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Abstract. A device that generates trees over a ranked alphabet Σ,
together with an interpretation of the symbols in Σ as functions or
relations on a domain A, generates subsets of A. This concept of
tree-based generators is well known and essentially already present
in the seminal paper by Mezei and Wright from 1967. A delegation
network is a system consisting of a finite set of such generators that
can “delegate” parts of the generation process to each other. It can be
viewed as consisting of an (extended) IO context-free tree grammar
and an interpretation. We investigate the language-theoretic prop-
erties of these systems and establish several characterizations of the
generated languages. In particular, we obtain results in the style
of Mezei and Wright. We also study the hierarchy of tree language
classes obtained by iterating the concept of delegation, and show that
this hierarchy is properly contained in the closure of the regular tree
languages under nondeterministic macro tree transductions, but not
in the IO-hierarchy.

1 Introduction

The theory of tree languages and tree transformations is an important and lively
field of theoretical computer science [GS84, NP92, GS97, FV98, CDG+02, FV09].
For the most part, this theory is concerned with formal devices that generate,
recognize or transform trees over a finite ranked alphabet. In such an alphabet Σ,
every symbol f ∈ Σ has a rank k that determines the number of (direct) subtrees
that it requires: f[t1, . . . , tk] denotes the tree with root label f and subtrees
t1, . . . , tk.

Let us use the term tree generator for any device γ that defines a tree language
L(γ) ⊆ TΣ, where TΣ denotes the set of all trees over Σ. A tree t ∈ TΣ can
be seen as a formal expression composed of abstract operation symbols, where
ranks are arities. The usefulness of devices dealing with such trees is to a large
extent based on the fact that trees can be interpreted by choosing a domain
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A and associating a (total) function f : Ak → A with each symbol f of rank
k. Thus, given such an interpretation σ, a tree t evaluates recursively to an
element σ(t) of A: σ(f[t1, . . . , tk]) = f(σ(t1), . . . , σ(tk)). Consequently, a device
that generates trees provides the syntactic component of a tree-based generator
– a pair consisting of the tree generator γ with L(γ) ⊆ TΣ and an interpretation
σ of the symbols of Σ. By definition, it generates a subset of A, viz. the set
σ(L(γ)) = {σ(t) | t ∈ L(γ)} ⊆ A. The application of this idea to the area of
picture generation is studied in [Dre00, Dre01, Dre06].

In this paper we study so-called delegation networks, which were introduced
in [Dre07a, Dre07b]. Such a delegation network consists of a finite number of gen-
erators that can “delegate” parts of the generation process to each other. The
purpose of delegation is to make it possible to combine several generators, that
may even be of different types, to generate complex objects. Intuitively, an indi-
vidual generator in a delegation network can be compared to a nondeterministic
procedure that can make use of other such procedures in order to accomplish its
task. For example, one could envision the generation of 3D models of cities. In
a delegation network for this purpose, one generator could generate the overall
structure of the city, placing roads, parks and buildings in appropriate places
while delegating the generation of these details to other generators. The “park
generator” could in turn delegate the generation of plants to a generator that
uses a suitable type of grammar to generate the branching structure of a plant,
while the form of leaves may be generated by a different type of grammar and
their texture by yet another one (see [Dre06] for discussions of such devices).
Delegation networks also make it possible to use non-grammatical generators by
viewing them as so-called primitives – “black boxes” that turn input into output
in a possibly nondeterministic way (see below). For example, in the hypothetical
scenario above, textures may be generated by a primitive whose internal work-
ings are based on random noise or cellular automata. Such a primitive could, for
instance, take a 3D object as input and map a generated texture onto its sur-
face. For concrete examples of delegation networks that combine different types
of picture-generating mechanisms, see [Dre07b].

Let us discuss the formal notions underlying delegation networks in more
detail. Just as tree-based generators, delegation networks use tree generators
to generate subsets of a domain A. However, in order to accomplish the ideas
sketched above, they generalize tree-based generators in two ways.

The first generalization concerns the type of interpretations used. As in
[ES77, ES78], where they are called nondeterministic Σ-algebras, we consider
interpretations in which f , the interpretation of a symbol f of rank k, may be an
arbitrary relation f ⊆ Ak×A rather than being required to be a function from Ak

to A. Clearly, ordinary interpretations are a special case if we regard a function as
a relation in the usual way. A tuple ((a1, . . . , ak), a) ∈ f represents the fact that
an application of f to the arguments a1, . . . , ak may, nondeterministically, pro-
duce the value a. We write f(a1, . . . , ak) for the set {a ∈ A | ((a1, . . . , ak), a) ∈ f}
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of possible values of the application of f to a1, . . . , ak.
As a consequence of this generalization, the evaluation of a tree now deter-

mines a subset of A, which is the set of its possible values:

σ(f[t1, . . . , tk]) =
⋃
{f(a1, . . . , ak) | a1 ∈ σ(t1), . . . , ak ∈ σ(tk)},

and σ(L(γ)) =
⋃
{σ(t) | t ∈ L(γ)} ⊆ A.

We note here that delegation networks were defined over many-sorted signa-
tures in [Dre07a, Dre07b], using a finite set of domains instead of a single domain
A. Hence, in that setting, the interpretation of a symbol f of rank k is a relation
f ⊆ (A1 × · · · × Ak) × Ak+1, where A1, . . . ,Ak+1 may differ from each other. In
view of the motivation of delegation networks sketched above, it seems natural
to adopt this more general setting. However, many-sortedness does not affect
any of the formal reasonings in this paper – its sole effect is to complicate nota-
tion. Therefore, we have chosen to restrict the exposition to one-sorted signatures
(which are ranked alphabets) in the present paper.

The second generalization that leads from tree-based generators to delegation
networks is obtained by evaluating trees that contain n formal parameters. More
precisely, we consider trees t ∈ TΣ,n = TΣ∪{x1,...,xn}, where the so-called parameter
symbols xi are of rank 0. Then σ(t) ⊆ An × A, as follows. For n arguments
a1, . . . , an (the actual parameters), t is recursively evaluated as before, with the
addition that each xi is interpreted as ai. To be precise, σ(xi)(a1, . . . , an) =
{ai} and σ(f[t1, . . . , tk])(a1, . . . , an) is the union of all f(b1, . . . , bk) where bj ∈
σ(tj)(a1, . . . , an).

Note that, if we now consider a tree generator γ that generates trees with
parameter symbols, i.e., L(γ) ⊆ TΣ,n, then the straightforward definition of
σ(L(γ)) yields a subset of An × A: for a1, . . . , an ∈ A, σ(L(γ))(a1, . . . , an) =⋃
{σ(t)(a1, . . . , an) | t ∈ L(γ)}. Thus, a tree generator with k parameter symbols

can be used to define the interpretation g ⊆ Ak×A of a symbol g ∈ Σ of rank k.
The last observation provides the formal basis for delegation, as it allows

us to consider a finite set of tree generators that call each other recursively.
More precisely, we divide Σ into two ranked alphabets Π and G of so-called
primitives and generator symbols, respectively. The primitives come with an a
priori interpretation π, whereas every generator symbol g of rank k is associated
with a tree generator γg that generates a tree language in TG∪Π,k. Intuitively, the
purpose of γg is to generate the interpretation of g in the sense of the previous
paragraph. Whenever g appears in a tree generated by γg′ for some g′ ∈ G, this
signals a delegation to γg by γg′ , i.e., γg′ calls γg. The semantics of delegation is
straightforward in the case where L(γg) ⊆ TΠ,k. Then g is interpreted as π(L(γg)).
The general case (in which L(γg) ⊆ TG∪Π,k) is slightly more complicated since
delegation can be cyclic, which means that we will naturally adopt a least fixed
point semantics.

Every delegation network N contains a designated main generator symbol g0

of rank 0. According to the semantics of delegation networks, g0 generates a
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subset of A. This set is considered to be the “language” L(N ) generated by N .
As we will see, an appropriate operational view of delegation is that of parallel
distributed processes executing (copies of) the tree generators γg and evaluating
the resulting trees, as follows. Initially, a process corresponding to g0 is started.
This process uses γg0 to generate a tree. Then, for every individual occurrence
of a symbol g in that tree, a new process working in a similar manner (using
γg instead of γg0) is started recursively. Evaluation is taken care of locally in
these processes as well, as each process evaluates the tree it has generated. To
be able to do this, its parent process must eventually provide it with each of its
actual parameters (call-by-value). Evaluation of a tree works as follows: as soon
as the subtrees of (an occurrence of) a symbol f ∈ Π have been evaluated, f is
applied to them nondeterministically. When a subtree of a symbol g ∈ G has
been evaluated, the resulting value is passed to the child process that evaluates
the occurrence of g, providing it with one of its actual parameters. When the
child process has received all its actual parameters and has finished the evaluation
of its tree (i.e., has arrived at the root), it reports the value it has computed to
the parent process and terminates. The parent process can then continue the
evaluation of its own tree. Eventually, when the main process has finished the
evaluation of its tree, the resulting value is returned, being an element of the
language generated by the delegation network.

A delegation network can be seen as an “extended” IO context-free tree gram-
mar that is interpreted in a nondeterministic algebra (A, π). In this sense, the
present paper contributes to the theory of context-free tree grammars, which are
of interest in, e.g., recursive program scheme theory, computational linguistics
and data compression theory.1 The primitives and generator symbols of the net-
work correspond to the terminals and nonterminals of the grammar, respectively,
and the tree language L(γg) is the set of right-hand sides of the rules of g (which
have the left-hand side g[x1, . . . , xk] when g has rank k). Thus, as in the extended
Backus-Naur Form, there may be infinitely many right-hand sides for a given left-
hand side. Non-extended (“finitary”) IO context-free tree grammars and their
interpretation in nondeterministic algebras were studied in [ES77, ES78]. In the
present paper, we generalize some of the results of [ES77, ES78], showing that
they carry over to the extended case. In particular, we prove several MW-like
results. Here, ‘MW’ refers to the seminal paper [MW67], in which Mezei and
Wright showed that the equational subsets of an algebra are exactly those that
can be obtained by evaluating regular tree languages with respect to the algebra
in question.

Let us discuss the main results of this paper. In Section 3 (Theorem 3.5), we
prove an operational characterization of the language generated by a delegation
network (defined as a least fixed point in Section 2). This characterization formal-
izes the operational view discussed above and shows that this view is adequate.

1Recent contributions in these fields are [Sch11], [KR11, ME12], and [LMSS12], respectively.
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Theorem 5.6 in Section 5 is our main MW-like result. It solves a problem left open
in [ES78] (for the finitary case), namely to find an MW-like characterization of
the languages generated by delegation networks in the presence of nondeterminis-
tic primitives, i.e., primitives that are interpreted as non-functional relations. We
accomplish this by generating and interpreting so-called jungles [HKP91] instead
of trees.

Essentially, a jungle J over the ranked alphabet Σ is a DOAG (directed or-
dered acyclic graph) with a designated node, such that each node with k outgoing
edges (which are linearly ordered) is labeled with a symbol from Σ of rank k,
cf. [AG68]. Each node v of J determines a tree over Σ obtained by unfolding the
subgraph induced by all nodes that are reachable from v. Thus, a jungle J can be
viewed as a set of trees over Σ of which the nodes can be shared, and it represents
the tree determined by its designated node, denoted by tree(J). The nodes that
are not reachable from the designated node are said to be garbage, as they do not
contribute to tree(J). Given an interpretation σ, the set of possible values of J
consists of all α(v), where v is the designated node of J and α is a mapping that
assigns to each node of v a value in A, such that if v has label f and its outgoing
edges lead to nodes v1, . . . , vk (in that order), then ((α(v1), . . . , α(vk)), α(v)) ∈ f .
For a set J of jungles, σ(J ) =

⋃
J∈J σ(J).

In Section 5 we let each delegation network N generate a set of jungles,
denoted LJ(N ), and we show that L(N ) = π(LJ(N )), our main MW-like result.
In fact, it is straightforward to turn an IO context-free tree grammar into a
(context-free) graph grammar that generates jungles, by viewing each tree t in
L(γg) as a jungle Jk(t) that contains exactly one node with label xi for every
parameter symbol xi (where 1 ≤ i ≤ k and k is the rank of g). Thus, all nodes
of t with label xi are shared, and a garbage node with label xi is created when
xi does not occur in t. Intuitively, this is in accordance with the call-by-value
semantics ofN : whenever xi is used, the same (nondeterministic) value of xi must
be used; moreover, every parameter xi must have at least one possible value.

Jungles are defined in Section 4, not as DOAGs with labeled nodes, but as
acyclic hypergraphs with labeled hyperedges (as in [HKP91]; see also [HP91,
CR93, Plu99]). This simplifies the definition of LJ(N ), which can then be gen-
erated by a so-called hyperedge-replacement graph grammar; see, e.g., [BC87,
HK87, Hab92, Eng97, DHK97, CE12]. These (hyper)graph grammars are well
known, well investigated and easy to understand.

In Section 6, we obtain further MW-like characterizations for the special case
of deterministic primitives, i.e., primitives that are interpreted as functions.
• The delegation network Nfree, which is N with π replaced by the free in-

terpretation of symbols in Π, generates trees over Π. Our second MW-like
result states that L(N ) = π(L(Nfree)) for delegation networks with deter-
ministic primitives (Theorem 6.2).
• Alternatively, trees can be generated operationally by viewing N as an

(extended) IO context-free tree grammar. We show in Theorem 6.4 that
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the language LT(N ) generated in this way is equal to L(Nfree), which yields
Theorem 6.6, our third MW-like characterization: L(N ) = π(LT(N )), still
under the assumption of deterministic primitives. This generalizes [ES78,
Theorem 5.10 and Corollary 5.11].
• We also show, in Theorem 6.7, that these two MW-like characterizations

hold in the presence of nondeterministic primitives, provided that N is
linear and nondeleting, i.e., each parameter of g occurs exactly once in each
tree of L(γg).

Since the tree language LT(N ) generated by a delegation network N only
depends on the tree languages L(γg) (g ∈ G), delegation can be regarded as an
operator DEL on classes of tree languages: for a class C, DEL(C) is the class of
tree languages LT(N ) such that L(γg) ∈ C for every g ∈ G. In Sections 7 and 8,
we study the hierarchy DEL∗(FIN) =

⋃
n≥0 DELn(FIN), which is obtained by

starting with the class FIN of finite tree languages and iterating the delegation
operator, similar to the IO-hierarchy studied in [Mai74] and [ES78, Section 7].
Clearly, DEL∗(FIN) is the smallest class of tree languages that contains FIN and
is closed under DEL: if the tree generators of a delegation network N generate
tree languages in that class, then so does N .

In Section 7 we establish a result that can be used to prove that certain
tree languages are not in DEL∗(FIN). As usual, we encode a path (v1, . . . , vn)
in a tree t over Σ, from the root v1 to some node vn (n ≥ 1), as the string
〈f1, j1〉 · · · 〈fn−1, jn−1〉〈fn, 0〉 where fi is the label of vi in t, and vi+1 is the ji-th
child of vi in t. The result states that the set of (encoded) paths in the trees of
each tree language in DEL∗(FIN) is a context-free language (Theorem 7.23). The
proof is long and complicated. It makes essential use of jungles, in particular of
the fact that LT(N ) = tree(LJ(N )), which is proved in Corollary 6.5.

In Section 8 we prove that DEL∗(FIN) is included in MTT∗(REG), the closure
of the class of regular tree languages under nondeterministic macro tree trans-
ductions (Theorem 8.15), but not in the smaller class YIELD∗(REG) of tree lan-
guages of the IO-hierarchy (Theorem 8.17). By the result of Section 7, DEL∗(FIN)
is properly included in the first class and incomparable with the second. Since
the inclusion of DEL∗(FIN) in MTT∗(REG) is effective, we immediately obtain
the decidability of the membership, emptiness and finiteness problems for every
language in DEL∗(FIN), as shown for MTT∗(REG) in [EV85, DE98]. Finally, we
prove that, in fact, MTT∗(REG) is closed under DEL (Theorem 8.19).

2 Delegation Networks

Before turning to the definition of delegation networks, which will be given later
in this section, let us summarize some basic terminology and notation.

We denote the set of all natural numbers (including zero) by N. For n ∈ N,
we let [n] denote {1, . . . , n}. By convention, this is the empty set if n = 0. The
powerset of a set A is denoted by ℘(A). The set of all finite strings (or sequences)
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over A is denoted by A∗; λ denotes the empty string, and A+ = A∗ \ {λ}. For a
string u = a1 · · · ak over A (where a1, . . . , ak ∈ A), we let [u] = {a1, . . . , ak}. In
other words, [u] is the smallest set A′ ⊆ A such that u ∈ A′∗. For sets A and
strings u, the cardinality of A and the length of u are denoted by |A| and |u|,
respectively. For a string u as above and i ∈ [k], ai is also denoted by u(i). More
generally, for a function f : S → A∗ and s ∈ S, if f(s) = a1 · · · ak, then f(s, i)
denotes ai, for all i ∈ [k].

We assume functions to be total, i.e., if f : A→ B is a function, then f(a) is
defined for every a ∈ A; functions from A to B that are not necessarily total, are
called partial functions. For a function f : A→ B, the canonical extensions of f
to subsets of A and to strings over A are denoted by f as well, i.e., f(A′) = {f(a) |
a ∈ A′} for all A′ ⊆ A, and f(a1 · · · ak) = f(a1) · · · f(ak) for a1, . . . , ak ∈ A.

A binary relation r ⊆ A × B may alternatively be viewed as a function
r : A → ℘(B) that maps elements of A to sets of elements of B. As usual,
we let r(a) = {b ∈ B | (a, b) ∈ r} for a ∈ A, and r(A′) =

⋃
a∈A′ r(a) =

{b ∈ B | ∃a ∈ A′ : (a, b) ∈ r} for A′ ⊆ A. Note that this is consistent with
the definition of f(A′) above (where we identify a function f : A → B with the
relation {(a, f(a)) | a ∈ A}, as usual). Observe that A can be a cartesian product
A1 × · · · × Ak, i.e., r may be of the form r ⊆ (A1 × · · · × Ak)× B. In that case,
we let r(A′1, . . . , A

′
k) = r(A′1 × · · · × A′k) for A′1 ⊆ A1, . . . , A

′
k ⊆ Ak. If k = 0, we

identify r with the set r() ⊆ B. As usual, the composition of binary relations
r ⊆ A×B and s ⊆ B × C is given by s ◦ r = {(a, c) ∈ A× C | c ∈ s(r(a))}.

2.1 Signatures and Trees

A signature (or ranked alphabet) is a pair (Σ, rk), where Σ is a set of symbols,
and rk assigns to every f ∈ Σ a rank rk(f) ∈ N. In the following, we shall
simply denote (Σ, rk) by Σ. If necessary, the rank k of a symbol f is indicated
by denoting f as f(k). Symbols of rank 0 are called constant symbols.

The set of all trees over Σ is denoted by TΣ. By definition, it is the smallest
set of strings satisfying the following condition:

For all f(k) in Σ (k ∈ N) and all t1, . . . , tk ∈ TΣ, the string f[t1, . . . , tk]
is in TΣ. (Here, the square brackets and the comma are assumed to
be special symbols not in Σ.)

A tree of the form f[ ] (i.e., where f is a constant symbol in Σ) is identified with
the string f of length 1. By this convention, all constant symbols are trees in TΣ.

A tree t ∈ TΣ can be viewed as a graph whose nodes are labelled with symbols
in Σ. A node is a string in (N \ {0})∗ which, intuitively, represents the path from
the root to the node in question. Formally, we define the set V (t) of nodes of
t, the subtree t/v at a node v, and the label `t(v) of that node inductively, as
follows. If t = f[t1, . . . , tk], then

V (t) = {λ} ∪ {iv | i ∈ [k], v ∈ V (ti)}.

7



Furthermore, t/λ = t, `t(λ) = f, and, for all i ∈ [k] and v ∈ V (ti), t/iv = ti/v
and `t(iv) = `ti(v). The node λ is the root of t. As usual, a tree s is a subtree of
t if s = t/v for some v ∈ V (t). A node v of t is said to be an occurrence of the
symbol `t(v) and of the subtree t/v. If t = f[t1, ..., tk], then the subtrees t1, . . . , tk
are also called the subtrees of (this particular occurrence of) the symbol f. We
will not always distinguish precisely between a symbol (or subtree) and one of its
occurrences; this should be clear from the context.

For a signature Σ′, we let VΣ′(t) = {v ∈ V (t) | `t(v) ∈ Σ′}. We say that t is
linear in Σ′ if each symbol in Σ′ occurs at most once in t and nondeleting in Σ′

if each symbol in Σ′ occurs at least once in t (formally, |V{σ}(t)| ≤ 1, respectively
|V{σ}(t)| ≥ 1, for every σ ∈ Σ′).

For finite Σ, a subset of TΣ is a tree language. Any device γ that generates
such a tree language is a tree generator ; Σ is said to be its output signature, and
the generated tree language is denoted by L(γ).

2.2 Interpretations

Let A be a domain, i.e., a set. We wish to be able to interpret every symbol of a
signature Σ, and to use this interpretation for evaluating trees over Σ. Usually,
the interpretation of a symbol f(k) would be a k-ary function f : Ak → A. How-
ever, as mentioned in the Introduction, we generalize this in order to be able to
model nondeterminism2. For this purpose, symbols are interpreted as relations
f ⊆ Ak × A rather than as functions. One may view such a relation f as a
“nondeterministic function” f : Ak → ℘(A) that, for an argument tuple in Ak,
yields the set of possible results. Of course, functions and partial functions are
special cases.

A Σ-interpretation (into A) is a function σ that assigns to every symbol
f(k) ∈ Σ a relation σ(f) ⊆ Ak × A. If σ(f) is a function for all f ∈ Σ, then we
call σ a deterministic Σ-interpretation; note that this implies totality of σ(f).
Throughout the rest of the paper, we will use the typographical convention that
the interpretation σ(f) of a symbol f is denoted by f . Thus, if f(k) ∈ Σ, then
f ⊆ Ak × A (and f : Ak → A if σ is deterministic).

In the following, we want to represent complex operations by trees. For this
purpose, let us define a parameter signature of rank n ∈ N to be a signature
Y = {y1, . . . , yn} consisting of pairwise distinct indexed symbols y1, . . . , yn, where
yi has rank 0 for every i ∈ [n]. Note that the indices provide Y with a linear
order. For a signature Σ disjoint with Y , the set TΣ∪Y is denoted by TΣ,Y to
emphasize the special role of parameter symbols. For trees t, t1, . . . , tn ∈ TΣ,Y , we
denote by t(t1, . . . , tn) the substitution of ti for each occurrence of yi in t (i ∈ [n]).
(In this notation, the parameter signature in question will always be clear from
the context.)

Given a Σ-interpretation σ and a parameter signature Y as above, we can

2See also [ES77, ES78].
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evaluate trees t in TΣ,Y . The result of this evaluation, denoted by σY (t), is the
relation ϕ ⊆ An×A such that ϕ(a1, . . . , an) is given as follows, for all a1, . . . , an ∈
A:
• If t = yi, then ϕ(a1, . . . , an) = {ai}.
• Otherwise, if t = f[t1, . . . , tk] with ϕi = σY (ti) for all i ∈ [k], then

ϕ(a1, . . . , an) = f(ϕ1(a1, . . . , an), . . . , ϕk(a1, . . . , an)).

If the parameter signature Y is clear from the context, we omit the subscript,
thus denoting σY (t) by σ(t). Note that σ(t) is a function from An to A if σ is
deterministic, and that it is a subset of A if n = 0 (i.e., Y = ∅ and t ∈ TΣ). In
particular, if σ is deterministic and n = 0, then σ(t) ∈ A.

Given a set of trees T ⊆ TΣ,Y rather than a single tree, we let σ(T ) =⋃
t∈T σ(t). We note here that in [ES77, ES78], σ is called a nondeterministic

Σ-algebra, and σ(T ) is called the derived relation of T over σ (see [ES78, Defini-
tion 5.8]).

A well-known possibility is to choose as σ the (deterministic) free interpre-
tation freeΣ of symbols in Σ. For this, let A = TΣ, and let f = freeΣ(f) be
the function given by f(t1, . . . , tk) = f[t1, . . . , tk], for every symbol f(k) ∈ Σ and
all trees t1, . . . , tk ∈ TΣ. Thus, freeΣ is the identity on TΣ. More generally,
for a parameter signature Y of rank n, if t ∈ TΣ,Y and t1, . . . , tn ∈ TΣ, then
freeΣ(t)(t1, . . . , tn) = t(t1, . . . , tn).

Lemma 2.1 Let σ be a Σ-interpretation, for a signature Σ, and let Y be a
parameter signature of rank n. For all trees t ∈ TΣ,Y and t1, . . . , tn ∈ TΣ, if
|σ(ti)| = 1 for all i ∈ [n], then

σ(t(t1, . . . , tn)) = σ(t)(σ(t1), . . . , σ(tn)).

Proof This follows easily from the definition of σ(t), using induction on t. Ob-
viously, the equation holds if t = yi for some i ∈ [n]. Further, if t = f[s1, . . . , sk],
and ai = σ(ti) for every i ∈ [n], we get

σ(t)(a1, . . . , an) = f(σ(s1)(a1, . . . , an), . . . , σ(sk)(a1, . . . , an))

= f(σ(s1(t1, . . . , tn)), . . . , σ(sk(t1, . . . , tn)))

= σ(f [s1(t1, . . . , tn), . . . , sk(t1, . . . , tn)])

= σ(t(t1, . . . , tn)),

as claimed.

Note that the first equality of the display in the proof above does not hold
without the requirement that |σ(ti)| = 1: with Ai = σ(ti) ⊆ A, we get

σ(t)(A1, . . . , An) =
⋃
ai∈Ai

σ(t)(a1, . . . , an)

=
⋃
ai∈Ai

f(σ(s1)(a1, . . . , an), . . . , σ(sk)(a1, . . . , an)),
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in contrast to the fact that

f(σ(s1)(A1, . . . , An), . . . , σ(sk)(A1, . . . , An))

= f(
⋃
ai∈Ai

σ(s1)(a1, . . . , an), . . . ,
⋃
ai∈Ai

σ(sk)(a1, . . . , an))

=
⋃
aji∈Ai

f(σ(s1)(a1
1, . . . , a

1
n), . . . , σ(sk)(a

k
1, . . . , a

k
n)).

This difference is what makes the usual MW-like result fail in the presence of
nondeterministic interpretations.

2.3 Delegation Networks and Their Semantics

We are now ready to give the formal definition of delegation networks.

Definition 2.2 (delegation network) A delegation network is a system N =
(G,Π,Γ, g0,A, π), where
• G and Π are disjoint finite signatures of generator symbols and primitives,

resp.,
• Γ = (γg, Yg)g∈G is a G-indexed family of pairs, each consisting of a tree

generator γg and a parameter signature Yg of the same rank as g,
• g0 is a constant symbol in G,
• A is a domain, and
• π is a Π-interpretation into A.

We require that each parameter signature Yg, g ∈ G, is disjoint with G ∪ Π, and
that L(γg) ⊆ TG∪Π,Yg . The signature G ∪ Π is denoted by ΣN .

By the definition above, ΣN contains two kinds of symbols: the generator
symbols g ∈ G, each of which has an associated tree generator γg, and the primi-
tives f ∈ Π. In the context of the particular delegation network N , the latter are
given a fixed interpretation by means of π. Following our general convention, we
shall therefore generally denote the interpretation π(f) of such a symbol by f .

The semantics of N is obtained by constructing a ΣN -interpretation σN that
agrees with π on Π. To take into account the fact that delegation can be cyclic,
we choose a least fixed point semantics, using Tarski’s fixed point theorem.

Proposition 2.3 ([Tar55, Theorem 1]) Let C be a complete lattice with par-
tial order ≤. Every monotonically increasing mapping τ on C has a least fixed
point, and this least fixed point is equal to the greatest lower bound of all c ∈ C
such that τ(c) ≤ c.

To continue, recall that the set of all relations r ⊆ Ak becomes a complete
lattice if we choose ⊆ as its partial order. Its least element is the empty relation,
and its largest is Ak. We extend this ordering to ΣN -interpretations σ, σ′ in the
obvious way: σ ≤ σ′ if and only if σ(f) ⊆ σ′(f) for all f ∈ ΣN .

We can now define the semantics of delegation networks. According to this
semantics, a delegation network generates a subset of A. Typically, the reader
may think of generating strings, trees, graphs, pictures, etc. In contexts where

10



the grammatical generation of sets of such objects is studied, they are sometimes
called languages, generalizing the terminology commonly used in the string case.
Here, we follow this tradition.

Definition 2.4 (semantics of delegation networks) Let N = (G,Π,Γ, g0,
A, π) be a delegation network, where Γ = (γg, Yg)g∈G.

1. The mapping iterateN on the complete lattice of all ΣN -interpretations into
A is defined as follows: for every ΣN -interpretation σ, and every symbol
f ∈ ΣN ,

iterateN (σ)(f) =

{
σYf(L(γf)) if f ∈ G
f if f ∈ Π.

2. The least fixed point of iterateN is denoted by σN . (Note that by Proposi-
tion 2.3, σN exists, as it is straightforward to verify that iterateN is mono-
tonically increasing.)

3. The language generated by N is L(N ) = σN (g0).

Note that the language generated byN is a subset of A, because the rank of g0

is 0. Observe furthermore that, for f ∈ Π, we have σN (f) = f . As a consequence,
for all g ∈ G with L(γg) ⊆ TΠ, σN (g) is just π(L(γg)). This shows that delegation
networks can be seen as a generalization of the tree-based generators in [Dre06]:
a tree-based generator is a delegation network N with G = {g}, where γg has the
output signature Π (i.e., does not delegate to itself), and π(f) is a function for
all f ∈ Π.

Another obvious fact that nevertheless may be worth pointing out is that the
semantics of delegation networks does not depend on the particular devices γg
that generate the tree languages L(γg). In fact, delegation networks are closely
related to the systems of equations over nondeterministic Π-algebras studied in
[ES78]. If we restrict delegation networks to the finitary case, i.e., require that all
L(γg) (g ∈ G) are finite, then the syntactic part (G,Π,Γ) of a delegation network is
what is called a system of context-free Π-equations in [ES78, Definition 5.1]3, and
the least fixed point σN is the solution of that system in the algebra of relations
over π (see [ES78, Definition 5.3]). Furthermore, for every g ∈ G, σN (g) is what
is proposed to be called the call by value relation computed by (G,Π,Γ, g) over
π in the discussion after Corollary 5.7 in [ES78]. In the MW-like result [ES78,
Theorem 5.10] it is shown that this relation is uniquely determined by the tree
language generated by g in the IO context-free tree grammar (G,Π,Γ). Note that,
in the finitary case, there is no reason at all to distinguish between γg and L(γg),
because finite tree languages can be specified by simply listing their elements. In
this sense, a finite tree language is its own generator.

A simplification that can be made in large parts of the paper and, in particular,
throughout Sections 3–6 and 8, concerns the parameter signatures used by the

3It is just another, more suggestive, name for a context-free tree grammar with terminal
signature Π.
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tree generators γg. Unless the contrary is clear from the context, we assume that
Yg is the standard parameter signature Xk = {x1, . . . , xk}, where k is the rank
of g. In this case, Yg will not be specified explicitly, i.e., we let Γ = (γg)g∈G.
Moreover, we abbreviate TΣ,Xk

as TΣ,k. Thus, L(γg) ⊆ TΣN ,k. More generally,
we will assume that in an expression t(t1, . . . , tn) the parameter signature Xn is
used, unless mentioned otherwise.

We will also make use of special parameter symbols 21,22, . . . , where 2

abbreviates 21, mainly for the purpose of decomposing trees. To avoid confusion
when using both the parameter signatures Xn and {21, . . . ,2n}, we denote an
expression of the form t(t1, . . . , tn) by t[[t1, . . . , tn]] if it is to be evaluated with
respect to the parameter signature {21, . . . ,2n}. If, moreover, t is linear and
nondeleting in {21, . . . ,2n}, then we denote by t � (t1, . . . , tn) the concatenation
of t and t1, . . . , tn given by t � (t1, . . . , tn) = t[[t1, . . . , tn]]. Thus, denoting a tree s
in the form t � (t1, . . . , tn) indicates that (a) s = t(t1, . . . , tn) where {21, . . . ,2n}
is assumed to be the relevant parameter signature and (b) t is assumed to be
linear and nondeleting in {21, . . . ,2n}. Hence, each ti corresponds to a unique
occurrence of ti as a subtree of s. In particular, in the case where n = 1, s = t � t1
is a tree obtained from t by replacing the unique occurrence of 2 in t with t1.

We conclude this section with a series of small examples that illustrate some
of the properties of delegation networks. Bigger examples that, moreover, discuss
the many-sorted case of delegation networks, can be found in [Dre07b]. In the
examples below, but also in Section 8, regular tree grammars will be used as
generators.

Definition 2.5 (regular tree grammar) A regular tree grammar is a tuple
γ = (Ξ,Σ, R, ξ0), where
• Ξ is a finite signature of nonterminals of rank 0,
• Σ is a finite signature of terminals disjoint with Ξ,
• R is a finite set of rules ξ → r, where ξ ∈ Ξ and r ∈ TΞ∪Σ, and
• ξ0 ∈ Ξ is the initial nonterminal.

A derivation step s ⇒γ t (or simply s ⇒ t, if γ is understood) consists of two
trees s, t ∈ TΞ∪Σ such that t is obtained from s by replacing a single occurrence
of a nonterminal ξ with r, where the rule ξ → r belongs to R. The tree language
generated by γ, called a regular tree language, is

L(γ) = {t ∈ TΣ | ξ0 ⇒∗ t}.
The class of all regular tree languages is denoted by REG.

Example 2.6 In this example and those that follow, we interpret primitives
as picture operations in the sense of [Dre00, Dre01, Dre06]. Here, a picture is a
nonempty subset of the Euclidean plane, typically being a union of objects such as
squares and circles. In other words, A is the set P of all nonempty subsets of R2. A
picture operation of arity k is a function f : Pk → P which is given by a picture P0

and affine transformations τ1, . . . , τk of R2, where f(P1, . . . , Pk) = P0∪
⋃k
i=1 τi(Pi).
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f(r(•), •, •) f(r(•), f(•, •, •), f(r(•), •, •))

Figure 1: Two expressions and the pictures they yield

Let Π = {f(3), r(1), d(0)}, and define a deterministic interpretation π as follows.
• π(d) = • is the picture consisting of the unit disk centered at the origin.
• π(r) = r scales its argument horizontally by a factor of 0.7, rotates it by

15 degrees4, and adds a unit circle.
• π(f) = f keeps the first argument unchanged. The second argument is

uniformly scaled by the factor 0.45, translated vertically by 1.45 units, and
rotated by 75 degrees. The third argument is transformed in a similar way,
except that the scaling factor is 0.75, the vertical translation is by 1.75
units, and the rotation is by −25 degrees.

Two pictures that can be obtained from expressions over these operations are
shown in Figure 1. In both pictures, the largest circle is the unit circle whose
center is the origin of the coordinate system.

(a) Now, consider the delegation network N = ({g(0)
0 , h(0)},Π,Γ, g0,A, π),

where γg0 and γh are the regular tree grammars with nonterminal signature {ξ0},
terminal signature Π, and sets of rules Rg0 and Rh, respectively, where

Rg0 = {ξ0 → f[h, ξ0, ξ0] | h} and Rh = {ξ0 → r[ξ0] | d}.5

Thus, L(γh) = T{r,d}, i.e., it consists of all trees of the form r[· · · r[d] · · · ], which
means that σN (h) = π(L(γh)). The fact that h occurs in the trees of L(γg0),
means that the generator γg0 delegates parts of its task to the generator γh.
As a consequence, the elements of L(N ) are the pictures that are obtained by
interpreting the trees in L(γg0) with respect to π′, the extension of π to Π ∪ {h}
given by π′(h) = π(T{r,d}). One of the elements of L(N ) is shown in Figure 2.

(b) Alternatively, L(N ) = L(N ′), where N ′ = ({g(0)
0 },Π,Γ′, g0,A, π) is the

tree-based generator6 given by the regular tree grammar γ′g0
= ({ξ0, ξ},Π, R, ξ0)

4By convention, positive rotation direction means counterclockwise rotation.
5As usual, ξ → t1 | · · · | tn abbreviates n rules ξ → t1, . . . , ξ → tn.
6Cf. the remark following Definition 2.4.
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Figure 2: A picture generated by the delegation network in Example 2.6

with
R = {ξ0 → f[ξ, ξ0, ξ0] | ξ, ξ → r[ξ] | d}.

(c) Instead of removing all the delegation from N , as in N ′, we could also
use the finitary delegation network that is identical to N , except that L(γg0) =
{f[h, g0, g0], h} and L(γh) = {r[h], d}. In this way, we generate the same picture
language L(N ) using self-delegation, i.e., the trees in L(γg0) contain g0, and
similarly for L(γh).

Example 2.7 We now modify the delegation network of Example 2.6 such that
γg0 delegates additionally to γg, where g is of rank 1. Following our convention
regarding parameter signatures, Yg = X1 = {x1}. Throughout the example,
L(γh) is as in Example 2.6.

(a) Let L(γg0) = {g[h]}, and let L(γg) be given by the regular tree grammar
whose rules are ξ0 → f[x1, ξ0, ξ0] | x1. Thus, L(γg) is the set of all trees t ∈
T{f},1 = T{f,x1} such that the first child of every occurrence of f is x1. The
interpretation of such a tree t with respect to π yields a (deterministic) unary
operation on pictures that duplicates the argument as many times as there are
occurrences of x1 in t and puts them into the corresponding places. Interpreting
x1 as the (for illustration purposes shaded and oriented) unit disk

rather than as a parameter, we obtain a graphical representation of the operation
σN (t) = π(t) and its application to an element of σN (h) = π(L(γh)), as shown
in Figure 3. The interpretation σN (g) of g in N is the nondeterministic unary
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sample operation π(t) = σN (t) sample argument in σN (h)

result in σN (g[h]) = σN (g0) = L(N )

Figure 3: Graphical representation of applying π(t) to an element of σN (h) in
Example 2.7(a)
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operation g such that, for a picture P , g(P ) = {π(t)(P ) | t ∈ L(γg)}. Thus,
L(N ) = {g(P ) | P ∈ π(L(γh))}.

It may be instructive to have a look at the relation between L(N ) and the tree
language L(Nfree), where Nfree is identical to N , except that its interpretation π
of primitives is the free interpretation freeΠ with domain TΠ. Thus, each tree in
L(Nfree) is obtained from a tree in L(γg) by substituting a tree in L(γh) = T{r,d}
for the occurrences of the parameter x1: L(Nfree) = {t(t1) | t ∈ L(γg), t1 ∈
T{r,d}}. The fact that, in every picture in L(N ), the inner decorations of all
circles are identical, corresponds to the fact that, in every tree in L(Nfree), the
first subtrees of all occurrences of f are identical. By the MW-like Theorem 6.2
in Section 6, it holds that L(N ) = π(L(Nfree)). However, this relies on the fact
that the interpretations of the primitives are deterministic, i.e., they are functions.
Suppose that we change N into N ′ by removing h from the signature of generator
symbols and turning it into a nondeterministic primitive with π′(h) = σN (h).
From Definition 2.4, it is immediately clear that L(N ′) = L(N ). In contrast,
π′(L(N ′free)) is equal to the picture language generated in Example 2.6. This
discrepancy is caused by the fact that the trees in L(N ′free) are of the form t(h)
with t ∈ L(γg), in which h has several occurrences. When the interpretation π′

is applied to t(h), these occurrences of h are evaluated individually. Thus, each
occurrence of h gives nondeterministically rise to a potentially different element
of π′(h). We will show in Section 5 how this can be avoided by generating and
evaluating jungles instead of trees. In a jungle generated by N ′, there will be
only one occurrence of h, which is shared. Hence, it is evaluated only once, which
makes the evaluation of the entire jungle return the desired result.

Using self-delegation as in Example 2.6(c), N can be turned into a finitary
delegation network that generates the same picture language L(N ), by setting
L(γg) = {f[x1, g[x1], g[x1]], x1}. Then Nfree can be viewed as an IO context-free
tree grammar that generates the language L(Nfree) using the rules g0 → g[h],
g[x1]→ f[x1, g[x1], g[x1]], g[x1]→ x1, h→ r[h] and h→ d. Similarly, a grammar
for L(N ′) is obtained by dropping the last two rules.

(b) A modification of L(N ) is obtained by taking as γg the regular tree gram-
mar whose rules are ξ0 → f[x1, g0, ξ0] | x1. This is an example of cyclic delegation
(similar to mutual recursion in programs), because γg0 delegates to γg and vice
versa. The change implies that, while the inner decorations of the major spine
of the picture (extending to the right) are still identical, the subpictures that
correspond to the second subtrees of occurrences of f are recursively obtained
(transformed versions of) arbitrary elements of σN (g0) = L(N ), thus differing
with respect to their decorations. One of these pictures is shown in Figure 4.

(c) A variant of (b) with a slightly different domain is the following one. We
use colored pictures7 and change the interpretation of r. It is now interpreted

7We omit a formal definition, since it is not needed to understand the example. See [Dre06,
Chapter 8] for a discussion of color operations.
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Figure 4: A picture generated by the delegation network in Example 2.7(b)

as a nondeterministic primitive that, when being applied to a picture, changes
the color of each point in the picture by increasing the intensity of any of the
channels red, green, and blue by a certain fixed amount. The color of π(d) = •
is black (i.e., the value of all channels is zero). Thus, rn(•) yields unit disks in
(n+ 1)3 different colors.

Apart from this change of π, the delegation network is as in (b). The op-
eration f is assumed to preserve color. Thus, similar to (b) the major spine of
the picture is uniformly colored, whereas the subpictures that correspond to the
second subtrees of occurrences of f are, recursively, colored in the same fashion,
but with their individual coloring. One of these pictures can be seen in Figure 5.

Example 2.8 A phenomenon that must be taken into account when proving
MW-like results is deletion. As an (artificial) example, let us modify the del-
egation network N of Example 2.6(a) in the following way, yielding N⊥. The
generator symbol h is turned into a symbol of rank 1. In the rules of γg0 , every
occurrence of h is replaced by h[⊥], where ⊥ is a new primitive of rank 0 that
the extended interpretation π⊥ interprets as undefined, i.e., π⊥(⊥) = ∅. Keeping
γh unchanged, σN⊥(h) thus becomes the unary nondeterministic function h given
by h(P ) = σN (h), because γh never makes use of the parameter x1. Neverthe-
less, L(N⊥) = ∅, because σN⊥(t) is undefined for all t ∈ L(γg0), owing to the
occurrences of ⊥ in t.

In contrast to π⊥(⊥), the free interpretation of ⊥ yields a result (namely ⊥
itself), which implies that σN⊥free

(h[⊥]) = σN [h] and thus L(N⊥free) = L(Nfree). In
other words, if we use the free interpretation, the offending occurrences of ⊥ are
deleted, which causes π⊥(L(N⊥free)) to be different from L(N⊥). We will show in
Section 5 how this discrepancy can be removed by generating jungles instead of
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Figure 5: A picture generated by the delegation network in Example 2.7(c)

trees. In a generated jungle, the unused copies of ⊥ will be retained (as garbage),
so that the evaluation of the jungle yields the expected result.

Example 2.9 Since delegation networks with the free interpretation generate
trees, they can be used as γg in other delegation networks. This will be studied
in detail in Sections 7 and 8. We consider two examples.

(a) Let N0 be the delegation network that uses the free interpretation, with

the generator symbols g
(0)
0 and g(1), primitives f(3) and h(0), and L(γg0) = {g[h]}

and L(γg) = {g[f[h, x1, x1]], x1}. Then, N0 generates all trees in T{f,h} such that
the first child of each f is h and the binary tree obtained by considering only the
second and third child of each occurrence of f is fully balanced.

Now, let N use the interpretation in Example 2.6, with generators g0 and h,
where γg0 = N0. Again, γh is as in the previous examples. Then all “arms” of each
generated picture are equally refined (by the fact thatN0 generates fully balanced
trees), but the inner decorations of the circles vary, since each is generated by
an individual copy of γh; see Figure 6 (in which the fully balanced tree has
height 10). It is worth comparing this result with the one obtained by just
combining the two delegation networks rather than using N0 as a tree generator
in N . More precisely, let N ′ = ({g0, g, h},Π,Γ, g0, π), where L(γg0) = {g[h]},
L(γg) = {g[f[h, x1, x1]], x1}, and γh and π are again as in the preceding examples.
Now, as shown in Figure 7, the two substructures attached to each circle are
(transformed) copies of each other, including the inner decorations of the circles.

(b) Let us now assume, as in Example 2.7(c), that pictures are colored, and
let us turn d into a nondeterministic primitive such that π(d) is the set of all
uniformly colored unit disks. The primitives r and f are interpreted as in Exam-
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Figure 6: A picture generated by the delegation network N in Example 2.9

Figure 7: A picture generated by the delegation network N ′ in Example 2.9
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ple 2.6 (which implies that they preserve color). We wish to define a delegation
network N ′′ that, except for the coloring, generates the same pictures as N
above. In each picture, we want all (transformed) disks in the inner decorations

of circles to have the same color. The network N ′′ has generator symbols g
(0)
0 ,

k(1) and h(1), with L(γg0) = {k[d]}, L(γh) = {r[h[x1]], x1} and L(γk) being the
tree language consisting of all trees of L(N0) in which every occurrence of h is
replaced by h[x1]. The tree language L(γk) can be generated by an obvious vari-
ation N ′′0 of N0. Since x1 is a primitive of N ′′0 , N ′′0 cannot use it as a parameter
symbol. Therefore, it uses the parameter signature Yg = {y1}. Thus, in N ′′0 ,
L(γg0) = {g[h[x1]]} and L(γg) = {g[f[h[x1], y1, y1]], y1}. This explains why, in
general, we need other parameter signatures than Xk.

3 An Operational Characterization

Throughout this section, let N = (G,Π,Γ, g0,A, π) be a delegation network,
where Γ = (γg)g∈G. The goal of the section is to develop an operational char-
acterization of the semantics of delegation networks. Such an operational char-
acterization allows us to avoid the explicit use of the fixed-point construction
of Definition 2.4 in proofs. To achieve this, we define a derivation relation �N
that, intuitively, works on trees over a larger (possibly infinite) signature, with
additional symbols 〈a〉 of rank 0 that represent values a ∈ A. Intuitively, �N
works bottom up and performs both evaluation and generation steps. Evaluation
steps apply the interpretation of a primitive to already computed values, i.e.,
they nondeterministically replace f[〈a1〉, . . . , 〈ak〉] with f(k) ∈ Π by any 〈a〉 with
a ∈ f(a1, . . . , ak). Generation steps nondeterministically replace g[〈a1〉, . . . , 〈ak〉]
with g(k) ∈ G by any tree u(〈a1〉, . . . , 〈ak〉), where u ∈ L(γg).

To start with, we have the following easy lemma.

Lemma 3.1 Let Σ and σ be a signature and a Σ-interpretation, resp. For every
tree s � t ∈ TΣ, if t′ ∈ TΣ is such that σ(t) ⊆ σ(t′), then σ(s � t) ⊆ σ(s � t′).

Proof Straigthforward structural induction on s.

We now define the derivation relation �N mentioned above, that will be the
basis for our operational characterization of the semantics of delegation networks.

Definition 3.2 Let ΣN = ΣN ∪ {〈a〉(0) | a ∈ A}.8 The derivation relation �N
on TΣN

is given as follows. For trees s � t, s � t′ ∈ TΣN
, we let s � t�N s � t′ if one

of the following holds:
• t is of the form f[〈a1〉, . . . , 〈ak〉], where f ∈ Π, and t′ = 〈a〉 for some
a ∈ f(a1, . . . , ak), or
• t is of the form g[〈a1〉, . . . , 〈ak〉], where g ∈ G, and t′ = u(〈a1〉, . . . , 〈ak〉) for

a tree u ∈ L(γg).

8Here, 〈a〉 is assumed to be chosen in such a way that 〈a〉 /∈ ΣN .
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Thus, the first item describes an evaluation step applying f to a1, . . . , ak,
whereas the second yields a tree generation step using γg. We are going to show
that L(N ) = {a ∈ A | g0 �∗

N 〈a〉}. For the first inclusion of this equality, which
is provided by the following lemma, it is technically convenient to extend σN to
ΣN in the obvious way: σN (〈a〉) = {a} for all a ∈ A.

Lemma 3.3 For all trees t, t′ ∈ TΣN
, t�∗

N t′ implies σN (t′) ⊆ σN (t).

Proof It suffices to consider the relation �N instead of �∗
N . According to the

definition of �N , we have to consider two cases. Let t = s � t0 and t′ = s � t′0.

Case 1 We have t0 = f[〈a1〉, . . . , 〈ak〉], where f ∈ Π, and t′0 = 〈a〉 for some
a ∈ f(a1, . . . , ak).

In this case, we immediately get

σN (t′0) = {a} ⊆ f(a1, . . . , ak) = σN (t0).

Thus, Lemma 3.1 yields σN (t′) ⊆ σN (t), as claimed.

Case 2 We have t0 = g[〈a1〉, . . . , 〈ak〉], where g ∈ G, and t′0 = u(〈a1〉, . . . , 〈ak〉)
for some u ∈ L(γg).

This yields

σN (t′0) = σN (u)(a1, . . . , ak) (Lemma 2.1)

⊆ σN (L(γg))(a1, . . . , ak)

= σN (g)(a1, . . . , ak)

= σN (t0),

where the equality in the third row holds because σN is, by definition, a fixed
point of iterateN (see Definition 2.4). As a consequence, again by Lemma 3.1,
σN (t′) ⊆ σN (t).

By the previous lemma, g0 �∗
N 〈a〉 only if a ∈ L(N ). The next lemma proves

that the other direction is valid as well.

Lemma 3.4 For all a ∈ L(N ), g0 �∗
N 〈a〉.

Proof Let σ be the ΣN -interpretation such that σ(f) = f for all f ∈ Π, and

σ(g)(a1, . . . , ak) = {a′ ∈ A | g[〈a1〉, . . . , 〈ak〉] �∗
N 〈a′〉}

for all g(k) ∈ G and a1, . . . , ak ∈ A. We prove the inequality

iterateN (σ) ≤ σ. (1)

This finishes the proof of the lemma, because it yields σN ≤ σ, by Propo-
sition 2.3. In particular, σN (g0) ⊆ σ(g0), which is the same as saying that
a′ ∈ L(N ) = σN (g0) implies g0 �∗

N 〈a′〉 (by the definition of σ(g0)).
By the definition of iterateN , to prove (1), it suffices to show that σ(L(γg)) ⊆

σ(g), for all g(k) ∈ G. In other words, we have to show that g[〈a1〉, . . . , 〈ak〉] �∗
N
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〈a′〉 for all a1, . . . , ak ∈ A and a′ ∈ σ(L(γg))(a1, . . . , ak). For this, by the second
item of Definition 3.2, it suffices to prove the following claim.

Claim Let k ∈ N. For all trees t ∈ TΣN ,k and all a′ ∈ σ(t)(a1, . . . , ak), we have
t(〈a1〉, . . . , 〈ak〉) �∗

N 〈a′〉.
We proceed by structural induction on t. If t = xi, then a′ = ai, and there

is nothing to show. Thus, let t = f[t1, . . . , tl] and a′ ∈ σ(f)(a′1, . . . , a
′
l), for

appropriate a′i ∈ σ(ti)(a1, . . . , ak) (i ∈ [l]). Then the induction hypothesis yields
ti(〈a1〉, . . . , 〈ak〉) �∗

N 〈a′i〉 for every i ∈ [l], which gives

t(〈a1〉, . . . , 〈ak〉) = f[t1(〈a1〉, . . . , 〈ak〉), . . . , tl(〈a1〉, . . . , 〈ak〉)]
�∗
N f[〈a′1〉, . . . , 〈a′l〉]

�∗
N 〈a′〉.

Here, the last line holds by the first item of Definition 3.2 if f ∈ Π, and by the
definition of σ if f ∈ G.

Combining the two previous lemmas, the desired operational characterization
of the semantics of N follows immediately.

Theorem 3.5 L(N ) = {a ∈ A | g0 �∗
N 〈a〉}, for every delegation network

N = (G,Π,Γ, g0,A, π).

Proof By Lemmas 3.3 (where t = g0 and t′ = 〈a〉) and 3.4.

The previous theorem shows that the parallel distributed implementation of
delegation networks discussed in the introduction is indeed correct. We repeat
that discussion here in more detail, in order to relate it to the formal definitions.
The main process takes care of the generation of an element of L(N ). For this, it
first uses γg0 to generate a tree u0 (if possible, i.e., if L(γg0) 6= ∅). Then, for every
individual occurrence of a symbol g in u0, a similar process using γg instead of
γg0 is started recursively. If desired, this process may run on a different machine.
Each process also takes care of the nondeterministic evaluation of the tree u it
has generated. For this to be possible, its parent process must eventually provide
it with values for all the parameter symbols in u, the actual parameters.9 An
evaluation step takes place as soon as the subtrees of (an occurrence of) a symbol
f(k) ∈ Π in u have been evaluated. In this situation, the process applies f to the
values a1, . . . , ak of the subtrees as in the first item of Definition 3.2, obtains a
value a′ (provided that f(a1, . . . , ak) 6= ∅), and replaces f by 〈a′〉. To implement
the second item of Definition 3.2, when a subtree of a symbol g ∈ G has been
evaluated, the resulting value is passed to the child process that evaluates the
occurrence of g, thus providing it with one of its actual parameters. Moreover,
whenever a child process has received all its actual parameters and has finished the
evaluation of its own tree, it reports the value a′′ computed to its parent process

9Note that the parameter passing mechanism is call-by-value.
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and terminates.10 The parent process can then continue the evaluation of u at
symbol g, changing that symbol into 〈a′′〉. In effect, all processes together carry
out a derivation g0 �∗

N 〈a〉 according to Definition 3.2, where a is the result of
the evaluation performed by the main process. Of course, a real implementation
must bound the number of processes created, and it must make sure that the
depth of the recursion caused by cyclic delegation does not increase ad infinitum.

Whereas Theorem 3.5 shows that L(N ) can be generated by alternatingly
using semantic evaluation steps and syntactic tree generation steps, in the next
two sections we will prove MW-like11 results, to show that one can even perform
all the syntactic steps first, and then the semantic ones. However, it turns out that
such a result can be obtained for the general case only if the syntactic generation
is defined in such a way that it yields trees with sharing and garbage, i.e., acyclic
graphs, rather than ordinary trees. This case is treated in Section 5. In Section 6,
we show that the use of trees is sufficient if all primitives are interpreted as
functions.

4 Jungles and Hyperedge Replacement

In this section, we recall some notions regarding jungles [HP91, HKP91, Plu99],
which will play a major role in Sections 5 and 7. Intuitively, a jungle is a directed
ordered acyclic graph representing a tree. In such a jungle, subtrees can be shared
and unreachable subtrees, so-called garbage, may occur. Technically, jungles are
defined to be special hypergraphs, which makes it possible to generate them
by means of hyperedge replacement, a context-free graph rewriting mechanism
that has been studied extensively in the context of hyperedge-replacement graph
grammars; see, e.g., [BC87, HK87, Hab92, Eng97, DHK97, CE12].12

Our notion of hypergraph is made precise in the following definition.

Definition 4.1 (Λ-hypergraph) Let Λ be a set of labels. A Λ-hypergraph is a
tuple H = (V,E, att , lab, ext) consisting of
• a finite set V of nodes,
• a finite set E of hyperedges,
• an attachment function att : E → V + assigning to every hyperedge e a

nonempty sequence att(e) of attached nodes,

10We wish to stress that, to implement the call-by-value semantics correctly, we must make
sure that a child process does not terminate its computation before receiving all its actual
parameters, even those that do not occur in the tree it has generated. It does not necessarily
have to receive them at the start of its computation.

11Recall that ‘MW-like’ refers to the seminal paper [MW67] by Mezei and Wright, where it
was shown that a subset of a domain of an algebra is context-free if and only if it is the set of
evaluations of a regular set of trees.

12Somewhat similar to the use of hyperedge replacement in this paper, [EH92] shows that
the “term-generating” power of hyperedge-replacement graph grammars that generate jungles
(which are then turned into trees) is equal to the power of attribute grammars. However, in the
present paper, even the right-hand sides of rules (and, thus, all sentential forms) are jungles.
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• a labelling function lab : E → Λ, and
• a nonempty sequence ext ∈ V + of external nodes.

If Λ is understood or of minor interest, we simply speak of hypergraphs rather
than Λ-hypergraphs. The five components of a hypergraph H may be denoted
by VH , EH , attH , labH , extH , resp.

Before continuing, let us mention that we usually do not distinguish between
isomorphic hypergraphs, i.e., hypergraphs which are identical up to a bijective
renaming of nodes and hyperedges. In other words, operations and relations
defined on hypergraphs are meant to work on abstract hypergraphs (isomorphism
classes of hypergraphs), even though, for technical convenience, we use concrete
representatives in definitions, proofs, and the like.

The notion of hyperedge replacement to be defined next relies on the disjoint
union S ] S ′ of sets S, S ′ of nodes or hyperedges. To keep the technicalities as
simple as possible, we shall generally assume that the hypergraphs in question
are silently replaced by suitable isomorphic copies to make sure that S ∩ S ′ = ∅.
Using this convention, S ] S ′ will be treated like the ordinary union of disjoint
sets.

Given two hypergraphs H and H ′, the addition of H ′ to H yields the hyper-
graph H ⊕ H ′ = (VH ] VH′ , EH ] EH′ , attH ∪ attH′ , labH ∪ labH′ , extH). Note
that H ⊕ H ′ inherits its sequence of external nodes from H. Thus, ⊕ is not
commutative.

The removal of a hyperedge e from a hypergraph H yields

H − e = (VH , EH \ {e}, att , lab, extH),

where att and lab are the restrictions of attH and labH , resp., to EH \ {e}.
Finally, given two sequences of nodes v = v1 · · · vk and w = w1 · · ·wk of

a hypergraph H, of the same length, Hv=w denotes the hypergraph obtained by
identifying v with w in H. More precisely, let ∼ be the equivalence relation on VH
generated by {(v1, w1), . . . , (vk, wk)}, and let img(v′) denote the image of v′ ∈ VH
in the quotient set VH/∼. Then Hv=w = (VH/∼, EH , img◦attH , labH , img(extH)).

We are now ready to recall the definition of hyperedge replacement.

Definition 4.2 (hyperedge replacement) Let H be a hypergraph. A hyper-
graph H ′ fits a hyperedge e ∈ EH (in H) if |attH(e)| = |extH′ |. In this case,
H[e ← H ′] is the hypergraph obtained from the disjoint union of H − e and H ′

by identifying attH(e) with extH′ , i.e.,

H[e← H ′] = ((H − e)⊕H ′)attH(e)=extH′
.

Note that if H ′′ = H[e ← H ′], then every node v ∈ VH ∪ VH′ has an image
img(v) in H ′′, where img is as in the paragraph preceding Definition 4.2. The
function img makes it possible to locate the nodes of H and H ′ in H ′′. In
the following, it will therefore be called the locator function associated with the
hyperedge replacement. By construction, img maps the ith attached node of
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e in H to the same node as the ith external node of H ′, but is injective on
(VH \ [attH(e)]) ∪ (VH′ \ [extH′ ]).

13

As mentioned above, we are interested in a special kind of hypergraph, the
so-called jungle. Let Σ be a signature. A jungle is essentially a tree in TΣ,n

(with garbage), in which subtrees may be shared and multiple occurrences of
each parameter symbol xi must be shared.14 To make this precise, let J be a Σ-
hypergraph, with extJ = w1 · · ·wnw. Assume that, for each hyperedge e ∈ EJ , if
labJ(e) = f(k), then attJ(e) has length k+ 1, say attJ(e) = v1 · · · vkv. Intuitively,
the nodes v1, . . . , vk represent the parameters of f, and the nodes w1, . . . , wn
represent the parameters of J . Therefore, we call parJ(e) = v1 · · · vk the sequence
of parameter nodes of e, and par(J) = w1 · · ·wn the sequence of parameter nodes
of J . Similarly, v and w intuitively represent the results of f and J , respectively,
and so resJ(e) = v and res(J) = w are called the result nodes of e and J ,
respectively. A parameter tentacle of e is a pair (e, j), where j ∈ [k]. We let
tent(J) denote the set of all parameter tentacles of hyperedges in EJ .

Now, let v, w ∈ VJ . For the definition of jungles below, and also for later
use, we define a jungle path from v to w (in J) to be either the empty sequence
λ, provided that v = w, or a nonempty sequence (e0, j0) · · · (em, jm) ∈ tent(J)∗

such that v = resJ(e0), w = parJ(em, jm), and resJ(el) = parJ(el−1, jl−1) for all
l ∈ [m]. The hypergraph J is acyclic if, for every v ∈ VJ , λ is the only jungle
path from v to v.

Definition 4.3 (jungle) Let Σ be a signature. The set JΣ,n of jungles over Σ
with n parameters (n ∈ N) consists of all acyclic Σ-hypergraphs J such that
• par(J) = w1 · · ·wn for pairwise distinct nodes w1, . . . , wn,
• for all v ∈ VJ , v = resJ(e) for some e ∈ EJ if and only if v /∈ [par(J)],
• for all hyperedges e, e′ ∈ EJ , if e 6= e′ then resJ(e) 6= resJ(e′), and
• for every hyperedge e ∈ EJ , |parJ(e)| is equal to the rank of labJ(e) in Σ.

We let JΣ = JΣ,0. For finite Σ, a jungle language is a subset of JΣ,n, where n ∈ N.

Intuitively, the n pairwise distinct parameter nodes of a jungle J correspond
to the parameter symbols xi of a tree in TΣ,n, and res(J) corresponds to its root.

Every jungle J ∈ JΣ,n represents a unique tree tree(J) ∈ TΣ,n, namely
tree(J) = tree(J, res(J)), where tree(J, v) is defined as follows, for all v ∈ VJ .
If par(J) = w1 · · ·wn and v = wi, where i ∈ [n], then tree(J, v) = xi. Otherwise,
let e ∈ EJ be the unique hyperedge such that resJ(e) = v. Then tree(J, v) =
f[tree(J, v1), . . . , tree(J, vk)], where f(k) = labJ(e) and parJ(e) = v1 · · · vk.

Conversely, a tree t ∈ TΣ,n can be turned into a jungle by creating a node
that represents the root of s, for each (occurrence of a) subtree s = f[s1, . . . , sk].
If f ∈ Σ, then there is a hyperedge labelled f whose result node is this node, and

13Recall that, for a string u, [u] denotes the set of all symbols occurring in u.
14Recall from the end of Section 2 that TΣ,n = TΣ,Xn

, where Xn is the parameter signature
{x1, . . . , xn}.
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whose parameter nodes are the nodes representing the roots of s1, . . . , sk. If f =
xi, then the node representing its root becomes par(J, i). Different occurrences
of one and the same subtree can either be shared (the same node represents their
roots) or not. However, all occurrences of one and the same parameter must be
shared: we have to create a unique parameter node for every xi ∈ Xn. The result
node of the jungle is the node representing the root of t. The jungle obtained in
this way with the minimum amount of sharing, is denoted by Jn(t).

Formally, we let
Jn(t) = (V,E, att , lab, ext)

consist of the following components:
• V = {nod(v) | v ∈ VΣ(t) ]Xn};15

• E = {edg(v) | v ∈ VΣ(t)};
• lab(edg(v)) = `t(v) for all v ∈ VΣ(t);
• att(edg(v)) = nod(v1) · · · nod(vk)nod(v) for all v ∈ VΣ(t), where k is the

rank of `t(v), and

vi =

{
vi if `t(vi) ∈ Σ

`t(vi) if `t(vi) ∈ Xn,

for all i ∈ [k];
• ext = nod(x1) · · · nod(xn)w, where w = nod(λ) if `t(λ) ∈ Σ, and w =

nod(xi) if t = xi for some i ∈ [n].
Note that for every tree t and n ∈ N, tree(Jn(t)) = t.

If Jn(t) is taken with respect to a parameter signature Y other than Xn, the
definition is adapted in the obvious way, and the notation is turned into JY (t) to
emphasize Y . However, this will only be used in Section 7.

Note that in the special case where t = f[x1, . . . , xn] for a symbol f(n), the
jungle J = Jn(t) consists of a single f-labelled hyperedge e with n pairwise
distinct parameter nodes, such that extJ = attJ(e). In the following, if the rank
n of f is clear from the context, we simply denote this jungle by J(f).

Thanks to the fact that parameter nodes of jungles are required to be pairwise
distinct, it is not difficult to verify that JΣ,n is closed under hyperedge replacement
(see [EV94, Lemma 5.3]).

Fact 4.4 Let J ∈ JΣ,n for a signature Σ and n ∈ N. For every jungle J ′ ∈ JΣ,k,
if J ′ fits hyperedge e ∈ EJ , then J [e← J ′] ∈ JΣ,n.

An important fact that needs to be kept in mind when working with jungles
is that they may contain shared nodes as well as garbage. Here, a node v in a
jungle J is shared if there are distinct parameter tentacles (e, j), (e′, j′) ∈ tent(J)
such that parJ(e, j) = v = parJ(e′, j′). We say that v is garbage if there is no
jungle path in J from res(J) to v; in particular, v is a garbage root if v 6= res(J)

15Recall that VΣ(t) denotes the set of nodes of t with labels in Σ.
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and v /∈ [parJ(e)] for all e ∈ EJ . Shared nodes and garbage roots will play an
important role in the proof of Theorem 5.6.

Garbage, except parameter nodes, can be removed from a jungle J without
affecting tree(J). The following definitions related to this observation will only
be needed in Section 7. Given a jungle J , we let CJ denote the set of all nodes
v ∈ VJ that are not garbage. We say that J is clean if VJ = CJ ∪ [par(J)],
i.e., if all garbage nodes of J are parameter nodes of J . The clean jungle
clean(J) is obtained from J by restricting J to CJ ∪ [par(J)]. Thus, clean(J) =
(V,E, att , lab, extJ), where V = CJ ∪ [par(J)], E = {e ∈ EJ | resJ(e) ∈ V }, and
att and lab are the restrictions of attJ and labJ to E. As mentioned above, we
have tree(clean(J)) = tree(J). The reader should also note a few additional easy
facts that will be used (in Section 7) without mention: (1) clean(J) is clean (as
the notation suggests), because Cclean(J) = CJ , (2) by construction, jungles of the
form Jn(t) are clean, and (3) if J is clean, then clean(J) = J .

Another basic fact about jungles used in Section 7 is that, intuitively, a jungle
of the form Jn(t) is the most general jungle representation of a tree t. This can
be expressed formally by saying that Jn(tree(J)) maps to J , for every jungle
J , and that both jungles represent the same tree. Here, we say that a jungle
I maps to a jungle J if there is a structure preserving mapping ϕ : VI → VJ ,
where structure preservation means that ϕ(ext I) = extJ and, for every hyperedge
e ∈ EI , there exists a (unique) hyperedge e′ ∈ EJ with attJ(e′) = ϕ(att I(e)) and
labJ(e′) = labI(e). The formal statement below is similar to [Plu99, Lemmas 1.3.6
and 1.3.9].

Lemma 4.5 For every jungle J ∈ JΣ,n, the jungle Jn(tree(J)) maps to J . Fur-
thermore, if I is a jungle that maps to J , then tree(I) = tree(J).

Proof As the second statement should be obvious16, we prove only the first. Let
v ∈ VJ , and let Jv be the jungle that is equal to J , except that res(Jv) = v. By
induction on the number of hyperedges in clean(Jv), we prove that Jn(tree(J, v))
maps to Jv. This is obvious if v ∈ [par(J)], using the mapping ϕ given by
ϕ(nod(xj)) = par(J, j) for all j ∈ [n] (where nod(xj) is as in the definition
of Jn(t)). Now, consider the case where v /∈ [par(J)], and let e ∈ EJ be the
unique hyperedge such that resJ(e) = v, where parJ(e) = v1 · · · vk. By the
induction hypothesis, for all i ∈ [k], Jn(tree(J, vi)) maps to Jvi . Let ϕ1, . . . , ϕk
be the corresponding structure-preserving mappings. Then the reader may easily
check that ϕ is a structure-preserving mapping from Jn(tree(J, v)) to Jv, where
ϕ(nod(λ)) = v, ϕ(nod(xj)) = par(J, j) for j ∈ [n], and ϕ(nod(iw)) = ϕi(nod(w)),
for i ∈ [k] and w ∈ VΣ(tree(J, vi)).

In examples, we will also use the jungle with the maximal amount of sharing

16By induction on the structure of I, tree(I, v) = tree(J, ϕ(v)) for every v ∈ VI (cf. the proof
of [Plu99, Lemma 1.3.6]).
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that represents a tree t ∈ TΣ,n, denoted Jms
n (t). It is defined as

Jms
n (t) = (V,E, att , lab, ext)

where:
• V = {nod(s) | s is a subtree of t or s ∈ Xn};
• E = {edg(s) | s is a subtree of t and s /∈ Xn};
• if s = f[s1, . . . , sk] with f(k) ∈ Σ ∪Xn and s1, . . . , sk ∈ TΣ,n,

then lab(edg(s)) = f and att(edg(s)) = nod(s1) · · · nod(sk)nod(s);
• ext = nod(x1) · · · nod(xn)nod(t).

As an example, if Σ = {f(2), c(0)}, then Jms
0 (f[c, c]) = ({v, w}, {ef, ec}, att , lab, v)

with att(ef) = wwv, att(ec) = w, lab(ef) = f, and lab(ec) = c (where v =
nod(f[c, c]), w = nod(c), ef = edg(f[c, c]), and ec = edg(c)).

For Jms
n (t), it is easy to prove a “dual” of Lemma 4.5: for every clean jun-

gle J ∈ JΣ,n, the jungle J maps to Jms
n (tree(J)) (by mapping every v ∈ VJ to

nod(tree(J, v))). However, this property will not be used anywhere in this paper.

5 A Characterization Using Jungles

In this section, we show our first (and main) MW-like result stating that, for
a delegation network N , L(N ) can be obtained by first using N to generate a
set of jungles and then evaluating the jungles obtained. As discussed in Exam-
ples 2.7(a) and 2.8, sharing and garbage in jungles are essential to achieve this if
the interpretation of primitives is nondeterministic. Let us recall the problem by
discussing another small example.

Example 5.1 Consider a delegation network N with primitives f(2), a(0), b(0) in-
terpreted into strings, where f is string concatenation, a = {♦,♥}, and b = {♦}.
The generator symbols are g

(0)
0 and g(2) with L(γg0) = {g[a, b]} and L(γg) =

{f[x1, x1]}. Then L(N ) = {♦♦,♥♥}. In contrast, the tree language generated
by N (using the free interpretation of Π) consists of the single tree f[a, a], which
evaluates to {♦♦,♦♥,♥♦,♥♥}, because both occurrences of a are evaluated
independently. Moreover, if we turn b into ∅, then L(N ) = ∅, whereas the evalu-
ation of the tree language generated by N still yields the same result, because b

is not evaluated at all.
As might be expected, the jungle J generated by N will look like this:

f

a b

The result node of J is the result node v0 of the hyperedge with label f. Note
that the result node v1 of the hyperedge with label a is shared (it is both the first
and second parameter node of the hyperedge with label f), and the result node
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v2 of the hyperedge with label b is garbage (and, in fact, a garbage root). The
evaluation of J according to the definition below will evaluate the occurrences of
a and b exactly once, thus yielding the correct result under both interpretations.

We start by defining how jungles are evaluated.

Definition 5.2 (jungle evaluation) Consider a Σ-interpretation σ (into A)
and a jungle J ∈ JΣ,n. Given a1, . . . , an ∈ A, let ASS J,σ(a1, . . . , an) be the
set of all functions α : VJ → A such that the following hold:
• α(par(J, i)) = ai, for all i ∈ [n];
• if attJ(e) = v1 · · · vkv, then α(v) ∈ σ(labJ(e))(α(v1), . . . , α(vk)), for all e ∈
EJ .

Now, σ(J) is the relation given by

σ(J)(a1, . . . , an) = {α(res(J)) | α ∈ ASS J,σ(a1, . . . , an)},
for all a1 . . . , an ∈ A. For a set of jungles J ⊆ JΣ,n, σ(J ) =

⋃
J∈J σ(J).

For instance, if J is the jungle in Example 5.1, with the nodes v0 (the result
node), v1 (the leftmost node), and v2 (the rightmost node), then ASS J,σ() =
{α1, α2}, where α1(v1) = ♦ and α2(v1) = ♥ and, for i ∈ [2], αi(v2) = ♦ and
αi(v0) = αi(v1)αi(v1). Thus, σ(J) = L(N ). Moreover, in the case where b = ∅,
we obtain ASS J,σ() = ∅.

The following lemma shows that the previous definition is consistent with the
evaluation of trees: if we turn a tree t into the jungle Jn(t), then their evaluations
coincide.

Lemma 5.3 Let σ be a Σ-interpretation. For all trees t ∈ TΣ,n, σ(t) = σ(Jn(t)).

Proof Let J = Jn(t) and a1, . . . , an ∈ A. We have to show that, for all a ∈ A,
a ∈ σ(t)(a1, . . . , an) if and only if there is some α ∈ ASS J,σ(a1, . . . , an) with
α(res(J)) = a.

It follows directly from the definition of σ(t) (by using an obvious induc-
tion), that a ∈ σ(t)(a1, . . . , an) if and only if there is a function α′ : V (t) → A
such that α′(λ) = a, α′(v) = ai for all v ∈ VXn(t) with `t(v) = xi, and
α′(v) ∈ f(α′(v1), . . . , α′(vk)) for all v ∈ VΣ(t) with `t(v) = f(k). By the def-
inition of ASS J,σ(a1, . . . , an), this is the case if and only if there is some α ∈
ASS J,σ(a1, . . . , an) with α(res(J)) = a, which completes the proof.

It should be noticed that the validity of the previous proof depends on a
subtlety whose importance might not be obvious at first sight, namely the fact
that Jn(t) uses minimal sharing and has no garbage roots. In other words, it is not
the case that σ(tree(J)) = σ(J) for every jungle J . To see this, recall Example 5.1,
where the sharing in J restricts nondeterminism, yielding σ(J) = {♦♦,♥♥}. In
contrast, σ(tree(J)) = σ(f[a, a]) = {♦♦,♦♥,♥♦,♥♥}, because in this case
the occurrences of a are evaluated independently. Moreover, as mentioned in
Example 5.1 too, the existence of garbage in J may make σ(J) undefined.
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We now show that interpretation of jungles is compatible with hyperedge
replacement, similar to Lemma 3.1.

Lemma 5.4 Let σ be a Σ-interpretation, f(k) ∈ Σ, J ∈ JΣ,n, and e ∈ EJ with
labJ(e) = f (where k, n ∈ N). For all jungles J ′ ∈ JΣ,k, if σ(J ′) ⊆ σ(f), then
σ(J [e← J ′]) ⊆ σ(J).

Proof Let J ′′ = J [e ← J ′], and let α′′ ∈ ASS J ′′,σ(a1, . . . , an) for a1, . . . , an ∈ A,
with α′′(res(J ′′)) = a ∈ A. Let img : VJ∪VJ ′ → VJ ′′ be the locator function associ-
ated with the hyperedge replacement (see the paragraph following Definition 4.2).
With α′′(img(ext(J ′))) = b1 · · · bkb, we get α′ ∈ ASS J ′,σ(b1, . . . , bk) by defining
α′(v) = α′′(img(v)), for all v ∈ VJ ′ . It follows that b ∈ f(b1, . . . , bk), which means
that we get α ∈ ASS J,σ(a1, . . . , an) by defining α(v) = α′′(img(v)), for all v ∈ VJ .
Note that α(attJ(e)) = b1 · · · bkb, because img(attJ(e)) = img(ext(J ′)). This
proves that a ∈ σ(J)(a1, . . . , an) and completes the proof.

As mentioned in the introduction, it is straightforward to turn an IO context-
free tree grammar into a (context-free) graph grammar that generates jungles,
by viewing each tree t in L(γg) as the jungle Jk(t) which contains exactly one
node with label xi for every parameter symbol xi (where i ∈ [k] and k is the rank
of g). With this in mind, the previous lemma motivates the following definition,
which leads to Theorem 5.6, our main MW-like result.

Definition 5.5 For every delegation network N = (G,Π, (γg)g∈G, g0,A, π), the
binary relation⇒N on JΣN ,n (n ∈ N) is given as follows. If J ∈ JΣN ,n and e ∈ EJ ,
where labJ(e) = g(k) ∈ G, then J ⇒N J [e← Jk(t)] for all trees t ∈ L(γg).

The jungle language generated by N is given by

LJ(N ) = {J ∈ JΠ | J(g0)⇒∗N J}.

Note that ⇒N and, thus, LJ(N ) do not depend on the last two components
A and π of N . Thus, LJ(N ) is generated in a purely syntactical way, cf. the last
paragraph of Section 3. The reader should also note that the jungles generated
by N , i.e., the elements of LJ(N ), do not have parameter nodes, because g0 has
rank 0.

Theorem 5.6 For every delegation network N = (G,Π, (γg)g∈G, g0,A, π),

L(N ) = π(LJ(N )).

Proof The inclusion π(LJ(N )) ⊆ L(N ) follows from Lemmas 5.3 and 5.4, as
follows. By Lemma 5.3, σN (J(g0)) = σN (g0). Moreover, by the definition of
iterateN (and the fact that σN is a fixed point of iterateN ), we have σN (t) ⊆ σN (g)
for all g ∈ G and t ∈ L(γg). Using this, together with Lemmas 5.3 and 5.4,
induction on the length of derivations yields σN (J) ⊆ σN (g0), for all jungles
J ∈ JΣN such that J(g0) ⇒∗N J . Since σN (J) = π(J) for all J ∈ JΠ, this proves
that π(LJ(N )) ⊆ σN (g0) = L(N ).
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It remains to prove that L(N ) ⊆ π(LJ(N )). For this, we use the following
definitions:

1. For a jungle J ∈ JΣN , we let ASS ′J denote the set of all partial functions
α : VJ → A such that the following hold:
(a) α is defined on all shared nodes and garbage roots of J ;17

(b) for all e ∈ EJ with labJ(e) = f(k) and attJ(e) = v1 · · · vkv, if α(v) is
defined, then f ∈ Π, α(vi) is defined for every i ∈ [k], and α(v) ∈
f(α(v1), . . . , α(vk)).

Note that if α(res(J)) is defined, then α is total, and so J ∈ JΠ and
α(res(J)) ∈ π(J).

2. For J ∈ JΣN , α ∈ ASS ′J , and v ∈ VJ , define treeα(J, v) ∈ TΣN
as fol-

lows: if α(v) is defined, then treeα(J, v) = 〈α(v)〉. Otherwise, treeα(J, v) =
f[treeα(J, v1), . . . , treeα(J, vk)], where e ∈ EJ is the unique hyperedge such
that resJ(e) = v, with labJ(e) = f(k) and parJ(e) = v1 · · · vk. We use the
abbreviation treeα(J) to denote treeα(J, res(J)).
Note that if treeα(J) = 〈a〉 for some a ∈ A, then α(res(J)) is defined and
equals a, which means that J ∈ JΠ and a ∈ π(J).

Claim For all trees t ∈ TΣN
such that g0 �∗

N t, there are a jungle J ∈ JΣN and
a partial function α ∈ ASS ′J such that J(g0)⇒∗N J and treeα(J) = t.

By Theorem 3.5, this proves the required inclusion since a ∈ L(N ) implies
g0 �∗

N 〈a〉, and hence there exists J ∈ LJ(N ) such that a ∈ π(J).
We proceed by induction on the length of derivations. For t = g0, the claim

is true with J = J(g0) and α being the totally undefined function. Now, let
g0 �∗

N t′ �N t, and assume that the claim holds for the initial part g0 �∗
N t′

of the derivation, where J ′ ∈ JΣN and α′ ∈ ASS ′J ′ satisfy the requirements
given. Let t′ = s � f[〈a1〉, . . . , 〈ak〉], and let v ∈ VJ ′ be the node yielding the root
of f[〈a1〉, . . . , 〈ak〉] under treeα′ , and e ∈ EJ ′ the unique hyperedge such that
resJ ′(e) = v.18 Note that by the definition of treeα′(J

′, v), α′(v) is undefined, and
thus v is not shared. Furthermore, labJ ′(e) = f, and if parJ ′(e) = v1 · · · vk, then
α′(vi) = ai (also by the definition of treeα′(J

′, v)).
To complete the proof of the claim, we have to check two cases.

Case 1 We have f ∈ Π and t = s � 〈a〉 for some a ∈ f(a1, . . . , ak).
Let J = J ′, and let α be the extension of α′ such that α(v) = a. Clearly,

this yields α ∈ ASS ′J . Moreover, the fact that v is not shared implies that
treeα(J) = t. (Note that if v would be shared, setting α(v) = a could turn
several subtrees of t′ = treeα′(J

′) into 〈a〉, thus yielding treeα(J) 6= t.)

Case 2 We have f ∈ G and t = s � s′(〈a1〉, . . . , 〈ak〉) for a tree t′ ∈ L(γf).
Let J = J ′[e← Jk(s

′)], and define α as follows. If s′ /∈ Xk, then α = α′◦img−1,
where img is the locator function associated with the hyperedge replacement,

17Recall the definition of shared nodes and garbage roots following Fact 4.4.
18More precisely, v and e are uniquely determined by the requirements that v = resJ′(e) and,

if J ′ − e = (V,E, att , lab, w) and J ′′ = (V,E, att , lab, vw), then tree(J ′′) = s.
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restricted to VJ ′ . (Note that img is injective if s′ /∈ Xk, which makes α well
defined.) It is straightforward to check that α ∈ ASS ′J and treeα(J) = t, again
using the fact that v is not shared.19 Finally, if s′ = xi for some i ∈ [k], this means
that J is obtained from J ′−e by identifying v with vi, where parJ ′(e) = v1 · · · vk.
Let v′ be the resulting node and define

α(w) =

{
α′(vi) if w = v′

α′(w) otherwise.

Again, it is straightforward to check that this fulfils the requirements. This
completes the proof of the theorem.

6 Deterministic Primitives

In this section, we consider delegation networks with deterministic primitives.
These are delegation networks whose interpretation π of primitives is determin-
istic.20 Looking at Example 5.1, the use of jungles in Theorem 5.6 seems to
be essential only in the presence of nondeterministic primitives. In a delegation
network with deterministic primitives, multiple evaluations of a tree always yield
the same result, and never fail. Therefore, neither sharing nor garbage should
be needed in the case of deterministic primitives. We confirm this intuition by
proving another MW-like result, where the syntactic generation phase yields trees
rather than jungles, but only delegation networks with deterministic primitives
are considered.

We start by observing that, in the deterministic case, Lemma 5.3 holds even
without the assumption of minimal sharing and absence of garbage roots; cf. the
discussion following the proof of Lemma 5.3. (The next lemma can already be
found in [AG68, Lemma 1.16].)

Lemma 6.1 Let σ be a deterministic Σ-interpretation. For all jungles J ∈ JΣ,n,
we have σ(tree(J)) = σ(J).

Proof Consider a1, . . . , an ∈ A. Since σ is deterministic, an obvious induc-
tion can be used to verify that ASS J,σ(a1, . . . , an) = {α}, where α is given by
α(v) = σ(tree(J, v))(a1, . . . , an) for all v ∈ VJ . In particular, σ(J)(a1, . . . , an) =
α(res(J)) = σ(tree(J))(a1, . . . , an), as claimed.

We can now prove our second MW-like result. For this, given a delegation
network N = (G,Π,Γ, g0,A, π), let Nfree = (G,Π,Γ, g0,TΠ, freeΠ).

19Note that α is defined on all shared nodes and garbage roots of J . This should be obvious
for shared nodes. For garbage roots, it follows from the fact that all garbage roots of Jk(s′) are
in [par(Jk(s′))], which means that every garbage root of J must be of the form img(v), where
v is a garbage root of J ′ or is in [srcJ′(e)]. In both cases, α′(v) is defined.

20Recall that π is said to be deterministic if π(f) is a function for every f ∈ Π.
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Theorem 6.2 For every delegation network N = (G,Π,Γ, g0,A, π) with deter-
ministic primitives, L(N ) = π(L(Nfree)).

Proof By Theorem 5.6 and Lemma 6.1, the equation

L(N ) = π(LJ(N )) = π(tree(LJ(N ))) (2)

holds. Since Nfree has deterministic primitives as well, freeΠ is the identity on
TΠ, and LJ(N ) = LJ(Nfree), another instance of this equation is

L(Nfree) = tree(LJ(N )). (3)

Thus, substituting the left-hand side of (3) for tree(LJ(N )) in (2) yields the
claimed equality L(N ) = π(L(Nfree)).

Motivated by the previous result, we now ask ourselves whether L(Nfree) can
be characterized in terms of derivations on trees. We show that such a charac-
terization is obtained by using the well-known mechanism of IO context-free tree
rewriting, using all IO context-free rules of the form g[x1, . . . , xk] → u, where
g(k) ∈ G and u ∈ L(γg).

Definition 6.3 Let N = (G,Π, (γg)g∈G, g0,A, π) be a delegation network, and
t, t′ ∈ TΣN . Then t ⇒N ,IO t′ if t can be decomposed as t = t0 � g[s1, . . . , sk] such
that
• k ∈ N, g(k) ∈ G and s1, . . . , sk ∈ TΠ, and
• t′ = t0 �u(s1, . . . , sk) for a tree u ∈ L(γg).

The tree language generated by N is given by LT(N ) = {s ∈ TΠ | g0 ⇒∗N ,IO s}.

Note that as far as LT(N ) is concerned, the last two components of a delega-
tion network, which define the interpretation of primitives, are irrelevant. Thus,
as mentioned after Definition 2.4, finitary delegation networks21 with the seman-
tics LT(N ) may be identified with IO context-free tree grammars. In fact, looking
at the general case, we may consider the class FN of all finitary delegation net-
works N ′ = (G,Π, (γ′g)g∈G, g0,A, π) such that, for all g ∈ G, L(γ′g) ⊆ L(γg). Then,
obviously, LT(N ) =

⋃
N ′∈FN LT(N ′).

Thus, still viewing N as a tree-generating device in the sense of Definition 6.3,
it may be seen as an IO context-free tree grammar which is extended in the sense
that the set of right-hand sides for a given left-hand side g[x1, . . . , xk] may be
an infinite language taken from some class C of tree languages (i.e., L(γg) ∈ C).
This is similar to the notion of C-extended context-free string grammars and
ET0L systems, which have been studied in the context of AFL theory; see, e.g.,
[Lee74, Asv78]. Recall also the extended Backus-Naur Form, where the adjective
extended has a similar meaning.

These relationships explain why the results proved in this section (except
Corollary 6.5) can be seen as “extended” versions of results in [ES77, ES78]. The

21Recall that N is said to be finitary if each of the tree languages L(γg), g ∈ G, is finite.
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next theorem shows that LT(N ) provides the desired operational characterization
of L(Nfree). In the other direction, given the definition of L(Nfree), this can be seen
as a least fixed point characterization of LT(N ), and thus as the extended version
of the least fixed point characterization of the IO context-free tree languages
discussed after Definition 5.12 in [ES78].

Theorem 6.4 For every delegation network N , LT(N ) = L(Nfree).

Proof Let N = (G,Π, (γg)g∈G, g0,TΠ, freeΠ), assuming without loss of generality
that N = Nfree. By Theorem 3.5, it suffices to show that

LT(N ) = {s ∈ TΠ | g0 �
∗
N 〈s〉}.

Recall that ΣN consists of all symbols in ΣN , and all constant symbols 〈s〉 such
that s ∈ TΠ. Given a tree t ∈ TΣN ,{2}, we make use of the following notation:
rem(t) denotes the tree in TΣN ,{2} obtained from t by replacing every occurrence
of all symbols of the form 〈s〉 (s ∈ TΠ) by the tree s.22 Observe that, for all trees
t′ ∈ TΣN

with rem(t′) ∈ TΠ, we have t′ �∗
N 〈rem(t′)〉, by performing derivation

steps according to the first case of Definition 3.2.
We show by induction on the length of derivations that, for every tree t ∈ TΣN ,

there is a derivation g0 ⇒∗N ,IO t if and only if there is a tree z ∈ TΣN
such that

g0 �∗
N z and rem(z) = t. This completes the proof since, by the observation

above, z �∗
N 〈s〉 in the special case where rem(z) = s ∈ TΠ.

Clearly, the statement is trivially true in both directions for derivations of
length 0, because rem(g0) = g0. It remains to be shown that single steps preserve
the equivalence.

(‘⇒’) Assume that t ⇒N ,IO t′, where the trees t = t0 � g[s1, . . . , sk] and t′ =
t0 �u(s1, . . . , sk) are as in Definition 6.3. In particular, s1, . . . , sk ∈ TΠ. Let
z ∈ TΣN

be such that rem(z) = t. Thus, z has the form z = z0 � g[z1, . . . , zk],
where rem(z0) = t0 and rem(zi) = si for all i ∈ [k]. By the observation above
and the second case of Definition 3.2, this yields

z �∗
N z0 � g[〈s1〉, . . . , 〈sk〉] �N z0 �u(〈s1〉, . . . , 〈sk〉),

which ends this part of the proof, as rem(z0 �u(〈s1〉, . . . , 〈sk〉)) = t0 �u(s1, . . . , sk).

(‘⇐’) Let z �N z′ with rem(z) = t. If this step is performed according to
the first case of Definition 3.2, then rem(z′) = t, so there is nothing to show,
because t ⇒∗N ,IO t. Therefore, assume that z = z0 � g[〈s1〉, . . . , 〈sk〉] and z′ =
z0 �u(〈s1〉, . . . , 〈sk〉). Setting t0 = rem(z0), we get t = t0 � g[s1, . . . , sk] ⇒N ,IO
t0 �u(s1, . . . , sk) = rem(z′), as required.

Using (3), we get the following as an immediate consequence.

22Intuitively, all that rem does is remove all angular brackets. Thus, as a recursive defini-
tion, rem(g[t1, . . . , tk]) = g[rem(t1), . . . , rem(tk)] for all g(k) ∈ ΣN and t1, . . . , tk ∈ TΣN ,{2},
rem(〈s〉) = s for all trees s ∈ TΠ, and rem(2) = 2.
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Corollary 6.5 For every delegation network N , LT(N ) = tree(LJ(N )).

As another immediate consequence, we obtain an alternative formulation of
our MW-like result in Theorem 6.2, similar to Theorem 5.6. For the finitary case,
this was proved in [ES78, Theorem 5.10, Corollary 5.11]; see also the discussion
after Definition 2.4.

Theorem 6.6 For every delegation network N = (G,Π,Γ, g0,A, π) with deter-
ministic primitives, L(N ) = π(LT(N )).

The failure of (the finitary case of) Theorem 6.6 for delegation networks with
nondeterministic primitives was pointed out in [ES78, p. 72]. Theorem 5.6, whose
finitary counterpart is missing in [ES77, ES78], can be seen as a solution to this
problem. Intuitively, it shows that one has to avoid copying (by sharing) and
deletion (by garbage) to make Theorem 6.6 work in the presence of nondeter-
ministic primitives. This intuition gives rise to an obvious conjecture, namely
that the assumption of deterministic primitives in Theorem 6.6 can be dropped
if neither copying nor deletion takes place. We conclude this section with the
observation that this is indeed true. More precisely, let a linear nondeleting del-
egation network N = (G,Π,Γ, g0,A, π) be a delegation network such that, for all
g(k) ∈ G, all trees t ∈ L(γg) are linear and nondeleting in Xk. (Recall that this
means that the parameter symbol xi occurs exactly once in t, for every i ∈ [k].)

Theorem 6.7 For every linear nondeleting delegation network N = (G,Π,Γ, g0,
A, π), we have L(N ) = π(LT(N )).

Proof For the proof, we make use of the “unrestricted” derivation relation
⇒N ,unr, which is defined exactly as ⇒N ,IO in Definition 6.3, except that the
trees s1, . . . , sk (the subtrees of the generator symbol that is being replaced) are
allowed to be arbitrary trees in TΣN ,{2}. Thus, in contrast to ⇒N ,IO, arbitrary
generator symbols rather than only the innermost ones can be replaced. To be
able to use tree concatenation, we also consider rewriting of trees containing the
parameter 2. Thus, it makes sense to note that, for every tree t = t0 � t1, if
t0 ⇒N ,unr t

′
0 for a tree t′0, then t⇒N ,unr t

′
0
� t1. In particular, t′0 � t1 is defined, be-

cause t′0 contains exactly one occurrence of 2: thanks to the assumption that N
is linear and nondeleting, the unique occurrence of 2 in t0 is neither deleted nor
copied. We define the tree language generated by N in unrestricted derivation
mode to be LT,unr(N ) = {s ∈ TΠ | g0 ⇒∗N ,unr s}.

For a derivation J(g0) ⇒n
N J , using the assumption that N is linear and

nondeleting, it follows by a straightforward induction on n that J is a jungle
containing neither garbage roots nor shared nodes, and so J = J0(tree(J)). In
particular, every hyperedge e ∈ EJ corresponds to a unique occurrence of labJ(e)
in tree(J). Therefore, every derivation g0 ⇒n

N ,unr s can, in the obvious way, be
turned into a derivation J(g0) ⇒n

N J0(s); vice versa, every derivation J(g0) ⇒n
N
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J0(s) can be turned into a derivation g0 ⇒n
N ,unr s. This shows that

LJ(N ) = J0(LT,unr(N )). (4)

Next we show that LT,unr(N ), in fact, coincides with LT(N ):

LT(N ) = LT,unr(N ). (5)

To prove (5), we show by induction on n ∈ N that the following is true
for all trees t = t0 � g[s1, . . . , sk] ∈ TΣN with g(k) ∈ G and s1, . . . , sk ∈ TΠ: if
t ⇒n

N ,unr s for a tree s ∈ TΠ, then there is a tree u ∈ L(γg) such that t ⇒N ,unr

t0 �u(s1, . . . , sk) ⇒n−1
N ,unr s. From this, it follows that t ⇒n

N ,IO s (by induction,
since t⇒N ,IO t0 �u(s1, . . . , sk)), which proves (5). To prove the property claimed,
if the derivation t ⇒n

N ,unr s is not already of the form required, it has the form

t ⇒N ,unr t
′
0
� g[s1, . . . , sk] ⇒n−1

N ,unr s, i.e., we have t0 ⇒N ,unr t
′
0. By the induction

hypothesis, t′0 � g[s1, . . . , sk] ⇒N ,unr t
′
0
�u(s1, . . . , sk) ⇒n−2

N ,unr s for an appropriate
tree u ∈ L(γg). It follows that

t ⇒N ,unr t0 �u(s1, . . . , sk) (by the definition of ⇒N ,unr)

⇒N ,unr t
′
0
�u(s1, . . . , sk) (since t0 ⇒N ,unr t

′
0)

⇒n−2
N ,unr s,

as claimed.
Finally, using (4) and (5), we get

L(N ) = π(LJ(N )) (by Theorem 5.6)

= π(J0(LT,unr(N ))) (by (4))

= π(LT,unr(N )) (by Lemma 5.3)

= π(LT(N )) (by (5)),

which completes the proof of the theorem.

We note here that the nondeleting property ofN is essential for the correctness
of (5). In [KM06, Corollary 5] it is wrongly stated that the corresponding equation
holds for linear context-free tree languages, which is not the case unless the
context-free tree grammar is assumed to be nondeleting. The erroneous corollary
is, moreover, used in [SO07, Section 3].

7 Delegation as an Operator on Language Classes

In this section and the next, we view delegation networks as tree generators in
the sense of Definition 6.3. Just as L(N ), the tree language LT(N ) generated by
a delegation network N depends only on the tree languages L(γg); the specific
devices γg generating them are unimportant. Delegation, in the form realized
by delegation networks, can therefore be considered as an operator on classes
of tree languages (see also Example 2.9). The next definition formalizes this
and introduces the resulting hierarchy of tree language classes, which we call
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the delegation hierarchy. The tree languages in this hierarchy are generated by
delegation networks that themselves use delegation networks as tree generators.

Definition 7.1 For every class C of tree languages, DEL(C) denotes the class
of all tree languages of the form LT(N ), such that N = (G,Π,Γ, g0,A, π) is
a delegation network with L(γg) ∈ C, for all g ∈ G (where Γ = (γg, Yg)g∈G).
Furthermore, DEL0(C) = C, DELn+1(C) = DEL(DELn(C)) for all n ∈ N, and
DEL∗(C) =

⋃
n∈N DELn(C).

The delegation hierarchy is the hierarchy (DELn(FIN))n∈N, where FIN denotes
the class of all finite tree languages.

A delegation network N = (G,Π, (γg, Yg)g∈G, g0,A, π) is hierarchical if it is n-
hierarchical for some n ≥ 1; it is 1-hierarchical if it is finitary (i.e., if L(γg) is finite
for every g ∈ G), and, for n ≥ 2, it is n-hierarchical if γg is an (n−1)-hierarchical
delegation network for every g ∈ G (with L(γg) = LT(γg)). Thus, DEL∗(FIN)
is the class of tree languages generated by hierarchical delegation networks, and,
for n ≥ 1, DELn(FIN) is the class generated by n-hierarchical ones.

Since LT(N ) does not depend on the semantic components A and π of N , as
discussed after Definition 6.3, we will from now on denote a delegation network
as a 4-tuple N = (G,Π,Γ, g0).

We start our discussion of the delegation hierarchy with an example of a
tree language in DEL2(FIN). Note that DEL(FIN) is the class of tree languages
generated by finitary delegation networks, i.e., by IO context-free tree grammars
(cf. the last paragraph of Example 2.7(a)). Hence, DEL2(FIN) is the set of tree
languages generated by delegation networks of which each tree generator is an
IO context-free tree grammar.

Example 7.2 This example, of a tree language in DEL2(FIN), is similar to Ex-
ample 2.9(a). We first observe that the tree language consisting of all fully bal-
anced binary trees of height ≥ 1 over the signature {f(2), h(0)} is in DEL(FIN): it

is LT(Nbin) for the delegation network Nbin with generator symbols g
(0)
0 and g(1),

and with L(γg0) = {g[h]} and L(γg) = {g[f[x1, x1]], f[x1, x1]} where Yg = {x1}.
Now consider the language Lexpseq consisting of all trees of the form s � (t1, . . . , t2n),
n ≥ 1, where s is a fully balanced binary tree of height n over the signature
{f,21, . . . ,22n} and t1, . . . , t2n are arbitrary trees over the signature {k(2), a(0)}.
This language is equal to LT(Nexpseq) for the 2-hierarchical delegation network

Nexpseq with generator symbols h
(0)
0 and h(0), and with L(γh0) = LT(Nbin) and

L(γh) = T{k,a}. Obviously, T{k,a} is in DEL(FIN) (with L(γg′0) = {k[g′0, g
′
0], a}).

Hence Lexpseq is in DEL2(FIN).

In the preceding example, the tree generators γh0 = Nbin and γh of the 2-
hierarchical delegation network Nexpseq do not have parameters, whereas the
tree generator γg of the 1-hierarchical delegation network Nbin does have pa-
rameters. In general however, for an n-hierarchical delegation network N =
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(G,Π, (γg, Yg)g∈G, g0,A, π), the trees generated by the (n − 1)-hierarchical del-
egation network γg contain the parameters in Yg. As a consequence, the tree
generators of the network γg should use parameters that are not in Yg (see Ex-
ample 2.9(b)). A careful treatment of this formal detail will be important in
Lemma 7.22 and Theorem 7.23 (and their proofs); otherwise, we will assume as
usual that Yg = Xk where k is the rank of g.

In the remainder of the paper, we want to study the class DEL∗(FIN) of tree
languages generated by hierarchical delegation networks, and compare it with
known tree language classes. We start by looking at the so-called path languages
of tree languages in DEL∗(FIN).

For a signature Σ, let 〈Σ〉 be the (finite unranked) alphabet

〈Σ〉 = {〈f, j〉 | k ∈ N, f(k) ∈ Σ, 0 ≤ j ≤ k}.

Given a tree t ∈ TΣ,n and i ∈ [n], we let pathsi(t) ⊆ 〈Σ〉∗ be the string language
of all downwards directed paths in t from the root to an occurrence of xi (where
xi is excluded). Formally,

pathsi(t) =


{λ} if t = xi

∅ if t = xj, j 6= i

{〈f, j〉p | j ∈ [k], p ∈ pathsi(tj)} if t = f[t1, . . . , tk], with f ∈ Σ.

Thus, a symbol 〈f, j〉 indicates that the path continues at the jth subtree of the
symbol f. The string language of paths from the root ending at a non-parameter
symbol, a subset of 〈Σ〉+, is denoted by paths(t). Thus, paths(xi) = ∅ for all
i ∈ [n], and, for t = f[t1, . . . , tk] with f(k) ∈ Σ,

paths(t) = {〈f, 0〉} ∪ {〈f, j〉p | j ∈ [k], p ∈ paths(tj)}.

For technical convenience, we use ‘paths0’ as a synonym for ‘paths’. For a tree
language L ⊆ TΣ,n and i ∈ {0, . . . , n}, we let pathsi(L) =

⋃
t∈L pathsi(t). For

a jungle J ∈ JΣ,n, let pathsi(J) = pathsi(tree(J)), and similarly for jungle lan-
guages. If L is a tree language or a jungle language, then paths(L) is called the
path language of L. Note that, by Corollary 6.5, for every delegation network N ,
LJ(N ) and LT(N ) have the same path language. This will be the key observation
that is used to prove the main result of this section.

Of course, pathsi(J) can easily be obtained from the jungle paths in J without
taking the detour via tree(J). For i ∈ [n], it should be clear that pathsi(J) is
equal to the set of all 〈labJ(e1), j1〉 · · · 〈labJ(em), jm〉, such that (e1, j1) · · · (em, jm)
is a jungle path from res(J) to par(J, i). Similarly, paths(J) is the set of all
sequences of the form 〈labJ(e1), j1〉 · · · 〈labJ(em), jm〉〈labJ(e), 0〉, where e ∈ EJ ,
and (e1, j1) · · · (em, jm) is a jungle path from res(J) to resJ(e).

Our intention is to prove in this section that the path language of every tree
language in DEL∗(FIN) is a context-free language. The proof would be easy if
we would only consider proper delegation networks in Definition 7.1, where a
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delegation network N = (G,Π,Γ, g0) is proper if for every t ∈ TΣN there exists
t′ ∈ TΠ such that t⇒∗N ,IO t′.

To sketch the proof of this result (for the proper case), recall that a context-
free grammar is a tuple G = (Ξ,Σ, R, S) where Ξ and Σ are disjoint finite sets of
nonterminals and terminals, S ∈ Ξ, and R is a finite set of rules of the form f→ α
with f ∈ Ξ and α ∈ (Ξ ∪ Σ)∗. A derivation step is denoted β1fβ2 ⇒G β1αβ2,
and L(G) = {w ∈ Σ∗ | S ⇒∗G w} = {w ∈ Σ∗ | S ⇒∗G,rm w} where ⇒∗G,rm
indicates rightmost derivations (meaning that β2 ∈ Σ∗). A cf-extended context-
free grammar is the same as a context-free grammar except that R can be infinite,
provided the language {α | (f → α) ∈ R} is context-free, for every f ∈ Ξ. It is
well known (and easy to see) that every cf-extended context-free grammar has
an equivalent context-free grammar.

Proposition 7.3 LetN = (G,Π,Γ, g0) be a proper delegation network such that
pathsi(L(γg)) is context-free for every g(k) ∈ G and every i ∈ {0, . . . , k}. Then
paths(LT(N )) is context-free.

Proof sketch The proof is similar to the one of [ES79, Corollary 4.2], which
treats the case where N is finitary. We construct the cf-extended context-free
grammar G = (〈G〉, 〈Π〉, R, 〈g0, 0〉) where R is the set of all rules 〈g, i〉 → p with
p ∈ pathsi(L(γg)). It can be shown (cf. Lemmas 4.2 and 4.3 of [ES79]) that
for every w ∈ 〈ΣN 〉∗, 〈g0, 0〉 ⇒∗G,rm w if and only if there exists t ∈ TΣN with
w ∈ paths(t), such that g0 ⇒∗N ,IO t. Properness of N is used in the proof of
the only-if direction, and it is used to conclude from this statement that L(G) =
paths(LT(N )).

To illustrate the need for properness, consider the delegation network N with
L(γg0) = {g[a, g′]}, L(γg) = {x1} and L(γg′) = ∅. Then paths(LT(N )) = ∅, but
G has a derivation 〈g0, 0〉 ⇒ 〈g, 1〉〈a, 0〉 ⇒ 〈a, 0〉.

It would not be difficult to generalize this lemma in such a way that it can
be used iteratively, showing that the path language of every tree language in
DEL∗(FIN) is context-free, provided only proper delegation networks are used.
Now, it is easy to transform a delegation network N into an equivalent proper
one (assuming that LT(N ) 6= ∅). In fact, as for context-free grammars, it suffices
to determine the set use(N ) ⊆ G of useful generator symbols: it is the smallest
subset of G such that for every g(k) ∈ G and t ∈ L(γg), if t ∈ Tuse(N )∪Π,k then
g ∈ use(N ). An equivalent proper network is then obtained from N by removing
all generator symbols that are not useful and by replacing L(γg) with L(γg) ∩
Tuse(N )∪Π,k for every g(k) ∈ use(N ). The problem with this construction is that
we do not know whether DELn(FIN) is closed under intersection with regular tree
languages, not even when they are of the form TΣ for some signature Σ. Thus,
we also do not know whether the restriction to proper delegation networks leads
to the same class DEL∗(FIN) or to a smaller one, and for that reason we do not
wish to impose that restriction (though, as we will show after Corollary 8.16, it
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is decidable whether a hierarchical delegation network is proper).
Thus, the straightforward approach to proving that the path language of every

tree language in DEL∗(FIN) is context-free, is flawed. We now start our, rather
technical, alternative proof. We first show that it suffices to consider a restriction
of the operator DEL, because this restriction will be needed later. Let us call a
delegation network N = (G,Π, (γg, Yg)g∈G, g0) propagating if L(γg) ∩ Yg = ∅, for
all g ∈ G. We let pDEL denote the operator which is defined in the same way
as DEL, except that only propagating delegation networks are considered. The
definitions of pDELn(C) and pDEL∗(C) carry over from the general case in the
obvious way.

Now, let ∗(1) /∈ Π be a special symbol reserved for its use in the following
context. Define erase∗ : TΠ∪{∗} → TΠ to be the mapping given by erase∗(∗[t]) =
erase∗(t) and erase∗(f[t1, . . . , tk]) = f[erase∗(t1), . . . , erase∗(tk)] for all f(k) ∈ Π
and t1, . . . , tk ∈ TΠ∪{∗}. Hence, erase∗ is a linear and nondeleting tree homomor-
phism.23 We have the following lemma.

Lemma 7.4 For every tree language L ∈ DEL∗(FIN), there is a tree language
L′ ∈ pDEL∗(FIN), such that L = erase∗(L

′).

Proof By induction on n, where L ∈ DELn(FIN), we prove the more gen-
eral statement that there is a tree language L′ ∈ pDEL∗(FIN), such that L =
erase∗(L

′) and the root label of every tree in L′ is ∗.
For n = 0, this is obvious, by defining L′ = {∗[t] | t ∈ L}. For n > 0, let

L = LT(N ), where N = (G,Π, (γg)g∈G, g0) with L(γg) ∈ DELn−1(FIN). Using
the induction hypothesis, define N ′ = (G,Π ∪ {∗}, (γ′g)g∈G, g0), where L(γg) =
erase∗(L(γ′g)) and each tree in L(γ′g) has ∗ as its root label, for all g ∈ G. Clearly,
by looking at the very first step of a derivation in N ′, this means that each tree
in LT(N ′) has ∗ as its root label.

It remains to argue that L = erase∗(LT(N ′)). This follows directly from the
following claim, using induction on the length of derivations.

Claim Let s ∈ TΣN and t ∈ TΣN∪{∗} be such that erase∗(t) = s. Then, for
every derivation step s ⇒N ,IO s′, there is a derivation step t ⇒N ′,IO t′ such that
erase∗(t

′) = s′. Vice versa, s ⇒N ,IO erase∗(t
′) is a derivation step, for every

derivation step t⇒N ′,IO t′.

For the first direction, following Definition 6.3, let s = s0 � g[z1, . . . , zk] and
s′ = s0 �u(z1, . . . , zk), where s0 ∈ TΣN ,{2}, g(k) ∈ G, z1, . . . , zk ∈ TΠ, and
u ∈ L(γg). Since erase∗(t) = s, it should be clear that we can write t as
t0 � g(z′1, . . . , z

′
k), where erase∗(t0) = s0 and erase∗(z

′
i) = zi for all i ∈ [k] (ex-

tending erase∗ to trees in TΣN ,{2} in the obvious way). In particular, since
erase∗ is linear and nondeleting, t0 contains exactly one occurrence of 2, be-
cause s0 does. Hence, defining t′ = t0 �u′(z′1, . . . , z

′
k) for a tree u′ ∈ L(γ′g) such

23Cf. the next section, after Definition 8.1.
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that erase∗(u
′) = u, we get t ⇒N ′,IO t′ and, by construction, erase∗(t

′) = s′, as
claimed.

We omit the proof of the other direction, because it is very similar to the
preceding one.

Together with Lemma 7.4, the next lemma shows that it suffices to consider
tree languages in pDEL∗(FIN) to establish that the path languages of tree lan-
guages in DEL∗(FIN) are context-free.

Lemma 7.5 For every tree language L, if paths(L) is a context-free language,
then paths(erase∗(L)) is a context-free language.

Proof Let L ⊆ TΣ∪{∗}. Obviously, paths(erase∗(L)) = h(paths(L)∩R), where R
is the regular language of all strings in 〈Σ∪{∗}〉∗ that do not end on 〈∗, 0〉, and h
is the string homomorphism that erases the symbol 〈∗, 1〉. The result follows from
the fact that the class of context-free languages is closed under homomorphisms
and intersection with regular languages.

Our proof of the context-freeness of paths(L) for L ∈ pDEL∗(FIN) makes use
of the notion of context-free jungle languages. These are sets of jungles generated
by the special case of hyperedge-replacement graph grammars in which all right-
hand sides are jungles. Throughout the rest of this section, we assume that the
reader is familiar with some of the most basic properties of hyperedge-replacement
graph grammars.

Definition 7.6 (context-free jungle grammar) A context-free jungle gram-
mar (abbreviated CFJG) is a tuple G = (Ξ,Σ, R, f0) such that
• Ξ and Σ are disjoint finite signatures of nonterminals and terminals, resp.,
• R is a finite set of rules of the form f→ K, where f(k) ∈ Ξ and K ∈ JΞ∪Σ,k

(k ∈ N), and

• f
(n)
0 ∈ Ξ, where n ∈ N, is the initial nonterminal.

For jungles J, J ′ ∈ JΞ∪Σ,n, there is a derivation step J ⇒G J ′ if there are a
hyperedge e ∈ EJ and a rule labJ(e) → K in R, such that J ′ = J [e ← K]. The
jungle language generated by G is given by

L(G) = {J ∈ JΣ,n | J(f0)⇒∗G J}.

A jungle language that can be generated by a CFJG is said to be context-free.
An extended CFJG, its derivations, and the generated jungle language are defined
in precisely the same way, with the exception that R may be infinite. Clearly, for
a delegation network N = (G,Π,Γ, g0), the jungle language LJ(N ), as defined in
Definition 5.5, is generated by the extended CFJG (G,Π, R, g0) where R consists
of all rules g → Jk(t) with g(k) ∈ G and t ∈ L(γg). A cf-extended CFJG is
an extended CFJG such that the jungle language Lf = {J | (f → J) ∈ R} is
context-free, for every f ∈ Ξ. In this case, we denote by f → Lf the set of all
rules in R with left-hand side f.
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For a CFJG (and similarly for an extended CFJG) G = (Ξ,Σ, R, f0), we
say that a nonterminal f(k) ∈ Ξ is useful if there exists J ∈ JΣ,k such that
J(f) ⇒∗G J . Obviously, all nonterminals (except f0) that are not useful can be
discarded, together with the rules in which they occur, without changing L(G).
Therefore, except in the trivial case where L(G) = ∅, we may always assume
without loss of generality that all nonterminals of a CFJG considered are useful.

To prove that every tree language in DEL∗(FIN) has a context-free path
language, we will show that for every tree language L ∈ pDEL∗(FIN) there
is a context-free jungle language having the same path language as L. More
precisely, for every hierarchical delegation network N with LT(N ) = L we will
define a CFJG G such that L(G) has the same path language as LJ(N ). Then the
following lemma yields the main result of this section (together with Lemmas 7.4
and 7.5).

Lemma 7.7 For every context-free jungle language L, paths(L) is context-free.

Proof Let L = L(G), whereG = (Ξ,Σ, R, f
(n)
0 ) contains only useful nonterminals.

Let G′ be the context-free grammar given by G′ = (〈Ξ〉, 〈Σ〉, R′, 〈f0, 0〉), where R′

is the set of all rules 〈f, i〉 → p such that f(k) ∈ Ξ, (f → J) ∈ R, i ∈ {0, . . . , k},
and p ∈ pathsi(J). Then the following can be shown in a straightforward manner,
by induction on the length of derivations: for all w ∈ 〈Ξ ∪ Σ〉+, 〈f0, 0〉 ⇒∗G′ w
if and only if there exists a jungle J ∈ JΞ∪Σ with w ∈ paths(J), such that
J(f0)⇒∗G J .24 From this, together with the assumption that all nonterminals of
G are useful, it follows that L(G′) = paths(L(G)).

The following two lemmas show that it suffices to construct a cf-extended
CFJG if we want to prove that a certain jungle language is context-free, and that
we can always remove garbage from the jungles generated.

Lemma 7.8 For every cf-extended CFJGG, the jungle language L(G) is context-
free.

Proof This is similar to the proof of the fact that cf-extended context-free string
grammars generate context-free languages. We only give the construction, whose
correctness can be verified using the well-known fact that hyperedge replacement
is confluent and associative [DHK97, Eng97].

Let G = (Ξ,Σ, R, ini) be a cf-extended CFJG, where R =
⋃

f∈Ξ f → Lf.
For every f ∈ Ξ, let Gf = (Ξf,Ξ ∪ Σ, Rf, inif) be a CFJG with L(Gf) = Lf,
and assume without loss of generality that the signatures Ξf, f ∈ Ξ, are pairwise
disjoint. Then L(G) = L(G′), where G′ = (Ξ′,Σ, R′, ini) is the CFJG given by

24Recall that we use ⇒G′ to denote the derivation relation of G′, and L(G′) to denote its
generated language.
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Ξ′ = Ξ ∪
⋃

f∈Ξ Ξf and R = {f→ J(inif) | f ∈ Ξ} ∪
⋃

f∈Ξ Rf.

For the remainder of this section, recall the definitions regarding clean jungles
after Fact 4.4, and, in particular, that CJ denotes the set of all non-garbage nodes
of a jungle J , and that clean(J) denotes the clean jungle obtained from J by
restricting J to CJ ∪ [par(J)].

Lemma 7.9 For every CFJG G, there is a CFJG G′ with L(G′) = clean(L(G)).

Proof Let G = (Ξ,Σ, R, f
(n)
0 ). Assuming that all nonterminals in G are useful,

we construct G′ = (Ξ′,Σ, R′, f
(n)
0 ) based on an easy guess-and-verify strategy, in

the following way. The set of nonterminals is given by

Ξ′ = {f0} ∪ {f(|S|)
S | k ∈ N, f(k) ∈ Ξ, S ⊆ [k]}.

The intuition is that fS labels a hyperedge e such that (a) res(e) is not (and
will not become) garbage, and (b) the parameter tentacles (e, j) with j /∈ S have
been removed as they have been guessed to be useless in the further course of the
derivation, in the sense that, in the jungle J derived from e, there will not be a
jungle path from res(J) to par(J, j). Using finite sets INI and KS, for K ∈ JΞ∪Σ,k

and S ⊆ [k], which implement the guess-and-verify strategy, the set of rules is
given by

R′ = {f0 → I | I ∈ INI} ∪
⋃

(f(k)→K)∈R

{fS → K ′ | S ⊆ [k], K ′ ∈ KS}.

The definition of INI and KS makes use of the following notation. Given a
sequence a = a1 · · · ak and a set S = {i1, . . . , il} ⊆ [k], where i1 < · · · < il, we let
a|S = ai1 · · · ail .

Now, the set INI consists of all (clean) jungles I with VI = {w1, . . . , wn, w},
EI = {e}, labI(e) = (f0)S and att I(e) = w1 · · ·wnw|S for a set S ⊆ [n], and
ext I = w1 · · ·wnw. Intuitively, in the first step of a derivation, we guess which
parameter nodes of the generated jungle J ∈ JΣ,n are used, meaning that they
belong to CJ .

To define KS for a jungle K ∈ JΞ∪Σ,k and a set S ⊆ [k], let us say that a jungle
K ′ is garbage-free if VK′ = CK′ , i.e., if it is clean and all parameter nodes are
used. Now, KS is defined to be the set of all garbage-free jungles K ′ ∈ JΞ′∪Σ,|S|
such that
• VK′ ⊆ VK , EK′ ⊆ EK , res(K ′) = res(K), and resK′(e) = resK(e) for all
e ∈ EK′ ,
• for all e ∈ EK′ with labK(e) ∈ Σ, labK′(e) = labK(e) and parK′(e) =

parK(e),
• for all e ∈ EK′ with labK(e) = f(m) ∈ Ξ, there is S ′ ⊆ [m] such that

labK′(e) = fS′ and parK′(e) = parK(e)|S′ , and
• par(K ′) = par(K)|S.
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Intuitively, the first three items above implement the guessing, whereas the
last implements the verification in the guess-and-verify strategy mentioned above.
By induction on the length of derivations, we can show for all f(k) ∈ Ξ, S ⊆ [k],
and J ′ ∈ JΞ′∪Σ,|S|, that J(fS) ⇒∗G′ J ′ if and only if there is a jungle J ∈ JΞ∪Σ,k

such that J(f)⇒∗G J and J ′ ∈ JS.
To complete the proof, note that, for J ∈ JΣ,n, there is a unique S ⊆ [n]

such that JS 6= ∅; moreover, for that S, JS is a singleton, say JS = {J}, and
clean(J) = I[e← J ] with I ∈ INI and labI(e) = (f0)S. Thus, taking into account
the rules in R′ of the form f0 → I with I ∈ INI, we get L(G′) = clean(L(G)).
(Note that the usefulness of the nonterminals of G is required to obtain the
inclusion L(G′) ⊆ clean(L(G)).) This completes the proof.

To turn a (propagating) hierarchical delegation network N = (G,Π, (γg)g∈G,
g0) into a cf-extended CFJG G, and to be able to relate their generated jungle
languages, we need a few rather technical preparations. Intuitively, we cannot
define G such that it generates exactly the jungles in LJ(N ), because of the
following problem. Assume inductively that every γg (g(k) ∈ G) is a delegation
network for which we are given a CFJG Gg such that L(Gg) = LJ(γg) ⊆ JΣN∪Xk

.
By a straightforward construction (see the proof of Lemma 7.22), Gg can be
transformed into a CFJG G′g such that L(G′g) = {J ′ | J ∈ L(Gg)} ⊆ JΣN ,k

where the jungle J ′ (with k parameters) is obtained from the jungle J (without
parameters) as follows: for each i ∈ [k], the ith parameter node vi of J ′ is
newly created, and vi is identified with all result nodes of hyperedges that are
labeled with xi; moreover, all hyperedges with labels in Xk are removed. Now, to
construct a CFJG G such that L(G) = LJ(N ), it would be natural to use the (cf-
extended) rules g → L(G′g). However, by Definition 5.5, we should actually use
the rules g→ Jk(tree(L(Gg))) instead. In other words, the inductively obtained
jungles in L(Gg) should be replaced by jungles with minimal sharing. Clearly this
is not possible because there is, e.g., no CFJG that generates the set of all fully
balanced binary trees (without sharing), cf. Example 7.2. Thus, intuitively, the
problem is that a CFJG generates trees with too much sharing. To circumvent
this problem, we will show (in Lemma 7.20) that we can define the grammar G
such that it generates a jungle language that differs from LJ(N ) but, nevertheless,
has the same path language; more precisely, we will say that L(G) is a “path
variant” of LJ(N ), see Definition 7.17. For this, we invent a notion of redirecting
parameter tentacles between two nodes v and w of a jungle J , an operation that
can potentially increase the amount of sharing (but also can create garbage).
Then G can be constructed with the rules g → L(G′g), where it is assumed that
L(Gg) is a path variant of LJ(γg).

We now start the technical preparations. Consider a jungle J and nodes
v, w ∈ VJ . The set candJ(v, w) of all parameter tentacles which are candidates
for redirection from v to w consists of all (e, j) ∈ tent(J) with parJ(e, j) = v,
such that there does not exist a jungle path in J from w to resJ(e). Now,
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for every set Θ ⊆ candJ(v, w), we let J〈Θ, w〉 denote the jungle obtained from
J by redirecting parJ(e, j) to w for all (e, j) ∈ Θ, and cleaning the result.
More precisely, J〈Θ, w〉 = clean(JΘ ::=w), where JΘ ::=w is equal to J , except
that attJΘ ::= w

(e, j) = w, for all (e, j) ∈ Θ. By J〈v, w〉, we abbreviate the set
{J〈Θ, w〉 | Θ ⊆ candJ(v, w)}. By the assumption that Θ ⊆ candJ(v, w), redirec-
tion does not introduce cycles (i.e., nonempty jungle paths from a node to itself).
Using this, one can easily show that JΘ ::=w is a jungle, and hence J〈Θ, w〉 is a
clean jungle. Note that we always have clean(J) ∈ J〈v, w〉, by taking Θ = ∅. For
technical convenience, J itself is not required to be clean. However, if v, w ∈ CJ ,
then we have that CJ ⊇ CJΘ ::=w

, which means that J〈Θ, w〉 = clean(J)〈Θ′, w〉,
where Θ′ = Θ ∩ tent(clean(J)) = {(e, j) ∈ Θ | resJ(e) ∈ CJ}. (In particular,
clean(J)〈Θ′, w〉 is defined, because Θ′ ⊆ candclean(J)(v, w).) As a consequence,
we then have J〈v, w〉 = clean(J)〈v, w〉. In the case that v /∈ CJ , we obviously
have J〈v, w〉 = {clean(J)}.

Below, the interplay of hyperedge replacement and redirection (in the sense
just defined) will be studied. For this, we now introduce a rewrite relation Z⇒ on
sets of clean jungles, which plays a central role in the reasoning on the following
pages. The relation Z⇒ is defined on sets of clean jungles in such a way that
redirection from v0 to v1 is always paired with redirection from v1 to v0, thus
replacing one jungle J in the set by two jungles J0 and J1. Intuitively, this makes
sure that, in total, no paths of the original jungle are lost (by turning them into
garbage).

Definition 7.10 For sets J ,J ′ of clean jungles, J Z⇒ J ′ if there exist a jungle
J ∈ J , nodes v0, v1 ∈ CJ , and jungles Ji ∈ J〈vi, v1−i〉 for i ∈ {0, 1}, such that
J ′ = J \ {J} ∪ {J0, J1}. If J is a singleton {J}, we may write J Z⇒ J ′ instead
of {J} Z⇒ J ′.

Note that, in the preceding definition, any of J , J0, and J1 may be equal.
Before giving an example, we introduce a notation that will also be used in the
example, generalizing the operation t � t′ of concatenation of trees to jungles. If
J is a jungle in JΣ∪{2} such that there is exactly one hyperedge e ∈ EJ with
label 2, and J ′ is a jungle in JΣ, then J � J ′ denotes the jungle J [e← J ′].

Example 7.11 Let t = f[t0, t1] ∈ TΣ and let J = J0(t). Consider the nodes
v0 = nod(1) and v1 = nod(2) of J , i.e., v0 = parJ(e, 1) and v1 = parJ(e, 2)
where e is the unique hyperedge with resJ(e) = res(J) and labJ(e) = f. Let
Θ0 = candJ(v0, v1) = {(e, 1)} and Θ1 = candJ(v1, v0) = {(e, 2)}. Then JΘ0 ::= v1 =
J〈Θ0, v1〉⊕J0(t0), and cleaning this jungle (by removing J0(t0)) yields J〈Θ0, v1〉 =
Jms

0 (f[2,2]) � J0(t1).25 Similarly, JΘ1 ::= v0 = J〈Θ1, v0〉 ⊕ J0(t1) and J〈Θ1, v0〉 =
Jms

0 (f[2,2]) � J0(t0); for an illustration see Figure 8. This shows that J Z⇒ {J0, J1}
where J = J0(f[t0, t1]) and Ji = Jms

0 (f[2,2]) � J0(t1−i) for i ∈ {0, 1}.
25For ⊕ see the beginning, and for Jms

0 see the end of Section 4.
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Figure 8: Redirections in Example 7.11

Note that, in the preceding example, paths(J) ⊆ paths({J0, J1}). As we show
next, this is not a coincidence.

Lemma 7.12 For clean jungles J , J0, and J1, if J Z⇒ {J0, J1}, then paths(J) ⊆
paths({J0, J1}).

Proof Let v0, v1 ∈ CJ , and Θi ⊆ candJ(vi, v1−i), for i ∈ {0, 1}. We have to show
that every jungle path p = (e1, j1) · · · (em, jm) from v to w in J is a jungle path
from v to w in J〈Θ0, v1〉 or in J〈Θ1, v0〉. For this, note that p is a jungle path
from v to w in J〈Θi, v1−i〉 unless one of its tentacles is in Θi. Hence, if p is neither
a jungle path from v to w in J〈Θ0, v1〉 nor in J〈Θ1, v0〉, we can find k, l ∈ [m]
such that (ek, jk) ∈ Θ0 and (el, jl) ∈ Θ1. Assuming without loss of generality
that k > l, it follows that there is a jungle path in J from parJ(el, jl) = v1 to
resJ(ek), which contradicts the assumption that (ek, jk) ∈ candJ(v0, v1).

Let us prove two basic lemmas regarding clean jungles and redirection. The
first lemma makes proofs by induction on the length of derivations J Z⇒∗ J ′
possible. It allows us to (a) split a derivation J Z⇒n+1 J into a first step and two
subderivations and (b) combine two derivations into one by taking unions.

Lemma 7.13
(a) Let J be a clean jungle. If J is a set of clean jungles such that J Z⇒n+1 J ,

then there are Ji and Ji (i ∈ {0, 1}), such that J Z⇒ {J0, J1}, Ji Z⇒n Ji for
i ∈ {0, 1}, and J = J0 ∪ J1.

(b) Let J0,J1,J ′0,J ′1 be sets of clean jungles. If Ji Z⇒∗ J ′i for i ∈ {0, 1}, then
J0 ∪ J1 Z⇒∗ J ′0 ∪ J ′1.

Proof By the definition of Z⇒, the derivation considered in (a) has the form
J Z⇒ {J0, J1} Z⇒n J . Thus, to prove (a), it suffices to show the following.

Let J0 = {J1, J2} and J be sets of clean jungles, J1 and J2 not
necessarily being distinct. For n ∈ N, if J0 Z⇒n J , then there are
J1,J2 such that (i) J = J1 ∪ J2 and (ii) Ji Z⇒n Ji for i ∈ {1, 2}.
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To prove this statement, we first observe that I Z⇒ I for all nonempty sets
I of clean jungles, because I ∈ I〈v, w〉 for every clean jungle I and v, w ∈ CI
(taking Θ = ∅). We proceed by induction on n. For n = 0, simply choose
Ji = {Ji}, i ∈ {1, 2}. For n > 1, the derivation considered takes the form
J0 Z⇒n−1 J ′ Z⇒ J , where J = J ′ \ {J} ∪ {J ′, J ′′}, for jungles J , J ′, and J ′′.
Let J ′1,J ′2 be the subsets of J ′ obtained by applying the induction hypothesis to
J0 Z⇒n−1 J ′. For i ∈ {1, 2}, let Ji = J ′i \{J}∪{J ′, J ′′} if J ∈ J ′i , and Ji = J ′i if
J /∈ J ′i . Then assertion (i) is obviously satisfied. Furthermore, Ji Z⇒n−1 J ′i Z⇒ Ji.
The first part of this derivation exists due to the induction hypothesis. To see
that also the last step exists, consider the two possible cases. If J ∈ J ′i , then
J ′i Z⇒ J ′i \ {J} ∪ {J ′, J ′′} = Ji. If J /∈ J ′i , then Ji Z⇒ J ′i by the observation
mentioned above, since both sets are equal. This completes the proof of (a).

The proof of (b) consists mainly of the verification of two claims.

Claim 1 For sets J and J ′ of clean jungles, if J Z⇒ J ′, then J Z⇒2 J ∪ J ′.
To see this, let J ′ = J \ {J} ∪ {J0, J1}, where J ∈ J , v0, v1 ∈ CJ , and

Ji ∈ J〈vi, v1−i〉 for i ∈ {0, 1}. Exploiting again the fact that J ∈ J〈vi, v1−i〉, we
get

J Z⇒ J \ {J} ∪ {J, J1}
= J ∪ {J1}
Z⇒ J ∪ {J1} \ {J} ∪ {J0, J}
= J ∪ {J0, J1},

as claimed.

Claim 2 If J , J ′, and I are sets of clean jungles such that J Z⇒∗ J ′, then
J ∪ I Z⇒∗ J ′ ∪ I.

For derivations of length 0, Claim 2 is obviously valid. Thus, consider a
derivation J Z⇒n J ′′ Z⇒ J ′. Let J ∈ J ′′ and v0, v1 ∈ CJ be such that J ′ =
J ′′ \ {J} ∪ {J0, J1} for jungles Ji ∈ J〈vi, v1−i〉 (i ∈ {0, 1}). By the induction
hypothesis, J ∪I Z⇒∗ J ′′ ∪I. Furthermore, J ′′ ∪I Z⇒ J ′′ ∪I \ {J}∪ {J0, J1} =
J ′ ∪ (I \ {J}). For J /∈ I, the latter is obviously equal to J ′ ∪ I, whereas for
J ∈ I, Claim 1 yields J ′′ ∪ I Z⇒2 J ′′ ∪ I ∪ J ′ ∪ (I \ {J}) = J ′ ∪ I, as required.

Now, a twofold application of Claim 2 proves (b): J0 ∪ J1 Z⇒∗ J ′0 ∪ J1 Z⇒∗
J ′0 ∪ J ′1.

It must be emphasized that Lemma 7.13 holds regardless of whether or not
we consider Z⇒ to be a relation on abstract or concrete jungles. In fact, let us
denote the abstract jungle obtained from a concrete jungle J by [J ], and similarly
for sets of jungles. Using (the two versions of) Lemma 7.13, one can easily verify
the following fact, which allows us to switch freely between abstract and concrete
jungles even in connection with Z⇒:

Let J be a concrete jungle, and let J be a set of abstract jungles.
Then [J ] Z⇒∗ J if and only if there is a set J ′ of concrete jungles such
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that J = [J ′] and J Z⇒∗ J ′.

Note that, even though this fact is easy to prove, it is not entirely trivial. In
particular, the if direction needs Claim 1 (from the proof of Lemma 7.13) to
“duplicate” an abstract jungle that is represented by two distinct but isomorphic
concrete jungles.

The next lemma states a few facts regarding the interplay between redirection
and hyperedge replacement. Owing to the application of ‘clean’, redirection may
remove a hyperedge that would otherwise have been replaced. For example, we
may consider a jungle I = J [e ← K], and study the effect of turning from J to

J ′ = J〈Θ, w〉. Since e may or may not be in J ′, we use the notation J ′[e
?← K]

to capture the two possible cases:

J ′[e
?← K] =

{
J ′[e← K] if e ∈ EJ ′
J ′ if e /∈ EJ ′ .

The lemma below considers a jungle J [e← K]. Parts (b) and (c) of the lemma
state that, if we perform redirections in K or J before replacing e, we only get
results that are also obtained by applying redirection (to the same nodes) after
having replaced e.

Lemma 7.14 Let I = J [e ← K] be a jungle, and let img be the associated
locator function.26

(a) clean(I) = clean(clean(J)[e
?← clean(K)]).

(b) For all v, w ∈ VK ,

I〈img(v), img(w)〉 ⊇ {clean(J [e← K ′]) | K ′ ∈ K〈v, w〉}.
(c) For all v, w ∈ VJ , if res(K) /∈ [par(K)], then

I〈img(v), img(w)〉 ⊇ {clean(J ′[e
?← K]) | J ′ ∈ J〈v, w〉}.

Remark Before giving the proof of the lemma, let us note that the condition
res(K) /∈ [par(K)] in (c) is indeed necessary. To see this, let J = J0(g[h[a]]),
where e and e′ are the hyperedges labelled with g and h, resp., parJ(e) = v, and
parJ(e′) = w. Choosing K = J1(x1) and Θ = {(e, 1)}, we obtain clean(I) = I =
J0(h[a]), whereas J ′ = J〈Θ, w〉 = J0(g[a]) and thus J ′[e← K] = J(a). Obviously,
J(a) /∈ I〈img(v), img(w)〉 = {I}.

Proof Property (a) is obvious from the fact that img(CJ) ⊇ CI ∩ img(VJ) and
img(CK ∪ [par(K)]) ⊇ CI ∩ img(VK).

For proving (b), we show that candK(v, w) ⊆ candI(img(v), img(w)) and

I〈Θ, img(w)〉 = clean(J [e← K〈Θ, w〉]),
for all Θ ⊆ candK(v, w).

26See the paragraph after Definition 4.2.
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Consider v, w ∈ VK and (e′, j) ∈ tent(K) with parK(e′, j) = v, such that there
is a jungle path p in I from img(w) to resI(e

′) = img(resK(e′)). If p is not a jungle
path in K (from w to resK(e′)), then, since resK(e′) /∈ [par(K)], p must contain a
subsequence which is a jungle path in I from some img(par(K, i)) to img(res(K))
and hence is a jungle path in J from parJ(e, i) to resJ(e), which is impossible as
J is acyclic. We can thus conclude that candK(v, w) ⊆ candI(img(v), img(w)),
which verifies the well-definedness of I〈Θ, img(w)〉.

Furthermore, it should be obvious that IΘ ::= img(w) = J [e ← KΘ ::=w]. Us-
ing (a), this shows that I〈Θ, img(w)〉 = clean(J [e← K〈Θ, w〉]), as claimed.

Now, let us prove (c). We show that, for all Θ ⊆ candJ(v, w), there is Θ′ ⊆
candI(img(v), img(w)) such that

I〈Θ′, img(w)〉 = clean(J〈Θ, w〉[e ?← K]).

Let Θ(e) = Θ∩ ({e} ×N) be the set of parameter tentacles of e in Θ. (Thus,
Θ(e) is empty, unless v ∈ [parJ(e)]). Now, define

Θ′ = (Θ \Θ(e)) ∪
⋃

(e,j)∈Θ(e)

{(e′, j′) ∈ tent(K) | parK(e′, j′) = par(K, j)}.

Note that the condition parK(e′, j′) = par(K, j) is not equivalent to saying
that img(parK(e′, j′)) = img(v).

To see that Θ′ ⊆ candI(img(v), img(w)) consider the possible cases. For
(e′, j′) ∈ Θ \Θ(e), if there is a jungle path p in I from img(w) to resI(e

′), then p
is either a jungle path in J from w to resJ(e′), or it contains a subsequence which
is a jungle path in K from res(K) to par(K, j), for some j ∈ [|par(K)|]. In the
second case, p can be turned into a jungle path in J from w to resJ(e′) by replacing
this subsequence with (e, j). Thus, both cases contradict the assumption that
Θ ⊆ candJ(v, w).

Now, consider a parameter tentacle (e′, j′) ∈ tent(K) such that parK(e′, j′) =
par(K, j) for a parameter tentacle (e, j) ∈ Θ(e). By a similar reasoning as above,
if there is a path in I from img(w) to resI(e

′), then there is a path in J from w
to resJ(e), contradicting the assumption that (e, j) ∈ candJ(v, w). Thus, we can
conclude that Θ′ ⊆ candI(img(v), img(w)).

As in the proof of (b), the correctness of the equation I〈Θ′, img(w)〉 =

clean(J〈Θ, w〉[e ?← K]) follows from (a), together with the obvious fact that
IΘ′ ::= img(w) = JΘ ::=w[e← K]. Note, however, that this makes use of the assump-
tion that res(K) /∈ [par(K)].

We use Lemma 7.14 to show, in the next two lemmas, that Z⇒ is compatible
with hyperedge replacement.

Lemma 7.15 Let I = J [e ← K] for jungles J and K, where J is clean. If
clean(K) Z⇒∗ K, then clean(I) Z⇒∗ {clean(J [e← K ′]) | K ′ ∈ K}.
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Proof We proceed by induction on the length of derivations clean(K) Z⇒m K.
By Lemma 7.14(a), the statement is true for m = 0, i.e., K = {clean(K)}.
Therefore, let clean(K) Z⇒n+1 K with clean(K) Z⇒ {K0, K1} and Ki Z⇒n Ki for
i ∈ {0, 1}, where K = K0 ∪ K1 (see Lemma 7.13(a)). Let v0, v1 ∈ CK be such
that Ki ∈ K〈vi, v1−i〉.

Since J is clean, img(v0) and img(v1) are in CI . Hence, by Lemma 7.14(b),
clean(J [e ← Ki]) ∈ I〈img(vi), img(v1−i)〉 = clean(I)〈img(vi), img(v1−i)〉. In
other words, we have clean(I) Z⇒ {clean(I0), clean(I1)}, where Ii = J [e ←
Ki] for i ∈ {0, 1}. Applying the induction hypothesis, we get clean(Ii) Z⇒∗
{clean(J [e ← K ′i]) | K ′i ∈ Ki}. Combining these derivations into one by means
of Lemma 7.13(b) yields

clean(I) Z⇒∗
⋃

i∈{0,1}

{clean(J [e← K ′i]) | K ′i ∈ Ki} = {clean(J [e← K ′]) | K ′ ∈ K},

as claimed.

Lemma 7.16 Let I = J [e← K] for jungles J and K, where res(K) /∈ [par(K)].

If clean(J) Z⇒∗ J , then there is a set J ′ ⊆ {clean(J ′[e
?← K]) | J ′ ∈ J } such

that clean(I) Z⇒∗ J ′.

Proof Let clean(J) Z⇒m J . As in the previous proof, we proceed by in-
duction on m, starting with the observation that the induction basis follows
from Lemma 7.14(a). Again using Lemma 7.13(a), let clean(J) Z⇒n+1 J with
clean(J) Z⇒ {J0, J1} and Ji Z⇒n Ji for i ∈ {0, 1}, where J = J0 ∪ J1. Let
v0, v1 ∈ CJ be such that Ji ∈ J〈vi, v1−i〉. If e ∈ EJi , then the induction hypoth-

esis provides us with a set J ′i such that J ′i ⊆ {clean(J ′i [e
?← K]) | J ′i ∈ Ji} and

clean(Ji[e
?← K]) Z⇒∗ J ′i . If e /∈ EJi , then J ′i = Ji has these properties.

We distinguish two cases.

Case 1 For an i ∈ {0, 1}, img(vi) /∈ CI (where img is the locator function).

In this case, I〈img(vi), img(v1−i)〉 = {clean(I)} and so Lemma 7.14(c) yields

clean(I) = clean(Ji[e
?← K]). Hence we can take J ′ = J ′i .

Case 2 img(v0), img(v1) ∈ CI .

By Lemma 7.14(c), clean(I) Z⇒ {clean(J0[e
?← K]), clean(J1[e

?← K])}. So, for

J ′ = J ′0∪J ′1, Lemma 7.13(b) yields clean(I) Z⇒ {clean(J0[e
?← K]), clean(J1[e

?←
K])} Z⇒∗ J ′. Furthermore, we have J ′ ⊆ {clean(J ′[e

?← K]) | i ∈ {0, 1}, J ′ ∈
Ji} = {clean(J ′[e

?← K]) | J ′ ∈ J }, as claimed.

We now define the previously mentioned notion of path variant that relates
two jungle languages. As we shall prove directly after the definition (and an
example), a path variant of a jungle language L has the same path language as
L. The main result of this section will be obtained by essentially proving that,
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for every tree language L ∈ pDEL∗(FIN), there exists a context-free path variant
of J0(L).

Definition 7.17 (path variant) A jungle language L′ ⊆ JΣ,n is a path variant
of a jungle language L ⊆ JΣ,n, if the following conditions are fulfilled.
(a) For every J ∈ L, there is a set J ⊆ clean(L′), such that clean(J) Z⇒∗ J .
(b) tree(L′) ⊆ tree(L).

Note that cleaning does not affect conditions (a) and (b). More precisely, let
L′ be a path variant of L. Then clean(L′) is a path variant of L as well, and L′

is a path variant of clean(L).

Example 7.18 Let L = J0(Lexpseq), where Lexpseq is defined in Example 7.2, and
let L′ be the set of all jungles Jms

0 (s � (2, . . . ,2)) � J0(t) where s is a fully balanced
binary tree of height n ≥ 1 over the signature {f(2),21, . . . ,22n} and t is a tree
over the signature {k(2), a(0)}. Note that Jms

0 (s � (2, . . . ,2)) is a jungle with n+ 1
nodes and with n f-labelled hyperedges and one 2-labelled hyperedge. We claim
that L′ is a path variant of L. Clearly, tree(L) = Lexpseq and tree(L′) consists of
all trees s � (t1, . . . , t2n) such that s is as above and t1 = · · · = t2n ∈ T{k,a}. Thus,
tree(L′) ⊆ Lexpseq = tree(L). We now prove, for every s as above and all trees
t1, . . . , t2n ∈ T{k,a}, that

J0(s � (t1, . . . , t2n)) Z⇒∗ {Jms
0 (s � (2, . . . ,2)) � J0(ti) | i ∈ [2n]}.

The proof is by induction on n. For n = 1, i.e., for s = f[21,22], it is imme-
diate from Example 7.11. Now consider s � (t1, . . . , t2n+1) and note that it equals
f[s′ � (t1, . . . , t2n), s′ � (t2n+1, . . . , t2n+1)]. Again from Example 7.11 we obtain that
J0(s � (t1, . . . , t2n+1)) Z⇒

{Jms
0 (f[2,2]) � J0(s′ � (t1, . . . , t2n)), Jms

0 (f[2,2]) � J0(s′ � (t2n+1, . . . , t2n+1))}.

By induction, J0(s′ � (t1, . . . , t2n)) Z⇒∗ {Jms
0 (s′ � (2, . . . ,2)) � J0(tj) | 1 ≤ j ≤ 2n}

and J0(s′ � (t2n+1, . . . , t2n+1)) Z⇒∗ {Jms
0 (s′ � (2, . . . ,2)) � J0(tk) | 2n+1 ≤ k ≤ 2n+1}.

Hence, by Lemmas 7.15 and 7.13(b), J0(s � (t1, . . . , t2n+1)) Z⇒∗

{Jms
0 (f[2,2]) � Jms

0 (s′ � (2, . . . ,2)) � J0(ti) | i ∈ [2n+1]}.

Since Jms
0 (f[2,2]) � Jms

0 (s′ � (2, . . . ,2)) = Jms
0 (s � (2, . . . ,2)), this shows that con-

dition (a) of Definition 7.17 is fulfilled, and thus that L′ is a path variant of L.

Lemma 7.19 For all jungle languages L and L′, if L′ is a path variant of L, then
paths(L) = paths(L′).

Proof Condition (b) in the definition of path variant yields immediately that
paths(L′) ⊆ paths(L). For the converse direction, for sets J ,J ′ of clean jungles
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with J Z⇒ J ′, we have paths(J ) ⊆ paths(J ′) by Lemma 7.12. Using condi-
tion (a) and the fact that paths(clean(J)) = paths(J), this yields paths(L) ⊆
paths(L′), as required.

The next lemma will be the major ingredient needed for the proof of the
context-freeness of paths(L) for all L ∈ DEL∗(FIN).

Lemma 7.20 Let N = (G,Π, (γg)g∈G, g0) be a propagating delegation network.
If, for every g(k) ∈ G, there exists a context-free path variant Lg of Jk(L(γg)),
then there exists a context-free path variant of LJ(N ).

Proof By Lemma 7.9, and the fact that cleaning does not affect the property of
being a path variant (see the remark following Definition 7.17), we may assume
that each Lg consists of clean jungles. To prove the lemma, instead of constructing
a CFJG generating a context-free path variant of LJ(N ), we construct a cf-
extended CFJG G with this property. By Lemma 7.8, this suffices to prove the
lemma. We let

G = (G,Π,
⋃
{g→ Lg | g ∈ G}, g0).

We have to check that L(G) is a path variant of LJ(N ), i.e., that conditions (a)
and (b) of Definition 7.17 are satisfied.

For (a), similar to the notion of usefulness of nonterminals in G, let us say
that g ∈ G is useful in N if J(g) ⇒∗N J for a jungle J over Π. For Z ∈ {G,N},
a derivation J(g0)⇒∗Z J ′ is useful (in Z) if labJ ′(EJ ′) ∩ G contains only symbols
that are useful in Z.

Claim 1 For every g ∈ G, if g is useful in N , then g is useful in G.

By the definition of Z⇒, if K Z⇒∗ K and K ′ ∈ K, then all hyperedge labels in K ′

occur also in K, i.e., labK′(EK′) ⊆ labK(EK). Thus, by Definition 7.17(a), for all
g(k) ∈ G and K ∈ Jk(L(γg)), there is a rule g→ K ′ in G, such that labK′(EK′) ⊆
labK(EK). By a straightforward induction on the length of derivations, this
means that, for every derivation J(g) ⇒∗N J , there is a derivation J(g) ⇒∗G J ′

such that labJ ′(EJ ′) ⊆ labJ(EJ). In particular, g is useful in G if it is useful in
N .

Now, we prove the following claim by induction on the length of derivations.

Claim 2 For every useful derivation J(g0) ⇒∗N J , there exists a set J of clean
jungles such that
(1) clean(J) Z⇒∗ J and
(2) for every J ′ ∈ J there is a useful derivation J(g0)⇒∗G J ′′ with clean(J ′′) = J ′.

Let us first argue that Claim 2 suffices to prove condition (a) of Definition 7.17.
For this, let J ∈ LJ(N ), and let J be such that J and J satisfy (1) and (2). For
J ′ ∈ J , by (2), there is a useful derivation J(g0)⇒∗G J ′′ such that clean(J ′′) = J ′.
As this derivation is useful, it can be extended to yield a jungle over Π, say
J ′′ ⇒∗G J ′′′ ∈ JΠ. Thus, J ′′′ ∈ L(G). Since J ∈ JΠ, we have J ⊆ JΠ, and thus
clean(J ′′) ∈ JΠ, which means that clean(J ′′′) = clean(J ′′) = J ′ ∈ J . (Note that
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if I ′ = I[e← K] for a hyperedge e ∈ EI \Eclean(I), then clean(I ′) = clean(I).) In
other words, J ⊆ clean(L(G)).

Now, to prove Claim 2, first notice, using Claim 1, that it is trivially true for
derivations of length 0 (with J = {J(g0)}). Thus, consider a useful derivation
J(g0) ⇒∗N J ⇒N I = J [e ← K], where labJ(e) = g(k) and K = Jk(t) for a tree
t ∈ L(γg). Note that the derivation J(g0)⇒∗N J is then also useful. Assume that
J is a set of clean jungles satisfying (1) and (2) with respect to J .

Since N is propagating, we have res(K) /∈ [par(K)]. By Lemma 7.16, this

means that there is a set J ′ ⊆ {clean(J ′[e
?← K]) | J ′ ∈ J } such that clean(I) Z⇒∗

J ′. Further, by the assumption that Lg is a path variant of Jk(L(γg)), there is

a set K ⊆ Lg, such that K Z⇒∗ K. Let I = {clean(J ′[e
?← K ′]) | J ′ ∈ J , K ′ ∈

K}. We claim that I satisfies (1) and (2) with respect to I. For checking (1),

consider I ′ = clean(J ′[e
?← K]) ∈ J ′, where J ′ ∈ J . Using Lemma 7.15, we get

I ′ Z⇒∗ {clean(J ′[e
?← K ′]) | K ′ ∈ K} (which is trivial if e /∈ EJ ′). Hence, repeated

application of Lemma 7.13(b) gives

clean(I) Z⇒∗ J ′ Z⇒∗
⋃
J ′∈J ′
{clean(J ′[e

?← K ′]) | K ′ ∈ K} = I,

as required. For checking (2), consider an element clean(J ′[e
?← K ′]) of I

(i.e., J ′ ∈ J and K ′ ∈ K). Let J(g0) ⇒∗G J ′′ be a useful derivation such
that clean(J ′′) = J ′. By the construction of G, and since K ′ ∈ Lg, we have

J ′′ ⇒∗G J ′′[e
?← K ′] by either 0 or 1 derivation steps. By Lemma 7.14(a),

clean(J ′′[e
?← K ′]) = clean(J ′[e

?← K ′]), as required in (2). Furthermore, since
all generator symbols in J ′′ and K are useful in G and N , respectively, and

labK′(EK′) ⊆ labK(EK), Claim 1 yields that the derivation J(g0)⇒∗G J ′′[e
?← K ′]

is useful.
It remains to prove that condition (b) of Definition 7.17 is satisfied. Instead

of proving that tree(L(G)) ⊆ tree(LJ(N )), we prove the more general statement
that, for every jungle J ′ ∈ L(G), there is a jungle J ∈ LJ(N ) that maps to J ′.
By Lemma 4.5, this proves that tree(J) = tree(J ′).

We proceed by induction on the length of derivations to show that, for every
derivation J(g0) ⇒∗G J ′, there is a derivation J(g0) ⇒∗N J such that J maps to
J ′. The induction basis is trivial. Thus, consider a derivation

J(g0)⇒∗G J ′ ⇒G I
′,

where I ′ = J ′[e′ ← K ′], labJ ′(e
′) = g(k), and K ′ ∈ Lg.

Let K = Jk(tree(K ′)). By assumption, K ∈ Jk(L(γg)), and by Lemma 4.5,
K maps to K ′. Furthermore, by the induction hypothesis, J(g0) ⇒∗N J , where
J maps to J ′. Let ϕ : VJ → VJ ′ be the corresponding structure preserving map-
ping, and let e1, . . . , em ∈ EJ be the pairwise distinct hyperedges e such that
ϕ(resJ(e)) = resJ ′(e

′). Then, using the fact that J maps to J ′ and K maps to
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K ′, it is straightforward to show that I = J [e1 ← K] · · · [em ← K] maps to I ′.
Since J ⇒∗N I, this completes the inductive proof.

To finish the proof that tree(L(G)) ⊆ tree(LJ(N )), consider J ′ ∈ L(G). By
the reasoning above, J(g0) ⇒∗N J for a jungle J that maps to J ′. Furthermore,
J ∈ JΠ since J ′ ∈ JΠ, which means that J ∈ LJ(N ).

Example 7.21 Let N be the propagating delegation network Nexpseq of Exam-
ple 7.2. Clearly, LJ(N ) = J0(LT(N )) = J0(Lexpseq). We first consider context-
free path variants Lh0 and Lh of J0(L(γh0)) and J0(L(γh)), respectively. Recall
that L(γh0) = LT(Nbin) and L(γh) = T{k,a}. Let Lh0 = LJ(Nbin). By Def-
initions 5.5 and 7.6, it is generated by the CFJG with rules g0 → J0(g[h]),
g→ Jms

1 (g[f[x1, x1]]), and g→ Jms
1 (f[x1, x1]). It is equal to Jms

0 (LT(Nbin)), which
is a path variant of J0(LT(Nbin)) as can be shown by an argument similar to the
one in Example 7.18. Let Lh = J0(L(γh)). It is of course a path variant of itself,
and it is generated by the CFJG with rules g′0 → J0(k[g′0, g

′
0]) and g′0 → J0(a).

By (the proof of) Lemma 7.20, the jungle language generated by the cf-extended
CFJG G with rules h0 → Lh0 and h → Lh is a path variant of J0(Lexpseq). By
the construction in the proof of Lemma 7.8 (with some obvious simplifications),
it is generated by the CFJG G′ with rules g0 → J0(g[h]), g → Jms

1 (g[f[x1, x1]]),
g → Jms

1 (f[x1, x1]), h → J0(k[h, h]) and h → J0(a). It should be clear that
L(G′) = L′, as defined in Example 7.18, where we already showed that L′ is a
path variant of J0(Lexpseq).

Now, recall Corollary 6.5, which shows that paths(LT(N )) = paths(LJ(N )).
We would like to be able to apply Lemma 7.20 in an induction on the number
of applications of pDEL to show that, for every propagating delegation network
N generating a tree language L ∈ pDEL∗(FIN), there exists a context-free path
variant of LJ(N ). However, this yields an induction hypothesis which is too
weak. What is needed is a context-free path variant of JY (LT(N )), where Y
is a parameter signature. Next, we prove a lemma that yields this link and
completes the series of technical preparations required to prove the main result
of this section.

To formulate the lemma, the following notation is used. For a jungle J ∈
JΣ,k and a parameter signature Y = {y1, . . . , yn}, we let J[Y ] ∈ JΣ\Y,k+n denote
the jungle obtained from J by identifying, for each i ∈ [n], all result nodes of
hyperedges e ∈ EJ with labJ(e) = yi, which yields a new node vi, making vi the
(k + i)th parameter node, and deleting all hyperedges with labels in Y . If yi
does not occur in J , then vi becomes an isolated parameter node. For a jungle
language L, we let L[Y ] = {J[Y ] | J ∈ L}. Note that, for every tree t ∈ TΣ,
JY (t) = J0(t)[Y ].

Lemma 7.22 Let L,L′ ⊆ JΣ, and let Y be a parameter signature. If L′ is
a context-free path variant of L, then L′[Y ] is a context-free path variant of
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JY (tree(L)).

Proof Let Y = {y1, . . . , yn}. We first prove that L′[Y ] is a path variant of

JY (tree(L)) if L′ is a path variant of L.
Clearly, JY (tree(L)) and L′[Y ] satisfy condition (b) of Definition 7.17, because

tree(JY (tree(L))) is obtained from tree(L) by turning each yi into xi for i ∈ [n],
and tree(L′[Y ]) is obtained from tree(L′) in the same way. Thus, it remains to be

shown that condition (a) is satisfied. For this, we prove two claims.

Claim 1 If J = J0(tree(J ′)) for a clean jungle J ′ ∈ JΣ, then J Z⇒∗ {J ′}.
We show that, for all clean jungles J and J ′, if J maps to J ′, then J Z⇒∗ {J ′}.

Using Lemma 4.5, this proves Claim 1 by choosing J = J0(tree(J ′)).
Assume that J maps to J ′, and let ϕ : VJ → VJ ′ be the corresponding structure

preserving mapping. Note that ϕ is surjective, because J ′ is clean. We proceed
by induction on m = |VJ | − |VJ ′ |. If m = 0, then ϕ is injective, and thus an
isomorphism, which yields J Z⇒0 {J ′}. If m > 0, then there are distinct nodes
v0, v1 ∈ VJ such that ϕ(v0) = ϕ(v1). Since ϕ is structure preserving, we can
choose these nodes in such a way that parJ(e0) = parJ(e1) for the hyperedges
ei with resJ(ei) = vi (i ∈ {0, 1}). Now, let Jf be the jungle obtained from J
by identifying v0 with v1 and e0 with e1 (which is commonly called folding in
the literature). Obviously, Jf is isomorphic to Ji = J〈Θi, v1−i〉, for i ∈ {0, 1},
where Θi = {(e, j) ∈ tent(J) | parJ(e, j) = vi} = candJ(vi, v1−i). In other
words, J Z⇒ {J0, J1} = {Jf}. Moreover, if v is the node in Jf resulting from
the identification of v0 and v1, then Jf maps to J ′ by the mapping ϕ′ such that
ϕ′(v) = ϕ(v0) and ϕ′(v′) = ϕ(v′) for all v ∈ VJ \ {v0, v1}. By the induction
hypothesis, this yields Jf Z⇒∗ {J ′}, as claimed.

Claim 2 Let J ∈ JΣ be a clean jungle, and let J ⊆ JΣ be a set of clean jungles.
If J Z⇒∗ J , then J[Y ] Z⇒∗ J[Y ].

The correctness of the claim follows by an obvious inductive argument, using
the fact that, for v, w ∈ CJ and Θ ⊆ candJ(v, w), we have Θ ⊆ candJ[Y ]

(img(v),
img(w)) and J〈Θ, w〉[Y ] = J[Y ]〈Θ, img(w)〉, where img is the function mapping
every node in J to its image in J[Y ]. This fact is a direct consequence of the
relevant definitions.

To conclude that L′[Y ] is a path variant of JY (tree(L)), notice first that, for

every jungle J ∈ JΣ, we have clean(J[Y ]) = clean(J)[Y ]. Now, consider a jun-
gle J ∈ L. We have to show that there is a set J ⊆ clean(L′[Y ]) such that

clean(JY (tree(J))) Z⇒∗ J . By Claim 1 and the fact that L′ is a path variant of L,
we have J0(tree(J)) Z⇒∗ {clean(J)} Z⇒∗ J ′ for a set J ′ ⊆ clean(L′). By Claim 2,
this means that JY (tree(J)) Z⇒∗ J , where J = J ′[Y ]. This set J is a subset of

clean(L′)[Y ], which, by the remark above, is equal to clean(L′[Y ]). Thus, L′[Y ] is

indeed a path variant of JY (tree(L)).
To complete the proof of the lemma, it must be shown that L′[Y ] is context-

free if L′ is context-free. For this purpose, assume that L′ = L(G), for a CFJG
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G = (Ξ,Σ, R, f0). Let Ξ′ be obtained from Ξ by turning the rank of every symbol
f(k) ∈ Ξ into k+n; in particular, f0 becomes a symbol of rank n. Let Σ′ = Σ\Y ,

and define, for every jungle J ∈ JΞ∪Σ,k, Ĵ[Y ] to be the jungle in JΞ′∪Σ′,k+n obtained
from J[Y ] by appending parJ[Y ]

(k + 1) · · · parJ[Y ]
(k + n) to parJ[Y ]

(e), for every

hyperedge e ∈ EJ[Y ]
with labJ[Y ]

(e) ∈ Ξ.

As a direct consequence of its definition, Ĵ[Y ] = J[Y ] for all J ∈ JΣ. Now,

for the CFJG G′ = (Ξ′,Σ′, {f → K̂[Y ] | (f → K) ∈ R}, f0), it follows by a
straightforward induction on the length of derivations, that J(f0) ⇒∗G J if and

only if J(f0) ⇒∗G′ Ĵ[Y ]. In particular, this means that L(G′) = {Ĵ[Y ] | J ∈
L(G)} = L′[Y ]. This completes the proof.

We are, finally, ready to prove the main result of this section.

Theorem 7.23 For every tree language L ∈ DEL∗(FIN), paths(L) is context-
free.

Proof By Lemmas 7.4 and 7.5, it suffices to prove the statement for L ∈
pDEL∗(FIN).

We prove first that, for every tree language L ∈ pDELn(FIN) and every
parameter signature Y , there is a context-free path variant of JY (L). The proof
is by induction on n. For n = 0, it suffices to note that finite jungle languages
are context-free, and every jungle language is a path variant of itself. Now, let
n > 0, and assume that the statement is true for n− 1. Let N = (G,Π,Γ, g0) be
a propagating delegation network such that L = LT(N ), where Γ = (γg, Yg)g∈G
with L(γg) ∈ pDELn−1(FIN) for all g ∈ G. By the induction hypothesis, there is
a context-free path variant Lg of JYg(L(γg)), for every g ∈ G. Using Lemma 7.20,
this shows that there is a context-free path variant L′ of LJ(N ). Hence, by
Lemma 7.22 (for Σ = Π), L′[Y ] is a context-free path variant of JY (tree(LJ(N ))).

By Corollary 6.5, the latter is equal to JY (L), as claimed.
In particular, we have shown that there is a context-free path variant L0 of

J0(L). By Lemma 7.7, paths(L0) is context-free, and by Lemma 7.19, it is equal
to paths(J0(L)) = paths(tree(J0(L))) = paths(L).

Since the proof of Theorem 7.23 is effective, and since a tree language L is
empty or finite if and only if the language paths(L) is, it follows that the emptiness
and finiteness problems are decidable for L ∈ DEL∗(FIN). This result is, how-
ever, not very useful as such, because it is an open problem whether DEL∗(FIN)
is closed under intersection with regular tree languages. (Usually, one is not
interested in deciding whether L itself is empty (or finite), but rather whether
L∩R is, where R is a regular tree language that captures some type of correctness
property, cf., e.g., the introduction of [DE98].) The result will be strengthened
in the next section, where we obtain a more useful variant (Corollary 8.16).
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8 Delegation versus Macro Tree Transducers

One of the main results of this section is that for every hierarchical delegation
networkN , the tree language LT(N ) is the image of a regular tree language under
a composition of several macro tree transductions. Macro tree transducers are
a powerful type of tree transducer studied, e.g., in [EV85, EV94, FV98, DE98,
EM02, CE12].

Several of the auxiliary results in this section concern classes of tree languages
obtained by applying an operator such as DEL to a more or less arbitrary class
C of tree languages. However, to avoid some very unnatural effects and technical
difficulties, we will restrict ourselves to genuine classes of tree languages. By
definition, a class C of tree languages is genuine if it contains all finite tree
languages and, for every tree language L ⊆ TΣ and every bijective and rank-
preserving renaming r : Σ → Σ′ of symbols, if L ∈ C then r(L) ∈ C (where r
is extended to a function on trees in the canonical way). It is obvious that the
operator DEL preserves genuineness, i.e., if C is genuine, then so is DEL(C). It
is left to the reader to check that this also holds for the operators TD, YIELD
and rDEL introduced in the remainder of this section. Note that since FIN is
genuine, all the classes DELn(FIN) of the delegation hierarchy are genuine. Note
also that the class REG of regular tree languages (see Definition 2.5) is genuine.

A tree transduction is a binary relation τ ⊆ TΣ × T∆, where Σ and ∆ are
finite signatures. Thus, viewed as a function τ : TΣ → ℘(T∆), τ maps trees in
TΣ to sets of trees in T∆. For a class C of tree languages and a class TR of tree
transductions, we let TR(C) = {τ(L) | τ ∈ TR and L ∈ C}, TR0(C) = C and
TRn+1(C) = TR(TRn(C)), for n ∈ N. Moreover, TR∗(C) =

⋃
n∈N TRn(C). As

usual, C is said to be closed under TR if TR(C) ⊆ C. Similarly, C is closed
under DEL if DEL(C) ⊆ C.

Next, we recall the definitions of two well-known classes of tree transductions,
namely top-down tree transductions and YIELD mappings. These are specific
macro tree transductions and, vice versa, every macro tree transduction is a
composition of these transductions. Thus, for the results in this section, we need
not define macro tree transducers.

Definition 8.1 (top-down tree transducer) A top-down tree transducer (td
transducer, for short) is a tuple td = (Σ,∆, Q,R, q0), where
• Σ and ∆ are finite signatures of input symbols and output symbols, resp.,
• Q is a finite signature of states of rank 1, where Q ∩ (Σ ∪∆) = ∅,
• R is a finite set of rules, and
• q0 ∈ Q is the initial state.

Every rule in R has the form q[f[x1, . . . , xk]]→ t � (q1[xi1 ], . . . , ql[xil ]), where k, l ∈
N, q, q1, . . . , ql ∈ Q, f(k) ∈ Σ, i1, . . . , il ∈ [k], and t ∈ T∆,{21,...,2l}.

Given a tree s = s0 � q[f[s1, . . . , sk]], if R contains a rule as above, then there
is a computation step s ⇒td s0 � (t � (q1[si1 ], . . . , ql[sil ])). The subscript td can be
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omitted if it is clear from the context. The top-down tree transduction td ⊆
TΣ × T∆ computed by td is given by

td(s) = {t ∈ T∆ | q0(s)⇒∗ t},

for all s ∈ TΣ. The set of all top-down tree transductions (td transductions, for
short) is denoted by TD.

An example of a td transducer that turns out to be helpful in our reasoning
is the following. Consider a finite signature Σ, and let +(2) and θ(0) be special
symbols not in Σ. Now, let setΣ = (Σ ∪ {+, θ},Σ, {q}, R, q), where R consists of
the rules q[+[x1, x2]] → q[xi] (i = 1, 2) and, for all f(k) ∈ Σ, q[f[x1, . . . , xk]] →
f[q[x1], . . . , q[xk]]. Obviously, for t ∈ TΣ∪{+,θ}, setΣ(t) is the set of trees obtained
from t by interpreting + as set union (of sets of trees) and θ as the empty set.
In the following, we let SET denote the set of all td transductions setΣ, i.e., for
all finite signatures Σ. We usually drop the index Σ, thus writing set instead of
setΣ.

A td transducer is linear (nondeleting) if, for every rule q[f[x1, . . . , xk]] → t,
t is linear in Xk (nondeleting in Xk, resp.). It is total (deterministic) if, for all
q ∈ Q and f(k) ∈ Σ, there is at least one (at most one) rule with the left-hand
side q[f[x1, . . . , xk]]. A td transduction is said to have one of these properties,
or a combination thereof, if it can be computed by a td transducer that fulfills
the requirements in question. A tree homomorphism is a tree transduction that
can be computed by a total deterministic td transducer whose set of states is a
singleton. For example, the td transducers setΣ are linear, but neither nondeleting
nor deterministic (because of the rules q[+[x1, x2]]→ q[xi]) nor total (since there
are no rules with the left-hand side q[θ]).

YIELD mappings, which seem to have appeared for the first time in [Mai74],
formalize the construction of trees using parameter substitution. Given a finite
signature Σ and a number m ∈ N such that Σ ∩ Xm = ∅ and k ≤ m for all
f(k) ∈ Σ, let the derived signature ∆(Σ,m) consist of all symbols subst

(n+1)
n ,

where 1 ≤ n ≤ m, and all constant symbols f〈k〉, where f(k) ∈ Σ ∪ Xm. In
other words, in a derived signature, each of the original symbols f(k) ∈ Σ ∪Xm

is turned into a symbol f〈k〉 of rank 0. The only symbols of rank greater than 0
are the symbols subst1, . . . , substm. For a signature Ω, we denote by Ω〈 〉 the set
of nullary symbols {f〈k〉 | f(k) ∈ Ω}; thus, if Ω is a subset of Σ, then ∆(Σ,m) =
∆(Σ\Ω,m)∪Ω〈 〉. For an arbitrary parameter signature Z = {y1, . . . , ym}, instead
of Xm, we similarly define the derived alphabet ∆(Σ, Z).

Definition 8.2 (YIELD mapping)
For a derived signature ∆(Σ,m), the YIELD mapping on T∆(Σ,m) is the mapping
YΣ,m : T∆(Σ,m) → TΣ,m which is defined recursively, as follows. For every tree
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s ∈ T∆(Σ,m),

YΣ,m(s) =

{
YΣ,m(s0)(YΣ,m(s1), . . . , YΣ,m(sn)) if s = substn[s0, s1, . . . , sn]

f[x1, . . . , xk] if s = f〈k〉

where 1 ≤ n ≤ m and f(k) ∈ Σ ∪Xm.27

For an arbitrary parameter signature Z = {y1, . . . , ym} (disjoint with Σ), we
similarly define the YIELD mapping YΣ,Z : T∆(Σ,Z) → TΣ,Z . The set of all YIELD
mappings is denoted by YIELD.

Although several slightly different definitions of YIELD are found in the liter-
ature [ES77, ES78, EV85, DE98, FV98], it is easy to see that the definition given
above is equivalent to each of them, in all respects relevant for this paper.

In the following, we simply denote YΣ,m by Y , assuming that Σ and m are
appropriately chosen, so that all symbols in the trees YΣ,m is applied to are

covered. Note that, in particular, Y (x
〈0〉
i ) = xi for all i ∈ [m]. For technical

convenience, we identify the symbol 2
〈0〉
i with 2i, for all i ≥ 1. As a consequence,

Y (2i) = 2i.
We will need a technical lemma concerning a notion of G-preservation, which

is defined as follows. For a delegation network N = (G,Π,Γ, g0) and a tree
s ∈ T∆(ΣN ,m), we say that s is G-preserving if, for every subtree of s of the form
substn[s0, s1, . . . , sn] (where n ≤ m), either s1, . . . , sn ∈ T∆(Π,m) or s0 = f〈n〉 for
some f ∈ ΣN ∪Xm (or both). Note that ∆(ΣN ,m) = ∆(Π,m) ∪ G〈 〉.

As the term G-preserving indicates, occurrences of symbols from G〈 〉 in s are
preserved under Y . More precisely, every occurrence of a symbol g〈k〉 ∈ G〈 〉 in
s corresponds to a unique occurrence of g(k) in Y (s). In fact, as the following
technical lemma shows, even the property of g〈k〉 occurring rightmost in s is
preserved (in both directions). To formulate this, for a tree s0 ∈ T∆(ΣN ,m),{2}
containing exactly one occurrence of 2, let us say that s0 is rightmost if no
symbol of G〈 〉 occurs to the right of 2 in s0. Similarly, for a tree t0 ∈ TΣN∪Xm,{2}
containing exactly one occurrence of 2, we call t0 rightmost if no symbol of G
occurs to the right of 2 in it.

Lemma 8.3 Let s ∈ T∆(ΣN ,m) be G-preserving.
1. If s has the form s0 � g〈k〉 for a symbol g(k) ∈ G and a rightmost tree s0,

then Y (s) has the form Y (s0) � g[t1, . . . , tk], where Y (s0) is rightmost and
t1, . . . , tk ∈ TΠ,m. Moreover, for u ∈ T∆(ΣN ,m) with Y (u) ∈ TΣN ,k, we have
Y (s0 �u) = Y (s0) � (Y (u)(t1, . . . , tk)).

2. If Y (s) ∈ TΠ,m, then s ∈ T∆(Π,m).

27 For t0, t1, . . . , tn ∈ TΣ,m, we use here, and in what follows, the notation t0(t1, . . . , tn) for
t0(t1, . . . , tn, xn+1, . . . , xm) when n < m. This is consistent with the fact that TΣ,m = TΣ′,n

where Σ′ = Σ ∪ {xn+1, . . . , xm}.
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3. If Y (s) has the form t0 � g[t1, . . . , tk] for a symbol g ∈ G, a rightmost tree
t0, and trees t1, . . . , tk ∈ TΠ,m, then s can be written as s0 � g〈k〉, where s0

is rightmost and Y (s0) = t0.

Proof (1) The proof is by induction on the structure of s0. The case that s0 = 2

is obvious, with ti = xi for i ∈ [k]. Now let s0 = substn[s′0, s1, . . . , sn].
Case 1 : 2 occurs in si for i ∈ [n]. Then s = substn[s′0, s1, . . . , si � g〈k〉, . . . , sn],

and so s′0 = f〈n〉 for some f ∈ ΣN because s is G-preserving. Hence Y (s) =
f[Y (s1), . . . , Y (si � g〈k〉), . . . , Y (sn)]. By the induction hypothesis,

Y (si � g
〈k〉) = Y (si) � g[t1, . . . , tk].

Consequently,

Y (s) = f[Y (s1), . . . , Y (si) � g[t1, . . . , tk], . . . , Y (sn)]

= f[Y (s1), . . . , Y (si), . . . , Y (sn)] � g[t1, . . . , tk]

= Y (s0) � g[t1, . . . , tk].

The remaining requirements are easy to check.
Case 2 : 2 occurs in s′0. Then s = substn[s′0 � g

〈k〉, s1, . . . , sn]. Note that
s1, . . . , sn do not contain symbols of G〈 〉. By the induction hypothesis,

Y (s′0 � g
〈k〉) = Y (s′0) � g[t1, . . . , tk].

Consequently,

Y (s) = (Y (s′0) � g[t1, . . . , tk])(Y (s1), . . . , Y (sn))

= (Y (s′0)(Y (s1), . . . , Y (sn))) � g[t′1, . . . , t
′
k]

= Y (s0) � g[t′1, . . . , t
′
k]

where t′i = ti(Y (s1), . . . , Y (sn)) ∈ TΠ,m for i ∈ [k]. Again, the remaining require-
ments are easy to check.

(2) This is immediate from Statement 1: if s contains a symbol of G〈 〉, then
one can consider the rightmost occurrence of such a symbol and write s as s0 � g〈k〉

where s0 is rightmost.

(3) The proof is by induction on the structure of s. The case that s is a
constant symbol is easy: s must be equal to g〈k〉, Y (s) = g[x1, . . . , xk], t0 = 2,
ti = xi for i ∈ [k], and s0 = 2. Now let s = substn[u, s1, . . . , sn]. Then
Y (s) = Y (u)(Y (s1), . . . , Y (sn)) = t0 � g[t1, . . . , tk]. Let v ∈ V (t0) be the node
with label 2. We distinguish two cases.

Case 1 : v is a node of Y (u) and its label (in Y (u)) is not inXm. Then Y (u) has
the form t′0 � g[t′1, . . . , t

′
k] and ti = t′i(Y (s1), . . . , Y (sn)) for i = 0 and for all i ∈ [k].

By the induction hypothesis, u can be written as u0 � g〈k〉 where Y (u0) = t′0. Let
s0 = substn[u0, s1, . . . , sn]. Then s = substn[u0 � g〈k〉, s1, . . . , sn] = s0 � g〈k〉 and
Y (s0) = t′0(Y (s1), . . . , Y (sn)) = t0.

It remains to be shown that no symbol of G〈 〉 occurs in s1, . . . , sn. Since s
is G-preserving, it suffices to consider the case that u = g〈k〉 and k = n. Then
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t0 = t′0 = 2 and Y (s) = g[Y (s1), . . . , Y (sn)] = g[t1, . . . , tn]. Hence no symbol of
G occurs in Y (s1), . . . , Y (sn). Now Statement 2 gives the result.

Case 2 : v is a node of one of the occurrences of Y (s1), . . . , Y (sn) in Y (s). Then
there exists i ∈ [n] such that Y (si) has the form t′0 � g[t1, . . . , tk]. Thus, si contains
a symbol of G〈 〉. Since s is G-preserving, u = f〈n〉 for some f ∈ ΣN . Hence Y (s) =
f[Y (s1), . . . , t′0 � g[t1, . . . , tk], . . . , Y (sn)] and t0 = f[Y (s1), . . . , t′0, . . . , Y (sn)]. By
the induction hypothesis, si can be written as si,0 � g〈k〉 where Y (si,0) = t′0. Take
s0 = substn[u, s1, . . . , si,0, . . . , sn]. Then s = substn[u, s1, . . . , si,0 � g〈k〉, . . . , sn] =
s0 � g〈k〉 and Y (s0) = f[Y (s1), . . . , t′0, . . . , Y (sn)] = t0. It follows from the form of
t0, and from the induction hypothesis and Statement 2, that s0 is rightmost.

Given a derived signature ∆(Σ,m), there is a useful linear and nondeleting
tree homomorphism combΣ,m : TΣ,m → T∆(Σ,m) (cf. [ES77, Definition 4.4]). It is
given by

combΣ,m(f[t1, . . . , tk]) = substk[f
〈k〉, combΣ,m(t1), . . . , combΣ,m(tk)],

for all trees f[t1, . . . , tk] ∈ TΣ,m with k ≥ 1, and combΣ,m(f) = f〈0〉 for f(0) ∈
Σ∪Xm. In the following, we will often simply write ‘comb’ instead of ‘combΣ,m’.
The comb mapping has the following obvious properties.

Lemma 8.4 For every derived signature ∆(Σ,m) and every tree t ∈ TΣ,m,
1. YΣ,m(combΣ,m(t)) = t, and
2. combΣ,m(t) is G-preserving if Σ = ΣN for some N = (G,Π,Γ, g0).

The so-called TBY hierarchy [DE98] is obtained by starting with the regular
tree languages, and then applying arbitrary td transducers and YIELD mappings
to them.28 Formally, let TBY be the set of all tree transductions of the form
τm ◦ · · · ◦ τ1, where m ≥ 1, τ1, . . . , τm ∈ TD∪YIELD and τi ∈ YIELD for at most
one i ∈ [m].29 It is not known whether the TBY hierarchy, which is given by
(TBYn(REG))n∈N, is proper at each level. It is closely related to the hierarchy
obtained by applying n (nondeterministic) macro tree transducers to regular tree
languages. In particular, TBY∗(REG) is equal to MTT∗(REG), the closure of
REG under macro tree transductions. In this section, we show that DEL∗(FIN)
is properly contained in TBY∗(REG), and that the latter is closed under DEL.

Example 8.5 Consider the monadic tree language Lmonexp = {f2n [a] | n ∈ N}
consisting of all trees over {f(1), a(0)} that contain 2n occurrences of f, for n ∈ N.
It is well known that Lmonexp is in YIELD(TD(REG)) ⊆ TBY(REG): use a

28The three letters T, B, and Y refer to top-down tree transducers, bottom-up tree transduc-
ers, and YIELD mappings. In the definition used here, we omit bottom-up tree transducers,
because it is known that each bottom-up tree transducer can be simulated by two top-down
tree transducers.

29Note that, by Lemma 8.4(1) and the fact that combΣ,m ∈ TD, the same class TBY is
obtained if we require that τi ∈ YIELD for exactly one i ∈ [m].
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regular tree grammar γ with the rules ξ0 → f[ξ0] and ξ0 → a and a td transducer
td with the rules

q0[f[x1]] → subst1[q[x1], a〈0〉]

q[f[x1]] → subst1[q[x1], q[x1]]

q[a] → f〈1〉.

Thus, td(L(γ)) consists of all trees subst1[t, a〈0〉] where t is a fully balanced binary
tree over the signature {subst1, f

〈1〉}. Obviously, Y (td(fn+1[a])) = f2n [a] and,
thus, Y (td(L(γ))) = Lmonexp. The tree language Lmonexp is not in DEL∗(FIN),
by Theorem 7.23, because paths(Lmonexp) is not context-free (which is clear from
the fact that paths(Lmonexp) ∩ 〈f, 1〉∗〈a, 0〉 = {〈f, 1〉2n〈a, 0〉 | n ≥ 0}).

Note that, of course, DEL∗(FIN) = DEL∗(REG), because REG ⊆ DEL(FIN).
In fact, we can turn the subset sign in the latter formula into an equality sign
if we restrict ourselves to delegation networks that work in a “regular” manner.
More precisely, we say that a delegation network is regular if the rank of ev-
ery generator symbol is 0. As a consequence, IO-derivations generate the same
trees as unrestricted derivations. Intuitively, this means that a regular delegation
network (viewed as a tree-generating device) is nothing else than a regular tree
grammar with a possibly infinite set of rules, where the set of right-hand sides
of rules for a given left-hand side is generated by the tree generator associated
with it. Thus, regular delegation networks have the following property, similar
to regular tree grammars.

Lemma 8.6 Let N = (G,Π, (γg)g∈G, g0) be a regular delegation network, and
consider a generator symbol g ∈ G and a tree t ∈ TΣN . For n ∈ N, g ⇒n+1

N ,IO t
if and only if there is a tree t0 � (g1, . . . , gk) ∈ L(γg), where t0 ∈ TΠ,{21,...,2k} and
g1, . . . , gk ∈ G, and there are derivations g1 ⇒n1

N ,IO t1, . . . , gk ⇒nk
N ,IO tk, such that

t = t0 � (t1, . . . , tk) and n =
∑k

i=1 ni.

For a class C of tree languages, let rDEL(C) be defined in the same way
as DEL(C), except that the delegation networks considered are required to be
regular. The operator rDEL will play an important role in the proofs of this
section. Clearly, as illustrated by the three delegation networks of Example 2.6,
REG = rDEL(FIN) = rDEL(REG). The second equality is a well-known result
in disguise: extended regular tree grammars, with regular tree languages as right-
hand sides, generate regular tree languages. (In turn, since trees are strings and
regular tree grammars are a special case of context-free grammars, the latter is
a special case of the fact that cf-extended context-free string grammars generate
context-free languages.) More generally, using similar well-known arguments, we
obtain the following result.

Lemma 8.7 The operator rDEL is idempotent on genuine classes C of tree lan-
guages, i.e., rDEL(rDEL(C)) = rDEL(C).
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Proof Since C ′ ⊆ rDEL(C ′) for every class C ′, one inclusion is obvious. For the
other inclusion the construction is similar to the one of Lemma 7.8. Consider a
regular delegation network N = (G,Π, (γg)g∈G, g0) and, for every g ∈ G, a regular
delegation network Ng = (Gg,ΣN , (γh)h∈Gg , hg,0) such that LT(Ng) = L(γg) and
L(γh) ∈ C for every g ∈ G and h ∈ Gg. Since C is genuine, we may assume that
the signatures Gg, g ∈ G, are pairwise disjoint. Then L(N ) = L(N ′), where N ′ =
(G ′,Π, (γ′g′)g′∈G, g0) is the regular delegation network such that G ′ = G ∪

⋃
g∈G Gg

and for every g ∈ G and h ∈ Gg, L(γ′g) = {hg,0} and L(γ′h) = L(γh).

We now prove a useful decomposition lemma. In the proof, we need the notion
of rightmost derivation of a delegation network N = (G,Π, (γg)g∈G, g0). A deriva-
tion step of N as in Definition 6.3 is rightmost, denoted t0 � g[s1, . . . , sk]⇒N ,IO,rm
t0 �u(s1, . . . , sk), if t0 is rightmost. It is easy to see that g0 ⇒∗N ,IO,rm t for every
t ∈ LT(N ). In fact, if t1 ⇒N ,IO t2 ⇒N ,IO,rm t3 and the first derivation step is
not rightmost, then there exists t′2 such that t1 ⇒N ,IO,rm t′2 ⇒N ,IO t3.30 Thus,
the rightmost derivation steps can be moved to the left until all have become
rightmost (because the last derivation step is necessarily rightmost).

Lemma 8.8 If C is a class of tree languages that is closed under linear nondelet-
ing tree homomorphisms31, then DEL(C) ⊆ YIELD(rDEL(C)).

Proof Consider a delegation network N = (G,Π, (γg)g∈G, g0), where L(γg) ∈ C
for all g ∈ G. The construction of N ′ is similar to the definition of GD in [ES77,
Definition 4.5]. Let N ′ = (G ′,∆(Π,m), (γg′)g′∈G′ , g

′
0), where

• m is the maximum rank of symbols in ΣN ,
• G ′ = G〈 〉, hence ΣN ′ = ∆(ΣN ,m),
• L(γg〈k〉) = combΣN ,m(L(γg)), for all k ∈ [m] and g(k) ∈ G, and

• g′0 = g
〈0〉
0 .

Note that L(γg〈k〉) ∈ C because combΣN ,m is a linear nondeleting tree homomor-
phism. Note also that in the case where Π contains symbols xi, we use a derived
alphabet ∆(Π, Z) with Z = {y1, . . . , ym} disjoint with Π, instead of ∆(Π,m). We
have to show that LT(N ) = Y (LT(N ′)). To prove this, we proceed by induction
on the length of rightmost derivations. We first observe that if g′0 ⇒∗N ′,IO,rm s

then s is G-preserving. In fact, if s0 � g〈k〉 ⇒N ′,IO,rm s0 � comb(u) and s0 � g〈k〉 is
G-preserving, then so is s0 � comb(u), as one easily proves by induction on the
structure of s0 using Lemma 8.4(2).

To show the inclusion LT(N ) ⊆ Y (LT(N ′)), we prove that for every derivation
g0 ⇒n

N ,IO,rm t, there is a derivation g′0 ⇒∗N ′,IO,rm s such that Y (s) = t.32 For n = 0,

30To be precise, t1 must be of the form t0 � (g[s1, . . . , sk], g′[s′1, . . . , s
′
l]) where 21 oc-

curs to the left of 22 in t0 and no symbol of G occurs to the right of 22. Also,
t2 = t0 � (u(s1, . . . , sk), g′[s′1, . . . , s

′
l]) and t3 = t0 � (u(s1, . . . , sk), u′(s′1, . . . , s

′
l)). Then t′2 =

t0 � (g[s1, . . . , sk], u′(s′1, . . . , s
′
l)).

31Such a class C is genuine if and only if FIN ⊆ C.
32Note that this implies the inclusion: if t ∈ TΠ, then s ∈ T∆Π,m

by Lemma 8.3(2).
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this is trivial. Therefore, let

g0 ⇒n
N ,IO,rm t0 � g[t1, . . . , tk]⇒N ,IO,rm t0 �u(t1, . . . , tk),

where g ∈ G, t1, . . . , tk ∈ TΠ, and u ∈ L(γg) ⊆ TΣN ,k. By the induction hy-
pothesis, g′0 ⇒n

N ′,IO,rm s, where Y (s) = t0 � g[t1, . . . , tk]. By Lemma 8.3(3), this

means that s = s0 � g〈k〉, for a tree s0 such that Y (s0) = t0 and s0 is rightmost.
By the definition of N ′, we have s0 � g〈k〉 ⇒N ′,IO,rm s′ with s′ = s0 � comb(u). By
Lemmas 8.3(1) and 8.4(1), Y (s′) = t0 �Y (comb(u))(t1, . . . , tk) = t0 �u(t1, . . . , tk).

The proof of the inclusion Y (LT(N ′)) ⊆ LT(N ) is similar. It only uses Lem-
mas 8.3(1) and 8.4.

Let us have a look at two examples that illustrate the preceding decomposition
lemma.

Example 8.9 The tree language LT(Nbin) of fully balanced binary trees in Ex-
ample 7.2 is in DEL(FIN) and hence in YIELD(rDEL(FIN)). It is equal to
Y (LT(N ′bin)) where L(γ

g
〈0〉
0

) = {subst1[g〈1〉, h〈0〉]} and L(γg〈1〉) consists of the

trees subst1[g〈1〉, subst2[f〈2〉, x
〈0〉
1 , x

〈0〉
1 ]] and subst2[f〈2〉, x

〈0〉
1 , x

〈0〉
1 ].

Example 8.10 The tree language td(L(γ)) from Example 8.5 is also in the class
DEL(FIN), cf. Example 7.2: it is generated by the delegation network with

generator symbols g
(0)
0 and g(1), and with L(γg0) = {subst1[g[f〈1〉], a〈0〉]} and

L(γg) = {g[subst1[x1, x1]], x1}. Thus, by Example 8.5, the tree language Lmonexp

is in YIELD(DEL(FIN)) and hence, trivially, in the class YIELD(rDEL(C))
where C = DEL(FIN). However, as observed in that example, Lmonexp is not
in DEL(C).

The last example shows that the inclusion in Lemma 8.8 is not an equality
for C = DEL(FIN). This is in contrast to the well-known fact that for C = FIN
equality holds: DEL(FIN) = YIELD(REG), see [ES77, Corollary 4.12]. The
latter equality implies that DEL(REG) = DEL(FIN) (cf. the last paragraph of
Example 2.7(a)): by Lemma 8.8, DEL(REG) ⊆ YIELD(rDEL(REG)) which is
equal to YIELD(REG) by Lemma 8.7.

Next, we want to prove a lemma that allows us to reorder the operators rDEL
and YIELD. To be able to do that, we need an elementary property of Y .

Lemma 8.11 For every derived signature ∆(Σ,m) and tree s = s0 � (s1, . . . , sl)
in T∆(Σ,m), if Y (s1), . . . , Y (sl) ∈ TΣ, then Y (s) = Y (s0)[[Y (s1), . . . , Y (sl)]].

33

Proof We prove the statement by structural induction on s0, but for arbitrary
s0 ∈ T∆(Σ,m),{21,...,2l}, i.e., where s = s0[[s1, . . . , sl]]. For i ∈ [l], let ti = Y (si).

33Note that Y (s0) is in TΣ∪Xm∪{21,...,2l} and recall furthermore from Section 2.3 that
Y (s0)[[Y (s1), . . . , Y (sl)]] is obtained from Y (s0) by replacing each occurrence of 2i with Y (si).

64



If s0 = 2i for an i ∈ [l], then Y (s) = ti = Y (s0)[[t1, . . . , tl]]. If s0 = f〈k〉 for a
symbol f(k) ∈ Σ ∪Xm, then s = s0 and, thus, Y (s) = Y (s0) = Y (s0)[[t1, . . . , tl]].

Finally, if s0 = substk[u0, . . . , uk], using first the definition of Y , then the
induction hypothesis, and then the assumption that t1, . . . , tl ∈ TΣ, we get

Y (s) = Y (u0[[s1, . . . , sl]])(Y (u1[[s1, . . . , sl]]), . . . , Y (uk[[s1, . . . , sl]]))

= Y (u0)[[t1, . . . , tl]](Y (u1)[[t1, . . . , tl]], . . . , Y (uk)[[t1, . . . , tl]])

= Y (u0)(Y (u1), . . . , Y (uk))[[t1, . . . , tl]]

= Y (s0)[[t1, . . . , tl]]

as claimed.

We can now prove the mentioned lemma, that makes it possible to reorder
rDEL and YIELD.

Lemma 8.12 For every genuine class C of tree languages,

rDEL(YIELD(C)) ⊆ SET(YIELD(rDEL(C))).

Proof Consider a regular delegation network N = (G,Π, (γg)g∈G, g0), where
L(γg) = Y (Lg) with Lg ∈ C. We first treat the special case where ΣN does
not contain parameters that are used by the YIELD mappings on the tree lan-
guages Lg. In this case there exists a derived signature ∆(ΣN ,m) such that
Lg ⊆ T∆(ΣN ,m) for all g ∈ G. We may assume that m ≥ 2. Note that
∆(ΣN ,m) = ∆(Π,m) ∪ {g〈0〉 | g ∈ G}.

Now, let G ′ = G ∪ {g〈0〉 | g ∈ G} and define N ′ = (G ′,Π′, (γ′h)h∈G′ , g0),
where Π′ = ∆(Π ∪ {+, θ},m) and, for every g ∈ G, L(γ′g) = Lg and L(γ′

g〈0〉
) =

{subst2[+〈2〉, g, g〈0〉], θ〈0〉}.
For g ∈ G and n ∈ N, let Λ(g) =

⋃
n∈N Λ(g, n) and Λ′(g) =

⋃
n∈N Λ′(g, n),

where
Λ(g, n) = {t ∈ TΠ | g⇒m

N ,IO t for some m ≤ n} and

Λ′(g, n) = {s ∈ TΠ′ | g⇒m
N ′,IO s for some m ≤ n},

for all n ∈ N. In particular, Λ(g0) = LT(N ) and Λ′(g0) = LT(N ′). We show,
simultaneously for all g ∈ G, that set(Y (Λ′(g))) = Λ(g).

(‘⊆’) We divide the proof in two steps, in both cases proceeding by induction
on the length of derivations, using Lemma 8.6.

First, consider a tree s ∈ TΠ′ such that g〈0〉 ⇒n
N ′,IO s for some n ∈ N.

By induction on n, we show that set(Y (s)) ⊆ set(Y (Λ′(g, n))). If s = θ〈0〉,
then set(Y (s)) = ∅. Otherwise, s = subst2[+〈2〉, s1, s2], where g ⇒n1

N ′,IO s1 and

g〈0〉 ⇒n2

N ′,IO s2 with n1 + n2 = n− 1. Thus,

set(Y (s)) = set(Y (s1)) ∪ set(Y (s2)) ⊆ set(Y (Λ′(g, n))),

since the inclusion set(Y (s1)) ⊆ set(Y (Λ′(g, n1))) holds by the definition of
Λ′(g, n1) and set(Y (s2)) ⊆ set(Y (Λ′(g, n2))) is obtained from the induction hy-
pothesis.
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Now, to show by induction on n that set(Y (Λ′(g, n))) ⊆ Λ(g), let s ∈ Λ′(g, n).

By Lemma 8.6 and the construction of N ′, there is a tree s0 � (g
〈0〉
1 , . . . , g

〈0〉
l ) ∈

Lg, where s0 ∈ T∆(Π,m),{21,...,2l} for some l ∈ N, such that s = s0 � (s1, . . . , sl)

for trees s1, . . . , sl ∈ TΠ′ with g
〈0〉
i ⇒ni

N ′,IO si and
∑l

i=1 ni = n − 1. By the
previous paragraph and the induction hypothesis, the latter yields set(Y (si)) ⊆
set(Y (Λ′(gi, ni))) ⊆ Λ(gi) for all i ∈ [l]. In particular, set(Y (si)) ⊆ TΠ, i.e.,
Y (si) ∈ TΠ∪{+,θ} for all i ∈ [l]. Consequently Y (s) = Y (s0)[[Y (s1), . . . , Y (sl)]] by
Lemma 8.11 (for Σ = Π ∪ {+, θ}).

Since s0 ∈ T∆(Π,m),{21,...,2l}, the tree Y (s0) can be written in the form Y (s0) =
t0 � (2i1 , . . . ,2ik) with k ∈ N, t0 ∈ TΠ∪Xm∪{21,...,2k} and i1, . . . , ik ∈ [l]. This
means that

Y (s0 � (g
〈0〉
1 , . . . , g

〈0〉
l )) = Y (s0)[[g1, . . . , gl]] (by Lemma 8.11)

= ((t0 � (2i1 , . . . ,2ik))[[g1, . . . , gl]]

= t0 � (gi1 , . . . , gik).

Since Y (s0 � (g
〈0〉
1 , . . . , g

〈0〉
l )) ∈ Y (Lg) = L(γg), we obtain t0 � (gi1 , . . . , gik) ∈ L(γg)

and t0 ∈ TΠ,{21,...,2k}.
Thus, we get

set(Y (s)) = set(Y (s0)[[Y (s1), . . . , Y (sl)]])

= set(t0 � (Y (si1), . . . , Y (sik)))

= {t0 � (t1, . . . , tk) | tj ∈ set(Y (sij)) for j ∈ [k]}
⊆ Λ(g)

where the last inclusion holds by Lemma 8.6 because t0 � (gi1 , . . . , gik) ∈ L(γg)
and set(Y (sij)) ⊆ Λ(gij).

(‘⊇’) Note first that, for all trees s1, . . . , sn ∈ Λ′(g), the tree

s = subst2[+〈2〉, s1, subst2[+〈2〉, s2, . . . subst2[+〈2〉, sn, θ
〈0〉] . . . ]]

satisfies g〈0〉 ⇒∗N ′,IO s and set(Y (s)) =
⋃
i∈[n] set(Y (si)). In particular, t = θ〈0〉 if

n = 0.
We show that, for all trees t ∈ Λ(g), there is a tree s ∈ Λ′(g) such that

Y (s) ∈ TΠ∪{+,θ} and t ∈ set(Y (s)). Again, we proceed by induction on the
length of derivations. Thus, suppose there is a derivation g ⇒N ,IO t′ ⇒n

N ,IO t,

and let t′ = Y (s0 � (g
〈0〉
1 , . . . , g

〈0〉
l )) with s0 ∈ T∆(Π,m),{21,...,2l}. As in the previous

step of the proof, Y (s0) can be written as Y (s0) = t0 � (2i1 , . . . ,2ik) with t0 ∈
TΠ,{21,...,2k} and i1, . . . , ik ∈ [l], such that t′ = t0 � (gi1 , . . . , gik). It follows that
t = t0 � (t1, . . . , tk) for trees t1, . . . , tk ∈ TΠ with gij ⇒

nj

N ,IO tj and
∑

j∈[k] nj = n.

Thus, the induction hypothesis yields derivations gij ⇒∗N ′,IO sj such that Y (sj) ∈
TΠ∪{+,θ} and tj ∈ set(Y (sj)) for all j ∈ [k].

By the observation above, the latter gives rise to derivations g
〈0〉
i ⇒∗N ′,IO ŝi

such that Y (ŝi) ∈ TΠ∪{+,θ} for all i ∈ [l] and tj ∈ set(Y (ŝij)) for all j ∈ [k]. Using
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this and the construction of N ′, we get

g⇒N ′,IO s0 � (g
〈0〉
1 , . . . , g

〈0〉
l )⇒∗N ′,IO s0 � (ŝ1, . . . , ŝl)

and

t = t0 � (t1, . . . , tk)

∈ {t0 � (t′1, . . . , t′k) | t′j ∈ set(Y (ŝij)) for j ∈ [k]}
= set(t0 � (Y (ŝi1), . . . , Y (ŝik)))

= set(Y (s0)[[Y (ŝ1), . . . , Y (ŝl)]])

= set(Y (s0 � (ŝ1, . . . , ŝl))) (by Lemma 8.11)

as required. Moreover, Y (s0 � (ŝ1, . . . , ŝl)) = t0 � (Y (ŝi1), . . . , Y (ŝik)) is in TΠ∪{+,θ},
because t0 ∈ TΠ∪{21,...,2k}.

Finally, we consider the case where ΣN does contain parameters that are used
by the YIELD mappings on the tree languages Lg. Suppose they use parameters
y1, . . . , ym (some of which are in ΣN ) and that the parameters x1, . . . , xm are
not in ΣN . For every g ∈ G, let L′g be the tree language obtained from Lg

by changing every y
〈0〉
i into x

〈0〉
i . Since C is genuine, L′g is in C. Now define

L′′g = {substm[t, y
〈0〉
1 , . . . , y

〈0〉
m ] | t ∈ L′g}. It should be clear that Y (L′′g) = Y (Lg) =

L(γg) and that ΣN does not contain parameters that are used by the YIELD
mappings on the tree languages L′′g. Hence we are in the previous case and we can
define N ′ = (G ′,Π′, (γ′h)h∈G′ , g0) as above, with L′′g instead of Lg. Note, however,
that L′′g need not be in C. This can be corrected by defining the equivalent regular
delegation network N ′′ = (G ′′,Π′, (γ′′h )h∈G′′ , g0) with G ′′ = G ′ ∪ {g | g ∈ G} and

for every g ∈ G, L(γ′′g ) = {substm[g, y
〈0〉
1 , . . . , y

〈0〉
m ]}, L(γ′′g ) = L′g and L(γ′′

g〈0〉
) =

L(γ′
g〈0〉

) = {subst2[+〈2〉, g, g〈0〉], θ〈0〉}.

Let us have a look at an example that illustrates the construction in the
preceding proof.

Example 8.13 The language Lexpseq of Example 7.2 is in rDEL(DEL(FIN)) and
hence in rDEL(YIELD(C)) with C = rDEL(FIN), cf. Example 8.9. Hence, by
Lemma 8.12, it is in SET(YIELD(rDEL(C))) = SET(YIELD(REG)). Using the
construction in the proof of Lemma 8.12, with some obvious simplifications, we
obtain that Lexpseq = set(Y (L(γ))) for the regular tree grammar γ with nonter-
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minals h0, g
〈0〉
0 , g〈1〉, h〈0〉, h, initial nonterminal h0, and the following rules:

h0 → g
〈0〉
0

g
〈0〉
0 → subst1[g〈1〉, h〈0〉]

g〈1〉 → subst1[g〈1〉, subst2[f〈2〉, x
〈0〉
1 , x

〈0〉
1 ]]

g〈1〉 → subst2[f〈2〉, x
〈0〉
1 , x

〈0〉
1 ]

h〈0〉 → subst2[+〈2〉, h, h〈0〉]

h〈0〉 → θ〈0〉

h → subst2[k〈2〉, h, h]

h → a〈0〉

Note that if the rules for h〈0〉 are replaced by the one rule h〈0〉 → h, then
set(Y (L(γ))) = Y (L(γ)) consists of all trees of the form s � (t1, . . . , t2n) (as in
Example 7.2) such that t1 = · · · = t2n .

We can soon prove the main theorem of this section, which shows how the
classes DEL∗(FIN) and TBY∗(REG) are related. To be able to apply Lemma 8.8
in the proof of this result, we must convince ourselves that the operator DEL
preserves closedness under linear nondeleting tree homomorphisms, i.e., we need
the following small result.

Lemma 8.14 For every class C of tree languages, if C is closed under linear
nondeleting tree homomorphisms, then so is DEL(C).34

Proof Let N = (G,Π, (γg)g∈G, g0) be a delegation network, and let td : TΠ →
TΠ′ be a linear nondeleting tree homomorphism. Let q be the unique state of
the td transducer td. For m ∈ N, we extend td to a linear nondeleting tree
homomorphism from TG∪Π,m to TG∪Π′,m by adding the rules q[g[x1, . . . , xk]] →
g[q[x1], . . . , q[xk]] and q[xi]→ xi for every g(k) ∈ G and i ∈ [m]. Note that in the
last rule, xi is an input symbol. Now define N ′ = (G,Π′, (γ′g)g∈G, g0) such that
L(γ′(g)) = td(L(γ(g)) for g ∈ G. It is straightforward to prove, by induction on
the length of the derivations, that g0 ⇒∗N ′,IO t′ if and only if there exists t such that
g0 ⇒∗N ,IO t and td(t) = t′. The proof uses that td(s � s′) = td(s) � td(s′) (with the
additional rule q[2] → 2) and that td(u(t1, . . . , tn)) = td(u)(td(t1), . . . , td(tn)),
which can be shown by induction on the structure of s and u. Hence td(LT(N )) =
LT(N ′).

As mentioned, we now have all ingredients needed for the proof of the main
theorem of this section.

Theorem 8.15 The class DEL∗(FIN) is a proper subset of TBY∗(REG).

34We note here, without proof, that a much stronger result holds: DEL(C) is closed under
arbitrary tree homomorphisms, for every genuine class C.
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Proof To show that DEL∗(FIN) is a subset of TBY∗(REG), we prove that, in
fact, DELn+1(FIN) ⊆ (YIELD ◦SET)n(YIELD(REG)) for all n ∈ N. Notice first
that, for every genuine class C of tree languages closed under linear nondeleting
tree homomorphisms, we have

rDEL(DEL(C)) ⊆ rDEL(YIELD(rDEL(C))) (by Lemma 8.8)

⊆ SET(YIELD(rDEL2(C))) (by Lemma 8.12)

= SET(YIELD(rDEL(C))) (by Lemma 8.7).

For n ∈ N, DELn(FIN) is closed under linear nondeleting tree homomorphisms
by Lemma 8.14. Hence, n-fold application of the inclusion above shows that

rDEL(DELn(FIN)) ⊆ (SET ◦ YIELD)n(rDEL(FIN))

= (SET ◦ YIELD)n(REG),

and, therefore,

DELn+1(FIN) ⊆ YIELD(rDEL(DELn(FIN))) (by Lemma 8.8)

⊆ YIELD((SET ◦ YIELD)n(REG))

= (YIELD ◦ SET)n(YIELD(REG)).

The properness of the inclusion DEL∗(FIN) ⊆ TBY∗(REG) is immediate from
Example 8.5.

Since the tree languages in the class TBY∗(REG) are decidable, so are those
in DEL∗(FIN). In fact, the proof of Theorem 8.15 is effective, in the sense that
for every hierarchical delegation network N one can construct a regular tree
grammar γ and a finite sequence T1, T2, . . . , Tn where each Ti is either a top-
down tree transducer td or a derived signature ∆(Σ,m), such that LT(N ) =
Tn(· · ·T2(T1(L(γ))) · · · ) where we also use Ti to denote either the top-down tree
transduction td or the YIELD mapping YΣ,m. From this we obtain that the
uniform membership problem is decidable for hierarchical delegation networks
(see [EV85, Theorem 7.5]). We also obtain from [EV85, Theorem 7.4] and [DE98,
Theorem 4.5] the following decidability result, where it should be noted (again)
that we do not know whether DEL∗(FIN) is (effectively) closed under intersection
with regular tree languages, whereas TBY∗(REG) is.

Corollary 8.16 It is decidable, for L ∈ DEL∗(FIN) and R ∈ REG, whether
L ∩ R = ∅. It is also decidable whether L ∩ R is finite, and if the answer is yes,
the elements of L ∩R can be computed.35

In fact, the much stronger corollary with τ(L) instead of L ∩ R holds as
well, where τ is a composition of macro tree transductions (i.e., a composition of
top-down tree transductions and YIELD mappings).

35Here, L is given by a hierarchical delegation network and R by a regular tree grammar.
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One consequence of Corollary 8.16 is that it is decidable whether a delegation
network N = (G,Π,Γ, g0) is proper (see Proposition 7.3), if γg is a hierarchical
delegation network for every g ∈ G (and hence so is N ). We have to check that
all generator symbols of N are useful, i.e., that use(N ) = G. Clearly, use(N ) can
be computed (as for context-free grammars), because, for g(k) ∈ G and U ⊆ G, it
is decidable whether L(γg)∩TU∪Π,k 6= ∅. Note also that every delegation network
N such that L(γg) ∈ TBY∗(REG) for every g ∈ G, can effectively be transformed
into an equivalent proper delegation network N ′ with the same property, where
‘equivalent’ means that LT(N ) = LT(N ′).

Let dTD denote the class of td transductions computed by deterministic td
transducers. The class (dTD ∪ YIELD)∗(REG) equals the class dMTT∗(REG),
the closure of REG under deterministic macro tree transductions. Recall that
TBY∗(REG) = (TD∪YIELD)∗(REG) = MTT∗(REG). The class YIELD∗(REG)
is the so-called IO-hierarchy, see [Mai74] and [ES78, Section 7].

The next theorem strengthens the properness of the inclusion of DEL∗(FIN)
in TBY∗(REG).

Theorem 8.17 The class DEL∗(FIN) is incomparable with YIELD∗(REG) and
with (dTD ∪ YIELD)∗(REG).

Proof By Example 8.10, the tree language Lmonexp of Example 8.5 is in the class
YIELD(DEL(FIN)). Thus, by Lemma 8.8, it is in YIELD(YIELD(REG)), as is
well known. Consequently, Lmonexp is in YIELD∗(REG), but not in DEL∗(FIN).

It remains to present a tree language in DEL∗(FIN) that is not in (dTD ∪
YIELD)∗(REG). For a tree t, let yield(t) denote the string of constant symbols
in t, read from left to right. Now, let L′expseq ∈ DEL2(FIN) be defined in the
same way as Lexpseq in Example 7.2, except that L(γh) is the regular tree lan-
guage consisting of all trees t over the signature {f(2), a(0), b(0), 0(0), 1(0)} such that
yield(t) = wbw′ for some w,w′ ∈ {a, 0, 1}∗. Using arguments from [EM02], we
shall show that L′expseq is not an element of (dTD ∪ YIELD)∗(REG). The proof
of this fact is similar to (the second half of) the proof of [EM02, Theorem 25]. It
reads as follows.

For a set A of symbols and a string language L, let rubA(L) denote the set of
all strings of the form w0a1w1 · · · anwn with w0, . . . , wn ∈ A∗ and a1 · · · an ∈ L.
Intuitively, rubA inserts “rubbish”, arbitrary strings in A∗, between the symbols
of strings in L. Clearly, yield(L′expseq) = rub{0,1,a}(L2n) = rub{0,1}(rub{a}(L2n)),
where L2n = {b2n | n ∈ N}. Now, the “bridge theorem” [EM02, Theorem 20] tells
us that yield(L′expseq) ∈ yield((dTD∪YIELD)∗(REG)) implies that rub{a}(L2n) ∈
yield(dTD(REG)). Furthermore, by [ERS80, Theorem 3.2.14], the latter implies
L2n ∈ yield(TDfc(REG)), where TDfc denotes the set of all finite-copying top-
down tree transductions. However, by [ERS80, Corollary 3.2.7], this could only
be the case if the Parikh image of L2n was semilinear, which it is not. Hence,
yield(L′expseq) /∈ yield((dTD ∪ YIELD)∗(REG)) and thus, as claimed, L′expseq /∈
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(dTD ∪ YIELD)∗(REG).

In the proof above we have defined a language L′expseq that is in DEL2(FIN),
but not in YIELD(REG) and hence not in DEL(FIN) (see the paragraph af-
ter Example 8.10). It is an open problem whether the delegation hierarchy
(DELn(FIN))n∈N is proper at each level, i.e., whether DELn(FIN) is properly
included in DELn+1(FIN) for every n ∈ N. Properness of the IO-hierarchy of
(classes of) tree languages was shown in [Dam82]. The properness of the cor-
responding string IO-hierarchy (obtained by taking yields) was established in
[EM02, Section 7] by means of a so-called bridge theorem.

As a last result, we will prove that the class TBY∗(REG) is closed under DEL.
For that we need, in addition to Lemmas 8.8 and 8.12, a lemma that allows us
to reorder the operators rDEL and TD.

Lemma 8.18 For all genuine classes C of tree languages, rDEL(TD(C)) ⊆
TD(rDEL(C)).

Proof Consider a regular delegation network N = (G,Π, (γg)g∈G, g0) such that
L(γg) = tdg(Lg) for all g ∈ G, where tdg is a td transducer and Lg ∈ C. Since C is
genuine, we may assume that Lg ⊆ TΣg

for pairwise disjoint signatures Σg. Con-
sequently, we may also assume that there is a single td transducer td ⊆ TΣ×TΣN ,
where Σ =

⋃
g∈G Σg, such that L(γg) = td(Lg) for all g ∈ G. Finally, it is easy

to modify td in such a way that the right-hand sides of rules q[f[x1, . . . , xk]]→ t
with k ≥ 1 do not contain generator symbols (i.e., symbols in G). In other words,
td outputs generator symbols only when it reaches a leaf of its input tree.

We have to construct a regular delegation network N ′ = (G ′,Π′, (γ′g)g∈G′ , g′0)
and a td transducer td ′, such that td ′(LT(N ′)) = LT(N ) and L(γ′g) ∈ C for
all g ∈ G ′. To see how td ′ and N ′ can be obtained, consider a derivation
g0 ⇒N ,IO t0 � (g1, . . . , gl) ⇒∗N ,IO t0 � (t1, . . . , tl), where t0 � (g1, . . . , gl) ∈ td(s) for
a tree s ∈ Lg0 . The td transducer td ′ will, intuitively, start by working in the
same manner as td , on an input tree (generated by N ′) whose topmost part looks
like s. However, when td would generate one of the generator symbols gi from a
leaf a of s, td ′ must be able to continue the computation on a subtree of which
(recursively) the topmost part looks like a tree from Lgi . Clearly, when N ′ gen-
erates this input to td ′, it “knows” only a, but not gi. Therefore, we simply let
N ′ generate one subtree for each generator symbol in G, i.e., a is turned into a
symbol #a of rank |G|, and we let td ′ select the subtree at the position corre-
sponding to gi when it processes #a. Another detail to be taken into account
is that td may be nonlinear, which means that a single occurrence of a in the
input tree s may give rise to any number of generator symbols gi1 , . . . , gim in
the output tree td(s), with ij = i for all j ∈ [m]. To achieve the right effect
in td ′, we have to make sure that it may work on different input trees from Lgi

in different places, even though the input subtrees it works on are necessarily
copies of each other. We solve this problem by generating not only one tree from
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Lgi (modified as described above), but an arbitrary sequence of such trees, from
which td ′ nondeterministically chooses one. This is similar to the implementation
of nondeterminism in the proof of Lemma 8.12.

To give the formal construction, let G = {h1, . . . , hp}. We define the relevant
components of N ′ as follows.
• G ′ contains all symbols a(0) ∈ Σ and all hi, h

∗
i for i ∈ [p] (which are assumed

to be pairwise distinct).
• Π′ consists of the symbols f(k) ∈ Σ with k ≥ 1, the symbols +(2) and θ(0),

and all symbols #
(p)
a such that a(0) ∈ Σ. Of course, even these symbols are

assumed to be pairwise distinct.
• For every g ∈ G, L(γ′g) = Lg and L(γ′g∗) = {+[g, g∗], θ}, and for every

a(0) ∈ Σ, L(γ′a) = {#a[h
∗
1, . . . , h

∗
p]}.

• Finally, g′0 = g0.
Next, let us construct td ′, assuming that td = (Σ,ΣN , Q,R, q0). Clearly, the

input and output signatures of td ′ are Π′ and Π, respectively. Its set of states is
Q′ = Q ∪ {qsel}, where qsel /∈ Q, and q0 is the initial state also in td ′. The set R′

contains all rules q[f[x1, . . . , xk]]→ t in R such that k ≥ 1. For every rule q[a]→
t0 � (hi1 , . . . , hil) in R (where t0 does not contain symbols belonging to G), R′

contains the rule q[#a[x1, . . . , xp]] → t0 � (qsel[xi1 ], . . . , qsel[xil ]). Thus, these rules
account for the choice of the “right” input subtrees to continue the computation
with, i.e., using Lhij

for hij . Finally, R′ also contains the rules qsel[+[x1, x2]] →
q0[x1] and qsel[+[x1, x2]]→ qsel[x2]. These account for the nondeterministic choice
of a tree in Lhij

.
For the correctness of the construction, we prove that for all g ∈ G and t ∈ TΠ,

g⇒∗N ,IO t if and only if there exists s ∈ TΠ′ such that g⇒∗N ′,IO s and t ∈ td ′(s).
As in the proof of Lemma 8.12, we proceed by induction on the length of the
derivations, using Lemma 8.6.

(‘⇐’) Consider a derivation g ⇒n+1
N ′,IO s. Then s = s0 � (s1, . . . , sk) for some

s0 � (a1, . . . , ak) ∈ Lg where a
(0)
1 , . . . , a

(0)
k ∈ Σ and s0 does not contain any sym-

bol a(0) ∈ Σ, and ai ⇒ni

N ′,IO si with ni ≤ n for all i ∈ [k]. Moreover, si =

#ai [si,1, . . . , si,p] with h∗j ⇒
mi,j

N ′,IO si,j and mi,j ≤ ni for all j ∈ [p]. Now consider

t ∈ td ′(s). It follows from the construction of td ′ that there is a tree of the form
t0 � (hj1 , . . . , hjl) in td(s0 � (a1, . . . , ak)) such that t0 does not contain symbols from
G and t = t0 � (t1, . . . , tl) for some t1, . . . , tl; moreover, there exist i1, . . . , il ∈ [k]
such that q0[s] ⇒∗td ′ t0 � (qsel[si1,j1 ], . . . , qsel[sil,jl ]) and qsel[sir,jr ] ⇒∗td ′ tr for all
r ∈ [l]. Hence, by the rules for qsel and the definition of L(γ′h∗jr

), there exists sr

such that tr ∈ td ′(sr) and hjr ⇒mr

N ′,IO sr with mr ≤ mir,jr . Thus, by induction,
hjr ⇒∗N ,IO tr, and so g⇒∗N ,IO t because t0 � (hj1 , . . . , hjl) is in td(Lg) = L(γg).

(‘⇒’) Now consider a derivation g ⇒n+1
N ,IO t. Then t = t0 � (t1, . . . , tl) for

some t0 � (hj1 , . . . , hjl) ∈ td(Lg) where t0 does not contain symbols from G and
hjr ⇒nr

N ,IO tr with nr ≤ n, for all r ∈ [l]. By induction, there exist s1, . . . , sl
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such that hjr ⇒∗N ′,IO sr and tr ∈ td ′(sr). This gives derivations h∗j ⇒∗N ′,IO ŝj
for j ∈ [p] such that qsel[ŝjr ] ⇒∗td ′ tr for every r ∈ [l]. Now let s0 � (a1, . . . , ak) ∈
Lg be as above such that t0 � (hj1 , . . . , hjl) ∈ td(s0 � (a1, . . . , ak)), and let s =
s0 � (#a1 [ŝ1, . . . , ŝp], . . . ,#ak [ŝ1, . . . , ŝp]). Then g ⇒N ′,IO s0 � (a1, . . . , ak) ⇒∗N ′,IO
s0 � (#a1 [h∗1, . . . , h

∗
p], . . . ,#ak [h∗1, . . . , h

∗
p]) ⇒∗N ′,IO s and so g ⇒∗N ′,IO s. Moreover,

q0[s]⇒∗td ′ t0 � (qsel[ŝj1 ], . . . , qsel[ŝjl ])⇒∗td ′ t0 � (t1, . . . , tl) = t and so t ∈ td ′(s).

This proves that LT(N ) = td ′(LT(N ′)).

Theorem 8.19 The class TBY∗(REG) is closed under DEL.

Proof By Lemma 8.8 and the fact that TBY∗(REG) is, by definition, closed
under tree homomorphisms and YIELD, it suffices to show that it is closed under
rDEL. We do this by proving that, in fact, even TBYn(REG) is closed under
rDEL, for n ∈ N. For n = 0, this is just the fact that REG is closed under rDEL
by Lemma 8.7 (for C = FIN). It implies, by Lemma 8.18, that TD∗(REG) is
closed under rDEL. For the inductive step, let C = TD∗(TBYn(REG)) (which
equals TBYn(REG) for n > 0) be closed under rDEL. Then we get

rDEL(TBYn+1(REG))

= rDEL(TD∗(YIELD(C)))

⊆ TD∗(rDEL(YIELD(C))) (by Lemma 8.18)

⊆ TD∗(SET(YIELD(rDEL(C)))) (by Lemma 8.12)

⊆ TD∗(YIELD(C))

= TBYn+1(REG),

as claimed.

By the above proof, TBYn(REG) is closed under rDEL, for every n ∈ N.
Also, TBYn(REG) is closed under linear tree homomorphisms – by definition for
n > 0, and by [Tha73, Theorem 10] for n = 0. Hence Lemma 8.8 implies the
following more precise result: DEL(TBYn(REG)) ⊆ TBYn+1(REG) for every
n ∈ N.

9 Conclusion

Several directions of research remain.
In view of the MW-like result of Theorem 5.6 it would be natural to generalize

delegation networks in such a way that the tree generators γg are turned into
jungle generators, i.e., L(γg) ⊆ JΣN ,k if g has rank k. In Definition 2.4, the
first case of the definition of iterateN (σ)(f) would thus evaluate jungles rather
than trees. By Lemma 5.3 this does indeed yield a generalization of delegation
networks. We guess that, with the definition of LJ(N ) adapted in the obvious
way, Theorem 5.6 still holds. We also guess that this generalization does not
really extend the generating power of delegation networks. In particular, we
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think that for every CFJG G of which the initial nonterminal has rank 0, and
for every Π-interpretation (A, π), there exists a finitary delegation network N =
(G,Π,Γ, g0,A, π) such that L(N ) = π(L(G)).

A question left open by Theorem 5.6 is whether LJ(N ) = L(N ′) for a delega-
tion network N ′ obtained from N by changing its interpretation (A, π) into some
(A′, π′), similar to the fact that LT(N ) = L(Nfree) (see Section 6) and similar
to the result of [MW67]. We guess that such an interpretation (A′, π′) does not
exist. Maybe a more general notion of interpretation can be used to obtain a
similar result.

Let us repeat some open questions mentioned before. Is DELn(FIN) a proper
subset of DELn+1(FIN) for every n ∈ N? Are DELn(FIN) and DEL∗(FIN) closed
under intersection with regular tree languages? More generally, what are the
closure properties of DEL∗(FIN)?

In addition to studying these open theoretical questions, an implementation of
(many-sorted) delegation networks should be made. Such an implementation may
combine the ideas of the system Treebag [DK00, DK01] (see also http://www.

cs.umu.se/~drewes/treebag), which implements tree-based generation, with
the evaluation strategy sketched in the Introduction and after Theorem 3.5. In
this way, a very general core system would be obtained, to which implementations
of any desired classes of tree generators and interpretations may be added. To
increase efficiency, such a system should be able to work in a parallel and perhaps
distributed manner. While the implementation of the theoretical concept as such
is rather straightforward, there are two major practical challenges. The first
is to handle nondeterminism in an appropriate way, including cyclic delegation
which may easily lead to infinite recursion. The second challenge is to design
and implement a suitable user interface that makes it possible to interact with
the delegation network and its individual generators in a convenient way. Such
an interface should be based on an abstract interaction model which can easily
be instantiated for various combinations of tree generators and interpretations.
Again, the ideas realized in Treebag can be used as a starting point, but a
much more flexible model must be developed.
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