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Department of Computing Science





Complexities of Parsing in the
Presence of Reordering

Martin Berglund

LICENTIATE THESIS, APRIL 2012
DEPARTMENT OF COMPUTING SCIENCE
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Abstract

The work presented in this thesis discusses various formalisms for representing the
addition of order-controlling and order-relaxing mechanisms to existing formal lan-
guage models. An immediate example is shuffle expressions, which can represent not
only all regular languages (a regular expression is a shuffle expression), but also fea-
tures additional operations that generate arbitrary interleavings of its argument strings.
This defines a language class which, on the one hand, does not contain all context-free
languages, but, on the other hand contains an infinite number of languages that are
not context-free. Shuffle expressions are, however, not themselves the main interest of
this thesis. Instead we consider several formalisms that share many of their properties,
where some are direct generalisations of shuffle expressions, while others feature very
different methods of controlling order. Notably all formalisms that are studied here

• have a semi-linear Parikh image,

• are structured so that each derivation step generates at most a constant number
of symbols (as opposed to the parallel derivations in for example Lindenmayer
systems),

• feature interesting ordering characteristics, created either by derivation steps
that may generate symbols in multiple places at once, or by multiple generating
processes that produce output independently in an interleaved fashion, and

• are all limited enough to make the question of efficient parsing an interesting
and reasonable goal.

This vague description already hints towards the formalisms considered; the different
classes of mildly context-sensitive devices and concurrent finite-state automata.

This thesis will first explain and discuss these formalisms, and will then primarily
focus on the associated membership problem (or parsing problem). Several parsing
results are discussed here, and the papers in the appendix give a more complete picture
of these problems and some related ones.
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Preface

This thesis consists of an introduction which discusses some different language for-
malisms in the field of formal languages, touches upon some of their properties and
their relations to each other, and gives a short overview of relevant research. In the
appendix the following three articles, relating to the subjects discussed in the intro-
duction, are included.

Paper I This is an as of yet unpublished version combining and updating the con-
tent of the following two papers.

Martin Berglund, Henrik Björklund, and Johanna Högberg. Recogniz-
ing shuffled languages. Technical Report UMINF 11.01, Inst. Comput-
ing Sci., Umeå University, Available at http://www8.cs.umu.se/
research/uminf/index.cgi?year=2011&number=1, 2011.

Martin Berglund, Henrik Björklund, and Johanna Björklund.Recognizing
shuffled languages. Proc. Language and Automata Theory and Applica-
tions. (2011) 142–254.

Paper II Martin Berglund. The membership problem for the shuffle of two de-
terministic linear context-free languages is NP-complete. Technical Re-
port UMINF 12.09, Inst. Computing Sci., Umeå University, Available
at http://www8.cs.umu.se/research/uminf/index.cgi?
year=2012&number=9, 2012.

Paper III Martin Berglund. Analyzing edit distance on trees: tree swap distance
is intractable. In Jan Holub and Jan Žďárek, editors, Proceedings of the
Prague Stringology Conference 2011, pages 59–73, Czech Technical Uni-
versity in Prague, Czech Republic, 2011.
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CHAPTER 1

Introduction

This thesis studies the impact of reordering in formal languages in the context of
parsing. Specifically, it has its basis in common formal language formalisms like
context-free grammars, and adds additional order-controlling and/or order-relaxing
mechanisms that allow reorderings to be performed in the derivation procedure. This
is of great interest, as many both practical and theoretical processes have properties
that are easy to describe in terms of (re)ordering. Consider as a starting point this
introductory example.

Example 1.1 (Multi-Process Interleaving) An instance of the computer program P
produces as output a sequence of symbols on the communication channel C. We
have a context-free grammar G which can recognize whether this symbol sequence
corresponds to a valid run of P (that is, the instance of P completing its run correctly).

Now we start n instances of P, all connected to the same communication channel
C at the same time, which will arbitrarily interleave their output symbols as they run.
Can we modify G to recognize whether the output on C corresponds to all n instances
of P running correctly? �

This type of problem is very difficult but is of great interest in program verification.
Still, this is only one aspect of what will be discussed here. Before we get to the
specifics of this however, let us recall some of the basic facts about formal languages.

1.1 Formal Languages

Formal languages is a very large area of study, with innumerable applications. The
oldest and most central part of formal languages is concerned with string languages. A
string is a finite sequence of symbols from an alphabet, a finite set of symbols, usually
denoted Σ. We will use the Latin alphabet Σ = {a,b,c, . . .} here. A formal (string)
language is then a (potentially infinite) set of strings. Trivial examples of formal
languages include the empty set /0 and the set of all possible strings, denoted Σ∗. The
first key consideration about formal languages is how they can be formally described.
The languages will often be infinite, Σ∗ being the trivial example, but they need to be
described in finite space to make it possible to work with them computationally.

Formally defined sets of strings are at the core of formal language theory, but
this is in itself a rather wide concept. Many diverse computational problems can be
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Chapter 1

phrased in terms of formal languages, and as such the focus lies in defining classes of
formal languages which can be described by a specific type of formalism. It is easy
to describe any finite language (finite set of strings) by simply exhaustively listing
the elements, however, for infinite languages some finite description is necessary (for
very large finite languages a succinct description is also of interest). In the case of
natural languages, for example english, linguists construct grammars which describe
how words can be combined into sentences. These grammars are fairly small and at-
tempt to describe how to generate all the sentences in an ostensibly infinite language.
Context-free grammars are an example of a formal-language formalism that functions
in a similar way. A context-free grammar G specifies rules for combining symbols,
generating a potentially infinite language, denoted L (G). Not all languages can be
generated by a context-free grammar, for example {anbncn | n ∈ N} (that is, the lan-
guage {ε,abc,aabbcc,aaabbbccc, . . .}) is not generated by any context-free grammar.
It is also common to consider an automaton A, and define the language L (A) as ex-
actly the strings on which A accepts (halts successfully). That is, s∈L (A) if and only
if A accepts when given s as input. The distinction between automata and grammars
is primarily a question of which phrasing is more convenient for the formalism and
problem at hand.

1.2 Computational Problems in Formal Languages

With a formalism for generating languages in hand there are various questions that
can be asked. For example, the emptiness problem; given an automaton/grammar G,
is the language L (G) empty? This is easy to compute for context-free grammars
(the opposite, whether a given grammar accepts all strings is undecidable, however).
Problems that deal with the languages as a whole are also interesting, for example,
does there for any context-free languages L1 and L2 (a context-free language is a
language that can be generated by a context-free grammar) necessarily exist a context-
free grammar that generates L1 ∪L2? This is in fact the case, but does not hold for
L1∩L2. The problem we are primarily concerned with here however is membership,
determining whether a string belongs to a language or not. This problem comes in
three flavors, first the most direct one.

Definition 1.2 (The Uniform Membership Problem) Let G be a class of formal de-
vices (e.g., grammars or automata) such that each G ∈ G defines a formal language
L (G). The uniform membership problem for G is “Given a string w and some G ∈ G
as input, is w in L (G)?” �
It is, however, very common that we are unconcerned about the exact formalism G by
which the language is represented. That is, we are in a situation where the language is
known in advance and can be coded into the most efficient representation imaginable,
making the size of the string the real concern. This gives rise to the non-uniform case.

Definition 1.3 (The Non-Uniform Membership Problem) Let L be any language.
Then the non-uniform membership problem for L is “Given a string w as input, is
w in L?” �

2
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Thirdly there is the problem of parsing. This is the problem of, once it has been de-
termined that a string w belongs to a language L (G), describing in terms of G how w
was generated (or accepted). In most cases the solution to this problem follows natu-
rally from any algorithm that can solve the problem in Definition 1.2 (or Definition 1.3
with a grammar/automaton fixed). Thanks to this fact the membership problems will
be the ones considered throughout this thesis, despite the parsing problem ultimately
being of real interest.

1.3 Formalisms Controlling Order

The nature of ordering is central to the difference between the less powerful language
classes at the bottom of the Chomsky hierarchy (i.e., smaller classes strictly contained
in for example the context-sensitive languages). In a seminal paper from 1966 Rohit
J. Parikh [Par66] demonstrated that if the order of the symbols in strings is “ignored”
the context-free languages are no more powerful than the regular languages: both are
exactly the so-called semi-linear sets. In addition a wide variety of language models
have been defined in the “mildly context-sensitive” class, which requires languages to
have exactly this unordered semi-linearity property (depending slightly on the source),
while providing strictly more power than the context-free languages.

Looking at Parikh’s theorem from this perspective intuitively demonstrates just
how much the addition of reordering operations can change the structure of a language
class and make it more or less powerful. Where taking away the ordering entirely from
context-free languages makes them in a sense loose some of their characteristics it is
also possible to for example add some reordering operations to regular expressions to
make them yield languages that are not even context-free. Finding mechanisms for
controlling ordering which do not cause the resulting language class to be intractably
hard to parse is not an easy task.

As a straightforward example, the language anbncn is famously not context-free,
but reordering the symbols conveniently yields the regular language (abc)n, and the
language of all reorderings of anbncn is the set of all strings over {a,b,c} with equal
numbers of as, bs, and cs. This language is matched by a shuffle expression, an
extension of regular expressions that is treated in Paper I.

To make things more concrete there are two ways to affect and control order that
will be considered here.

Shuffle languages. For the most basic setting, consider the situation illustrated in
Figure 1.4. Here a number of automata instances, let us call them A1, . . . ,Ak, (these
might be finite automata, or push-down automata, etc.) work on the same string at
the same time, each symbol being non-deterministically read by one of the automata,
while the others are unaware that a symbol has been read. If all k automata have
reached an accepting state at the end of the string the whole input string is accepted.
Another way to view this is to ask if the string can be divided into k subsequences
s1, . . . ,sk such that si is accepted by Ai for each i. Intuitively this simply means that s
can be produced by interleaving the strings s1, . . . ,sk, but a full definition is given in
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Chapter 1

· · ·

Figure 1.4: An overview of the automata view of shuffling. Several automata share
the same read head. Each symbol in the string is non-deterministically read by one
of the automata, the common read head is then stepped forward (i.e., working left to
right), leaving all the other automata effectively unaware of the step.

Definition 2.1 in Chapter 2.
It is a small leap to give a more complete picture of the automata defined in Paper I.

In Figure 1.5 the automata are finite-state, but instead feature the ability to spawn child

· · ·

Figure 1.5: Extending the picture in Figure 1.4, Paper I effectively considers a process
hierarchy in which the individual processes are (an extended type of) finite automata.
The leaf automata all read from the string in the same mode as in Figure 1.4, and
automata are able to launch child automata, at which point they are suspended until
all children have accepted.

automata. Only “leaf” automata actually run, reading from the string (again non-
deterministically ordered) and possibly spawning child automata of their own. When
an automaton reaches an accepting state it disappears, possibly making its parent a leaf
once more, allowing it to continue running. This allows various types of formalisms
to be implemented, many of which can be isolated by syntactical restrictions on one
of these automata.
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Synchronized substrings. The second type of control over ordering to be studied is
almost the opposite, see Figure 1.6. The formalisms intended here are slightly harder

Figure 1.6: A high-level overview of the second type of reordering that will be con-
sidered, where one automaton has multiple (a constant number) of reads heads simul-
taneously operating on separate parts of the string.

to describe in an informal way, but a good starting-point is to consider an automaton
with multiple read heads (but still only a constant number) operating on different
parts of the string. Intuitively, each head is responsible for processing an isolated
substring. Notably a push-down automaton of this type, with k read heads, can accept
the language {wk | w ∈ L,k an integer constant} for any context-free language L. This
description is of course vague (leaving out how the read heads can be created and
placed), and the formalisms later covered take a different more precise form. Rather
than being featured in-depth in the papers, this type of reordering is the subject of
ongoing research and is therefore brought up here to give a more complete overview.
Moreover, Paper III considers a somewhat similar case.

Problems considered. In both types of formalisms what is of primary interest is
parsing, here simplified into the membership problem (recall Definitions 1.2 and 1.3).
The core results from the papers in the appendix that are touched upon here are in
the area of shuffle, but the synchronized substrings type of reordering can be con-
sidered as a contrast. The general formulations of these problems are unfortunately
NP-complete, and are as such not efficiently decidable unless P = NP. Luckily re-
strictions of various kinds yield better results, where polynomial parsing algorithms
are possible. Importantly, the non-uniform membership problem is solvable in poly-
nomial time for the synchronized substring formalisms considered, and for several
restrictions of the general shuffle formalism (e.g. shuffle expressions).

Another less formal but more overarching question to consider is how the differ-
ences between the shuffle formalisms and synchronized substring formalisms show up
in the languages generated.
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CHAPTER 2

Shuffle Languages

In this chapter a specific type of device for the description of shuffle languages is
considered, the Concurrent Finite-State Automaton, or CFSA for short, introduced
in Paper I. It will be informally defined and several examples will be considered to
prepare for a discussion of the contents of Paper I, as well as to compare CFSA to
the synchronized substrings formalisms discussed in the following chapter. Shuffling
has a rich history of publications beyond the papers included here however, and Sec-
tion 2.4 gives a summary of some of the important literature.

2.1 Shuffle Formalisms

These formalisms are named after the shuffle operation, an important building-block
for describing the languages that can be generated. It is based on the idea of interleav-
ing strings, as was already discussed in Chapter 1. Let us now properly define what it
means to divide a string into subsequences.

Definition 2.1 (Dividing a String Into Subsequences) The integer sequence 1, . . . ,n
can be divided into the subsequences i1, . . . , im and j1, . . . , jn−m if and only if every
integer in {1, . . . ,n} occurs exactly once in i1, . . . , im, j1, . . . , jn−m and both i1 < · · ·<
im and j1 < · · ·< jn−m.

The string α1 · · ·αn, where each αi is a symbol, can be divided into the sub-
sequences w and v if and only if 1, . . . ,n can be divided into some i1, . . . , im and
j1, . . . , jn−m such that w = αi1 · · ·αim and v = α j1 · · ·α jn−m .

Furthermore, a sequence s can be divided into the subsequences s1, . . . ,sk if and
only if either k = 1 and s = s1; or s can be divided into two subsequences s1 and s′

such that s′ can be divided into the subsequences s2, . . . ,sk. �
From here the leap to the shuffle operation is short.

Definition 2.2 (The Shuffle Operation) For two strings w and v the shuffle opera-
tion, denoted �, is defined such that w� v is the set of all strings s such that s can be
divided into the subsequences w and v. �
A short example should help clarify these concepts.

Example 2.3 (Shuffling) To start with, note that the string “abcbbac” can for exam-
ple be divided into the subsequences “abbba” and “cc”, by picking the indices 1, 2, 4,
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5, and 6 for the first string, leaving 3 and 7 for the second. It cannot be subdivided into
“aab” and “bcbc”, since the first string suggests that there should exist two a symbols
before a b symbol in the original string, which is not the case.

In the other direction, the shuffle operation application abc� ad yields the set
{abcad,abacd,aabcd,abadc,aabdc,aadbc,adabc}. �

This operation is a good starting point for studying many kinds of shuffle, considering
for example languages of the form {w� v | w ∈ L1,v ∈ L2} for some languages L1
and L2. Another interesting direction are the so-called shuffle expressions, which are
essentially regular expression with the addition of the shuffle operation (and what is
known as the shuffle closure, which, applied to a string, generates the language of an
arbitrary number of copies of that string shuffled together). These shuffle expressions
generate the language class known as the shuffle languages. See the summary of the
literature in Section 2.4 for more information on this subject. In this chapter, however,
we consider a formalism that can represent an even larger class of languages.

Concurrent Finite-State Automata (CFSA) cover all types of shuffle that are of
interest here. This formalism is what is loosely illustrated in Figure 1.5, where finite-
state automata gain the ability to

1. spawn child automata, either a fixed number in individually chosen states, or an
arbitrary (non-deterministically chosen) number all in the same state, and

2. all automata without children simultaneously non-deterministically read from
the string, and “disappear” once they reach an accepting state.

These automata allow all shuffle languages to be recognized, as well as all context-free
languages (using the spawning of child automata as a stack), the shuffle of context-
free languages, and context-free languages with shuffle. It is important to make a
distinction between the latter two, simply shuffling context-free languages together
(allowing context-free languages as operands in a shuffle expression) is not equivalent
to the full CFSA behavior.

Example 2.4 (A CFSA language) As a trivial example consider the language

{an ·w ·bn | n ∈ N,w ∈ {c,d,e}∗ s.t. w contains equally many cs, ds and es}

which nests a shuffle language inside balanced parentheses (in the sense that “a” is
an opening parenthesis and “b” a closing one), yielding a language that is not recog-
nized by any shuffle expression, context-free grammar or by any shuffle of context-free
grammars. It is, however, recognizable by a CFSA in a straightforward way. �

To make this more specific we next make a more strict definition of what a CFSA
can do. Going forward assume, unless otherwise noted, that a,b,c, . . . ∈ Σ are the
symbols in the alphabet the strings are defined over, and that q0,q1, . . . are states in
automata, with q0 the initial state.

Definition 2.5 (CFSA) A CFSA is a non-deterministic finite-state automaton which
in addition to rules of the form q1

a−→ q2 (going from state q1 to state q2 as usual) also

8
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has rules of the form q1
a−→ q2[q3q4]. That is, rather than having a “current state” the

automaton has a state string consisting of states and (balanced) brackets, for example
q1[q2[q5q5]q3]. Acceptance means turning to the empty string of states, for example
q2

a−→ ε . Once a bracket pair is empty, that is, “[]” occurs as a substring in the state
string, it is removed. No transition may be performed on a state which is immediately
followed by a left bracket. That is, in the example q1[q2[q5q5]q3] there are two occur-
rences of q5 and one occurrence of q3 that may make transitions, whereas q1 and q2
are blocked until the brackets are removed. Only one transition at a time is performed,
choosing non-deterministically where it happens.

There is one additional kind of rule, of the form q1
a−→ q2[q∗6], which consumes an

“a” symbol from the input and replaces q1 by a string of the form q2[q6q6q6 . . .] with
an arbitrary number of instances of q6, non-deterministically chosen. Notably, q1 may
be replaced by q2[], which allows the brackets to be immediately dropped. �

Some examples should make this definition clear.

Example 2.6 (anbn) Consider a CFSA with the following rules:

q0
a−→ q1[q0] q0

a−→ q1 q1
b−→ ε.

Then a run of the automaton takes the form shown in Table 2.7. This CFSA accepts the
language {anbn | n ∈ 1,2, . . .}. Notice that in each step only one state is not followed
by a left bracket, which forces that state to be the next one a rule is applied on. The
“b”-reading transitions replace q1 by ε , dropping the brackets, allowing the next q1 to
be handled. Once the state has become ε the input string is accepted.

Table 2.7: Run of the automaton in Example 2.6.

State String read Next rule

q0 aaaabbbb q0
a−→ q1[q0]

q1[q0] aaaabbbb q0
a−→ q1[q0]

q1[q1[q0]] aaaabbbb q0
a−→ q1[q0]

q1[q1[q1[q0]]] aaaabbbb q0
a−→ q1

q1[q1[q1[q1]]] aaaabbbb q1
b−→ ε

q1[q1[q1]] aaaabbbb q1
b−→ ε

q1[q1] aaaabbbb q1
b−→ ε

q1 aaaabbbb q1
b−→ ε

ε aaaabbbb accept

This illustrates how CFSA can capture context-free languages. It is not hard to add
additional rules to this example to make it accept all strings of balanced parenthesis,
like for example “((()()(())))”. �

9
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Example 2.8 (All Reorderings of anbncn) Consider the CFSA with the rules

q0
ε−→ q1[q∗2] q1

ε−→ ε q2
ε−→ q1[q3q4q5] q3

a−→ ε q4
b−→ ε q5

c−→ ε.

A run of this automaton can take the form showed in Table 2.9. This automaton ac-
cepts all reorderings of the strings anbncn (for n∈ {0,1,2, . . .}). Note that occurrences
of the state q1 only serve as “parent” place-holders for q3q4q5 but do not actually read
anything when their children have disappeared.

Table 2.9: An example run of the automaton in Example 2.8.

State String read Next rule

q0 bbccbacaa q0
ε−→ q1[q∗2]

q1[q2q2q2] bbccbacaa q2
ε−→ q1[q3q4q5]

q1[q2q2q1[q3q4q5]] bbccbacaa q2
ε−→ q1[q3q4q5]

q1[q2q1[q3q4q5]q1[q3q4q5]] bbccbacaa q4
b−→ ε

q1[q2q1[q3q4q5]q1[q3q5]] bbccbacaa q4
b−→ ε

q1[q2q1[q3q5]q1[q3q5]] bbccbacaa q2
ε−→ q1[q3q4q5]

q1[q1[q3q4q5]q1[q3q5]q1[q3q5]] bbccbacaa q5
c−→ ε

q1[q1[q3q4q5]q1[q3q5]q1[q3]] bbccbacaa q5
c−→ ε

q1[q1[q3q4]q1[q3q5]q1[q3]] bbccbacaa q4
b−→ ε

q1[q1[q3]q1[q3q5]q1[q3]] bbccbacaa q3
a−→ ε

q1[q1q1[q3q5]q1[q3]] bbccbacaa q1
ε−→ ε

q1[q1[q3q5]q1[q3]] bbccbacaa q5
c−→ ε

q1[q1[q3]q1[q3]] bbccbacaa q3
a−→ ε

q1[q1q1[q3]] bbccbacaa q3
a−→ ε

q1[q1q1] bbccbacaa q1
ε−→ ε

q1[q1] bbccbacaa q1
ε−→ ε

q1 bbccbacaa q1
ε−→ ε

ε bbccbacaa accept

Notice that whereas the automaton in Example 2.6 nests the bracket deeply, but each
bracket contains at most one state, this automaton has finite nesting but unbounded
branching by using the q0

ε−→ q1[q∗2] rule. �

The above examples illustrate two key facts about concurrent finite-state automata.
Example 2.6 shows how they capture the context-free languages by having the state
string simulate a stack, whereas Example 2.8 demonstrates how spawning multiple
“parallel” states allows them to recognize shuffled together languages, while allowing
the shuffling to be limited to syntactically delimited parts of the string (that is, a parent
state reading a symbol from the string means that all potential shuffling in spawned
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child states have already been fully resolved). A combination of the two is also pos-
sible, allowing the language in Example 2.4, but the automaton becomes a bit larger
and harder to understand.

2.2 CFSA in Relation to Context-free Languages

Recall the shuffle operation� from Definition 2.2. Now let us combine it with normal
string concatenation to create some simple shuffle expressions. These are still not full
shuffle expressions as considered in the literature (see Section 2.4), but are interesting
when considered in combination with a context-free grammar.

Definition 2.10 (Shuffle Operations in Expressions) Each α ∈ Σ is an expression
that represents the language L (α) = {α}. Let S and T be arbitrary expressions, then
(S�T ) is an expression representing the language L ((S�T )) = {w | w ∈ s� t,s ∈
L (S), t ∈L (T )}, and (ST ) is an expression representing the language L ((ST )) =
{st | s ∈L (S), t ∈L (T )}.

The parenthesis are used to control the order of evaluation, and may be added
freely; (S) is an expression with L ((S)) = L (S). Parenthesis may be removed if do-
ing so does not change the language, with the addition that concatenation is given pri-
ority in otherwise ambiguous expressions, so (ab�c)d(e� f ) generates the language
{abcde f ,acbde f ,cabde f ,abcd f e,acbd f e,cabd f e}, whereas the language generated
by ab� cde� f contains for example f cabde. �

With this in place it is interesting to note that for each CFSA there exists a “charac-
teristic” context-free grammar which rather than strings generates shuffle expressions
that in turn generate the strings in the language of the CFSA.

Definition 2.11 (Characteristic Grammars for CFSA) For any CFSA A accepting
strings in Σ∗ we can construct the characteristic context-free grammar GA, which
contains strings over the alphabet {�,),(}∪Σ, in the following way. For each state
qi the grammar has a non-terminal Ai. A0 is the initial non-terminal. The rules in the
CFSA A are translated into the rules of the grammar GA in the following way

CFSA rule Context-free rule

qi
α−→ ε Ai→ α

qi
α−→ q j Ai→ αA j

qi
α−→ q j1 [q j2 · · ·q jn ] Ai→ α(A j2 �·· ·�A jn)A j1

qi
α−→ q j[q∗r ] Ai→ α(A′r)A j|αA j

where A′r is an extra non-terminal for each r of the CFSA with the rules

A′r→ Ar, A′r→ Ar�A′r. �

Now for each CFSA A the corresponding characteristic context-free language L (GA)
will be such that each string accepted by A is also a member of the language generated
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by one or more of the shuffle expressions in L (GA). In fact, s is accepted by A if
and only if there exists at least one string E ∈ L (GA) such that, by evaluating the
shuffle operations in E, the set of strings generated by E contains s. In other words,
L (A) =

⋃{L (E) | E ∈L (GA)}. While it may not be immediately obvious that this
is the case, a full proof is beyond the scope of this intuitive explanation of the way
CFSA actually work.

The key thing to notice here is that a CFSA behaves in a context-free way with the
added ability to disregard order. While there is not really any way to change ordering
in a controlled manner, there always exists a characteristic context-free language at
the core, which may generate shuffle operations to “loosen” the language. Notably,
while a CFSA has already been seen that can generate all reorderings of anbncn, which
means an interesting superset of anbncn can be generated, the language anbncn itself
cannot be generated by a CFSA. It is interesting to view this from the characteris-
tic context-free grammar perspective; a CFSA can generate all reorderings of anbncn

since there is a context-free language (abc)n from which to construct it, by simply
disregarding all ordering (the characteristic context-free grammar generates a shuffle
operation between every symbol generated).

In the next chapter this leads us naturally towards other types of formalisms, which
take a very different approach to ordering.

2.3 The Membership Problem

The membership problem for various CFSA variations is covered at length in both
Paper I and Paper II, the latter demonstrating that even the non-uniform membership
problem is NP-complete for a very restricted CFSA. Paper I handles the opposite di-
rection and demonstrates that the uniform unrestricted problem remains in NP, which
is surprising seeing how a very restricted CFSA is used to demonstrate NP-hardness.
In the next section we take a look at a formalism that is also capable of generating
some interesting languages, while giving rise to a more efficiently decidable member-
ship problem.

2.4 Overview of the Literature

Shuffle languages and related questions have been studied for a long time, arguably
starting with a definition by S. Ginsburg and E. Spanier in 1965 [GS65]. A main thrust
considered here are shuffle expressions, which generate the “shuffle languages”, intro-
duced by Gischer [Gis81]. This in turn was based on an 1978 article by Shaw [Sha78]
on flow expressions, which were used to model concurrency. Shuffle expressions are
in effect regular languages extended with the shuffle operation�, which was discussed
in Section 2.2, as well as the shuffle closure, which iterates the shuffle operation (in
analogy to the Kleene closure as iterated concatenation). The membership problem
for shuffle expressions is NP-complete in general [Bar85, MS94], but can be decided
in polynomial time in the non-uniform case [JS01].
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Beyond shuffle expressions numerous other interesting membership problems are
considered in the literature. An excellent example is Warmuth and Hausslers 1984 Pa-
per [WH84] that among other things demonstrate that the uniform membership prob-
lem for the iterated shuffle of a single string is NP-complete. That is, given two strings,
w and v, decide whether or not w ∈ v� v� ·· ·� v. In a similar vein Ogden, Riddle
and Rounds demonstrated that the non-uniform membership problem for the shuffle
of two deterministic context-free languages is NP-complete [ORR78].

Other interesting directions include shuffle on trajectories [MRS98] and axiom-
atization of shuffle [EB98]. For a longer list of references, see the introduction of
Paper I.
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CHAPTER 3

Synchronized Substrings

As a contrast we now consider a very different type of formalism, where the finite
control effectively controls multiple positions in a string. Out of the many formalisms
that fit this vague description, two will be mentioned here as being of specific interest
for ongoing research efforts. As such this chapter starts out with an overview of the
literature relevant for the discussion, followed by informal examples, whose purpose
it is to explain the nature of the relevant language formalisms.

3.1 Overview of the Literature

The formalisms discussed in the next section belong to a large category defined by
Aravind Joshi in [Jos85] called “mildly context-sensitive”. Joshi defines a language
class L to be mildly context-sensitive if and only if

1. CF ⊆ L , that is, L contains all context-free languages (this is left implicit
in [Jos85]),

2. at least one language in L features limited cross-serial dependencies,

3. the membership problem is decidable in non-uniform (implicit in [Jos85]) poly-
nomial time for all L ∈L ,

4. for all L ∈L the set {|w| | w ∈ L} is semi-linear. That is, ordering the strings in
a language in L by their length will yield a gradual increase, each string being
at most a constant number of symbols longer than the last, with the constant
determined by the language.

Requirement 2 specifically refers to a type of substring synchronization, illustrated by
Joshi using tree-adjoining grammars, which makes it hard to illustrate here. Suffice
it to say that anbncn features cross-serial dependencies, and is as such a sufficient
addition.

This rather loose set of requirements has given rise to at least two classes of lan-
guages, the first being the motivating class, defined equivalently [JSW90] by tree-
adjoining grammars [JLT75], linear indexed grammars [Gaz88], combinatorial cate-
gorial grammars [Ste87] and head grammars [Pol84]. The second, strictly more pow-
erful class, is the one that is of interest for this section. It can be equivalently (as far as

15



Chapter 3

the language class generated is concerned) defined by linear context-free rewriting
systems [Wei92], deterministic tree-walking transducers [Wei92], multicomponent
tree-adjoining grammars [Jos85, Wei88], multiple context-free grammars [SMFK91,
Göt08], simple range concatenation grammars [Bou98, Bou04, BN01, VdlC02] and
string-generating hyperedge replacement grammars [Hab92, DHK97]. Since fully
defining these formalisms, and defining languages in terms of them, is more complex
than what is called for here a more intuitive but imprecise stand-in is used in the next
section, which is based on the string-generating hyperedge replacement grammars.

3.2 A Simple Synchronized Substrings Formalism

Rather than attempting to discuss synchronization formally we explain it informally
by means of an illustrative example. A natural way to describe intermediary config-
urations of generating strings using the formalisms listed in Section 3.1 is by a hy-
pergraph, where each instance of a non-terminal is an edge identifying some number
of nodes, and the final string is formed as a directed chain. Therefore, the formalism
sketched in the examples is given in a visual form resembling string-generating hy-
peredge replacement grammars. However, modifying the examples into, for instance,
simple range concatenation grammars or multiple context-free grammars is not very
difficult (the only issue being that the examples are harder to read in symbolic form).

It is important to keep in mind that while the hyperedge replacement grammars
here generate only strings (or directed connected chains in graph terms). In general hy-
peredge replacement grammars can generate a large class of graphs [Hab92, DHK97].
As an illustrative example with some relevance to the topics at hand, a hyperedge re-
placement grammar can easily generate what amounts to a multi-set of strings, that
is, an unconnected graph where each connected subgraph is a directed chain. All the
grammar needs to do is break the chain at some points. This language of multi-sets of
strings needs to be avoided, since it has an NP-hard non-uniform membership prob-
lem, which can be established by a straightforward reduction. There exists a context-
free language L ⊆ {a,b, o}∗ such that the non-uniform membership problem for the
language Lo =

{
{w1, . . . ,wn} | w1 ow2 o · · · own ∈ L,n ∈ N,w1, . . . ,wn ∈ {a,b}∗

}
(such

that Lo is a set of multi-sets over {a,b}∗) is NP-complete [LW87].

Example 3.1 (A Hyperedge Replacement String Grammar) A hyperedge replace-
ment string grammar consists of a finite set of non-terminals A0,A1,A2, . . . each of
which has an arity denoted arity(Ai), and a finite set of rules. These rules identify a
non-terminal, Ai, and arity(Ai) positions (in a sentential form) on the left-hand side.
The right-hand side then dictates what will be inserted into these arity(Ai) positions. If
all non-terminals have arity(A j) = 1 then this is equivalent to a context-free grammar,
because then a non-terminal identifies a single position in the sentential string, the
position it is in. As a first example consider the rule in Figure 3.2. This rule replaces
the non-terminal A2, which has arity(A2) = 2 here. The two arrows illustrate the two
positions A2 “controls”. The rule then inserts the string a • b• in the first position A2
controls, where the first bullet corresponds to the first position known, or controlled,
by the new instance of A2 generated on the right-hand side, and the second is the posi-
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(
• , •

)

A2

=⇒ (
a • b • , b • a

)

A2 A3

Figure 3.2: A simple rule for a string-generating hyperedge replacement grammar. It
replaces the non-terminal A2 with arity two by a new instance of A2 and an instance
of the non-terminal A3, while generating some terminal symbols.

tion known by a new non-terminal A3 (with arity(A3) = 1). In the second position the
left-hand side A2 controls it inserts the string b • a where the bullet denotes the sec-
ond position controlled by the new A2 instance on the right-hand side. Notice that the
number of positions on the left-hand side has to correspond to the number of strings
in the tuple on the right-hand side. The initial non-terminal is A0, which always has
arity(A0) = 1 (intuitively this must be the case since the derivation is supposed to gen-
erate one string). This makes the initial configuration (initial sentential string really)
appear as in Figure 3.3.

(
•
)

A0

Figure 3.3: The initial configuration for string-generating hyperedge replacement
grammars.

To clarify this further let us look at a more complete example. Consider the rules in
Figure 3.4. These three rules generate the language anbncndnen f n. Leaving the non-
terminals attached to the positions implicit, a derivation of a string in this grammar
takes the structure •→ •••→ a•bc•de• f → aa•bbcc•ddee• f f → aaa•bbbccc•
dddeee • f f f → aaabbbcccdddeee f f f where the first rule applied is (a) (replacing
the initial A0 by an A1 with three positions), then three applications of rule (c) followed
by an application of rule (b) to get rid of the A1 and create the final string. �

This example is sufficient to illustrate one key aspect of these types of formalisms.
By allowing a non-terminal to track multiple positions in the string it is possible to
create synchronized substrings. Notably the structure of Example 3.1 is similar to
what is needed to generate the language

{(wwR)k | w ∈ {a,b}∗, wR is w reversed}

where k is determined by the arity of the non-terminals. That is, there is a gram-
mar using non-terminals with arity at most k which for each palindromatic string p
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(
•
)

A0

=⇒ (
•••

)

A1

(a) The “initial” rule, replacing the start-
ing (arity 1) non-terminal by the arity 3
non-terminal A1, in essence “splitting”
the string into three parts controlled si-
multaneously by A1.

(
• , • , •

)

A1

=⇒ (
ε , ε , ε

)

(b) A finishing rule, which allows A1 to just gen-
erate the empty string in all three of its positions.
Taking only the rule in (a) and this one creates a
language that generates the empty string.

(
• , • , •

)

A1

=⇒ (
a • b , c • d , e • f

)

A1

(c) The third rule is the only one that actually generates symbols,
replacing A1 by a new copy with positions in the middle of a
string generated for each position.

Figure 3.4: The three rules for a simple variation of a hyperedge replacement string
grammar. These three rules together generate exactly the language anbncndnen f n.

contains the string which results from repeating p k times. The language in Exam-
ple 3.1 is well known not to be context-free, and the palindrome repetition language
more closely illustrates how the formalism allows separate parts which are in them-
selves (in some vague sense) context-free, but share finite control through the same
non-terminal controlling more than one position (as was illustrated in Figure 1.6).

Example 3.5 (More Complex Hyperedge Replacement Rules) To give a more nu-
anced picture of the formalism, consider also the rule in Figure 3.6. When added to

(
•
)

A0

=⇒ (
•• g • g •

)

A1 A0

Figure 3.6: Adding this rule to the three in Figure 3.4 creates a more complicated
language which illustrates the power of these grammatical formalisms.

rules (a)–(c) from Figure 3.4 this makes it possible to generate a sentential form like
the one shown in Figure 3.7.
This new grammar can then generate for example all strings of the form

anbncndngambmcmdmgalblcldlel f lgem f mgen f n,
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(
•• g •• g • g • g •

)

A1 A1 A0

Figure 3.7: A configuration reachable using the rules in Figure 3.4 plus the rule in
Figure 3.6.

for independent integers n, m and l. Arbitrarily deep nesting of this form is possible
in the grammar. �

3.3 The Membership Problem

The membership problem for this type of formalism can, in contrast to the CFSA
case, be decided in polynomial time in the non-uniform case. This can be shown
using a construction from 2001 by Bertsch and Nederhof [BN01]. This construc-
tion (slightly adapted) checks if a string w can be generated by a given hyperedge
replacement string grammar G by generating a vast context-free grammar which is
non-empty if and only if w∈L (G). For example, let G be the hyperedge replacement
string grammar in Figure 3.4, and pick w = α1 · · ·αn as the string to be parsed. Then
the context-free grammar will have the non-terminals {A0(i, j) | i, j ∈ {0, . . . ,n}}∪
{A1((i1, j1),(i2, j2),(i3, j3)) | i1, j1, i2, j2, i3, j3 ∈ {0, . . . ,n}}, meaning that for each
non-terminal Ai in G, with arity a = arity(Ai), we construct (n+1)2a non-terminals in
the context-free grammar. The construction then adds rules such that the non-terminal
A1((i1, j1),(i2, j2),(i3, j3)) can derive ε if and only if G permits the derivation in Fig-
ure 3.8 That is, this generated non-terminal represents the statement “A1 can, in its

(
• , • , •

)

A1

=⇒ ·· · =⇒ (
αi1+1 · · ·α j1 , αi2+1 · · ·α j2 , αi3+1 · · ·α j3

)
.

Figure 3.8: There exists a derivation (a sequence of rule applications) starting with an
instance of the non-terminal A1 such that it generates the terminal strings αi1+1 · · ·α j1 ,
αi2+1 · · ·α j2 , αi3+1 · · ·α j3 , in the first, second, and third controlled position, respec-
tively.

three controlled positions, generate the substrings at positions (i1, j1), (i2, j2), and
(i3, j3) in the input string w”. The rules generated by the construction simply attempt
all ways to assign the substrings, so there is, corresponding to rule (a) in Figure 3.4,
there are for all i, j,x1,x2 ∈ {0, . . . ,n} a rule A0(i, j) → A1((i,x1),(x1,x2),(x2, j)).
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Turning to rule (c) there is a rule

A1((i1, j1),(i2, j2),(i3, j3))→ A1((i1 +1, j1−1),(i2 +1, j2−1),(i3 +1, j3−1))

for all i1, j1, i2, j2, i3, j3 ∈ {0, . . . ,n} such that αi1+1 = a, α j1 = b, αi2+1 = c, α j2 = d,
αi3+1 = e, and α j3 = f . Similarly, hyperedge replacement rules that split a non-
terminal into several are represented by just enumerating every possible way to del-
egate the substrings among them. The initial non-terminal is A0(0,n), corresponding
to the statement that A0 can generate the entire string w. This should illustrate how
this construction works, and shows how the non-uniform membership problem can
be decided in polynomial time. Constructing and emptiness-checking a context-free
grammar of size O(nc), where c is determined by G, can be done in polynomial time
when G is considered to be a constant.

Still, this also illustrates how the non-uniform membership problem being effi-
ciently computable does not imply real-world efficiency unless the grammar genuinely
is a trivial part of the problem considered. Here the uniform case is indeed NP-hard.
This is not difficult to see, for example by a reduction from the longest common sub-
sequence problem (a classic NP-complete problem [GJ90]). Without delving deeply
into the reduction, we can for each k ∈ N construct a hyperedge replacement string
grammar G such that an$w1$ · · ·$wk ∈L (G) if and only if the strings w1, . . . ,wk ∈ Σ∗
have a common subsequence of length n. Thus, the an$ prefix of the constructed string
represents n in unary form. This construction works by giving G a non-terminal A1
with arity(A1) = k+ 1, and starting the derivation by setting up the sentential string
•$•$ · · ·$•, where a single instance of A1 controls all the positions. This A1 instance
may generate symbols arbitrarily in all its positions except the first one, always keep-
ing control of the position to the right of the newly generated symbol (so we can reach
for example the sentential string •$b • $ccb • $ • $ · · ·$bc•). The derivation will only
ever generate a symbol (and then only the symbol a) in the first position, thus effec-
tively increasing n by 1, if it simultaneously generates some symbol α in all the other
positions (for example reaching the configuration a • $bd • $ccbd • $d • $ · · ·$bcd•).
The derivation can terminate at any time by generating ε in all positions. This es-
tablishes the NP-completeness of the uniform membership problem for hyperedge-
replacement string grammars even for the special case of linear grammars. It is impor-
tant, however, to notice that this reduction requires the input value k to be embedded
in the grammar, meaning that it only works in the uniform case.

The NP-hardness of the uniform membership problem does itself show that these
formalisms cannot represent the same languages as a CFSA, unless P = NP. The
membership problem is also in NP, this is easily established by noticing that all strings
can be derived in a polynomial number of derivation steps, which allows the entire
derivation to be guessed to demonstrate membership.
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Conclusions and Future Work

To wrap up the discussion about the two classes of formalisms considered in Chap-
ters 2 and 3 we return to the aspects already discussed in the introduction to summa-
rize their similarities and look to the future.

4.1 Comparing Formalisms and the Power of Ordering

There are some conclusions to be drawn from this look at shuffle-related formalisms
and the synchronized substrings formalism. As was already touched upon in the intro-
duction they share some key properties, first and foremost having a semi-linear Parikh
image. Let us fully recall Parikh’s definition [Par66].

Definition 4.1 (Parikh Image) Let Σ be an alphabet, fix an arbitrary order of the
symbols in Σ = {α1, . . . ,αn}. Then for any string w over Σ the Parikh image is the
n-vector [x1, . . . ,xn] ∈ Nn which is such that for all i ∈ 1, . . . ,n there are exactly xi oc-
currences of the symbol αi in w. The Parikh image of a language L is the set of Parikh
images of all strings in L. �

All formalisms discussed here generate languages which necessarily have semi-linear
Parikh images. That is, the Parikh image of the language is a finite union of linear
sets, and a linear set is of the form {v0 + p1v1 + · · · pmvm | p1, . . . , pm ∈ N} for some
fixed vectors v0, . . . ,vm ∈ Nn and integer m.

The original definition of mildly context-sensitive languages does not actually re-
quire that the Parikh images are semi-linear [Jos85]. It instead requires that for each
language in the class the lengths of the strings form a semi-linear set, as was noted
in Section 3.1. The two language different classes representable by these formalisms
both feature semi-linear Parikh images however, and this strictly stronger requirement
is in many ways more natural.

It is easy to see that the language anbncndn cannot be generated by a CFSA, but
on the other hand, a CFSA can generate the language of all strings containing equally
many as, bs, cs, and ds (which is the largest possible language which has the same
Parikh image as anbncndn). Let us denote this language Labcd . It can be generated
by simply repeatedly shuffling the language a� b� c� d with itself. Both classes
of mildly context-sensitive language formalisms discussed in Section 3.1 can gener-
ate anbncndn, though the weaker class, equivalent to tree adjoining grammars, cannot
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(
•
)

A0

=⇒ (
••••

)

A1 A2

(
••••

)

A1 A2

(
••••

)

A1 A2

(
••••

)

A1 A2

(
••••

)

A1 A2

Figure 4.2: A set of five hyperedge replacement rules in the style of Section 3.2 (the
five rules have the same left-hand side, each of the right-hand sides are separated by
a vertical bar). These rules allow A0 to generate all possible ways to generate one
instance each of A1 and A2 with arbitrarily interleaved positions.

generate anbncndnen. In the other direction, the author conjectures that Labcd cannot
be generated by either of the mildly context-sensitive formalisms discussed in Chap-
ter 3. One argument why it is unlikely that the hyperedge replacement formalism from
Section 3.2 can generate arbitrary shuffles is explained by Figure 4.2. Intuitively the
hyperedge replacement grammar can, by a large set of rules, arbitrarily interleave po-
sitions of non-terminals. Figure 4.2 shows the five rules that allow two non-terminals
A1 and A2, each with arity 2, to be interleaved. However, after this point the two
non-terminal instances no longer have any means of communicating, so a decision
which of the non-terminals generates what part of the shuffle has to be encoded in
the non-terminal itself. The problem that arises is that it seems unlikely that every
shuffle language is such that there exists a constant k, such that every string in the
language can be broken into 2k pieces, which are then divided into two sets of k sub-
strings each, and those sets have a finite description in the grammar. This is however
something that appears to be required for languages that can be represented by the
formalisms of Chapter 3, where k is the maximum arity of the non-terminals (which is
fixed in every grammar). Making proofs for this type of question for the synchronized
substrings formalisms is an interesting direction of future research, it seems proba-
ble that much can be achieved using the pumping lemma for hyperedge replacement
grammars [DHK97].

This may be raising more questions than it answers. The two classes of formalisms
discussed in Chapter 2 and Chapter 3 have a lot in common, both in the way they
generate strings (one by allowing multiple independent pieces of control to read from
the string in an uncontrolled fashion, another which assigns each independent control
several but fixed positions), and are more powerful than context-free languages in an
intuitively similar way. They also both have interesting membership problems, being
around the edge of what is possible in polynomial time with appropriate restrictions.
As such they are an interesting future direction of research.

4.2 Future Plans

The first future direction is investigating the membership problem for the mildly
context-sensitive languages, notably attempting to give a nuanced view of the in-
tractability of the uniform membership problem. Similarly, the hunt for classes of

22



Conclusions and Future Work

shuffle languages for which the membership problem is efficiently decidable contin-
ues, with some special languages of particular interest:

• the shuffle of palindromes, {wwR �wwR | w is any string, wR is w reversed},

• the shuffle square {w�w | any string w}.

Both of these languages appear very straightforward, but the difficulty of the member-
ship problem for them remains an open question. To illustrate the problem, consider
the following backtracking algorithm for deciding whether a string is the shuffle of
two palindromes. It runs reasonably quickly for small examples, but takes exponen-
tial time in the worst case.

Algorithm 4.3 (Palindrome Shuffle Membership Test)
1: function ISPALSHUFFLE(string α1 · · ·αn, optional string β1 · · ·βm)
2: if n = 0 then
3: return ISPALINDROME(β1 · · ·βm)
4: end if
5: if m> 0 and α1 = βm and ISPALSHUFFLE(α2 · · ·αn, β1 · · ·βm−1) then
6: return True
7: end if
8: for i = n . . . 1 do
9: if α1 = αi and ISPALSHUFFLE(α2 · · ·αi−1,αi+1 · · ·αnβ1 · · ·βm) then

10: return True
11: end if
12: end for
13: return False
14: end function

15: function ISPALINDROME(string α1 · · ·αn)
16: return ∀(i ∈ {1, . . . ,

⌊ n
2

⌋
}) : αi = αn−i

17: end function

For any string α1 · · ·αn the call ISPALSHUFFLE(α1 · · ·αn,ε) returns true if and only if
α1 · · ·αn is the shuffle of two palindromes. Proving the correctness of the algorithm is
not within the scope of the discussion, but a short overview is in order. The algorithm
works from the left, attempting to in each call match the first symbol in the string to its
“mirror”, that is, the other occurrence of the symbol in the palindrome, speculatively
removing them, and recursing to check that it was correct (backtracking if it was not).

Consider a top-level call ISPALSHUFFLE(w,ε), assume for now that w is the shuf-
fle of two palindromes, call them palindrome A and palindrome B. We assume that the
first symbol of w is part of palindrome A (by symmetry). Now assume that we are in
a recursive call ISPALSHUFFLE(α1 · · ·αn,β1 · · ·βm). Then there exists a string s such
that w ∈ s ·α1 · · ·αn(β1 · · ·βm� sR) where sR is s reversed. At this point s is the part
of the string already processed, and the hypothesis of the current call is that all the
symbols β1 · · ·βm are part of palindrome B, whereas the substring α1 · · ·αn remains
to be processed.
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Let us look at each possibility at this point. First if n = 0 (see line 2), and β1 · · ·βm
is a palindrome, then palindrome A has already been consumed, and β1 · · ·βm is the
“center” of palindrome B, this means that we are done, w was the shuffle of two
palindromes. If m > 0 and α1 = βm (see line 5) it is possible that α1 belongs to
palindrome B by pairing α1 to βm (notice that we do not need to check βi for i <
m, since that would leave βm impossible to match). In that case remove both and
recursively check if this is part of the solution, otherwise backtrack and check the next
part. Next we consider the possibility that α1 is part of palindrome A, which requires
that there exists some i such that α1 = αi (see line 8), and all the symbols α j with j> i
have to be part of palindrome B (while α2 · · ·αi−1 remains to be processed).

As an example, the call ISPALSHUFFLE(abccdadb,ε) matches the as to each
other using the line 8 loop, so palindrome A is of the form axa for some string x.
It then recursively calls ISPALSHUFFLE(bccd,db), which matches the bs on line 5,
so palindrome B is on the form byb for some string y. It then recursively calls
ISPALSHUFFLE(ccd,d), which matches the cs (line 8), so palindrome A is acca. Fi-
nally, the recursive call to ISPALSHUFFLE(ε,dd) which runs the check on line 2,
confirms that dd is a palindrome, meaning that palindrome B is bddb, and indeed
abccdadb ∈ acca�bddb.

In this way the algorithm attempts all possible ways to divide the string into two
shuffled palindromes with backtracking, which unfortunately makes it take exponen-
tial time in the worst case. Conveniently it is quite effective in practice, which allows
for interesting experimentation.

Finally, the previous section raised some interesting questions about the languages
in the intersection between these mildly context-sensitive languages and the shuffle
languages. There is a lot of room for investigating this area.
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CHAPTER 5

Summary of Papers

This chapter will give a short overview of each of the three papers, Paper I through
Paper III, which are included as appendices. They are all in some way concerned
with the way ordering has an impact on formal languages, as well as how to allow
only limited changes to a core language (only a fixed number of reordering or deriva-
tion modifications), all while focusing on the membership problem for the resulting
formalisms.

Each paper is best viewed from the perspective of the membership problem it
treats, though other interesting properties are considered as well. The CFSA model
discussed at length in Chapter 2 is a the first key direction, but there are other in-
teresting facets. The CFSA membership problem is difficult in general, but this was
fully expected, as the general CFSA model is more powerful than what is motivated
for most practical cases. It instead serves as a good basis for experimentation, allow-
ing various more limited cases to easily be expressed as restrictions on CFSA. There
are both successes and failures (in the sense of negative results being proven) rep-
resented in the papers, among the successes are restricted formalisms for which the
non-uniform membership problem is solvable in polynomial time, and arguably the
result that the membership problem for CFSA is in NP is positive as well. On the
negative side one paper is dedicated to demonstrating that a restricted CFSA model
(the shuffle of two linear deterministic context-free languages) still has an NP-hard
non-uniform membership problem. Another direction considered is the problem of
allowing only a limited amount of reordering (and other changes) in each string. For
this to have any meaning one has to consider some possible reordering of the string to
be the “right” one, much like the characteristic context-free grammars for CFSA from
Definition 2.11. That is, we have a canonical “correct” grammar, but want to allow
strings that are, in some sense, slightly wrong into the language. Here the origin of
the question is; if the string w can be derived by a given context-free grammar, can w′

be derived by swapping the positions of at most k non-terminals in sentential forms in
the derivation? It is useful to think about this limited amount of allowed reordering
as allowed but undesirable, each reordering operation adds “badness”. That is, it is a
correction problem, the reorderings are considered errors and a strict grammar is to
be loosened such that “reasonably” incorrect strings are allowed. Ideally a formalism
similar to the CFSA would be able to play this role, but as will be seen it is unfortu-
nately a difficult problem even for a given single parse tree where swapping adjacent
siblings is the reordering allowed.
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Table 5.1: The closure properties of a CFSA demonstrated in Paper I.

Operation C
lo

se
d

N
ot

cl
os

ed

Union ×
Concatenation ×
Kleene closure ×

Shuffle ×
Shuffle closure ×

Intersection ×
Complementation ×

The papers do not feature any pure appearance of the synchronized substrings
formalisms, they remain lurking in the background as a future direction. Let us get on
with summarizing each paper individually.

5.1 Paper I: Recognizing Shuffled Languages

5.1.1 Introduction

Paper I is the starting point used in Chapter 2, introducing the Concurrent Finite-State
Automata formalism (which was loosely illustrated in Figure 1.5). The following
aspects are then considered

• the closure properties of CFSA under various operations,

• what language classes are obtained by syntactic constraints on a CFSA, and

• the complexity of the membership problem for CFSA, both in the general case
and for constrained classes.

5.1.2 CFSA Closure Properties

The closure properties of CFSA are illustrated in Table 5.1 The operations have their
usual meanings (for example, the complement of a language L ⊆ Σ∗ is the set L̄ =
{w ∈ Σ∗ | w /∈ L}. The two that may need explanation are the shuffle operations. The
shuffle of two languages L and L′ is the set of all interleavings of any string in L with
any string in L′, that is

⋃{w�w′ | w ∈ L,w′ ∈ L′}, where � is as in Definition 2.2.
The shuffle closure of a language L contains exactly the empty string ε and all strings
w�w′ where w ∈ L and w′ is in the shuffle closure of L. None of the positive cases in
Table 5.1 are very surprising, being quite directly expressible in a CFSA (for example,
any CFSA can be made to accept its shuffle closure by adding the rule q0

ε−→ q1[q∗0]
and q1

ε−→ ε where q1 is a new state (and q0 is the initial state).
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5.1.3 CFSA Constraints

It was already illustrated in Example 2.6 how a CFSA can accept the language anbn.
CFSA of this form, where only a single state can make transitions at any time (the
state string forms a monadic tree) can represent exactly the context-free languages.
Clearly, the regular languages are exactly the ones that can be recognized by a CFSA
where no state string ever contains more than one state. A CFSA that has limited
nesting depth, that is, no symbol can be surrounded by arbitrarily many matched pairs
of brackets, corresponds directly to the shuffle expressions, covered in Section 2.4.
This finite nesting can be enforced by making sure that for each rule q0

α−→ q1[q2q3] it
holds that no bracketed state (q2 and q3 here) can produce the state on the left hand
side (q0) again. This can intuitively be transformed into a syntactical constraint by
giving the states a ranking and requiring that no lower-ranked state may produce a
higher-ranked one.

5.1.4 CFSA Membership Problems

Finally Paper I discusses the membership problem for various constrained and uncon-
strained CFSA. It establishes W [1]-hardness1 of the uniform membership problem for
shuffle expressions (finitely deeply nesting CFSA). The parameterization chosen is to
have the parameter k be the length of the longest state string that can be produced in
any run of the CFSA (so fixing k neither infinitely deeply branching or rules which can
produce arbitrarily large strings, i.e. right hand sides of the form q1[q∗2], are allowed).
Second, the uniform membership problem for the shuffle of a regular language and a
context-free language is decidable in polynomial time. Third, the non-uniform mem-
bership problem for the shuffle of a shuffle expression and a context-free language
is decidable in polynomial time (for the uniform case the membership problem for
shuffle expressions is already NP-complete [Bar85, MS94]).

It is shown that the uniform membership problem for arbitrary CFSA is in NP, a
non-trivial result. It is also shown that the problem is NP-hard. This, however, turned
out to be a known result [ORR78]. A strengthened version of this result could be
obtained in Paper II.

5.2 Paper II: The Membership Problem for the Shuffle of Two De-
terministic Linear Context-Free Languages is NP-complete

Paper II builds on the results in Paper I to demonstrate that the non-uniform mem-
bership problem for the shuffle of two deterministic linear context-free languages is
NP-complete. The proof works by enforcing a strict interleaving by a mix of matching
brackets and delimiters, having one deterministic linear context-free grammar gener-
ate single computation steps of a universal Turing machine, while the other grammar
performs copying linking the steps up into a complete computation. The proof tech-

1 A fact that strongly suggests that the problem is not fixed-parameter tractable. That is, that even if
the number of actual shuffling operations involved is limited the membership problem remains hard,
unless W [1] = FPT , which is believed unlikely. For more on fixed parameter complexity theory, see,
e.g., [DF99].
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Figure 5.2: An example of tree swaps, transforming the left-most tree into the right-
most tree by first swapping the position of the “b” and “c” nodes (being adjacent
siblings) and then the “g” and “h” nodes. We say that the right tree is two swaps away
from the left tree.

nique is reminiscent of the classic proof that every recursively enumerable set is the
homomorphic image of the intersection of two linear context-free languages [BB74].

5.3 Paper III: Analyzing Edit Distance on Trees: Tree Swap Dis-
tance is Intractable

Paper III takes a different direction, it is in effect an attempt to find formalism which

1. allows a hierarchically structured mode of reordering,

2. makes it possible to constrain the language to only a limited amount of reorder-
ing, and

3. still has an efficiently decidable membership problem.

The specific type of reordering considered in this paper is swapping sibling node po-
sitions in a tree. See for example Figure 5.2. This can be viewed as a way to reorder a
string by letting the leaf nodes represent the string. We consider each “swap”, that is,
interchange of adjacent sibling nodes, as having a cost of one. The problem consid-
ered is: given an integer k and two trees t and t ′, can t be transformed into t ′ using at
most k swaps? That is, is t in the finite language defined by applying at most k swaps
to t ′?

This tree problem does attempt to model both the first and second requirement
listed at the start of the section. Unfortunately, the main result of the paper is that this
problem is NP-complete, and as such it probably fails to fulfill the third requirement.

Both the shuffle and the synchronized substrings formalism feature possible solu-
tions for both the first and third points, with different ideas of reordering, and different
possible restrictions to allow efficient parsing. Neither of those formalisms are helpful
when it comes to the second requirement however, and for some very practical prob-
lems the second requirement is very important. For example, consider output trees
of a statistical natural language parser and how to “fix” these so that they are gram-
matically correct. In this setting fewer changes are clearly more desirable, as fewer
corrections means that it is more likely that the original meaning is preserved.
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Since the paper only provides an intractability result for the tree swap distance
problem it remains unclear whether all three requirements can be simultaneously be
fulfilled (and how).
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Abstract

Language models that use interleaving, or shuffle, operators have applications
in various areas of computer science, including system verification, plan recog-
nition, and natural language processing. We study the complexity of the mem-
bership problem for such models, i.e., how difficult it is to determine if a string
belongs to a language or not. In particular, we investigate how interleaving can
be introduced into models that capture the context-free languages.

Keywords: Interleaving, shuffle languages, membership problems

1. Introduction

We study the membership problem for various language classes that make use
of the shuffle operator �. When applied to a pair of strings u and v, the operator
returns the set of all possible interleavings of the symbols in u and v. For exam-
ple, the shuffle of ab and cd is {abcd, acbd, acdb, cabd, cadb, cdab}. The operator
is lifted to languages by defining L1�L2 to be the set

⋃{u�v | u ∈ L1, v ∈ L2}.
We also consider the shuffle closure operator, whose relationship to the shuffle
operator resembles that of the Kleene star to concatenation. As our starting
point, we take the shuffle languages considered by Gischer [19] and by Jedrzejow-
icz and Szepietowski [26]. These are the languages defined by regular expressions
augmented with the shuffle and the shuffle closure operators.

Shuffling of languages is of interest in a number of different areas:

• In the modelling and verification of systems, shuffling is useful for rea-
soning about interleaved or parallel processes [16, 30]. There is a close
connection between shuffle languages and Petri nets [19, 16, 7, 5].

• The shuffle operator is used in XML database systems for schema defini-
tions, see, e.g., Gelade et al. [17].

IThe present article is the full version of [2], which was presented at the 5th International
Conference on Language and Automata Theory and Applications (LATA) 2011.
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• In plan recognition, the objective is to identify an agent’s goal or plan,
based on observations of the agent’s actions [10, 35]. In a generalized
version, a number independent agents that perform their actions in an
interleaved fashion. To model this multi-agent scenario one could combine
shuffle operators and context-free grammars [24]. For this approach to
be tractable, the membership problem for the resulting languages must
remain efficiently solvable.

• In natural language processing, there is a growing interest in linguistic
models for languages with relatively free word ordering. Recent work in
this direction includes parse algorithms for so-called dependency gram-
mars [34, 28].

A number of fundamental questions regarding the membership problem for
shuffled languages remain unanswered. We answer some of them in this paper.
In particular, we are interested in language classes that capture the context-free
languages. Among the above application areas, such languages are primarily of
interest in plan recognition and natural language processing.

It is important to distinguish between the uniform and the non-uniform
version of the membership problem. In the uniform version, both the string and
a representation of the language is given as input. It is therefor relevant how
the language is represented. In the non-uniform version, only the string to be
tested is considered as input. The language is fixed, so its representation never
enters into the equation.

Contributions. To facilitate the study of languages combining restricted
forms of recursion and interleaving, we define Concurrent Finite State Automata
(CFSA) which have an expressive power between those of context-free grammars
and linear-bounded Turing machines. These automata can be viewed as ground
tree rewriting systems (see, e.g., [29, 11]) used as language acceptors. We show
that the emptiness problem for CFSA is solvable in polynomial time, list the
closure properties of the automata, and identify the language classes that cor-
respond to certain syntactic restrictions.

Our results for the complexity of the membership problems for various lan-
guage classes are summarized in Table 1. It should be noted that all problems
we consider, except the membership problem for CFSA, are trivially in NP. For
the full class of languages recognized by CFSA, we show that both the uniform
and the non-uniform membership problem are NP-complete.

For the shuffle languages (as used in [19, 26]), the uniform membership prob-
lem is NP-complete [1, 31], while the non-uniform membership problem can be
decided in polynomial time [26]. We shed further light on the complexity of the
membership problem by establishing that the uniform version, when parameter-
ized by the number of shuffle operations, is hard for the complexity class W[1].
This result suggests a strong dependence on the number of shufflings. For this
reason, we do not expect to find a particularly efficient algorithmic solution to
the non-uniform membership problem for language definitions involving many
shufflings, even when it is theoretically polynomial.
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Table 1: Summary of results for the membership problem. The shuffle languages are abbrevi-
ated by Sh, the regular by Reg, and the context-free by CF. The results of this paper appear
in bold face.

Sh Reg � CF Sh� CF CF� CF CFSA
Non-Uniform P P P NPC NPC

Uniform NPC / W[1]-hard P NPC NPC NPC

For the interleaving of a regular language and a context-free language, we
show that the uniform (and thus also the non-uniform) membership problem
can be solved in polynomial time. The regular language is assumed to be repre-
sented by a nondeterministic finite automaton and the context-free language by
a context-free grammar. For the shuffling of a shuffle language and a context-
free language, the uniform problem is NP-hard, since this holds already for the
shuffle languages. The non-uniform problem is, however, solvable in polynomial
time. For the shuffling of two context-free languages, we show that already the
non-uniform version of the membership problem is NP-hard.

It should be noted that we only investigate which broad complexity classes
the problems belong to. In particular, for the problems that belong to P, our
aim has not been to find optimal algorithms. Future work in this direction
includes finding the exact complexities of these problems, as well as heuristic
algorithms and tractable restrictions of the NP-complete problems.

Related work. Various aspects of shuffling have been studied in formal lan-
guage theory and its effects on regular languages have received particular in-
terest. Câmpenau et al. establish 2mn − 1 as a tight upper bound on the state
complexity of the shuffle of two regular languages [9]. Biegler et al. provide
a similar result for singleton languages and identify properties that trigger an
exponential blow-up in state complexity [4]. On the descriptive side, it follows
from a result by Gruber and Holzer that the addition of a shuffle operator to
regular expressions may reduce representation sizes exponentially [21]. A gen-
eration algorithm with linear complexity for approximate size sampling (i.e.,
random generation) of regular specifications including shuffle has been provided
by Darrasse et al. [13]. Brozozowski et al. consider the complexity of ideal lan-
guages [8], which are regular languages invariant under shuffle with the universal
language [22]. Further results for sub-families of the regular languages are found
in [20, 23, 3, 12].

Shuffling has also been investigated in a more algebraic setting. The axiom-
atization of shuffle theory was addressed by Ésik together with Bloom [6] and
Bertol [15]. Kari and Sośık consider the effects of shuffling on trajectories; sets
of binary strings representing positions [27].

Another related formalism is permutation languages, considered by Nagy [32,
33], which allow rules of the form AB → BA in an otherwise normal context-
free grammar. That is, there may be rules which can be applied to interchange
positions of adjacent non-terminals in intermediary derivation steps. These can
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be used to simulate some types of shuffling, and we will see that the membership
problems for the permutation languages are related to the membership problems
for a certain class of shuffle languages.

2. Preliminaries

Sets and numbers. If S is a set, then S∗ is the set of all finite sequences of
elements of S, and precl(S) is the set of all finite prefix-closed subsets of S∗. In
other words, for every S′ ∈ precl(S), if uv ∈ S′ for some u, v ∈ S∗ then u ∈ S′.
We write N for the natural numbers. For k ∈ N, we write [k] for {1, . . . , k}.
Note that [0] = ∅. The domain of a mapping f is denoted dom (f).

An alphabet is a finite nonempty set. Let Σ be an alphabet and let ε be the
empty string, then Σ∪{ε} is denoted by Σε. The length of a string w = α1 · · ·αn
is written |w|, and for every α ∈ Σ, |w|α = |{i ∈ [n] | αi = α}|.
Trees. The set TΣ of (unranked) trees over the alphabet Σ consists of all map-
pings t : D → Σ, where D ∈ precl(N). The empty tree, denoted tε, is the unique
tree such that dom (t) = ∅. We henceforth refer to dom (t) as the nodes of t and
write nodes(t) rather than dom (t). The size of a tree t ∈ TΣ, denoted size (t),
is |nodes(t)|. The height of t, denoted height (t), is 1 + max(|v| | v ∈ nodes(t)).

For a tree t ∈ TΣ and a node v ∈ nodes(t), the subtree of t rooted at v
is denoted by t/v. It is defined by nodes(t/v) = {v′ ∈ N∗ | vv′ ∈ nodes(t)}
and, for all v′ ∈ nodes(t/v), (t/v)(v′) = t(vv′). The leaves of t is the set
leaves(t) = {v ∈ N∗ | @i ∈ N s.t. vi ∈ nodes(t)}. The substitution of t′ into t at
node v is denoted t[[v ← t′]]. It is defined by

nodes(t[[v ← t′]]) = (nodes(t) \ {vu | u ∈ N∗}) ∪ {vu | u ∈ nodes(t′)} ;

and, for every u ∈ nodes(t[[v ← t′]]), if u = vv′ for some v′ ∈ nodes(t′) then
t[[v ← t′]](u) = t′(v′), otherwise t[[v ← t′]](u) = t(u).

For a tree t ∈ TΣ let v1, . . . , vk ∈ nodes(t) be the immediate child nodes of the
root ordered by numeric value. That is, {v1, . . . , vk} = {v ∈ nodes(t) | |v| = 1},
ordered such that vi < vi+1 for all i ∈ [k−1]. Then we will write t as f [t1, . . . , tk],
where f = t(ε) and tj = t/vj for all j ∈ [k]. In the special case where k = 0
(i.e., when nodes(t) = {ε}), the brackets may be omitted, thus denoting t as f .

Shuffle operations and shuffle expressions. We recall the definitions of the
operations shuffle and shuffle closure, and of shuffle expressions, from [19, 26].

The shuffle operation � : Σ∗ × Σ∗ → pow (Σ∗) is inductively defined as
follows: for every u ∈ Σ∗ it is given by u� ε = ε� u = {u}, and by

α1u1 � α2u2 = {α1w | w ∈ (u1 � α2u2)} ∪ {α2w | w ∈ (α1u1 � u2)} ,

for every α1, α2 ∈ Σ, and u1, u2 ∈ Σ∗. The operation extends to languages with

L1 � L2 =
⋃

u1∈L1,u2∈L2

u1 � u2 .
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The shuffle closure of a language L ∈ Σ∗, denoted L�, is

L� =
∞∪
i=0
L�i , where L�0 = {ε} and L�i = L � L�i−1 .

Shuffle expressions are regular expressions that can additionally use the
shuffle operators. The shuffle expressions over the alphabet Σ are as follows.
The empty string ε, the empty set ∅, and every α ∈ Σ is a shuffle expression.
If s1 and s2 are shuffle expressions, then so are (s1 · s2), (s1 + s2), (s1 � s2), s∗1,
and s1

�. Shuffle expressions that do not use the shuffle closure operator are said
to be closure free. The language L(s) of a shuffle expression s is defined in the
usual way. Shuffle languages are the languages defined by shuffle expressions.

3. Concurrent Finite-State Automata

In this section, we introduce concurrent finite-state automata (CFSA). They
are inspired by recursive Markov models, but differs from these in two aspects:
the global state space is not partitioned into component automata and, more
importantly, differ in that recursive calls can be made in parallel. The latter
feature allows for an unbounded number of invocations to be executed simulta-
neously, but each symbol can only be read by one invocation. In Definition 1,
the string p� is to be read as single symbol. In the later definition of CFSA se-
mantics, transitions of the form (q, α, q′[p�]) will be interpreted as rule schema.

Definition 1 (CFSA). A Concurrent FSA is a tuple M = (Q,Σ, δ, I), where

• Q is a finite set of states;

• Σ is an alphabet of input symbols;

• δ ⊆ Q× Σε × T is a set of transitions, where T is the finite set

{q, q[p], q[p, p′], q[p�] | q, p, p′ ∈ Q} ∪ {tε} .

A transition (q, α, t) ∈ δ is

– terminal if |nodes(t)| = 0,

– horizontal if |nodes(t)| = 1, and

– vertical if |nodes(t)| > 1.

• I ⊆ Q is a set of initial states. �

Remark. For simplicity and without loss of generality, we henceforth assume
that the terminal transitions form a subset of Q× {ε} × {tε}. It is easy to see
that every CFSA can be rewritten to this normal form in linear time.

We now establish the semantics of CFSA. Whereas a FSA is in a single state
at a time, a concurrent FSA maintains a branching call-stack of states, repre-
sented by an unranked tree over an alphabet of states. In each step, exactly one
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leaf node of the state tree is rewritten. Vertical transitions model the invoca-
tion of child processes; horizontal transitions the continued execution within a
process; and terminal transitions the completion of a process. A CFSA accepts
a string if, upon reading the entire string, it can reach a configuration in which
every processes has been completed, i.e., the state tree is empty.

Definition 2 (Concurrent FSA semantics). A configuration of the CFSA
M = (Q,Σ, δ, I) is a tuple (w, t) ∈ Σ∗ × TQ. The set of all configurations of M
is denoted ∆(M). A configuration (w, t) ∈ ∆(M) is initial (with respect to the
string w ∈ Σ∗) if t ∈ I.

Consider the configurations (w, t), (w′, t′) ∈ ∆(M). There is a transition step
from (w, t) to (w′, t′), written (w, t)→ (w′, t′), if there is a transition (q, α, s) ∈ δ
and a node v ∈ nodes(t) such that w = αw′, t/v = q (so v is a leaf), and either

• s ∈ TQ and t′ = t[[v ← s]], or

• s = p′[p�] and t′ = t[[v ← p′[p, . . . , p︸ ︷︷ ︸]
n

]] for some for p, p′ ∈ Q and n ∈ N.

The reflexive and transitive closure of → is denoted
∗−→. The language rec-

ognized by M is L(M) = {w ∈ Σ∗ | ∃q ∈ I : (w, q)
∗−→ (ε, tε)}. �

For the sake of brevity only the state-tree part of a configuration, called a
configuration tree, may be shown in cases where the string is irrelevant.

Example 1. Let L1 and L2 be the Dyck languages2 over the symbol pairs b, c
and d, e, respectively. Their shuffle L = L1�L2 is recognized by the concurrent
FSA M = ({q0, q1, q

′
1, q2, q

′
2}, {b, c, d, e}, δ, {q0}), where

δ = { (q0, ε, q
′[q1, q2]), (q′0, ε, tε), (q1, b, q′1[q1]), (q′1, c, q1),

(q1, ε, tε), (q2, d, q′2[q2]), (q′2, e, q2), (q2, ε, tε) } .

To illustrate the automaton’s semantics, we step through an accepting run
of M on the string w = bbdcbecc (see Figure 1). Note that since w ∈ w1 � w2

for w1 = bb cb cc ∈ L1 and w1 = d e ∈ L2, it follows that w ∈ L1 � L2. �

It is known that L1 = {anbn | n ∈ N} is a context-free language, but it is
not a shuffle language. Conversely, L2 = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} is
a shuffle language but is not context-free. Both L1 and L2 is recognized by a
CFSA, and so is L1 ∪L2, which is neither a context-free nor a shuffle language.
Thus the CFSA languages properly extend both the context-free languages and
the shuffle languages. They also have comparatively nice closure properties.

Theorem 1. The languages recognized by CFSA are closed under union, con-
catenation, Kleene star, shuffle and shuffle closure. They are not closed under
intersection with a regular language or complementation.

2A Dyck language consists of all well-balanced strings over a given set of parentheses.
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In its initial configuration, M is in the
unique initial state q0 and has yet to con-
sume any input symbol.

( bbdcbecc, q0)

To proceed, M must nondeterministically
choose the transition (q0, ε, q

′
0[q1, q2]).

( bbdcbecc, q′0[q1, q2] )

By the transition (q1, b, q′1[q1]), M reaches
the configuration

( bdcbecc, q′0[q′1[q1], q2] )

and by (q1, b, q′1[q1]) and (q2, d, q′2[q2]) the
configuration

( cbecc, q′0[q′1[q′1[q1]], q′2[q2]] )

Now M nondeterministically guesses that
it is time to read the symbol c. It prepares
by deleting the leaf labelled q1 using tran-
sition (q1, ε, tε) to get

( cbecc, q′0[q′1[q′1], q′2[q2]] )

and then (q′1, c, q1) to get

( becc, q′0[q′1[q1], q′2[q2]] )

Again, (q1, b, q′1[q1]) lets M read b,
( ecc, q′0[q′1[q′1[q1]], q′2[q2]] )

and (q2, ε, tε), (q′2, e, q2) produces

( cc, q′0[q′1[q′1[q1]], q2] ) .

Thereafter, applying the transition
sequence (q1, ε, tε), (q′1, c, q1) twice yields

( ε, q′0[q1, q2] ) .

Although the entire input has been
read, M does not accept until the state
tree has been reduced to the empty
tree. This can be done by applying
(q1, ε, tε), (q2, ε, tε) to get

( ε, q′0 ) ,

and finally (q′0, ε, tε) to reach

( ε, tε ) .

Figure 1: The CFSA M of Example 1 accepts the input string bbdcbecc.

Proof. Let M = (Q,Σ, δ, I) and M ′ = (Q′,Σ, δ′, I ′) be CFSA. We assume
without loss of generality that Q ∩ Q′ = ∅, and that the automata have only
one initial state each, i.e., I = {q0} and I ′ = {q′0}. The latter assumption can
be made without loss of recognizing power since ε-transitions are allowed.

Union. The classical construction of a nondeterministic automaton for the
union of M and M ′ carries over from the FSA case: a new initial state q is
added, together with ε-transitions from q to each of q0 and q′0.

Concatenation. For concatenation, we add the new states q, q′, and q′′,
where q becomes the initial state of the new automaton. We also add the
vertical transitions (q, ε, q′[q0]) and (q′, ε, q′′[q′0]), and the terminal transition
(q′′, ε, tε). This allows the automaton to first simulate a run of M and then a
run of M ′.

Kleene closure. Next, we construct a CFSA for the Kleene closure of M .
All we have to do is add a new, unique, initial state q to Q along with the
terminal transition (q, ε, tε) and the vertical transition (q, ε, q[q0]). This allows
the automaton to simulate any number of runs of M , one after the other.

Shuffle. For the shuffle of L(M) and L(M ′) we add states q, q′, where q
becomes the unique initial state of the new automaton. We also add the vertical
transition (q, ε, q′[q0, q

′
0]) and the terminal transition (q′, ε, tε).
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Shuffle closure. To construct the shuffle closure of the language of M , we
again add states q, q′, where q becomes the unique initial state of the new
automaton. Additionally, we add the vertical transition (q, ε, q′[q0

�]) and the
terminal transition (q′, ε, tε). This allows the new automaton to spawn any
number of copies of M that can then run in parallel over the input string.

Intersection. Consider the languages L1 = (abc)
�

and L2 = a∗b∗c∗. The
former is a shuffle language, and the latter clearly a regular language, so both are
recognizable by CFSA. As we shall see, their intersection L = {anbncn | n ∈ N}
is not. The proof is by contradiction, so let us assume that L is recognized by
some CFSA M = (Q,Σ, δ, I).

To make the upcoming argument clearer, we introduce some convenient defi-
nitions. For every q ∈ Q, Mq denotes the CFSA (Q,Σ, δ, {q}). The substrings of
a language L, written substring(L), is the set {v | uvw ∈ L for some u,w ∈ Σ∗}.

Now, if a transition r of the form (q, α, q[p, p′]) ∈ δ is applied in an ac-
cepting run of M , then L(Mp) � L(Mp′) ⊆ substrings(L). For this rea-
son, L(Mp) ∪ L(Mp′) ⊆ α∗ for some α ∈ {a, b, c}. Otherwise, if for exam-
ple w ∈ L(Mp) and w′ ∈ L(Mp′) with |w|a > 0 and |w′|b > 0, the string
w′w ∈ w � w′ would be in substrings(L), but this is impossible since a b oc-
curs before an a in w′w. It follows that the order of p and p′ in r is irrele-
vant. Hence, r can equivalently be replaced by a pair of transitions such that
(ε, q)

∗−→ (α, q[p[p′]]). The same argument justifies the replacement of transitions

of the form (q, α, q[p�]) with transitions that yield (ε, q)
∗−→ (α, q[p[p[. . . [p]]]]).

After this language-preserving normalization, the resulting CFSA only gen-
erates monadic configuration trees, which means that no shuffling is done. How-
ever, without shuffle operations, L(M) is a context-free language (cnf. Theo-
rem 2), and it is well known that L is not a context-free language. Conse-
quently, L is not recognizable by a CFSA.

Complementation. Since the CFSA languages are closed under union, but
not under intersection, they are not closed under complementation either, since

(L1 ∩ L2) can be expressed as (L1 ∪ L2). �

Restrictions and expressive power. We introduce CFSA to provide an
automaton model that can be syntactically restricted to capture the combination
of shuffle operations with some well-known languages classes. The restrictions
considered here are as follows. A CFSA M = (Q,Σ, δ, I) is:

• horizontal if δ contains no vertical transitions;

• non-branching if every vertical transition is in Q×Σ× {q′[q] | q, q′ ∈ Q};

• finitely branching if no vertical transition is in Q×Σ×{q′[q�] | q, q′ ∈ Q};

• acyclic if there is no configuration (w, t) ∈ ∆(M) and state q ∈ Q such
that q appears twice on a path from the root of t to a leaf.

Theorem 2. A language is:
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• regular if and only if it is recognized by a horizontal CFSA;

• context-free if and only if it is recognized by a non-branching CFSA;

• a shuffle language if and only if it is recognized by an acyclic CFSA;

• a closure-free shuffle language if and only if it is recognized by an acyclic
and finitely branching CFSA.

Proof sketch. Horizontal CFSA are equivalent to nondeterministic finite au-
tomata in that they recognize the regular languages.

It is easy to turn a context-free grammar G = (N,Σ, γ, S) on Chomsky nor-
mal form into a non-branching CFSA M = (Q,Σ, δ, I). Let Q = N∪{q | q ∈ N},
I = {S}, and define δ as follows.

• For every rule q → α in γ, where α ∈ Σε, there is a horizontal transition
(q, α, q) and a terminal transition (q, ε, tε) in δ.

• For every rule q → pp′ in γ, there is a transition (q, ε, p′[p]) in δ2.

For the opposite direction, it is equally easy to turn a non-branching CFSA into
a language-equivalent push-down automaton.

Next, we show that acyclic CFSA correspond to the shuffle languages. The
only-if direction follows directly from the proof of Theorem 1 since the construc-
tions there preserve acyclicity.

Given a CFSA M = (Q,Σ, δ, I) we show how to construct a shuffle expres-
sion s recognizing L(M). Two states q, q′ ∈ Q to be connected if there is a
transition (q, α, t) ∈ δ, where the label of the root of t is q′, for some α ∈ Σε.
With this notion of connectivity, let C1, . . . , Ck be the connected components
of M . Consider the directed graph GM = (C1, . . . , Ck, E), where (Ci, Cj) ∈ E
if there is a state q ∈ Ci, a vertical transition (q, α, t) ∈ δ, and a state p ∈ Cj
such that p (or p�) labels a leaf of t. Since M is acyclic, also GM is acyclic.

Let δv ⊆ δ be the set of all vertical transitions. We create an alphabet Σv
with one unique new symbol for each vertical transition. Let h : δv → Σv be
the bijection mapping each d ∈ δv to the corresponding alphabet symbol. Also,
for each d ∈ δv, let qd be a new state. Define H to be the CFSA obtained from
M by replacing each vertical transition d = (q, α, q′[...]) with the horizontal
transitions (q, α, qd) and (qd, h(d), q′). Notice that the connected components
of H are the same as the connected components of M and that H is a finite
automaton recognizing a regular language.

For each q ∈ Q, let the regular expression r(q) be such that L(r(q)) = L(Hq),
that is, r(q) describes the language that H recognizes when starting from state q.
Such a regular expression can be computed using standard constructions.

We are now ready to describe how to construct the shuffle expression cor-
responding to M . To be precise, for each state q ∈ Q, we will define a shuffle
expression s(q) such that the language of s(q) is the language of Mq, in other
words, the CFSA obtained from M by replacing I by {q}. We do this by induc-
tion on the structure of GM .

45



If C is a leaf of GM , then there are no vertical transitions in the connected
component C. Hence, for every q ∈ C, we have s(q) = r(q).

Suppose that q belongs to a connected component Ci such that for all states
in all components reachable from Ci in GM , we have already computed the
corresponding shuffle expressions. In this case we get the shuffle expression for q
by taking r(q) and replacing symbols in Σv by appropriate shuffle expressions.
In particular, consider symbol h(d) ∈ Σv that corresponds to d = (q′, α, t) ∈ δv.
The shuffle expression for h(d) is obtained from t as follows.

• If t = p[p′], for some p, p′ ∈ Q, then the shuffle expression is s(p′).

• If t = p[p′1, p
′
2] then the shuffle expression is s(p′1)� s(p′2).

• If t = p[p′�], then the shuffle expression is (s(p′))�.

The shuffle expression for M is the union of those for the states in I, i.e.,

s =
⋃

q∈I
s(q) .

The equivalence L(M) = L(s) can be shown by a standard induction.
Finally, that acyclic and finitely branching CFSA correspond to the closure

free shuffle languages follows from the constructions in the proof of Theorem 1
as only the shuffle closure operator induces unbounded branching. �
Since the closure free shuffle languages are regular [18], we can conclude that
acyclic and finitely branching CFSA also recognize the regular languages.

The next theorem shows that CFSA do not provide us with the full power
of linear bounded Turing machines.

Theorem 3. The languages recognized by CFSA are properly contained in the
context-sensitive languages.

Proof. Let M = (Q,Σ, δ, I) be a CFSA and w an input string. If there is an
accepting run of M on w from some initial state q0, then a nondeterministic
Turing machine can guess and verify this run in linear space by proceeding as
follows. (1) The TM simulates a run of M on w starting in q0, but every time
a vertical transition (q, α, q′[s]) is used on the top level, where s is a sequence
of labels, the TM guesses what part of the subsequent string is to be consumed
by the states trees derived from s, marks this segment off with brackets and a
pointer to s, and continues in state q′ after the closing bracket until it has read
all of w. If it accepts what it has seen so far, it goes on to verify each of the
bracketed segments.

Let w′ be such a segment, annotated with s. If s is a single state p, the
TM recursively verifies that w′ is accepted by M when starting from state p,
i.e., w′ ∈ L(Mp). If s is a pair p, p′ ∈ Q, the TM guesses a way to partition
w′ into subsequences u, u′ so that w′ ∈ u � u′. It then recursively verifies that
u ∈ L(Mp) and u′ ∈ L(Mp′). Finally, if s = p�, the TM guesses an n ≤ |w′|
and a way to partition w′ into n subsequences, and verifies recursively that
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each such subsequence belongs to L(Mp). This process continues recursively
until no unprocessed bracketed segment has non-zero length. We note that the
total amount of information that was recorded in the process is linear in |w|, so
the non-uniform membership problem for CFSA languages can be decided by a
linearly bounded nondeterministic TM. As shown in the proof of Theorem 1, no
CFSA recognizes the language {anbncn | n ∈ N}, so it follows that the CFSA
languages form a proper subset of the context-sensitive languages. �

Since not all CFSA-languages are context-free (e.g., there are non-context-free
shuffle languages), we conclude that their expressive powers lies strictly between
that of context-free grammars and that of context-sensitive grammars.

Also unlike linear bounded Turing machines, CFSA can be efficiently checked
for emptiness.

Theorem 4. The emptiness problem for CFSA is decidable in polynomial time.

Proof. Let M = (Q,Σ, δ, I) be a CFSA. A state q of M is live if L(Mq) is
nonempty. Let F ⊆ Q be the smallest set satisfying the following conditions.

1. F0 = {q | (q, ε, tε) ∈ δ}

2. Fi ⊆ Fi+1

3. if (q, α, q′) ∈ δ and q′ ∈ Fi then q ∈ Fi+1

4. if (q, α, q′[s]) ∈ δ for some q′ ∈ Fi and some s such that every state that
appears in s belongs to Fi, then q ∈ Fi+1

5. F = ∪∞i=0Fi

Claim. A state q of M is live if and only if q ∈ F .
For the if-direction, we prove by induction on the smallest i such that q ∈ Fi

that q is live. For i = 0 this is trivially true, since (q, ε, tε) ∈ δ, and thus Mq

accepts the string ε.
Assume that every state in Fi is live, and consider the state q ∈ Fi+1 \ Fi.

If (q, α, q′) ∈ δ, with q′ ∈ Fi, then there is a string w such that Mq′ accepts w.
This means that Mq accepts αw and we conclude that q is live. If there is no
such rule, there must be a rule (q, α, q′[s]) in δ such that q′ and either s = p�

or every state that appears in s belong to Fi. If this is the case, then there is a
word wq′ accepted by Mq′ . If s = p, there is a word wp ∈ L(Mp) and conclude
that Mq accepts α ·wp ·wq′ . Similarly, if s = p, p there are strings wp ∈ L(Mp),
wp′ ∈ L(Mp′), and wp� p′ ∈ wp � wp′ such that Mq accepts α · wp1�p2 · wq′ .
Finally, if s = p�, we know that Mq accepts α · wq′ . Thus q is live.

For the other direction, assume that q is live as witnessed by some word
w = α1 · · ·αm in L(Mq). Let

(w, q) = (w1, t1)→ · · · → (wm, tm) = (ε, tε)
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be an accepting sequence of transition steps of Mq on w. We show by induction
that every state that appears in t1, . . . , tm is in F . In particular, this means
that q belongs to F , since t = q. Since tm = tε, all states in tm belong to F .
Assume that all states appearing in ti belong to F and consider ti−1. One of
the following cases apply (for some leaf node v).

1. ti−1 = t[[v ← q]], ti = t[[v ← q′]], and there is a transition (q, αi, q
′) ∈ δ. If

this is the case, q ∈ F and thus all states of ti−1 belong to F .

2. ti−1 = t[[v ← q]], ti = t[[v ← q′[u1, . . . , un]]], and there is a transition
(q, αi, q

′[s]) ∈ δ such that

• s = p, n = 1, and u1 = p,

• s = p1, p2, n = 2, u1 = p1 and u2 = p2, or

• s = p� and u1 = · · · = un = p.

In either case, q ∈ F and thus all states of ti−1 belong to F .

3. ti−1 = t[[v ← q]], ti = t[[v ← tε]]. In this case, q belongs to F0 and we can
conclude that all states appearing in ti−1 belong to F .

The set F can be computed in polynomial time and L(M) is empty if and only
if F ∩ I = ∅. Thus emptiness for CFSA can be decided in polynomial time. �

4. Membership Problems

4.1. The membership problem for unrestricted CFSA

The membership problem for unrestricted CFSA is intractable, both in the
uniform and the non-uniform case.

Theorem 5. Both the uniform and the non-uniform membership problem for
CFSA is NP-complete.

NP-hardness for the uniform membership problem for shuffle expressions is al-
ready known; see, e.g., [1, 31]. We postpone the hardness proof for the non-
uniform case until Theorem 9 in Section 4.4, where it is proved for a subclass
of CFSA.

To see that the membership problem for CFSA is in NP, we first note that
every CFSA can be augmented in polynomial time with “shortcuts”, that is,
contractions of ε-consuming transition sequences into single transitions.

Definition 3 (Trim). A CFSA M = (Q,Σ, δ, I) is trim if it fulfills the follow-
ing conditions:

1. For every q ∈ Q, if (ε, q)
∗−→ (ε, tε) then (ε, q)→ (ε, tε).

2. For every choice of q, q′ ∈ Q, if (ε, q)
∗−→ (ε, q′) then (ε, q)→ (ε, q′).
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3. For every choice of q, q′, p, p′ ∈ Q, if (ε, q)
∗−→ (ε, q′[p, p′])

∗−→ (ε, q′[p]) then
(ε, q)→ (ε, q′[p]).

Lemma 1. Every CFSA M = (Q,Σ, δ, I) can be rewritten into a language-
equivalent trim CFSA in polynomial time.

Proof (Sketch). A simple procedure based on the emptiness test (recall The-
orem 4) suffices to add any missing transition to M in polynomial time. For
example, construct the automaton M ′ = (Q,Σ, δ′, {q}) where δ′ ⊆ δ contains

only the transitions that do not generate any symbol. Then (ε, q)
∗−→ (ε, tε)

if and only if M ′ is nonempty. Once Condition 1 is satisfied, the transitions
needed to satisfy the remaining two conditions can be added through similar
constructions. �

Lemma 2. Given a CFSA M = (Q,Σ, δ, I) and a string w ∈ Σ∗ it is possible
to determine if w ∈ L(M) in nondeterministic polynomial time.

Proof sketch. Due to Lemma 1, we may assume that M is trim. We show that
there is a polynomial P such that for every w ∈ L(M), there is a state q0 ∈ Q
and a sequence of transition steps

(w, q0) = (w1, t1)→ · · · → (wn, tn) = (ε, tε)

such that n ≤ P (|Q|+|w|). This result allows an accepting sequence of transition
steps to be “guessed” as part of a nondeterministic polynomial-time decision
algorithm for the membership problem.

For every pair of configurations c = (ε, t), c′ = (ε, t′) ∈ ∆(M), if there is
a sequence of transition steps from c to c′, then there is also a sequence of
length at most n ≤ |t|+ 2|t′|. Such a short sequence can be found by organizing

the transitions as follows: (ε, t)
∗−→ (ε, t̂)

∗−→ (ε, t′) where the t → t̂ part of the
derivation only deletes nodes, and the t̂→ t′ part never deletes nodes. This reor-
ganization is possible since M is trim, so all possible node deletions/relabelings
can be performed without generating extraneous nodes. In turn, this means
that no node needs to be generated only to subsequently be deleted. It follows
that at most |nodes(t)| may need to be deleted, and at most |nodes(t′)| nodes
may need to be created and/or relabeled with a new state.

Finally, in a sequence of transition steps that accepts the string w and is of
minimum length, no intermediary configuration tree needs to have more than
|w| leaves or be of height greater than |Q|(|w| + 1). Only |w| symbols are
consumed by the transitions, so if there are |w| + 1 leaves, then one of them
must eventually consume ε. The existence of such a leaf violates the assumption
that the sequence is of minimal length (notice that conditions 1–3 in Definition 3
ensure that useless nodes never have to be added). The height bound holds since
a higher tree would have to have |w|+2 or more copies of some state q along some
path. By a standard pumping argument the sequence could have chosen not to
recognize any q-delimited section of the path (that is, loop once less on q). With
|w|+ 2 instances of q-labeled nodes, there are |w|+ 1 such q-delimited sections
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on the path. Only |w| symbols are consumed, so one of those sections will be
matched up against the empty string. The redundant section could be omitted
without affecting the accepted string, which violates the assumption that the
original sequence of transition steps was of minimum length.

In conclusion, the size of the configuration trees necessary to accept an input
string w is bounded by |w|2|Q|, and any sequence of transitions on polynomially
sized trees can be limited to a polynomial number of steps. There is thus,
for every w ∈ L(M), a sequence of polynomial length, which means that a
nondeterministic algorithm can check membership by guessing the sequence. �

4.2. The membership problem for acyclic CFSA

We now turn to the membership problem for acyclic CFSA, i.e., the restric-
tion of CFSA that recognizes the shuffle languages.

Corollary 1. For acyclic CFSA

1. the non-uniform membership problem is solvable in polynomial time, and

2. the uniform membership problem is NP-complete.

Proof. The result for non-uniform membership follows directly from Theo-
rem 2 and the fact, proved in [26], that non-uniform parsing for shuffle expres-
sions is polynomial. For the uniform membership problem, membership in NP
is obvious – just guess and verify a run of the automaton. NP-hardness follows
by an easy adaptation of a result by Barton [1]. �

The uniform membership problem is NP-complete already for acyclic and finitely
branching CFSA, which only recognize regular languages. This is not too sur-
prising since, e.g., the similar NFA(&) from [17], which also recognize the regular
languages, has PSPACE-complete uniform membership. For some languages,
CFSA offer a more succinct form of representation than NFA and the shuffle
automata from [26]. One example is the language family {{an} | n ∈ N}, for
which the smallest NFAs and shuffle automata have sizes linear in n, while the
smallest CFSAs are logarithmic in n.

Corollary 1 states that the membership problem is polynomial for a fixed
automaton but NP-hard if the automaton is considered input. The question
then remains whether the size of the automaton merely influences the coef-
ficients of the polynomial or if it affects the degree itself. We give a partial
answer by showing that when parameterized by the maximal size of a configu-
ration tree for the automaton, the uniform membership problem for acyclic and
finitely branching CFSAs is not fixed-parameter tractable, unless FPT = W[1].
This class equivalence is considered very unlikely and would have far-reaching
complexity-theoretic implications. For more on parameterized complexity the-
ory, see, e.g., [14].

We state the result for acyclic and finitely branching CFSA, but it could
be equivalently stated for closure-free shuffle expressions. We first define the
parameterized version of the problem.
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Definition 4. An instance of the parameterized uniform membership problem
for acyclic and finitely branching CFSA is a pair (M,w) where M is an acyclic
and finitely branching CFSA over a finite alphabet Σ and w is a string in Σ∗.
The parameter is the maximal size of any configuration tree for M . The question
is whether w ∈ L(M). �

For acyclic and finitely branching CFSA, the maximal size of the configuration
trees depends only on the automaton. If the membership problem for these
automata was fixed-parameter tractable, it would have an algorithm with run-
ning time f(k) · nc, where f is a computable function, k is the parameter (the
maximal tree size), n is the instance size, and c is a constant. Theorem 6 gives
strong evidence to the contrary.

Theorem 6. The parameterized uniform membership problem for acyclic and
finitely branching CFSA is W[1]-hard.

The proof is by a fixed-parameter reduction from parameterized clique, which
is known to be W [1]-complete [14].

Definition 5. An instance of k-Clique is a pair (G, k), where G = (V,E) is
an undirected graph and k is an integer. The question is whether there is a
set C ⊆ V of size k such that the subgraph of G induced by C is complete. The
parameter is k. �

Proof. The proof consists in a reduction from k-Clique to the member-
ship problem at hand. Let (G = (V,E), k) be an instance of k-Clique, and
let n = |V | and m = |E|. We construct an alphabet Σ, a shuffle expression r,
and a string w ∈ Σ∗ such that |Σ| = O(n + m), |r| = O(k · n2 + k2 · m),
|w| = O(k ·n+m), the shuffle operator appears O(k2) times in r, and w ∈ L(r)
if and only if G has a clique of size k. To construct Σ, we assume that the ver-
tices in V are named v1, v2, . . . , vn and that the edges are named ei,j where i < j
are the numbers of the two incident vertices and let Σ = V ∪E. The word w is
vk1 · vk2 · · · vkn · edges, where edges is any enumeration of the edges in E.

We define the regular languages s, t, u by

• s = (vk1 + vk2 + · · ·+ vkn)n−k,

• t = V ∗ · E∗, and

• u = Σei,j∈E(vi · vj · ei,j).
Finally, we define

r = s� t� (

k(k−1)/2⊙

i=1

u) .

The intuition behind the reduction is as follows:

• The expression s matches n − k sequences of k copies of a vertex name.
This leaves only k such sequences in w for the rest of r to match against,
so the remainder of the expression can only use k distinct vertex names.
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• Each instance of expression u matches one sequence vi · vj · ei,j . Thus, the
k(k−1)/2 instances of umatch against k(k−1) vertex names and k(k−1)/2
edge names. Due to the matching of s, the k(k−1) vertex names can only
be chosen from among k vertices. Thus the k(k− 1)/2 edge names, which
are distinct since edges is an enumeration of E, represent edges that have
both their endpoints in a set of vertices of size k.

• The expression t matches all remaining vertex and edge names.

• Any graph that has k(k− 1)/2 distinct edges whose endpoints are all in a
set of vertices of size k has a clique of size k.

Thus w belongs to L(r) if and only if G has a clique of size k. Notice that |r| is
polynomial in |G| and that the number of shuffle operators depends only on k.

Using Theorem 2 it is easy to find an acyclic and finitely branching CFSA Mr

such that L(Mr) = L(r), the size of Mr is polynomial in the size of G, and the
maximum size of a configuration tree for Mr is O(k2). Thus there is a fixed-
parameter reduction from k-Clique to parameterized membership for acyclic
and finitely branching CFSA, so the latter problem is W[1]-hard. �

The following corollary is immediate.

Corollary 2. The uniform membership problem for closure-free shuffle expres-
sions, parameterized by the number of shuffle operators, is W[1]-hard.

4.3. The membership problem for Reg � CF and Sh� CF

We next show that the shuffle of a context-free language and a regular lan-
guage is efficiently recognizable, even if the language descriptions are considered
to be part of the input.

Theorem 7. The uniform membership problem for the shuffle of two languages,
one represented by context-free grammar and one represented by a nondetermin-
istic finite automaton, is solvable in polynomial time.

The above theorem actually has a shorter proof than the one given below, based
on the fact that a shuffle language shuffled with a context-free language is a
context-free language. We give the slightly longer proof because it is a good
preparation for the proof of Theorem 8.

Proof. LetG = (N,Σ, δ, S) andM = (Q,Σ, γ, I, F ) be a context-free grammar
on Chomsky normal form and an NFA, respectively.

To test membership in L(G) � L(M), we extend the CYK algorithm for
context-free grammars. For every nonterminal A ∈ N ∪ {ε} and every pair of
states q1, q2 ∈ Q let Mq1,q2 = (Q,Σ, γ, {q1}, {q2}) and GA = (N,Σ, δ, A) unless
A = ε, in which case L(GA) contains only the empty string. Then (A, q1, q2) is
a parse triple for G and M over a string w if and only if w ∈ L(GA)�L(Mq1,q2).
In other words, (A, q1, q2) is a parse triple for w if w can be partitioned into
two subsequences, w1 and w2, such that A can produce w1 (or w1 = ε if A = ε)
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and M can read w2 by going from state q1 to q2. We note that there are at
most (|N |+ 1) · |Q|2 distinct parse triples.

The idea, like in the CYK algorithm, is to compute the parse triples for each
substring, starting with the substrings of length 1, and then combine triples to
form new triples for successively longer strings. In the end, w ∈ L(G) � L(M)
if and only if there is a parse triple (S, qI , qF ) for the whole of w such that S is
the start symbol of G, qI ∈ I, and qF ∈ F . Since w has O(m2) substrings we
will compute at most O(m2 · |N | · |Q|2) parse triples.

For substrings of length one, computing the triples is trivial. Assume that
we have computed all the parse triples for all substrings of length k−1. We show
how to compute the parse triples for a substring of length k. Let v = v1 · · · vk
be such a substring. To find out whether (ε, q1, q2) is a parse triple for v, we
proceed as follows. We check whether there is an i ∈ [k − 1] and a state q
such that (ε, q1, q) is a parse triple for v1 · · · vi, and (ε, q, q2) is a parse triple
for vi+1 · · · vk. If this is the case, (ε, q1, q2) is a parse triple for v.

To determine whether (A, q1, q2), A ∈ N , is a parse triple for v, we proceed
in two steps. First, if there is a rule A → a in δ, for some a ∈ Σ, we check
whether there is an i ∈ [k] and a q ∈ Q such that vi = a, (ε, q1, q) is a parse
triple for v1 · · · vi−1, and (ε, q, q2) is a parse triple for vi+1 · · · vk. If this is the
case, (A, q1, q2) is a parse triple for v. Second, we check, for each rule A→ BB′

whether there is an i ∈ [k] and a q ∈ Q such that (B, q1, q) is a parse triple
for v1 · vi and (B′, q, q2) is a parse triple for vi+1 · vk. In this case too, (A, q1, q2)
is a parse triple for v. �
Since acyclic and finitely branching CFSA only contribute a more compact rep-
resentation of the regular languages, Theorem 7 extends to the non-uniform
membership problem for the shuffle of a context-free language and a closure-
free shuffle language:

Corollary 3. The non-uniform membership problem for the shuffle of two lan-
guages, one represented by a context-free grammar and one represented by an
acyclic and finitely branching CFSA, is solvable in polynomial time.

Extending Theorem 7 with techniques inspired by [26], we get the following:

Theorem 8. The non-uniform membership problem for the shuffle of a shuffle
language and a context-free language is solvable in polynomial time.

Since the languages are not part of the input, we may assume that they are
represented by an acyclic CFSA M , and a context-free grammar G, respectively.
We prove the above theorem in several steps. First, we show that we can assume
that the CFSA for a shuffle language has certain structural properties. Second,
we define simple configuration trees, and show that any computation of a CFSA
for a shuffle language that has the above-mentioned structural properties can be
assumed to use only simple configuration trees. Third, we show an upper bound
on the number of different simple configuration trees that need to be taken into
account during a computation, and provide a compact representation for these.
Finally, we prove the theorem along the lines of the proof of Theorem 7.
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The first structural property of CFSAs that we consider is stratification.

Definition 6. An acyclic CFSA M = (Q,Σ, δ, I) is stratified if, for every q ∈ Q,
there is at most one p ∈ Q such that, in a configuration tree, a node with label p
can be the parent of a node with label q. �

To proceed, we need a canonical translation from shuffle expressions to CFSAs:

Definition 7. Let s be a shuffle expression. Then Ms is the CFSA constructed
from s as in the proof of Theorem 1. We call Ms the canonical CFSA for s. �

Observation 1. Let s be a shuffle expression, and let Ms = (Q,Σ, δ, q0) be the
canonical CFSA for s. Then Ms has the following properties.

• It is stratified.

• It is acyclic.

• For each q ∈ Q, there is at most one vertical transition (p, α, t) in δ
with q labelling the root of t. We say that Ms is vertically separated.
We write scp(Ms) (for shuffle-closure-parent) for the set of states that
can have an unbounded number of children in configuration trees, i.e.,
scp(Ms) = {q | ∃p, p′, α : (p′, α, q[p�]) ∈ δ}. �

Having covered the first step our proof outline, we continue to introduce and
reason about so-called simple configuration trees. For this purpose, we introduce
the notions of pruned configuration trees and symmetrically equivalent nodes.
Prunings delete subtrees produced through shuffle-closure; a pair nodes in a
configuration tree t are symmetrically equivalent if they are identical modulo
an automorphism in a pruned version of t, i.e., when we disregard their exact
number of descendant subtrees created through shuffle-closure.

Definition 8 (Pruning). Let Ms be the canonical CFSA for a shuffle expres-
sion s, let t be a configuration tree of Ms and let v, v′ be nodes in t.

We denote by P (v, v′) the set of the closest shuffle-closure-parent descendants
of v and v′. More formally, let P (v, v′) be the set of nodes u of t such that:

1. t(u) ∈ scp(Ms),

2. u is a descendant of v or v′, and

3. there is no node with a label in scp(Ms) on the path from v (or v′) to u.

The pruning of t with respect to v, v′, written prune(t, v, v′), is obtained
from t by removing all subtrees rooted at children of nodes in P (v, v′). �

Definition 9 (Symmetrical equivalence). Let Ms be the canonical CFSA
for a shuffle expression s, let t be a configuration tree of Ms and let v, v′ be
nodes in t. The nodes v and v′ are symmetrically equivalent if there is an
automorphism f on the nodes of t′ = prune(t, v, v′) such that
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• f(v) = v′ and f(v′) = v,

• for every u ∈ nodes(t′), t′(f(u)) = t′(u), and

• for every u, u′ ∈ nodes(t′), it holds that f(u) is a child of f(u′) if and only
if u is a child of u′.

We write se(v, v′) if v and v′ are symmetrically equivalent.

It is easy to check that symmetrical equivalence is an equivalence relation
in the algebraic sense, and thus reflexive, symmetric and transitive. When
considering a configuration tree from a computational point of view, we notice
that the ordering of its nodes is not important, only its hierarchical structure. It
is therefor meaningless to distinguish between symmetrically equivalent nodes
in the rewriting process. For our purposes this is an advantage, because we only
have to remember to what class of symmetrically equivalent nodes a subtree
attaches, not the exact location.

Observation 2. Let k ∈ N, let t and s1, . . . , sk be configuration trees, let
v1, . . . , vk be symmetrically equivalent nodes in nodes(t), and let

T = {t[[v1 ← sφ(1), . . . , vk ← sφ(k)]] | φ is a permutation on [k]} .

For every t1, t2 ∈ T and w ∈ Σ∗, if (t1, w)
∗→ (ε, tε) then (t2, w)

∗→ (ε, tε) �

Due to Observation 2, it is never useful to apply a transition r = (p′, α, q[p�])
below a node v, when there symmetrically equivalent node v′ below which r has
already been applied. This claim, which will be proved later on, means that the
search space can be reduced to what we shall call simple configuration trees.

Definition 10. A configuration tree t is simple if is it does not contain sym-
metrically equivalent nodes v and v′, such that both v and v′ have descendants
which are labeled by states in scp(Ms) and have children.

A run of a CFSA is simple if all configuration trees of the run are simple. �

Lemma 3. Let Ms the be the canonical CFSA for a shuffle expression s and
let w be a word. Then Ms has a simple accepting run on w, if and only if Ms

has an accepting run on w.

Proof sketch. For the “only if” direction we note that every simple accepting
run is an accepting run.

For the opposite direction, we provide a rewrite procedure that rearranges
the configuration trees in an accepting run into an alternative run that is also
accepting. After applying this procedure a finite number of times we are guar-
anteed to reach a run that is both accepting and simple.

Assume that Ms has an accepting run ρ = t0, t1, . . . , tn on w, and that ρ is
not simple. Let ti be the first non-simple tree. Then the transition from ti−1
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Figure 2: Children obtained through shuffle-closure can be moved between descendants of
symmetrically equivalent nodes.

to ti must have been a vertical transition of the form (p′, ε, q[p�]) that changed
the label of some leaf node u from p′ to q and gave it a number of children with
label p, say m children. Also, there must be an ancestor v of u (possibly, v = u)
and a node v′ such that v and v′ are symmetrically equivalent in ti. Let φ
be the corresponding automorphism on prune(ti, v, v

′). Let u′ = φ(u). If all
the children of u were instead children of u′, the tree ti would be a simple
configuration tree. And, indeed, because of the vertical separation of Ms, the
transition that labeled u′ by q must have been (p′, ε, q[p�]). Thus, it could
as well have created m extra children of u′ with label p, in addition to the
children it originally created. This would not have affected any transitions up
to configuration tree ti−1. Symmetrically, the transition from ti−1 to ti might
not have created any children at all under u. Thus, with the same sequence of
transitions, we might as well have ended up with the configuration tree t′i which
is identical to ti except that u has no children in t′i and u′ has m more p-labeled
children than in ti. Figure 2 depicts the situation.

It remains to argue that any sequence of transitions used in ρ from ti for-
ward is also possible from t′i. Let j > i be the smallest number such that
in tj , either v has no children or v′ has no children. We show that the partial
run ρi,j = ti, . . . , tj can be mirrored in a partial run ρ′i,j = t′i, . . . , t

′
j , using the

same transitions. If a transition of ρi,j affects a node in tk that does not belong
to the subtree of v or v′, we mirror it directly on t′k. Now consider a transition
from tk to tk+1 that affects a node in a subtree of v or v′. If the same operation
is possible on t′k, we perform it. If not, this can only have two causes.

1. The affected node in tk is a descendant of u that does not exist in t′k. In
this case, we perform the operation on the corresponding descendant of u′.
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2. The affected node in tk is u′ which in t′k still has children. In this case,
we perform the operation on u.

In each of ti and tj , we have that exactly one of v and v′ is childless. If
this is the same node in both trees, they are identical and we are done. If
not, we still have to argue that the transitions from tj forward can be mirrored
from t′j . If not, we use the fact that in ti and t′i, v and v′ were symmetrically
equivalent. Thus we are free to use the automorphism φ to reinterpret the
sequence t′i, . . . , t

′
j . Under this reinterpretation, tj and t′j are identical.

After performing the above operation, all configuration trees up to and in-
cluding ti are simple. This means that after going through the procedure at
most a linear number of times, all configuration trees will be simple. �

Lemma 3 concludes the second step in our proof outline. What remains is
to provide a compact representation for simple configuration trees. This makes
it necessary to compress the potentially large number of subtrees produced
through shuffle closures. Under nodes labelled by states in scp(Ms) we therefore
only record which types of subtrees appear, and annotate each of them with a
“repetition counter”, which encodes the number of times they appear.

Definition 11. Let Ms = (Q,Σ, δ, q0) be the canonical CFSA for a shuffle
expression and let t be a simple configuration tree of Ms. The compact configu-
ration tree cct(t) for t is a tree with nodes labelled by Q×N∗ where the second
component is used as a sequence of counters, one for each direct subtree of the
node in question. We define cct(t) by induction on the structure of t as follows.

• If t = q, then cct(t) = (q, 〈〉).
• If t = q[t1, . . . , tk] and q ∈ Q \ scp(Ms), then

cct(t) = (q, 〈1, . . . , 1︸ ︷︷ ︸〉
k

)[cct(t1), . . . , cct(tk)] .

• If t = q[t1, . . . , tk] and q ∈ scp(Ms) , then

cct(t) = (q, 〈n1, . . . , nm〉)[cct(t′1), . . . , cct(t′m)] ,

where

1. t′1, . . . , t
′
m is an enumeration of the elements in {t1, . . . , tk}, so t′i is

not isomorphic to t′j for any i, j ∈ [m], making m the number of
unique trees, up to isomorphism, in t1, . . . , tk,

2. ni = |{j | j ∈ [k], tj isomorphic to t′i}| for all i.

We write CCT(Ms) for the set of all compact configuration trees of Ms. �

It should be clear that there is a many-to-one correspondence between simple
configuration trees t and their respective compact configuration trees cct(t).

Next, we show that the size of compact representation trees for simple con-
figuration trees depend only on the automaton, not on the input word.
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Lemma 4. Let Ms be the canonical CFSA for a shuffle expression s. Then
there is a constant c ∈ N that depends only on Ms, such that for every simple
configuration tree t of Ms, the size of cct(t) is at most c.

Proof. Let t be a simple configuration tree of Ms. Since Ms is acyclic we
know that height (t), and thus also height (cct(t)), is at most |Q|. We argue
that the index (i.e., the number of equivalence classes) of the relation se on t is
completely decided by Ms.

Let SCFree be the set of subtrees t′ of simple configuration trees of Ms such
that in t′ no scp(Ms)-labeled node has children. We note that since the height
of trees in SCFree is bounded by |Q| and since they branch only binarily, we
know that |SCFree| is finite and depends only on Ms.

Let Layer(i, t) be the tree obtained from t by removing all nodes v such
that there are i or more scp(Ms)-labeled nodes on the path from the root to v
(not including v itself). We argue by induction on i, that the index of se on
Layer(i, t) depends only on i and on Ms. Since i is itself bounded by |Q| this
will in the end give us what we need.

In the base case, where i = 1, the claim holds, since Layer(1, t) ∈ SCFree
and thus Layer(1, t) has a maximum number of nodes that depends only on Ms.
The index of se can of course not exceed the number of nodes.

For the inductive case, we assume that there is a number ei that depends
only on i and on Ms, such that for all simple configuration trees t of Ms, the
index of se on Layer(i, t) is at most ei. We obtain Layer(i+1, t) from Layer(i, t)
by adding trees from SCFree as children to scp(Ms)-labeled leaves of Layer(i, t).
For two nodes v1 and v2 in nodes(Layer(i+ 1, t)) \ nodes(Layer(i, t)) not to be
symmetrically equivalent, they must either belong to two such subtrees from
SCFree that are not isomorphic or their closest ancestors in Layer(i, t) belong
to different equivalence classes of se. This means that in Layer(i + 1, t) there
can be no more than ei · |SCFree| · m equivalence classes of se, where m is
the maximum size of any tree in SCFree. Using the induction hypothesis, this
quantity depends only on i and Ms.

Since t is a simple configuration tree, in any set of symmetrically equivalent
nodes, there is at most one whose corresponding subtree contains an scp(Ms)-
labeled node that has children. Take a set {v1, . . . , vn} of symmetrically equiva-
lent nodes (n can be arbitrarily large). Then, {t/v1, . . . , t/vn} contains at most
two unique trees, the single one with scp(Ms)-labeled nodes with children be-
ing one, while all other subtrees are necessarily isomorphic. This immediately
implies that the number of unique, up to isomorphism, subtrees of t depends
only on Ms.

All that remains is to note that in cct(t), every node either has at most two
children (non-scp nodes) or it has only unique, up to isomorphisms, children.
Since the number of unique subtrees depends only on Ms, and height (t) ≤ |Q|
this means that the number of nodes of cct(t) depends only on Ms. �

Lemma 5. Let Ms = (Q,Σ, δ, I) be the canonical CFSA for a shuffle expres-
sion. Then there exists a constant k ∈ N that depends only on Ms, such that
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the number of distinct compact configuration trees needed by Ms for accepting
all words in L(Ms) of length at most n is bounded by O(nk).

Proof. We may assume, thanks to Lemma 1, that Ms is trim. This means
that no intermediate configuration tree in a run over a word of length n needs
to contain more than n + 1 leaf nodes. Indeed, whenever a configuration tree
contains n+ 1 leaf nodes, by the pigeon hole principle, at least one of the states
must ultimately derive ε, since there are only n symbols in the string. As such,
whenever a configuration contains n+1 leafs we can safely nondeterministically
choose a leaf state which can derive ε and replace it by tε in the next step, cre-
ating a new run. Iterating this process produces a run in which no configuration
tree has more than n+ 1 leaf nodes.

Since an acyclic CFSA will have configuration trees of height at most |Q|,
no configuration tree needs to be of size greater than (n+ 1)|Q|.

Lemma 4 establishes that there is a constant c such that no compact config-
uration tree corresponding to a simple configuration tree of Ms has more than c
nodes. This also means that they contain at most c repetition counters (the
counters that are placed as part of the children in scp-nodes in the CCT(Ms)
construction). We have also shown that no intermediary configuration tree of
Ms running on a word of length n needs to have more than (n+ 1)|Q| nodes.

To conclude, we note that during any step of a simple run of Ms on a word
of length n, there are less than (|Q| + 1)c possible compact configuration trees
when ignoring the values of the repetition counters. Furthermore, there are less
than (n+1)|Q| “units” to be divided among the c counters, which can be done in
less than ((n+1)|Q|)c ways. Therefore, there are less than (|Q|+1)c((n+1)|Q|)c
possible compact configuration trees for any step of Ms. Since c depends only
on Ms, we have the desired bound of O(nk) with k depending only on Ms. �

Finally, we are ready to prove Theorem 8.

Proof (of Theorem 8). As in the proof of Theorem 7, we outline an exten-
sion of the CYK algorithm. The extension maintains triples consisting of a
nonterminal from the context-free grammar G and two configuration trees with
respect to the CFSA Ms. A triple (A, t, t′) is assigned to a substring w′ of the
input string w if

1. w′ = w′1 � w′2,

2. the string w′1 can take M from t to t′, and

3. the string w′2 can be derived from A in the grammar G.

A pair of triples (A, t, t′) and (B, t′, t′′) for the substrings w′ and w′′ can be
combined into a triple (C, t, t′′) for the substring w′w′′ if there is a derivation
rule C → AB in G. To decide whether there is a parse for w, one starts by
deriving all possible triples for every substring of w of length 1, and then uses
the above combination rule to dynamically complete the parse chart.
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A string of length n has O
(
n2
)

substrings, which means that O
(
n2
)

sets of
triples have to be computed. From Lemma 5 we know that there is a k ∈ N, that
depends only on the shuffle language involved, such that no more than O

(
nk
)

distinct configuration trees have to be considered. If G has m nonterminals,
there are thus no more than O

(
m · nk

)
possible triples. Given that we have

the sets of triples for all substrings of w, deciding whether a particular triple
belongs to the set of triples for w can be done in polynomial time. Since m
and k are constants, the problem is polynomial in the length n of the string. �

4.4. The membership problem for CF� CF

In contrast to Corollary 3, the non-uniform version of the membership prob-
lem for L(A1) � L(A2), where A1 and A2 are context-free grammars, is NP-
complete. This, of course, immediately implies that the same holds for the
uniform version of the problem.

Proof outline. First, we recall the definitions of push-down automata, which
are equivalent to context-free grammars, and two-stack push-down automata,
which are equivalent to Turing machines. These definitions are well known, but
for completeness, and because we will use a slightly specialized version of the
definitions, we shall include them here.

Next, Definition 16 gives a reduction from an arbitrary two-stack push-
down automaton A to a push-down automaton Asim , such that A accepts a
string a if and only if Asim accepts some string a · $ · s, where s is a sequence
of stack operations that is valid in the sense of Definition 17. The correctness
of the reduction is shown as Lemma 6. The idea is that Asim uses its own,
single, stack to simulate the first stack in A, and, whenever A would perform
an operation on its second stack, for example popping “0”, Asim instead reads
a string encoding of that operation, for example “[pop0]”. This means that as
long as the suffix s of stack operations behaves as a stack should (that is, the
symbols popped correspond to those pushed) Asim will behave just like A.

The rest of the construction ensures that Asim always reads a valid sequence
of stack operations. This is done by constructing the context-free language
L(Acomp) is constructed that contains strings of the form $ · ŝ, where ŝ is the
complement of a valid sequence with respect to a special template input string
(see Definition 18). This input string is of the form a′ = a · $ · $ · S, where S is
a template repetition of stack operations (see Definition 19). As a consequence,
we have a′ ∈ L(Asim)�L(Acomp) if and only if A accepts a in a number of steps
bounded by the length of S, since Acomp forces Asim to read only valid stack
operations from its part of a′ (concluded in Theorem 9).

For the remainder of this paper, we represent context-free languages by
push-down automata. It is well known that we can convert any context-free
grammar into an equivalent push-down automaton (and vice versa) in polyno-
mial time [25]. We choose a simple definition of push-down automata that uses
only a binary stack alphabet. No generality is lost, because ε-transitions are
allowed, so the automata can simulate a richer stack alphabet by representing
each symbol by some fixed-length binary string.
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Definition 12 (Push-down automata). A push-down automaton (PDA) is
a tuple (Q,Σ, δ, q0, F ) where

• Q is a finite set of states,

• Σ is a finite alphabet of input symbols (ε /∈ Σ),

• δ ⊂ Q× ((Σ∪{ε})×{ε, 0, 1})× (Q×{ε, 0, 1}) is a finite set of transitions,

• q0 ∈ Q is the initial state,

• F ⊆ Q are the final states.

We write (q, a, s, q′, s′) ∈ δ as q
a,s/s′−−−−→ q′. This means that if the automaton

is in state q and it can read the symbol a from the input (if a = ε nothing is
read) and can pop the binary value s off the top of the stack (if s = ε nothing
is popped) it may choose to go to state q′, pushing s′ onto the top of the stack
(if s′ = ε nothing is pushed).

As usual, the computation starts in state q0 and the machine accepts if and
only if some sequence of transitions leave the automaton in a state in F when
the entire input string has been read. If the stack is empty no transition that
would pop a value off the stack can be taken (an automaton can clearly use a
sentinel bit sequence to identify the stack bottom). �

When nondeterministic push-down automata are extended to have two in-
dependent stacks, they become computationally equivalent to nondeterministic
Turing machines, and can simulate each step of a Turing machine run using
only a constant number of transitions: the stacks can be used to simulate the
work tape by letting the first stack contain the portion of the tape to the left
of the head, in reverse order, while the second stack contain the portion to the
right of the head. The head can then be moved by popping a symbol from one
stack and pushing it onto the other.

Definition 13 (2-PDA). A two-stack push-down automaton (2-PDA) is a tu-
ple (Q,Σ, δ, q0, F ), where

• Q is a finite set of states,

• Σ is a finite alphabet of input symbols,

• δ ⊂ (Q × (Σ ∪ {ε}) × {ε, 0, 1} × {ε, 0, 1}) × (Q × {ε, 0, 1} × {ε, 0, 1}) is a
finite set of transitions,

• q0 ∈ Q is the initial state,

• F ⊆ Q are the final states.

We write (q, a, s1, s2, q
′, s′1, s

′
2) ∈ δ as q

a,s1/s
′
1,s2/s

′
2−−−−−−−−→ q′. This automaton oper-

ates just like a PDA, only with two independent stacks. �
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To simplify the reduction, we define some additional properties that the input
2-PDA A must exhibit, the first of which is being input-partitioned. This means
that A starts by reading its entire input without using its second stack and
then, when all input has been consumed, switches over to performing arbitrary
computations using both stacks.

Definition 14 (Input-partitioning). Given a 2-PDA A = (Q,Σ, δ, q0, F ), an
input-partitioning of A is a tuple (Qinput, Qcompute) with Q = Qinput∪Qcompute,
Qinput ∩ Qcompute = ∅, q0 ∈ Qinput, F ⊆ Qcompute, and for all transitions

q
a,s1/s

′
1,s2/s

′
2−−−−−−−−→ q′ in δ it holds that

• q ∈ Qinput implies that s2 = ε, s′2 = ε,

• q ∈ Qcompute implies that q′ ∈ Qcompute and a = ε,

• q ∈ Qinput and q′ ∈ Qcompute only for one unique transition, which also
has a = ε, s1 = ε and s′1 = ε. �

This means that an input-partitioned automaton A starts out in a state in
Qinput, and no transition from a state in Qinput ever touches the second stack,
but may read input. It must then, sooner or later, take the unique switching

transition q
ε,ε/ε,ε/ε−−−−−−→ q′, with q ∈ Qinput and q′ ∈ Qcompute, after which it will

always be in some state in Qcompute. No transitions from states in Qcompute may
read input, or go to a state in Qinput, but they may use both stacks.

Remark. In the sequel, we will, without loss of generality, assume that we
have an input-partitioning for any 2-PDA used. A general 2-PDA is equivalent
to a Turing machine, and input partitioning simply forces the machine to start
by transferring all the input to its work tape. Clearly, every Turing machine can
be rewritten into an equivalent TM that accepts the same input strings (when
suitably encoded) as the starting content of its work tape. �

For convenience, we fix two alphabets that will be frequently used in the
remainder of this section.

Definition 15 (Γ,Γ̂). Γ = {push0,push1,pop0,pop1} and Γ̂ = Γ ∪ {], [, $}. �

The next definition contains the key construction of this section. It shows how
to, given a 2-PDA A, construct a PDA Asim such that A accepts input string
w if and only if there exists a special string s such that w · $ · s ∈ L(Asim).
The requirement is that s encodes a valid sequence of stack operations. The
construction works by letting the stack of Asim simulate the first stack of A,
and making Asim read the stack operations for the second stack from s.

Definition 16 (Asim). Given the 2-PDA A = (Q,Σ, δ, q0, F ), with input--
partitioning (Qinput, Qcompute), we construct the PDA Asim = (Q′,∆, δ′, q0, F )
as follows.

• ∆ = Σ ∪ Γ̂, (we assume Σ ∩ Γ̂ = ∅).
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• To construct Q′ we use the mapping f : {push,pop}×{ε, 0, 1} → (Σ∪ Γ̂)∗

that is defined by

f(x, v) =

{
ε when v = ε,

[·xv·] otherwise.

Now, Q′ is the union of Q and the set of states

{τ [q′]
S | q a,s1/s

′
1,s2/s

′
2−−−−−−−−→ q′ ∈ δ, S is a suffix of f(pop, s2) · f(push, s′2)} .

Similarly, δ′ contains the rules

{τ [q]
a1···an

a1,ε/ε−−−−→ τ
[q]
a2···an | τ [q]

a1···an ∈ Q′ \Q}

and {τ [q]
ε

ε,ε/ε−−−→ q | q ∈ Q}. Also, for every transition q
a,s1/s

′
1,s2/s

′
2−−−−−−−−→ q′ in δ,

• if q, q′ ∈ Qinput then q
a,s1/s

′
1−−−−−→ q′ is in δ′,

• if q ∈ Qinput and q ∈ Qcompute then q
$,ε/ε−−−→ q′ is in δ′,

• if q, q′ ∈ Qcompute then q
ε,s1/s

′
1−−−−→ τ

[q′]
f(pop,s2)·f(push,s′2) is in δ′. �

In the sequel, we will often be using strings of symbols to represent stack op-
eration sequences. To simplify this, let us define the set VSR (for Valid Stack
Runs) to contain all valid sequences of stack operations for a binary stack al-
phabet. Note especially that this includes the possibility of push operations
with no corresponding pop, corresponding to sequences which end with a non-
empty stack. Additionally, we define two functions to format these strings in
convenient ways.

Definition 17 (Valid stack run). Define VSR, SVSR, and S̄VSR as follows.

• VSR = L(G) where G is the context-free grammar G = (Q,Σ, δ, q0) with
nonterminals Q = {q0, b}, alphabet Σ = Γ and δ containing the rules

q0 → push0 q0 | push1q0 | q0q0 | b
b → push0 bpop0 | push1 bpop1 | bb | ε

• SVSR : VSR→ Γ̂∗, such that we have SVSR(r1 · · · rn) = [r1] · · · [rn] for all
r1 · · · rn ∈ VSR. Also, let

S̄VSR(p1 · · · pn) =





ε if n = 0,
[push1 pop0 pop1] · S̄VSR(p2 · · · pn) if p1 = push0,
[push0 pop0 pop1] · S̄VSR(p2 · · · pn) if p1 = push1,

[push0 push1 pop1] · S̄VSR(p2 · · · pn) if p1 = pop0,
[push0 push1 pop0] · S̄VSR(p2 · · · pn) if p1 = pop1. �
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Observation 3 (Stack runs). Note that for all s ∈ VSR, all prefixes of s are
also in VSR. Also, note that SVSR and S̄VSR complement each other in the
sense that for all p ∈ VSR we have

[[push0 push1 pop0 pop1]] · · · [[push0 push1 pop0 pop1]]︸ ︷︷ ︸
|p| times

∈ SVSR(p)� S̄VSR(p) .

�

Observations 3 completes the toolkit needed to establish a link between Asim

and the 2-PDA A.

Lemma 6. Let A = (Q,Σ, δ, q0, F ) be a 2-PDA with input-partitioning and let
w ∈ Σ∗ be any input string. Then the following holds.

1. A has an accepting run on w if and only if there exists some p ∈ VSR such
that w ·$·SVSR(p) ∈ L(Asim) where Asim = (Q′,∆, δ′, q0, F ) is constructed
as in Definition 16.

2. If A has an accepting run on w of length n, then there exists a p ∈ VSR
that fulfills the above with |p| ≤ 2n.

Proof. Consider the alphabets Γ̂ and Γ from Definition 15. For all strings
s ∈ (Σ ∪ Γ̂)∗ we define γ : (Σ ∪ Γ̂)∗ → Γ∗ so that γ(s) produces s with all
non-push/pop symbols removed (notably γ(w · $ · SVSR(p)) = p). Then define
σ : VSR→ {0, 1}∗ as the function which for all s ∈ Γ∗ produces the stack con-
tents resulting from applying the stack operations in s, in order, to an initially
empty stack. Notice that σ(γ(s)) is well-defined for all prefixes of w ·$ ·SVSR(p).

Let (Qinput, Qcompute) be the input partitioning of A. Write configurations
of A (when in a Qcompute states) as tuples of the form

(q,B1, B2) ∈ Qcompute × {0, 1}∗ × {0, 1}∗

where q is the current state and B1 and B2 the current contents of Stack 1 and
Stack 2, respectively. Write configurations of Asim as tuples of the form

(q,B1, B2) ∈ Qcompute × {0, 1}∗ × {0, 1}∗

where q is the current state, B1 is the current stack contents, and B2 = σ(γ(s))
where s ∈ Σ∗ is the part of the input string already read.

Base case Assume that A has a run on w. Let (q′, B1, ε) be the configuration

of A after the unique transition q
ε,ε/ε,ε/ε−−−−−−→ q′ with q ∈ Qinput and q′ ∈ Qcompute

is taken (this unique transition must be taken at some point and Stack 2 will be
empty by Definition 14). Since Asim by construction contains all the same rules

for the states in Qinput it will be able to, with q
$,ε/ε−−−→ q′ as the last transition,

reach the configuration (q′, B1, ε) reading the string w · $. This establishes the
base case, for all runs of A on the string a we will get to a configuration which
Asim can reach on the string w · $, and trivially γ(w · $) ∈ VSR.
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Inductive step Assume that A and Asim are in configuration (q,B1, B2),
let s ∈ ∆∗ be the input already read by Asim , and assume that γ(s) ∈ VSR.
Let s1, s2 ∈ {0, 1} be the top elements of the stack contents B1 and B2 re-

spectively. This means that A can take a transition q
w,s1/s

′
1,s2/s

′
2−−−−−−−−−→ q′. Let

w1 · · ·wm = f(pop, s2) · f(push, s′2) for f as in Definition 16. By construction
there must exist transitions

q
ε,s1/s

′
1−−−−→ τ

[q′]
w1···wn

w1,ε/ε−−−−→ τ
[q′]
w2···wn

w2,ε/ε−−−−→ . . .
wn,ε/ε−−−−→ τ [q′]

ε

ε,ε/ε−−−→ q′

in Asim . The first transition mimics the stack operations on Stack 1 in A, while
the remainder makes the input read so far s′ = s · w1 · · ·wn and γ(w1 · · ·wn)
will be exactly the stack operations performed on Stack 2 by s2/s

′
2 in A. We

already had B2 = σ(γ(s)) so σ(γ(s′)) will match the resulting Stack 2 in A,
making the configurations match again after the transitions. Since we know
that the (possible) pop s2 was matched in B2 and we assumed that γ(s) ∈ VSR
we also know that γ(s′) ∈ VSR.

Conclusion The other direction is easily shown in the same way, the string
read by Asim being mimicked by the operations on Stack 2 by A, and it is
necessarily possible by virtue of the stack operation sequence being in VSR.
This proves Part 1.

Part 2 follows trivially, the bound on the length of p follows directly from
the induction, where p turns out to encode the sequence of stack operations
performed on Stack 2 of A during the run. �
Next, we define the PDA Acomp , which will serve to read the “complement” of
a valid stack run.

Definition 18 (Acomp). The language of the PDA Acomp is

L(Acomp) = {$ · S̄VSR(p) | p ∈ VSR} .
It can be constructed from the context-free grammar G = (Q,Σ, δ, q0) with
nonterminals Q = {q0, s, b}, and rules as follows.

q0 → $s
s → [push1 pop0 pop1]s | [push0 pop1 pop2]s | ss | b
b → [push1 pop0 pop1]b[push0 push1 pop1] |

[push0 pop0 pop1]b[push0 push1 pop0] | bb | ε �
The last definition of this section shows how to convert an input string for the
2-PDA A into a string to serve as input to the membership problem for the
language L(Asim)� L(Acomp).

Definition 19 (Formatted input). For every string w over the alphabet Σ
and every n ∈ N we define the function input : Σ∗×N→ ∆∗, where ∆ = Σ∪ Γ̂
(assume that Σ ∩ Γ̂ = ∅), as

input(w) = w · $ · $ [[push0 push1 pop0 pop1]] · · · [[push0 push1 pop0 pop1]]︸ ︷︷ ︸
n times

.

�
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Lemma 7 establishes that Acomp will leave only encodings of valid stack
runs as the suffix of strings produced by input when shuffled with Asim . In the
statement, the PDA Asim is obtained from the TM A using the construction in
Definitions 16, and the PDA Acomp is as described in Definition 18.

Lemma 7. Let Σ ∩ Γ = ∅. Then, for every TM A, every string w ∈ Σ∗, and
every n ∈ N it holds that input(w, n) ∈ L(Asim)�L(Acomp) if and only if there
exists some p ∈ VSR with |p| = n such that w · $ · SVSR(p) ∈ L(Asim).

Proof. Given w ∈ Σ∗ and n ∈ N, the string produced by input(w, n) is of
the form w · $ · $ · [[push0 push1 pop0 pop1]] · · · [[push0 push1 pop0 pop1]]. Both
Asim and Acomp will, by construction, accept only strings with balanced, non-
nested brackets. Additionally, we know that Acomp reads only strings of the
form $ · S̄VSR(p) for some p ∈ VSR. These facts alone forces Asim to read
a string of the form w · $ · [p1] · · · [pn] for some p1, . . . , pn ∈ Γ. As noted in
Observation 3 S̄VSR and SVSR behave as complements, so we will in fact have
p1 · · · pn = p ∈ VSR. Thus, the string will be accepted if and only if the
string w · $ · SVSR(p) is in L(Asim) �

Finally, the following theorem summarizes the main result of the section, bring-
ing together the results of the previous lemmas.

Theorem 9. For an input string w it is an NP-complete problem to decide
whether or not w ∈ L(Asim) � L(Acomp) when L(Asim) and L(Acomp) are
context-free languages, even when L(Asim) and L(Acomp) are fixed. That is, the
non-uniform membership problem for the shuffle of two context-free languages
is NP-complete.

Proof. The problem is trivially in NP. Membership in context-free languages
can be decided in polynomial time, and we can, in polynomial time, guess any
w1 and w2 such that w ∈ w1�w2 and check if w1 ∈ L(Asim) and w2 ∈ L(Acomp).

NP-hardness can now be shown using the tools we have established. Take any
nondeterministic input-partitioned 2-PDA A that solves some NP-hard problem
in polynomial time. Let F : N → N be a polynomial such that running A on
an input string w takes less than F (|w|) steps. These assumptions can be made
since we can convert an arbitrary nondeterministic Turing machine into such a
2-PDA, and a nondeterministic TM can of course solve any problem in NP in
polynomial time. Modify A so that it may loop indefinitely on all final states.

Construct Asim from A using Definition 16, take Acomp as in definition 18. A
string w is accepted by A if and only if input(w, 2F (|w|)) ∈ L(Asim)�L(Acomp),
by applying Lemma 7 to show that the part of the input left to Asim is restricted
to only valid stack runs, and then Lemma 6 to show equivalence with the 2-
PDA. Notice also that since the run of A takes at most F (|w|) steps we need at
most 2F (|w|) stack symbol blocks in the input construction, by Lemma 6. �

From this it also follows that parsing permutation languages is NP-complete.
For a formal definition of permutation grammars we refer to [32].
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Corollary 4. The non-uniform membership problem for (order 2) permutation
languages (defined in [33] with the notation Lperm2

, in [32] simply as Lperm) is
NP-complete.

Proof. All context-free grammars are trivially permutation grammars, and
Theorem 7 in [32] gives a polynomial construction which for two permuta-
tion grammars G1 and G2 constructs a permutation grammar G′ such that
L(G′) = L(G1)� L(G2). This establishes NP-hardness through Theorem 9.

The membership problem for a permutation language G is in NP since any
string w ∈ L(G) can be derived in a polynomial number of derivation steps.
This can be seen by considering the context-free subset of rules in G, which
are applied only a polynomial number of times by the usual argument. Then
simply notice that any reordering of an intermediary derivation string (of which
there are a polynomial number) can be realized in less that n2 steps using the
interchange rules. �

5. Conclusions and Future Work

Concurrent finite-state automata combine the expressive power of context-
free and shuffle languages. The CFSA languages are properly included in the
context-sensitive languages, and minor restrictions of the device suffice to obtain
the regular, context-free, and shuffle languages. CFSA have comparatively nice
closure properties, and can be sanity-checked in polynomial time.

To be of practical use, at least the non-uniform membership problem needs
to be efficiently decidable. This is known to be true for the shuffle languages, but
our analysis shows that the efficiency depends heavily on the number of shuffle
operations used. We also obtain that the non-uniform membership problem
remains polynomial for the shuffle of a shuffle language and a context-free lan-
guage. For the shuffle of two context-free languages, however, it is NP-complete.

Ideally, also the uniform membership problem should be solvable in polyno-
mial time. The only language class we studied for which this is the case, unless
P=NP, is the interleaving of a regular language and a context-free language.

Future work will strive to determine the complexity of the non-uniform mem-
bership problem for further restrictions of CFSA. If even very sparse use of shuf-
fling has a large negative impact on the complexity, one could consider replacing
the shuffle operator with weaker alternatives, such as unordered shuffle.
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[2] Berglund, M., Björklund, H., Högberg, J.: Recognizing shuffled languages.
In: Proc. Language and Automata Theory and Applications. (2011) 142–
154

67



[3] Berstel, J., Boasson, L., Carton, O., Pin, J.E., Restivo, A.: The expressive
power of the shuffle product. Information and Computation 208(11) (2010)
1258–1272

[4] Biegler, F., Daley, M., McQuillan, I.: On the shuffle automaton size for
words. In: Proc. Descriptional Complexity of Formal Systems. (2009) 79–89
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Abstract. Formal language models which employ shuffling, or interleav-
ing, of strings are of interest in many areas of computer science. Notable
examples include system verification, plan recognition, and natural lan-
guage processing. Membership problems for the shuffle of languages are
especially interesting. It is known that deciding membership for shuffles
of regular languages can be done in polynomial time, and that deciding
(non-uniform) membership in the shuffle of two deterministic context-free
languages is NP-complete. In this paper we narrow the gap by showing
that the non-uniform membership problem for the shuffle of two deter-
ministic linear context-free languages is NP-complete.

1 Introduction

In this paper we look at a membership problem for a language model based on the
shuffle operator, �, introduced in [GS65]. This operator takes two strings, w and
w′, and returns the set of all possible interleavings of these strings. For example,
ab� cd = {abcd, acbd, acdb, cabd, cadb, cdab}. We generalise the operator to sets
in the usual way, L� L′ = {w � w′ | w ∈ L,w′ ∈ L′}. The specific membership
problem we consider is the non-uniform membership problem for the shuffle of
two deterministic linear context-free languages. Specifically, we show that there
exist deterministic linear context-free languages L and L′ such that it is NP-
complete to decide whether a given input string w is in the set L�L′, even if L
and L′ are fixed.

For listings of previous work see for example [BBH11,MRS98], addition-
ally [HZ80] is of special interest, since it draws parallels between two-stack Tur-
ing machines and the shuffle of context-free languages. One important omission
in [BBH11] (coauthored by the author of this paper) is [ORR78], which shows
that the non-uniform membership problem for the shuffle of two determinis-
tic context-free languages is NP-complete. In [BBH11] we show this for general
context-free languages, unaware of [ORR78]. In this paper, however, that proof
is extended further.
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2 Preliminaries

Let [n] = {1, . . . , n} for all n ∈ N. The cardinality of a set S is denoted |S|. An
ordered set is a finite set S where the elements have a predetermined order. For
i ∈ [|S|] let S(i) denote the ith element. When the set is stated with numbered
elements S = {s1, . . . , sn} it is implied that si = S(i).

The Kleene closure of a set S is denoted S∗. An alphabet is a finite set
of symbols, usually denoted Σ. For strings w,w′ ∈ Σ∗ let w · w′ denote the
concatenation, for sets of strings W,W ′ ⊆ Σ∗ let W ·W ′ = {w ·w′ | w ∈W,w′ ∈
W ′}. We may write the singleton set {w} as w for simplicity.

Let α1, . . . αn ∈ Σ and n ∈ N (indices such as n being in N is usually left
implicit going forward) in the following. Let ε denote the empty string. Let wR

denote the reverse of a string w, that is (α1 · · ·αn)R = αnαn−1 · · ·α1. As usual
let |α1 · · ·αn| = n, and for all s ∈ Σ let |α1 · · ·αn|s = |{i ∈ [n] | αi = s}|.

Deterministic linear context-free languages, denoted DLCF, will be used ex-
tensively in the following. It is assumed that the reader is familiar with the
relevant formalisms for these languages (deterministic pushdown automata re-
stricted to a single pushdown reversal for example), no formal definitions will be
given here, see instead [HU90]. Instead of full pushdown automata implemen-
tations of the DLCF languages constructed (which would be large and hard to
read) the strings in the languages are given in an inductive form from which the
reader can easily construct automata themselves if desired.

Non-deterministic polynomial time-bounded Turing machines are used heav-
ily in the proofs to demonstrate NP-completeness. Full definitions of the ma-
chines are given, but for more complete background information on these topics
see [GJ90,Min67].

3 Proof overview

The key building block necessary to make the shuffle of two DLCF languages
perform a computation is making the languages communicate. This is done by
constructing a template input string containing sequences of double-bracketed
bits:

w = [[01]][[01]][[01]]$$[[01]][[01]][[01]]$$[[01]][[01]][[01]].

Assume that the first language contributes the string [0][1][0]$[1][1][1]$[1][0][1],
then the second language has to contribute the string [1][0][1]$[0][0][0]$[0][1][0]
if the whole input string w is to be assembled. Notice that the bit sequence in
this string is the complement of the bit sequence in the first. In this way the two
shuffled languages can communicate arbitrary choices by only accepting prop-
erly bracketed input. The proof will then use this to choose one language make
computation steps for a Turing machine, while the other language copies the
configuration around to link the computation up. The following figure acts as
a visual aid to see how the languages will cooperate to simulate the computa-
tion (beware however that many details are left out, the figure only serves as a
structural overview).
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[[template]] $$ [[template]] $$ [[template]] $$ · · · $$ [[template]] $$ [[template]]

Computation step

Computation step

Copy configuration

Copy configuration

4 Parsing the Shuffle of Deterministic Linear
Context-Free Languages

The reduction hinges on representing the computations of Turing machines as
strings. To facilitate this we will make a somewhat specialised definition of non-
deterministic Turing machine configurations and runs.

Definition 1. A non-deterministic Turing machine (NTM) is a tuple (Q,∆)
where

– Q is the finite ordered set of states,
– ∆ : Q× {0, 1} × {←,→}×Q× {0, 1} is the finite set of rules.

Q(1) is the initial state, Q(|Q|) is the accepting state.

The following alphabet has all the symbols needed to complete the reduction.

Definition 2. Define ΣM = Q ∪∆ ∪ {0, 1, ., [, ], $,#}.
A configuration becomes a simple string containing both the state, tape contents,
and tape position, allowing rule applications to be expressed as string rewrites.

Definition 3. The set of configurations of an NTM M = (Q,∆), denoted CM ,
is the set

CM = [ ·Q · ] · {[0], [1]}∗ · {[.0], [.1]} · {[0], [1]}∗ ⊂ Σ∗M .

Example 1. As will be seen in Definition 5 an NTM will be provided with tape
cells it can work on by padding the input with additional cells filled with zeros.
For example an NTM with initial state q, the input string 1101, and 6 tape cells
at its disposal would start in the following configuration.

[q][.1][1][0][1][0][0]

Current state

Tape cell with current head position

Tape w. input

Non-input tape cells
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Definition 4. For an NTM M = (Q,∆) we may apply rule r ∈ ∆ to a con-
figuration c ∈ CM to produce the configuration c′ ∈ CM under the following
conditions. Let (q, α, d, q′, α′) = r, then for all strings t1 and t2, and β ∈ {0, 1}
– if d =→ and c = [·q·] · t1 · [. · α·][·β·] · t2 then c′ = [·q′·] · t1 · [·α′·][. · β·] · t2,
– if d =← and c = [·q·] · t1 · [·β·][. · α·] · t2 then c′ = [·q′·] · t1 · [. · β·][·α′·] · t2.

We denote this rule application by c
r−→ c′, or c→ c′ leaving r implicit.

Example 2. For example, in the configuration [q][0][1][0][.1][1][0] it is possible to
apply the rule (q, 1,→, q′, 0) to produce the configuration [q′][0][1][0][0][.1][0]. In
the configuration [q][0][1][.0] a rule (q, 0,→, q′, 0) cannot be applied since there is
no room to move to the right, nor can the rule (q, 1,←, q′, 0), since . is pointing
to a 0 and the rule requires a 1.

Next follows the definitions of what it means for an NTM to accept a language
in time bounded by some function. It should be obvious that this definition of a
time-bounded non-deterministic Turing machine is equivalent to the usual one
(see for example [Min67]). Most importantly this means that every problem L ∈
NP (suitably encoded) is accepted by some NTM M in polynomially bounded
time [GJ90].

Definition 5. Take an NTM M = (Q,∆), a function ψ : N → N and a string
α1 · · ·αn ∈ {0, 1}∗. The initial configuration is defined as

I(M,ψ, α1 · · ·αn) = [ ·Q(1) · ] [. · α1 · ] · · · [ · αn · ][0][0] · · · [0]︸ ︷︷ ︸
ψ(n) + 1 bracketed bits

,

the set of final configurations is F (M) = ([ ·Q(|Q|) · ] ·Σ∗M ) ∩ CM .
M accepts α1 · · ·αn in ψ-bounded time if and only if the initial configuration

can be transformed into some final configuration by exactly ψ(n) rule applica-
tions. That is, there exists ψ(n) + 1 configurations, c1, . . . , cψ(n)+1 such that
c1 = I(M,ψ, α1 · · ·αn), cψ(n)+1 ∈ F (M) and ci → ci+1 for all i ∈ [ψ(n)]. The
language M accepts in ψ-bounded time is exactly the set of strings M accepts
in ψ-bounded time.

This definition differs slightly from the usual one in that M is required to take
exactly ψ(n) steps to accept a string of length n, but any Turing machine that
would accept the string in (the more usual) at most ψ(n) steps can of course
simply stay in the accepting state indefinitely to fulfil this condition.

The template string defined next will be used as the input for the membership
query, encoding the Turing machine input and a long specially formatted suffix
to make the shuffled computation possible.

Definition 6. The run template string for running the machine M = (Q,∆)
in ψ-bounded time on the input string α1 · · ·αn ∈ {0, 1}∗ (n ∈ N) is denoted
S(M,ψ, α1 · · ·αn) and is defined as follows. First the configuration template is

T = [[ ·Q(1) · · ·Q(|Q|) · ]] [[.01]] · · · [[.01]]︸ ︷︷ ︸
ψ(n) + 1 times

.
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Then S(M,ψ, α1 · · ·αn) equals

I(M,ψ, α1 · · ·αn) · $$ · T · $$ · T · · · $$ · T︸ ︷︷ ︸
ψ(n) occurrences of T

· $$## · $$ · TR · $$ · TR · $$ · · ·TR︸ ︷︷ ︸
ψ(n) + 1 occurrences of TR

.

Example 3. Let M = ({q1, q2}, ∆), and let ψ(2) = 1, then S(M,ψ, 1) is

[q1][.1][0]$$[[q1q2]][[.01]][[.01]]$$##$$]]10.[[ ]]10.[[ ]]q2q1[[$$]]10.[[ ]]10.[[ ]]q2q1[[ .

The logical “bracketed” units are divided by a dotted line as a visual aid, since
the TR strings are made hard to read by their reversed brackets.

Next we define the concept of a shuffle complement with respect to a tem-
plate.

Definition 7. For all strings w, t ∈ Σ∗M , let complement(w, t) denote the shuffle
complement of w with respect to t, defined as

complement(w, t) = {x ∈ Σ∗M | t ∈ w � x}.

Example 4. complement([q1][0][.1], [[q1q2q3]][[.01]][[.01]]) = {[q2q3][.1][0]}.

A very small but important lemma follows.

Lemma 1. For any configuration c ∈ CM and configuration template T (as in
Definition 6) if it holds that |c|[ = 1

2 |T |[ then

1. complement(c, T ) = {c′} for some string c′, and
2. complement(c′, T ) = {c}.

Proof (sketch). If we have a configuration template string T as in Definition 6
and a configuration c, such that |c|[ = 1

2T[, then this means that T and c have the
same number of bracketed sections (T has each section double-bracketed, [[.01]],
c has each single-bracketed as in [.1]). As a consequence complement(c, T ) = {c′}
is a singleton. This is easy to see, by observing that the interleaving of c can only
ever pick one of the [ symbols in each [[ pair in T , since it needs to read a ] symbol
before reading another left bracket. This forces it to skip the other bracket in
the pair, meaning that the bracketed sections will match up one-to-one in the
shuffle.

This in turn enforces that c′ will also have |c′|[ = 1
2 |T |[, and will have

similarly single-bracketed sections, containing the complement of those in c
with respect to the string .01. The same argument therefore establishes that
complement(c′, T ) = {c}. ut

Next we define a deterministic linear context-free language which will encode
the steps a given NTM can make.

Definition 8. For an NTM M = (Q,∆) the step language for M , denoted
Lstep(M), is the smallest language that contains the string #, and all strings

c1 · $ · l · $ · cR2 , where l ∈ Lstep(M), c1, c2 ∈ CM , and c1
r−→ c2 for some r ∈ ∆.
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Example 5. Let M = ({q1, q2}, {(q1, 0,→, q2, 1)}), then for example

[q1][.0][1][0]$#$]0[ ]1.[ ]1[ ]q2[ ∈ Lstep(M),

[q1][0][.0][0]$#$]0.[ ]1[ ]1[ ]q2[ ∈ Lstep(M),

[q1][.0][1][0]$[q1][.0][1][0]$#$]0[ ]1.[ ]1[ ]q2[$ ]0[ ]1.[ ]1[ ]q2[ ∈ Lstep(M).

It might not be immediately obvious that this language is both linear and de-
terministic, so let us look at how a deterministic linear push-down automaton
can accept it. An automaton for Lstep(M) can start by pushing the first half of
the string onto its stack, validating that it is in the regular language (CM · $)∗

in the process. When it encounters # it switches to popping off the stack, while
popping c1 ∈ CM reading the reverse of c2 ∈ CM on the string, and immediately
rejecting unless c2 differs from c1 by exactly one rule application from ∆. The
automaton can easily achieve this by checking that c1 and c2 are equal in all
positions except the states and the immediate neighbourhoods of the . symbol,
both of which are constant-sized and can be remembered in the state of the
automaton. It then simply validates that these differences correspond to a rule
in ∆.

Now we turn to the other DLCF language, which is responsible for linking
up the computation steps by making copies of the complement of configurations.
It consists of strings of the form c̄1 · $ · c̄2 · · · c̄R2 · $ · c̄R1 where each c̄i is such that
{c̄i} = complement(c, T ) for some configuration c and configuration template T .
Compare the constructed strings to those in Example 4.

Definition 9. For an NTM M = (Q,∆) the inverted copy language for M ,
denoted Lcopy(M), is defined as Lcopy(M) = $ · L where L is in turn defined as
follows. First let

– Q̄i = [ ·Q(1) ·Q(2) · · ·Q(i− 1) ·Q(i+ 1) · · ·Q(|Q|) · ] for i ∈ [|Q|],
– U = {[.0], [.1], [0], [1]} · {[.0], [.1], [0], [1]}∗.

Then the strings in L are exactly the following. First, for all t ∈ U

#$ · (Q̄|Q| · t)R ∈ L.

Second, for all c̄ ∈ {Q̄i | i ∈ [|Q|]} · U , and l ∈ Lcopy(M)

c̄ · $ · l · $ · c̄R ∈ Lcopy(M).

Example 6. Let M = ({q1, q2, q3}, ∆), where q3 is the final (last) state. Then
among the strings in Lcopy(M) are

#$]0[ ]1.[ ]0.[ ]q2q1[ ,

[q1q3][.0][.1][1]$#$]0[ ]1.[ ]0.[ ]q2q1[$]1[ ]1.[ ]0.[ ]q3q1[ ,

[q2q3][1][.0]$[q1q3][.0][.1][1]$#$]0[ ]1.[ ]0.[ ]q2q1[$ ]1[ ]1.[ ]0.[ ]q3q1[$]0.[ ]1.[ ]q3q2[ .
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It should be clear that this language is both deterministic and linear, the symbol
# marking the centre playing a key role. The argument is similar to the one in
the proof of Lemma 1, but slightly simpler, because no rules need to be taken
into account.

This only leaves us to assemble the pieces to prove the main result.

Theorem 1. Take any w ∈ {0, 1}∗, NTM M and function ψ : N→ N. Then M
accepts w in ψ-bounded time if and only if S(M,ψ,w) ∈ Lstep(M) � Lcopy(M).

This proof is divided into two lemmas, the first showing the “only if” direction,
the second the “if” direction.

Lemma 2. Take any string α1 · · ·αn ∈ {0, 1}∗, NTM M = (Q,∆) and func-
tion ψ : N → N. If M accepts the string α1 · · ·αn in ψ-bounded time then
S(M,ψ, α1 · · ·αn) ∈ Lstep(M) � Lcopy(M).

Proof. Let c1, . . . , cψ(n)+1 ∈ CM be the sequence of configurations which makes
M accept α1 · · ·αn (so c1 = I(M,ψ, α1 · · ·αn) and cψ(n)+1 ∈ F (M)). Then
construct the string

wstep = c1 · $ · c2 · $ · · · $ · cψ(n) · $#$ · cRψ(n)+1 · $ · cRψ(n) · $ · · · $ · cR2 .

Notice that wstep ∈ Lstep(M) by construction. Now, for each i ∈ [ψ(n) + 1] let
{c̄i} = complement(ci, T ) where T is a configuration template as in Definition 6.
Recall that this complement is always a singleton. Now let

wcopy = $ · c̄2 · $ · c̄3 · $ · · · c̄ψ(n) · $#$ · c̄Rψ(n)+1 · $ · c̄Rψ(n) · · · $ · c̄R2 .

It is then straightforward to check that wcopy ∈ Lcopy(M) by construction.
As an abbreviation denote the template string S(M,ψ, α1 · · ·αn) by w. All

that remains is to show that w ∈ wstep � wcopy. To illustrate:

w = c1$$T $$· · ·$ T $$##$$ TR $· · ·$TR,
wstep = c1 $ c2 $ · · ·$cψ(n) $#$ cRψ(n)+1$· · ·$ cR2 ,
wcopy = $ c̄2 $ · · ·$c̄ψ(n) $#$ c̄Rψ(n)+1$· · ·$ c̄R2 .

w and wstep both start with c1, so cancel that bit. Next w contains two dollar
signs, one correponds to the initial in wcopy and one the next symbol in wstep.
After that a T configuration template is next in w, c2 is next in wstep, and c̄2 is
next in wcopy. By construction T ∈ c2 � c̄2, leaving us again with $$ next in w
and a single $ next in the other strings, and so on through all of w. ut

Lemma 3. Take any string α1 · · ·αn ∈ {0, 1}∗, NTM M = (Q,∆) and function
ψ : N→ N. If S(M,ψ, α1 · · ·αn) ∈ Lstep(M)�Lcopy(M) then M accepts α1 · · ·αn
in ψ-bounded time.

Proof. Let w = S(M,ψ, α1 · · ·αn), and take wstep ∈ Lstep(M) and wcopy ∈
Lcopy(M) such that w ∈ wstep � wcopy (the lemma assumes these exist).
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No string in Lstep(M) ∪ Lcopy(M) has two $ symbols in a row, while every
$ occurrence in w consists of two $ symbols. This enforces that every such $$
substring in w is divided up so that one belongs to wstep and one to wcopy (so
|wstep|$ = |wcopy|$ = 1

2 |w|$). Combining this with the way Lstep(M) and Lcopy(M)

are constructed it follows that the shuffling must have this structure

w = c1$$T $$· · ·$ T $$##$$ TR $· · ·$TR,
wstep = c1 $ c2 $ · · ·$cψ(n) $#$ dRψ(n)+1$· · ·$dR2 ,
wcopy = $ e2 $ · · ·$eψ(n) $#$ eRψ(n)+1$· · ·$eR2 ,

for some configurations c1, . . . , cψ(n), d2, . . . , dψ(n)+1 ∈ CM , and some strings
e2, . . . , eψ(n)+1. That is, the assumption that w ∈ wstep � wcopy does together
with the placement of $ symbols imply that

T ∈ ci � ei for all i ∈ {2, . . . , ψ(n)}, (1)

T ∈ di � ei for all i ∈ {2, . . . , ψ(n) + 1}. (2)

The second is not reversed since TR ∈ dRi �eRi ⇐⇒ T ∈ di�ei. Next, recall from
Lemma 1 that complement(ci, T ) and complement(di, T ) are singletons for all
i ∈ {2, . . . , ψ(n)}. Equations 1 and 2 dictate that ei ∈ complement(ci, T ) and ei ∈
complement(di, T ), which means that complement(ci, T ) = complement(di, T ) =
{ei}. Reversing this (again by Lemma 1) yields complement(ei, T ) = {ci} = {di},
so ci = di. Let (the previously undefined) cψ(n)+1 be equal to dψ(n)+1 as well.
The construction of Lstep(M) and Lcopy(M) dictates that

– ci → di+1, and therefore ci → ci+1, for all i ∈ [ψ(n)],
– c1 = I(M,ψ, α1 · · ·αn),
– complement(eψ(n)+1, T ) = {cψ(n)+1} ⊂ F (M) (since eψ(n)+1 does not con-

tain the final state by construction).

From this it follows that c1, . . . , cψ(n)+1 is a correct configuration sequence which
makes M accept α1 · · ·αn. ut

Proof (of Theorem 1). Lemma 2 and Lemma 3 together show both directions of
Theorem 1. ut
It follows from Theorem 1 that the non-uniform membership problem for the
shuffle of DLCF languages is NP-complete.

Corollary 1. For an input string w it is an NP-complete problem to decide
whether or not w ∈ L � L′ when L and L′ are deterministic linear context-free
languages, even when L and L′ are fixed.

Proof. The problem is trivially in NP. Membership in context-free languages
can be decided in polynomial time, and we can, in polynomial time, guess any
w1 and w2 such that w = w1 � w2 and check if w1 ∈ L and w2 ∈ L′.

Hardness follows easily from Theorem 1. Pick any NTM M and polynomial
function ψ such that M runs in ψ-bounded time. This characterises NP by
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definition. Fix the languages L = Lstep(M) and L′ = Lcopy(M). It is then possible
to check if M would accept an input string w in ψ-bounded time by checking
if S(M,ψ,w) ∈ L� L′. The reduction is polynomial since S(M,ψ,w) produces
a string that is of length O(ψ(|w|)2) and can, because of its exceedingly simple
structure, be constructed in time O(ψ(|w|)2). Thus, choosing M such that it
accepts an NP-complete language in polynomial time (e.g. a universal NTM)
concludes the proof. ut

5 Conclusions

Future work. The result in this paper narrows the gap between the cases where
the membership problems for shuffled languages are intractable and where they
are tractable. Still, there are several further restrictions that could be considered.
The proof given here should be possible to modify in such a way that Lcopy(M)

becomes a pure Dyck language, since the initial $ symbol and the final config-
uration right after the $#$ midpoint marker are the only parts that disqualify
it, but both of those could be handled by modifying the template string and
changing Lstep(M). Similarly making both Lstep(M) and Lcopy(M) visibly push-
down [AM04] should be possible, since the structure of the construction is such
that we know up-front which symbols will be pushed and which will be popped.
Finding a language class larger than (or strictly different from) the regular lan-
guages for which membership in the shuffle is efficiently decidable remains an
elusive but very interesting direction.
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Abstract. The string correction problem looks at minimal ways to modify one string
into another using fixed operations, such as for example inserting a symbol, deleting a
symbol and interchanging the positions of two symbols (a “swap”). This has been gen-
eralized to trees in various ways, but unfortunately having operations to insert/delete
nodes in the tree and operations that move subtrees, such as a “swap” of adjacent sub-
trees, makes the correction problem for trees intractable. In this paper we investigate
what happens when we have a tree edit distance problem with only swaps. We call
this problem tree swap distance, and go on to prove that this correction problem is
NP-complete. This suggests that the swap operation is fundamentally problematic in
the tree case, and other subtree movement models should be studied.

1 Introduction

String edit distance is an old, well-known and thoroughly studied concept, most
commonly used in the context of string correction problems. An edit distance (of
which there are many kinds) defines some small set of operations on strings. An
instance of the string correction problem corresponding to a given edit distance is a
question of the form “can the string s be transformed into s′ by applying at most k
edit operations?” In more complex cases the string correction problem may associate
different costs to the edit operations, having k serve as a total budget.

One of the most frequently used types of edit distance is Levenshtein distance [7],
which features the three operations delete, insert, and replace. These can be
applied to any position in a string, to delete a single symbol, insert a single symbol,
and replace a single symbol by another, respectively. A popularly applied extension,
called Damerau-Levenshtein distance [3], adds a fourth operation, swap, which swaps
the position of any two symbols in a string. For both of these distances the string
correction problem is very efficiently solvable if all operations have the same cost. A
more general variant is called the extended string-to-string correction problem, which
uses the four Damerau-Levenshtein operations, but allows the problem instance to
assign each operator an arbitrary integer cost [11]. In general this makes the correction
problem strongly NP-complete [10], a fact that we will make use of later.

As this area is well-explored and successful in the string case it is of great interest
to extend the same ideas to the tree case [8, 9]. This work has been very successful for
the “insert”, “delete” and “replace” operations, but the “swap” operation has most
often been left out [12, 5, 2]. This is in fact a necessity, as the problem quickly becomes
intractable when subtree movement is introduced as an operation. This follows triv-
ially from the fact that tree edit distance on unordered trees is NP-complete [13], by
duplicating nodes one can create a situation where the swaps are so much cheaper than
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a delete/insert operation that the problem becomes equivalent to the unordered
one. Still, swaps and other subtree movement operations remain very interesting in
practice in very diverse fields such as XML processing, computational biology, natural
language processing and many others. Approximations have been considered, for ex-
ample [1] introduces swaps into tree edit distance but the algorithm as given actually
restricts each node to participate in at most one swap, so arbitrary reorderings are
not possible.

While much work has been done to restrict the swaps to make the problem
tractable we will here instead take a step back and consider the “tree swap dis-
tance” problem. In this restriction of tree edit distance only the swap operation is
allowed, reducing the problem to finding the least number of swaps necessary to re-
order one tree into another. Unfortunately the end result is that we demonstrate
that even this problem is NP-complete, suggesting that the swap operation may be
a computationally bad choice to model subtree movement operations.

2 Preliminaries

Let N denote the set of natural numbers {0, 1, 2, 3, . . .}. For all n ∈ N let [n] denote
the set {1, . . . , n}. An alphabet Σ is a finite set of symbols. Going forward we will
simply use Σ to mean some appropriate alphabet without specifying it precisely. The
empty string/sequence is denoted by ε. The set of all strings over an alphabet Σ is
denoted Σ∗ and is defined as Σ∗ = {ε}∪{αv |α ∈ Σ, v ∈ Σ∗}. The length of a string
v ∈ Σ∗ is denoted |v|. The set of sequences over an arbitrary set S is also denoted S∗,
the sequence s1, . . . , sn is referred to as an n-tuple. When expedient we may abuse
notation and confuse the n-tuple s1, . . . , sn with the string s1 · · · sn.

An n by n matrix (all our matrices are square) is an n-tuple of n-tuples M =
((x1,1, . . . , x1,n), . . . , (xn,1, . . . , xn,n)) with xi,j ∈ N for all i, j ∈ [n]. We say that xi,j is
on row i and column j, and denote it by Mi,j.

A tree t consists of a root node labeled by some symbol α ∈ Σ and a tuple
of zero or more direct child subtrees (t1, . . . , tn) (for any n ∈ N) over the same
alphabet. t is denoted by α[t1, . . . , tn]. For a tree α[] with zero children we may
abbreviate it as simply α. The set of all trees over Σ, denoted by TΣ, is defined as
TΣ = Σ ∪ {α[t1, . . . , tn] |α ∈ Σ, n ∈ N, t1, . . . , tn ∈ TΣ}.

The set of positions in a tree is defined by a function pos : TΣ → 2N∗
. For any

k ∈ N, including zero, α ∈ Σ and t1, . . . , tk ∈ TΣ the definition of pos
(
α[t1, . . . , tk]

)

is {ε} ∪
{

(i, v1, . . . , vn) | i ∈ {1, . . . , k}, (v1, . . . , vn) ∈ pos(ti)
}

. That is, a position
p ∈ pos(α[t1, . . . , tn]) denotes the root note α if p = ε, otherwise p is of the form
(i, v1, . . . , vn) referring to the position (v1, . . . , vn) in the subtree ti.

3 The Extended String-to-String Correction Problem

A (pre-existing) problem that we will make use of in the coming proof will now be
defined. Later on we will use a reduction from an instance of the extended string-to-
string correction problem (ESSCP) to our problem to show strong NP-hardness. The
ESSCP is known to be NP-complete (problem [SR20] in [4]), shown in the case where
the cost of inserts and replacements is made infinite and when swaps and deletes are
given a constant cost [10]. The formulation by Wagner in [10] allows arbitrary costs
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for deletes and any non-zero cost for swaps, while the formulation in [4] fixes both
costs to 1. Here we opt to set the cost of a single swap to 1 and the cost of deletes to
0, this causes no loss of generality, since the number of deletes in a solution is always
the difference in length between the source and target strings. The problem definition
is divided into three parts, for all α1 · · ·αn ∈ Σ∗:
Definition 1 (String deletes). For all {d1, . . . , dm} ⊆ [n] we define the delete func-
tion as delete(α1 · · ·αn, {d1, . . . , dm}) = αi1 · · ·αin−m where i1 < . . . < in−m and
{i1, . . . , in−m} = [n] \ {d1, . . . , dm}.

Definition 2 (String swaps). We define the swap function by letting swap(s, ε) = s
for all strings s and for all (s1, . . . , sm) ∈ [n− 1]∗ letting

swap(α1 · · ·αn, (s1, . . . , sm)) = swap(α1 · · ·αs1−1αs1+1αs1αs1+2 · · ·αn, (s2, . . . , sm)).

Definition 3 (The delete/swap ESSCP). An instance of the delete/swap ESSCP
(over some alphabet Σ) is a tuple (S, T, b) ∈ Σ∗ × Σ∗ × N. The instance is a “yes”
instance (the answer is “yes”) if and only if there exists some D ⊆ [|S|] and W ∈
[|S| − |D| − 1]∗ such that swap(delete(S,D),W ) = T with |W | ≤ b. We denote the
set of all such “yes” instances ESSCPds.

There are a couple of important things to notice here.

– The definition is stated so that all deletes happen before any swap. This is not a
restriction of the problem, since there is no instance where it is better to delete
something after moving it around.

– b is in all interesting instances polynomial in the size of the instance, since all
reorderings can be realized in less than n2 swaps. We therefore, without loss of
generality, assume b to be coded in unary in the input, so ESSCPds is strongly
NP-complete.

– Swaps of unrelated symbols can be reordered freely. One recurring example is that
if swap(α1 · · ·αn,W ) is such that the symbol αi is moved to the end of the string
by W we can trivially restructure W to start with the sequence i, i+ 1, . . . , n− 1,
without making W longer. That is, if a minimal swap sequence moves the symbol
in position i to the last position n then doing this before anything else cannot
make the swap sequence longer, since keeping the symbol in the middle of the
string for longer serves no purpose.

4 Swap Assignment Problem

Now we will define the first original problem, the swap assignment problem. We will
demonstrate that this problem is strongly NP-complete by a reduction from ESSCPds.
This problem will serve as a stepping stone to demonstrate NP-completeness for the
tree swap distance problem.

This problem is quite similar to the classical assignment problem [6], except a
starting assignment is given, and an optimal assignment is to be reached by swapping
adjacent assignments. The swap function is defined exactly as in the string case, when
the matrix is viewed as a string of rows.

87



Definition 4 (Matrix Row Swap). For an n by n matrix M the swap function
is defined by for all W ∈ [n − 1]∗ simply viewing the matrix as a string of rows:
(M1,1, . . . ,M1,n) · · · (Mn,1, . . . ,Mn,n) and applying the string swap swap(M,W ).

Definition 5 (The Swap Assignment Problem). An instance of the swap as-
signment problem is a tuple (M, b) where b ∈ N, and M is an n by n matrix. The
instance is a “yes” instance if and only if there exists some W ∈ [n− 1]∗ such that

b ≥ |W |+
n∑

i=1

swap(M,W )i,i.

We denote the set of all such “yes” instances SAP.

Let us look at a small instance to better understand the problem.

Example 6. As an example swap assignment problem instance we can take (M, b)
with b = 9 and M as below.

M =




4 5 16 0

3 4 16 0

2 3 0 16

1 2 16 16


 M ′ =




4 5 16 0

1 2 16 16

2 3 0 16

3 4 16 0


 .

Since we can use the swaps W = 3, 2, 3 to construct M ′ = swap(M,W ) as shown
above, it follows that (M, b) ∈ SAP. M ′ has the diagonal sum 6 which together with
the three swaps adds up to exactly 9. We could also equivalently solve the problem
instance using the swap-sequence W ′ = 1, 3, 2, 3 which produces a diagonal cost of
3 + 2 + 0 + 0 = 5 but, on the other hand, requires 4 swaps, again giving a total of 9.

The ESSCPds (Definition 3) can be reduced to the swap assignment problem in a
slightly tricky to visualize but functionally straightforward way.

Definition 7 (ESSCP to Swap Assignment Reduction). Take a delete/swap
ESSCP instance (s1 · · · sn, t1 · · · tm, b) (we assume that m ≤ n, otherwise it is trivial).
Then construct a swap assignment problem instance (M, b′) where the n by n matrix
M is constructed by taking:

Mi,j =





0 if j ≤ m and si = tj,

b′ + 1 if j ≤ m and si 6= tj.

n+ i− j if j > m,

,

and b′ = b+ n(n−m).

This definition is not really intuitive, but a short example should explain the idea of
how this represents an ESSCP instance.

Example 8. Let us consider the delete/swap ESSCP instance (aacb, abc, 1). This has
a fairly simple solution, delete one of the “a” symbols and swap the “b” and “c”. The
reduction computes b′ = 1 + 4(4− 3) = 5 and the matrix

M =




0 6 6 1

0 6 6 2

6 6 0 3

6 0 6 4


 .
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We will look at the left part first, the part that corresponds to the first two cases
of the construction. All these cells are set either to 0 or to b′ + 1, which means that
none of the non-zero cells may ever be on the diagonal of a solution, since the sum
would always be greater than the budget. So, the first three positions on the diagonal
(counting from the upper left) must be made zero in a solution, the three corresponds
to the length of the target string. The idea is that a zero on the diagonal in this first
part corresponds to a correctly matched symbol. The cells on the right-hand side only
come into play on the last part of the diagonal, the bottom few rows of the result.
The rows moved to the bottom correspond to symbols that get deleted.

The motivation for the weight n + i − j in case 3 of the reduction is that if we
wish to delete some symbol in the original string problem we have a fixed cost (zero),
but to move a row to the bottom of the matrix has different cost depending on where
the row starts out, since different numbers of swaps need to be used. The cost the
rows that end up at the bottom contribute to the diagonal is there to counteract this.
Let us look at the two ways to solve this instance, see Figure 1. Here we show the




0 6 6 1

0 6 6 2

6 6 0 3

6 0 6 4


⇒




0 6 6 2

0 6 6 1

6 6 0 3

6 0 6 4


⇒




0 6 6 2

6 6 0 3

0 6 6 1

6 0 6 4


⇒




0 6 6 2

6 6 0 3

6 0 6 4

0 6 6 1


⇒




0 6 6 2

6 0 6 4

6 6 0 3

0 6 6 1




Figure 1: A solution for the the swap assignment problem instance produced by
reducing from (aacb, abc, 1) ∈ ESSCPds

solution equivalent to deleting the first “a”, by swapping the top row down to the
bottom with the first three swaps. This row then contributes cost 1 to the diagonal,
for a total cost of 4 to get rid of the first symbol. Then we swap the rows that were
originally 3 and 4 (going from “acb” to “abc”) to move the zeros to the diagonal.
The total cost of the solution is 5, which fits the budget b′.

What is key is that the solution can choose to delete any symbol without the cost
being different. So let us look at the other possibility, where we delete the second “a”
instead, shown in Figure 2. Here we start by swapping the second row, corresponding




0 6 6 1

0 6 6 2

6 6 0 3

6 0 6 4


⇒




0 6 6 1

6 6 0 3

0 6 6 2

6 0 6 4


⇒




0 6 6 1

6 6 0 3

6 0 6 4

0 6 6 2


⇒




0 6 6 1

6 0 6 4

6 6 0 3

0 6 6 2




Figure 2: An alternative solution for the swap assignment problem instance produced
by reducing from (aacb, abc, 1) ∈ ESSCPds

to the second “a” into the last position. This takes only 2 swaps, but this row con-
tributes a cost of 2 to the diagonal, again making the delete cost exactly 4. A final
swap of the original row three and four again produces a solution with cost 5.

This illustrates the key property of the construction, deletions are substituted
with moving the rows in question into bottom positions, and the costs in the rows are
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constructed so that a row that is originally far from the bottom gets a proportionally
larger “discount” on the diagonal sum to pay for the extra swaps needed to delete
them. The formula for the rightmost column is n+ i− j, the subtraction of j comes
into play when multiple symbols are deleted. Since not all rows can go to the bottom
position later deletions will have a shorter distance to travel than the first ones, this
is counteracted by the costs being greater in the “discount columns” further left. As
a final example see the slightly larger instance in Figure 3.




12 12 0 2 1

12 0 12 3 2

0 12 12 4 3

0 12 12 5 4

12 12 0 6 5



⇒




0 12 12 4 3

12 0 12 3 2

12 12 0 6 5

12 12 0 2 1

0 12 12 5 4




Figure 3: Reducing (cbaac, abc, 1) ∈ ESSCPds produces the swap assignment problem
instance with the left matrix and budget b′ = 11. “Deleting” a row ends up with a cost
of 5 counting swaps and diagonal cost. On the right is the solution which performs
the swaps 4, 1, 2, 3, 1 for a total cost of 11. This solution corresponds to deleting the
last “a”, deleting the first “c” and finally swapping the remaining “b” and “a”.

Lemma 9. The reduction in Definition 7 produces a swap assignment problem in-
stance that answers “yes” if and only if the original delete/swap ESSCP instance
answers “yes”.

Proof (Sketch). Starting with the “if” direction, take some (s1 · · · sn, t1 · · · tm, b) ∈
ESSCPds. Let the deletes and swaps that solves this instance be {d1, . . . , dn−m} ⊆ [n]
and W ∈ [m − 1]∗. Construct (M, b′) using the reduction. Assume that d1 > d2 >
· · · > dn−m then construct the swaps:

Wd = d1, d1 + 1, . . . , n− 1, d2, d2 + 1, . . . , n− 2, . . . , dn−m, . . . ,m

That is, take row d1, which corresponds to the last (position-wise) symbol deleted in
the original string, and swap it into the last position in the matrix. Then swap row
d2 (second to last deleted position) into the second to last position in the matrix and
so on. Now construct W ′ = WdW (concatenating the two), after applying the swaps
Wd the top m rows in the matrix correspond to the positions which are not deleted,
and we perform the swaps in W on these.

Now we will just demonstrate that (M, b′) ∈ SAP using W ′ as the solution. |W ′| =
|Wd| + |W | and |Wd| contains (n− i)− di swaps to place the row initially at di into
position n−i, for each i ∈ [n−m]. So the row (initially at) di will contribute Mdi,n−i to
the final diagonal sum. The range of i means that Mdi,n−i = n+ di − (n− i) = di + i
(since all these positions are filled by the third case in the construction of M in
Definition 7). Taking the swaps and diagonal contribution together each of the di
rows contribute to the total cost by (n− i)− di + di + i = n, meaning that

|Wd|+
n∑

i=m+1

swap(M,W ′)i,i = (n−m)n.
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This establishes that b′ = b + (n − m)n ≥ |W ′| +∑n
i=m+1 swap(M,W ′)i,i = |W | +

(n−m)n, since b ≥ |W | and |W ′| = |Wd|+ |W |.
All that needs to be added is the remainder of the diagonal, so next we show that∑m
i=1 swap(M,W ′)i,i is zero. Take M ′ = swap(M,Wd) and S ′ = delete(s1 · · · sn, D)

and simply note that if the symbol in position i in S ′ started out in position l then
row i in M ′ started out in position l in M . The next step for both S ′ and M ′ is to
apply W , meaning that row j ∈ [m] in the matrix started out as row i if and only
if symbol in position j in the final string was originally si. Since this is a solution
for the ESSCP instance this means that si = tj which means that row i in M ends
up in position j in swap(M,W ′) if and only if si = tj. It follows that the new row
contributes Mi,j to the diagonal, and the construction of M is such that set Mi,j = 0
when si = tj.

Since we showed that b′ ≥ |W ′|+∑n
i=m+1 swap(M,W ′)i,i above and showed that∑m

i=1 swap(M,W ′)i,i = 0 here it follows that b′ ≥ |W ′| +
∑n

i=1 swap(M,W ′)i,i so
(M, b′) ∈ SAP.

The “only if” direction remains but works in a very similar way. Assume that
(M, b′) ∈ SAP is constructed from some delete/swap ESSCP instance (S, T, b). Let
W ′ be the swaps that solve (M, b′). Notice that if such a solution W ′ exists then a
solution exists which has the structure W ′ = WdW (that is, which first swaps all
the n −m bottom rows into position), if row i is going to be swapped into position
n nothing can be gained by not doing so as the first thing in the swap sequence.
Using this we can extract the solution to the string problem instance, deleting the
symbols corresponding to rows swapped below the mth row. The solution to (M, b′)
also cannot do better than the fixed cost (n −m)(n − 1) for swaps and diagonal of
these bottom rows, and it has to place the top m rows so that they all contribute zero
to the diagonal (all other positions being b′ + 1 which is impossible in a solution),
which corresponds directly to matching symbols correctly. ut

Corollary 10. The swap assignment problem is strongly NP-complete.

This follows since ESSCPds is strongly NP-complete and the reduction constructs a
polynomially sized matrix containing numbers that are all bounded by a polynomial
in the original instance (recall that b is polynomial in all relevant cases and assumed
to be unary). The problem is in NP since no swap sequence ever needs to be longer
than n2, allowing W ′ to be guessed.

5 Swap Even-Cost Assignment Problem

Now we will define a very minor restriction on the swap assignment problem. This
will turn out to be key to make the final reduction to the tree swap distance problem
simple.

Definition 11. Let 2 |x denote that x is even (x ∈ {0, 2, 4, 6, . . .}), let 2 -x denote
that x is odd.

Definition 12 (Swap Even-Cost Assignment Problem). An instance of the
swap even-cost assignment problem is a swap assignment problem instance (M, b)
such that 2 |Mi,j for all i, j ∈ [n]. The answer to (M, b) is “yes” if and only if
(M, b) ∈ SAP. We denote the set of all “yes” instances as SecAP.
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We will quickly establish that all swap assignment problem instances have an equiv-
alent swap even-cost assignment problem instance.

Definition 13. Let h(x) =
⌈
x
2

⌉
.

Definition 14 (Reducing SAP to SecAP). Let (M, b) be an instance of the swap
assignment problem with M an n by n matrix, we then construct (M ′, b′), where M ′

is a 2n by 2n matrix, by letting b′ = b+ n(n−1)
2

and taking

M ′
i,j =





Mi,h(j) if i ≤ n, 2-j and 2|Mi,h(j),

b′′ if i ≤ n, 2-j and 2-Mi,h(j),

Mi,h(j) − 1 if i ≤ n, 2|j and 2-Mi,h(j),

b′′ if i ≤ n, 2|j and 2|Mi,h(j),

0 if i > n and h(j) = i− n,

b′′ if i > n and h(j) 6= i− n,

where b′′ is the smallest even number strictly larger than b′.

This definition is also a bit daunting but the underlying thinking is fairly straight-
forward, let us look at an example.

Example 15. We will start with an instance of the swap assignment problem instance
(M, b), where b = 11 and M is shown on the left in Figure 4. For this example b′ = 14,

M =




2 3 3

9 4 12

1 2 8


⇒




2 16 16 2 16 2

16 8 4 16 12 16

16 0 2 16 8 16

0 0 16 16 16 16

16 16 0 0 16 16

16 16 16 16 0 0




Figure 4: Example of applying the even-cost reduction to a swap assignment problem
instance

so b′′ = 16. Let us look at the upper half of the matrix first. The thing to notice about
this part is that for all i, j ∈ [n] there are for each pair (M2i−1,j,M2i,j) only two cases,
either the pair is (Mi,j, 16) if Mi,j was even, or it is (16,Mi,j − 1) if Mi,j was odd.

This starts making sense when we look at the lower half of the matrix, which is
filled with rows such that for each j ∈ [n] the row at position n + j can only be
in either position 2j − 1 or 2j in a valid solution (since that brings the rows zero
positions to the diagonal, and b′′ is guaranteed to be more than the budget). This
means that any valid solution will be structured so that for each j ∈ [n] one of the
positions 2j − 1 and 2j contains the row originally in position n + j (in all other
positions it would contribute b′′ to the diagonal making the solution impossible) and
the other position contains some row originally in the top half (since all rows from

the bottom half are already accounted for). The n(n−1)
2

part of the budget is exactly
enough to pay for the minimal such interspersing (where the row from the top half is
the one at the 2j − 1 position since that is closer).
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Let i ∈ [n] be the initial position of the row from the top that ends up in position
2j − 1 or 2j, this row is supposed to simulate the cost Mi,j on the diagonal. If
Mi,j is even this is easy, the row can be placed at position 2j − 1 (since it will
have M ′

i,2j−1 = Mi,j), if Mi,j contained an odd number however the construction has
made Mi,2j−1 = b′′, which forces the solution to take an extra swap to bring the row
to position 2j. This extra swap fixes the cost that was lost when the construction
rounded down M ′

i,2j = Mi,j − 1.
To make this more visual see Figure 5. Since this solution involves a total of




2 16 16 2 16 2

16 8 4 16 12 16

16 0 2 16 8 16

0 0 16 16 16 16

16 16 0 0 16 16

16 16 16 16 0 0




⇒




16 0 2 16 8 16

16 8 4 16 12 16

2 16 16 2 16 2

0 0 16 16 16 16

16 16 0 0 16 16

16 16 16 16 0 0




⇒




16 0 2 16 8 16

0 0 16 16 16 16

16 8 4 16 12 16

16 16 0 0 16 16

2 16 16 2 16 2

16 16 16 16 0 0




⇒




0 0 16 16 16 16

16 0 2 16 8 16

16 8 4 16 12 16

16 16 0 0 16 16

16 16 16 16 0 0

2 16 16 2 16 2




Figure 5: Some steps of the solution of the problem instance in Figure 4

seven swaps several are done in each step. Let us first note that a solution for the
original (pre-reduction) instance in Figure 4 is to swap 2, 1, 2, giving a diagonal sum
of 1 + 4 + 3 = 8 and a total solution cost of 11. In Figure 5 we have the original
reduced matrix on the left, in the first step we do the same three swaps 2, 1, 2. In the
next step we intersperse the rows from the bottom half with the top with the swaps
3, 2, 4. This however leaves us with 16 in two places on the diagonal, and have to
finish with the swaps 1, 4. These last swaps are key. Notice how the diagonal in the
original instance ended up being 1 + 4 + 3, the first and last positions are odd. The
construction took these odd numbers, rounded them down to something even and
placed this rounded result on the right side of its horizontal “pair” in the top row.
This forces the solution to do extra swaps to bring the rows down one step further,
paying the cost that was removed by the rounding. In total the solution here makes
8 swaps, and has a diagonal sum of 6, for a total cost of 14, exactly the budget b′.

Lemma 16. For every swap assignment problem instance (M, b) (M is n by n) the
reduction in Definition 14 produces a swap even-cost assignment problem instance
(M ′, b′) such that (M ′, b′) ∈ SecAP if and only if (M, b) ∈ SAP.

Proof (Sketch). Assume that (M, b) ∈ SAP. Let W be a swap sequence that solves
(M, b). Then construct a (minimal) swap sequence Wi such that

swap(a1 · · · anb1 · · · bn,Wi) = a1b1a2b2 · · · anbn,

and, let Wo = o1 · · · , om be such that o1 < · · · < om and 2 - swap(M,W )i,i if and
only if i ∈ {o1, . . . , om}. Then W ′ = WWiWo (the concatenation) is a solution for
(M ′, b′). This sequence of swaps being a solution is quickly established, noting that

|Wi| = n(n−1)
2

which accounts for the difference between b′ and b, and then noting
that the construction makes all the swaps in Wo necessary.

The other direction amounts to assuming the existence of W ′ and then extracting
the W part which concerns the internal order of the n first rows. ut
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Corollary 17. The swap even-cost assignment problem is strongly NP-complete.

This follows from the above. The reduction from the strongly NP-complete swap
assignment problem is clearly polynomial, the matrix dimensions are doubled and
the values in the matrix grow on the order of O(n2). The problem is in NP, since
SecAP is simply SAP with inputs restricted to even numbers.

6 Tree Swap Distance Problem

This section will reach the goal of the paper, defining the tree swap distance problem
and then demonstrating that it is strongly NP-complete by a reduction from SecAP.
Let us define the problem.

Definition 18 (Tree Swap). Take any tree t = α[t1, . . . , tn] ∈ TΣ and any P =
(p1, . . . , pm) ∈ pos(t) such that (p1, . . . , pm−1, (pm + 1)) ∈ pos(t). Then define the
single-swap function

swap1(t, P ) =

{
α[t1, . . . , tp1−1, swap1(tp1 , (p2, . . . , pm)), tp1+1, . . . , tn] if m > 1,

α[t1, . . . , tp1−1, tp1+1, tp1 , tp1+2, . . . , tn] otherwise.

The full swap function is for (appropriate) positions P1, . . . , Pp defined as

swap(t, (P1, . . . , Pp)) = swap1(. . . swap1(swap1(t, P1), P2) . . . , Pp).

The definition of swaps for trees is slightly unwieldy, but the swap function takes a tree
and a sequence of tree positions (which are integer sequences). The positions identify,
in order, the subtree which should next swap position with its sibling immediately to
the right. Notice that Pi for i > 1 does not refer to a position in the tree t but to a
position in an intermediary tree, it may be that Pi /∈ pos(t). An example is shown in
Figure 6.

a

b c

d e

f ⇒

a

b f c

d e

⇒

a

b f c

e d

Figure 6: An example of applying the tree swaps ((2), (3, 1)) to a small tree. That is,
going from the first to second tree we swap the position 2, referring to the second
child of the root, next the position (3, 1) is swapped, referring to the first child of the
rightmost child subtree of the root.

The definition of the tree swap distance problem now follows a familiar formula.

Definition 19 (The Tree Swap Distance Problem). An instance of the tree swap
distance problem is a tuple (t, t′, b) where t ∈ TΣ is the start tree, t′ ∈ TΣ is the target
tree and b ∈ N is the budget. The instance is a “yes” instance if and only if there
exists some P1 ∈ N∗, . . . , Pn ∈ N∗ such that n ≤ b and t′ = swap(t, (P1, . . . , Pn)). We
denote the set of all such “yes” instances TSwD.
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The next definition is used to make it easier to talk about minimal swap sequences.

Definition 20 (Minimal budget for TSwD). For all t, t′ ∈ TΣ let mincost(t, t′) =
b, where b ∈ N is the smallest number for which (t, t′, b) ∈ TSwD. If no such number
exists let b =∞.

The reduction from SecAP to TSwD requires some building blocks. A visual example
of the different types of notation defined below is shown later in Figure 8.

Definition 21 (Number Tree). Assume that 0, 1 ∈ Σ. For some symbol α ∈ Σ
and x, y ∈ N such that x ≤ y we let α[x : y] denote the tree α[p1, . . . , py+1] where
pi = 0 for all i 6= x+ 1 and px+1 = 1.

For example, α[2 : 3] = α[0, 0, 1, 0]. We call these trees “number trees”. Notice that
for all x, x′, y ∈ N such that x ≤ y and x′ ≤ y it holds that mincost(α[x : y], α[x′ :
y]) = |x − x′|. That is, the minimum number of swaps needed to turn α[x : y] into
α[x′ : y] is exactly |x − x′|. The tree α[x : y] serves the purpose to represent the
number x, with the minimal swap distance to any other α[x′ : y] being the absolute
difference between x and x′.

Definition 22 (Number Trees with Neutral Elements). Assume that for each
α ∈ Σ there exists a distinct α′ ∈ Σ. Then for all x, y ∈ {0, 2, 4, 6, . . .} let α〈x : y〉
denote the following special tree.

α〈x : y〉 = α

[
α
[x

2
:
y

2

]
, α′
[y − x

2
:
y

2

]]
.

Additionally let α〈⊥ : y〉 denote the special tree α
[
α
[
0 : y

2

]
, α′
[
0 : y

2

]]
, called a “neu-

tral” tree.

So, for example α〈2 : 6〉 is the tree α[α[0, 1, 0, 0], α′[0, 0, 1, 0]]. These trees have the
property that for all x, x′, y ∈ {0, 2, 4, 6, . . .} it holds that mincost(α〈x : y〉, α〈x′ :
y〉) = |x − x′|. This should not be a surprise, these trees behave like the earlier
number trees, only the necessary swaps are split across two subtrees, and we lose the
capability to represent odd numbers in the process. The gain lies in the neutral trees,
it holds that mincost(α〈⊥ : y〉, α〈x : y〉) = y

2
completely independently of the value x.

Definition 23 (Multi-number Trees). For some α ∈ Σ and k ∈ N assume that
we have the distinct symbols α1, . . . , αk ∈ Σ. Then, for all x1, . . . , xk ∈ N∪{⊥}, such
that either xi ≤ y or xi = ⊥ for all i ∈ [n], let α〈(x1, . . . xk) : y〉 denote the tree

α[α1〈x1 : y〉, . . . , αk〈xk : y〉].

This means that

mincost(α〈(x1, . . . , xn) : y〉, α〈(x′1, . . . , x′n) : y〉) =
n∑

i=1

|xi − x′i|,

for all x1, x
′
1, . . . , xn, x

′
n, y ∈ N such that xi ≤ y and x′i ≤ y for all i ∈ [n].

Now all the building blocks necessary to reduce a swap even-cost assignment
problem instance to a tree swap problem instance are ready.
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Definition 24 (Reducing SecAP to TSwD). Let (M, b) be an instance of the
swap even-cost assignment problem as in Definition 12. We then construct the in-
stance (t, t′, b′) of the tree swap distance problem as follows. Assume that M is an n

by n matrix, let τ be the largest integer that occurs in M . Then let b′ = b + n(n−1)τ
2

and construct
t = α[ β〈(M1,1, . . . ,M1,n) : τ〉,

β〈(M2,1, . . . ,M2,n) : τ〉,
...

β〈(Mn,1, . . . ,Mn,n) : τ〉],
and

t′ = α[β〈(0,⊥,⊥, . . . ,⊥) : τ〉,
β〈(⊥, 0,⊥, . . . ,⊥) : τ〉,

...

β〈(⊥,⊥, . . . ,⊥, 0) : τ〉],
that is, t′ = α[t1, . . . , tn] such that for all i ∈ [n] we have ti = β〈(x1, . . . , xn) : τ〉
where xj = ⊥ for all j 6= i and xi = 0.

The dense notation may make this reduction hard to visualize, let us look at an
example.

Example 25. Let (M, b) be an instance of the swap even-cost assignment problem,
letting b = 3 and

M =

[
4 0

2 2

]
.

Now we construct the tree swap distance problem instance (t, t′, b′) by applying the
reduction from Definition 24. From M we see that τ = 4, so the budget becomes
b′ = 3 + 2(2−1)4

2
= 7. The constructed trees are

t = α[β〈(4, 0) : 4〉, β〈(2, 2) : 4〉],
t′ = α[β〈(0,⊥) : 4〉, β〈(⊥, 0) : 4〉].

To get past the notation the full tree t is shown in Figure 7, and the tree t′ (as well
as a breakdown of which subtrees correspond to which piece of notation) is shown in
Figure 8.

Using these figures it is not hard to see how the solutions to (M, b) and (t, t′, b′)
correspond to each other. (M, b) has a single solution, swapping the two rows (which
gives a diagonal sum of 2, for a total cost of 3, which is exactly the budget), making
no swap is not an option since the initial diagonal sum is 6, which is over the budget.

The decision to swap the rows in M or not corresponds to the decision whether
or not to swap the β〈. . . 〉-subtrees in t. The reader can easily verify by inspecting
Figure 7 and 8 that it takes 10 swaps to move the 0/1 nodes around to match t′ if we
do not swap the β〈. . . 〉-subtrees first, which is over the budget (in fact, it is over the
budget by the same amount as the initial order of M is for that instance). If the two
β〈. . . 〉-subtrees are swapped however, we can reorder the 0/1 nodes in the resulting
tree in only 6 swaps, for a total cost of 7, exactly the budget b′.
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α

β

β1

β1

0 0 1

β′
1

1 0 0

β2

β2

1 0 0

β′
2

0 0 1

β

β1

β1

0 1 0

β′
1

0 1 0

β2

β2

0 1 0

β′
2

0 1 0

Figure 7: The tree t constructed in the reduction in Example 25. Notice that any
solution only needs to perform swaps on the nodes in the dotted rectangles, all other
nodes are already in their only possible internal order (compare to t′ in Figure 8).

β2〈⊥ : 4〉 β〈(⊥, 0) : 4〉β′
1[2 : 2]β1[0 : 2]

α

β

β1

β1

1 0 0

β′
1

0 0 1

β2

β2

1 0 0

β′
2

1 0 0

β

β1

β1

1 0 0

β′
1

1 0 0

β2

β2

1 0 0

β′
2

0 0 1

Figure 8: The tree t′ constructed in the reduction in Example 25. The dotted arrows
shows the notation we use to describe the indicated parts of the tree.

Hopefully the example has clarified the general idea of this reduction, but a proof
sketch follows which further illustrates how it functions in the general case.

Lemma 26. For every swap even-cost assignment problem instance (M, b) and tree
swap distance problem instance (t, t′, b′) constructed from (M, b) by the reduction in
Definition 24 it holds that (t, t′, b) ∈ TSwD if and only if (M, b) ∈ SecAP.

Proof (Sketch). We reuse the notation of the reduction. First notice that there are
only two levels of swapping to consider in t. The immediate subtrees can be reordered
since all are of the β multi-number kind, this is the interesting part. In addition the
leaves will be swapped to move around the 0/1 sequences that are there to represent
numbers, but this is abstracted by our number trees and can only be done in one
trivial way once the top-level swaps are decided. The nodes in between are marked
with distinct symbols.

Now let us look at the sub-subtrees in t′. There are n2 of them, organized into n
subtrees, each of which represents a row. For each i ∈ [n] look at position i, i in t′,
this tree is of the form βi〈0 : τ〉, whereas for all i, j ∈ [n] such that i 6= j the subtree
at position i, j is of the form βj〈⊥ : τ〉. These n(n − 1) trees will be matched up
with some βj sub-subtree in t at a constant cost of τ

2
each, incurring a constant and

unavoidable cost of n(n−1)τ
2

, leaving exactly b of the budget for the remainder.
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This leaves the n “diagonal” subtrees of the form βi〈0 : τ〉 in t′. Assume that W in
M moves row i into position j, incurring some swap cost and a diagonal cost of Mi,j.
If we apply W directly to t this would move subtree β〈Mi,1, . . . ,Mi,n〉 into position
to match the tree in t′ that contains the zero number tree βj〈0 : τ〉 in position j.
This means that the cost incurred, beyond the already accounted for constant cost
associated with the n− 1 neutral trees will be mincost(βj〈Mi,j : τ〉, βj〈0 : τ〉), which
is exactly Mi,j by the construction of the number trees. So, to recap, applying W

at the top level leaves us with the constant cost of n(n−1)τ
2

plus |W | plus Mi,j for
each row moved from position i to position j by W . Which is exactly the same cost
that applying W in M incurs plus n(n−1)τ

2
, and since b′ = b + n(n−1)τ

2
this makes

the problem instances equivalent. We did the argument starting from W , but we
can trivially extract the swaps which deal with the immediate subtrees in t from a
solution to (t, t′, b′), making the other direction very straightforward. ut

Corollary 27. The tree swap distance problem is strongly NP-complete.

As before the problem being in NP is trivial since the swap sequence never needs to
be longer than n2 so we may guess it. The reduction being polynomial is not hard to
see, though the details become somewhat lengthy. There are on the order of O(τn2)
nodes in the trees, but SecAP is strongly NP-complete so this unary representation
is not problematic.

7 Conclusion

Treating a problem where the only conclusion is negative, the problem being in-
tractable, is never quite the ideal outcome. On the other hand it was already known
that tree edit distance with subtree movement is problematic, and the efforts to in-
tegrate limited forms of swaps have been ongoing for some time. As such it is useful
to establish that swaps are inherently problematic in trees. This hints that better
results may be achieved if one considers simpler measures, such as linear distance,
where all subtrees are reordered simultaneously and the cost of moving a subtree from
position i to position j is exactly |i− j| independent of whether the trees in between
are moved. This would allow the Hungarian algorithm [6] to be leveraged in the tree
case, giving a polynomial algorithm.

The problem itself may also be useful for complexity analysis of other swap prob-
lems, since it is at its core very simple both to explain and intuitively understand.

Hopefully this rather fundamental problem being proven NP-complete will also
serve as a useful stepping stone for other complexity-theoretical work.
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