋮

pm
pn

⋮ ⋰ ⋮

⋰ p2
pn . . . p2 p1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

if m ⩽ n or m > n, respectively.
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● The m × n Toeplitz matrices

P↗mn ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0 pm . . . p2 p1
⋱ ⋱ p2

⋮ ⋱ ⋱ ⋮

0 . . . 0 pm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

or

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pn . . . p2 p1
0 ⋱ p2

⋱ ⋱ ⋮

⋱ pn
⋮ 0

⋮

0 . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

if m ⩽ n or m > n, respectively.

● The m × n banded Toeplitz matrices

P↔mn ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p1 . . . pn−m+1 0

⋱ ⋱

0 p1 . . . pn−m+1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

if m ⩽ n and 0 if m > n,

P ↕mn ∶= 0 if m < n and

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 0

⋮ ⋱

p1
pm−n+1

⋱ ⋮

0 pm−n+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

if m ⩾ n.

● For each λ ∈ C, define the m × n matrix with parameters p1, . . . , pn:

P ⌜
mn(λ) ∶= [aij] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 p2 . . . pn
p1λ p1 + λp2 . . . pn−1 + λpn
p1λ

2 2λp1 + λ
2p2 . . . pn−2 + 2λpn−1 + λ2pn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p1λ
m−1 ∗ . . . ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

whose rows are determined recurrently via aij = λai−1,j + ai−1,j−1.

● For all matrices Pmn, P
⇘
mn, P

↗
mn, P

↔
mn, P

↕
mn, P

⌜
mn defined above, we denote by

Qmn,Q
⇘
mn, ,Q

↗
mn,Q

↔
mn,Q

↕
mn,Q

⌜
mn and Rmn, ,R

⇘
mn,R

↗
mn,R

↔
mn,R

↕
mn,R

⌜
mn

the parameter matrices that are obtained by replacing all parameters pi with

qi and ri, respectively.

We say that a parameter matrix Q(δ1, . . . , δs) is obtained by reparametrization

of a parameter matrix P(ε1, . . . , εs) and write P(ε1, . . . , εs) ≃ Q(δ1, . . . , δs) if there

exists a permutation σ of {1, . . . , s} such that P(δσ(1), . . . , δσ(s)) = Q(δ1, . . . , δs). In
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other words, P(ε1, . . . , εs) and Q(δ1, . . . , δs) coincide up to relettering of parameters

(εi = δσ(i)).

In the following, let (A,B) be a canonical matrix pair and let

(2.5) (A,B) = (A1,B1)⊕ ⋅ ⋅ ⋅ ⊕ (At,Bt), t ∶= a + b + c,

be its decomposition (2.4). In Theorem 2.1 we prove that the set of all solutions of

the system (1.1) consists of all matrices P(a1, . . . , as) with (a1, . . . as) ∈ Cs in which

P(π1, . . . , πs) is a parameter matrix that has the same size as A and B and the same

partition into blocks:

(2.6) P =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

P11 . . . P1t

⋮ ⋱ ⋮

Pt1 . . . Ptt

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, size Pii = size Ai = size Bi.

The blocks of P satisfy the condition:

(2.7) the sets of parameters of Pijand Pi′j′are disjoint if (i, j) ≠ (j′, i′)

and are determined by (A,B) as follows. Write

(2.8) P((Ai,Bi)) ∶= Pii, P((Ai,Bi), (Aj ,Bj)) ∶= (Pji,Pij) if i < j,

then:

(i) The diagonal blocks of P are defined up to reparametrization by the following

conditions:

P(Hn(λ)) = 0,(2.9)

P(Kn) = 0,(2.10)

P(Ln) ≃ [
αIn+1 0n+1,n
0n,n+1 −αIn

] .(2.11)

(ii) The off-diagonal blocks of P whose horizontal and vertical strips contain sum-

mands of (A,B) of the same type are defined up to reparametrization by

P(Hn(λ), Hm(µ)) ≃

⎧⎪⎪
⎨
⎪⎪⎩

(0, 0) if λ ≠ µ,

(−P↗mn, P
↗
nm) if λ = µ,

(2.12)

P(Kn,Km) ≃ (−P↗mn, P
↗
nm) ,(2.13)

P(Ln, Lm) ≃ ([
R↕Tn+1,m+1 −Qm+1,n

0m,n+1 −P↔Tnm

] , [
P↔n+1,m+1 Qn+1,m
0n,m+1 −R↕nm

]) .(2.14)
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(iii) The off-diagonal blocks of P whose horizontal and vertical strips contain

summands of (A,B) of different types are defined up to reparametrization by

P(Hn(λ),Km) = (0, 0),(2.15)

P(Hn(λ), Lm) ≃ ([
−P ⌜

m+1,n(λ)
0mn

] , [0n,m+1 ∆nP
⌜T
m+1,n(λ)F

T
m]) ,(2.16)

P(Kn, Lm) ≃ ([
−P⇘Tn,m+1

0mn
] , [0n,m+1 ∆nP

⇘
n,m+1G

T
m]) .(2.17)

Note that if any of the matrix pairs (2.12)-(2.17) have blocks denoted by the

same letter, then these blocks have the same set of independent parameters, e.g.,

in (2.14) the blocks P↔Tnm and P↔n+1,m+1 both have m − n + 1 independent parameters

p1, . . . , pm−n+1, the blocksQm+1,n andQn+1,m both havem+n independent parameters

q1, . . . , qm+n, and the blocks R↕Tn+1,m+1 and R↕nm both have n − m + 1 independent

parameters r1, . . . , rn−m+1.

Theorem 2.1. Let the system (1.1) be given by the canonical pair (2.4) of sym-

metric matrices for congruence. Let P(π1, . . . , πs) be a parameter matrix (2.6) whose

blocks are defined in (2.7)–(2.17). Then

(2.18) {P(a1, . . . , as) ∣ (a1, . . . , as) ∈ Cs}

is the set of all solutions of the system (1.1).

Corollary 2.2. If the system (1.1) is given by the canonical pair (2.4), then the

dimension of its solution space (2.18) is equal to the sum

(2.19) d(A,B) = dH + dK + dL + dHH + dKK + dLL + dHK + dHL + dKL

whose summands correspond to

● the direct summands of (2.4) of the same type:

dH ∶= 0, dK ∶= 0, dL ∶= c;

● the pairs of direct summands of (2.4) of the same type:

dHH ∶= ∑
i⩽i′
λi=λi′

min(hi, hi′), dKK ∶= ∑
j⩽j′

min(kj , kj′),

dLL ∶= ∑
r⩽r′

(2 max(lr, lr′) + εrr′) , in which εrr′ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

2 if lr = lr′ ,

1 if lr ≠ lr′ ;
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● the pairs of direct summands of (2.4) of different types:

dHK ∶= 0, dHL ∶= c∑
i

hi, dKL ∶= c∑
j

kj .

The set of matrix pairs that are congruent to a pair (A,B) of n̂ × n̂ symmetric

matrices is a manifold in the complex n̂(n̂ + 1) dimensional space of all pairs of

n̂ × n̂ symmetric matrices. This manifold is the orbit of (A,B) under the action of

congruence. The vector space

(2.20) T (A,B) ∶= {UT (A,B) + (A,B)U ∣U ∈ Cn̂×n̂}

is the tangent space to the congruence class of (A,B) at the point (A,B) since

(I + εU)
T
(A,B)(I + εU) = (A,B) + ε(UT (A,B) + (A,B)U) + ε2UT (A,B)U

for all n̂-by-n̂ matrices U and each ε ∈ C. The dimension of the orbit of (A,B) is the

dimension of its tangent space at the point (A,B); it is well defined because the dimen-

sions of tangent spaces at all points of the orbit are equal (see [2, Chapter IV, Corollary

1.5]). The codimension of the orbit of (A,B) (denoted by codim(orbit(A,B))) is the

dimension of the normal space to its orbit at the point (A,B), which is equal to

n̂(n̂ + 1) (the dimension of the space of all pairs of n̂ × n̂ symmetric matrices) minus

the dimension of the orbit of (A,B). Note that the orthogonality in the space of

all pairs of n̂ × n̂ symmetric matrices is defined with respect to the Frobenius inner

product

(2.21) ⟨(A,B), (C,D)⟩ = tr(AC∗
+BD∗

)

where tr(X) denotes the trace of a square matrix X.

The formula (2.19) admits to calculate the codimension of congruence orbit of the

canonical pair (2.4) due to the following theorem.

Theorem 2.3. The codimension of the congruence orbit of a pair (A,B) of n̂× n̂

symmetric matrices is equal to

d(A,B) + n̂,

in which d(A,B) is the dimension of the solution space of system (1.1).

Proof. Define the mapping

f ∶ Cn̂×n̂ → T (A,B), X ↦XT
(A,B) + (A,B)X,

where T (A,B) is the tangent space at the point (A,B) ∈ Cn̂×n̂s × Cn̂×n̂s (see (2.20)),

and Cn̂×n̂s is the space of symmetric n̂ × n̂ matrices.
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Since this mapping is a surjective homomorphism, dimCn̂×n̂ = dimT (A,B) +

dimV (A,B), where V (A,B) ∶= {X ∈ Cn̂×n̂∣XT (A,B) + (A,B)X = 0}. We recall

that dimV (A,B) = d(A,B), e.g., computed as in (2.19). At every point (A,B) we

have the decomposition

Cn̂×n̂s ×Cn̂×n̂s = T (A,B)⊕N(A,B),

in which N(A,B) is the normal space at the point (A,B) with respect to the inner

product defined in (2.21). Therefore,

codim(orbit(A,B)) = dimN(A,B) = dim(Cn̂×n̂s ×Cn̂×n̂s ) − dimT (A,B)

= dim(Cn̂×n̂s ×Cn̂×n̂s ) − dimCn̂×n̂ + dimV (A,B)

= n̂2 + n̂ − n̂2 + d(A,B) = d(A,B) + n̂.

3. Proof of Theorem 2.1 and Corollary 2.2. Let (M,N) and (M ′,N ′) be

two pairs of symmetric matrices such that the sizes of M and N coincide and the

sizes of M ′ and N ′ coincide. Define two systems of matrix equations:

syst((M,N)) ∶ XTM +MX = 0, XTN +NX = 0;

syst((M,N), (M ′,N ′
)) ∶ ZM ′

+MY = 0, ZN ′
+NY = 0.

Lemma 3.1. Let

(A,B) = (A1,B1)⊕ ⋅ ⋅ ⋅ ⊕ (At,Bt)

be a pair of symmetric matrices and let X = [Xij]
t

i,j=1 be a complex block matrix

such that the sizes of Ai,Bi, and Xii are equal for every i = 1, . . . , t. Then X is

a solution of (1.1) (i.e., syst((A,B))) if and only if each diagonal block Xii is a

solution of syst((Ai,Bi)) and each off-diagonal block pair (Xji,Xij) = (ZTji, Yij) with

i ⩽ j, where (Zji, Yij) is a solution of syst((Ai,Bi), (Aj ,Bj)).

Proof. It is enough to consider t = 2. Partitioning the unknown matrix X we

rewrite system (1.1) as follows

[
XT

11 XT
21

XT
12 XT

22

] [
A1 0

0 A2
] + [

A1 0

0 A2
] [
X11 X12

X21 X22
] = [

0 0

0 0
] ,

[
XT

11 XT
21

XT
12 XT

22

] [
B1 0

0 B2
] + [

B1 0

0 B2
] [
X11 X12

X21 X22
] = [

0 0

0 0
] .

Multiplying the matrices we obtain

[
XT

11A1 +A1X11 XT
21A2 +A1X12

XT
12A1 +A2X21 XT

22A2 +A2X22
] = [

0 0

0 0
] ,

[
XT

11B1 +B1X11 XT
21B2 +B1X12

XT
12B1 +B2X21 XT

22B2 +B2X22
] = [

0 0

0 0
] ,
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where the systems on the diagonals are syst((A1,B1)) and syst((A2,B2)), and the

system in the position (1,2) is syst((A1,B1), (A2,B2)) with (XT
21,X12) = (Z,Y )

If (A,B) is the pair (2.5) in canonical form, then it is enough to solve

syst((Ai,Bi)), syst((Ai,Bi), (Aj ,Bj)) with i < j,

in which all (Ai,Bi) are of the form (2.1)–(2.3). All possible cases are considered in

Sections 3.1 to 3.7.

3.1. Solution of syst(Hn(λ)) and syst(Kn). The system syst(Hn(λ)) has the

form

XT∆n +∆nX = 0, XTΛn(λ) +Λn(λ)X = 0.

From the first equation we haveXT = −∆nX∆n Substituting it in the second equation,

multiplying the equation by ∆n from the left side, and using that ∆n∆n = In and

∆nΛn(λ) = Jn(λ) we obtain

XT
+∆nX

T∆n = 0, −XJn(λ) + Jn(λ)X = 0.

Since

(3.1) −XJn(λ) + Jn(λ)X = −λX −XJn(0) + Jn(0)X + λX = −XJn(0) + Jn(0)X,

the solution does not depend on λ. By [18, Chapter VIII] the equation XJn(0) =

Jn(0)X has the solution X = P↗nn and so XT = ∆nX∆n = −XT . Thus the only

solution of (3.1) is X = 0, which proves (2.9) due to Lemma 3.1. Since (3.1) holds,

syst(Kn) has the same solution as the system syst(Hn(0)), so (2.10) is proven too.

Thus dH = dK = 0 and by Theorem 2.3 codim(orbitHn(λ)) = codim(orbitKn) = n.

3.2. Solution of syst(Ln). The system syst(Ln) has the form

[
XT

11 XT
21

XT
12 XT

22

] [
0 FTn
Fn 0

] + [
0 FTn
Fn 0

] [
X11 X12

X21 X22
] = [

0 0

0 0
] ,

[
XT

11 XT
21

XT
12 XT

22

] [
0 GTn
Gn 0

] + [
0 GTn
Gn 0

] [
X11 X12

X21 X22
] = [

0 0

0 0
] ,

in which X is partitioned conformally with the 2×2 block structure of Ln. Multiplying

the matrices we have

(3.2)

[
XT

21Fn + F
T
n X21 XT

11F
T
n + FTn X22

XT
22Fn + FnX11 XT

12F
T
n + FnX12

] = [
0 0

0 0
] ,

[
XT

21Gn +G
T
nX21 XT

11G
T
n +G

T
nX22

XT
22Gn +GnX11 XT

12G
T
n +GnX12

] = [
0 0

0 0
] .
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Since the pairs of blocks at positions (1,2) and (2,1) are equal up to the transposition,

(3.2) decomposes into three independent subsystems.

First consider the subsystem corresponding to the (1,1)-blocks:

(3.3)
XT

21Fn + F
T
n X21 = 0,

XT
21Gn +G

T
nX21 = 0.

To satisfy the first equation of (3.3), X21 must have the form

X21 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 x12 x13 . . . x1n 0

−x12 0 x23 . . . x2n 0

−x13 −x23 0 . . . x3n 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

−x1n −x2n −x3n . . . 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The matrix X21 without the last column is skew symmetric. Substituting X21 in the

second equation of (3.3), we obtain

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −x11 −x12 . . . −x1,n−1 −x1n
x11 0 −x22 − x13 . . . −x1n − x2,n−1 −x2n
x12 x13 + x23 0 . . . −x2n − x3,n−1 −x3n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1,n−1 x1n + x2,n−1 x2n + x3,n−1 . . . 0 −xnn
x1n x2n x3n . . . xnn 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0,

which implies that X21 = 0.

Now consider the subsystem corresponding to the (2,2)-blocks:

(3.4)
XT

12F
T
n + FnX12 = 0,

XT
12G

T
n +GnX12 = 0.

To satisfy the first equation of (3.4), XT
12 must have the form

XT
12 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 x12 x13 . . . x1n x1,n+1
−x12 0 x23 . . . x2n x2,n+1
−x13 −x23 0 . . . x3n x3,n+1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

−x1n −x2n −x3n . . . 0 xn,n+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Substituting it in the second equation of (3.4), we obtain

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2x12 x13 . . . x1,n+1 − x2n
x13 2x23 ⋱ x2,n+1 − x3n
⋮ ⋱ ⋱ ⋱ ⋮

x1n − x2,n−1 ⋱ 2xn−1,n xn−1,n+1
x1,n+1 − x2n . . . xn−1,n+1 2xn,n+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0,
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and so XT
21 = 0.

By [14, Section 3.2] the solution of the off-diagonal subsystem

XT
22Fn + FnX11 = 0,

XT
22Gn +GnX11 = 0,

is X11 = αIn+1 and X22 = −αIn, where α is a parameter.

Summing up, the solution of system (3.2) is

X = [
αIn+1 0n+1,n
0n,n+1 −αIn

] ,

which together with Lemma 3.1 ensure (2.14). We have just one independent param-

eter in X, thus dL = 1 and by Theorem 2.3 codim(orbitLn) = 2n + 1 + 1 = 2n + 2.

3.3. Solution of syst(Hn(λ),Hm(µ)) and syst(Kn,Km). In this section, we

calculate off-diagonal blocks of the solution of the system (1.1) that correspond to

the diagonal blocks Hn(λ) and Hm(µ),. The system syst(Hn(λ),Hm(µ)) has the

following form

Z∆m +∆nY = 0, ZΛm(µ) +Λn(λ)Y = 0,

where Z and Y are the unknown n-by-m matrices.

From the first equation we have Z = −∆nY∆m. We substitute this value of Z in

the second equation, multiplay the equation by ∆n, and using that ∆n∆n = In and

∆nΛn(λ) = Jn(λ) we obtain:

Z +∆nY∆m = 0, −Y Jm(µ) + Jn(λ)Y = 0.

By [18, Chapter VIII] the equation Y Jm(µ) = Jn(λ)Y has the solution Y = 0 if λ ≠ µ

and Y = P↗nm if λ = µ. Summing up, we have

ZT =

⎧⎪⎪
⎨
⎪⎪⎩

0 if λ ≠ µ,

−P↗mn if λ = µ,
and Y =

⎧⎪⎪
⎨
⎪⎪⎩

0 if λ ≠ µ,

P↗nm if λ = µ,

which together with Lemma 3.1 prove (2.12). Note that the system syst(Kn,Km) has

the same solution as syst(Hn(0),Hm(0)) thus (2.13) is justified too. The numbers of

independent parameters in the solutions are equal to dKK = min(n,m) and

dHH =

⎧⎪⎪
⎨
⎪⎪⎩

0 if λ ≠ µ,

min(n,m) if λ = µ.



Symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations 13

3.4. Solution of syst(Ln, Lm). In this section, we calculate off-diagonal blocks

of the solution of the system (1.1) that correspond to the diagonal blocks Ln and Lm.

The system syst(Ln, Lm) has the form

[
Z11 Z12

Z21 Z22
] [

0 FTm
Fm 0

] + [
0 FTn
Fn 0

] [
Y11 Y12
Y21 Y22

] = [
0 0

0 0
] ,

[
Z11 Z12

Z21 Z22
] [

0 GTm
Gm 0

] + [
0 GTn
Gn 0

] [
Y11 Y12
Y21 Y22

] = [
0 0

0 0
] ,

where Z and Y are the unknown (2n + 1)-by-(2m + 1) matrices.

After performing the matrix multiplication, we have

[
Z12Fm + FTn Y21 Z11F

T
m + FTn Y22

Z22Fm + FnY11 Z21F
T
m + FnY12

] = [
0 0

0 0
] ,

[
Z12Gm +GTnY21 Z11G

T
m +GTnY22

Z22Gm +GnY11 Z21G
T
m +GnY12

] = [
0 0

0 0
] .

It is enough to consider the subsystems that correspond to blocks (1,1), (2,1), and

(2,2). Consider first the (1,1)-blocks:

(3.5)
Z12Fm + FTn Y21 = 0,

Z12Gm +GTnY21 = 0.

From the first equation of (3.5) we have

Z12 = [
−W

0 . . . 0
] , Y21 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

W ⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where W = [wij] is any n-by-m matrix. Substituting Z12 and Y21 in the second

equation of (3.5), we obtain

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 w11 . . . w1,m−1 w1m

−w11 w21 −w12 . . . w2,m−1 −w1m w2m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−wn−1,1 wn1 −wn−1,2 . . . wn,m−1 −wn−1,m wnm
−wn1 −wn2 . . . −wnm 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0.

Therefore we have that W = 0 and thus both Y21 and Z12 are zero blocks.

The subsystem corresponding to the (2,1)-blocks is

(3.6)
Z22Fm + FnY11 = 0,

Z22Gm +GnY11 = 0.
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By [14, Section 3.4], it has the solution Z22 = −P
↔
nm and Y11 = P

↔
n+1,m+1. Recall that

the n ×m part, starting form the top-left corner of Y11 is equal to Z22 (because of

the first equation of (3.6)). Therefore the parameter entries of both matrices are the

same and the dimension of the solution space is equal to m − n + 1. Note that the

subsystem corresponding to the (1,2)-blocks is equal to (3.6) up to the transposition

and interchanging the roles of n and m. Thus we have that Y22 = (−P↔mn)
T = −P ↕nm

and Z11 = (P↔m+1,n+1)
T = P ↕n+1,m+1 and the dimension of the solution space is equal to

n −m + 1.

Now consider the subsystem of equations corresponding to the (2,2)-blocks

(3.7)
Z21F

T
m + FnY12 = 0,

Z21G
T
m +GnY12 = 0.

From the first equation of (3.7) we obtain that

(3.8) Y12 = [
−W

a1 . . . am
] and Z21 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b1
W ⋮

bn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where W = [wij] is any n-by-m matrix. Substituting Z21 and Y12 in the second

equation of (3.7), we obtain

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w21 −w12 w22 −w13 . . . w2,m−1 −w1m w2m − b1
w31 −w22 w32 −w23 . . . w3,m−1 −w2m w3m − b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wn1 −wn−1,2 wn2 −wn−1,3 . . . wn,m−1 −wn−1,m wnm − bm−1
−a1 −wn2 −a2 −wn3 . . . −an−1 −wnm −an − bm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0.

Thus we have that Y12 = Pn+1,m (an (n+ 1)×m dense Hankel matrix), Z21 = −Pn,m+1
(an n × (m + 1) dense Hankel matrix), with common n ×m part (up to the sign, see

(3.8)), and an = bm. Hence the sets of parameter entries of Y12 and Z21 are the same,

and so they are denoted by the same letter. Calculating the number of independent

parameters in the solution we obtain that the dimension of the solution space is equal

to n +m.

Summing up the answers for all the four equations, we obtain (Z,Y ) that is the

solution of syst(Ln, Lm) and transposing Z we get

ZT = [
R↕Tn+1,m+1 −Qm+1,n

0m,n+1 −P↔Tnm

] and Y = [
P↔n+1,m+1 Qn+1,m
0n,m+1 −R↕nm

] ,

which proves (2.14) due to Lemma 3.1. Calculating the number of independent pa-

rameters we obtain

dLL =

⎧⎪⎪
⎨
⎪⎪⎩

2n + 2 if n =m,

2 max(n,m) + 1 if n ≠m.
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3.5. Solution of syst(Hn(λ),Km). In this section, we compute off-diagonal

blocks of the solution of system (1.1) that correspond to the diagonal blocks Hn(λ)

and Km,. The system syst(Hn(λ),Km) has the form

ZΛm(0) +∆nY = 0, Z∆m +Λn(λ)Y = 0,

where Z and Y are the unknown n-by-m matrices.

From the first equation we have Y = −∆nZΛm(0). We substitute this value of Y

in the second equation, multiply the equation by ∆m from the right side, and use

that ∆m∆m = Im and Λm(λ)∆m = Jm(λ)T to obtain the following system

Y +∆nZΛm(0) = 0, Z − Jn(λ)
TZJm(0)T = 0.

By [14, Section 3.5] the second equation of the system has only the trivial solution

Z = 0. Thus Y = 0 too. Now Lemma 3.1 ensures (2.15). We have no parameters in

the solution, so dHK = 0.

3.6. Solution of syst(Hn(λ), Lm). In this section, we find the off-diagonal

blocks of the solution of system (1.1) that correspond to the diagonal blocks Hn(λ)

and Lm. The system syst(Hn(λ), Lm) has the form

Z [
0 FTm
Fm 0

] +∆nY = 0,

Z [
0 GTm
Gm 0

] +Λn(λ)Y = 0,

where Z and Y are the unknown n-by-(2m + 1) matrices.

From the first equation we have

(3.9) [Y1 Y2] = [−∆nZ2Fm −∆nZ1F
T
m] .

Substituting it in the second equation, we obtain

[Z2Gm − Jn(λ)
TZ2Fm Z1G

T
m − Jn(λ)

TZ1F
T
m] = 0.

The solution of these equations are given in [14, Section 3.6]. Altogether, using (3.9)

we have the solution (Z,Y ) of syst(Hn(λ), Lm) and therefore

ZT = [
−P ⌜

m+1,n(λ)
0mn

] and Y = [0n,m+1 ∆nP
⌜T
m+1,n(λ)F

T
m] ,

which together with Lemma 3.1 ensures (2.16). The number of independent parame-

ters in the solution is dHL = 2n.
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3.7. Solution of syst(Kn, Lm). Finally, we compute off-diagonal blocks of the

solution of system (1.1) that correspond to the diagonal blocks Kn and Lm. The

system syst(Kn, Lm) has the form

Z [
0 FTm
Fm 0

] +Λn(0)Y = [
0 0

0 0
] ,

Z [
0 GTm
Gm 0

] +∆nY = [
0 0

0 0
] ,

where Z and Y are the unknown n-by-(2m + 1) matrices.

From the second equation we obtain

(3.10) [Y1 Y2] = [−∆nZ2Gm −∆nZ1G
T
m] .

By substituting it in the first equation, we have

[Z2Fm − Jn(0)
TZ2Gm Z1F

T
m − Jn(0)

TZ1G
T
m] = 0.

The solution of these equations are given in [14, Section 3.7]. Using (3.10) and

transposing Z we get

ZT = [
−P⇘Tn,m+1

0mn
] and Y = [0n,m+1 ∆nP

⇘
n,m+1G

T
m] .

Thus using Lemma 3.1 we prove (2.17). Calculating the number of independent

parameters in the solution we obtain that dKL = 2n.

4. Two examples. We illustrate our results by considering two different pairs

of matrix equations (1.1) with (A,B) in canonical form.

Example 4.1. Consider the system (1.1) given by the 13 × 13 symmetric matrix

pair (A,B) =K3 ⊕L1 ⊕L3. By Theorem 2.1 its solution is the matrix

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 x3 0 0 0 0 x5 x6 x7
0 0 0 0 0 x2 0 0 0 0 0 x5 x6
0 0 0 0 0 x1 0 0 0 0 0 0 x5
0 −x1 −x2 x4 0 0 x13 x14 x15 0 x8 x9 x10
−x1 −x2 −x3 0 x4 0 0 x13 x14 x15 x9 x10 x11

0 0 0 0 0 −x4 0 0 0 0 0 0 0

0 0 0 0 0 −x8 x12 0 0 0 0 0 0
0 0 −x5 0 0 −x9 0 x12 0 0 0 0 0
0 −x5 −x6 0 0 −x10 0 0 x12 0 0 0 0
−x5 −x6 −x7 0 0 −x11 0 0 0 x12 0 0 0

0 0 0 0 0 −x13 0 0 0 0 −x12 0 0
0 0 0 0 0 −x14 0 0 0 0 0 −x12 0
0 0 0 0 0 −x15 0 0 0 0 0 0 −x12

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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in which x1, . . . , x15 ∈ C.

The dimension of the solution space is d(A,B) = 15 (the number of independent

parameters in X) and therefore the codimension of the congruence orbit of (A,B) is

equal to d(A,B) + n̂ = 28.

Example 4.2. Consider the system (1.1) given by the 7 × 7 symmetric matrix

pair (A,B) =H2(λ)⊕L2. By Theorem 2.1 its solution is the matrix

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 x2 λx2 + x1
0 0 0 0 0 x1 λx1
−x1 −x2 x3 0 0 0 0
−λx1 −λx2 − x1 0 x3 0 0 0

−λ2x1 −λ2x2 − 2λx1 0 0 x3 0 0

0 0 0 0 0 −x3 0
0 0 0 0 0 0 −x3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

in which x1, x2, x3 ∈ C.

The dimension of the solution space is d(A,B) = 3 (the number of independent

parameters in X) and therefore the codimension of the congruence orbit of (A,B) is

equal to d(A,B) + n̂ = 10.
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