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Abstract

With the emergence of cloud computing, computing resources (i.e., networks, servers,
storage, applications, and services) are provisioned as metered on-demand services
over networks, and can be rapidly allocated and released with minimal management
effort. In the cloud computing paradigm, the virtual machine is one of the most com-
monly used resource carriers in which business services are encapsulated. Virtual
machine placement optimization, i.e., finding optimal placement schemes for virtual
machines, and reconfigurations according to the changes of environments, become
challenging issues.

The primary contribution of this licentiate thesis is the development and evaluation
of our combinatorial optimization approaches to virtual machine placement in cloud
environments. We present modeling for dynamic cloud scheduling via migration of
virtual machines in multi-cloud environments, and virtual machine placement for pre-
dictable and time-constrained peak loads in single-cloud environments. The studied
problems are encoded in a mathematical modeling language and solved using a linear
programming solver. In addition to scientific publications, this work also contributes
in the form of software tools (in EU-funded project OPTIMIS) that demonstrate the
feasibility and characteristics of the approaches presented.
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Introduction

By provisioning of shared resources as a metered on-demand service over net-
works, Cloud Computing is emerging as a promising paradigm for providing
configurable computing resources (i.e., networks, servers, storage, applications,
and services) that can be rapidly allocated and released with minimal man-
agement effort. Cloud end-users (e.g., service consumers and developers of
cloud services) can access various services from cloud providers such as Amazon,
Google and SalesForce. They are relieved from the burden of IT maintenance
and administration and it is expected that their total IT costs will decrease.
From a cloud provider’s or an agent’s perspective, however, due to the scale
of resources to manage, and the dynamic nature of service behaviours (with
rapid demands for capacity variations and resource mobility), as well as the
heterogeneity of cloud systems, resource allocation and scheduling are becoming
challenging issues, e.g., to find optimal placement schemes for resources, and
resource reconfigurations in response to the changes of the environment [11].

There is a multitude of parameters and considerations (e.g., performance,
cost, locality, reliability and availability, etc.) involved in the decision of where
and when to place and reallocate data objects and computation resources in
cloud environments. Some of the considerations are consistent with one another
while others may be contradicting. This work investigates challenges involved in
the problem of resource placement and scheduling in cloud environments, tackles
the problem using combinatorial optimization techniques and mathematical
modeling. Thesis contributions include scientific publications addressing, e.g.,
modeling for dynamic cloud scheduling via migration of Virtual Machines (VMs)
in multi-cloud environments, as well as to optimal virtual machine placement
within datacenters for predicable and time-constrained load peaks. In addition,
this work also contributes in the form of software tools (in the EU-funded
project Optimis [13]) that demonstrate the feasibility and characteristics of the
proposed solutions.






Chapter 1

Cloud Computing

Cloud Computing provides a paradigm shift following the shift from mainframe
to client-server architecture in the early 1980s [14] [32] and it is a new paradigm
in which computing is delivered as a service rather than a product, whereby
shared resources, software, and information are provided to consumers as a
utility over networks.

1.1 Hardware Virtualization

Virtualization is a technology that separates computing functions and imple-
mentations from physical hardware. It is the foundation of cloud computing,
since it enables isolations between hardware and software, between users, and
between process and resources. These isolation problems are not well solved
by traditional operating systems. Hardware virtualization approaches include
Full Virtualization, Partial virtualization and Paravirtualization [31]. With
virtualization, software capable of execution on the raw hardware can be run in
a virtual machine. Cloud systems deployable services can be encapsulated in
virtual appliances (VAs) [18], and deployed by instantiating virtual machines
with their virtual appliances [17]. This new type of service deployment provides
a direct route for traditional on-premises applications to be rapidly redeployed
in a Software as a Service (SaaS) mode. By decoupling the hardware and
operating system infrastructure provider from the application stack provider,
virtual appliances allow economies of scale on the one side to be leveraged by
the economy of simplicity on the other.

1.2 The XaaS Service Models

Commonly associated with cloud computing are the following service models:

e Software as a Service (SaaS)



In the SaaS model, software applications are delivered as services that
execute on infrastructure managed by the SaaS vendor. Consumers are
enabled to access services over various clients such as web browsers and
programming interfaces, and are typically charged on a subscription
basis [6]. The implementation and the underlying cloud infrastructure
where it is hosted is transparent to consumers.

e Platform as a Service (PaaS)

In the PaaS model, cloud providers deliver a computing platform and/or
solution stack typically including operating system, programming lan-
guage execution environment, database, and web server [5]. Application
developers can develop and run their software on a cloud platform without
having to manage or control the underlying hardware and software layers,
including network, servers, operating systems, or storage, but maintains
the control over the deployed applications and possibly configuration
settings for the application-hosting environment [24].

e Infrastructure as a Service (IaaS)
In TaaS model, computing resources such as storage, network, and com-
putation resources are provisioned as services. Consumers are able to
deploy and run arbitrary software, which can include operating systems
and applications. Consumers do not manage or control the underlying
cloud infrastructure but have to control its own virtual infrastructure
typically constructed by virtual machines hosted by the TaaS vendor. This
thesis work mainly focus on this model, although it may be generalized
to also apply to the other models.

1.3 Cloud Computing Scenarios

Based on the classification of cloud services into SaaS, PaaS, and IaaS, two
main stakeholders in a cloud provisioning scenario can be identified, i.e., the
Infrastructure Provider (IP) who offers infrastructure resources such as Virtual
Machines, networks, storage, etc. which can be used by Service Providers (SPs)
to deliver end-user services such as SaaS to their consumers, these services
potentially being developed using Paa$S tools. As identified in [7], four main
types of cloud scenarios can be listed as follows.

e Private Cloud
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Figure 1: Private cloud scenario.



An organization provisions services using internal infrastructure, and thus
plays the roles of both and SP and an IP. Private clouds can circumvent
many of the security and privacy concerns related to hosted sensitive
information in public clouds, the latter a case where the SP leases IaaS
resources publicly available IPs. Private clouds may also offer stronger
guarantees on control and performance as the whole infrastructure can be
administered within the same domain.

Cloud Bursting

Figure 2: Cloud bursting scenario.

Private clouds may offload capacity to other IPs under periods of high
workload, or for other reasons, e.g., planned maintenance of the inter-
nal servers. In this scenario, the providers form a hybrid architecture
commonly referred to as a cloud bursting as seen in Figure 2. Typi-
cally, less sensitive tasks are executed in the public cloud instead while
tasks that requiring higher levels of security are provisioned the private
infrastructure.

Federated Cloud

Figure 3: Cloud federation scenario.

Federated clouds are IPs collaborating on a basis of joint load-sharing
agreements enabling them to offload capacity to each others [28] in a man-
ner similar to how electricity providers exchange capacity. The federation
takes place at the IP level in a transparent manner. In other words, an
SP that deploys services to one of the IPs in a federation is not notified if
its service is off-loaded to another IP within the federation. However, the
SP is able to steer in which IPs the service may be provisioned, e.g., by



specifying location constraints in the service manifest, Figure 3 illustrates
a federation between three IPs.

o Multi-Cloud

Figure 4: Multi-cloud scenario.

In multi-cloud scenarios, the SP is responsible for handling the additional
complexity of coordinating the service across multiple external IPs, i.e.,
planning, initiating and monitoring the execution of services.

It should be remarked that the multi-cloud and federated cloud scenarios
are commonly considered only for the special case where organization 1
does not possess an internal IP, corresponding to removing IP1 from
figures 3 and 4.



Chapter 2

Virtual Machine Placement

Given a set of admitted services and the availability of local and possibly remote
resources, there are a number of placement problems to be solved to determine
where to store data and where to execute VMs. The following sections describe
the challenges and state of the art of VM placement and scheduling in cloud
environments.

2.1 Parameters and Considerations

There are a multitude of parameters and considerations involved in the decision
of where and when to place/reallocate data objects and computations in cloud
environments. An automated placement and scheduling mechanism should
take into account the considerations and tradeoffs, and allocate resources in a
manner that benefits the stakeholder for which it operates (SP or IP). For both
of these, this often leads to the problem of optimizing price or performance
given a set of constraints, often including the one of price and performance that
is subject to optimization. Among the main considerations are:

e Performance: In order to improve the utilization of physical resources,
data centers are increasingly employing virtualization and consolidation
as a means to support a large number of disparate applications running
simultaneously on server platforms. With different placement schemes of
virtual machines, the performance achieved may differ a lot [29].

e Cost: The price model was dominated by fixed prices in the early phase of
cloud adoption. However, cloud market trend shows that dynamic pricing
schemes utilization is being increased [23]. Investment decreases by dy-
namically placing services among clouds or by dynamically reconfiguring
services (e.g., resizing VM sizes without harming service performance)
become possible. In addition, internal cost for VM placement, e.g., inter-
ference and overhead that one VM causes on other concurrently running
VMs on the same physical host, should also be taken in to account.



e Locality: In general, for considerations of usability and accessibility,
VMs should be located close to users (which could be other services/VMs).
However, due to e.g., legal issues and security reasons, locality may become
a constraints for optimal placement.

e Reliability and continuous availability: Part of the central goals
for VM placement is service reliability and availability. To achieve this,
VMs may be placed/replicated /migrated across multiple (at least two)
geographical zones. During this procedure, factors such as the importance
of the data/service encapsulated in VMs, its expected usage frequency, and
the reliability of the different data centers, must be taken in to account.

2.2 Challenges

Given the variety of deployment scenarios, the range of relevant parameters,
and the set of constraints and objective functions of potential interest, there
are a number of challenges to the development of broadly applicable placement
methods, some of which are presented below.

e Firstly, there exists no generic model to represent various scenarios of
resource scheduling, especially when users’ requirements are vague and
hard to encode through modeling languages.

e Secondly, model parameterization, i.e., finding suitable values for parame-
ters in a proposed model is a tedious task when the problem size is large.
For example, in for a multi-cloud scenario that includes n cloud providers
and m VMs, m * n? assignments are needed to express the VM migration
overheads ignoring possible changes of VM sizes. Therefore, mechanisms
that can help to automatically capture those values are required.

e Thirdly, the VM placement problem is typically formulated as a variant
of the class constrained multiple-knapsack problem that is known to be
NP hard [9]. Thus, tradeoffs between quality of solution and execution
time must be taken into account. This is a very important issue given
the size of real life data centers, e.g., Amazon EC2 [4], the leading cloud
provider, has approximately 40,000 servers and schedules 80,000 VMs
every day [12].

2.3 State of the art

Virtual machine placement in distributed environments has been extensively
tudied in the context of cloud computing. Such approaches address distinct
problems, such as initial placement, consolidation, or tradeoffs between honoring
service level agreements and constraining provider operating costs, etc. [25].
Studied scenarios are usually encoded in mathematical models and are finally



solved either by algorithms such as approximation, greedy packing and heuristic
method, or by existing programming solvers such as Gurobi [1], CPLEX [2]
and GLPK [3]. Those related work can be separated into two sets: (1) VM
placement in single-cloud environments and (2) VM placement in multi-cloud
environments.

In single-cloud environments, given a set of physical machines and a set of
services (encapsulated within VMs) with dynamically changing demands, on-line
placement controllers that decide how many instances to run for each service and
where to put and execute them, while observing resource constraints, are NP
hard problems. Tradeoff between quality of solution and computation cost is a
challenge. To address this issue, various approximation approaches are applied,
e.g., by Tang et al. [9] propose an algorithm that can produce within 30 seconds
high-quality solutions for hard placement problems with thousands of machines
and thousands of VMs. This approximation algorithm strives to maximize
the total satisfied application demand, to minimize the number of application
starts and stops, and to balance the load across machines. Hermenier et al. [15]
present the Entropy resource manager for homogeneous clusters, which performs
dynamic consolidation based on constraint programming and takes migration
overhead into account. Entropy chooses migrations that can be implemented
efficiently, incurring a low performance overhead. The CHOCO constraint
programming solver [16], with optimizations e.g., identifying lower and upper
bounds that are close to the optimal value, is employed to solve the problem.
To reduce electricity cost in high performance computing clouds that operate
multiple geographically distributed data centers, Le et al. [19] study the impact
of VM placement policies on cooling and maximum data center temperatures,
develop a model of data center cooling for a realistic data center and cooling
system, and design VM distribution policies that intelligently place and migrate
VMs across the data centers to take advantage of time-based differences in
electricity prices and temperatures.

For VM placement across multiple cloud providers, information about the
number of physical machines, the load of these physical machines, and the state
of resource distribution inside the IP side are normally hidden from SP, and
hence not parameters that can be used for placement decisions. Only provision-
related information such as types of VM instance, price schemes, are exposed
to SP. Hence, most works on VM placement across multi-cloud environments
are focusing on cost aspects. Chaisiri et al. [8] propose an stochastic integer
programming (SIP) based algorithm that can minimize the cost spending in
each placement plan for hosting virtual machines in a multiple cloud provider
environment under future demand and price uncertainty. Bossche et al. [10]
examine the workload outsourcing problem in a multi-cloud setting with deadline-
constrained, and present cost-optimal optimization to maximize the utilization
of the internal data center and to minimize the cost of running the outsourced
tasks in the cloud, while fulfilling the applications quality of service constraints.
Tordsson et al. [30], propose a cloud brokering mechanisms for optimized
placement of VMs to obtain optimal cost-performance tradeoffs across multiple
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cloud providers. Similarly, Vozmediano et al. [27] [26] explore the multi-cloud
scenario to deploy a computing cluster on top of a multi-cloud infrastructure,
for solving loosely-coupled Many-Task Computing (MTC) applications. In
this way, the cluster nodes can be provisioned with resources from different
clouds to improve the cost-effectiveness of the deployment, or to implement
high-availability strategies.



Chapter 3

Summary of Contributions

3.1 Paper I

In Paper I [22], we investigate dynamic cloud scheduling use cases where pa-
rameters are continuously changed, and propose a linear programming model
to dynamically reschedule VMs (including modeling of VM migration overhead)
upon changed conditions such as price changes, service demand variation, etc.
in dynamic cloud scheduling scenarios. Our model can be applied in various
scenarios through selections of corresponding objectives and constraints, and
offers the flexibility to express different levels of migration overhead when
restructuring an existing virtual infrastructure, i.e., VM layout. In scenarios
where new instance types are introduced, the proposed mechanisms can accu-
rately determine the break-off point when the improved performance resulting
from migration outweighs the migration overhead. It is also demonstrated that
our cloud mechanism can cope with scenarios where prices change over time.
Performance changes, as well as transformation of VM distribution across cloud
providers as a consequence of price changes, can be precisely calculated. In
addition, the ability of the cloud brokering mechanism to handle the tradeoff
between vertical (resizing VMs) and horizontal elasticity (adding VMs), as
well as to improve decision making in complex scale-up scenarios with multiple
options for service reconfiguration, e.g., to decide how many new VMs to deploy,
and how many and which VMs to migrate, is also evaluated in scenarios based
on commercial cloud providers’ offerings.

3.2 Paper II

In Paper II [21], the VM placement problem for load balancing of predictable
and time-constrained peak workloads is studied for placement of a set of virtual
machines within a single datacenter. We formulate the problem as a Min-
Max optimization problem and present an algorithm based on binary integer

11
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programming, along with three approximations for tradeoffs in scalability and
performance. Notably, two VM sets (i.e., VMs provisioned to fulfill services
demands) may use the same physical resources if they do not overlap in runtime.
We use an approximation based on discrete time slots to generate all possible
overlap sets. Finally, a time-bound knapsack algorithm is derived to compute
the maximum load of machines in each overlap set after placing all VMs that
run in that set. Upper bound based optimizations are used to reduce the time
required to compute a final solution, enabling larger problems to be solved.
Evaluations based on synthetic workload traces suggest that our algorithms are
feasible, and that these can be combined to achieve desired tradeoffs between
quality of solution and execution time.

3.3 Paper III

The cloud computing landscape has developed into a spectrum of cloud archi-
tectures, leading to a broad range of management tools for similar operations
but specialized for certain deployment scenarios. This both hinders the efficient
reuse of algorithmic innovations for performing the management operations
and increases the heterogeneity between different cloud management systems.
A overarching goal is to overcome these problems by developing tools general
enough to support the range of popular architectures. In Paper III [20], we
analyze commonalities in recently proposed cloud models (private clouds, multi-
clouds, bursted clouds, federated clouds, etc.) and demonstrate how a key
management functionality - service deployment - can be uniformly performed in
all of these by a carefully designed system. The design of our service deployment
solution is validated through demonstration of how it can be used to deploy
services, perform bursting and brokering, as well as mediate a cloud federation
in the context of the OPTIMIS Cloud toolkit.



Chapter 4

Future Work

Future directions for this work include to model the interconnection require-
ments that can precisely express the relationships between VMs to be deployed.
Another area of future work is approximation algorithms based on problem
relaxations and heuristic approaches such as greedy formulation for considera-
tions of tradeoff between quality of solution and execution time. Additionally,
for VM placement problems, interference and overhead that one VM causes on
other concurrently running VMs on the same physical host should be taken in
to account. In addition, we are working on a specific scenario where cloud users
can specify hard constraints and soft constraints when demanding resource
provisions. A hard constraint is a condition that to be satisfied when deploying
services, i.e., it is mandatory. In contrast, a soft constraint (also called a
preference) is optional. An optimal placement solution with soft constraints
satisfied is preferable over other solutions. The hard and soft constraints can,
e.g., be used to specify collocation or avoidance of co-location of certain VMs.
We are also investigating how to apply multi-objective optimization techniques
to this scenario.
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Abstract: Cloud brokerage mechanisms are fundamental to reduce the complexity of
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and avoid the potential vendor lock-in problems. However, current approaches are re-
stricted to static scenarios, where changes in characteristics such as pricing schemes,
virtual machine types, and service performance throughout the service life-cycle are
ignored. In this paper, we investigate dynamic cloud scheduling use cases where
these parameters are continuously changed, and propose a linear integer programming
model for dynamic cloud scheduling. Our model can be applied in various scenarios
through selections of corresponding objectives and constraints, and offers the flexi-
bility to express different levels of migration overhead when restructuring an existing
infrastructure. Finally, our approach is evaluated using commercial clouds parameters
in selected simulations for the studied scenarios. Experimental results demonstrate
that, with proper parametrizations, our approach is feasible.
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Abstract—Cloud brokerage meck are tal to
reduce the complexity of using multiple cloud infrastructures to
achieve optimal placement of virtual machines and avoid the
potential vendor lock-in problems. However, current approaches
are restricted to static scenarios, where changes in characteristics
such as pricing schemes, virtual machine types, and service
performance throughout the service life-cycle are ignored. In this
paper, we investigate dynamic cloud scheduling use cases where
these parameters are continuously changed, and propose a linear
integer programming model for dynamic cloud scheduling. Our
model can be applied in various scenarios through selections of
corresponding objectives and constraints, and offers the flexibility
to express different levels of migration overhead when restructur-
ing an existing infrastructure. Finally, our approach is evaluated
using commercial clouds parameters in selected simulations for
the studied scenarios. Experi results d rate that,
with proper parametrizations, our approach is feasible.

Index Terms—cloud computing ic scheduling, virtual ma-
chine placement, migration overhead, linear integer programming

tal

I. INTRODUCTION

As the use of cloud computing grows and usage models [1]
become more complex, cloud users are confronted with ob-
stacles in integrating resources from various cloud providers.
In this context, the use of efficient cloud brokering mech-
anisms are essential to negotiate the relationships between
cloud service consumers and providers, including integrating
cloud services to make up a user’s cloud environment. A
cloud broker also helps users prevent potential vendor lock-in
problems by means of migrating applications and data between
data centres and different cloud providers.

However, current brokering approaches are limited to static
scenarios, where changes in characteristics such as pricing
schemes, virtual machine (VM) types, and service perfor-
mance throughout the service life-cycle are ignored. Con-
versely in dynamic scenarios, it is arguable that either the
offers of the cloud providers or the requirements of the
service owner change over time. When conditions change,
it is necessary to analyse how to optimally reconfigure the
service to adapt it to new situations. For example, if a
vendor retreats from the market, cloud users may be forced
to migrate some resources from one cloud provider to another
so as to guarantee the service availability. Similarly, when a
price reduction occurs, the current configuration may become
suboptimal, and it may be possible to obtain a better placement
of resources by restructuring the virtual infrastructure.

978-0-7695-4622-3/11 $26.00 © 2011 IEEE
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In this paper, we focus on modeling for dynamic scheduling
in the context of cloud brokerage where cloud users employ
multiple cloud infrastructures to execute their VMs in which
business services are encapsulated. In dynamic scheduling
scenarios, the ability to efficiently migrate VMs between
servers or data centres is crucial for the efficient and dynamic
resource management. VM migration is essential to increase
the flexibility in VM provisioning, avoid vendor lock-in prob-
lems, and guarantee the service availability, etc. One of the
key issues for dynamic cloud scheduling is finding a suitable
metric for VM migration overhead, a metric that captures the
distance between two infrastructures in order to estimate the
feasibility of restructuring an existing infrastructure. Possible
infrastructure distance metrics include number of VMs to mi-
grate, number of VMs to migrate weighted with VM size, and
total migration downtime, etc. Another issue is how to express
and embody the migration overhead metric in an objective
function that can equivalently represent the user’s goal. To
tackle these problems, we investigate and classify multiple
dynamic scenarios and propose a linear integer programming
model. With proper parametrization and selections of objective
functions and constraints, our model can be used in a wide
range of scenarios. The optimization problem is finally en-
coded in a mathematical modeling language and solved using
a linear programming solver.

In summary, our contributions are the following. We investi-
gate dynamic cloud scheduling use cases and propose a linear
integer programming model for dynamic cloud scheduling via
VM migration across multiple clouds. Evaluations based on
characteristics of current commercial cloud offerings demon-
strate that our model provides the flexibility of expressing
different levels of migration overhead when restructuring an
existing infrastructure. By proper parametrizations, our ap-
proach can be used to accurately decide optimal VM migration
strategies for elasticity scenarios, as well as handling changes
in provider offers and prices.

The remainder of the paper is organized as follows: Sec-
tion II describes background about cloud brokerage, placement
optimization for cloud resources, and VM migration. Sec-
tion III introduces cloud brokering mechanisms for optimized
placement of VMs across multiple providers, describes the
proposed model, and elaborates its flexibility for expressing
different levels of migration overhead for restructuring an
existing infrastructure. Section IV presents experimental evalu-
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ations against commercial clouds offerings. Finally, some con-
clusions are presented in Section V followed by a presentation
of future work, acknowledgements, and a list of references.

II. BACKGROUND AND RELATED WORK
A. Cloud Brokerage

Cloud brokerage aims to bridge the gap between the cloud
service consumer and the provider. Gartner Research divides
the responsibility of cloud brokers into three main cate-
gories: cloud service intermediation, aggregation and cloud
service arbitrage [2]. On-going research on cloud brokerage
has caught substantial attention, including efforts that target
cloud management middleware (e.g., Emotive Cloud [3] and
OpenNebula [4]), virtualization APIs (e.g., libvirt [5]), and
cloud interoperability and standardization.

Grivas et al. propose a central Cloud Broker component
responsible for the management and the governance of the
cloud environment [6]. However, this approach is mainly fo-
cusing on business process management. It should be remarked
that this approach is still in the phase of comprehensive
architecture design. A cloud broker with an optimal VM
placement algorithm is presented by Chaisiri et al. [7]. This
algorithm can minimize the cost for hosting VMs in a multi-
provider environment. This work is however limited to static
scenarios where the number of required virtual resources is
constant, and the cloud provider conditions (resource prices,
resource availability, etc.) do not change throughout the service
life-cycle.

B. VM Placement Optimization for Clouds

Virtual machine placement in distributed environments has
been studied in the context of cloud computing extensively,
e.g., by Bobroff et al. [8] who present a management algo-
rithm for dynamic placement of VMs to physical servers,
which provides substantial improvement over static server
consolidation in reducing the amount of required capacity and
the rate of Service Level Agreement (SLA) violations. Their
algorithm pro-actively adapts to demand changes and migrates
VMs between physical hosts thus providing probabilistic SLA
guarantees. Another SLA-driven dynamic VM placement opti-
mization approach is proposed by Igbal et al. [9], who describe
the problem of bottleneck detection and resolution of multi-tier
Web applications hosted on a cloud. They present a solution
to minimize the probability that tiers (hosted on VMs) become
bottlenecks by optimizing the placement of VMs.

For VM placement optimization in a single cloud, An-
dreolini et al. [10] present a management algorithm to re-
allocate the placement of VMs for better performance and
resource utilization by considering the load profile of hosts
and the load trend behaviour of the guest instead of thresh-
olds, instantaneous or average measures that are typically
used in literature. VM placement optimization for multi-cloud
scenarios is studied e.g., by Chaisiri et al. [7], Moreno-
Vozmediano et al. [11] [12] and Tordsson et al. [13]. However,
so far, most of efforts that target VM placement optimization
for clouds have focused on either scenarios of one single cloud
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provider or static scenarios in multi-cloud environments. VM
placement issues for dynamic scenarios across multiple cloud
providers remain largely unexplored.

C. Virtual Machine Migration

Leveraging the ability of VM migration, cloud users are
able to switch data and services between different physical
machines in a cloud or even different clouds. In this paper,
we consider a VM to be migrated if either it is moved from
one cloud to another, or its hardware configuration is changed.
VM migration is inevitable when reconstructing virtual infras-
tructure for cloud users in cloud brokerage scenarios.

Heterogeneous live migration of virtual machines is studied
by Liu et al. [14]. Their work demonstrates that due to high
variances of memory page dirtying rate, it is possible to get
very slow migrations (result in long downtime) although a
VM uses only 156MB of memory. Another comprehensive
study of VM migration research, as well as an evaluation of
methods for efficient live migration of VMs is presented by
Svird et al. [15], who also demonstrates how live migration
of large VMs or VMs with heavy load can be done with
shortened migration time, migration downtime, and reduced
risk of service interruption.

While VM migration research has currently focused on
single-cloud scenarios where data and services are located
within the same cloud infrastructure, we expect that VM
migration across different cloud providers will become a
reality in a near future. In our work, the time and cost for VM
migration are approximated by looking at the time required to
shut down a VM in one cloud provider and start a new VM
with the same configurations in another provider.

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. Cloud Brokerage and Modeling

Figure 1 illustrates three roles in the studied cloud brokerage
scenario: the User, the Cloud Providers, and the Cloud Broker.
The user requests a virtual infrastructure by submitting a
service description, which contains a manifest of required
resources (e.g., number of VMs, size of storage, etc.), opti-
mization criteria, and a set of constraints to the cloud broker.

Service Description

(o ; o Scheduling Optimizer
Optimization Criteria | | =
Constraint 1 1 2
Coraitns > AL g
S 7 o
o,
N E
4> W Execution Plan 3
Demand X 1 z
(] ?
X T
M ( Virtual Infrastructure Manager
Y (OpenNebula / Emotive / ...)
USER
spegificTterface
( i 6 ) ¢
(" Cloud Provider 1 4 (* Cloud Provider 2 <\ ....( Cloud Provider k <
1 - B
N T ,/~//_/ >l
Fig. 1. Architecture overview for cloud brokerage scenario.



The Scheduling Optimizer component of the broker gener-
ates an Execution Plan based on requirement criteria provided
by the user, the offerings of the available cloud providers, and
the change of situation (e.g., service performance scales up
or down, cloud providers’ offers change and so forth). The
Execution Plan includes either a list of VM templates that
can equivalently represent the implementation of the user’s
abstract infrastructure request, or a description that represents
an adjustment of an existing infrastructure. Finally, the Exe-
cution Plan is enacted by the Virtual Infrastructure Manager
component that is built on a cloud management middleware
such as Emotive [3] and OpenNebula [4]. We remark that in
this paper we focus on problem formulations and modeling,
while difficulties and challenges involving cloud interoper-
ability, robustness of migration, and similar practical matters,
although important for a full implementation, are out of scope.

Each cloud provider supports several VM configurations,
often referred to as instance types. An instance type is defined
in terms of hardware metrics such as main memory, CPU
(number of cores and clock frequency), the available storage
space, and price per hour. Our model has no limitations on the
number of instance types. While we currently use five instance
types, i.e., micro, small, medium, large, and xlarge (see Table I
in Section IV) for the evaluation in this paper, it is straight
forward to extend or decrease the number of instance types.

More formally, in a static scheduling scenario, our goal
is to deploy n VMs, vj,vs,...,v,, across m available
clouds, ¢, ca, . . ., ¢y, which provide [ possible instance types,
1Ty, IT,, ..., IT;, to improve criteria such as cost, perfor-
mance, or load balance. The hourly computational capability
of a given instance type is denoted C;,1 < j < [. The hourly
price for running a VM of instance type IT; in cloud ci
is denoted by Pj. One of the most common used objective
function is to maximize the Total Infrastructure Capacity (TIC)
of the deployed VMs given by:

n m

1
TIC =HxY C;(OY win), (9]
j=1

i=1 k=1

where H specifies the expected lifetime of the infrastructure,
i.e., how long the virtual infrastructure is to be deployed, z;;

is a decision variable that satisfies x;;, = 1 if v; is of type IT}

and placed at cloud ¢y, and 0 otherwise. Users can specify the

following types of deployment restriction constraints:

o Budget constraints - Let Budget denote the maximum
investment that can be used. Now, the deployment is re-

stricted to solutions where the total infrastructure price (7' P)
satisfies

1 m n
TIP=HxY > Pp(d  wij) < Budget. )
i=1

j=1k=1

o Placement constraints - Each VM has to be of exactly one
instance type and placed in exactly one cloud:
Vi € [1..n]

1 m

ZZIW’C =1 3)

j=1k=1

e Load balancing constraints - can be encoded as:

VEk € [1.m] :

n 1
LOComin < (O wii)/n < LOComas, o)
i=1 j=1

where LOC),;,, and LOC,,,, are the minimum and maxi-

mum percent of all VMs to be located in each cloud.

Note that additional constraints, such as for example network
resource requirements, and data locality restrictions can also
be added to the model.

As studied by Tordsson et al. [13], the static cloud schedul-
ing problem on performance goals can be formulated as a
linear programming model with objective function (1) and
constraints (2), (3), and (4). In static scenarios, parameters
(n,l,m,Pjp(1 < j < 1,1 < k < m),and Budget) are
constant throughout the service life-cycle where placement
decisions can be taken off-line, once only, and in advance
to service deployment.

B. Dynamic Cloud Scheduling

In dynamic scenarios, any of the previously discussed parame-
ters may change. We identify two main categories of dynamic
scenarios of cloud scheduling, which respectively reside in
cloud providers and service providers: varying cloud providers
offers, and service performance elasticity.

o Examples in the first category include varying offers:

- A new provider appears or withdraws from the offer
space. For example, Heroku [16] proclaimed the avail-
ability of the commercial version of its new cloud hosting
and deployment service on 2009-04-24.

Price changes, e.g., in form of new agreements, spot
prices, special discount during night time, etc.
New instance type offers are introduced, e.g., Amazon
announced Micro Instances for EC2 on 2010-09-09 [17].
« Examples in the second category (service elasticity):
In this case, the service owner wants to scale up or down the
performance while optimizing the cost.

- The service owner adjusts the number of VMs, e.g.,
removes a mail server from a current infrastructure.
- The service owner increases or decreases the budget
investment, e.g., budgetary reduction during recession.
In some scenarios, e.g., price reduction, the cloud user is
offered an opportunity to obtain a better placement of VMs,
while in other scenarios, e.g., an in-use cloud vendor with-
draws from the market, the cloud user is forced to reconstruct
the current infrastructure, striving to guarantee the service
availability. Therefore, possible objectives can be identified
as follows:
1. Maximize the possible new 7'IC' with consideration of VM
migration overhead under new situations.
1. Minimize the possible new TIP while obtaining a new
TIC that can satisfy new performance demands.
III. Minimize the overhead of reconstruction a current con-
figuration. The rationale behind this is service continuity. The
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more VMs the broker has to start and/or shut down, the more
the service is impacted by the change.

To model dynamic scenarios, we introduce several notations:

o MC - denotes the overhead of changing the current place-
ment to a new service layout. It can be defined in terms of
system downtime, the number of VMs migrated, etc.

o (3; - denotes the service downtime penalty per time unit,
which can be defined either in terms of capacity loss or
monetary loss.

MC is given by:

MC = i(@ * Ay),

i=1

(5

where A; denotes the overhead of migrating VM v;. For VM
v;, A; depends on its previous instance type, its new instance
type, the previous cloud it is placed in, and in which cloud
it is about to be located. To calculate A;, we introduce M,
where M; j: ; x 1 denotes the overhead for migrating VM v; of
instance type IT): in cloud ¢/ to cloud ¢ with instance type
IT;. Let @, denote the current placement status for VM
(IR Notably, here L7]/ 4 1s a constant that denotes the current
placement status for VM v; while x;;;, is a decision variable
for the new model. Now we get:

mm
’ )
E E (@ijn * Lijrgr * M 1. k)

‘We remark that both -T;]'k/ and z;j;, are sparse 0-1 matrices

that satisfy 23:1 S @ijk =1 and Zé,:l S Tk =
1 for each i,1 < ¢ < n. Consequently, the expression for
A, is neat and fast to compute although the formulation in
equation (6) is in the form of four-layer nested accumulated
operation. Now, Objective III can be modelled and formulated
using equations (5) and (6). Objective I can be expressed as
maximize the TIC that is given by:

TIC = H*Z(‘7iZz”k - MC

i=1 k=1

(6)

n m

7H*ZC] ZZJ:”k) Z (Bi * A;).

i=1 k=1

()]

Hence, Objective I is formulated using equations (6) and (7).
We remark that the T'IC' can also be a constraint and 7'/ P can
be an objective function in the dynamic model. For example,
a new model can be formulated as:

Minimize : TIP = H % Z Zp]k ZI”’“ 8)
j=1k=1
Subject to:
nm
TIC = H % Z C; (3> wijn) = Threshold ©9)

j=1 i=1 k=1

where the user wants to minimize the 7' P while maintaining

the TIC in a certain level. To conclude, three forms of the

model are identified:

« Model I: maximize objective function (7), with equation (2),
(3), and (4) as constraints. A cloud broker employs this model
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to obtain an optimal infrastructure capacity that also takes
migration overhead into account.

o Model II: minimize objective function TIP (2), with equa-
tion (3) and (4) as constraints. The goal of this model is
minimization of the price of the new infrastructure, while
keeping the capacity above than a certain threshold.

e Model III: minimize objective function (5), with equa-
tion (2), (3), and (4) as constraints. This model is used
when the cloud broker minimizes the migration overhead,
and meanwhile fulfils the constraints for budget, placement,
and load balancing.

C. Model Parametrization and Application

In our model, 3; signifies the weight of migrating VM v;. We
argue that the overhead for migrating different VMs differs,
e.g., the overhead of migrating a backup server is lower than
that of migrating a server running an ERP system.

By assigning suitable values to 3; (1 < i < n), and the
matrix M, it is possible to express the migration overhead for
various scenarios, e.g., a number of VMs to migrate metric
can be concisely expressed as:

1
M; jr k= { 0

Infeasible migration can be modelled through oco-assignment,
e.g., assignment M; j: j s = 00 (or 3; = 00) specifies that it
is impossible to migrate VM v; of instance type ITj: placed
in cloud ¢ to cloud ¢, and of instance type I7}. In practical
applications, 8; and M can be estimated based on practical
experience of the used cloud platforms and data collection to
learn the behaviour of the migrated applications. To use the
proposed approach, we sketch an overall algorithm as follows.

if j/#jork' #k;

otherwise. a0

Algorithm 1 Cloud re-scheduling
Input:
Environment changes, e.g., updated prices, VM numbers,
budget, cloud provider configurations, etc.
Output:
New placement after reconfiguration;
1: Select optimization criteria (including objective selection
and constraints selection);
: Determine parameter 3;;
: Determine parameter values in matrix M
: Solve problem for criteria selected in step 1;
: Migrate VMs if the solution is feasible;

[ IR}

This VM placement problem is known to be NP hard.
Existing approximation and heuristic algorithms can scale to
at most a few hundred machines, and may produce solutions
that are far from optimal when system resources are tight [18].
An in-depth study of integer programming scalability is given
by Alper et al. [19]. Instead of proposing new approximation
algorithms, we encode our model using a mathematical mod-
eling language and use state-of-the-art linear programming
solvers. Optimizations for improving the scalability problem
and complexity investigation are left to future works.



IV. EVALUATION AND DISCUSSION

We evaluate our approach using imaginary service scenar-
ios based on performance figures from contemporary clouds
offerings. Notably, our goal is not to evaluate the various
providers but rather to investigate how well our proposed
cloud brokering approach can adapt to changes in realistic
scenarios. Two commercial cloud providers are used to model
in our experiments. The first one is GoGrid [20], and the
second is Amazon EC2 [21]. EC2 offers two separate clouds,
one is in the USA, the other in Europe. These three clouds
are henceforth referred to as EC2-US, EC2-EU and GoGrid.
To solve the optimization problem, we use AMPL [22] as
the modeling language and Gurobi [23] as the binary integer
programming problem solver.

A. Experimental Setting and Parameter Estimation

We consider five different VM instance types, their hard-
ware characteristics and prices are listed in Table 1.

TABLE 1
HARDWARE METRICS AND PRICES FOR INSTANCE TYPES.
Instance Type micro | small | medium | large | xlarge
CPU (# cores) 1 1 1 2 4
CPU (GHz/core) 1 1 2 2 2
Memory (GB) 0613 17 35| 75 15
Storage (GB) 50 160 300 | 850 1700
Computing Capacity 1 2 4 8 16
Provider Instance type prices ($/h)
EC2-US 0.02 0.1 N/A 0.4 0.8
EC2-EU 0.025 | 0.11 N/A'| 044 0.88
GOGRID 0.1| 0.19 0.76 | 1.52 3.04

In the new instance type scenario (see Section IV-B ) and the
price change scenario (see Section IV-C), we set LOC,,,;, =
30% and H = lhour. These two scenarios are evaluated for
one hour, and each cloud should host at least 30% of the
VMs. To estimate parameter 3; and the values in matrix M,
we use the service downtime statistics (see Table II) presented
by Iosup et al. in [24] and [25] to calculate the computation
capacity losses of the infrastructure.

TABLE II
STATISTICS FOR RESOURCE ALLOCATION/RELEASE TIME (SECONDS).

Instance Type micro | small | medium | large | xlarge
EC2-US Allocation 71 82 N/A 90 64
Release 20 21 N/A 20 25
EC2-EU Allocation 71 82 N/A 90 64
Release 20 21 N/A 20 25
GOGRID Allocation 260 | 540 1290 | 2300 | 3012
Release 158 | 210 192 | 200 240

More specifically, Bi = Cj, M; ;
Downtime of V M,;, where Downtime of V M; is the sum
of Release Time of v; of instance type I7}: placed in cs
and Allocation time of v; of instance type IT; placed in c.
Notably, M; j: jx/ 1 can be ignored if H is large enough.

In the following, three dynamic cloud scheduling scenarios
are selected to evaluate our proposed model. In all experi-
ments, the number of VMs (n) to be deployed is 32.

B. Scenario I: New instance type offers

In this case, we consider a service owner who has a limited
budget, $5 per hour to run 32 VMs. At first, there are only
four instance types available - small, medium, large and xlarge,
and then we simulate the event that the micro instance type is
introduced [17].

30

25 q

Number of instances

: R

micro small medium large xlarge
Virtual Machine Instance Types

Fig. 2. VM placement with and without the micro instance type.

In our experiment, the user obtains an optimal total in-
frastructure capacity (I'IC) of 78 by placing 31 VMs of
small instance type and 1 VM of xlarge (at EC2-US) instance
type. This situation changes when the micro instance type is
announced. As Figure 2 illustrates, the virtual infrastructure is
reconstructed accordingly. The number of micro instances is
increased from O to 27, while the number of small instances
is decreased from 31 to zero. Since the micro instance type
is offered at a very low price (see Table I), the system now
can improve the investment proportion for other instance types
with larger computing capacity: the number of large instances
is increased from O to 1, and the number xlarge instances is
increased from 1 to 4. As a result, the T1C is increased by
22% to 95.2 with no need to increase the budget.

Figure 3 shows how the performance of the infrastruc-
ture changes in the first 800 seconds. In this figure, there
are two obvious inflection points (encircled in the figure)
which indicates the significant growth of capacity for the
infrastructure with micro instances. The first inflection point
is after 90 seconds before only one VM is running in the
infrastructure of micro instance type; afterwards, the cloud
broker completes migration processes for 11 VMs and restarts
them. The second inflection point is after around 280 seconds,
when 20 more VMs are rebooted after migrations. After 610
seconds, the performance of the infrastructure with micro
instance surpasses the one without micro instances, and the
difference expands increasingly as time elapses as illustrated
in Figure 4. In this case, we can conclude that, it is worthy
to perform migration if the infrastructure is to run for more
than 10 minutes. This evaluation demonstrates that our cloud
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Fig. 3. Performance improvement with and without the micro instance type.
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Fig. 4. Performance improvement with and without the micro instance type.

brokering mechanisms can handle the scenarios with new
instance types. Interestingly, the proposed mechanisms can
accurately determine the break-off point when the improved
performance resulting from migration outweighs the migration
overhead.

C. Scenario II: Prices change

In this second experiment, we first simulate an imaginary
scenario where cloud providers offer a price discount of 20%
during the night time due to less energy consumption. To
study the effect of this, we increase the budget from $5 per
hour to $60 per hour in 55 steps. We then calculate the
TIC values under three different scenarios: static placement
with old prices, static placement with new prices ignoring
migration overhead, and dynamic placement with new prices
and consideration of migration overhead.

We observe in Figure 5 that, for lower budgets, the perfor-
mance improvement due to price discounts is more significant.
The performance difference between two price offers (i.e.,
original prices and prices after discount) is notable, and despite
the consideration of migration overhead, the new optimal
TICs are very closed to the values in the static scenario,
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Fig. 5. VM placement with and without price discount.

especially when the budget is lower than $20 per hour.
However, when the budget is higher than $48 per hour, there
is no difference among the three scenarios. This is because the
budget is excessive compared to the VMs to be deployed and
the price offers, and hence, the broker does not migrate any
VM even if the prices are lowered. To use all the budget, the
broker may suggest the service owner to deploy more VMs
(as discussed in the next scenario), so that the performance
can be improved further.

@
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Total Infrastructure Capacity (TIC)

>

Number of instances
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Percentage of prices discount

I icro I small [ medium [ jarge I xiarge —+— TIC

Fig. 6. VM placement with varying prices discount by GOGRID.

We also explore the behaviour of our model under the
condition that only one of the cloud provider (i.e., GOGRID)
offers price discounts. We set Budget = $5 per hour. Due
to the load balancing constraint (4), each cloud hosts at least
30% of the VMs (notably, 32x30% = 10) and thus at most 12
VMs. Since GOGRID is the most expensive cloud provider,
to fulfil the minimum requirement for loading balancing, the
cloud broker assigns only 10 VMs (of small instance types)
to it, and obtains a TIC = 99 (see Figure 6).

As illustrated in Figure 6, the cloud broker manages to
obtain higher TICs as the discount offered by GOGRID



increases. The number of VMs hosted in GOGRID is increased
from 10 to 12. The cloud broker first tries to increase the
number of VMs of larger instance types, e.g., when the price
discount is 30%, the number of small instances increases from
0 to 1, while the total number of VMs located in GOGRID
does not change. When the discount is larger (i.e., > 60%),
the number of VMs of small instance types is scaled up to 5
and the total number of VMs located in GOGRID increases
to 11.

Resources allocation for instance type medium, large and
xlarge in GOGRID cloud is comparatively time-consuming
(see Table II), and therefore the cloud broker does not assign
any medium, large or xlarge instance in GOGRID even when
the prices discount increases to 60%. However, 7 xlarge
instances and 1 medium instance are employed when the
discount comes to 80% which means that the cost for hosting
more VMs or upgrading VMs with more computing power
in GOGRID is inexpensive enough and the benefit from it
suppresses the overhead arises from VM migrations.

In these experiments, we do not consider the overhead of
re-migrating the infrastructure when the day time returns at
the end of the discount period. One way of incorporating this
could be to simply multiply M C by 2 (migration to and from
new infrastructure), but this is a simplification as the previous
infrastructure needs not be optimal, unless we know that we
after the discount period will re-migrate the infrastructure to
the original layout.

To summarize, this evaluation demonstrates that our cloud
mechanism can cope with scenarios with changes in price.
Performance change, as well as transformation of VM distri-
bution across cloud providers evolved with prices change can
be precisely calculated through the proposed approach.

D. Scenario III: Service performance elasticity

In this scenario, the service owner needs to increase the
infrastructure capacity due to business growth. Before the ex-
pansion, $5 is invested per hour, and the service owner obtains
TICs of 115, 108, 102 and 99 per hour under load balancing
(LB) constraints 0%, 10%, 20%, and 30% respectively. To
fulfil the new business demands, the service owner needs to
increase the budget so as to obtain a new TIC' of 230 per hour.
This goal can be done either through adding certain amount of
new VMs without migrating any running VMs, or by migrating
some running VMs and meanwhile adding some new VMs.

Figures 7, 8, 9 and 10 illustrate how the minimum budget
and infrastructure reconfiguration overhead (IRO) evolve with
the number of new VMs added for these two options. In this
experiment, we define the IRO the sum of resource release
time for VMs shut down weighted with VM size and resource
allocation time for VM booted weighted with VM size, and it

is given by:
IRO= Y
V; is shut down

D>

V; is booted

(RT; * ComputingCapacity;)
(AT; x ComputingCapacity;),

where RT' denotes recourse release time of shutting down a
VM, AT denotes resource allocation time of booting a VM,
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and the computing capacity of VM depends on its instance
type, i.e., ComputingCapacity; C; if VM; is placed
with instance type j. IRO indicates the capacity loss when
re-constructing an existing infrastructure. Notably, IRO is a
dynamic form of M C' mentioned in Section III-B, and it can
also be expressed through assigning 8; = 1 and M; j j 3+ . as
follows:

an

where values for RT and AT can be found in Table II, and
RTy =0 if a VM is newly added.

Mi g jpr o = BTy x Cyp + ATy Cj
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Figure 7 illustrates that, without load balancing constraints,
the performance can be doubled to 230 per hour by replicating
the number of VMs (i.e., adding 32 VMs) without any VM
migration using twice the budget ($10 per hour).

In cases where no migration is performed, it is not possible
to achieve a solution until 8 (or 9, if LB constraint is 30%)
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new VMs are added. Another interesting finding is that, in
some cases, IROs with migration are higher than IROs without
migration, whereas the opposite is true in other cases. The
rationale behind this is the fact that, according to the statistics
in Table II, it is possible that in some cases, the time for
shutting down a VM and booting a new one is shorter than
the time for only booting a new VM of some other type.
For example, increasing the TIC (to be higher than 7) of
an infrastructure with 1 VM of small instance type in EC2-
US can be implemented by shutting down the small instance
and booting an xlarge instance, which takes 85 seconds (21
seconds for shut-down, and 64 seconds for booting), or only
starting a large instance using 90 seconds.

We can also observe from Figure 9 and Figure 10 that
load balancing (LB) constraints impose a significant impact on
infrastructure cost and IRO when migration is prohibited and
few VMs (less then 11) are allowed to assign. Compared with
Figure 7 and Figure 8, when the LB constraint is as 20%, to
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fulfil the minimum performance requirement, and meanwhile
comply with the LB constraint, the broker has to place some
VMs with large size in the least cost-efficient provider (i.e.,
GOGRID), which is harmful for the infrastructure cost and
IRO. However, as the number of VMs that are added increases,
the distances between solutions with migration and solutions
without migration are narrowed down again, since the broker
is able to place VMs of small size (instead of larger size)
in GOGRID in order to comply with the LB constraint and
performance constraint.

This experiment demonstrates the ability of the cloud bro-
kering mechanism to handle the tradeoff between vertical
(resizing VMs) and horizontal elasticity (adding VMs), as
well as to improve decision making in complex scale-up
scenarios with multiple options for service reconfiguration,
e.g., to decide how many new VMs to deploy, and how many
and which VMs to migrate.

Through the evaluations above, it is demonstrated that our
model can support a wide range of dynamic scenarios, and
by proper parametrizations, many interesting behaviours can
be achieved. Finally, we point out that values in matrix M in
real world applications are normally much higher than they
are in Section IV-A. This is because VM migration across
cloud providers located in different regions is a tedious task
due to the fact that establishing a high-speed network tunnels
to transfer VM images (that usually consist of Gigabytes of
data) is time-consuming and costly.

V. CONCLUSIONS AND FUTURE WORK

With the emergence of cloud computing as a paradigm,
users can buy computing capacity from public cloud providers
to minimize investment cost rather than purchasing physical
servers. However, users are faced with the complexity of
integrating various cloud services as the cloud computing
market grows and the number of cloud providers increases.
Despite the existence of a large number of efforts targeting
cloud brokerage mechanisms, dynamic cloud scheduling issue
remains largely unexplored. We present a linear integer pro-
gramming model for dynamic cloud scheduling via migration
of VMs across multiple clouds, which offers the flexibility
of expressing different levels of migration overhead when
restructuring an existing infrastructure. By proper parametriza-
tion, this model can be applied to handle changes both in
infrastructure (new providers, prices, etc.) and services (elas-
ticity in terms of sizes and/or number of VMs in a service).
The proposed model is evaluated against commercial clouds
offering settings, and it is demonstrated that our model is
applicable in dynamic cloud scheduling cases aiming at cost-
efficiency and performance-efficiency solutions.

Future directions for our work include investigation of
mechanisms for model parametrization for dynamic cloud
scheduling use cases, i.e., finding suitable values for parame-
ters in the proposed model for different scenarios. Addition-
ally, SLA violation compensation for users has not been taken
into account in our model. Another interesting topic would be
to apply our model to real world services.
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Abstract. We present an approach to optimal virtual machine place-
ment within datacenters for predicable and time-constrained load peaks.
A method for optimal load balancing is developed, based on binary inte-
ger programming. For tradeoffs between quality of solution and compu-
tation time, we also introduce methods to pre-process the optimization
problem before solving it. Upper bound based optimizations are used
to reduce the time required to compute a final solution, enabling larger
problems to be solved. For further scalability, we also present three ap-
proximation algorithms, based on heuristics and/or greedy formulations.
The proposed algorithms are evaluated through simulations based on
synthetic data sets. The evaluation suggests that our algorithms are
feasible, and that these can be combined to achieve desired tradeoffs
between quality of solution and execution time.

Keywords: Cloud Computing, Virtual Machine Placement, Binary In-
teger Programming, Off-line Scheduling, Load Balancing.

1 Introduction

Building on technologies such as distributed systems, autonomic computing, and
virtualization, cloud computing emerges as a promising computing paradigm
for providing configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction [13]. A key feature
of future cloud infrastructures is elasticity [2], i.e., the ability of the cloud to
automatically and rapidly scale up or down the resources allocated to a service
according to the workload demand while enforcing the Service Level Agree-
ments (SLAs) specified.

In this paper, we focus on elasticity scenarios where workloads are predictable
and to be deployed and scaled-out quickly through the rapid provisioning of Vir-
tual Machines (VMs). Predictable workload scenarios are frequently occurring,
e.g., online banking has regular peaks once a month, streaming video is con-
sumed mostly during evenings, and video gaming workloads exhibit predictable
daily and weekly changes [6], etc. Both the service and the cloud infrastructure

K. Vanmechelen, J. Altmann, and O.F. Rana (Eds.): GECON 2011, LNCS 7150, pp. 120134, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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can benefit from the predictability of the workloads, since placement schemes for
VMs are possible to be pre-calculated and resources can be set up in advance.

To fulfil the service demand, the cloud infrastructure usually produces VM
placement solutions improving criteria such as cost, performance, resource uti-
lization, etc. However, from a cloud infrastructure perspective, physical machines
usually have non-uniform capacities. Their respective utilizations may have high
variances. Users of a service may suffer from high latency due to high utilizations
of some physical servers. In other words, certain types of applications could ben-
efit from keeping the utilization of individual machines as close as possible to
the utilization of the entire system [15]. To tackle this problem, the worst case of
individual physical machine utilization should be minimized and load balancing
in the whole system should thus be optimized.

The VM placement problem can be generally formulated as a variant of the
class constrained multiple-knapsack problem that is known to be NP hard [14].
Existing approximation algorithms can scale to at most a few hundred machines,
and may produce placement solutions that are far from optimal when system re-
sources are scarce [15]. In this paper, we focus on properties of the load balancing
problem itself instead of proposing new generic approximation algorithms. We
analyse how the studied problem differs from general VM placement problems,
and present a linear programming formulation of the optimization problem along
with some approximations. An evaluation based on synthetic workloads is used
to investigate the feasibility of the algorithms.

The remainder of the paper is organized as follows. Section 2 briefly describes
the problem and motivates our work. Section 3 presents the problem formulation,
defines an optimal algorithm, as well as describes three problem-specific approx-
imations. Section 4 presents an evaluation of our approach. Section 5 discusses
related work. Finally, conclusions and future work are given in Section 6.

2 Problem Description

The studied scenario is illustrated in Figure 1. A set of physical machines with di-
verse capacities are used to execute VMs of different sizes. The VMs are grouped
by VM sets, i.e., prepared bundles of, e.g., application servers, front ends, and
data base replicas for managing peak loads of certain applications. These VM
sets are to be deployed across the physical machines, i.e., PMy, PMs, ..., PM,,,
which may have different background loads and non-uniform capacities. Each
VM set is comprised of multiple VMs with various capacity requirements. The
durations and sizes of VMs are known in advance. This life cycles of VM sets
may be different, e.g., some may be provisioned longer than others, some may
start to run earlier than others, etc.

The most significant aspect that could distinguish the VM placement for pre-
dictable peak loads from general placement problems is that the peak loads
are time-constrained. After a certain period, the additional VMs are removed
from the cloud infrastructure. During this period, multiple placement requests
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Placement Requests:

VM Set1 VM Set2 . oo

PM1
PM3
PM2
VM3
VM2 VM5 VATE
VM1 MG i
VM6

Fig. 1. Studied scenario illustration

may start or terminate. In this paper, the placement objective is load balancing,
i.e., to minimize the highest utilization of any individual physical machine during
this period.

3 Problem Analysis and Formulation

We use a quadruple r =< id, s,e, VMSet > to uniquely identify a placement
request, where s indicates when the request starts and e specifies the end-time.
A placement request set can thus be represented by an array of quadruples
temporally ordered by s. The VMSet is a collection of VMs, each of which may
have different computation capacities.

Table 1. Hardware metrics for instance types

Instance Type micro | small | medium | large | xlarge
CPU (# cores) 1 1 1 2 4
CPU (GHz/core) 1 1 2 2 2
Memory (GB) 0.613 1.7 3.5 75 15
Storage (GB) 50 | 160 300 | 850 1700
Computing Capacity 1 2 4 8 16

To distinguish VMs with different computation capacities, we use the hard-
ware discretization approach, used e.g., by Amazon EC2 as shown in Table 1.
An example of placement request is <23, 2011-05-30 18:30, 2011-06-02 12:00, {4,
2,1, 4, 16}>. This request has id 23, starts at 2011-05-30 18:30, ends at 2011-
06-02 12:00 and demands 5 VMs with capacities 4, 2, 1, 4, and 16 respectively.
All VMs in a request are to start and terminate at the same time.
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Table 2. Symbols used in this paper

Time period that includes placement requests.
Number of placement requests.

Size of the VMSet in the ith request.

i |Capacity requirement of the jth VM in the ith
request.

Number of physical machines.

Existing load of the kth physical machine.

Total capacity of the kth physical machine.

zijx| The placement decision variable. x;;, = 1 iff the
jth VM in request 4 is placed on physical machine
k, and 0 otherwise.

G |Number of overlap sets generated.

Yig |Yig = 1 if the ith placement request is in the gth
overlap set, and 0 otherwise.

Az ==

SIS

Table 2 contains an overview of the symbols used to formulate the load min-
imization placement problem. Now, for a given VM set in a request set R and
a set of M physical machines, the highest utilization of any individual physical
machine can be described by

N N;

i V(i xCis) +w

Lond(R) = M e S i # C) e
ke[1..M] Wi

1)

where 5, is the decision variables for placement, Cj; the VM capacity, and wy,
and W}, the existing load and total capacity of the physical machines. For any
allocation of VMs to physical machines, the following constraints apply:

Vie [1.N],j € [1.N;] :

M
Y wige=1 2)
k=1

Vk € [L..M)]
N N;

i=1 j=1

Constraint (2) specifies that each VM in every placement request has to be
assigned to exactly one physical machine, and constraint (3) describes how the
total capacity of each physical machine cannot be exceeded.

There are multiple possible approaches to the placement request allocation
problem for load minimization. Our first and simplest algorithm is a greedy
formulation that for each VM in each VM set (in order by request start time)
finds the placement that keeps the average load at a minimum. This is done by
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finding the physical machines that provide the worst-fit for each VM, i.e., leaves
the maximum residual capacity. Of course, before placing a certain request, pre-
vious requests that have terminated can be excluded and the physical machines
reused. This algorithm, Greedy Worst-Fit, is defined in Algorithm 1.

Algorithm 1. Greedy Worst-Fit(R)

Input: Placement request set R = {ry,72,...,7n}.
Output: Placement Scheme for R.

Sort all the requests by start-time s;

for 1 <i<ndo

1

2

3 for 1 <j<ido

4 if r; is expired but still being provisioned then

5 exclude r; and release capacities of the physical machines that host

the VMs of rj;

6 end

7 end

8 foreach vm in VMSet; do

9 pmy, < the least loaded physical machine with highest residual capacity;
10 if vm can fit in pm; then
11 | assign vm to pmu;
12 end
13 else
14 no feasible solution;
15 return;
16 end
17 end
18 end

Although the greedy formulation is fast to compute, it does not provide an
optimal solution to the VM placement problem (with respect to load balancing),
as VM placement is a version of the general assignment problem [7]. Our second
algorithm operates in a similar manner to the Greedy Worst-Fit one in that it
considers the placement requests sequentially in order of start time. However,
instead of performing a greedy allocation, the second algorithm finds, for each
point in time when a VM set is about to start, the allocation of all running VM
sets, including the new one, that minimizes the average utilization. This method,
(Sequential) is described in more detail in Algorithm 2 and the mathematical
expressions for load minimization is given by equations (1), (2), and (3). Note
that, in Algorithm 2, the minimization in each iteration (see line 8) treats only
the active request sets.

As the complete set of VM requests are known in advance, we can, at the
expense of additional complexity, solve the load balancing optimization problem
not only for the currently running VMs, but for all VMs. This algorithm is a
knapsack formulation, and is defined in Algorithm 3 (Knapsack).
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0 Time axis H

Fig. 2. Illustration for coexistence of placement requests

One key observation is that two VM sets may use the exact same physi-
cal resources if they do not overlap in runtime. More formally, two placement
requests are coexistent if and only if their lifetimes overlap, i.e., placement re-
quest 1 and ro are coexistent if and only if so < s1 < €2 or 517 < s2 < €.
Figure 2 shows an illustration of coexistence. In this figure, there are 7 place-
ment requests whose start-times are h; (1 < i < 7) for request r;, respectively.
For a given placement request set R, we introduce the notion of QuverlapSets
to define a subset of R where any two requests in the subset are coexistent.
Furthermore, there exists no request in R that is not in OverlapSet that is co-
existent with every request in OverlapSet. For the example in Figure 2, we get
OverlapSets = {{r1,r2},{r2, 73}, {ra, 75,76}, {ra, 76,77} }.

In principle, to calculate the highest utilization of any individual physical
machine during the whole period H, we must generate all OverlapSets, and
compute the maximum load of machines in each OverlapSet after placing all
VMs that run in that set. From the definition of the overlap sets, a straight-
forward recursive algorithm to generate the sets can be derived. However, this
recursion results in an exponential runtime complexity. It is thus a very time-
consuming task to complete generating all OverlapSets when the number of
placement requests is large. For example, in our experiments, the time required
to generate all OverlapSets varied from 0.01 second to 45 minutes.

Algorithm 2. Sequential Placement(R)

Input: Placement request set R = {ri,r2,...,rn}.
Output: Placement Scheme for R.
Sort all the requests by start-time s;
for 1 <i<ndo
for 1 <j<ido
if r; is expired but still being provisioned then
exclude r; and release capacities of the physical machines that host
the VMs of rj;
end

[SLE VR VS

end
Minimize (1) with (2) and (3) as constraints;

end

© 0N o
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Algorithm 3. Knapsack(R)

Input: Placement request set R = {ri,r2,...,rn}.
Output: Placement Scheme for R.
1 Minimize (1) with (2) and (3) as constraints;

We instead use an approximation based on discrete time slots: The time from
the earliest request start-time to the latest end-time is divided into 7" time slots.
Every time slot is examined and placement requests in this slot are collected and
considered as a potential element of OverlapSets (see line 7 in Algorithm (4)).
If a potential element is not a subset of some element in OuverlapSets, it is
finally added to OverlapSets after its subsets (if non-empty) are removed from
OverlapSets (lines 9 — 15 in Algorithm (4)). Obviously, the quality of solution
generated by this algorithm depends on T'. If T is large enough, the solution
is close to the one generated by the exact recursive method. Since the time
complexity of Algorithm (4) is polynomial (©(T *n)), it is much faster than the
recursive formulation even when 7' and n are large. Through experiments, we
note that it takes around 2 seconds to complete the generation process when
T = 10000, H = 24 hours, and n = 1000, whereas with the recursive method,
this problem size would take a day or more.

Algorithm 4. GenerateOverlapSets(R,T)

Input: Placement request set R = {ri,72,...,rn}, the number of time slots 7'
Output: The OverlapSets of R.

1 OwverlapSets « {};

2 Sort all the requests by start-time s;

S = i%m}l]{sz}, E= i]é\[lla%]{ez}, interval = (E — S)/T;

w

4 for 1 <i<T do
5 ts < S+ (i — 1) = interval,
6 te < S + i * interval;
7 currentSet = {r € R | r starts in [ts, te]};
8 should_add < true;
9 foreach P in OverlapSets do
10 if P C currentSet then
11 | OverlapSets < OverlapSets \ P;
12 end
13 if currentSet C P then
14 | should_add < false;
15 end
16 end
17 if should_add then
18 | OwverlapSets «+ OverlapSets U currentSet;
19 end
20 end
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Incorporating the concept of overlap sets, our knapsack algorithm can now be
reformulated as:

Minimize { Maximize Load(R') }
R'€GenerateOverlapSets(R)

Subject to
Vi€ [1.N],j € [1..N;] :

M
ZIl‘jk =1 (4)
k=1

Vk e [1.M], g€ [1.G]:
N
(zijk * Cij * Yig) + wi < Wi (5)
i=1j=1

<

Here, y;4 is a decision variable for coexistence used to determine if two VMs can
use the same physical resources i.e., if they do not overlap in time. Constraint
(4) is the same as constraint (2) and specifies that each VM in every placement
request has to be placed in exactly one physical machine. Constraint (5) is the
capacity constraint for each physical machine, with the coexistence as an addi-
tional feature. This is a Min-Max optimization problem, which is non-linear. To
transform this problem to a linear programming problem, we add u to the list
of unrestricted variables subject to the constraints

VR’ € GenerateOverlapSets(R) : Load(R') < p (6)
and try to minimize pu.

Two steps are required to solve the problem: generation of QverlapSets from
placement requests, and solving the model using the OverlapSets as inputs.
In principle, the solver must enumerate each possible placement scheme, check
whether it is viable, and compare the p to the minimum found so far. There are
multiple potential optimizations to reduce the computation cost for generating
OverlapSets and solving this model. To reduce the search space, we can signifi-
cantly improve the performance of the solver by identifying upper bounds that
are easy to compute. Since Greedy Worst-Fit is polynomial and fast to complete,
we use the approximated load calculated through Greedy Worst-Fit as an upper
bound as shown in Equation (7):

<, (7
where 7 is the highest utilization of any individual physical machine as calcu-
lated by Greedy Worst-Fit algorithm. This optimization tends to reduce the
time required to compute a solution drastically, thus improving scalability. We
refer to this approach that combines upper bound optimizations and overlap
sets as Time-bound Knapsack, as described in Algorithm 5. In this algorithm,
Line 1 calculates the approximative placement using Greedy Worst-Fit algo-
rithm. Lines 2-12 determine the upper bound value for the approximative place-
ment, by finding the highest load for any physical machine that follows the greedy
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placement scheme. Line 13 generates the overlap sets, and Line 14 minimizes the
maximum load.

Algorithm 5. Time-bound Knapsack(R,T)

Input: Placement request set R = {ri,72,...,r,}, the number of time slots 7"
Output: Placement Scheme for R.

1 Execute Greedy Worst-Fit algorithm to initialize variables xjx;

2 v+ 0;

3 for1<i<ndo

4 for 1 <j<ido

5 if r; is expired but still being provisioned then
6 exclude r; and release capacities of the physical machines that host

the VMs of rj;

7 end

8 end

9 if v < Load(r;) then
10 | v+« Load(r:);
11 end
12 end
13 OverlapSets < GenerateOverlapSets(R,T);

14 Minimize p with (4), (5), (6) and (7) as constraints;

4 Evaluation and Discussion

In this section, the four proposed algorithms are studied from three perspectives:
how good they are at finding solutions to the placement problems, the quality of
the found solutions, and the computational complexity. The experimental setup
is a scenario with a cloud provider with 100 physical machines and 32 placement
requests, each with between 1 and 8 VMs (uniformly distributed). As outlined
in Table 3, VM capacity is uniformly distributed between micro (computing
capacity 1) and xxlarge (computing capacity 32). The background load for each
physical machine is uniformly distributed between 20% and 50%. The placement
problems are encoded using the AMPL [9] modelling language and solved with
the Gurobi [1] solver. All experiments are performed on a workstation with a
2.67 GHz quad-core CPU and 4 GB of memory.

To evaluate the performance of our approach with respect to quality of so-
lution, we first perform 1000 experiments with groups of placement requests.
We specify a one minute execution time limit for all algorithms. Even for very
short term peak loads, e.g., hourly spikes, this one minute limit should be short
enough to calculate a placement solution and configure the system accordingly.

Table 4 summarizes the 1000 experiments. We note that Sequential is able
to solve most problems (994), followed by Time-bound Knapsack (923), Greedy
Worst-Fit (870), and Knapsack trailing with 732 successfully solved problems.
Looking closer at the unsuccessfully solved problems, we note that Time-bound
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Table 3. Experiment Setup

H (experiment duration) 48 hours
Number of physical machines 100

Existing load for each physical machine|Uniform(20%, 50%)
UmiTorm(0,7)

Capacity for each physical machine
Number of placement requests 32

Number of VMs in a request Uniform(1, 8)
o Uniform(0,5)

VM capacity demands
Life-cycles of placement requests Uniform(1,H)

Table 4. 1000 groups experiment with 1 minute execution time limitation

Algorithms Feasible Solutions|No Solution|Time-out
Time-bound Knapsack 923 0 7
Knapsack 732 30 238
Sequential 994 4 2
Greedy Worst-Fit 870 130 0

Knapsack encounters no infeasible placements, whereas this happens 4 times
for Sequential, 30 for Knapsack and 130 for Greedy. Considering the problem
instances that could not be solved within feasible time (here selected as one
minute), we note that Greedy always completes within this time, but Sequential
fails in 2 cases, Time-bound Knapsack in 77, and Knapsack in 238 cases. When
combining the two reasons for failing to solve the placement problems, Time-
bound Knapsack and Sequential appear to be the most promising approaches.
Looking further into quality of solutions, we exclude, for each algorithm, the
experiments that could not be solved successfully (or within a minute). The left
part of Figure 3 shows the average load balance (i.e., the maximum load for
any machine during the experiments), including Standard Deviation (SD), for
the successfully solved instances for each algorithm. Here we note that Time-
bound Knapsack result in the best load balance, 71.9% =+ 6.1%, whereas the
three other algorithms all result in loads above 80%, with Sequential the second
best at 80.5% =+ 7.6%. The right part of Figure 3 shows the average execution
time, including deviation, for the successfully solved problems. As expected, the
polynomial Greedy algorithm is the fastest with average execution time less than
0.5 seconds, as compared to 8 seconds for Time-bound Knapsack, 11 seconds for
Sequential, and 13 seconds for Knapsack. For the last three algorithms, there
are large deviations in execution time for successfully solved problems, also after
excluding the experiments that failed to due exceeding the one minute threshold.
To understand the behaviour of the algorithms more in-depth, we focus on
how the maximum load of any physical machine (the load balance) varies over the
48 hours experiment duration for one of the 1000 experiments. As illustrated in
Figure 4, the Greedy algorithm results in volatile loads with large deviations over
time, whereas and Sequential is more stable but still experiences fluctuations. In
contrast, both Knapsack and Time-bound Knapsack are very stable, and keep the
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Fig. 3. Performance and execution time comparison for 1000 tests

maximum load constant for almost the full duration of the experiment. The low
load very early and very late for all algorithms is due to there being few running
VM sets at these points in time. Figure 4 also gives some insight into how often
the algorithms cannot find feasible solutions. For complicated problems with
many VMs, Greedy, Knapsack, and sometimes also Sequential may fail due to
capacity constraints of the physical machines, whereas Time-bound Knapsack is
more likely to find a solution.

To study the computational complexity (execution times) of the algorithms
further, we perform a second experiment with 100 groups of placement requests
where the execution time was unlimited. Here, we focus on the experiments
where the placement took longer than one minute to solve. Table 5 presents
the number of failures (experiments that ran for more than one minute) and
their execution time deviations in the evaluated 100 tests. Here, we observe that
Knapsack exceeds the time limit in 20% of all tests, Time-bound Knapsack in
4% of the tests, and Sequential in a single test, whereas Greedy always completes
well within one minute. Looking at the average execution times for these tests,
we note that Sequential requires 2.6 minutes, Time-bound Knapsack 95 4+ 129
minutes, and Knapsack 346 4+ 788 minutes, i.e., there are a few cases where the
latter two algorithms required several hours to complete. A comparison of the
required execution time and the percentage of problems successfully solved is
shown in Figure 5. This figure illustrates that although the Knapsack and Time-
bound Knapsack algorithms in a few specific cases can be very slow, they most
often generate solutions within a few seconds, and allowing these to execute a
couple of minutes improves the probability of finding a solution substantially.

To summarise these experiments, the Time-bound Knapsack algorithm gen-
erates the best solutions, i.e., finds the placement with the lowest average load,
and is also able to find valid placements in complicated cases where the other
algorithms fail. However, it can at times be very slow to execute. Conversely, the
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Table 5. Number of failures (slow executions) and execution times for 100 tests

Algorithms Failure|Failure execution time (minutes)
Greedy Worst-Fit 0

Sequential 1 26£0
Time-bound Knapsack| 4 94.7 £ 128.6
Knapsack 20 345.5 + 787.5

Greedy algorithm is very fast to compute and should scale well also for larger
problem sizes due to its polynomial complexity. However, it generates placements
with worse load balance and fails to find feasible solutions in some high workload
scenarios. In comparison with these two algorithms, Knapsack performs worse
in overall. Notably, Sequential can be a suitable compromise between quality of
solution and execution time, although it does not excel in either.

5 Related Work

Virtual machine placement across physical servers has recently gained a lot of
attraction. Our previous contributions within this area include integer program-
ming methods to obtain optimal cost-performance tradeoffs in deploying VMs
across multiple clouds [17] and methods to dynamically reschedule VMs (includ-
ing modeling of VM migration overhead) upon changed conditions [12].

Other contributions to VM placement include a binary integer program formu-
lation for cost-optimal scheduling in hybrid IaaS clouds for deadline constrained
workloads is proposed by den Bossche et al. [4]. It is demonstrated that this
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approach results in a tractable solution for scheduling applications in a public
cloud, but that the same method becomes much less feasible in a hybrid cloud
setting due to sometimes having long solving time. Compared to our work, their
approach also considers the life-cycles of workloads, but mainly focuses on cost-
effective scheduling of applications in a hybrid cloud setting. Load balancing
issues are not considered.

Bobroff et al. present a dynamic server migration and consolidation algorithm
to minimize the number of working physical machines without violating SLAs [3].
This work takes only CPU demands into account and uses classification of work-
load signatures to identify the servers that benefit most from dynamic migration.
Using adaptable forecasting techniques well suited for the classification, substan-
tial improvement over static VM placement is shown, reducing the amount of
required capacity and the rate of SLA violations.

A scalable application placement controller for enterprise data centres is pro-
posed by Tang et al. [15]. The objective of this controller is to maximize the total
satisfied application demand, to minimize the number of application starts and
stops, and to balance the load across machines. Compared to existing state-of-
the-art algorithms, this controller can produce within 30 seconds high-quality so-
lutions for hard placement problems with thousands of machines and thousands
of applications. This work is later extended to a binary search based framework
striving to limit the worst case of each individual server’s utilization by Tian et
al. [16]. The system cost, defined as the weighted combination of both placement
change and inter-application communication cost, can be also maintained at a
low level. However, life-cycles of workloads remain unexplored.

Breitgand et al. [5] propose a multiple-choice multidimensional knapsack prob-
lem formulation for policy-driven service placement optimization in federated
clouds, and a 2-approximation algorithm based on a greedy rounding of a linear
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relaxation of the problem. The proposed placement algorithms aims at max-
imizing provider profit while protecting Quality of Service (QoS) as specified
in SLAs of the workloads, and can be used to optimize power saving or load
balancing internally in a cloud, as well as to minimize the cost for outsourcing
workloads to external cloud providers. Breitgand et al. encode load balancing as
the standard deviation of the residual capacity, which is a non-linear function.
A binary search-based heuristic is used to minimize that function, and thus an
optimal solution is not guaranteed.

6 Conclusions and Future Work

We study the VM placement problem for load balancing of predictable and
time-constrained peak workloads. We formulate the problem as a Min-Max op-
timization one and present an algorithm based on binary integer programming,
along with three approximations for tradeoffs in scalability and performance.
An experimental study compares the proposed methods with respect to ratio of
problems successfully solved, quality of solution, and computational complexity.

Future directions for our work include studies of other load balancing met-
rics, e.g., looking at how to minimize the average load over time instead of
the maximum load. Another topic is how to refine the models and replace the
one-dimensional computing capacity performance metric, e.g., with CPU, mem-
ory, disk, etc. as suggested by Breitgand et al. [5] and to incorporate inter-VM
resources such as network bandwidth, as demonstrated by Lampe et al. [11].
Additionally, one interesting feature to consider in optimization is the grouping
of VMs to hosts based on the interference and overhead that one VM causes on
the other concurrently running VMs on the same physical host, as discussed by
Kousiouris et al. [10].
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I. INTRODUCTION

With the rise of virtualization as a platform for hosted
services provision in the context of cloud computing, de-
ployable cloud services are encapsulated in virtual appli-
ances (VAs), and deployed by instantiating Virtual Machines
(VMs) with virtual appliances [18]. This new manner of
service deployment provides a direct route for traditional on-
premises applications to be rapidly redeployed in a Software
as a Service (SaaS [9]) mode. By decoupling the hardware
and operating system of the infrastructure provider from the
application stack provider, virtual appliances allow economies
of scale on the one side to be leveraged by the economy of
simplicity on the other.

In this paper, we present a novel approach to service
deployment, general enough to meet the requirements of a
range of common cloud scenarios, including private clouds,
bursted clouds, federated clouds, multi-clouds, and brokered
clouds. We identify the requirements for service deployment
in these scenarios and present the architecture for a service
deployment tool to meet these requirements. Our proposed tool
interacts with components for, e.g., data management, service
contextualization, service management in its orchestration of
the service deployment process. Our proposed approach is
validated by implementation and integration in a private cloud,

a bursted cloud, and a brokered multi-cloud scenario using
resources at Atos (Barcelona), BT (London), Flexiant (Edin-
burgh), and Umea University (Umea), as well as tools from the
OPTIMIS Toolkit [16] providing the required complementing
functionality.

The remainder of the paper is organized as follows: Sec-
tion II introduces background cloud services and deployment.
Section III describes core requirements for service deployment
in cloud environments. Section IV presents the design of our
service deployment solution. Section V describes a validation
study of our approach in the context of OPTIMIS toolkit.
Section VI outlines the related work of service deployment.
Finally, our conclusions are presented in Section VII followed
by a presentation of future work, acknowledgments, and a list
of references.

II. BACKGROUND
A. Cloud Services

Cloud services can be categorized into Software as a Ser-
vice, Platform as a Service, and Infrastructure as a service, or
SaaS, Paa$, and Iaa$ for short. In a cloud service deployment
scenario the two stakeholders are the Infrastructure Provider
(IP) and the Service Provider (SP). An IP offers infrastructure
resources such as VMs, networks, and storage which can be
used by SPs to deliver SaaS solutions to their customers. The
SPs can also use PaaS tools to develop their services, or offer
this functionality to their customers who may want to construct
and deploy custom services. Without loss of generality, we
concentrate in this contribution on the cases where an SP or
an IP deploys services to an IP providing IaaS.

Deployable Services: Cloud systems offering IaaS are
based on virtualization technology which means that a de-
ployable cloud service is in fact a VM or a collection of
VMs together with an description of the service, a service
manifest. The manifest typically consists of sections describing
what components the service is composed of along with
functional and non-functional requirements for a deployment
target. We refer to VM of a certain type as a component
and note that a service can consist of multiple components.
For example, a three-tier web application service may con-
sist of a database component (e.g., MySql), an application
component (e.g., Weblogic server [8]), and a presentation
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layer component (e.g., Apache server). The service manifest
can also define elasticity rules for the service, i.e. upper and
lower bounds for how many instances of a component that are
allowed to run. Commonly, associated with elasticity bounds
are elasticity rules for when to scale up or down, which can
range from simple condition-action statements to complex ex-
pressions that reason about statistical properties of the service
workload. In addition, a service manifest typically contains
various constraints such as desired geographical location, and
data protection requirements, etc.

The service lifecycle: The lifecycle of a cloud service can
be summarized as construction, deployment, operation, and
undeployment. In the construction phase, the service applica-
tions (Virtual Appliances) are implemented and packaged into
a set of VMs. The construction of the above discussed service
manifest ends the service construction phase. The service
deployment includes identification of a suitable deployment
target, installation of the service VMs in the selected provider,
and initialization of these VMs by the provider, i.e., VMs
are booted, configured, and start to deliver the service. In the
operation phase, the IP, and potentially also the SP, perform
a set of management actions to ensure efficient and robust
provisioning of the service. Once the service is no longer
needed, it can be undeployed by the SP, upon which the IP
shuts down the running VMs and removes any assets of the
service. Notably, multiple instances of the same service can
be created from a service manifest and these instances can be
shutdown or restarted as needed.

B. Deployment scenarios

Cloud environments can be set up differently depend-
ing on the types of interaction between the collaborating
sites [27], [11]. For example, an SP can set up a cloud
infrastructure for its own internal use, commonly referred to as
a private cloud, which is illustrated in Figure 1. Private clouds
can circumvent many of the security and privacy concerns
related to hosted sensitive information in public clouds, the
latter a case where the SP leases IaaS resources publicly
available IPs. Private clouds may also offer stronger guarantees
on control and performance as the whole infrastructure can be
administered within the same domain.

Private cloud.

Fig. 1.

Private clouds may offload capacity to other IPs under
periods of high workload, or for other reasons, e.g., planned
maintenance of the internal servers. In this scenario, the
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providers form a hybrid architecture commonly referred to as
a cloud bursting as seen in Figure 2. Typically, less sensitive
tasks are executed in the public cloud instead while tasks that
requiring higher levels of security are provisioned the private
infrastructure.

Infrastructure Provider (IP)

Fig. 2. Bursted (private) cloud.

Federated clouds are IPs collaborating on a basis of joint
load-sharing agreements enabling them to offload capacity
to each others [27] in a manner similar to how electricity
providers exchange capacity. The federation takes place at the
IP level in a transparent manner. In other words, an SP that
deploys services to one of the IPs in a federation is not notified
if its service is off-loaded to another IP within the federation.
However, the SP is able to steer in which IPs the service may
be provisioned, e.g., by specifying location constraints in the
service manifest, Figure 3 illustrates a federation between three

IPs.

Infrastructure Provider (IP) )¢ Infrastructure Provider (IP) )

Fig. 3.

Infrastructure Provider (IP)

If the IP itself is involved in selecting which IP a service
should be deployed or re-deployed to the scenario is known as
a multi-cloud. In multi-cloud deployments, such as in Figure 4,
the SP is responsible for planning, initiating and monitoring
the execution of services. Notably, we are implicitly consider-
ing split deployment scenarios, i.e., when the components of
the service are deployment across multiple IPs.

Cloud federation.

Service Provider (SP)

Infrastructure Provider (IP)

Infrastructure Provider (IP)

Fig. 4.

Multi-cloud scenario.

A related scenario is when a cloud broker [32] handles the
complexity of prioritization and selection of IPs, and may also
offer value-add services to IPs and SP. In this case, the broker



has agreements with a number of IPs and selects the best
match for a service based on the SP’s desired criteria. The
broker operates between the SP and the IPs, offering an IP-
like interface to SPs and an SP-style one to IPs, as illustrated
in Figure 5.

Service Provider (SP)

Infrastructure Provider (IP)

Infrastructure Provider (IP]

Fig. 5. Brokered scenario.

ITI. REQUIREMENTS FOR SERVICE DEPLOYMENT

Based on the service lifecycle and the various cloud archi-
tectures discussed in Section II, we identify the below list of
requirements for service deployment. Notably, the order and
exact details of what is performed in each step of the service
deployment process may vary with the deployment scenario,
but the following tasks are always performed.

o Discovery of IPs. This step is about identifying IPs that
are available for deployment. IPs can be discovered by
looking them up in a registry or by using auto-discovery
mechanisms. We remark that discovery (along with the
later filtering and selection) of an IP is trivial in the
private cloud case, as a single IP is available.
Filtering of available IPs. In order not to add overhead
by negotiating deployment with IPs that fail to fulfill
fundamental requirements for the particle service to be
deployed, an initial filtering of the list of IPs retrieved
during IP discovery must be possible. Criteria for fil-
tering include both functional aspects, e.g., support for
certain hypervisors and VM image formats, as well as
non-functional criteria such as constraints based on the
country in which the IP is based (for legal and/or data-
protection reasons).
Construction of deployment descriptor. Each service must
be defined a service description that specifies the func-
tional and non-functional parameters of the service. A
service description is an abstract definition of the service,
which is used to negotiate with IPs and later becomes
part of the service agreement with the IP. Data specified
in the service description, i.e. VM disk images, must also
be prepared. A set of utilities for creation, modification,
etc. of service manifests would greatly simplify this
procedure.
o Negotiation and deployment optimization. It must be
possible for an SP to negotiate with available IPs and
ask these to provide offers for hosting the service (or

parts of it). Based on the results these negotiations and
data such as reputation statistics that could be evaluated
by a third-party entities, the SP must be able to make a
decision about where to deploy the service.

e Service contextualization. Before a service can be de-
ployed, some information required to launch the service
successfully, which is not known at the moment of
VM image generation must be propagated to the IP. A
possible mechanism for this contextualization process is
to embed various scripts in the VM images that upon
boot dynamically retrieves information such as network
parameters, security credentials, etc., enabling the VM to
self-contextualize.

o Service data transfer. It must be possible to transfer the
contextualized VM images along with any other data
required by the service to the IP. To be able to guarantee
properties such as confidentiality and integrity of data
during this transfer, a set of security mechanisms are
required.

o SLA creation. To ensure that the service operates ac-
cording to the SP’s expectations, it must be possible to
establish and SLA that governs the relationship between
the SP and IP for the provisioning of the service. Penalties
may be agreed upon in the case of non-compliance with
the SLA. An SLA for service provisioning commonly
includes segments that address: a definition of the ser-
vice, performance measurements, problem management,
customer duties, warranties, disaster recovery, as well as
conditions for termination of the agreement [1].

Notably, these requirements for service deployment have
significant similarities with the tasks identified in the overall
process for resource selection (scheduling) in Grid computing
environments [29].

IV. SDO ARCHITECTURE

Based on the requirements study in the previous sections, we
derive a general sequence for service deployment, containing
the tasks to be performed. In this process, illustrated by the
sequence diagram in Figure 6, the complexity of each task
vary with the deployment scenario (private cloud, federation,
bursting, etc.).

Notably, Step 1, service construction, is identifical no matter
the scenario, an SP constructs (implements, packages, etc.)
a service the same way no matter how it will be deployed.
Step 2, identification and filtering of suitable IPs, is trivial
for SPs in the private cloud case, as there is a single, well-
known IP available. This step is also relatively easy in cloud
brokering scenarios, but more difficult in federation and multi-
cloud cases.

Most of the algorithmic complexity in service deployment is
associated within the related tasks of SLA negotiation and IP
assessment (Steps 3 and 4 in Figure 6). For the scenarios where
the SP interacts with a single provider (the private cloud IP or
the broker), these tasks are simplified. Conversely, for federa-
tion, bursting, multi-cloud deployments, interaction with more
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than one IP complicates the process. The richness of the nego-
tiation protocol can range from simple versions with primitives
such as offer, accept, and refuse, to more complicated versions
with counter-offers, etc., to approaches based on auctions. An
in-depth analysis of negotiation protocols is beyond the scope
of this paper. Further details on this topic are given, e.g., by
Sarangan et al. [28] and Jennings et al. [17]. Similarly, for IP
assessment, the complexity of estimating the utility associated
with deploying the service in each potential provider can differ
significantly based on the modeling method used. Algorithms
proposed for optimizing provider selection include scheduling-
inspired combinatorial optimization approaches such as integer
programming, which are commonly suggested [14], [32], but
tend to scale very poorly with the number of IPs. Others
recommend heuristic solutions [23] that trade optimality for
faster decision-making.

Once the most suitable provider (or potentially, set of
providers in the multi-cloud case) is identified, the SP performs
contextualization (Step 5 in the sequence diagram) to prepare
the service VM images with any dynamic information that is
needed for these to boot and configure themselves properly.
This step may be more complicated if split deployment is
performed for multi-clouds, as an external rendezvous mecha-
nism typically is required in order to initialize cross-provider
networking for the VMs of the service.

After VM images are properly configured, these are up-
loaded to the target provider(s) as illustrated in Step 6 of
Figure 6. As VM images typically are very large files, sig-
nificant performance gains can be achieved by proper tuning
of network parameters. In private clouds where a network file
system may connect IP and SP, image transfer is much less
of an issue. Alternatively, if some public IP does not support
upload of SP-defined VM images, a custom service image
must be pre-created (based on templates from the provider)
and stored at that IP. In such a case, contextualization abilities
are significantly reduced.

When the contextualized VM images are stored in the IP,
the SP confirms the offered negotiated in Step 3 and an SLA
is created between the SP and the IP for the provisioning of
the, as illustrated in Step 7. Once again, this step is more
complex for multi-clouds, where the SP need to aggregate
multiple SLAs from different IPs.

Finally, Step 8 in Figure 6 illustrates that once the service
is deployed, the SP stores some state information about it,
to enable subsequent service monitoring, management, and
undeployment.

To fulfill the requirements of service deployment and per-
form the steps in Figure 6, we propose a Service Deployment
Optimization (SDO) architecture. The purpose of the SDO
tool is two-fold - it is responsible for generating optimal
deployment solutions for a service, and for coordinating the
deployment process in order to provision a service in IP(s)
according to the deployment plan. In order to separate the
placement optimization from the deployment coordination
functionality, the SDO is split into two components, the
Service Deployer (SD), and the Deployment Optimizer (DO),
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both illustrated in Figure 7. The DO is a decision-making
component and the SD is a module that orchestrates the
DO and various utility functionalities in order to perform the
deployment sequence described in Figure 6.
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Fig. 7. Overview of SDO architecture.

We outline the main design rationale for the SD and DO
components below, as well as discuss how they interact with
each other and related utility functionalities for data transfer,
etc.

A. Service Deployer

The SD is designed to coordinate the deployment and
interact with the other involved parties in a deployment.
The SD takes a service deployment request, contacts the IP
discovery service to obtain which providers are available and
performs filtering (see steps 1-2 in Figure 6). To retrieve
an optimal placement scheme, SD contacts the DO who
performs calculation for placement optimization. Once an
optimal placement solution is returned, the SD deploys a whole
service following steps 5-8 in Figure 6 with the support of



external components. Service Contextualization is in charge of
contextualizing VM images, Data Management is responsible
for data transfer from the SP side to the IP side, Service
Management creates service resource and updates resource
accordingly, and SLA Management handles the IP side creation
of agreement.

B. Deployment Optimizer

The DO’s inputs from the SD include a service mani-
fest, the optimization objective, and available IP info, etc.
Based on those parameters, the DO generates an optimal
placement scheme for the service. In order to achieve an
optimal placement objective, the DO may split services that
contains more than one component into several sub-services,
and map them to different IPs. This is provided it can do so
without breaking affinity constraints specified in the service
description, During the calculation, the DO negotiates with
IPs and the IP assessment tools, see steps 3-4 in Figure 6.
Optimization techniques such as combinatorial optimization,
problem relaxations and heuristic approaches such as greedy
formulation can be applied in this component.

V. VALIDATION STUDY

In order to verify that our service deployment architecture is
suitable for the envisioned cloud architectures, we perform a
validation study. The study is carried out in the context of the
OPTIMIS Toolkit [16], which includes a set of independent
components that can be adopted, either in full or in part, by IPs
that provide infrastructure resources, and by SPs that use these
capacities to deliver services. The study comprises three cloud
service deployment scenarios: private cloud, cloud brokerage,
and cloud bursting.

In these three scenarios, the service we use for validation
is a composite service for gene detection presented in [31].
This service contains five components. First, there are four
functionality components which contribute to the overall gene
detection process: translation of the input genomic database
to a given format (component GA); obtention of a list of
aminoacid sequences which are similar to a reference input
sequence (component GB); search of the relevant regions
of the genomic database (component GC) and execution
of the GeneWise [13] algorithm on them (component GD).
Additionally, there is one component for coordination (com-
ponent GP). Each component can be encapsulated in a VM
sized approx 9.8 GB. To avoid repetitive data transmission,
only one VM image is transferred from SP to IP if there are
multiple components deployed to the IP, while in this case
multiple VM instances are to be started using the same image
with different contextualized data.

For the validation, we use a distributed testbed with four
IPs located across Europe: Atos [2] (Spain), BT [3] (UK),
Flexiant [4] (UK) and Umeé University (Sweden). Each IP
site hosts selected parts of the OPTIMIS Toolkit, as well
as fundamental management software such as Xen [5] and
Nagios [6]. The role of the IPs in the different scenarios is
summarized in Table I. Notably, our goal is not to evaluate

the various providers but rather to investigate how well our
proposed approach adapt to real scenarios.

TABLE I
USE CASE CONFIGURATIONS
Atos | BT | Umed University | Flexiant
Private Cloud v
Cloud Brokerage v v v v
Cloud Bursting v v

A. SDO in OPTIMIS

In the integration with OPTIMIS, the SDO interacts with
the following external components altogether providing the
functionality of the external components illustrated in Figure 7.

o IP Discovery: IP information is registered in a simple on-
line registry accessed through a REST interface. In this
registry, information such as IP identifier, IP name, and
endpoints for negotiation, etc., are stored.

o VM Contextualization: This component provides an in-
terface for constructing service context data, such as
security certificates, VPN hostnames, VPN DNS and
Gateway IP addresses, mount points for network data
stores, monitoring manager hostnames, off-line software
license tokens and a list of software dependencies [12].

o Data Manager: A Front-end, Hadoop-based [7] Data
Management service enriched with RESTful APIs in front
of Hadoop and a series of components that aim to extend
Hadoop’s functionality beyond its well known back-end,
heavy data processing scope [21].

e SLA Management: A service and client based on
‘WS-Agreement protocol [10] for negotiating and creat-
ing Service Level Agreements between IP and SP [22].

o Infrastructure Provider Assessment: In OPTIMIS, deploy-
ment decision is based on four key factors - trust, risk,
eco-efficiency and cost (TREC). TREC parameters are
used by DO to perform IP assessments.

B. Scenarios Descriptions and Statistics

o Private Cloud

Fig. 8.

Private scenario.

In the Private Cloud scenario, the SP (also located in the
Atos cloud) submits the gene detection service deploy-
ment request to the Atos cloud. All components (GA,
GB, GC, GD, and GP) are deployed to the Atos IP.
o Cloud Brokerage (Multi-Cloud)

In the Cloud Brokerage scenario, two SDO instances are
running: one in the Umead cloud, which plays the role of
an SP. The other one is located in the BT cloud, which
plays the role of a Cloud broker. The SP submits the
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gene detection service deployment request to the Umeé
cloud. Instead of deploying the service by itself, the
SDO in the Umea cloud calls the SDO on the broker to
complete the deployment. There are three IPs registered
in the IP registry which can be queried by the SDO
in the BT cloud. After the by Deployment Optimizer’s
calculations (including IP assessment, negotiation, and
placement optimization) two IPs are selected to host the
service. Specifically, two components (GC and GD) are
to be deployed to Flexiant cloud, the other three (GA,
GB, and GP) are to be deployed to the Atos cloud. For
the purpose of this demonstration, VM images are stored

on the broker in advance.
e

o Cloud Bursting
Fig. 10. Cloud bursting scenario.

Umed

In the Cloud Bursting scenario, the service is already
deployed in the Flexiant cloud. To fulfill a demand for
increasing service capacity from the SP, the Flexiant
cloud needs to launch two more instances respectively
for two of the five components (i.e., GC and GD) in
the service. For financial reasons, the Flexiant cloud
decides to outsource this demand to a more cheaper cloud
provider, i.e., Atos cloud, while maintaining its SLA-
agreement with SP.

C. Experimental results

In order to assess the performance of the SDO and the
complexity of the service deployment process as such, we
measure the duration of the main steps of deployment for
each studied cloud architecture. Table II presents statistics of
time consumed in each phase of service deployment for each
scenario.

From this table, we conclude that the major part of the time
is used to transfer VM images from the SP to the IP. Notable,
the differences in image transfer time among the scenarios are
due to the complexity of the placement scheme. For the private
cloud scenario, all components are deployed to Atos. Only one
VM image needs to be transferred internally. For Multi-Cloud
scenario, two VM images are transferred, one from BT to Atos
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TABLE II
ILLUSTRATIVE PERFORMANCE RESULTS FOR THE DEMONSTRATED
DEPLOYMENT SCENARIOS (SECONDS)

Deployment Phases Private | Multi-Cloud | Cloud Bursting
IP Discovery 0 2 1
Placement Calculation 2 108 13

VM Contextualization 11 19 15

Data Upload 598 1546 701
Service Resource Creation 4 4 2
Agreement Creation 12 23 17

(for components GA, GB, and GP), the other one from BT to
Flexiant (for components GC and GD).

Another observation is that placement calculation becomes
more complex in the multi-cloud case, where the number of
potential service configurations is much larger than for the
private and bursting cases. During the brokering case, multiple
negotiations are performed between BT cloud and Atos cloud,
and Flexiant cloud for cost inquiry. In addition, IP assessment
is also based on IP evaluations in terms of trust, risk-level, and
eco-efficiency which are independently verified by querying a
trusted database containing historical information pertaining
to these factors .

In summary, the Private Cloud scenario demonstrates how
the SDO can be used to complete a service deployment in
general. The Cloud Brokerage scenario demonstrates cloud
brokerage and federation across multiple cloud providers. The
Cloud Bursting scenario shows how organizations can utilize
the SDO to scale out their infrastructure, using resources from
third-party providers based upon a range of factors such as
trust, risk assessment [20], eco-efficiency and cost.

VI. RELATED WORK

Talwar et al. [30] review approaches for service deployment
before the emergence of Cloud Computing. They compare
and evaluate four types of service-deployment approaches,
i.e., manual, script-, language-, and model-based solutions, in
terms of scale, complexity, expressiveness, and barriers for first
usage. They also conclude that service deployment technolo-
gies based on scripts and configuration files have limitation to
express dependencies and verify configurations, and usually
result in erroneous system configurations, while language-
and model-based approaches address these challenges with
comparatively higher barriers for first usage.

With the emergence of Cloud Computing, services are
provisioned using virtual machines. Service deployment can
be done by initializing virtual machines with their virtual
appliances. Cloud users are enabled to deploy applications
without confronting the usual obstacles of maintaining hard-
ware and system configurations. Lots of work have been done
in the context of this new service-deployment technology.
Most of these are focusing on approaches to optimization,
e.g., Kecskemeti et al. [19] who propose an automated virtual
appliance creation service that aids the service developers to
create efficiently deployable virtual appliances. They reduce
deployment time of the service by rebuilding the virtual appli-
ance of the service on the deployment target site. For optimal



virtual machine placement across multiple cloud providers,
Chaisiri et al. [14] propose an stochastic integer program-
ming (SIP) based algorithm that can minimize the cost spent in
each placement plan for hosting virtual machines in a multiple
cloud provider environment under future demand and price
uncertainty. Similarly, Vozmediano et al. [26] [25] explore the
multi-cloud scenario to deploy a computing cluster on top
of a multi-cloud infrastructure, for solving loosely-coupled
Many-Task Computing (MTC) applications. In this way, the
cluster nodes can be provisioned with resources from different
clouds to improve the cost-effectiveness of the deployment, or
to implement high-availability strategies.

Our previous contributions in this field include a cloud
brokering mechanisms [32] for optimized placement of VMs
to obtain optimal cost-performance tradeoffs across multiple
cloud providers in static scenarios, and a linear programming
model to dynamically reschedule VMs (including modeling
of VM migration overhead) upon changed conditions such as
price changes, service demand variation, etc. in dynamic cloud
scheduling scenarios [24], as well as an approach to optimal
virtual machine placement within datacenters for predicable
and time-constrained load peaks [23].

However, although algorithms for optimizing service de-
ployment is a very active area of research, and a lot of interest
is given to the various deployment architectures in general, we
have not been able to identify any results on the topics of this
contribution, namely architectures and tools general enough to
support all current deployment scenarios.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a general approach to automatic
service deployment in cloud environments, based on our study
of cloud architectures and deployment scenarios and the core
requirements for service deployment derived from these. A
validation study performed in the context of the OPTIMIS
Toolkit verifies the feasibility of a general service deploy-
ment component that can be reused across multiple cloud
architectures. Our validation study also gives some indications
about the performance aspects of cloud service deployment,
identifying transfer of VM images as the most time-consuming
task.

Future directions for this work includes in-depth studies
of algorithms for optimized selection of deployment targets.
Another topic of future research is the incorporation of
re-deployment, i.e., migration of the full service, or some of its
components, to other IP(s) during operation [15]. Reasons for
re-deployment include improved performance, and improved
cost-efficiency. In such scenarios, a careful tradeoff between
re-deployment overhead and expected improvement must be
considered [24]. Additionally, a model of interconnection
requirements that can precisely express the relationships be-
tween components within a service to be deployed can be
another promising direction to investigate. Such a model can
help SDO optimizing the service deployment with e.g., less
communication cost between service components. In addition,
we are working on a specific scenario where cloud users can

specify hard constraints and soft constraints when demanding
resource provisions. A hard constraint is a condition that has
to be satisfied when deploying services, i.e., it is mandatory. In
contrast, a soft constraint (also called a preference) is optional.
An optimal placement solution with soft constraints satisfied
is preferable over other solutions. We are also investigating
how to apply multi-objective optimization techniques to this
scenario.
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