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Abstract. Several linear-time algorithms for automata-based pattern
matching rely on failure transitions for efficient back-tracking. Like ep-
silon transitions, failure transition do not consume input symbols, but
unlike them, they may only be taken when no other transition is ap-
plicable. At a semantic level, this conveniently models catch-all clauses.
Recent work demonstrates that failure transitions allow for compact rep-
resentation of finite-automata in general. For devices with rich alphabets
and dense transition functions in particular, the potential savings are
great. In this paper, we prove that three important problems related to
the introduction of failure transitions are NP-complete, but that efficient
approximation is possible for at least one of them.

1 Introduction

Deterministic finite-state automata (DFA) offer a less compact representation
than their non-deterministic counterpart, but despite this, they are often the
preferred alternative in real-world applications. Their prevalence is largely due
to convenient manipulation and to an efficiently solvable membership problem:
Its time complexity in the uniform case is O(|w| · log |Q|), where w is the input
string and Q the state space. The corresponding figure for non-deterministic
automata is O(|w| · |δ|), where δ is the transition relation. A middle ground be-
tween compactness of representation and classification efficiency can be reached
via failure transitions. Similar to epsilon transitions, these do not consume any
input symbols, but unlike epsilon transitions, they can only be taken when there
are no other applicable transitions.

When states in an automaton share a set of outgoing transitions, the au-
tomaton can be compressed by replacing these duplicates by a smaller number
of failure transitions. Figure 1 (a) shows a state-minimal DFA over the alphabet
{a, b, c} ∪ A ∪ B ∪ C, where A, B, and C are the sets of symbols {ai | i ∈ [k]},
{bi | i ∈ [k]}, and {ci | i ∈ [k]}, respectively, for some natural number k. A
language-equivalent automaton in which regular transitions has been replaced
by failure transitions is given in Figure 1 (b). The failure transitions are those
labelled ∆. In this case, the failure transitions help save 3k−2 transitions (more
precisely, 3k+3 regular transitions are saved and 5 failure transitions are added).
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The addition of failure transitions does not preserve determinism in the clas-
sical sense of the word, but if the input automaton was deterministic and each
state is allowed at most one outgoing failure transition, then the result is a
transition deterministic automaton. In other words, although a deterministic
automaton augmented with failure transitions can be in more states than one
after reading part of the input string, every time it consumes an input symbol,
the computation collapses onto a single state. As a consequence, the complexity
of the membership problem only increases by a factor |Q|, where Q is the state
set of the original DFA.
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Fig. 1. A pair pf finite-state automata for the same language. The labels A, B, and C
denote the sets of symbols {ai | i ∈ [k]}, {bi | i ∈ [k]}, and {ci | i ∈ [k]}, respectively,
for some natural number k.

Contributions

We prove that the Failure DFA (FDFA) transition-minimisation problem is NP-
complete, thereby cancelling the search for an efficient and optimal algorithm
initiated by [8]. We also show that a variant of the problem, where we are
given a DFA and asked to save as many transitions as possible by introducing
failure transitions, while preserving the basic structure of the DFA, is also NP-
complete. In this case, however, we are able to provide an efficient approximation
algorithm that saves at least 2/3 of the transitions an optimal algorithm could
save. However, the question whether the transition minimisation problem can
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also be approximated remains open. Finally, we solve a problem left open in [9]
by showing that minimisation of binary automata is NP-complete.

Related work

Failure transitions make their first appearance in an article on pattern matching
by Knuth et al. The authors give a linear-time algorithm for finding all occur-
rences of a pattern string within a text string. The algorithm reads the text
string from left-to-right, while moving a pointer back and forth in the pattern
string to remember what prefix of it has been encountered so far. Whenever the
text string diverges from the pattern string, the algorithm backtracks by shifting
the pointer according to a pre-computed failure function. [7]

Aho and Corasick build on this idea when they consider the problem of
finding dictionary entries in an input string. The dictionary consists of a finite
set of words L, and is represented as a prefix-tree acceptor A. Recall that this
is a partial DFA recognising L, whose states are in one-to-one correspondence
with the prefixes of L. To make A accept Σ∗LΣ∗, every state w is given a failure
transition pointing to the longest suffix of w that is still a prefix of a string in
LΣ∗. The advantage of failure transitions is that they save space, simplify the
automata construction, and allow for efficient classification of input strings. [1]

Mohri, in turn, continues the work of Aho and Corasick, but takes as his
starting point a DFA A recognising a possibly infinite set of target patterns.
By traversing the states of A breadth-first, while adding failure transitions and
auxiliary states, his algorithm produces a FDFA A′ that recognises Σ∗L. The
time complexity is linear in the size of A′, which in the worst case is exponential
in the size of A, but because of the failure transitions, the time complexity is
not affected by the size of the alphabet. [10]

A survey of automata for pattern matching is given by [4]. In this context,
failure transitions are sometimes treated under the name suffix links [12].

Recently, Kourie et al. considered the problem of using failure transitions to
save as much space as possible. In other words, given an input DFA, try to find an
equivalent automaton with failure transition whose total number of transitions
is minimal. They develop two heuristic algorithms for solving the problem, but
leave the complexity of the problem open. [8]

2 Preliminaries

For n ∈ N, we write [n] for the set {1, . . . , n}.
Automata. A deterministic finite-state automaton (abbreviated DFA) is a
tuple A = (Q,Σ, δ, q0, F ) where Q is a finite set of states, δ : Q × Σ → Q is a
(potentially partial) transition function, q0 ∈ Q is the initial state, and F ⊆ Q
is a set of final states. As usual, δ is generalised to δ′ : Q × Σ∗ → Q by letting
δ′(q, ε) = q and δ′(q, aw) = δ′(δ(q, a), w) for every q ∈ Q, a ∈ Σ, and w ∈ Σ∗.

A failure DFA (FDFA) is a tuple B = (Q,Σ, δ,∆, q0, F ) where (Q,Σ, δ, q0, F )
is a DFA and ∆ : Q→ Q is a (potentially partial) failure function. Similarly to
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the case for DFA, we derive from δ and ∆ a partial function δ′′ : Q×Σ∗ → Q.
We still have δ′′(q, ε) = q, but now

δ′′(q, aw) =

{
δ′′(δ(q, a), w) if δ(q, a) is defined, and
δ′′(∆(q), aw) otherwise,

for every q ∈ Q, a ∈ Σ, and w ∈ Σ∗. Note that if ∆ is not defined on q, or if
its invocation causes infinite recursion, then the computation is aborted and the
input string rejected.

From here on, we write δ also for δ′ and δ′′. The language accepted by a
(failure) DFA A is then L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

Let A = (Q,Σ, δ,∆, F, q0) be a (failure) DFA. Since we are concerned with
reducing the number of transitions, we define the size of A as |A| = |δ| if A is
a DFA, or|A| = |δ|+ |∆| if it is a failure DFA. For p ∈ Q, we denote by Σp the
set of symbols {a ∈ Σ | ∃q ∈ Q : δ(p, a) = q}. The abilities of p ∈ Q is the set
abil (p) = {(a, q) ∈ Σ × Q | δ(p, a) = q}, and the ability overlap of the states
P ⊆ Q is the set

⋂
p∈P abil (p).

Problems of interest. The two main problems we study are the transition-
minimisation problem and the failure-reduction problem.

Definition 1 (The transition-minimisation problem). In the transition-
minimisation problem we are given a DFA A and an integer k. The question is
whether there is an FDFA B with at most k transitions such that L(B) = L(A).

Definition 2 (The failure-reduction problem). The input to the failure-
reduction problem is a DFA A and an integer k. The question is whether we
can construct an FDFA B from A by substituting failure transitions for regular
transitions, so that B has at least k fewer transitions than A and L(B) = L(A).

The main difference between the two problems are that in the transition-
minimisation problem, we are not required to preserve any of the structure of
the input DFA. In particular, we are allowed more states.

We will prove that both problems are, in general, NP-complete. It should
be stressed that neither result follows immediately from the other. On the one
hand, the freedom to add states could potentially make the problem easier. On
the other hand, failure-reduction does not always produce a transition-minimal
FDFA, which if it were the case could make that problem easier.

3 Basic properties of FDFAs

Before we address the subject matter, we make some basic observations that will
be helpful later. The first of these is that FDFAs can be efficiently rewritten as
language-equivalent DFAs by computing the closure of the failure transitions.
The technique is quite similar to epsilon-removal.

Observation 3 Given an FDFA, we can construct an equivalent DFA with the
same number of states in polynomial time.
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Proof. Given an FDFA B = (Q,Σ, δ,∆, F, q0) we construct an equivalent DFA
A = (Q,Σ, δ′, F, q0). Notice that every part of A except for δ′ is the same as the
corresponding part of B. We change δ into δ′ as follows. To begin with, we set
δ′ = δ. We then process the states in Q, possibly adding outgoing transitions. If
q1 ∈ Q has no failure transition in B, the outgoing transitions from q1 stay the
same. If q1 has a failure transition, let q1, q2, . . . qk be the path of states reached
by starting from q1 and following ∆. In other words, q2 = ∆(q1), q3 = ∆(∆(q2)),
and so forth. If the path has a cycle, then qk is the last state before the cycle
closes. We look at the states on the path in order, starting with q2. When we
reach qi, for every a such that q1 does not yet have an outgoing transition labeled
a in δ′ and such that there is a p with δ(qi, a) = p, we let δ′(q1, a) = p. ut

Observation 3 makes it clear that failure transitions may save on regular
transitions, but not on states.

Observation 4 No FDFA for a language L can have fewer states than the
state-minimal DFA for L.

In fact, failure transitions are sometimes better leveraged by introducing more
states. This situation is further discussed in the upcoming proof of Theorem 8.

Observation 5 For some languages L, every transition-minimal FDFA for L
has more states than the state-minimal DFA for L.

By Observation 3, when given two FDFAs, we can construct equivalent DFAs,
and then minimise and compare these, all in polynomial time.

Observation 6 Equivalence testing for FDFAs is polynomial.

However, unlike DFAs, FDFAs do not offer a canonical form of representation.

Observation 7 Given a language L, there is, in general, no unique (up to ho-
momorphism) state-minimal or transition-minimal FDFA for L.

4 Transition minimisation

We first prove that the transition-minimisation problem is computationally hard.
The proof is inspired by a proof by Jiang and Ravikumar, showing that the
Normal Set Basis problem is NP-hard [6]. See also [2].

Theorem 8. The transition-minimisation problem is NP-complete.

Proof. The transition-minimisation problem is in NP since we can guess an
FDFA with at most s transitions and test it for equivalence with the input DFA
(viz. a FDFA without failure transitions) in polynomial time by Observation 6.

To show NP-hardness, we reduce from Vertex Cover. Given a graph
G = (V,E) with |V | = n and |E| = m and an integer k, we construct a DFA AG
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and an integer s such that there is a language-equivalent FDFA BG that has at
most s transitions if and only if G has a vertex cover of size at most k.

We first define the language LG that A will accept. Let V = {v1, . . . , vn} and
E = {ei,j | (vi, vj) ∈ E ∧ i < j}. We define the alphabet that LG will use by
Σ = V ∪E ∪{ai, bi, ci | vi ∈ V }. Thus Σ has one symbol per vertex, one symbol
per edge, and three extra symbols per vertex, so the size of Σ is 4n+m.

The language LG will only contain words of length two. The first symbol will
be taken from V ∪ E and the second symbol will depend on the first. To this
end, we define the residual language of each member of V ∪ E as follows.

res(vi) = {ai, bi, ci} (for vi ∈ V )

res(ei,j) = {bi, ci, bj , cj} (for ei,j ∈ E)

We now define LG by

LG =

( ⋃
vi∈V

vi · res(vi)

)
∪

 ⋃
ei,j∈E

ei,j · res(ei,j)

 .

The automaton AG is simply the minimal DFA for LG; see the illustration
in Figure 2. We note that AG has n+m+ 2 states and 4n+ 5m transitions. The
integer s will be 4n+ 4m+ k.
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Fig. 2. A graph G and the corresponding DFA AG

Let q0 be the initial state of AG and let qf be the accepting state. For each
vi ∈ V , let qi be the state AG takes after reading vi. Similarly, for each ei,j ∈ E,
let pi,j be the state AG takes after reading ei,j .

Assume that G has a vertex cover of size k. We show how to construct BG

with s transitions such that L(BG) = LG. Let C ⊆ V be a vertex cover for G of
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size k. For every vi ∈ C, do the following. Remove the transitions δ(qi, bi) = qf
and δ(qi, ci) = qf . Add a state ri and the transitions ∆(qi) = ri, δ(ri, bi) = qf ,
and δ(ri, ci) = qf . See Figure 3 for an illustration. The automaton now has
4n+ 5m+ k transitions, but we can save m transitions as follows.

For every ei,j ∈ E, we know that at least one of vi and vj belongs to C.
Without loss of generality, assume that vi ∈ C. We then remove the transitions
δ(pi,j , bi) = qf and δ(pi,j , ci) = qf and add the failure transition ∆(pi,j) = ri.
This saves one transition. Since we can do this for every edge, we save m tran-
sitions and arrive at an automaton with s = 4n+ 4m+ k transitions.

For the other direction, assume that there is an FDFA BG = (Q, δ,∆, F, q0)
for LG with s transitions. We argue that G must have a vertex cover of size k.

First, since all words in LG have length two, Q contains three disjoint sets:
those reachable after reading 0, 1, or 2 symbols, respectively. The first set is the
singleton {q0}. The third set can also be assumed to be a singleton {qf} = F .
As for the middle set, it has to have at least n+m states, one for each possible
first symbol. The reason for this is that all the symbols in V ∪ E have different
residual languages. Let Q1 = {qi | vi ∈ V } ∪ {pi,j | ei,j ∈ E} be the states
reached by reading one symbol (before taking any failure transitions).

We also notice that no state in Q1 can have a failure transition to another
state in Q1, since for every pair ti, tj ∈ Q1, neither Σti ⊆ Σtj nor Σtj ⊆ Σti .
This means that every failure transition must lead to a state that is not in Q1.

Creating new states and failure transitions can only save transitions when
states in Q1 have overlapping residual languages. The only case where this hap-
pens is when every “edge state” qi,j has overlapping residual languages with qi
and qj . In the case of qi the overlap is {bi, ci} and in the case of qj it is {bj , cj}.

It follows that the only way failure edges can save transitions is to let states
qi fail to a new state ri on bi and ci, let ri lead to qf on bi and ci and let states
pi,j or pj,i also fail to ri on bi and ci. We can count the savings we achieve in the
following way. For every qi we add a failure edge to, we get one extra transition.
For every pi,j , on the other hand, that can fail to an ri corresponding to an
incident vertex, we save one transition.

If BG has s = 4n+4m+k transitions, this means that we have “saved” m−k
transitions. Assume that we have added failure edges to k′ “vertex states” qi.
How many “edge states” must then have received failure edges? Let this number
be `. We get ` − k′ = m − k. Notice that we must have k′ ≤ k, since ` ≤ m. If
k′ = k, then ` = m and we immediately have that G has a vertex cover of size
k. If, on the other hand, k′ < k, we note that m − ` = k − k′. In other words,
the number of edges that are not using failure transitions equals k minus the
number of vertices that are using failure transitions. We can now construct a
vertex cover for G as follows. Include the k′ vertices whose corresponding states
in BG have failure transitions in the cover. This leaves k − k′ edges uncovered.
For each such edge, we select one of its endpoints arbitrarily and include it in
the cover. The result is a cover of size k for all the edges. ut
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Fig. 3. The vertex state q1 has been extended with failure state r1 and the edge state
p1,2 has attached to it.

5 Failure reduction

In this section, we study the failure-reduction problem. We first establish that
it is NP-complete and then give an efficient algorithm which approximates it
within a factor 2/3.

Theorem 9. The failure-reduction problem is NP-complete.

Proof. The problem is in NP since, by Observation 6, equivalence testing for
FDFAs is polynomial. Given a DFA A and an integer k, we can guess an FDFA
with k fewer transitions than A and verify that it is equivalent to A.

For NP-hardness, we reduce from Hamiltonian Cycle. Given a graph
G = (V,E) with |V | = n and |E| = m we construct a DFA A = (Q,Σ, δ, I, F )
such that there is an FDFA B for L(A) with k = n(n − 2) fewer transitions if
and only if G has a Hamiltonian cycle.

Let V = {v1, . . . , vn}. The alphabet Σ contains a letter for each vertex and
for each edge of G, i.e., Σ = V ∪ {ei,j | i < j ∧ (vi, vj) ∈ E}. The state set of A
is Q = {qI , qF } ∪ {p1, . . . , pn}, with I = {qI} and F = {qF }. We now describe
the transition function of A in detail.

– For every vertex name vi, δ(qI , vi) = pi.
– Every state pi ∈ {p1, . . . , pn} has the following outgoing transitions.
• δ(pi, vi) = pi,
• δ(pi, vj) = qF for every vj 6= vi,
• δ(pi, ej,`) = qF for every edge name ej,` such that i = j or i = `,
• δ(pi, ej,`) = pi for every edge name ej,` such that i 6= j and i 6= `.

This means that the language L(A) of A conisists of all words viτ
∗
i σi, where

τi contains vi and the names of all edges that are not adjacent to vi, while
σi contains V \ {vi} and the names of all edges that are adjacent to vi. Let
LG = L(A). It is straigtforward to verify that A is the minimal DFA for LG.
Notice that qI has n outgoing transitions, qF has none and qi has n + m, for
every i ∈ [n]. In total, A has n+ n(n+m) = n(n+m+ 1) transitions.
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First, we assume that G has a Hamiltonian cycle and show that there is an
FDFA B with k = n(n− 2) fewer transitions than A such that L(B) = LG. By
renaming vertices, we can assume that the cycle is v1 → v2 → · · · → vn → v1.
We construct B from A by adding a failure transition ∆(pi) = pi+1 for every
i ∈ [n− 1] and the failure transition ∆(pn) = p1. All transitions that have been
made redundant are then removed. After this, qI still has n outgoing transitions,
while qF has none. We argue that every pi, for i ∈ [n] has m + 2 outgoing
transitions, i.e., n − 2 fewer than in A. Indeed, looking at pi and pi+1 (or p1,
if i = n), we see that in A, they both have transitions to qF for every vj such
that j 6∈ {i, i+ 1}. Thus n− 2 transitions can be removed from pi. Additionally
they both have transitions to qF on the edge name ei,i+1. Thus we can remove
one additional outgoing transition from pi. On the other hand, we have added
a failure transition from pi. This means that in total, pi has n − 2 outgoing
transitions fewer in B than in A. This means that B has n(n−2) fewer transitions
than A, as required.

Next, we assume that there is an FDFA B = (Q,Σ, δ′, ∆, I, F ) with k tran-
sitions fewer than A and such that L(B) = LG and argue that G must have a
Hamiltonian cycle.

There has to be n transitions leaving qI , one for each vertex name vi. We
can assume that these are the transitions δ(qI , vi) = pi. On the other hand, no
transitions need to leave qF . Thus we can focus on the transitions from the states
p1, . . . , pn. Each failure transition will go from one such state to another such
state. No pair of such states can share more than n − 1 abilities, which means
that each such state will have at least m + n − (n − 1) + 1 = m + 2 outgoing
transitions. This means that B will have at most k = n(n− 2) transitions fewer
than A and that, for this number to be realised, each state in {p1, . . . , pn} must
have exactly m+ 2 outgoing transitions.

In A, each such state has one transition per edge name and one per state
name, i.e., n+m outgoing transitions. Thus every such state in B must have a
failure transition. Assume that there is a failure transition from pi to pj . Then
we can remove the n − 2 outgoing transitions on the vertex names V \ {vi, vj}
from pi. On the other hand, we have added a failure transition, leaving us with
m+3 transitions. This means that for pi to have only m+2 transitions, it has to
share one more ability with pj . This is only possible if there is an edge between
vi and vj in G. In this case, both states have transitions to pF on ei,j .

Next, we argue that the graph of the failure function ∆ must be connected
and cyclic. Note that if there is a failure transition from pi to pj , then pi must
have a transition to itself on vi and to qF on vj . These are its only transitions
on vertex names. This also means that for all transitions on vertex names to qF
to be represented somewhere, there can be no two states that fail to the same
state. Since each such transition must be reachable via failure transitions from
all but one state in {p1, . . . , pn}, the graph of ∆ is indeed connected and cyclic.

As shown above, each edge of the graph of ∆ also corresponds to an edge in
G. Thus ∆ induces a Hamiltonian cycle on G. ut
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Since the transition reduction problem is computationally hard, approximate
solutions may be valuable. We next suggest a fast and easily implemented algo-
rithm that saves at least two-thirds as many transitions as an optimal algorithm.

Throughout the following, A = (Q,Σ, δ, I, F ) is a DFA, and our objective
is to construct a language-equivalent FDFA with as few transitions as possible
by adding failure transitions and removing regular transitions. To guide the
placement of failure transitions, we define the prospect graph for A. Intuitively,
the graph tells us between what states failure transitions are useful and allowable:
We only want to add failure transitions if they save us regular transitions, and
we should not add transitions that alter the accepted language.

Definition 10 (Prospect graph). The prospect graph for A is the weighted
directed graph P (A) = (Q,E,w), with

E = {(p, q) | abil (p) ∩ abil (q) 6= ∅ and Σp ⊆ Σq} ,

and w((p, q)) = |abil (p) ∩ abil (q)| − 1, for every (p, q) ∈ E.

The prospect graph for the DFA of Figure 1 is shown in Figure 4. By adding
a failure transition between any two of the states q1, q2, and qk, we can save k
regular transitions at the cost of one failure transition. We may also add a failure
transition from q4 to q5 or q6, thereby saving 0 or 1 transitions, but the opposite
direction is not allowed: if a failure transition were added from q6 to q4 it would
be possible to read the symbol a from q6, and this would increase the language.

q0

q1

q2

q3

q4

q5

q6

qf

k
−

1

k −
1

k
−

1

1

0

0

Fig. 4. The prospect graph for the DFA in Figure 1 (a)

Lemma 11. Let A = (Q,Σ, δ, q0, F ) be a DFA and B = (Q,Σ, δB , ∆B , q0, F )
a transition-minimal language-equivalent FDFA that can be constructed from
A by adding failure-transitions and removing redundant regular transitions. Let
k = |A| − |B|. There is a language-equivalent FDFA C = (Q,Σ, δC , ∆C , q0, F )
such that k′ = |A| − |C| ≥ 2k/3 and such that ∆C is acyclic.

Proof. We first show that every cycle in ∆B is of length 3 or more. Suppose
that B has a failure cycle of length two through states p and q. We know then
that Σp = Σq, since the states can fail to each other. By removing the failure
transition from p to q, and moving all transitions on tuples in abil (q) ∩ abil (p)
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from q to p, we obtain a smaller automaton. Since the operation preserves the
residual languages of p and q, the new automaton is language-equivalent with
the original one, contrary to the minimality assumption.

By repeatedly removing from each cycle of ∆B the failure transition that
saves the least regular transitions, the failure function can be made acyclic.
Since ∆B has out-degree at most 1, no edge can belong to more than one cycle.
According to the reasoning above, it suffices to drop at most one third of the
edges to clear all cycles. For each failure edge that is removed, at least two will
remain, and each of them will save at least as many regular transitions as the
removed edge. This means that when all cycles have been eliminated, we are left
with a failure function ∆C that saves at least 2/3 as many transitions as ∆B . ut

Each failure function ∆ on Q describes a function graph (Q,∆), i.e., a graph
where each node has out-degree at most one.

Observation 12 Let G = (V,E,w) be a directed graph with positive edge
weights. Let ∆ ⊆ E be such that (V,∆) is an acyclic function graph. Then
(V,∆−1) is a branching, i.e., an acyclic directed graph such that no vertex has in-
degree larger than 1. Further more, if (V,∆−1, w) is a maximum weight branching
on (V,E−1, w), then (V,∆,w) is a maximum weight acyclic function graph on
G = (V,E,w).

Theorem 13 below now follows immediately from the fact that it is possible to
find a maximum branching on the prospect graph in polynomial time. An algo-
rithm for this problem was discovered in the 1960s by Chu and Liu [3] and, inde-
pendently, by Edmonds [5]. An implementation that runs in time O(|E| log |V |)
was later suggested by Tarjan [11].

Theorem 13. The failure-reduction problem can be approximated within a fac-
tor 2/3 in polynomial time.

The automaton in Figure 1 (b) is a transition-minimal state-minimal FDFA
for L(A). Since its failure function contains a cycle, the above approximation
technique will not find it, but it will find the FDFA in Figure 5 which saves
2k − 1 transitions.

6 Minimisation of binary automata

Binary automata (BFDFAs) are a restricted form of FDFAs, introduced by
Kowaltowski, Lucchesi and Stolfi in [9]. An FDFA B = (Q,Σ, δ,∆, q0, F ) is
a BFDFA if there is at most one non-failure transition from each state, i.e, for
every p ∈ Q there is at most one a ∈ Σ such that δ(p, a) is defined. This means
that the automaton can be represented as a set of four-tuples (p, a, q, q′), with
δ(p, a) = q and ∆(p) = q′. To minimise a BFDFA means to minimise the num-
ber of such tuples. It was conjectured in [9] that this problem is NP-complete.
We show that this is indeed the case. To save space, the proof of the following
theorem has been moved to Appendix A.

Theorem 14. The minimisation problem for binary automata is NP-complete.
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Fig. 5. An FDFA with acyclic failure function that accepts the same language as the
DFA in Figure 1 (a)
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A Binary automata

Proof (of Theorem 14). For membership, it is enough to notice that for every
BFDFA B, just as for every FDFA, an equivalent DFA AB can be constructed
in polynomial time. Thus a nondeterministic algorithm can, given B, guess a
sufficiently small BFDFA B′, construct AB and AB′ , minimise them, and check
for equivalence.

For NP-hardness, we again reduce from Vertex Cover. Given a graph
G = (V,E) with |V | = n and |E| = m and an integer k, we will construct a
BFDFA BG and an integer s such that the minimal BFDFA for L(BG) has s or
fewer tuples if and only if G has a vertex cover of size k.

We first define L(BG). Let V = {v1, . . . , vn}. We will use names for the
vertices and edges of G as letters for our alphabet Σ. Thus

Σ = V ∪ {ei,j | i < j ∧ (vi, vj) ∈ E}.

We now define our language by

L(BG) =
⋃

(vi,vj)∈E

(ei,j · (vi + vj)) .

In other words, L(BG) contains edge names followed by the name of one of the
vertices incident to the edge. In particular, all strings in L(BG) have length two
and the language is thus finite.

Given L(BG) we can trivially construct BG with 3m tuples. What we will
show is that there is an equivalent BFDFA B′G with s = 2m + k + 1 tuples if
and only if G has a vertex cover of size k.

Assume that C ⊆ V is a vertex cover for G and that |C| = k. We construct
B′G = (Q, δ, F,∆, q0) as follows. For every edge (vi, vj) in E, there are two states,
pi,j and qi,j in Q. Additionally, Q has one state ri for every vertex vi in the cover
C. Finally, Q has an accepting state > and a rejecting state ⊥. In total,

Q = {pi,j , qi,j | i < j ∧ (vi, vj) ∈ E} ∪ {ri | vi ∈ C} ∪ {>,⊥}.

Let ≺ be the lexicographical ordering on the edge names ei,j , i.e., ei,j ≺ ei′,j′ if
i < i′ or if i = i′ and j < j′. We will also use this ordering on the corresponding
sets of states. For a state pi,j we write Next(pi,j) for the state that comes next
in this ordering. The initial state of B′G is q0 = min≺{pi,j}. For every edge name
ei,j , we set δ(pi,j , ei,j) = qi,j . For every edge name ei,j except et,t′ = max≺{ei,j}
we also set ∆(pi,j) = Next(pi,j). For et,t′ we set δ(pt,t′) =⊥. Next, we describe
the transitions leaving the states qi,j . By assumption, either vi or vj (or both)
belongs to C. Assume, without loss of generality, that vi ∈ C. Then we set
δ(qi,j , vj) = > and ∆(qi,j) = rj . For the states ri, we set δ(ri, vi) = > and
∆(ri) =⊥. Finally, we set ∆(>) =⊥. This completes the description of B′G. If we
represent it as four-tuples, it will have one tuple per state, except for ⊥. Thus
it has 2m+ k + 1 tuples. It should be clear that B′G accepts L(BG).

We now need to show that if G has no vertex cover of size k, then there is
no BFDFA for L(BG) with s or fewer tuples. Since each state can have only one
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transition that reads a letter, there must be m four-tuples where the letter is
an edge name. We can now ask how many different states we can be in after
having just read one letter and not taken any failure transitions after that. Notice
that for each edge name, the residual language is unique. In other words, there
are no two edge names ei,j and ei′,j′ such that the sets of suffixes we can read
after them to complete a string in L(BG) are identical. Thus there must be m
different states that we can be in directly after reading an edge name. Each such
state contributes another tuple. These cannot, however, be the only states from
which we can read a vertex name. Indeed, from each such state, we should be
able to read two distinct vertex names. Thus there must be some extra states,
which these states can fail to, and from where we can read exactly one vertex
name. If two edge names represent edges that share an incident vertex, then the
corresponding states could share an extra state. Therefore the smallest number
of extra states is equal to the size of the smallest set of vertices such that each
edge has at least one incident vertex in the set, or, in other words, the size of
the smallest vertex cover for G. Additionally, we will need an accepting state
and its corresponding tuple. Thus, if G has no vertex cover of size k, then there
can be no BFDFA for L(BG) of size smaller than 2m+ k + 1. ut


