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Abstract 

Computerized cognitive training has the potential to be an important tool for both 

rehabilitation and prevention of cognitive impairment. However, the demonstrated effects of 

cognitive training have often been limited, and seemingly conflicting results have been 

reported. This paper reviews selected results from several disciplines that relate to the 

challenges and the potential of computerized cognitive training. Developments within 

cognitive neuroscience and human-computer interaction (HCI) are related to virtual 

rehabilitation, and to a need to develop training applications that are both adaptive and 

realistic. 

Efficient rehabilitation and training depends on an ability to monitor the development of 

targeted functions. Monitoring cognitive functions is particularly challenging because of 

limited access to, and understanding of, these functions. Psychophysiological computing and 

brain-computer interfaces (BCIs) are reviewed as promising approaches for monitoring 

cognitive functions. Interpretation and understanding of such measurements should be 

supported by a basis in cognitive neuroscience and theories of brain function. This paper 

focuses on some general themes in such theories, with a strong connection to the importance 

of realism and interaction with reality. Such theoretical results are related back to practical 

applications through brain imaging studies concerning realistic interaction. 

To summarize the interdisciplinary material reviewed here the concept of reality-based 

brain-computer interaction (RBBCI) is introduced. RBBCI is intended to capture important 

principles for the development of realistic and adaptive systems for cognitive rehabilitation, 

and to serve as a cornerstone concept for interdisciplinary development. 

 



I. INTRODUCTION 

Computerized cognitive training has been championed as a method with great potential for 

rehabilitation of cognitive deficits and for countering cognitive decline (Torkel Klingberg, 

2010; Li et al., 2008). However, the desired general cognitive improvements, i.e., transfer 

effects, have been shown to be very difficult to achieve with common applications for 

cognitive training (Owen et al., 2010). This paper reviews a selection of previous work from 

several disciplines with a focus on how an improved understanding of cognition and brain 

function can be used to meet this challenge. Applications that respect users’ relation to 

everyday reality, before, during, and after training, is of key importance, as is the use of 

adaptive interaction in order to optimize training parameters dynamically. The importance of 

realistic interaction and the ecological validity of training are fundamental motivations for the 

use of virtual reality (VR) for rehabilitation and training (Pugnetti et al., 1995; Rizzo et al., 

2001). The concept of reality-based brain-computer interaction (RBBCI) can be used to 

summarize these aspects and relate them to cognition and theories of brain function, thus 

facilitating the development of applications that operate in well-designed interaction with the 

brain. 

The difficulty to gain general improvements from cognitive training is commonly described 

in terms of a distinction between near-transfer and far-transfer. Training almost always leads 

to improvements on the task that is actually trained, and often to improvements on very similar 

tasks (near-transfer). The challenge is to achieve transfer to tasks with no direct relation to the 

trained task (far-transfer) (Dahlin, Neely, Larsson, Backman, & Nyberg, 2008; Li et al., 2008). 

Much recent work on cognitive training has been focused on attaining general improvements 

related to, e.g., attention or working memory. Such general improvements should result in 

improved performance in everyday tasks, such as remembering what to shop. Unfortunately 

this corresponds to far-transfer, which is hard to achieve. The difficulty of achieving far-

transfer motivates an increased focus on near-transfer, and it illustrates the need to train the 

right thing. This calls for an understanding of the differences between near and far transfer, 

and points to the need for interactive systems with high ecological validity. Reality-based 

interaction (RBI) in general, and virtual reality (VR) in particular, provides a foundation for 

ecologically valid HCI by building on the user’s skills and experiences from reality (Jacob et 

al., 2008; Rizzo, Schultheis, Kerns, & Mateer, 2004). 

One challenge with ecologically valid cognitive training is how to adapt the intensity of the 

training. If the problem is to remember what to buy at the store a complete simulation of going 

to the store and buying a number of items might aid transfer to the real situation. However, the 

complexity of the task and the obscurity of the underlying functions can make it hard to 

monitor. Optimizing the level of training has been shown to be critically important (Ericsson 

& Charness, 1994; Ericsson, Prietula, & Cokely, 2007). This requires detection of what is 

challenging, and deliberate adjustment of the interaction environment in order to control the 



challenging aspects. In general, this is a hard task in complex realistic training scenarios. The 

use of real-time brain measurements, as a form of passive, or adaptive, brain-computer 

interface (BCI) (Cutrell & Tan, 2007; Audrey Girouard, 2009), is a promising approach for 

solving this problem. 

The further development of such systems, in particular the implementation of adaptations 

and the interpretation of measurements, should be supported by an understanding of cognition 

and brain function. In particular, it is helpful to consider the role that internalization of real-

world phenomena serves in the development of cognitive capabilities (Kaptelinin & Nardi, 

2006; Leontiev, 1978). Several recent theories of brain function present plausible neural 

implementations that line up well with this perspective (K. Friston, 2010; K. J. Friston, 2005; 

George & Hawkins, 2009; Hawkins, 2005; Gallese & Lakoff, 2005; Gallese & Goldman, 

1998). Brain activity is described as largely related to predictions, based on past interactions 

with reality, and familiarity with real objects and phenomena. The critical role of errors in 

relation to such predictions is highlighted, pointing to the importance of the “difficulty” of the 

required predictions. This in turn depends on the general complexity of the phenomenon, and 

on the user’s familiarity with it, suggesting familiarity and complexity as two particularly 

interesting factors for adaptations and interpretation. The fact that several of these theories can 

be related to computational neuroscience and methods for analysis of brain measurements 

makes them particularly interesting for interpretation of brain measurements for use in 

computer applications. 

II. COGNITIVE TRAINING 

The potential effectiveness of cognitive training has been under investigation for a long 

time. Today the basic cognitive and neural plasticity of the brain is well established, 

motivating the use of cognitive training for humans of all ages, in general (Dahlin et al., 2008; 

Erickson et al., 2007; Jones et al., 2006; Li et al., 2008). The limits on what is possible, 

however, and what is needed to optimize the efficiency of cognitive training, remain unclear. 

One form of cognitive training that has attracted much attention is working memory (WM) 

training. Working memory capacity predicts performance in a wide range of cognitive tasks, 

and many neuropsychiatric conditions such as stroke or attention-deficit hyperactivity disorder 

(ADHD) coincide with impaired WM (Conway, Kane, & Engle, 2003; Torkel Klingberg, 

2010). Several studies have shown that performance on specific WM tasks such as 2-back 

(comparing the last item in a sequence to the one presented 2 steps before) does improve with 

training, and that this effect does transfer to similar (near-transfer) tasks with associated 

changes in brain activity (Dahlin et al., 2008; Torkel Klingberg, 2010; Li et al., 2008; Olesen, 

Westerberg, & Klingberg, 2004; Owen et al., 2010). However, the magnitude and range of 

transfer, in particular the potential for far-transfer, remains disputed. For example, studies 

comparing transfer effects in old and young adults have presented seemingly conflicting 



results. A study by Dahlin et al. concluded that while transfer to untrained tasks is possible for 

both young and old, the magnitude varies, and it is often harder to demonstrate transfer in old 

adults (Dahlin et al., 2008). In other studies transfer effects in young and old have been 

compared without any reliable differences (Li et al., 2008). Suggested reasons for such 

differences in results include variations in the amount and intensity of the training, as well as 

differences in the degree of overlap between trained tasks and the evaluated transfer task. 

In a recent study by Owen et al. 11,430 participants trained on cognitive tasks online for 

several weeks but failed to show any general cognitive improvements outside of the tasks that 

were actually trained (Owen et al., 2010). How can this be explained given the previously 

demonstrated potential for cognitive plasticity and transfer? Can faith in the potential of 

cognitive training be maintained? The first thing to consider is that the primary goal of the 

study in question was to investigate potential general cognitive improvements. Even though 

the results include remarks about a lack of transfer even between relatively similar tasks, the 

potential for near-transfer to similar tasks is not developed. This motivates a closer look at 

near-transfer, and a focus on how to achieve the necessary overlap and similarity between 

tasks, and between the corresponding brain functions. The use of realistic interaction and VR 

technologies in computer applications for cognitive training is an important move towards 

increased overlap between training and desired improvements. 

Another possible reason for the lack of transfer in the study by Owen et al. is that the 

amount or intensity of the training might simply have been insufficient. The amount of 

training is addressed in their paper by pointing out that the average number of training 

sessions in the study (25) should be enough to see a measurable effect if there was one, and by 

noting that differences in amount of training between participants did not correspond to 

similar differences in transfer effects. However, it is acknowledged that it cannot be ruled out 

that more training may give results. The large variation in amount of training between 

subjects, with a standard deviation of approximately 17 training sessions with a mean of 25, 

also leaves some room for further questions. These between-subject differences are not further 

analyzed in the paper and may conceal important differences, e.g., in terms of individual 

motivation or discipline and related changes in training intensity. 

A powerful argument for the critical importance of both the amount and the intensity of 

training can be found in research into the nature of expertise (Ericsson & Charness, 1994; 

Ericsson et al., 2007). In short, it has been shown that what is needed to become truly skilled is 

a large amount of training at a deliberately directed and adapted level of intensity and 

difficulty. Humans are not born to become chess masters or elite musicians but “experts are 

always made, not born” (Ericsson et al., 2007). Deliberate practice must be directed to a level 

where the training in question includes elements that one is not already skilled with, while at 

the same time building on elements that one is familiar with. In essence, one needs to make 

some errors in order to have something to correct and improve, but too many errors will 



hamper learning. An example of how deliberate adaptation of the training can be successfully 

employed together with cognitive training is the use of WM training to reduce symptoms of 

ADHD in children. The methods behind the training program offered commercially by 

Cogmed (“Cogmed Working Memory Training,” 2011) for this purpose has been evaluated by 

Klingberg et al. in several studies (T. Klingberg, Forssberg, & Westerberg, 2002; Torkel 

Klingberg et al., 2005). This program includes both continuous adaptation of the difficulty 

based on training performance, and regular contacts with a human “coach” to further guide 

and motivate the training. 

A similar focus on the importance of training and learning at the right level can be found in 

the idea of the zone of proximal development (ZPD) (Cole, 1985; Kaptelinin & Nardi, 2006). 

This concept is of particular interest in the current context because it was pioneered by Lev 

Vygotsky, who is also recognized as one of the founding fathers of activity theory. Activity 

theory is a theoretical framework that has gained some popularity within the HCI community 

in the last decades, in large part because of its focus on the context of interaction and human 

activities in the real world (Kaptelinin & Nardi, 2006; Kuutti, 1996; Bonnie A. Nardi, 1996). 

The zone of proximal development was conceived as a way to assess development and 

learning, in particular in children. Measures of development that were based on current 

performance failed to predict how a child would develop in the future. Instead, Vygotsky 

suggests that a measure of the difference between what a child can accomplish on its own and 

what it can accomplish with the aid of an adult is a far better guide to the current 

developmental potential of the child. It is this difference that has become known as the zone of 

proximal development. Similar ideas can be used to guide adaptations of computer aided 

cognitive training by varying the support given and thus probe the developmental potential of 

the user in the particular context. 

It should be noted that it was important for Vygotsky that development was facilitated by 

social interactions. Aid from other humans was crucial for the development of cognitive 

functions. One of the many advantages that humans have over computers in this context is 

their expertise at judging the cognitive state of other humans. In order to reach a point where 

computers can step in and aid human cognitive development in a similar manner it is essential 

to extend the communication between human and computer beyond the mouse and keyboard. 

III. HUMAN-COMPUTER INTERACTION 

The field of human-computer interaction (HCI) continues to expand as computers become 

part of both everyday society and personal life. Several areas of HCI research are of great 

interest for the development of realistic and adaptive computerized cognitive training. 



A. Adaptive Psychophysiological Computing 

One recent development within HCI is an increasing interest in using measurements from 

the brain or body, i.e., physiological measurements, as extra input channels for computer 

applications (Fairclough, 2009; Tan & Nijholt, 2010a). In particular, these measurements can 

be related to the psychological state (thus the term psycho-physiological computing) of the 

user, and used to adapt the behavior of the application to psychological states such as 

frustration, overload, or excitement (Daly & Wolpaw, 2008; Picard, 2000; Tan & Nijholt, 

2010a; Zander, Kothe, Jatzev, & Gaertner, 2010). This provides a basis for computer 

applications that may start to take on the role of a human coach that guides training based on 

the state of the user. Common physiological measurements for this use include heart rate 

(using electrocardiography, ECG), skin conductance (primarily as galvanic skin response, 

GSR, or skin conductance reactions, SCR), respiratory rate (breathing), skin temperature and 

electroencephalography (EEG). Some examples of how these measurements can be used are 

given below. 

Wilson and Russel used EEG and ECG together with electrooculography (EOG, used to 

measure electrical activity resulting from eye movements) to adapt the amount of support 

given to an operator in a complex aviation task (Wilson & Russell, 2007). Features based on 

these measurements were fed into an artificial neural network (ANN) that was trained to 

classify the measurements as corresponding to easy or hard conditions in the task. It was 

shown that assistance given on the basis of the classified operator state significantly increased 

performance. A similar approach to classification was used by Koenig et al. to estimate the 

mental engagement of patients and nondisabled users during robot-assisted gait training 

(Koenig et al., 2011). Their study measured ECG, breathing, GSR and skin temperature, and 

they demonstrated a high accuracy of classification when compared to subjective measures. 

Skin temperature and skin conductance were pointed to as the most reliable 

psychophysiological responders across both patients and nondisabled. This result partly 

matches an earlier result by Novak et al. (2010). This study investigated the same 

measurements, in a similar motor rehabilitation task, and they found that skin conductance 

was the most reliable measurement, while skin temperature provided better results for the 

control group than for stroke patients. 

All of the studies above make some use of subjective measurements. Psychophysiological 

measurements are often combined with subjective measures, if for no other reason than to 

validate the psychophysiological measurements and classification results. Popular alternatives 

are the NASA Task Load Index (NASA TLX) (Hart & Staveland, 1988), the Self-Assessment 

Manikin (SAM) (Bradley & Lang, 1994), and subjective workload assessment technique 

(SWAT) (Reid & Nygren, 1988). NASA TLX and SWAT are typically administered after 

completing a task since these are relatively comprehensive questionnaires. The SAM is a 

faster alternative. The original three dimensions of SAM, arousal, valence and control, are 



often reduced to two questions, dropping control (Koenig et al., 2011). Although the SAM 

explicitly targets emotions these can often be related to cognitive states such as mental 

workload. E.g., if you are unhappy and aroused you are stressed, if you are happy and aroused 

you are engaged, if you are unhappy and not aroused you are bored, etc. 

The alternative to relying on classification and subjective measures is to directly use some 

form of index to adapt an application, and take the evaluation to be whether or not it actually 

“works”, and, e.g., improves performance. One of the purest examples of this approach can be 

seen in a recent study by Walter (2010). In this study subliminal feedback was used to change 

the interface or environment of the user directly depending on measured SCR, based on the 

strong connection between skin conductance and arousal (Critchley, Elliott, Mathias, & Dolan, 

2000). Factors such as background color, text size and ambient room lighting were 

subliminally adapted in small steps, unnoticed by the user. These adaptations slowly moved 

the application towards a configuration producing increased arousal. The interaction 

environment resulting from a series of such adaptations was shown to lead to significantly 

improved performance in the investigated tasks. The potential for subliminal adaptations in 

VR environments is indeed great and the level of performance is of prime interest for 

cognitive training applications. 

The use of adaptive systems and psychophysiological measurements in combination with 

VR is not new. Recent examples are a system for cognitive telerehabilitation, capable of 

automatically adjusting the difficulty level of tasks and even change tasks depending on 

performance (Tost et al., 2009), and a system for motor rehabilitation incorporating psycho-

physiological signals to adapt to emotions (Matjaz Mihelj, Novak, & Munih, 2009). The 

recent development of such systems demonstrates that the use of measurements from brain 

and body to adapt virtual environments (VEs) for efficient interaction, training and 

rehabilitation is becoming increasingly feasible and common. The use of brain measurements 

in such systems is, however, still uncommon. 

B. Brain-Computer Interfaces 

Brain measurements provide the potential for a direct connection to psychological and 

cognitive state that may be very valuable for applications targeting cognitive training. The 

integration of brain measurements into computer applications has traditionally been in the 

form of brain-computer interfaces (BCIs) enabling the user to consciously control an 

application. See Tan & Nijholt (2010a) for an introduction to BCI from a HCI perspective and 

Lécuyer et al. (2008) for comments on BCI in combination with VR and videogames. The use 

of similar BCI methods for the passive adaptation of an application has been suggested 

(Cutrell & Tan, 2007; Audrey Girouard, 2009; Zander et al., 2010) and this is a growing 

research area. Millán et al. recently reviewed the potential for combining BCIs with assistive 

technologies and touch upon the use of BCI for adaptive applications (Millán et al., 2010). The 



use of a BCI as an additional channel is described as a hybrid BCIs, but is not related further 

to previous work on passive and adaptive BCIs. 

The techniques most commonly used for BCIs are EEG and functional near-infrared 

spectroscopy (fNIRS). More details about these techniques are given in section V.B. EEG is 

the most common and most thoroughly investigated method. Grimes et al. demonstrated that 

the accuracy of EEG-based classification of mental workload scales gracefully with the 

amount of training data, the time window, etc (Grimes, Tan, Hudson, Shenoy, & Rao, 2008). 

By using a method for automatically selecting features for training based on information gain 

between conditions, in relation to information gain between continuous blocks, they show that 

EEG can be used to automatically classify mental workload with high accuracy. Solovey et al. 

have investigated the use of fNIRS to detect different states of multitasking (Solovey et al., 

2011). Based on previous results using functional magnetic resonance imaging (fMRI) they 

demonstrated that the same patterns could indeed be identified using real-time fNIRS. This 

provides a basis for adaptive BCI applications that change in response to the multitasking state 

of the user. 

The studies above are only a few selected examples from areas of research that are 

currently developing quickly. However, such applications are still rare and the space of 

possible adaptations is relatively unexplored. Further development should benefit from 

considerations of recent theoretical developments in HCI and cognitive neuroscience. 

C. Reality-Based Interaction 

As the interest in more complex and realistic interaction methods grows within HCI the 

overlap between VR research and HCI research increases. The framework of reality-based 

interaction (RBI) has recently been introduced as an attempt to capture the underlying 

advantages (and disadvantages) of designing interaction with computers to be similar to 

interaction with physical reality (Jacob et al., 2008). The framework of RBI relates realistic 

interaction to human awareness of and skill with body, environment and social situation as 

well as naïve human understanding of physics. These themes are becoming increasingly 

common in emerging HCI applications, e.g., in the form of tangible interfaces building on our 

naïve understanding of physics, friction and gravity (Jacob et al., 2008). The connection to VR 

is especially apparent for the theme of environmental skill and awareness, exemplified by the 

human proficiency with spatial navigation and our ability to keep track of objects and events 

at different spatial locations. This can be further related to the sense of presence. Presence has 

traditionally been described as the sense of “being there” in a virtual environment (Slater, 

2002) but recent elaborations of this description are easier to relate to brain function. Such 

accounts include a greater emphasis on presence as hypothesis selection (Sanchez-Vives & 

Slater, 2005) and as “the ability to act there” (Jäncke, 2009). The conception of presence as the 

ability to act in a given environment has been directly related to brain function and neural 



correlates of presence as it relates to the use of existing motor representations to interact in a 

virtual reality (Jäncke, 2009). This is also described as the ability to relate the virtual space to 

“real motor space” and to build on simulations of real motor responses. Such simulations are 

based on past interactions with reality and together with the description of presence as 

hypothesis selection this maps very well into recent theories of brain function that may be 

helpful to consider when developing applications to take advantage of brain measurements. 

IV. THEORIES OF BRAIN FUNCTION AND INTERACTION 

The description of presence as the selection of a hypothesis corresponds directly to the 

establishment of expectations, based on predictions about how interaction with the assumed 

reality should and/or could proceed, according to the hypothesis in question. In these terms, 

breaks in presence, suggested as a fundamental complement to presence (Slater, 2002), 

correspond to errors in relation to predictions that are based on beliefs about the environment. 

The importance of such predictions and the associated prediction errors is a central theme in a 

number of recent theories of cognition and brain function. It should be noted here that these 

predictions should not be equated with conscious predictions. It may just as well be an 

unconscious expectation about what to feel when touching a door handle, etc. Also, errors in 

prediction may be considered as matters of degree rather than match or no match. If 

predictions are present on many levels of the brain a complete match can rarely (if ever) be 

expected. 

One emerging theme in recent theories of cognition is the importance of mental 

simulations. Within the general framework of grounded cognition mental simulation is 

presented as a fundamental aspect of cognition, together with the grounding of higher 

cognition in the modal systems of the brain (Barsalou, 2008; Barsalou, Simmons, Barbey, & 

Wilson, 2003; Gallese & Lakoff, 2005). The modal systems in the brain correspond to the low 

level interfaces between the brain and “the rest of the world”, i.e., the lowest levels in a 

hierarchy. This includes the common perceptual senses but also action, body information and 

(according to some accounts) introspection (Barsalou, 2008). The grounding of higher-level 

cognition in such lower-level modalities corresponds to a hierarchical description of cognition 

that matches the hierarchical structure of the brain, in particular the cortex (K. Friston, 2005). 

Mental simulation builds on an extension of results concerning mental imagery: a subject that 

has gathered a lot of research over the last decades, e.g., concerning mental rotation (Cohen et 

al., 1996; Shepard & Metzler, 1971) and motor imagery (Jeannerod, 1995). The concept of 

mental simulations explicitly includes the unconscious and flexible reactivation of memories, 

employed to recognize the current context and to simulate, or predict, possible actions and 

expected results. This idea, that predicting future events based on previous experience is a 

critical aspect of how the brain works, has gathered increasing support in recent years. The 

renowned memory-researcher Daniel Schacter recently argued for such a perspective as 

“helpful” for understanding the brain (Schacter, Addis, & Buckner, 2007, p. 660) and it is 



prominent in recent theories of cognition and the brain by Hawkins (George & Hawkins, 

2009; Hawkins, 2005), Friston (K. Friston, 2005, 2010), and others (Bar, 2007; James M 

Kilner, Friston, & Frith, 2007; R. P.N Rao & Ballard, 1999). These theories further develop 

the importance of hierarchies and memories (past experience), and the critical importance of 

joint representation of action and perception for predictions. “What can I expect to 

perceive/experience if I act thus? How do I need to act in order to experience that?” This 

corresponds to representations of interaction and, in the common case, interaction with reality. 

Several of the theories introduced above make specific claims about what is expected to 

give rise to increased brain activity (Friston, 2005; George & Hawkins, 2009). The critical role 

of prediction error in these models is prominent. According to this view, the brain works by 

predicting what comes next and if the prediction is correct no further reaction is needed. It is 

only when the prediction fails that one must reevaluate the situation and consider alternative 

interpretations of our current environment. Objects and phenomena that are easy to predict 

give rise to few (and/or small) prediction errors and result in less brain activity compared to 

phenomena that are more unpredictable. Predictions are made in relation to a context. The 

brain consists of a complex hierarchy where the context is defined at a higher level and 

predictions are checked at a lower level. When prediction errors occur they are passed 

upwards, and assumptions about the context are refined as needed. Such theories can be used 

for model-based analysis and interpretation of brain measurements. Some readers may also 

find the connection to information content and compression interesting. Higher level 

predictions correspond to the larger and/or more general trends in “the data”, i.e., gathered 

experience, and lower level prediction errors correspond to the new information and the details 

in the current situation. 

A recurring theme in the theories above is the importance of how hierarchical 

representations of observed phenomena develops (Friston, 2010; Friston, 2005; George & 

Hawkins, 2009; Hawkins, 2005). Learning and skills development is explained as necessarily 

based on what you already know, utilizing existing levels in the hierarchy to compress 

representations and to enable better predictions of events. The idea that critical aspects of 

cognition rely on our ability to internalize, represent and in some sense simulate events and 

processes that are observed in the environment has been defended by many researchers in 

cognition (Barsalou, 2008; Gallese & Lakoff, 2005; Hutchins, 1996; Kaptelinin & Nardi, 

2006). Research on mirror neurons has brought forward some particularly clear examples of 

how mental simulations may be implemented in the brain. The primary result is that parts of 

the brain are activated both when executing actions and when observing someone else doing 

the same action (Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995; Gallese & Goldman, 1998). This 

has been extended to include the imaging of future actions on the same neural basis (Gallese & 

Goldman, 1998; Kilner et al., 2007) which in turn in tightly related to remembering similar 

actions from the past (Schacter et al., 2007), providing a clear connection to the development 



of mental simulations. The suggested importance of such internalized phenomena is in large 

part related to the idea of cognitive tools. I.e., the idea that cultural constructs such as language 

and mathematics support human cognition as they are internalized and become available as 

building blocks in mental simulations that facilitate interaction with reality (Kaptelinin & 

Nardi, 2006; Leontiev, 1978). In light of such ideas cognitive training can be imagined as an 

attempt to expose the user to the cognitive tools that he or she needs to internalize. E.g., 

mental techniques (not necessarily conscious) for keeping track of a shopping list in a virtual 

scenario. A critical question when developing systems for cognitive training then becomes 

how to adapt the created environments to support the desired internalization. New or changed 

simulations must fit into the existing structure (be familiar enough) and they must give rise to 

prediction errors (in order to elicit corrections and change). 

V. BRAIN MEASUREMENTS AND REALISTIC INTERACTION 

A. Whole brain imaging 

A number of studies have been conducted on brain activity in realistic interaction 

environments employing VR technologies. Brain activity related to navigation has been 

studied several times using virtual 3d-environments and functional magnetic-resonance 

imaging (fMRI). FMRI measures brain activity by detecting changes in blood flow that are 

assumed to depend on the metabolic demands of neural activity. See Mraz et al. (2003) for a 

general discussion of the combination of fMRI and VR. In a study by Aguirre et al. (1996) 

fMRI was used to investigate topographical learning and recall while navigating a simple 3d-

maze. Spiers and Maguire (2006, 2007) have extended upon this basic combination of a 3d-

environment and fMRI in several important ways. They made sure that the virtual 

environment (VE) was realistic and full of life by taking advantage of an existing commercial 

game where the user was able to drive a car in the middle of the busy London traffic. In order 

to determine the thought process corresponding to a task executed in the VE a verbal report 

protocol (Ericsson & Simon, 1980) was used in conjunction with a video recording of the 

subject’s viewpoint in the VE. The video was shown to the subject directly following 

completion of the VE task, and the subject was asked to describe verbally what he/she had 

thought at the times shown on video. 

When these studies look at the whole brain they generally show distributed networks of 

activity. The details of this network vary between studies, possibly because of differences in 

the task setup, but the hippocampus in particular plays a central role according to most reports. 

Unfortunately, the hippocampus is located deep within the brain and brain activity in the 

hippocampus cannot be measured with common BCI techniques such as EEG or fNIRS. 

Another common finding that may be more directly relevant for BCI applications is brain 

activity in frontal regions. In the Maguire and Spiers study brain activity in frontal regions was 

related to route planning or different forms of expectation violation (Spiers & Maguire, 2006). 



This corresponds to cognitive states where your current hypothesis about your context is in 

flux. I.e., predictions at lower levels can no longer explain the current experience in terms of 

higher level goals and desires, and prediction errors propagate upwards through the hierarchy 

until they reach the frontal areas of the brain where they need to be resolved. In other words, at 

moments when there is no clear plan, goal, or belief, the mind is more open to external 

expressions and prediction errors that correspond to detailed information about the current 

situation can reach and influence higher-level cognition. The dorsolateral prefrontal cortex 

(DLPFC) in particular has been identified as a key region in networks related to presence 

(Jäncke, 2009) and spatial working memory (Constantinidis & Wang, 2004). The relation to 

working memory constitutes a direct connection to more general theories of brain function, 

such as the ones discussed above. The relation between spatial working memory and mental 

imagery constitutes a particularly clear example (Postma & Barsalou, 2009), building on such 

classical results as the speed of mental rotation (Shepard & Metzler, 1971). 

We have previously conducted a study concerning the effect of certain aspects of a realistic 

and dynamic interaction environment on brain activity measurements using fMRI (Sjölie et al., 

2010). Brain activity was measured while performing a mental rotation task in a virtual 

environment with varying degrees of motion and interactivity. Our results show that 

interactivity leads to increased activity in frontal and medial areas while the effect of 

automatic, easily predicted, motion is restricted to posterior, primarily visual, areas (Fig. 1). 

These increases are primarily within areas already activated for the general mental rotation 

task and not (simply) explained by the sensorimotor activity associated with interactivity. 

Within the perspective given by the theories described above the increased activity from 

interactivity can be understood as related to an increased unpredictability in the environment. 

 

Figure 1. Images of brain activity measured with fMRI in a recent study investigating 

the effect of aspects of VR interaction on the activation related to a mental rotation task. 

Left: activation related to all conditions. Middle: increased activation with automatic 

motion. Right: increased activation with interactive motion. 



The more frontal nature of the effect of interactivity also fits well with the hierarchical 

structure of predictions and prediction errors in these theories. Environments that are more 

dynamic and harder to predict lead to more prediction errors being fed upwards, and to 

increased activity in higher-level, more frontal, regions. 

 

B. Understanding Practical Measurements 

While fMRI measurements have great advantages for investigating brain function there are 

many disadvantages when attempting to develop systems for practical use and wide 

distribution. Functional near-infrared spectroscopy (fNIRS) is one method that is starting to 

show some promise (Solovey et al., 2009). One advantage with fNIRS is that the 

measurements are of the same kind as fMRI measurements, i.e., they are based on blood flow 

and neural metabolism, making comparisons to results from the vast fMRI literature relatively 

straightforward. However, the dominant method of brain measurements for BCI is 

electroencephalography (EEG) and recent developments speak to the future potential of this 

method. The emergence of commercially available and affordable EEG-headsets, such as the 

Emotiv Epoc  (Emotiv Corporate, 2011), lowers the threshold for new researchers and 

developers to integrate BCI features into their systems. This development plays right into the 

increasing interest for psychophysiological computing among HCI researchers and the desire 

to tap into the human mind to extend the HCI toolkit (Tan & Nijholt, 2010b). An increasing 

interest in combining fMRI and EEG and in developing the relation between these different 

forms of brain measurement also speaks to the feasibility of relating theories of brain function 

to brain measurements and applications utilizing EEG (Mulert & Lemieux, 2010). 

An understanding of EEG in the context of previous fMRI results and theories of brain 

function is perhaps best supported by the development of neuronal models that aim to explain 

both fMRI and EEG measurements as resulting from the same underlying neuronal activity. 

Such models are still in their infancy and details should be expected to change in the future but 

the overall picture presented has a solid basis in empirical evidence and illustrates how EEG 

can fit in with other results and theories (Kilner & Friston, 2010; Kilner, Mattout, Henson, & 

Friston, 2005). In short, the model describes neuronal populations as dynamic systems with 

neurons that fire at different rates and consume energy in relation to this. FMRI measurements 

are related to metabolism and thus to the energy consumption while EEG measurements are 

related to a combination of neuronal spiking frequencies giving a spectral profile where the 

power varies with the frequency. The key idea is that both the energy consumption and the 

spectral profile are affected as the dynamics of the systems speeds up or slows down. Thus an 

activation measured with fMRI should correspond to a speedup of the neuronal dynamics and 

thus to a shift in the spectral profile of corresponding EEG measurements towards higher 

frequencies. In both cases the underlying neuronal phenomenon is that the neurons fire more 



frequently within a given population. In terms of standard EEG measurements this 

corresponds to a reduced power in the lower frequency bands such as the alpha band (8-12 Hz) 

and an increase in higher frequency bands such as the gamma band (30-70 Hz). This is largely 

in agreement with results on the relation between EEG, fMRI and working memory load 

(Michels et al., 2010) but previous experience of using EEG to classify working memory load 

in real time in HCI research has demonstrated large individual differences that complicate 

matters (Grimes et al., 2008). 

VI. SUMMARY AND PRACTICAL APPLICATIONS 

A. Reality-Based Brain-Computer Interaction 

Given the interdisciplinary spread of the works reviewed in this paper, the connections 

between them may not be obvious. The development of systems for realistic and adaptive 

cognitive training may be supported with a summarizing concept. Reality-based brain-

computer interaction (RBBCI) describes a system where the computer interacts directly with 

the brain, by building on the principles and techniques described above. The input to the brain 

consists of computer-generated phenomena in a virtual reality. The output from the brain 

consists of brain measurements that can be related to properties of these phenomena in an 

informed manner. When computer applications deliberately modify these phenomena 

expecting certain responses in brain measurements there is an interaction loop involving 

computer and brain. Note that the conscious user is not included in this description. RBBCI is 

thus closely related to the concepts of passive and/or adaptive BCI (Cutrell & Tan, 2007; 

Audrey Girouard, 2009; Zander et al., 2010), described above. The adaptation in a RBBCI 

system consists of changing aspects of the presented reality that can be related to cognitive 

processes and changes in brain measurements, based on theories of cognition and brain 

function. 

To develop an RBBCI application it is necessary to integrate the use of VR techniques and 

adaptive BCIs, with an understanding of how brain activity is affected by VR in general and 

by possible adaptations of VR in particular. The primary motivations for considering RBBCI 

as a unified concept are: 

 Brain measurements and the course of events in the computer-generated reality 

should be considered together as tightly interrelated through the user’s perception of 

reality.  

o Because cognition and the corresponding brain activity is linked to the 

user’s current reality in a fundamental way with explicit theoretical 

formulations and practical implications. 

 Applications targeting cognitive rehabilitation or training need a combination of 

realistic interaction and real-time adaptations to cognitive state. 



o Because cognitive training based on specific tasks does not give reliable 

improvements in general cognitive functioning, and because training at the 

right level is always essential. 

 Interdisciplinary development of VR applications can benefit from a cornerstone 

concept such as RBBCI that can be closely tied to all related areas. 

o Because an ability to clearly communicate and share ideas among 

researchers, developers and practitioners in interdisciplinary projects is both 

important and inherently difficult. 

The essence of RBBCI is that brain function is intimately related to reality, and that the use 

of VR technology makes it possible to manipulate and synchronize the perceived reality and 

the associated brain function of the user. Thus, the computer interacts with the brain through 

the presented reality and by interpreting brain measurements resulting from aspects of and 

changes in this reality. 

B. Informed Adaptations 

One clear benefit with the theoretical grounding reviewed in this paper is as a basis for 

developing adaptations in brain aware applications. The theories presented above suggest a 

way to understand how aspects of a complex realistic task affect brain measurements. In 

particular, familiarity and basic complexity or predictability emerges as particularly promising 

parameters for adjustment. Optimal training should depend on both these parameters being at 

the right level. Increased familiarity and predictability should contribute to reduced brain 

activity and more unfamiliar, complex or unpredictable stimuli should contribute to increased 

brain activity. An unfamiliar or unpredictable environment, and an increased amount of 

prediction errors, can also be expected to lead to brain activity further up in the hierarchy, 

which generally corresponds to more frontally in the brain. 

It is also important to realize that not all realism is created equal. The work reviewed in this 

paper provides some further guidance concerning which aspects of realism are important for 

applications that target cognitive functions. Reality and realism is tightly coupled to 

experience and familiarity. In order to know what is truly realistic for a specific user in this 

sense, the culture and everyday environment of the user is of critical importance. 

VII. CONCLUSIONS 

Computerized cognitive training has potential for rehabilitation of neurological disorders 

and for fighting off or compensating for cognitive decline. This paper presents a selective 

interdisciplinary review of some key areas for the further development of such applications. 

Developments within HCI and cognitive neuroscience, including reality-based interaction, 

adaptive BCIs and the neurological basis for effects of cognitive training, provide a basis for 



the implementation of systems that take advantage of an increasing understanding of the brain. 

To further aid the integration of these interdisciplinary results the concept of reality-based 

brain-computer interaction (RBBCI) is suggested as a supporting cornerstone concept with 

connections to many related disciplines. The implicit argument is that the development of 

efficient computerized cognitive training requires that all of these results are considered 

together, e.g., in order to understand how one may change a realistic interaction environment 

to challenge the brain in the right way by balancing familiarity and unpredictability. 
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