

Ph Licentiate Thesis, April 2012
Department of Computing Science
Umeå University, Sweden

Parallel Variants and Library Software for the
QR Algorithm and the Computation of the Matrix
Exponential of Essentially Nonnegative Matrices

Meiyue Shao

Parallel Variants and Library Software
for the QR Algorithm

and
the Computation of the Matrix Exponential

of Essentially Nonnegative Matrices

Meiyue Shao

Licentiate Thesis, April 2012

DEPARTMENT OF COMPUTING SCIENCE
SE-901 87 UMEÅ

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

myshao@cs.umu.se

Copyright c© 2012 by Meiyue Shao
Except Paper I, c© Springer, 2012

Paper II, c© R. Granat, B. Kågström, D. Kressner, and M. Shao, 2012
Paper III, c© M. Shao, W. Gao, and J. Xue, 2012

ISBN 978-91-7459-430-0
ISSN 0348-0542
UMINF 12.07

Printed by Print & Media, Umeå University, 2012

Abstract

This Licentiate Thesis contains contributions in two challenging topics in matrix com-
putations: the parallel multishift QR algorithm with aggressive early deflation (AED)
and the matrix exponential of essentially nonnegative matrices. They are both structure-
preserving algorithms in numerical linear algebra. We focus on performance in the
former problem and on accuracy in the latter one.

The solution of matrix eigenvalue problems is a fundamental topic in numerical
linear algebra. The QR algorithm which computes the Schur decomposition of a ma-
trix is by far the most important approach for solving dense nonsymmetric eigenvalue
problems. Recently a novel parallel QR algorithm has been developed by incorpo-
rating some modern techniques such as small-bulge multishift and AED. The novel
parallel approach significantly outperforms the pipelined QR algorithm in ScaLA-
PACK v1.8.0 and earlier versions. But AED becomes a computational bottleneck in
the new parallel QR algorithm. We develop multilevel AED algorithms which indeed
decrease the total amount of communications and further improve the performance
of the parallel QR algorithm. We also identify and remedy some anomalies in the
original ScaLAPACK implementation. The improved version of the new parallel QR
algorithm is now available as a part of ScaLAPACK version 2.0. Both performance
models and numerical experiments demonstrate the efficiency of the new approach.

The computation of the matrix exponential is also a classical topic in numerical
linear algebra. The exponential of essentially nonnegative matrices (real square ma-
trices with nonnegative off-diagonal entries) is an important special case since it has
applications in continuous-time Markov processes and positive linear dynamical sys-
tems. Because of the nonnegativity, this problem is usually well-conditioned in the
sense of componentwise perturbations. We derive lower and upper bounds of the ma-
trix exponential, and combining the scaling and squaring method with aggressively
truncated Taylor expansion. More precisely, we establish new à priori error estimates
and use them to propose an efficient strategy to balance the scale factor and the order
of expansion. This leads to new algorithms with componentwise high relative accu-
racy. Rounding error analyses and numerical experiments confirm the efficiency and
accuracy of our algorithms.

iii

iv

Preface

This Licentiate Thesis consists of the following three papers:

Paper I B. Kågström, D. Kressner, and M. Shao. On Aggressive Early Deflation
in Parallel Variants of the QR Algorithm1. Applied Parallel and Scientific
Computing (PARA 2010), Lecture Notes in Computer Science, Springer,
LNCS 7133, pages 1–10, 2012.

Paper II R. Granat, B. Kågström, D. Kressner, and M. Shao. Parallel Library Soft-
ware for the Multishift QR Algorithm with Aggressive Early Deflation.
Technical Report, UMINF-12.06, April 2012.

Paper III M. Shao, W. Gao, and J. Xue. Componentwise High Relative Accuracy
Algorithms for the Exponential of an Essentially Nonnegative Matrix.
Technical Report, UMINF-12.04, March 2012. (submitted to Numerische
Mathematik)

In addition to the papers included in the thesis, there are also other publications
finished within the PhD studies:

X. S. Li and M. Shao. A Supernodal Approach to Incomplete LU Factorization with
Partial Pivoting. ACM Transactions on Mathematical Software, 37(4): Article 43,
2011.

M. Shao. PDLAQR1: An Improved Version of the ScaLAPACK Routine PDLAHQR.
Technical Report, UMINF-11.22, revised in April 2012.

Q. Xie and M. Shao. To Review Some Techniques in Advanced Algebra via an Ele-
mentary Problem. Studies in College Mathematics, to appear (in Chinese).

1 Reprinted by permission of Springer.

v

vi

Acknowledgements

First of all, I wish to thank my supervisor Professor Bo Kågström, who is also co-
author of two papers in this thesis. It is you who helped me arrange everything for
settling down when I arrived at Umeå. It has been great to work with you. Despite
your busy schedule, you always spent a lot of time discussing my research work and
providing constructive feedback. I was also largely encouraged by you for every little
progress I had made. Thank you!

Secondly, I want to thank my co-supervisor Professor Daniel Kressner, who is
also co-author of two papers in this contribution. Although most our discussions so
far were not face-to-face, I have greatly benefited from your fruitful suggestions and
comments. I look forward to the second part of my PhD studies at Lausanne. Thank
you!

Thirdly, I am grateful to all members in the Numerical Linear Algebra and Parallel
High Performance Computing Groups, especially to Dr. Lars Karlsson, for all kinds
of assistance. Thank you very much!

Many thanks to all colleagues at the Department of Computing Science and the
High Performance Computing Center North (HPC2N) for providing a good work en-
vironment and various support.

I also wish to thank all professors in the Computational Mathematics Group at
Fudan University, who introduced me to numerical linear algebra and high perfor-
mance computing.

Finally, I owe a great gratitude to my family. Many thanks to my parents and my
girlfriend. It is impossible for me to concentrate on the research without your enduring
support.

This work was conducted using the resources of the High Performance Computing
Center North, http://www.hpc2n.umu.se. Financial support has been pro-
vided by the Swedish Research Council under grants VR7062571 and A0581501, the
Swedish Foundation for Strategic Research under grant A3 02:127, UMIT Research
Lab via an EU Mål 2 project, and eSSENCE, a strategic collaborative e-Science pro-
gramme funded by the Swedish Research Council.

Umeå, April 2012

Meiyue Shao

vii

viii

Contents

1 Introduction 1
1.1 The Parallel QR Algorithm 1
1.2 The Matrix Exponential of Essentially Nonnegative Matrices 2

2 Summary of Papers 5
2.1 Paper I 5
2.2 Paper II 5
2.3 Paper III 6

3 Ongoing and Future Work 7
3.1 Dense and Structured Eigenvalue Problems 7
3.2 Matrix Functions 7

Paper I 15

Paper II 29

Paper III 59

ix

x

Chapter 1

Introduction

This chapter includes motivations of the work presented in this thesis. Some
background knowledge of the two topics is also provided.

1.1 The Parallel QR Algorithm

The solution of matrix eigenvalue problems is a fundamental topic in numerical
linear algebra [5, 11] with applications in various areas of science and engineer-
ing. In this thesis we consider the standard eigenvalue problem (SEP)

Ax = λx (x 6= 0), (1.1)

where A is a square N × N matrix and x is a nonzero N × 1 vector. The
scalar λ is called an eigenvalue of A and x is the corresponding eigenvector.
We see that x is an eigenvector of A if it is mapped by A onto a multiple of
itself. There are several existing methods for solving the standard eigenvalue
problem based on different properties of A (e.g., symmetry or sparsity) and
different demands to the knowledge of the spectrum (e.g., see [23]). We are
interested in computing all eigenvalues of a dense non-Hermitian matrix. The
QR algorithm [8, 9, 10, 18, 19] is by far the most popular approach for this
purpose which calculates the Schur decomposition of A:

A = QTQ∗, (1.2)

where Q is unitary and T is upper triangular. Then the eigenvalues of A are
available as the diagonal entries of T . If A is real, Q and T can also be chosen
as real matrices but T becomes quasi-triangular (i.e. a block triangular matrix
with 1× 1 and 2× 2 diagonal blocks).

The QR algorithm consists two main stages:

A
U1−−→ H

U2−−→ T. (1.3)

1

The first stage (known as the Hessenberg reduction) transforms A to an upper
Hessenberg form H (i.e. H(i, j) = 0 for i > j + 1). The Hessenberg reduction
only requires finite number of operations and can be performed efficiently (e.g.,
see [3, 7, 17, 22]). The second stage (known as the Hessenberg QR algorithm or
the QR iteration) further reduces H to the Schur form. This stage is iterative
in nature and is usually much more difficult than the Hessenberg reduction
because both the convergence rate and the algorithmic issues need to be taken
care of.

Recently, some novel techniques such as small-bulge multishift and aggres-
sive early deflation (AED) [1, 2] have been proposed. The multishift strategy
reduces the number of I/O operations in a delay-and-accumulate manner; AED
explores potentially deflatable eigenvalues and hence enhance the convergence
rate quite a lot. Therefore these techniques dramatically improve the perfor-
mance of the Hessenberg QR algorithm. A new parallel QR algorithm equipped
with these modern techniques on distributed memory systems has also been de-
veloped [12] which outperforms the original ScaLAPACK’s implementation of
the QR algorithm [13] significantly. However, although AED can largely im-
prove the convergence rate in the QR algorithm, it is observed that the parallel
AED process becomes a computational bottleneck for a modest number of pro-
cessors. In Papers I and II, we develop multilevel algorithms for AED which
decrease the total execution time and at the same time perform less commu-
nications. These contributions further improve the performance of the new
parallel QR algorithm. The new implementation of the parallel QR algorithm
is now published as a part of ScaLAPACK version 2.0.

1.2 The Matrix Exponential of Essentially Non-
negative Matrices

The computation of matrix functions is another fundamental topic in numerical
linear algebra [11, 14]. Let D be a domain in the complex plane enclosed by a
Jordan curve. If D contains the spectrum of A and f(z) is analytic on D, then
f(A) is defined as

f(A) =
1

2πi

∫

∂D

f(z)(zI −A)−1dz. (1.4)

There are many other alternative definitions of f(A). For example, if f(z) has
the Laurent series

f(z) =
∞∑

k=−∞
ak(z − z0)k (1.5)

in D, then

f(A) =

∞∑

k=−∞
ak(A− z0I)k. (1.6)

2

It is straightforward to prove from the definition of f(A) that

f(P−1AP) = P−1f(A)P, (1.7)

where P is any nonsingular matrix. This property naturally leads to the eigen-
value methods for calculating f(A). For example, the high level abstraction of
the Schur-Parlett algorithm [4] is:

(1) Compute the Schur decomposition A = QTQ∗.
(2) Compute f(T) via Parlett’s algorithm [21].
(3) Formulate f(A) = Qf(T)Q∗.

Therefore, functions of matrices closely relate to the dense eigenvalue prob-
lem (e.g., see [16]). Another class of algorithms computes g(A) where g(z)
approximates f(z) and g(A) is much easier to calculate. Such kind of ap-
proximations include, e.g., truncated Taylor series and Padé approximants.
Certainly, there can be other methods using some special properties of f(z) or
A. The work presented in this thesis is such an example.

The matrix exponential f(A) = eA, where f(z) = ez, is one of the most
well-studied matrix functions, since it has many applications in physics, biology,
finance and engineering. Several methods for computing the matrix exponential
have been proposed, see [14, 20]. Among the existing algorithms, the scaling
and squaring method,

eA =
(

eA/2k
)2k

, (1.8)

is considered as one of the most promising candidates for calculating the matrix

exponential [20]. Usually eA/2k is approximated by a diagonal Padé approxi-
mation [15, 24] or a truncated Taylor series [6, 26]. It is easier to approximate

eA/2k compared to eA because the scaling process reduces the spectral radius
and leads to a faster decay of the truncation error.

In some applications such as continuous-time Markov processes and positive
linear dynamical systems, the matrix A is essentially nonnegative (i.e. A(i, j) ≥
0 for all i 6= j). This special structure of A leads to some nice properties in eA.
For example, the matrix exponential is always nonnegative since

eA = es
∞∑

k=0

(A− sI)k ≥ 0, (1.9)

where s = min{A(i, i)}. Recently a componentwise perturbation analysis for
eA where A is essentially nonnegative has been developed, see [25]. The per-
turbation analysis suggests that it is possible to compute all entries of eA to
high relative accuracy. We investigate such kind of algorithms in Paper III.
These algorithms are variants of the scaling and squaring method. By taking
advantage of the nonnegativity, we derive lower and upper bounds of eA and
establish error estimates for these bounds. The algorithms are shown to be
componentwise forward stable by doing rounding error analysis and presenting
results of numerical experiments.

3

4

Chapter 2

Summary of Papers

In this chapter, a brief summary of the papers is given. The topic of Papers I
and II is the parallel QR algorithm for dense nonsymmetric eigenvalue prob-
lems. In Paper III, algorithms for the matrix exponential are presented.

2.1 Paper I

In this paper, we discuss a two-level approach for performing AED in a parallel
environment. The lower level consists of a novel combination of AED with the
pipelined QR algorithm implemented in the ScaLAPACK routine PDLAHQR. The
new approach aims to minimize the execution time for calculating the Schur
decomposition of the AED window and hence improves the performance of
the higher level QR algorithm. By the data redistribution strategy, frequent
communications are avoided in the deflation stage. A new shift strategy is
also proposed to improve the convergence rate of the pipelined QR algorithm.
These techniques significantly improve the performance of the higher level AED
process as well as the entire parallel QR algorithm.

2.2 Paper II

In Paper II, we present the library software of the parallel multishift QR al-
gorithm with AED. The algorithm is largely based on the work in [12] and
Paper I. The communication avoiding algorithm via data redistribution pro-
posed in Paper I is further developed so that the higher level AED can be
performed efficiently as well. We also refine the strategy for switching between
multishift QR sweeps and AED. Suggestions regarding some important tun-
able algorithmic parameters are provided. With these improvements, AED is
no longer a computational bottleneck in the new approach. We establish a
performance model which explains the scalability behavior of the new parallel
QR algorithm. Finally, a lot of computational experiments demonstrate the

5

significant improvement we have made compared to the preliminary version
of the new parallel QR algorithm in [12] as well as the original ScaLAPACK’s
pipelined QR approach. The new software is available as a part of ScaLAPACK
version 2.0.

2.3 Paper III

In Paper III, we present componentwise forward stable algorithms for comput-
ing eA where A is essentially nonnegative. The first approach is the scaling and
squaring method with Taylor expansion

[
m∑

k=0

(A/n)k

k!

]n
≤ eA (for A ≥ 0). (2.1)

Contrary to most existing approaches, we use a large scale factor n and truncate
aggressively in the Taylor series. We derive a componentwise à priori error
estimate and use it to propose an efficient strategy to balance the scale factor n
and the order of expansion m. The scale factor is proportional to the condition
number so that the algorithm is almost optimally scaled. This leads to a lower
bound approach of eA where A is essentially nonnegative. Similarly, we derive
an upper bound approach using the scaling and squaring method built on a
non-diagonal Padé approximation

[
m−2∑

k=0

(A/n)k

k!
+

(A/n)m−1

(m− 1)!

(
I − A

mn

)−1]n
≥ eA (for A ≥ 0 and mn > ρ(A)).

(2.2)
The corresponding componentwise error estimates are also established. Finally,
we propose an interval algorithm without using interval arithmetic as well as
an interpolation strategy. This novel interval approach always produce actual
lower and upper bounds of eA regardless of roundoff. Both rounding error anal-
yses and numerical experiments confirm the forward stability of our proposed
algorithms.

6

Chapter 3

Ongoing and Future Work

This chapter includes some possible extensions of the work presented in this
theses.

3.1 Dense and Structured Eigenvalue Problems

Since most eigensolvers are essentially iterative, the deflation strategy has im-
portant impact on the convergence rate. We have already benefited from ef-
ficient approaches of AED in the parallel QR algorithm. In the future more
deflation techniques, especially structure preserving strategies for some struc-
tured eigenvalue problems, would be investigated. Future work also includes
investigating some applications using the software of parallel QR algorithm, for
example, parallel solvers for general analytic functions of matrices. Based on
the newly developed software of the parallel QR algorithm, the computation of
general matrix functions for large-scale dense matrices becomes feasible.

3.2 Matrix Functions

In most existing scaling and squaring algorithms for the matrix exponential,
diagonal Padé approximation instead of Taylor expansion is preferred, since the
Padé approximant approximates eA in a cheaper and more accurate manner
compared to the truncated Taylor series. Using the techniques in Paper III, we
are already able to establish componentwise error estimates for the scaling and
squaring method using Padé approximation when A is essentially nonnegative.
But how to accurately compute the Padé approximant is still a challenging
problem since the nonnegativity can be hardly preserved during the calculation.
Moreover, with the knowledge of the matrix exponential, it is also promising
to develop theories and algorithms for its inverse problem — matrix logarithm
when lnA is known in advance to be essentially nonnegative. These problems
will be investigated in the future.

7

8

Bibliography

[1] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm.
Part I: Maintaining well-focused shifts and level 3 performance. SIAM J.
Matrix Anal. Appl., 23(4):929–947, 2002.

[2] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. Part
II: Aggressive early deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973,
2002.

[3] J. Choi, J. J. Dongarra, and D. W. Walker. The design of a parallel dense
linear algebra software library: Reduction to Hessenberg, tridiagonal, and
bidiagonal form. Numer. Algorithms, 10(2):379–399, 1995.

[4] P. I. Davies and N. J. Higham. A Schur-Parlett algorithm for computing
matrix functions. SIAM J. Matrix Anal. Appl., 25(2):464–485, 2003.

[5] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997.

[6] L. Deng and J. Xue. Accurate computation of exponentials of triangular
essentially non-negative matrices. J. Fudan University (Natural Science),
50(1):78–86, 2011.

[7] J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling. Block reduction
of matrices to condensed forms for eigenvalue computations. J. Comput.
Appl. Math., 27:215–227, 1989. Also as LAPACK Working Note 2.

[8] J. G. F. Francis. The QR transformation: A unitary analogue to the LR
transformation — Part 1. Comput. J., 4(3):265–271, 1961.

[9] J. G. F. Francis. The QR transformation — Part 2. Comput. J., 4(4):332–
345, 1962.

[10] G. H. Golub and F. Uhlig. The QR algorithm: 50 years later its genesis
by John Francis and Vera Kublanovskaya and subsequent developments.
IMA J. Numer. Anal., 29(3):467–485, 2009.

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, USA, third edition, 1996.

9

[12] R. Granat, B. K̊agström, and D. Kressner. A novel parallel QR algorithm
for hybrid distributed memory HPC systems. SIAM J. Sci. Comput.,
32(4):2345–2378, 2010. Also as LAPACK Working Note 216.

[13] G. Henry, D. S. Watkins, and J. J. Dongarra. A parallel implementation
of the nonsymmetric QR algorithm for distributed memory architectures.
SIAM J. Sci. Comput., 24(1):284–311, 2002. Also as LAPACK Working
Note 121.

[14] N. J. Higham. Functions of Matrices: Theory and Computation. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[15] N. J. Higham. The scaling and squaring method for the matrix exponential
revisited. SIAM Rev., 51(4):747–764, 2009.

[16] B. K̊agström. Methods for the Numerical Computation of Matrix Functions
and the Treatment of Ill-Conditioned Eigenvalue Problems. PhD thesis,
Ume̊a University, 1977. Report UMINF-58.77.

[17] L. Karlsson and B. K̊agström. Parallel two-stage reduction to Hessenberg
form using dynamic scheduling on shared-memory architectures. Parallel
Comput., 37(12):771–782, 2011.

[18] D. Kressner. Numerical Methods for General and Structured Eigenvalue
Problems, volume 46 of Lect. Notes Comput. Sci. Eng. Springer-Verlag,
Heidelberg, 2005.

[19] V. N. Kublanovskaya. On some algorithms for the solution of the complete
eigenvalue problem. USSR Comp. Math. Math. Phys., 1(3):637–657, 1961.

[20] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49,
2003.

[21] B. N. Parlett. A recurrence among the elements of functions of triangular
matrices. Linear Algebra Appl., 14(2):117–121, 1976.

[22] G. Quintana-Ort́ı and R. van de Geijn. Improving the performance of
reduction to Hessenberg form. ACM Trans. Math. Software, 32(2):180–
194, 2006.

[23] G. W. Stewart. Matrix Algorithms, Volume II: Eigensystems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[24] R. C. Ward. Numerical computation of the matrix exponential with accu-
racy estimate. SIAM J. Numer. Anal., 14(4):600–610, 1977.

[25] J. Xue and Q. Ye. Entrywise relative perturbation bounds for exponentials
of essentially non-negative matrices. Numer. Math., 110(3):393–403, 2008.

10

[26] J. Xue and Q. Ye. Computing exponentials of essentially non-negative
matrices entrywise to high relative accuracy. Math. Comp., to appear.

11

12

I

Paper I

On Aggressive Early Deflation in Parallel Variants of
the QR Algorithm∗

Bo Kågström1, Daniel Kressner2, and Meiyue Shao1

1 Department of Computing Science and HPC2N
Umeå University, SE-901 87 Umeå, Sweden

{bokg, myshao}@cs.umu.se
2 Seminar for Applied Mathematics, ETH Zürich, Switzerland

kressner@math.ethz.ch

Abstract: The QR algorithm computes the Schur form of a matrix and is by far the
most popular approach for solving dense nonsymmetric eigenvalue problems. Multi-
shift and aggressive early deflation (AED) techniques have led to significantly more
efficient sequential implementations of the QR algorithm during the last decade. More
recently, these techniques have been incorporated in a novel parallel QR algorithm on
hybrid distributed memory HPC systems. While leading to significant performance
improvements, it has turned out that AED may become a computational bottleneck as
the number of processors increases. In this paper, we discuss a two-level approach for
performing AED in a parallel environment, where the lower level consists of a novel
combination of AED with the pipelined QR algorithm implemented in the ScaLA-
PACK routine PDLAHQR. Numerical experiments demonstrate that this new imple-
mentation further improves the performance of the parallel QR algorithm.

∗ Reprinted by permission of Springer.

15

On Aggressive Early Deflation

in Parallel Variants of the QR Algorithm

Bo Kågström1, Daniel Kressner2, and Meiyue Shao1

1 Department of Computing Science and HPC2N
Ume̊a University, S-901 87 Ume̊a, Sweden

{bokg,myshao}@cs.umu.se
2 Seminar for Applied Mathematics, ETH Zürich, Switzerland

kressner@math.ethz.ch

Abstract. The QR algorithm computes the Schur form of a matrix
and is by far the most popular approach for solving dense nonsymmet-
ric eigenvalue problems. Multishift and aggressive early deflation (AED)
techniques have led to significantly more efficient sequential implemen-
tations of the QR algorithm during the last decade. More recently, these
techniques have been incorporated in a novel parallel QR algorithm on
hybrid distributed memory HPC systems. While leading to significant
performance improvements, it has turned out that AED may become
a computational bottleneck as the number of processors increases. In
this paper, we discuss a two-level approach for performing AED in a
parallel environment, where the lower level consists of a novel combi-
nation of AED with the pipelined QR algorithm implemented in the
ScaLAPACK routine PDLAHQR. Numerical experiments demonstrate that
this new implementation further improves the performance of the parallel
QR algorithm.

1 Introduction

The solution of matrix eigenvalue problems is a classical topic in numerical
linear algebra, with applications in various areas of science and engineering. The
QR algorithm developed by Francis and Kublanovskaya, see [9,19] for recent
historic accounts, has become the de facto standard for solving nonsymmetric
and dense eigenvalue problems. Parallelizing the QR algorithm has turned out to
be highly nontrivial matter [13]. To our knowledge, the ScaLAPACK [5] routine
PDLAHQR implemented nearly 10 years ago based on work by Henry, Watkins,
and Dongarra [14], is the only publicly available parallel implementation of the
QR algorithm. Recently, a novel parallel QR algorithm [10] has been developed,
which turns out to be more than a magnitude faster compared to PDLAHQR for
sufficiently large problems. These improvements are attained by parallelizing
the multishift and aggressive early deflation (AED) techniques developed by
Braman, Byers, and Mathias [6,7] for the sequential QR algorithm.

Performed after each QR iteration, AED requires the computation of the
Schur form for a trailing principle submatrix (the so called AED window) that is

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 B. K̊agström, D. Kressner, and M. Shao

relatively small compared to the size of the whole matrix. In [10], a slightly mod-
ified version of the ScaLAPACK routine PDLAHQR is used for this purpose. Due
to the small size of the AED window, the execution time spent on AED remains
negligible for one or only a few processors but quickly becomes a dominating
factor as the number of processors increases. In fact, for a 100 000× 100 000 ma-
trix and 1024 processor cores, it was observed in [10] that 80% of the execution
time of the QR algorithm was spent on AED. This provides a strong motivation
to reconsider the way AED is performed in parallel. In this work, we propose to
perform AED by a modification of the ScaLAPACK routine PDLAHQR, which also
incorporates AED at this lower level, resulting in a two-level recursive approach
for performing AED. The numerical experiments in Section 4 reveal that our
new approach reduces the overall execution time of the parallel QR algorithm
from [10] by up to 40%.

2 Overview of the QR Algorithm with AED

In the following, we assume some familiarity with modern variants of the QR
algorithm and refer to [15,18] for introductions. It is assumed that the matrix
under consideration has already been reduced to (upper) Hessenberg form by,
e.g., calling the ScaLAPACK routine PDGEHRD. Algorithm 1 provides a high-level
description of the sequential and parallel QR algorithm for Hessenberg matrices,
using multiple shifts and AED. Since this paper is mainly concerned with AED,
we will only mention that the way the shifts are incorporated in the multishift QR
sweep (Step 4) plays a crucial role in attaining good performance, see [6,10,17]
for details.

Algorithm 1 . Multishift Hessenberg QR Algorithm with AED

WHILE not converged
1. Perform AED on the nwin × nwin trailing principle submatrix.
2. Apply the accumulated orthogonal transformation to the

corresponding off-diagonal blocks.
3. IF enough eigenvalues have been deflated in Step 1

GOTO Step 1.
END IF

4. Perform a multishift QR sweep with undeflatable
eigenvalues from Step 1 as shifts.

5. Check for negligible subdiagonal elements.
END WHILE

In the following, we summarize the AED technique proposed by Braman,
Byers, and Mathias [7]. Given an n×n upper Hessenberg matrix H , we partition

H =

⎛
⎝

n−nwin−1 1 nwin

n−nwin−1 H11 H12 H13

1 H21 H22 H23

nwin 0 H32 H33

⎞
⎠,

On Aggressive Early Deflation in Parallel Variants of the QR Algorithm 3

where nwin denotes the size of the AED window. Then a (real) Schur decom-
position H33 = V TV T is performed, where V is orthogonal and T in upper
quasi-triangular form. Setting

U =

⎛
⎝

n−nwin−1 1 nwin

n−nwin−1 I
1 1

nwin V

⎞
⎠,

we obtain

UTHU =

⎛
⎝
H11 H12 H13V
H21 H22 H23V
0 s T

⎞
⎠ ,

where s ∈ Rnwin is the so called spike, created from the subdiagonal entry con-
tained in H32. The eigenvalues of T are checked subsequently for convergence
and possibly deflated. The eigenvalue (or 2×2 block) in the bottom right corner
of T can be deflated if the magnitude of the last component (or the last two
components) of the spike is negligibly small. Undeflatable eigenvalues are moved
to the top left corner of T by a swapping algorithm [4,11]. After this transforma-
tion is completed, the next eigenvalue in the bottom right corner of T is treated
in the same way. The orthogonal transformations for swapping eigenvalues are
accumulated in an orthogonal matrix Ṽ ∈ Rnwin×nwin . After all eigenvalues of T
have been processed, the entire matrix is reduced back to Hessenberg form and
the off-diagonal blocks H13 and H23 are multiplied with the product of all in-
volved orthogonal transformations. It is recommended to choose nwin somewhat
larger, e.g., by 50%, than the number of shifts in the multishift QR iterations [6].

Dramatic performance gains from AED have been observed both for sequential
and parallel variants of the QR algorithm. These gains can be achieved essentially
no matter how the rest of the QR algorithm is implemented, in particular how
many shifts are used in the multishift QR sweep [7]. In effect, any implementation
of the QR algorithm may benefit from AED; a fact that we will use below to
improve the ScaLAPACK routine PDLAHQR. A convergence analysis, partially
explaining the success of AED, can be found in [16].

3 Parallel Implementation of AED

Since the main aim of this paper is to improve the parallel QR algorithm and
implementation described in [10], we first recall the structure of the main rou-
tines from this implementation, see Figure 1. The entry routine is PDHSEQR,
which branches into PDLAQR1 for small to medium-sized matrices and PDLAQR0

for larger ones. The cut-off point for what is considered medium-sized will be
explained in the numerical experiments, see Section 4. The main purpose of
PDLAQR0 is to call PDLAQR3 for performing AED and PDLAQR5 for performing
multishift QR iterations. The former routine invokes PDLAQR1 for performing
the Schur decomposition of the AED window. In [10], PDLAQR1 amounts to the

4 B. K̊agström, D. Kressner, and M. Shao

Entry routine for new parallel QR algorithm.
PDHSEQR

PDLAQR1
Modified version of ScaLAPACK’s
current implementation of the
parallel QR algorithm.

PDLAQR3 PDLAQR5
Aggressive early deflation and
shift computation.

Multishift QR iteration based on
chains of tightly coupled bulges.

PDLAQR0
New parallel QR algorithm.

Fig. 1. Partial software structure for the parallel QR algorithm from [10]

ScaLAPACK routine PDLAHQR with minor modifications concerning the process-
ing of 2 × 2 blocks in the real Schur form and the multithreaded application of
small Householder reflectors. In the following, we will reconsider this choice for
PDLAQR1.

3.1 Choice of Algorithm for Performing AED

A number of alternative choices are available for performing the Schur decom-
position of the relatively small AED window:

– A recursive call to PDHSEQR or PDLAQR0, implementing the parallel QR algo-
rithm with multishifts and AED.

– A call to PDLAQR1, a minor modification of ScaLAPACK’s PDLAHQR.
– Assembling the AED window in local memory and a call to the sequential

LAPACK [2] routine DLAHQR (or DLAQR4).

According to the numerical experiments in [10], a recursive call of PDLAQR0 may
not be the optimal choice, mainly because of the fact that the way multishift QR
iterations are implemented in PDLAQR0 suffers from poor scalability for relatively
small matrices. ScaLAPACK’s PDLAHQR achieves better scalability but does not
incorporate modern developments, such as AED, and therefore suffers from poor
performance. The third alternative, calling a sequential algorithm, should be
used for submatrices that are too small to justify the overhead incurred by
parallelization. In our experimental setup this was the case for submatrices of
size 384 or smaller.

In this work, we propose to modify PDLAQR1 further and add AED to the
parallel pipelined QR algorithm implemented in ScaLAPACK’s PDLAHQR. Since
the main purpose of PDLAQR1 is to handle small to medium-sized submatrices, a
parallel implementation of AED, as in [10], will not be efficient on this level, since
the size of the AED window is even smaller and does not allow for reasonable
parallel performance in the Schur decomposition or the swapping of diagonal
blocks. We have therefore chosen the third alternative for performing AED on
the lowest level and invoke the sequential LAPACK routine DLAQR3 [8]. The
accumulated orthogonal transformations returned by DLAQR3 are applied to the

On Aggressive Early Deflation in Parallel Variants of the QR Algorithm 5

off-diagonal blocks in parallel. Therefore,O(
√
p) processors are used for updating

the off-diagonal blocks. A high-level description of the resulting procedure is
given in Algorithm 2.

Algorithm 2 . Parallel pipelined QR algorithm with AED (new PDLAQR1)

WHILE not converged
1. Copy the (nwin + 1)× (nwin + 1) trailing submatrix to local memory

and perform sequential AED on an nwin × nwin window.
2. Apply the accumulated orthogonal transformations to the

corresponding off-diagonal blocks in parallel.
3. IF enough eigenvalues have been deflated in Step 1

GOTO Step 1.
END IF

4. Compute the eigenvalues of a trailing submatrix.
5. Perform a pipelined QR sweep with the eigenvalues computed

in Step 4 as shifts.
6. Check for negligible subdiagonal elements.

END WHILE

3.2 Implementation Details

In the following we discuss some implementation issues of Algorithm 2. The basis
for our modification is PDLAQR1 from [10], referred to as the old PDLAQR1 in the
following discussion. Following the notation established in the (Sca)LAPACK
implementations of the QR algorithm, we let NH=IHI-ILO+1 denote the dimen-
sion of the active NH × NH diagonal block and NS the number of shifts in the
multishift QR sweep.

– In the special case when the active diagonal block is small enough, say NH ≤
384, we copy this block to local memory and call DLAHQR/DLAQR4 directly.
The off-diagonal blocks are updated in parallel. This reduces communication
while the required extra memory is negligible. We have observed that this
modification reduces the total execution time by a non-negligible amount,
especially during the final stages of the QR algorithm.

– The size of the deflation window, nwin, is determined by the return value of
the LAPACK routine IPARMQ, see [8] for more details. In PDLAHQR/PDLAQR1,
NS is mainly determined by the process grid and does not exceed 32. This is
usually smaller than the number of shifts suggested by IPARMQ. Also, typical
values of nwin returned by IPARMQ are 96, 192 and 384, which is much larger
than if we chose NS*3/2. Based on the observation that the optimal AED
window size does not depend strongly on the number of shifts used in the
QR sweeps, we prefer to stick to large nwin rather than using NS*3/2. This
increases the time spent on AED, but the overhead is compensated by fewer
pipelined QR sweeps.

– The criterion for restarting another AED process rightaway, without an in-
termediate QR iteration, is the same as in LAPACK [8]:

6 B. K̊agström, D. Kressner, and M. Shao

1. The number of undeflatable eigenvalues is smaller than NS; or
2. the number of deflated eigenvalues is larger than nwin × 14%.
Note that we choose the criterion in accordance with the window size sug-
gested by IPARMQ.

– In contrast to Algorithm 1, undeflatable eigenvalues are not used as shifts in
subsequent multishift QR sweep. This choice is based on numerical experi-
ments with the following three shift strategies:

1. Use undeflatable eigenvalues obtained from AED as shifts.
2. Compute and use the eigenvalues of the NS× NS trailing submatrix after

AED as shifts (by calling DLAHQR/DLAQR4).
3. Compute and use some of the eigenvalues of the (nwin + 1)× (nwin + 1)

trailing submatrix after AED as shifts (by calling DLAHQR/DLAQR4).
An illustration of these strategies is given in Figure 2. Based on the exper-
iments, we prefer the third strategy despite the fact that it is the compu-
tationally most expensive one. However, it provides shifts of better quality,
mainly because of the larger window size, which was found to reduce the
number of pipelined QR sweeps and to outweigh the increased cost for shift
computation.

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

× × × × × × × × × × × × ×
× × × × × × × × × × × ×

× × × × × × × × × × ×
× × × × × × × × × ×

× × × × × × × × ×
× × × × × × × ×

× s × × × × ×
× s × × × ×
× s × × ×
× s × ×
× s ×
0 ×

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

× × × × × × × × × × × × ×
× × × × × × × × × × × ×

× × × × × × × × × × ×
× × × × × × × × × ×

× × × × × × × × ×
× × × × × × × ×

× × × × × × ×
× s s s s ×

s s s s ×
s s s ×

s s ×
×

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

× × × × × × × × × × × × ×
× × × × × × × × × × × ×

× × × × × × × × × × ×
× × × × × × × × × ×

× s s s s s s s ×
s s s s s s s ×

s s s s s s ×
s s s s s ×

s s s s ×
s s s ×

s s ×
×

(1) Using undeflatable eigenvalues (2) Using eigenvalues of (3) Using eigenvalues of an
an NS× NS window (nwin + 1)× (nwin + 1) window

Fig. 2. Three shift strategies (nwin = 6, NS=4)

– When performing AED within the new PDLAQR1, each processor receives a
local copy of the trailing submatrix and calls DLAQR3 to execute the same
computations concurrently. This implies redundant work performed in paral-
lel but it reduces communication since the orthogonal transformation matrix,
to be applied in parallel in subsequent updates, is readily available on each
processor. A similar approach is suggested in the parallel QZ algorithm by
Adlerborn et al. [1]. If the trailing submatrix is not laid out across a border
of the processor mesh, we call DGEMM to perform the updates. If the trailing
submatrix is located on a 2×2 processor mesh, we organize the computation
and communication manually for the update. Otherwise, PDGEMM is used for
updating the off-diagonal blocks.

On Aggressive Early Deflation in Parallel Variants of the QR Algorithm 7

4 Numerical Experiments

All the experiments in this section were run on the 64-bit low power Intel
Xeon Linux cluster Akka hosted by the High Performance Computing Cen-
ter North (HPC2N). Akka consists of 672 dual socket quadcore L5420 2.5GHz
nodes, with 16GB RAM per node, connected in a Cisco Infiniband network.
The code is compiled by the PathScale compiler version 3.2 with the flags -O2
-fPIC -TENV:frame pointer=ON -OPT:Olimit=0. The software libraries Open-
MPI 1.4.2, BLACS 1.1 patch3, ScaLAPACK/PBLAS 1.8.0, LAPACK 3.2.1 and
GOTOBLAS2 1.13 [12] are linked with the code. No multithreaded features, in
particular no mixture of OpenMP and MPI, were used. We chose NB = 50 as the
block size in the block cyclic distribution of ScaLAPACK. The test matrices are
dense square matrices with entries randomly generated from a uniform distribu-
tion in [0,1]. The ScaLAPACK routine PDGEHRD is used to reduce these matrices
initially to Hessenberg form. We only measure the time for the Hessenberg QR
algorithm, i.e., the reduction from Hessenberg to real Schur form.

4.1 Improvement for PDLAQR1

We first consider the isolated performance of the new PDLAQR1 compared to
the old PDLAQR1 from [10]. The sizes of the test matrices were chosen to fit
the typical sizes of the AED windows suggested in [10]. Table 1 displays the
measured execution time on various processor meshes.

For the sequential case (1 × 1 mesh), PDLAQR1 calls the LAPACK routine
DLAQR4 directly for small matrices (see the first remark in Section 3.2). PDLAQR0
also implements a blocked QR algorithm almost identical to the new LAPACK
algorithm [8], but some algorithmic parameters (e.g., number of shifts) can be
different. Since the parameters in PDLAQR0 largely depend on the block size in
the block cyclic matrix data distribution of ScaLAPACK, PDLAQR0 can be a bit
slower than LAPACK.

For determining the cross-over point for switching from PDLAQR0 to PDLAQR1

in the main routine PDHSEQR, we also measured the execution time of PDLAQR0.
The new implementation of PDLAQR1 turns out to require much less execu-

tion time than the old one, with a few, practically nearly irrelevant exceptions.
Also, the new PDLAQR1 scales slightly better than PDLAQR0, especially when the
size of matrix is not large. It is worth emphasizing that the scaling of all imple-
mentations eventually deteriorates as the number of processor increases, simply
because the involved matrices are not sufficiently large to create enough potential
for parallelization.

Quite naturally, PDLAQR0 becomes faster than the new PDLAQR1 as the matrix
size increases. The dashed line in Table 1 indicates the crossover point between
both implementations. A rough model of this crossover point result is given by
n = 220

√
p, which fits the observations reasonably well and has been incorpo-

rated in our implementation.

8 B. K̊agström, D. Kressner, and M. Shao

Table 1. Execution time in seconds for old PDLAQR1 (1st line for each n), new PDLAQR1

(2nd line) and PDLAQR0 (3rd line). The dashed line is the crossover point between the
new PDLAQR1 and PDLAQR0.

Matrix size Processor mesh
(n) 1× 1 2× 2 3× 3 4× 4 6× 6 8× 8 10× 10

96 0.01 0.05 0.11 0.18 0.15 0.25 0.27
0.08 0.08 0.02 0.05 0.03 0.08 0.07
0.14 0.40 0.96 1.11 2.52 3.16 2.95

192 0.09 0.17 0.18 0.22 0.32 0.47 0.64
0.09 0.07 0.07 0.13 0.16 0.12 0.26
0.15 0.30 0.61 1.05 3.73 4.34 3.64

384 0.60 0.73 0.61 0.63 0.78 1.09 1.24
0.27 0.29 0.28 0.36 0.40 0.48 0.48
0.47 0.55 0.72 0.89 2.08 3.23 3.76

768 7.38 3.53 2.53 2.35 2.61 2.80 3.52
3.77 2.24 1.73 1.57 1.73 2.17 2.25
1.83 1.51 1.61 1.68 2.70 3.03 3.31

1536 133.31 20.68 13.23 11.12 9.79 10.48 13.05
35.94 9.27 6.54 5.52 5.11 5.31 6.33
12.34 6.61 5.63 4.86 6.26 6.76 6.84

3072 2313.61 139.05 96.73 66.06 50.64 41.82 63.22
522.81 45.72 33.13 22.60 19.08 18.12 22.23
80.71 30.67 21.34 15.82 15.56 15.09 14.98

6144 1049.56 623.63 351.44 231.70 199.75 227.45
144.96 167.71 103.15 78.75 66.90 70.48
198.54 129.58 87.07 55.40 47.61 44.07

4.2 Overall Improvement

As the main motivation for the development of the new PDLAQR1 is its application
to AED within the parallel QR algorithm, we have also measured the resulting
reduction of the overall execution time of PDHSEQR. From the results presented
in Table 2, it is clear that PDHSEQR with the new PDLAQR1 is almost always better
than the old implementation. The improvement varies between 5% and 40%. We
remark that the measured execution time for the 4000× 4000 problem using 64
processors is less than running the same problem on 100 processors. However,
situations may occur when we prefer to solve a 4000× 4000 problem using 100
processors. For example, if this is a subproblem in a large-scale computation, it
would be too costly to redistribute the matrix and use only 64 of the available
processors. Among the measured configurations, there is one notable exception:
n = 32000 on a 6 × 6 processor grid. This is actually the only case for which
PDLAQR0 is called within the AED phase, which seems to indicate that the choice
of the crossover point requires some additional fine tuning.

Note that the largest AED window in all these experiments is of size 1536.
According to Table 1, we expect even more significant improvements for larger
matrices, which have larger AED windows.

On Aggressive Early Deflation in Parallel Variants of the QR Algorithm 9

Table 2. Execution time in seconds for old PDHSEQR (1st line for each n), new PDHSEQR

(2nd line). The third lines show the relative improvement.

Processor mesh Matrix size (n)
4000 8000 16000 32000

162.43
1× 1 161.28

0.71%

71.34 501.83
2× 2 68.02 452.70

4.65% 9.79%

39.18 170.75 1232.40
4× 4 30.68 158.66 1037.93

22.69% 7.08% 15.78%

35.96 123.46 617.97 3442.08
6× 6 24.62 96.23 509.38 3584.74

31.54% 22.06% 17.57% -4.14%

33.09 97.20 435.52 2639.32
8× 8 20.59 67.42 366.31 2016.93

37.78% 31.64% 15.89% 24.58%

36.05 101.75 355.38 2053.16
10× 10 21.39 62.29 291.06 1646.30

41.67% 39.58% 18.10% 19.82%

5 Summary

We have reconsidered the way AED is performed in the parallel QR algo-
rithm [10]. A recursive approach is suggested, in which the ScaLAPACK routine
PDLAHQR is combined with AED to address medium-sized problems. The focus of
this work has been on minimizing the total execution time instead of how to use
all the processors or how well the algorithm scales. Computational experiments
demonstrate the efficiency of our approach, but also reveal potential for further
improvements by a more careful fine tuning of the crossover point for switching
between different implementations of the parallel QR algorithm.

Acknowledgments. We would like to thank Robert Granat, Lars Karlsson,
and Åke Sandgren for their help and support.

This work was conducted using the resources of the High Performance Com-
puting Center North (HPC2N), http://www.hpc2n.umu.se, and was supported
by the Swedish Research Council under grant VR7062571, the Swedish Foun-
dation for Strategic Research under grant A3 02:128, and UMIT Research Lab
(EU Mål 2 grant).

In addition, support has been provided by eSSENCE, a collaborative e-Science
programme funded by the Swedish Research Council within the framework of
the strategic research areas designated by the Swedish Government.

10 B. K̊agström, D. Kressner, and M. Shao

References

1. Adlerborn, B., K̊agström, B., Kressner, D.: Parallel Variants of the Multishift QZ
Algorithm with Advanced Deflation Techniques. In: K̊agström, B., Elmroth, E.,
Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 117–126.
Springer, Heidelberg (2007)

2. Anderson, E., Bai, Z., Bischof, C.H., Blackford, S., Demmel, J.W., Dongarra, J.J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.:
LAPACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999)

3. Bai, Z., Demmel, J.W.: On a Block Implementation of Hessenberg Multishift QR
Iteration. Intl. J. of High Speed Comput. 1, 97–112 (1989)

4. Bai, Z., Demmel, J.W.: On Swapping Diagonal Blocks in Real Schur Form. Linear
Algebra Appl. 186, 73–95 (1993)

5. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.W., Dhillon, I.,
Dongarra, J.J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.C.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)

6. Braman, K., Byers, R., Mathias, R.: The Multishift QR Algorithm. Part I: Main-
taining Well-focused Shifts and Level 3 Performance. SIAM J. Matrix Anal.
Appl. 23(4), 929–947 (2002)

7. Braman, K., Byers, R., Mathias, R.: The Multishift QR Algorithm. Part II: Ag-
gressive Early Deflation. SIAM J. Matrix Anal. Appl. 23(4), 948–973 (2002)

8. Byers, R.: LAPACK 3.1 xHSEQR: Tuning and Implementation Notes on the Small
Bulge Multi-shift QR Algorithm with Aggressive Early Deflation. LAPACK Work-
ing Note 187 (2007)

9. Golub, G., Uhlig, F.: The QR Algorithm: 50 Years Later Its Genesis by John
Francis and Vera Kublanovskaya and Subsequent Developments. IMA J. Numer.
Anal. 29(3), 467–485 (2009)

10. Granat, R., K̊agström, B., Kressner, D.: A Novel Parallel QR Algorithm for Hybrid
Distributed Memory HPC Systems. SIAM J. Sci. Comput. 32(4), 2345–2378 (2010)
(An earlier version appeared as LAPACK Working Note 216)

11. Granat, R., K̊agström, B., Kressner, D.: Parallel Eigenvalue Reordering in Real
Schur Forms. Concurrency and Computat.: Pract. Exper. 21(9), 1225–1250 (2009)

12. GOTO-BLAS – High-performance BLAS by Kazushige Goto,
http://www.tacc.utexas.edu/tacc-projects/#blas

13. Henry, G., van de Geijn, R.: Parallelizing the QR Algorithm for the Nonsymmetric
Algebraic Eigenvalue Problem: Myths and Reality. SIAM J. Sci. Comput. 17, 870–
883 (1997)

14. Henry, G., Watkins, D.S., Dongarra, J.J.: A Parallel Implementation of the Non-
symmetric QR Algorithm for Distributed Memory Architectures. SIAM J. Sci.
Comput. 24(1), 284–311 (2002)

15. Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems.
LNCSE, vol. 46. Springer, Heidelberg (2005)

16. Kressner, D.: The Effect of Aggressive Early Deflation on the Convergence of the
QR Algorithm. SIAM J. Matrix Anal. Appl. 30(2), 805–821 (2008)

17. Lang, B.: Effiziente Orthogonaltransformationen bei der Eigen- und Sin-
gulärwertzerlegung. Habilitationsschrift (1997)

18. Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Meth-
ods. SIAM, Philadelphia (2007)

19. Watkins, D.S.: Francis’s Algorithm. Amer. Math. Monthly (2010) (to appear)

26

II

Paper II

Parallel Library Software for the Multishift QR
Algorithm with Aggressive Early Deflation∗

Robert Granat1, Bo Kågström1, Daniel Kressner2, and Meiyue Shao1

1 Department of Computing Science and HPC2N
Umeå University, SE-901 87 Umeå, Sweden
{granat, bokg, myshao}@cs.umu.se

2 MATHICSE, EPF Lausanne, CH-1015 Lausanne, Switzerland
daniel.kressner@epfl.ch

Abstract: Library software implementing a parallel small-bulge multishift QR al-
gorithm with aggressive early deflation (AED) targeting distributed memory high-
performance computing systems is presented. Starting from recent developments of
the parallel QR algorithm [19], we describe a number of algorithmic and implementa-
tion improvements. These include communication avoiding algorithms via data redis-
tribution and a refined strategy for balancing between multishift QR sweeps and AED.
Guidelines concerning several important tunable algorithmic parameters are provided.
As a result of these improvements, AED is no longer a computational bottleneck in
the parallel QR algorithm. A performance model is established to explain the scalabil-
ity behavior of the new parallel QR algorithm. Numerous computational experiments
confirm that our new implementation significantly outperforms previous parallel im-
plementations of the QR algorithm. The new software is available as a part of ScaLA-
PACK version 2.0.

1 Introduction

The QR algorithm is the method of choice for computing all eigenvalues of a non-
symmetric matrix A ∈ Rn×n. This paper describes a novel parallel implementation of

∗ Report UMINF-12.06.
The work is supported by the Swedish Research Council under grant A0581501, UMIT Research Lab
via an EU Mål 2 project, and eSSENCE, a strategic collaborative e-Science programme funded by the
Swedish Research Council.

29

Paper II

the QR algorithm for distributed memory architectures. While our implementation is
largely based on the algorithms described in [19], a number of additional algorithmic
improvements have been made, leading to significantly reduced execution times and
higher robustness.

In the following, we give a brief history of serial and parallel implementations of
the QR algorithm. The algol procedure hqr by Martin, Petersen, and Wilkinson [27]
was among the first computer implementations of the QR algorithm. A Fortran trans-
lation of this procedure was included in EISPACK [32] as routine HQR. The initial
version of the LAPACK routine DHSEQR was based on work by Bai and Demmel [5];
the most notable difference to HQR was the use of multishift techniques to improve
data locality. This routine had only seen a few minor modifications [2] until LA-
PACK version 3.1, when it was replaced by an implementation incorporating pipelined
bulges and aggressive early deflation techniques from the works by Braman, Byers,
and Mathias [11, 12]. This implementation is described in more detail in [13]. While
there has been a lot of early work on parallelizing the QR algorithm, for example
in [20, 30, 34, 35, 36, 38], the first publicly available parallel implementation was re-
leased only 1997 in ScaLAPACK [10] version 1.5 as routine PDLAHQR, based on work
by Henry, Watkins, and Dongarra [21]. A complex version PZLAHQR of this routine
was included later on [15]. In this work, we describe a new parallel implementation
of the QR algorithm that aims to replace PDLAHQR. It might be interesting to note
that all recently released high-performance linear algebra packages, such as MAGMA
and PLASMA [1], ELPA [3], FLAME [9] lack adapted implementations of the QR
algorithm or other nonsymmetric eigenvalue solvers.

Given a nonsymmetric matrix A, the parallel implementation of the eigenvalue
solver in ScaLAPACK consists of the following steps. In the first optional step, the
matrix is balanced, that is, an invertible diagonal matrix D is computed to make the
rows and columns of A←D−1AD as close as possible. In the second step, A is reduced
to Hessenberg form: H = QT

0 AQ0 with an orthogonal matrix Q0 and hi j = 0 for i≥ j+2.
In the third step, the QR algorithm iteratively reduces H further to real Schur form,
eventually resulting in an orthogonal matrix Q such that

T = QT HQ (1)

is quasi-upper triangular. This means that T is block upper triangular with 1 × 1
blocks (corresponding to real eigenvalues) and 2× 2 blocks (corresponding to com-
plex conjugate eigenvalue pairs) on the diagonal. Therefore, the Schur decomposition
of A is A = ZTZT , where Z = Q0Q. The last optional step consists of computing the
eigenvectors of T and performing a back transformation to obtain the eigenvectors of
the original matrix A. This paper is only concerned with the reduction to real Schur
form (1). In particular, we will not discuss the implementation of Hessenberg reduc-
tion, see [26, 24, 33] for recent developments in this direction.

The rest of this paper is organized as follows. Section 2 provides a summary of our
implementation and the underlying algorithm, emphasizing improvements over [19].
In Section 3, we develop a performance model that provides insights into the cost of
computations and communication. This model is then used to guide the choice of the

30

2. Algorithms and Implementation

parameters in Section 4. Finally, in Section 5, we evaluate the performance of our
parallel library software by a large set of numerical experiments.

2 Algorithms and Implementation

Modern variants of the Hessenberg QR algorithm usually consists two major com-
ponents — multishift QR sweep and AED. A typical structure of the modern QR
algorithm in a sequential or parallel setting is provided in Algorithm 1. Our parallel
QR algorithm is essentially built on Algorithm 1 but there are several issues to be con-
sidered for reaching high performance. Figure 1 shows the software hierarchy of our
implementation of the parallel multishift QR algorithm. Details of the algorithm and
some implementation issues are discussed in the successive subsections.

Algorithm 1 Multishift Hessenberg QR Algorithm with AED

WHILE not converged

1. Perform AED on the nAED×nAED trailing principle submatrix.

2. Apply the accumulated orthogonal transformation to the
corresponding off-diagonal blocks.

3. IF a large fraction of eigenvalues has been deflated in Step (1)

GOTO Step (1).

END IF

4. Perform a multishift QR sweep with nshift undeflatable
eigenvalues from Step (1) as shifts.

5. Check for negligible subdiagonal elements.

END WHILE

2.1 Data layout convention in ScaLAPACK

In ScaLAPACK, the p = pr pc processors are usually arranged into a pr × pc grid.
Matrices are distributed over the rectangular processor grid in a 2D block-cyclic layout
with block size mb × nb (see an example in Figure 2). The information regarding
the data layout is stored in an array descriptor so that the mapping between entries
of the global matrix and their corresponding locations in the memory hierarchy can
be established. We adopt ScaLAPACK’s data layout convention and require that the
n× n input matrices H and Z have identical data layout with square data blocks (i.e.,
mb = nb). However, the processor grid need not to be square unless explicitly specified.

31

Paper II

PDHSEQR

Entry routine for new parallel QR algorithm.

PDLAQR0

New parallel QR algorithm.

PDLAQR1

Modified version of ScaLAPACK’s
original implementation of the
parallel pipelined QR algorithm.

PDLAQR3

Aggressive early deflation
and shift computation.

PDLAQR5

Multishift QR iteration based on
chains of tightly coupled bulges.

PDTRORD

Parallel eigenvalue reordering.

PDLAQR2

Aggressive early deflation.

Figure 1: Software hierarchy of the multishift QR algorithm with AED

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2) (1,0) (1,1)

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2) (1,0) (1,1)

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2) (1,0) (1,1)

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2) (0,0) (0,1)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2) (1,0) (1,1)

Figure 2: The 2D block-cyclic data layout across a 2×3 processor grid

2.2 Multishift QR sweep

The multishift QR sweep is a bulge chasing process which involves several shifts.
The QR sweep applied to a Hessenberg matrix H with k shifts σ1, σ2, . . . , σk yields
another Hessenberg matrix QT HQ where Q is determined by the QR decomposition
of the shift polynomial:

(H−σ1I)(H−σ2I) · · · (H−σkI) = QR.

Thanks to the Implicit Q theorem (e.g., see [16, 17]), there is a lot of freedom re-
garding how to perform the QR sweep. In ScaLAPACK v1.8.0 and earlier versions,
PDLAHQR uses the pipelined approach which chases a chain of loosely coupled bulges
(see Figure 3(a)). Most operations in the pipelined QR algorithm have the computa-
tional intensity between level 1 and level 2 BLAS. Therefore it typically has low node
performance and requires frequent communication between processors as well. To
avoid this shortcoming in the pipelined QR algorithm, we use several chains of tightly

32

2. Algorithms and Implementation

ScaLAPACK v1.8.0’s PDLAHQR ScaLAPACK v2.0.0’s PDLAQR5

(a) (b)

Figure 3: Loosely coupled shifts v.s. tightly coupled shifts. The dashed lines represent bor-
ders of the processor grid. Only parts of the matrix are displayed. Interblock bulge
chasings can be performed independently and in parallel.

coupled bulges (see Figure 3(b)) to improve the node performance and reduce commu-
nication. In the new bulge chasing routine PDLAQR5, the total number of shifts (nshift)
used in one QR sweep is shown in Table 1, and is usually much larger than the value in
the pipelined approach. These shifts are divided into several chains of tightly coupled
bulges with up to bnb/3c shifts per chain so that the length of each chain does not ex-
ceed nb/2. The chains are placed on different diagonal blocks, such that Θ(

√
p) chains

can be chased locally and simultaneously. The corresponding off-diagonal blocks are
updated by explicitly multiplying the orthogonal matrix accumulated in the diagonal
chasing step. This delay-and-accumulate technique leads to level 3 computational in-
tensity. When the chains are passing through the processor border, they are chased
in an odd-even manner (see Figure 4) to avoid conflicts between different tightly cou-
pled chains. We refer to [19] for detailed descriptions of the blocked version of the
multishift bulge chasing algorithm.

2.3 Aggressive Early Deflation (AED)

Firstly, we summarize the AED technique proposed by Braman, Byers, and Math-
ias [12]. Let H ∈ Rn×n be an upper Hessenberg matrix with partitioning

H =

n−nAED−1 1 nAED

n−nAED−1 H11 H12 H13
1 H21 H22 H23

nAED 0 H32 H33

,

33

Paper II

first round second round

Figure 4: Intrablock bulge chasing. Odd-numbered chains and even-numbered chains are
chased separately in two rounds.

Table 1: Recommended values for nshift and nAED.
matrix size (n) nshift nAED

<6K see [13]
6K–12K 256 384

12K–24K 512 768
24K–48K 1024 1536
48K–96K 2048 3072
96K–192K 4096 6144

192K–384K 8192 12288
384K–768K 16384 24576
768K–1000K 32768 49152

> 1M dn/25e 3nshift/2

where H33 is the so called AED window. By computing the (real) Schur decomposition
H33 = VTVT , and applying V in a similarity transformation of H, we obtain

UT HU =

H11 H12 H13V
H21 H22 H23V
0 s T

 ,

where

U =

n−nAED−1 1 nAED

n−nAED−1 I
1 1

nAED V

.

34

2. Algorithms and Implementation

The vector s ∈ RnAED is the so called spike, created from the first entry of H32. The last
diagonal entry (or 2× 2 diagonal block) of T can be deflated if the magnitude of the
last component (or the last two components) of the spike is negligible. Undeflatable
eigenvalues are moved to the top left corner of T by a swapping algorithm [6, 18].
The orthogonal transformations for reordering eigenvalues in the Schur form of the
AED window are accumulated in an nAED × nAED orthogonal matrix. By repeating the
same procedure to all diagonal entries (or 2×2 blocks) of T , the eigenvalues of T are
checked subsequently and possibly deflated. Then the entire matrix is reduced back to
upper Hessenberg form and the off-diagonal blocks H13 and H23 are multiplied by Ṽ ,
the product of all involved orthogonal transformations. Typically, the size of the AED
window is recommended to be somewhat larger, e.g., by 50%, than the number of
shifts in the multishift QR sweeps [11, 13]. The recommend values of nAED are listed
in Table 1.

In principle, aggressive early deflation can be incorporated into any variant of the
QR algorithm. Therefore both the new multishift QR algorithm and the pipelined QR
algorithm can benefit from performing AED. We discuss them separately.

2.3.1 AED in the new multishift QR algorithm
Since our algorithm is designed for solving large-scale problems, the AED win-

dow can be quite large. However, it is not reasonable to expect that executing AED
locally and sequentially yields good performance. Hence, PDLAQR3, the routine for
performing AED, requires a parallel approach.

The first and most costly step of AED is to calculate the Schur decomposition of
H33, the nAED × nAED trailing principal submatrix of H. This eigenvalue problem can
be solved by either recursively using the new multishift QR algorithm (PDLAQR0) or
using the pipelined QR algorithm (PDLAQR1). The choice of the solver is determined
by the size of the AED window as well as the number of processors used. Since nAED is
relatively small compared to n, the number of available processors may be too large to
facilitate all of them without causing significant communication overhead compared
to the relatively small computational window. In this case we only use a subset of the
processors to reduce the overhead and minimizing the execution time. We provide a
more detailed discussion on this issue in Section 2.5.

In the deflation checking phase, the reordering algorithm is arranged in a blocked
manner to reduce memory transfers and communications. Unlike the standard proce-
dure, the undeflatable eigenvalues are not directly moved to the top left corner of the
whole AED window. They are only reordered within an nb × nb computational win-
dow instead. After all eigenvalues in this nb × nb window are checked, the group of
undeflatable eigenvalues are moved simultaneously to the top left corner of the AED
window. This blocked approach increases the computational intensity and avoids the
frequent communication needed when reordering each eigenvalue individually. The
procedure is repeated until all eigenvalues in the AED window are checked.

The last step is to eliminate the spike and reduce the AED window back to the
upper Hessenberg form. This task can be performed with the ScaLAPACK routine
PDGEHRD. The corresponding off-diagonal blocks can be updated by explicitly multi-
plying the accumulated orthogonal matrix using the PBLAS routine PDGEMM.

35

Paper II

2.3.2 AED in the pipelined QR algorithm
The ScaLAPACK v1.8.0 implementation of the pipelined QR algorithm is not

equipped with the AED strategy. Since the pipelined QR algorithm is suitable for
matrices from small to medium size, we can expect the AED window to be sufficiently
small such that AED can be performed on one processor efficiently. In this case,
we can make use of the LAPACK implementation of AED. Our modification of the
ScaLAPACK routine PDLAHQR is called PDLAQR1. Compared to the original routine,
PDLAQR1 turns out to be both faster and more robust. The following list summarizes
the most important modifications; detailed descriptions can be found in [25, 31].

• Aggressive early deflation: AED is implemented in an auxiliary routine PDLAQR2
which copies the AED window to local memory and calls the LAPACK routine
DLAQR3 to solve the problem sequentially. To determine the parameters of AED,
we use the settings of the LAPACK installation determined by ILAENV. How-
ever, a notable difference is that we do not use the undeflatable eigenvalues from
the AED step as shifts in the subsequent pipelined QR sweep. Instead we re-
compute the eigenvalues of the trailing submatrix to improve the quality of the
shifts. We have observed that this shifting strategy accelerates the convergence
of the pipelined QR algorithm.

• Conventional deflation: In PDLAHQR, pipelined QR sweeps are performed until
the very end, that is, the remaining diagonal blocks are all of size 1× 1 or 2×
2. In PDLAQR1, we use a different strategy: Once the active block is not too
large (say, up to size 385× 385), we copy this block to local memory and call
the LAPACK routines DLAHQR/DLAQR4 to solve the problem sequentially. This
strategy significantly reduces communication overhead in the latter stages and
is implemented in an auxiliary routine PDLAQR4.

• Avoidance of anomalies: The original ScaLAPACK routine PDLAHQR suffered
from two anomalies, which have been removed.
First, the routine sometimes returned 2×2 diagonal blocks containing real eigen-
values. In PDLAQR1, each 2×2 diagonal block contains a pair of complex con-
jugate eigenvalues.
The second issue is concerned with a strategy already proposed by Francis [16].
Bulges can sometimes be introduced from the middle of an Hessenberg matrix
if there are two consecutive small sub-diagonal entries. However, this turns
out to be difficult to implement in a safe manner in pipelined or multishift QR
sweeps. Moreover, the performance improvements gained from this strategy
are usually negligible. We have therefore decided to remove it. In return, nu-
merical stability of the solver is improved, avoiding large relative residuals of
norm up to 10−5 that had been observed when this strategy implemented in the
ScaLAPACK routine PDLACONSB was used.

2.4 Switching between Multishift QR and AED

In the LAPACK implementations of the QR algorithm, there are rules for balancing
the cost between multishift QR sweeps and AED, see, e.g., Step (3) in Algorithm 1.

36

2. Algorithms and Implementation

The precise meaning of “a large fraction of eigenvalues has been deflated” can be
characterized by a threshold called NIBBLE. If we let nundflt denote the number of
undeflatable shifts in an AED step, the multishift QR sweep is skipped if

nAED−nundflt

nAED

≥ NIBBLE
100

.

Since AED behaves differently for different matrices, this strategy automatically ad-
justs the choice between AED and QR sweeps based on the properties of the matrix.

For the sequential QR algorithm, the default value of NIBBLE in LAPACK is
14 which provides a good balance between multishift QR sweeps and AED. In the
pipelined QR algorithm, we adopt the same default value as in the serial case, since the
performance is mainly determined by the convergence rate. However, in the new par-
allel QR algorithm, the parallel AED process becomes substantially more expensive
than the sequential AED process due to communication. As explained above, the AED
process only involves a smaller trailing submatrix, leading to decreased efficiency rel-
ative to the blocked version of multishift QR sweeps, which involves the full active
submatrix. To account for this efficiency decrease, we increase NIBBLE to avoid per-
forming AED too frequently. A good choice of this threshold depends both on the size
of the matrix H and the number of processors involved. We use the model NIBBLE =

a ·nb pc for this purpose, where a, b and c are machine-dependent constants. An appro-
priate choice of these constants can be gained from repeated runs of the program with
different thresholds. It turns out that the right choice of NIBBLE becomes rather sen-
sitive when communication is slow. (In our numerical experiments, the default values
on Akka1 and Abisko2 are (a,b,c) = (335,−0.44,0.5) and (a,b,c) = (269,−0.47,0.55),
respectively.) In the software we provide NIBBLE=PILAENVX(ISPEC=14) as the pa-
rameter which balances the choice between multishift QR sweeps and AED.

We need to remark that when NIBBLE > 33, it can occur that the number of unde-
flatable eigenvalues is less than the desired number of shifts (i.e. nundflt < nshift), due
to the fact that nAED = 3nshift/2. The solution in the software is that we still use these
undeflatable eigenvalues as shifts in the next QR sweep as long as nundflt ≥ nshift/2.
However, the condition nundflt ≥ nshift/2 may also fail when NIBBLE ≥ 67. In this case
we calculate the eigenvalues of the nshift ×nshift trailing principal submatrix of H and
use them as shifts. The calculation can be performed by either PDLAQR0 or PDLAQR1,
just like computing the Schur decomposition in the AED step.

2.5 Avoiding communications via data redistribution

It has been observed in [25] that once the matrix is not sufficiently large, it is diffi-
cult to efficiently solve the relatively small eigenvalue problem with many processors
because of heavy communications. Sometimes the execution time can even increase
when increasing the number of processors. This is a typical situation when calculat-
ing the Schur decomposition of the AED window and often leads to a bottleneck in
the algorithm. To resolve this problem, it is important to reduce the communication
overhead when handling these relatively small submatrices.

1 http://www.hpc2n.umu.se/node/120
2 http://www.hpc2n.umu.se/node/724

37

Paper II

Recent work on communication avoiding algorithms [8, 7, 22, 23] usually focuses
on the design of algorithms that can attain the theoretical lower bounds of the com-
munication cost. A basic assumption in these theoretical analyses is that the data
are nearly evenly distributed over the processors. Here we propose an alternative ap-
proach, which does not rely on this assumption and is especially useful for operations
involving smaller submatrices.

We first consider a simple and extreme case. Suppose there is one processor which
has a large amount of local memory and very high clock speed. Then by gathering all
data to this processor, the problem can be solved without further communications.
Once the computation is completed, the data are scattered to their original owners.
The total amount of communications does not exceed the cost of scattering and gath-
ering regardless of the complexity of computational work. Although this simple idea
does not work for large problems that cannot be stored on a single processor, it is
still useful for smaller problems. For example, the AED process in the pipelined QR
algorithm is implemented in such a manner since we know in advance that the AED
window is always sufficiently small, such that the associated Schur decomposition can
be efficiently solved sequentially. By introducing the overhead of data redistribution,
the total amount of communications as well as the execution time can be reduced.

For many large problems, it is not feasible to solve them sequentially via data re-
distribution. For example, when solving large-scale eigenvalue problems with the new
parallel QR algorithm, the AED window is also large although it is much smaller com-
pared to the whole matrix. Very often the number of processors is more than needed
for the relatively small eigenvalue problem in the AED window since the commu-
nications among the processors are heavy compared to the computational work on
each processor. In this case we can choose a subset of processors instead of a single
processor for performing AED. The number of processors is often chosen by minimiz-
ing the total execution time. By using the general purpose data redistribution routine
PDGEMR2D in ScaLAPACK, the data redistribution can be done efficiently so that its
overhead is negligible in practice relative to the AED process.

In the software pmin = PILAENVX(ISPEC = 23) is provided as a tunable parameter
for this purpose, where pmin× pmin is the size of the processor grid involving AED. If
min(pr, pc) > pmin +1 we redistribute the AED window to a pmin× pmin processor grid
and do the calculations on this subset of processors. The same strategy is also applied
if we need to compute shifts after an AED step. The default value for this parameter is
pmin = dnAED/(nbd384/nbe)e. Or it can be roughly interpreted as pmin ≈ nAED/384, i.e.,
each processor needs to own at least 384 columns of the AED window. The constant
384 here certainly depends on the architecture. By such a requirement of minimum
work load, the ratio between computations and communication is not too small so that
we have some control of the overall performance. In summary and contradictory to
the standard communication avoiding approach, our technique to reducing the total
execution time is to first increase the communication by doing redistribution of data
to a subset pmin× pmin of the total number of processors p and then perform the com-
putations on this subset much more efficiently than using the p processors and at the
same time outweighing the extra data redistribution costs.

38

3. Performance model

3 Performance model

In this section, we analyze the cost of computations and communications of the Schur
decomposition performed by the new parallel QR algorithm. For simplicity we con-
sider a square processor grid, i.e. pr = pc =

√
p. In addition, we assume that each

processor contains reasonably many data blocks of the matrices, i.e.
√

pnb � n, so
that the work load is balanced. The parallel execution time consists of two main com-
ponents:

Tp = Ta + Tc,

where Ta and Tc are the times for arithmetic operations and communications, respec-
tively. The model is a worst case scenario, since overlapping communications and
computations is not considered. Usually it is not harmful to neglect the communica-
tions between memory and cache lines inside one core since they are much cheaper
than the communications between processors. Therefore the serial runtime can often
be approximated by

Ta =
#(flops)

f (p)
γ

where γ is the average time for performing one floating point operation and f (p) is the
degree of concurrency. For the communications between two processors, we define
α and β as the start-up time (or communication latency) and the time for transferring
one word without latency (or reciprocal of bandwidth), respectively. The time for a
single point-to-point communication is modelled as α+ Lβ where L is the message
size in words. A one-to-all broadcast or an all-to-one reduction within a scope of p
processors is assumed to take Θ(log p) steps.

In the new parallel Hessenberg QR algorithm, let kAED and kQR denote the number of
AED steps and QR sweeps, respectively. Since some QR sweeps are skipped because
the percentage of deflated eigenvalues in the AED step is larger than the threshold
(NIBBLE), we have kQR ≤ kAED. Sometimes when a QR sweep is not skipped but the
AED step does not provide enough shifts, we need to calculate shifts from the trailing
submatrix. The number of extra calls to the parallel Schur decomposition solver in
this case is denoted by kshift, which naturally satisfies kshift ≤ kQR. Right now we do not
make any further assumption for kAED, kQR, and kshift other than

0 ≤ kshift ≤ kQR ≤ kAED,

since these constants heavily depend on the property of H as well as many tunable
algorithmic parameters. Given the constants kAED, kQR, and kshift, the execution time of
the parallel QR algorithm is modelled as the sum of the corresponding phases, i.e.

T (n, p) = kAEDTAED(n,nAED, p) + kQRTQR(n,nshift, p) + kshiftTshift(n,nshift, p), (2)

where TAED, TQR, and Tshift are the runtime for each phase in one QR iteration. To sim-
plify the discussion, the window sizes nAED and nshift are assumed unchanged in differ-
ent QR iterations. This assumption also helps to reduce the impact of load imbalance
due to deflation. We will make further assumptions and estimations about TAED, TQR,
and Tshift, which are stated in the discussions that follow. Tiny terms, especially lower
order terms with small coefficients, are omitted in the discussions.

39

Paper II

3.1 Estimating TQR

The QR sweep is relatively simple because the computation and communication cost
is well-determined by n, nshift and p. Usually there are up to

√
p simultaneous com-

putational windows, one at each diagonal processor in the grid, with at most nb/3
shifts in each window. If nshift >

√
pnb/3, these shifts are chased in several rounds.

So we use a rough approximation n∗shift =
√

pnb/3 to represent the total amount of
shifts which can be chased simultaneously in the QR sweep. Based on the assumption√

pnb � n, the overhead for the start-up and ending phases of the bulge chasing are
not important. Therefore the cost of one QR sweep is roughly

TQR(n,nshift, p) =
nshiftn
n∗shiftnb

(Tlocal + Tcross),

where Tlocal and Tcross represent the runtime for local and crossborder bulge chasing,
respectively. Both parts require chasing the chain of bulges with nb/2 steps inside
the computational window, as well as updating the corresponding off-diagonal blocks.
Hence the runtime for arithmetic operations is

(
4n3

b + 4nn2
b
/√

p
)
γ, half of which is

for accumulating the orthogonal matrix Q. The only communication cost in the local
chasing phase is broadcasting the accumulated orthogonal matrix rowwise and colum-
nwise in the processor grid, which requires log2 p

(
α+ n2

bβ
)

runtime, i.e.,

Tlocal =

(
4n3

b +
4nn2

b√
p

)
γ+ log2 p

(
α+ n2

bβ
)
≈ 4nn2

b√
p
γ+ log2 p

(
α+ n2

bβ
)
.

One round crossborder chasing requires at least the same amount of communication
as in one local chasing step, with some extra cost for explicitly forming the nb × nb
computational window and exchanging data with processor neighbours for updating
the off-diagonal blocks. Notice that usually there are two rounds for a crossborder
chasing step, therefore we have

Tcross = 2
[
Tlocal + 3

(
α+

n2
b

4
β
)
+ 3

(
α+

nnb

2
β
)]
,

and then

TQR(n,nshift, p) ≈ 12n2nshiftnb√
pn∗shift

γ+
3nnshift

nbn∗shift
(log2 p + 4)α+

3n2nshift

n∗shift
β

=
36n2nshift

p
γ+

9nnshift√
pn2

b

(log2 p + 4)α+
9n2nshift√

pnb
β. (3)

From this model, we can see that the cost for updating the off-diagonal blocks dom-
inates in both the computation and communication parts, under the assumption that√

pnb � n (or equivalently n∗shift � n). As a byproduct, the performance model of a
plain multishift QR algorithm without AED can also be obtained. By assuming the
convergence rate as Θ(1) shifts per eigenvalue, i.e. kQR = Θ(n/nshift) and neglecting the

40

3. Performance model

cost for generating shifts, the total execution time of a plain multishift QR algorithm
is

T (n, p) = Θ

(n3

p

)
γ+Θ

(n2 log p√
pn2

b

)
α+Θ

(n3
√

pnb

)
β. (4)

The serial part indicates that the degree of concurrency is Θ(p) which is perfect in
some sense. The communication cost is a bit larger than the theoretical lower bound
provided in [7].

3.2 Estimating TAED and Tshift

The AED phase requires computing the Schur decomposition of the AED window,
which might contain a lot of uncertainties. Among the several possible choices of
the eigensolver, we assume that the Schur decomposition is always solved by the
pipelined QR algorithm with AED on a

√
pAED ×√pAED processor grid — a subset of

the
√

p×√p processor grid, so that the property
√

pAED nb � nAED is also valid inside
the AED window. Similar assumptions regarding the choice of eigensolver and data
redistribution are made for the shift calculation phase. The relationship among these
parameters are typically

nshift ≈ 2
3

nAED ≈ 1
C1

n and
nAED√
pAED

≈ nshift√
pshift

≥C2,

where C1 and C2 are constants (e.g., C1 ≈ 25, C2 ≈ 384). Then the execution time for
one step AED is modelled as

TAED(n,nAED, p) = Tredist(nAED, p, pAED) + TSchur(nAED, pAED)
+ Treorder(nAED, p) + THess(nAED, p) + Tupdate(n,nAED, p). (5)

where the terms in the right-hand-side represent the runtime for data redistribution,
Schur decomposition of the AED window, deflation checking and reordering of eigen-
values, Hessenberg reduction, and updating the off-diagonal blocks corresponding to
the AED window, respectively. We estimate these terms one by one.

• Tredist: The general-purpose data redistribution routine PDGEMR2D in ScaLA-
PACK uses the algorithm described in [28]. Since the scheduling part is tiny
compared to the communication part, the complexity of data redistribution is
provided as

Tredist(nAED, p, pAED) = Θ(p)α+Θ

(n2
AED√

p pAED

)
β. (6)

• TSchur: The complexity of the Schur decomposition performed by PDLAQR1
largely depends on the property of the matrix, since AED affects the conver-
gence rate significantly. To obtain an estimate of the complexity, we assume
that AED roughly reduces the number of pipelined QR sweeps by half. Ac-
cording to the experimental results presented in [25], this assumption usually

41

Paper II

provides a reasonable upper bound of the runtime, although it can be overesti-
mated. Using the model in [21], we obtain an approximate execution time

T̃Schur(n, p) =
40n3

p
γ+

3n2
√

pnb
(log2 p + 2)α+

(3n2 log2 p√
p

+
16n3

pnb

)
β, (7)

in which the cost of accumulating Q and tiny terms are omitted. If the orthogo-
nal matrix Q is also wanted, the arithmetic operations need to be doubled, i.e.,

TSchur(n, p) = T̃Schur(n, p) +
40n3

p
γ (8)

= Θ

(n3

p

)
γ+Θ

(n2 log p√
pnb

)
α+Θ

(n2 log p√
p

+
n3

pnb

)
β. (9)

It is interesting to make an comparison between (9) and (4). We are able to see
both solvers have ideal degree of concurrency. However, the tightly coupled
shifting strategy is superior to the loosely coupled one because it communi-
cates much less frequently. The number of messages is reduced by a factor of
Θ(nb); the average message length is increased a lot although sometimes the to-
tal amount of data transfered is also increased. Another important observation
is that the serial term in TSchur assumes level 3 node performance, which is far
better than the actual case. Therefore in practice the pipelined QR algorithm is
usually much slower than the new multishift QR for large matrices.

• Treorder: Obviously, the cost for eigenvalue reordering depends on the deflation
ratio. However, we are able to evaluate the upper bound for the cost — all
eigenvalues are involved in the reordering. Then the performance model is al-
most the same as that of QR sweeps, since updating the off-diagonal blocks is
the dominant operation. Notice that each eigenvalue needs to move nAED/2 steps
in average, so the overall cost for eigenvalue reordering inside the AED window
is bounded by

Treorder(nAED, p) ≈ 4n2
AEDnb√

p
γ+

2nAED

nb
(log2 p + 3)α+

3n2
AED

2
β. (10)

As a different feature compared to QR sweeps or the analysis in [18], the degree
of concurrency here is Θ(

√
p) instead of Θ(p) since usually there are only two

computational windows for the reordering phase inside the AED window.

• THess: The Hessenberg reduction routine PDGEHRD uses the parallel algorithm
described in [14]. Almost all computations and communications are performed
on matrix-vector and matrix-matrix multiplications. Therefore we need to model
these PBLAS operations first. The level 2 operations GEMV and GER require

TGEMV(m,n, p) ≈ TGER(m,n, p) ≈ 2mn
p
γ+ log2 p

(
α+

m + n
2
√

p
β
)
, (11)

42

3. Performance model

where m× n is the size of the matrix. This model can be directly generalized
to multiplying two m× k and k× n matrices so long as min{m,n,k} ≤ nb since
it is merely a “fat” level 2 operation. In the Hessenberg reduction algorithm,
all level 3 operations are “fat” level 2 operations, so the cost for one GEMM
operation can be modelled as

TGEMM(m,n,nb, p) ≈ TGEMM(m,nb,n, p) ≈ 2mnnb

p
γ+ log2 p

(
α+

(m + n)nb

2
√

p
β
)
. (12)

Using these simple models of PBLAS operations, we are able to establish a
model for THess. The level 2 part consists roughly of n matrix-vector multipli-
cations of dimension n× (n− j) (for j = 1, 2, . . . , n). Therefore the cost is

Tlevel2 =

n∑

j=1

[
2n(n− j)

p
γ+ log2 p

(
α+

2n− j
2
√

p

)]
≈ n3

p
γ+ log2 p

(
nα+

3n2

4
√

p
β
)
.

The level 3 part contains roughly n/nb iterations with one PDGEMM and one
PDLARFB per iteration. Within the jth iteration (j = 1, 2, . . . , n/nb), PDGEMM in-
volves matrices of dimension n×nb and nb×(n− jnb−nb); PDLARFBmainly per-
forms two parallel GEMM operations, with

{
nb× (n− jnb), (n− jnb)× (n− jnb)

}

and
{
(n− jnb)×nb,nb×(n− jnb)

}
matrices involved. Another sequential TRMM

operation in PDLARFB is neglected since it only contributes lower order terms in
both arithmetic and communication costs. So the cost for level 3 part is

Tlevel3 =

n/nb∑

j=1

[
2 jnb + 6(n− jnb)

p
nb(n− jnb)γ+ log2 p

(
3α+

6n−5 jnb

2
√

p
β
)]

≈ 7n3

3p
γ+

3n log2 p
nb

α+
7n2 log2 p

4
√

p
β,

and hence the execution time for Hessenberg reduction (without explicitly form-
ing the orthogonal matrix) is

T̃Hess(n, p) = Tlevel2 + Tlevel3 ≈ 10n3

3p
γ+ n log2 pα+

5n2 log2 p
2
√

p
β. (13)

Even if the proportion of level 3 operations is improved to 80% as suggested
in [29] but not implemented in the current PDGEHRD yet, the estimate in (13)
would not change too much since the number of messages in the level 2 part is
not reduced.

Since the Householder reflections are stored in a compact form in the lower tri-
angular part of the upper Hessenberg matrix, formulating the orthogonal matrix
after Hessenberg reduction is another necessary step. This step is done by the
ScaLAPACK routine PDORMHR, which is mainly a series of calls to PDLARFB.
Similar to the discussion above, we are able to obtain

TORMHR ≈ 2n3

p
γ+

3n log2 p
nb

α+
7n2

4
√

p
β.

43

Paper II

Therefore the total runtime for the Hessenberg reduction process including for-
mulating the orthogonal matrix is

THess(n, p) = T̃Hess + TORMHR ≈ 16n3

3p
γ+ n log2 pα+

17n2 log2 p
4
√

p
β. (14)

• Tupdate: The cost for updating the off-diagonal blocks with respect to the AED
window is simple to analyze since it merely contains three GEMM operations.
Since these GEMM operations are not “fat” level 2 operations, we need to use
a model different to (12). According to [37], the execution time for a GEMM
operation on a

√
p×√p processor grid with m×k and k×n matrices involved is

TGEMM(m,n,k, p) ≈ 2mnk
p

γ+

(k
nb

+ 2
√

p
)(

2α+
(m + n)nb√

p
β
)

(15)

if min{m,n,k} = k� nb. Then we are able to conclude that

Tupdate(n,nAED, p) ≈ 2nn2
AED

p
γ+

nAED

nb

(
6α+

2nnb√
p
β
)
. (16)

Now we are ready to estimate the overall runtime TAED by substituting n with nAED

in (8) and (14). We can see that Tredist is always negligible compared to other com-
ponents. Reordering contributes with only marginal communication costs also. By
merging all these estimates together, we eventually obtain

TAED(n,nAED, p) ≈ TSchur(nAED, pAED) + Treorder(nAED, p) + THess(nAED, p) + Tupdate(n,nAED, p)

≈
(80nAED

pAED

+
4
√

pnb + 16nAED + 2n
p

)
n2

AEDγ

+
n2

AED

nb

(3(log2 pAED + 2)√
pAED

+
nb log2 p

nAED

)
α

+
nAED

nb

(3nAEDnb log2 pAED√
pAED

+
16n2

AED

pAED

+
3nb

2
+

17nb log2 p
4
√

p
+

2nnb

nAED

√
p

)
β

(17)

≤

120C2

2n

C1
+

9n2nb

C2
1
√

p
+

3(C1 + 36)n3

2C3
1 p

γ

+
9C2n
C1nb

(
log2

3n
2C1C2

+
log2 pnb

3C2

)
α

+

9C2n
C1

log2
3n

2C1C2
+

36C2
2n

C1nb
+

3n2
(
9
√

p + 102log2 p + 8C1
)

8C2
1
√

p

β

(18)

When n is extremely large (i.e., C1, C2 and nb are all tiny enough compared to n),
eventually we have

TAED = Θ

(n3

p

)
γ+Θ

(
n logn

)
α+Θ

(
n2)β.

44

3. Performance model

Therefore AED is asymptotically cheaper than QR sweeps. But in practice we still
need to handle AED very carefully. The large constants in the lower order terms
usually have significant impact on the performance if the matrix is not large enough.
Similar to the analysis for TAED, the cost for computing shifts can be estimated by

Tshift(n,nshift, p) ≈ T̃Schur(nshift, pshift)

≈ 40n3
shift

pshift
γ+

3n2
shift√

pshift nb
(log2 pshift + 2)α

+

(3n2
shift log2 pshift√

pshift
+

16n3
shift

pshiftnb

)
β (19)

≤ 40C2
2n

C1
γ+

6C2n
C1nb

log2
n

C1C2
α+

(6C2n
C1

log2
n

C1C2
+

16C2
2n

C1nb

)
β.

(20)

Actually, Tshift is not so important in the scalability analysis since it can never be worse
than TAED.

3.3 An overall model

To make the models discussed in previous subsections simpler and more intuitive, we
assign the values of the parameters with some concrete numbers. For example, if we
set C1 = 24 and C2 = 384, then TQR, TAED, and Tshift become

TQR(n,nshift, p) ≈ 3n3

2p
γ+

3n2

8
√

pn2
b

(log2 p + 4)α+
3n3

8
√

pnb
β,

TAED(n,nAED, p) ≈
(
737280n +

n2nb

64
√

p
+

5n3

768p

)
γ

+

[144n
nb

(log2 n−14) +
n log2 p

8

]
α

+

144n
(
log2 n−14 +

1536
nb

)
+

(
9
√

p + 102log2 p + 192
)
n2

3072
√

p

 β,

and

Tshift(n,nshift, p) ≈ 245760nγ+
96n
nb

(log2 n−13)α+ 96n
(
log2 n−13 +

1024
nb

)
β,

respectively. In practice kAED, kQR, kshift can vary a lot, but kAED = Θ(n/nAED) = Θ(C1)
represents a typical convergence rate. For example, if we assume kAED = 2kQR = 4kshift =

64, then an overall estimate of the new parallel multishift QR algorithm with AED is

T (n, p) ≈
(48n3

p
+ 5.1×107n

)
γ+

12n2 log2 p
√

pn2
b

α+
12n3
√

pnb
β, (21)

= Θ

(n3

p

)
γ+Θ

(n2 log p√
pn2

b

)
α+Θ

(n3
√

pnb

)
β, (22)

45

Paper II

where small order terms are neglected. Tshift always contributes very little in the total
cost. Both QR sweeps and AED have significant serial runtime when n is not very
large. However, QR sweeps dominates in the communication cost. Therefore (22)
and (4) have the same asymptotic behavior although the execution time model (21) is
usually smaller. AED helps to improve the convergence and never becomes a bottle-
neck once it is properly implemented. In practice, we sometimes use PDLAQR0 recur-
sively instead of PDLAQR1 as the eigensolver in the AED and shift calculations when n
is large. But since they have similar asymptotic behavior and the recursive eigensolver
only contributes a lower order term (although with large coefficients) in the total cost,
the computational cost is asymptotically similar to (22). Another observation from the
model is that it is advisable to decrease the parameter NIBBLE when n is large, since
AED eventually becomes much cheaper than QR sweeps. If we keep the memory
load per processor (n2/p) unchanged and let n grow, the parallel QR algorithm does
not scale as well as the Hessenberg reduction algorithm. But an appropriate choice of
NIBBLE can sometimes delay the differences for matrices which are not too large.

4 Other Implementation Issues

4.1 Calling sequence

The calling sequence of PDHSEQR is nearly identical with the LAPACK routine DHSEQR’s.
Apart from the need of a descriptor for each globally distributed matrix and the lead-
ing dimension for each local matrix, the only difference is that PDHSEQR requires an
extra integer workspace.

SUBROUTINE PDHSEQR(JOB, COMPZ, N, ILO, IHI, H, DESCH, WR, WI, Z,

$ DESCZ, WORK, LWORK, IWORK, LIWORK, INFO)

*

* .. Scalar Arguments ..

INTEGER IHI, ILO, INFO, LWORK, LIWORK, N

CHARACTER COMPZ, JOB

* ..

* .. Array Arguments ..

INTEGER DESCH(*) , DESCZ(*), IWORK(*)

DOUBLE PRECISION H(*), WI(N), WORK(*), WR(N), Z(*)

SUBROUTINE DHSEQR(JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,

$ LDZ, WORK, LWORK, INFO)

SUBROUTINE PDLAHQR(WANTT, WANTZ, N, ILO, IHI, A, DESCA, WR, WI,

$ ILOZ, IHIZ, Z, DESCZ, WORK, LWORK, IWORK,

$ ILWORK, INFO)

The calling sequence of the auxiliary routine PDLAHQR is also similar. Therefore, for
most existing codes using PDLAHQR, it only requires minor changes when switching
the eigensolver to PDHSEQR. In practice, it is advisable to call PDHSEQR twice —
one call for the workspace query (by setting LWORK=-1) and another call for actually
doing the computation. This follows the convention of many LAPACK/ScaLAPACK
routines which require workspace. Note that multithreading (OpenMP) is not provided

46

4. Other Implementation Issues

Table 2: A list of tunable parameters
ISPEC Name Description Recommended value

12 nmin Crossover point between PDLAQR0 and
PDLAQR1

220min(pr, pc)

13 nAED Size of the AED window see Table 1
14 NIBBLE Threshold for skipping a multishift QR

sweep
see Section 2.4

15 nshift Number of simultaneous shifts see Table 1
16 KACC22 The choice of how to update the off-

diagonal blocks in the multishift QR
sweep

use GEMM/TRMM

17 NUMWIN Maximum number of concurrent com-
putational windows (for both QR
sweep and eigenvalue reordering)

min(pr, pc,dn/nbe)

18 WINEIG Number of eigenvalues in each window
(for eigenvalue reordering)

min(nb/2,40)

19 WINSIZE Computational window size (for both
bulge-chasing and eigenvalue reorder-
ing)

min(nb,80)

20 MMULT Minimal percentage of flops for per-
forming GEMM instead of pipelined
Householder reflections when updating
the off-diagonal blocks in the eigen-
value reordering routine

50

21 NCB Width of block column slabs for row-
wise update of Householder reflections
in factorized form

min(nb,32)

22 WNEICR Maximum number of eigenvalues to
bring over the block border in the
eigenvalue reordering routine

same as WINEIG

23 pmin Size of processor grid involving AED see Section 2.5

in the current ScaLAPACK release, since it requires further tuning and support from
compilers/libraries.

4.2 Tuning parameters

In the new software for the parallel QR algorithm, tunable parameters are defined in
the routine PILAENVX. They are available via the function call PILAENVX(ICTXT,
ISPEC, . . .) with 12 ≤ ISPEC ≤ 23. We have already discussed two of them in Sec-
tions 2.4 and 2.5. A complete list of these parameters is provided in Table 2. Some of
them need to be fine tuned for different architectures.

Although a reasonable choice of nb, the data layout block size, is important, the
performance turns out not to be overly sensitive to this choice. On the one hand, nb

47

Paper II

should be large enough so that the local computations can achieve level 3 performance.
On the other hand, it is advisable to avoid nb being too large. A large nb harms the
load balance and increases the overhead in the start-up and ending stages of the bulge
chasing process, especially when computing the Schur decomposition of the AED
window. In our performance model, we always assume nb� n

/√
p to avoid such kind

of overhead. For many architectures, nb ∈ [32,128] will offer a good choice.
On many architectures, most of the recommended values in Table 2 can be used

as default values. However, the parameters nmin, pmin and NIBBLE require extra care
since the performance of the AED process heavily relies on them. The values of these
parameters need to be determined by performing a bunch of test runs. To determine
nmin and pmin, it is advisable to use the typical sizes of the AED windows (see Ta-
ble 1) and run tests on different processor grids. Then the optimal values for both nmin
and pmin can be chosen via examining the number of columns of H owned by each
processor. NIBBLE should be tuned lastly, once all other parameters are fixed. Tuning
NIBBLE is time-consuming but highly recommended, especially on older architectures
with slow communication. As discussed in Section 2.4, NIBBLE = a ·nb pc is a reason-
ably good model that takes into account both n and p. It is not unlikely that this model
may need to be adjusted for very large-scale computations.

5 Computational Experiments

In this section, we present a subset from a large set of computational experiments that
have been performed to confirm and demonstrate the improvements we have made in
the parallel QR algorithm. We compare our new parallel QR algorithm in ScaLA-
PACK v2.0.1 with the previous implementation in [19] as well as the pipelined QR
algorithm in ScaLAPACK v1.8.0. For simplicity, these solvers are denoted by S-v201,
SISC and S-v180, respectively. The data layout block size nb = 50 is used for all ex-
periments. The experiments were run on the Intel Xeon Linux cluster Akka hosted
by the High Performance Computing Center North (HPC2N). The code is compiled
by the PathScale compiler version 4.0 with the optimization flags -O3 -fPIC and
linked with the libraries OpenMPI 1.4.4, LAPACK 3.4.0 and GotoBLAS2 1.13. No
multithreaded features (such as OpenMP or threaded BLAS) are used. Therefore the
number of processors (p = pr × pc) means the number of cores involved in the com-
putation.

5.1 Random matrices

First, we consider two types of random matrices — fullrand and hessrand [19].
Matrices of the type fullrand are dense square matrices with all entries randomly

generated from a uniform distribution in [0,1]. We call the ScaLAPACK routine
PDGEHRD to reduce them to upper Hessenberg form before applying the Hessenberg
QR algorithm. Only the time for the Hessenberg QR algorithm is measured. These
matrices usually have well-conditioned eigenvalues and exhibit “regular” convergence
behavior.

Matrices of the type hessrand are upper Hessenberg matrices whose nonzero

48

5. Computational Experiments

Table 3: Execution time (in seconds) for fullrand matrices.
p = n = 4000 n = 8000 n = 16000 n = 32000

pr × pc S-v180 SISC S-v201 S-v180 SISC S-v201 S-v180 SISC S-v201 S-v180 SISC S-v201
1×1 834 178 114 10730 939 629
2×2 317 87 66 2780 533 278
4×4 136 50 39 764 205 173 6671 1220 739
6×6 112 50 46 576 142 116 3508 754 466 ∞ 3163 2340
8×8 100 45 38 464 127 157 2536 506 373 ∞ 2979 1712

10×10 97 50 44 417 159 119 2142 457 299 ∞ 2401 1326

entries are randomly generated from a uniform distribution in [0,1]. The eigenvalues
of these matrices are extremely ill-conditioned for larger n, affecting the convergence
behavior of the QR sweeps [19]. On the other hand, AED often deflates a high fraction
of eigenvalues in the AED window for such matrices. These properties sometimes
cause erratic convergence rates.

Tables 3 and 4 show the parallel execution times of the three solvers. Both the real
Schur form T and the orthogonal transformation matrix Z are calculated. We limit
the total execution time (including the Hessenberg reduction) by 1000 CPU hours for
each individual problem, to avoid excessive use of the computational resources. An
entry ∞ corresponds to an execution time larger than 1000 CPU hours. These tables
reveal that our new solver PDHSEQR in ScaLAPACK v2.0.1 almost always improves
the performance compared to the SISC version (with only one exception). On average,
the improvement is 26% for matrices of type fullrand and 13 times for matrices of
type hessrand. Not surprisingly, the improvements compared to PDLAHQR in ScaLA-
PACK v1.8.0 are even more significant.

The convergence rates for fullrand are sufficiently regular, so that we can ana-
lyze the scalability of the parallel QR algorithm. If we fix the memory load per core
to n

/√
p = 4000, the execution times in Table 3 satisfy

2T (n, p) ≤ T (2n,4p) ≤ 4T (n, p).

This shows that the parallel QR algorithm scales reasonably well, but not perfectly.
Most importantly, this is consistent with the theoretical performance model (22). For
hessrand, it is observed that most eigenvalues are deflated with very few (or even
no) QR sweeps. Considering that the main difference of PDHSEQR between versions
S-v201 and SISC is in the AED process, it is not surprising to see the great conver-
gence acceleration for hessrand, where AED dominates the calculation. In Table 4,
sometimes the execution time for S-v201 does not change too much when increasing
the number of processors. This is mainly because the Schur decomposition of the
AED window, which is the most expensive part of the algorithm, is performed by a
constant number of processors (pmin · pmin ≤ p) after data redistribution.

5.2 100,000×100,000 matrices

The modifications proposed in this paper result into dramatic improvements for set-
tings with very large matrices and many processors. To demonstrate this, we present
the obtained execution times for 100,000×100,000 matrices in Table 5. Although the
Hessenberg QR algorithm does not scale as well as Hessenberg reduction when fixing

49

Paper II

Table 4: Execution time (in seconds) for hessrand matrices.
p = n = 4000 n = 8000 n = 16000 n = 32000

pr × pc S-v180 SISC S-v201 S-v180 SISC S-v201 S-v180 SISC S-v201 S-v180 SISC S-v201
1×1 685 317 12 6981 2050 70
2×2 322 200 9 2464 1904 28
4×4 163 112 28 1066 679 146 8653 2439 69
6×6 137 84 28 768 412 83 4475 1254 72 ∞ 373 248
8×8 121 68 24 634 321 90 3613 719 73 ∞ 919 239

10×10 131 83 26 559 313 99 3549 667 76 ∞ 943 243

Table 5: Execution time (in seconds) of S-v201 for 100,000×100,000 matrices.
p = 16×16 p = 24×24 p = 32×32 p = 40×40

fullrand hessrand fullrand hessrand fullrand hessrand fullrand hessrand

Balancing 854 – 849 – 855 – 898 –
Hess. reduction 10517 – 6408 – 3877 – 2751 –
QR algorithm 9787 3601 7046 2809 6328 2336 6043 2119

kAED 35 19 30 19 25 18 29 18
kQR 4 0 6 0 10 0 11 0

#(shifts)/n 0.16 0 0.22 0 0.30 0 0.45 0
AED% in the QR alg. 44% 100% 44% 100% 42% 100% 44% 100%

the problem size and increasing the number of processors, the execution times of these
two reduction steps are still on the same order of magnitude. With the help of the dy-
namic NIBBLE strategy, the fraction of the execution time spent on AED for fullrand
matrices is under control. In contrast to our earlier implementation, AED is no longer
a bottleneck of the whole QR algorithm. As reported in [19], it took 7 hours for our
earlier implementation PDHSEQR to solve the 100,000× 100,000 fullrand problem
with 32×32 processors; 80% execution time of the QR algorithm was spent on AED.
Our new version of PDHSEQR is able to solve the same problem in roughly 1.75 hours,
which is about four times faster. The time fraction spent on AED is reduced to 42%.

5.3 Benchmark examples

Besides random matrices, we also report performance results for some commonly used
benchmark matrices. For comparison, we have tested the same matrices as in [19],
see Table 6. The execution times for the three solvers are listed in Tables 7–14. The
conclusions are similar to those we have made for random matrices: our earlier version
of PDHSEQR outperforms the ScaLAPACK 1.8.0 routine PDLAHQR by a large extent;
the new PDHSEQR is usually even faster, especially for BBMSN and GRCAR.

In [19], it was observed that the accuracy for AF23560 is not fully satisfactory; the
relative residuals Rr = ‖QT AQ−T‖F/‖A‖F were large for both PDLAHQR and PDHSEQR.
It turns out that these large residuals are caused by an anomaly in PDLAHQR, which has
been fixed by avoiding the use of PDLACONSB, see Section 2.3.2 As a result, the new
PDHSEQR always produce Rr ∈ [

10−15,10−13] for all test matrices.

6 Conclusions and Future Work

We have presented a new parallel implementation of the multishift QR algorithm with
aggressive early deflation. The new routine PDHSEQR combines a number of tech-
niques to improve node performance and reduce communication. Our numerical ex-

50

6. Conclusions and Future Work

Table 6: Benchmark matrices.
ID Name Dimension (n) Type/Structure

1 BBMSN [12] n S n =

n n−1 n−2 · · · 2 1
10−3 1 0 0 0

10−3 2 0 0
10−3 0 0

. . . n−2 0
10−3 n−1

2 AF23560 [4] 23560 Computational fluid dynamics
3 CRYG10000 [4] 10000 Material science
4 OLM5000 [4] 5000 Computational fluid dynamics
5 DW8192 [4] 8192 Electrical engineering
6 MATRAN [4] n Sparse random matrix
7 MATPDE [4] n Partial differential equations

8 GRCAR [4] n Gn =

1 1 1 1
−1 1 1 1 1

−1 1 1 1 1
. . .

. . .
. . .

. . .
. . .

−1 1 1 1 1
−1 1 1 1

−1 1 1
−1 1

Table 7: Execution time (in seconds) for BBMSN.
n p = pr × pc S-v180 SISC S-v201

5000 1×1 523 6 3
10000 2×2 1401 30 9
15000 4×4 1489 62 14

Table 8: Execution time (in seconds) for AF23560.
p = pr × pc S-v180 SISC S-v201

4×4 15486 2651 1438
6×6 9088 1279 823
8×8 6808 793 582

10×10 5694 662 467
12×12 5422 578 388

Table 9: Execution time (in seconds) for CRYG10000.
p = pr × pc S-v180 SISC S-v201

1×1 6394 1331 1259
2×2 2123 580 497
4×4 979 236 206
6×6 731 161 130
8×8 545 128 96

10×10 496 144 89

51

Paper II

Table 10: Execution time (in seconds) for OLM5000.
p = pr × pc S-v180 SISC S-v201

1×1 426 206 190
2×2 167 98 109
4×4 76 54 49
6×6 58 52 43
8×8 46 49 42

10×10 48 51 43

Table 11: Execution time (in seconds) for DW8192.
p = pr × pc S-v180 SISC S-v201

1×1 10307 1329 1309
2×2 1187 572 521
4×4 635 225 216
6×6 357 152 141
8×8 302 129 105

10×10 275 121 99

Table 12: Execution time (in seconds) for MATRAN.
p = n = 10000 n = 14400 n = 19600

pr × pc S-v180 SISC S-v201 S-v180 SISC S-v201 S-v180 SISC S-v201
1×1 12429 2600 2475
2×2 3531 1081 955
4×4 1565 415 381 4446 1207 1076 9915 2844 2664
6×6 1118 256 227 3069 654 579 6130 1426 1301
8×8 871 189 163 2259 449 386 4615 912 807

10×10 789 189 142 1955 431 328 4046 743 662
12×12 719 194 129 1736 367 261 3483 648 502

Table 13: Execution time (in seconds) for MATPDE.
p = n = 10000 n = 14400 n = 19600

pr × pc S-v180 SISC S-v201 S-v180 SISC S-v201 S-v180 SISC S-v201
1×1 12429 2600 2475
2×2 3531 1081 955
4×4 1565 415 381 4446 1207 1076 9915 2844 2664
6×6 1118 256 227 3069 654 579 6130 1426 1301
8×8 871 189 163 2259 449 386 4615 912 807

10×10 789 189 142 1955 431 328 4046 743 662
12×12 719 194 129 1736 367 261 3483 648 502

Table 14: Execution time (in seconds) for GRCAR.
p = n = 6000 n = 12000 n = 18000

pr × pc S-v180 SISC S-v201 S-v180 SISC S-v201 S-v180 SISC S-v201
1×1 2738 1340 69
2×2 850 645 40 8199 2734 135
4×4 363 258 233 2499 1336 118 8171 4037 189
6×6 244 190 172 1471 849 119 4385 2172 184
8×8 217 150 132 1107 515 128 3342 1345 180

10×10 207 161 131 923 538 322 2675 1104 215

52

References

periments provide compelling evidence that PDHSEQR significantly outperforms not
only the original ScaLAPACK routine PDLAHQR but also an earlier version of PDHSEQR
presented in [19]. In particular, our new implementation removes a bottleneck in the
aggressive early deflation strategy by reducing communication and tuning algorithmic
parameters. As a result, our new version is both faster and more robust. The software
is available in ScaLAPACK version 2.0.

Concerning future work, we believe to have come to a point, where it will be dif-
ficult to attain further dramatic performance improvements for parallel nonsymmetric
eigensolvers, without leaving the classical framework of QR algorithms. Considering
the fact that the execution times spent on Hessenberg reduction and on QR iterations
are now nearly on the same level, any further improvement of the iterative part will
only have a limited impact on the total execution time. The situation is quite differ-
ent when shared memory many-core processors with accelerators, such as GPUs, get
involved. Although efficient implementations of the Hessenberg reduction on such
architectures have recently been proposed [26, 24, 33], the iterative part remains to be
done. Another future challenge is to combine the message passing paradigm used in
the new ScaLAPACK v2.0 software and dynamic and static scheduling on many-core
nodes using multithreading.

Acknowledgements

We are grateful to Björn Adlerborn and Lars Karlsson for constructive discussions
and comments on the subject, and to Åke Sandgren for support at HPC2N. We also
thank Rodney James, Julien Langou as well as anonymous users from IBM for helpful
feedback.

References

[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics: Conference Series,
180(1):012037, 2009.

[2] M. Ahues and F. Tisseur. A new deflation criterion for the QR algorithm. LA-
PACK Working Note 122, 1997.

[3] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Kraemer,
B. Lang, H. Lederer, and P. R. Willems. Parallel solution of partial symmetric
eigenvalue problems from electronic structure calculations. Parallel Comput.,
37(12):783–794, 2011.

[4] Z. Bai, D. Day, J. Demmel, and J. Dongarra. A test matrix collection for non-
Hermitian eigenvalue problems (release 1.0). Technical Report CS-97-355, De-
partment of Computer Science, University of Tennessee, 1997. Also available
online from http://math.nist.gov/MatrixMarket.

53

Paper II

[5] Z. Bai and J. W. Demmel. On a block implementation of Hessenberg multishift
QR iteration. Intl. J. High Speed Comput., 1:97–112, 1989.

[6] Z. Bai and J. W. Demmel. On swapping diagonal blocks in real Schur form.
Linear Algebra Appl., 186:73–95, 1993.

[7] G. Ballard, J. Demmel, and I. Dumitriu. Minimizing communication for eigen-
problems and the singular value decomposition. Technical Report UCB/EECS-
2010-136, EECS Department, University of California, Berkeley, 2010. Also as
LAPACK Working Note 237.

[8] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication
in numerical linear algebra. SIAM J. Matrix Anal. Appl., 32(3):866–901, 2011.

[9] P. Bientinesi, E. S. Quintana-Ortı́, and R. A. van de Geijn. Representing linear
algebra algorithms in code: The FLAME application program interfaces. ACM
Trans. Math. Software, 31(1):27–59, 2005.

[10] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon,
J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPACK User’s Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1997.

[11] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. Part I:
Maintaining well-focused shifts and level 3 performance. SIAM J. Matrix Anal.
Appl., 23(4):929–947, 2002.

[12] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. Part II:
Aggressive early deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973, 2002.

[13] R. Byers. LAPACK 3.1 xHSEQR: Tuning and implementation notes on the small
bulge multi-shift QR algorithm with aggressive early deflation, 2007. LAPACK
Working Note 187.

[14] J. Choi, J. J. Dongarra, and D. W. Walker. The design of a parallel dense linear
algebra software library: Reduction to Hessenberg, tridiagonal, and bidiagonal
form. Numer. Algorithms, 10(2):379–399, 1995.

[15] M. R. Fahey. Algorithm 826: A parallel eigenvalue routine for complex Hessen-
berg matrices. ACM Trans. Math. Software, 29(3):326–336, 2003.

[16] J. G. F. Francis. The QR transformation: A unitary analogue to the LR transfor-
mation — Part 2. Comput. J., 4(4):332–345, 1962.

[17] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Univer-
sity Press, Baltimore, MD, USA, third edition, 1996.

[18] R. Granat, B. Kågström, and D. Kressner. Parallel eigenvalue reordering in real
Schur forms. Concurrency and Computat.: Pract. Exper., 21(9):1225–1250,
2009.

54

References

[19] R. Granat, B. Kågström, and D. Kressner. A novel parallel QR algorithm for
hybrid distributed memory HPC systems. SIAM J. Sci. Comput., 32(4):2345–
2378, 2010.

[20] G. Henry and R. Van de Geijn. Parallelizing the QR algorithm for the unsym-
metric algebraic eigenvalue problem: Myths and reality. SIAM J. Sci. Comput.,
17:870–883, 1997.

[21] G. Henry, D. S. Watkins, and J. J. Dongarra. A parallel implementation of the
nonsymmetric QR algorithm for distributed memory architectures. SIAM J. Sci.
Comput., 24(1):284–311, 2002.

[22] M. Hoemmen. Communication-Avoiding Krylov Subspace Methods. PhD thesis,
University of California, Berkeley, 2010.

[23] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. J. Parallel Distr. Comput., 64(9):1017–1026,
2004.

[24] B. Kågström, D. Kressner, E. S. Quintana-Ortı́, and G. Quintana-Ortı́. Blocked
algorithms for the reduction to Hessenberg-triangular form revisited. BIT,
48(3):563–584, 2008.

[25] B. Kågström, D. Kressner, and M. Shao. On aggressive early deflation in par-
allel variants of the QR algorithm. In K. Jónasson, editor, Applied Parallel and
Scientific Computing (PARA 2010), volume 7133 of Lecture Notes in Comput.
Sci., pages 1–10, Berlin, 2012. Springer-Verlag.

[26] L. Karlsson and B. Kågström. Parallel two-stage reduction to Hessenberg form
using dynamic scheduling on shared-memory architectures. Parallel Comput.,
37(12):771–782, 2011.

[27] R. S. Martin, G. Peters, and J. H. Wilkinson. Handbook Series Linear Algebra:
The QR algorithm for real Hessenberg matrices. Numer. Math., 14(3):219–231,
1970.

[28] L. Prylli and B. Tourancheau. Fast runtime block cyclic data redistribution on
multiprocessors. J. Parallel Distr. Comput., 45(1):63–72, 1997.

[29] G. Quintana-Ortı́ and R. van de Geijn. Improving the performance of reduction
to Hessenberg form. ACM Trans. Math. Software, 32(2):180–194, 2006.

[30] T. Schreiber, P. Otto, and F. Hofmann. A new efficient parallelization strategy
for the QR algorithm. Parallel Comput., 20(1):63–75, 1994.

[31] M. Shao. PDLAQR1: An improved version of the ScaLAPACK routine PDLAHQR.
Technical Report UMINF-11.22, Department of Computing Science, Umeå Uni-
versity, 2011.

55

Paper II

[32] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema,
and C. B. Moler. Matrix Eigensystem Routines — EISPACK Guide., volume 6 of
Lecture Notes in Comput. Sci. Springer-Verlag, New York, second edition, 1976.

[33] S. Tomov, R. Nath, and J. Dongarra. Accelerating the reduction to upper Hessen-
berg, tridiagonal, and bidiagonal forms through hybrid GPU-based computing.
Parallel Comput., 36(12):645–654, 2010.

[34] R. A. van de Geijn. Storage schemes for parallel eigenvalue algorithms. In
G. Golub and P. Van Dooren, editors, Numerical Linear Algebra Digital Signal
Processing and Parallel Algorithms, pages 639–648. Springer-Verlag, 1988.

[35] R. A. van de Geijn. Deferred shifting schemes for parallel QR methods. SIAM
J. Matrix Anal. Appl., 14:180–194, 1993.

[36] R. A. van de Geijn and D. G. Hudson. An efficient parallel implementation of the
nonsymmetric QR algorithm. In Fourth Conference on Hypercube Concurrent
Computers and Applications, Monterey, CA, pages 697–700, 1989.

[37] R. A. van de Geijn and J. Watts. SUMMA: Scalable universal matrix multiplica-
tion algorithm. Concurrency and Computat.: Pract. Exper., 9(4):255–274, 1997.
Also as LAPACK Working Note 96.

[38] D. S. Watkins. Shifting strategies for the parallel QR algorithm. SIAM J. Sci.
Comput., 15(4):953–958, 1994.

56

III

Paper III

Componentwise High Relative Accuracy Algorithms for
the Exponential of an Essentially Nonnegative Matrix∗

Meiyue Shao1, Weiguo Gao2, and Jungong Xue2

1 Department of Computing Science and HPC2N
Umeå University, SE-901 87 Umeå, Sweden

myshao@cs.umu.se
2 School of Mathematical Sciences and Laboratory of Mathematics for Nonlinear Science

Fudan University, Shanghai 200433, China
{wggao, xuej}@fudan.edu.cn

Abstract: New algorithms with componentwise high relative accuracy for computing
the exponentials of essentially nonnegative matrices are proposed. Our approach is to
derive lower and upper bounds of the matrix exponential, and combining the scaling
and squaring method with aggressively truncated Taylor expansion. More precisely,
we establish new à priori error estimates and use them to propose an efficient strategy
to balance the scale factor and the order of expansion. The scale factor is carefully
chosen so that the algorithm is almost optimally scaled in practice. Rounding error
analyses and numerical experiments demonstrate the efficiency and accuracy of the
proposed algorithms.

1 Introduction

The matrix exponential is one of the most well-studied matrix functions. It has many
applications in physics, biology, finance and engineering, especially related to the
∗ Report UMINF-12.04. Submitted to Numerische Mathematik.

The work of M. Shao is supported by the Swedish Research Council under grant A0581501, UMIT
Research Lab via an EU Mål 2 project, and eSSENCE, a strategic collaborative e-Science programme
funded by the Swedish Research Council.
The work of W. Gao is supported by the National Natural Science Foundation of China un-
der grant 11071047, the Science and Technology Commission of Shanghai Municipality under
grant 09ZR1401900 and MOE Key Laboratory of Computational Physical Sciences.
The work of J. Xue is partly supported by the National Natural Science Foundation of China under
grant 10970136.

59

Paper III

solution of dynamical systems. Several methods for computing the matrix exponential
have been proposed, see [10, 15]. As a result, MATLAB’s expm function, an excellent
general purpose solver, is widely used. However, the development of high relative
accuracy algorithms for particular structured matrices remain vitally important.

Among the existing algorithms, the scaling and squaring method is considered as
one of the most promising candidates for calculating the matrix exponential [15]. Two
main algorithmic issues in this method are 1) to choose an acceptable approximation
of ex; 2) to use the scaling and squaring technique to improve the accuracy. Mathemat-
ically, the power of a matrix is naturally relevant to its exponential. But numerically,
we should avoid too many this repeated matrix multiplications. To avoid this over-
scaling problem [14] in the scaling and squaring method, most existing algorithms try
to keep the scale factor as small as possible. Therefore, a lot of efforts are contributed
to address the first issue. A good approximation with less computational complexity
is then expected. Different types of approximations, including Taylor expansion, Padé
approximation, or even more general functions have been tried to approximate the
exponential function ex.

The exponentials of essentially nonnegative matrices (real matrices with nonneg-
ative off-diagonal entries, also known as Metzler matrices) have important applica-
tions in continuous-time Markov processes and positive linear dynamical systems.
Recently, the exponential of the adjacency matrix (which is symmetric and nonneg-
ative) is shown to be involved in the measurement analysis of networks [7]. Many
theoretical results as well as algorithms taking into account the nonnegativity have
been proposed [2, 4, 6, 8, 25, 26]. Our motivation is to take a new look into the over-
scaling issue for general essentially nonnegative matrices. By carefully reviewing the
scaling and squaring process, we show that significant improvements can be attained
in this case.

Based on our analysis of the scaling and squaring algorithm, we propose new
efficient algorithms for essentially nonnegative matrices. The rest of this paper is or-
ganized as follows. We first show in Section 2 that the matrix exponentials of nonneg-
ative matrices are always well-conditioned in a certain sense, and so for a wide range
of essentially nonnegative matrices. In Sections 3.1 and 3.2, we derive the lower and
upper bounds of the matrix exponentials of essentially nonnegative matrices, respec-
tively. We prove the componentwise estimates of the bounds, which are based on
scaling/squaring and (aggressively) truncated Taylor series. High relative accuracy
algorithms for computing these bounds are also provided. In Section 3.3, an interval
algorithm based on the lower and upper bounds with improved accuracy is proposed.
Some special algorithmic issues regarding the essentially nonnegative matrices are
discussed in Section 3.4. A rounding error analysis of the algorithms is presented in
Section 4. Finally, in Section 5 we present and discuss numerical experiments.

2 Preliminaries

First we fix some notation to be used throughout the paper. Hereafter we use R+ =
{x ∈ R : x≥ 0} to denote the set of all nonnegative real numbers. For any matrices A,

60

2. Preliminaries

B∈RM×N , we denote by A≥ B if A(i, j)≥ B(i, j) for all i and j. |A| is the matrix with
entries |A(i, j)|, and we let struct(A) denote the nonzero pattern of any given matrix
A, i.e.,

struct(A) = {(i, j) : A(i, j) 6= 0} .
The notation

s(A) = min
i

A(i, i), Â = A− s(A)I, and ρ̂(A) = ρ(Â),

where ρ(·) is the spectral radius, are used for any A ∈ RN×N unless otherwise stated.
We say that A is essentially nonnegative if and only if Â≥ 0. We use fl(x) to represent
the quantity x calculated with floating point arithmetic, where x can be either a number
or a matrix. Sometimes we are able to obtain true lower bounds and upper bounds of x
by switching the rounding mode [16]. The corresponding bounds are denoted by fl(x)
and fl(x), respectively. Then these bounds (so long as they exist) satisfy

fl(x)≤ x≤ fl(x). (2.1)

We need to clarify that the notation we use here does not imply which rounding mode
is used for attaining the result; it only indicates the property (2.1). For example,
fl(1−x) can be obtained via− fl(fl(x)−1) under the rounding mode to round towards
+∞.

For a given essentially nonnegative matrix A, we would like to compute every
entry of eA accurately. This is a more challenging task than only producing norm-
wise accuracy. Normwise perturbation bounds can, for example, be found in [12, 20].
MATLAB’s expm function, a general purpose solver, guarantees normwise backward
stability in the Padé method [11]. In [4, 8], a forward normwise error analysis for
the Taylor series method is provided; but the à priori truncation error estimate can be
far from being useful in practice. Moreover, normwise error estimates do not deliver
any information for the accuracy of small entries. To obtain such information requires
additional analysis. The following theorem gives the relative perturbation of the ma-
trix exponential with respect to the perturbation of the components of the matrix. The
perturbation in the solution is also provided in the componentwise form.

Theorem 2.1. [25] Assume A is an N×N essentially nonnegative matrix. Let ∆A ∈
RN×N be a perturbation to A satisfying |∆A(i, j)| ≤ ε1A(i, j) (i 6= j) and |∆A(i, i)| ≤ ε2,
where 0≤ ε1 < 1, ε2 ≥ 0. Then for any t ≥ 0 we have

∣∣∣et(A+∆A)− etA
∣∣∣≤ δ (t)eδ (t)etA,

where
δ (t) = tε2 +

[
N−1+ ρ̂(A)t

] ε1

1− ε1
.

Here we are interested in the case t = 1. We denote

C(A) = N−1+ ρ̂(A) (2.2)

61

Paper III

as the condition number of eA, in the sense of relative componentwise perturbation and
Â≥ 0. A simple bound of ρ̂(A) might be helpful in understanding the conditioning of
the problem.

Let Rmax and Rmin be the largest and smallest normalized positive finite floating
point numbers, respectively, on a certain architecture. If there is no overflow in eA,
then

Rmax ≥
∥∥eA∥∥

max ≥
1
N

∥∥eA∥∥
∞ =

es(A)

N

∥∥∥eÂ
∥∥∥

∞
≥ es(A)

N
ρ
(
eÂ)= es(A)

N
eρ̂(A),

which implies s(A)+ ρ̂(A)≤ lnN + lnRmax.

Remark 1. For nonnegative matrices, ρ̂(A) cannot be too large. For example, if A ∈
R10000×10000
+ and eA can be represented by IEEE-754 double precision floating point

numbers, then ρ̂(A)≤ ρ(A)≤ ln10000+ lnRmax < 719.

Therefore the matrix exponential problem is always well-conditioned for nonneg-
ative matrices, under the assumption that eA does not cause overflow. For essentially
nonnegative matrices, the problem can become more difficult. If we further require
that es(A) does not cause underflow (i.e., es(A) > Rmin), the problem is still reasonably
well-conditioned. Some difficult problems, e.g., when eA overflows or |s(A)| is large,
are beyond the scope of this paper.

3 Algorithms

3.1 Lower bound algorithm

We know that the Maclaurin series expansion of ex up to the m-th order is

Tm(x) =
m

∑
k=0

xk

k!
= 1+ x+ · · ·+ xm−1

(m−1)!
+

xm

m!
. (3.1)

Let Rm(x) = ex−Tm(x) be the remainder term. For given positive integers m, n and an
essentially nonnegative matrix A, we define

Lm,n(A) = es(A)Tm

(Â
n

)n
. (3.2)

Some traditional Taylor series methods (e.g., see [6, 15]) use Lm,n(A) as an approxi-
mation of eA, with the truncation order m determined by an à posteriori estimate

(Â/n)m

m!

[
I− Â

n(m+1)

]−1

≤ τ ·Tm

(Â
n

)n
,

where τ is the desired accuracy. Some other popular methods use Padé approximation
instead of truncated Taylor series after the scaling phase. The scaling and squaring
phase can accelerate the convergence and hence reduce the computational cost. Most

62

3. Algorithms

of these methods usually treat the scaling and squaring phase as a separate prepro-
cessing step and focus on the Taylor/Padé approximation. To keep the rounding error
small, the scale factor n is chosen as small as possible once it can guarantee the conver-
gence (e.g., ρ(A)< n or ‖A‖< n). Since struct

(
Lm,n(A)

)
= struct

(
eA
)

is a necessary
condition for attaining componentwise accuracy, O(N) matrix multiplications are nec-
essary in some cases (e.g., when A is narrow banded), even if the desired accuracy is
as modest as 10−1. We try to analyze (3.2) from another point of view and derive a
more efficient approach.

Recall that etA is the solution of the ordinary differential equation

dX(t)
dt

= AX(t), X(0) = I. (3.3)

If we apply Euler’s method with step size h = 1/n to (3.3), the approximated solu-
tion at t = 1 is X(1)≈ (I+A/n)n = L1,n(A). Theoretically, the approximated solution
tends to eA by reducing the step size, i.e., limn→∞(I +A/n)n = eA. If we rewrite X(1)
as eA =

(
eA/n

)n ≈ (I +A/n)n, it implies that once n is large enough, the first order
approximation of eA/n can be sufficient even though it might not have any relative ac-
curacy. Although Euler’s method always suffers from rounding errors when the step
size is small, it still suggests that the accuracy requirement of the approximation to
eA/n becomes lower by increasing the scale factor n. This is a subtle but important fea-
ture of the scaling and squaring method. Not surprisingly, we can expect higher order
truncation in (3.1) provides better approximations to eA. Likely with a less aggressive
truncation order m, the overscaling problem in Euler’s method can be avoided. We
will see later that once m is appropriately chosen, this aggressively truncated Taylor
series method is more efficient than the traditional Taylor series method. To gain more
insight, we first prove the following lemma.

Lemma 3.1. If A ∈ RN×N is essentially nonnegative, then for any positive integers m
and n we have

lim
n→∞

Lm,n(A) = lim
m→∞

Lm,n(A) = eA. (3.4)

Furthermore, the truncation error is bounded by

es(A)/n Âm+1

nm(m+1)!
Lm,n(A)

n−1
n ≤ eA−Lm,n(A)≤

Âm+1

nm(m+1)!
eA. (3.5)

Proof. Notice that (3.4) is an immediate consequence of (3.5). Therefore, it is enough
to verify (3.5) only. Firstly,

eA−Lm,n(A) = es(A)

[
eÂ−Tm

(Â
n

)n
]
= es(A)Rm

(Â
n

)n−1

∑
k=0

e
k
n ÂTm

(Â
n

)n−1−k
.

Since
(Â/n)m+1

(m+1)!
≤ Rm

(Â
n

)
≤ (Â/n)m+1

(m+1)!
eÂ/n

63

Paper III

and

Tm

(Â
n

)
≤ eÂ/n,

we obtain

Âm+1

nm(m+1)!
Lm,n(Â)

n−1
n ≤ eÂ−Lm,n(Â)≤

Âm+1

nm(m+1)!
eÂ,

which is equivalent to (3.5).

Lemma 3.1 confirms the convergence of Lm,n(A) and provides an estimate of the
convergence rate. In most existing methods, a fixed n is chosen and m is usually
large. On the other hand, if we fix m and choose a large n, it leads to the aggressively
truncated Taylor series method. But so far the truncation error of each entry is still un-
clear. To ensure the componentwise accuracy of the truncated Taylor approximation,
we need another lemma.

Lemma 3.2. [25] Let A ∈ RN×N
+ . Then

AeA ≤ [N−1+ρ(A)]eA.

The coefficient in the right hand side is the condition number C(A) (2.2) of the
matrix exponential. Actually Theorem 2.1 is derived from this lemma [25]. A direct
corollary of Lemma 3.2 is that f (A)eA ≤ f [C(A)]eA if f (x) = ∑∞

k=0 akxk has nonneg-
ative coefficients (i.e., ak ≥ 0 for k = 0, 1, . . .) and C(A) is less than the radius of
convergence of f (x). By combining Lemma 3.1 and Lemma 3.2 together, we obtain
the componentwise truncation error estimate as follows.

Theorem 3.3. Let A ∈ RN×N be an essentially nonnegative matrix. Then for any
positive integers m and n, we have

0≤ eA−Lm,n(A)≤
C(A)m+1

nm(m+1)!
eA. (3.6)

Another interesting fact is that Lm,n(A) has some monotonic properties. It is not
difficult to verify that

Lm,n(A)≤ Lm+1,n(A) and Lm,n(A)≤ Lm,2n(A). (3.7)

These inequalities naturally imply that the accuracy can be improved by increasing
either m or n. The error bound provided in Theorem 3.3 has the same asymptotic
monotonicity. We also conjecture that

Lm,n(A)≤ Lm,n+1(A), (3.8)

but it is currently not clear how to prove this inequality.
Theorem 3.3 offers an à priori componentwise error estimate. Although the error

bound based on Lemma 3.2 is often an overestimate especially when n is small, we

64

3. Algorithms

m

lo
g

2
n

log
10

(C
m+1

/[n
m

(m+1)!]), C=32

5 10 15 20

5

10

15

20 −15

−10

−5

0

m

lo
g

2
n

log
10

(C
m+1

/[n
m

(m+1)!]), C=128

5 10 15 20

5

10

15

20 −15

−10

−5

0

m

lo
g

2
n

log
10

(C
m+1

/[n
m

(m+1)!]), C=512

5 10 15 20

5

10

15

20 −15

−10

−5

0

m

lo
g

2
n

log
10

(C
m+1

/[n
m

(m+1)!]), C=2048

5 10 15 20

5

10

15

20 −15

−10

−5

0

FIGURE 1: Sample values of C(A)m+1/[nm(m+1)!].
The color is a one to one correspondence with log10

[
C(A)m+1/[nm(m+1)!]

]
.

Cool(blue) values correspond to small truncation errors, whereas warm(red) values
correspond to large errors.

are still able to find out some clues about how to choose m and n. Figure 1 shows
some sample values of the constant in (3.6), where C(A) = 32, 128, 512, and 2048,
respectively. The computational cost for evaluating Lm,n(A) as defined in (3.2) is
roughly m+ log2 n matrix multiplications. If we would like to approximately minimize
the computational cost, it is sensible to choose the tangent line with slope equals one
and pick the point of tangency on the contour line.

Remark 2. From the plots in Figure 1, the optimal value (for the worst case) of both
m and log2 n are of the magnitude 101 for a wide range of matrices. Preferable values
on m and log2 n are close to the boundary of the blue area.

Some similar suggestions for choosing m and n have been proposed in [15] based
on normwise accuracy. Here we conclude that both m and log2 n are still small even if
componentwise accuracy is desired. For example, if m≈ 10 is chosen, n≈ 215 is usu-
ally sufficient for attaining double precision accuracy which indicates that overscaling
never occurs in practice. Moreover, both Theorem 3.3 and the rounding error analysis

65

Paper III

for repeated squaring are pessimistic [15], the true error can be even smaller.
Let τ denote the desired accuracy provided by the user. In practice, if a good

estimate of ρ̂(A) is available (e.g., via the power method), we can apply the à priori
estimate

C(A)m+1

nm(m+1)!
≤ τ (3.9)

to choose m and n. The appropriate values can be easily found by simply enumerating
over m and log2 n. Otherwise, the à posteriori error estimate

Âm+1

nm(m+1)!
Tm

(Â
n

)n
≤ τ

1+2τ
Tm

(Â
n

)n
(3.10)

can be used as the stopping criterion. With the extra assumption that

C(A)m+1

nm(m+1)!
≤ 1

2
,

which is reasonably easy to fulfill (since by definition, C(A)≤N−1+ lnN+ lnRmax−
s(A)), we obtain

1
2

eÂ ≤ Tm

(Â
n

)n
.

Then from (3.10) and Lemma 3.1 we conclude that

eÂ−Tm

(Â
n

)n
≤ Âm+1

nm(m+1)!
eÂ≤ 2Âm+1

nm(m+1)!
Tm

(Â
n

)n
≤ 2τ

1+2τ
Tm

(Â
n

)n
≤ 2τ

1+2τ
eÂ.

Repeating the same procedure with the new bound, we eventually obtain

eÂ−Tm

(Â
n

)n
≤ Âm+1

nm(m+1)!
eÂ ≤ 1

1− 2τ
1+2τ

Âm+1

nm(m+1)!
Tm

(Â
n

)n
≤

τ
1+2τ

1− 2τ
1+2τ

eÂ = τeÂ.

The error bound is roughly reduced by half by the careful analysis. Sometimes this
might have some potential benefit to reduce the computational cost also since either
m or n can be chosen a bit smaller. Even if (3.10) is not satisfied for a given choice of
(m,n), say

εm,n = min

{
ε :

Âm+1

nm(m+1)!
Tm

(Â
n

)n
≤ εTm

(Â
n

)n
}

>
τ

1+2τ
,

it also useful to find out the possible choice of m and n. For example, we can expect
εm,2n ∼ 2−mεm,n when εm,n < 1 because the convergence rate provided in Lemma 3.1
is reasonably accurate. This kind of heuristics often leads to the appropriate values
rapidly. The typical situation in practice is that suitable values of m and n can be
found immediately after an initial guess.

66

3. Algorithms

Remark 3. If eAv (for some vector v ≥ 0) instead of eA is of interest, the stopping
criterion can be changed to

Âm+1

nm(m+1)!
Tm

(Â
n

)n
v≤ τ

1+2τ
Tm

(Â
n

)n
v,

which might be easier to satisfy than (3.10).

Remark 4. Sometimes eA contains very tiny nonzero entries which are less than or
close to Rmin. For example, when A is symmetric and banded, the magnitude of off-
diagonal entries in eA decay rapidly along with the distance to the main diagonal since
ex is smooth [3]. Therefore it is advisable to have another absolute tolerance τ0 to
avoid unfeasible accuracy requirements on these tiny entries.

The difference between true zeros and underflows can be distinguished by calculat-
ing struct [(I +B)n], where n = 2dlog2 Ne and B is a binary matrix satisfying struct(B) =
struct(A).

In principle the previous discussions are valid for any choice of m and n. We pro-
pose Algorithm 1 as an example of the aggressively truncated Taylor series method,
i.e., fix m and find a proper n. This strategy that m is fixed is similar to some Padé
methods (e.g., [11, 21]). Compared to the traditional Taylor series method, an advan-
tage of fixing m is that there are cheaper alternatives for evaluating Tm(X) (see, e.g.,
[11, 26]). For example,

T6(X) =

(
I +X +

X2

2!

)
+X3

(
I
3!

+
X
4!

+
X2

5!
+

X3

6!

)
,

T7(X) =

(
I +

X2

2!
+

X4

4!
+

X6

6!

)
+X

(
I +

X2

3!
+

X4

5!
+

X6

7!

)
.

(3.11)

They both require two less matrix multiplications than the naive approach. The refor-
mations in (3.11) are superior even taking into account the further cost for à posteriori
error estimate. The upper bound of computational cost for 1≤m≤ 21 is summarized
in [11]. If the same idea is applied to traditional Taylor series methods, the à priori
estimate of convergence rate becomes crucial; the algorithm will become very compli-
cated too. Combining this observation with the previous discussions about balancing
between m and n, it is advisable to use, e.g., m = 9 or 12, for IEEE double precision
arithmetic. Taking into account the overscaling issue, we recommend that m = 13 is
used so that n = 4C(A) is sufficient for N ≤ 2048. Hence we have a good control of
the scale factor.

From the viewpoint of computational cost, actually there exist other advantages
beyond the trick for polynomial evaluation. An upper bound of the computational
cost for Algorithm 1 is 2(m+ log2 n)N3 = O(N3 logn) for each iteration when N is
large. Once the algorithm has successfully achieved the desired accuracy, it implies
that

[N−1+ ρ̂(A)]m+1

nm(m+1)!
= O(τ).

67

Paper III

We have already seen in Section 2 that ρ̂(A) cannot grow as rapid as N does. Thus
we obtain logn = O(logN), although n can be much greater than N. Another im-
portant fact is that very typically the appropriate choice of n is predictable since the
convergence rate is known.

Remark 5. Usually at most three iterations are enough in Algorithm 1. Therefore the
computational cost is roughly O(N3 logN) which is not much more expensive than
other O(N3) algorithms.

The complexity is especially attractive compared to that of the traditional Taylor
series method when τ is large. Very often only four correct digits are of interest, i.e.
τ = 10−4. In this case the traditional method still needs at least O(N4) operations to
guarantee the convergence while the new method can accept a much smaller choice of
n and is hence much cheaper.

Algorithm 1 Lower Bound Algorithm for eA, with A essentially nonnegative

Require: Â ∈ RN×N
+ , m ∈ N, τ > u, τ0 > Rmin, MAXITER ∈ N

(optional) balancing (see Section 3.4)
k←

⌈
log2

(
N +max{Â(i, i)}

)⌉
+1

ε ← τ +1, ε0← ε
while ε0 ≥ ε ≥ τ

1+2τ and k ≤ MAXITER do
n← 2k, ε0← ε
L← Lm,n(A)

W ← n(Â/n)m+1

(m+1)!
L

ε ←max
{

W (i, j)
L(i, j)

: W (i, j)≥ ττ0

}

k← k+
1
m

log2(ε/τ)
end while
E← L
if ε ≥ τ then

Report failure
end if
(optional) reversed balancing

3.2 Upper bound algorithm

We have already seen that L1,n(A) = (I+A/n)n can be interpreted as the approximated
solution of (3.3) provided by forward Euler’s method. Similarly, the backward Euler’s
method yields (I−A/n)−n, which is an upper bound of eA when A is essentially non-

68

3. Algorithms

negative. To generalize the upper bound to higher order methods, we define

T̃m(x) = Tm−2(x)+
xm−1

(m−1)!

(
1− x

m

)−1

= 1+ x+ · · ·+ xm

m!
+

xm+1

m!m
+

xm+2

m!m2 + · · ·

and

Um,n(A) = es(A)T̃m

(Â
n

)n
. (3.12)

Here T̃m(x) can also be interpreted as a non-diagonal Padé approximant of ex. The
(absolute value of) corresponding remainder is denoted as

R̃m(x) = T̃m(x)− ex.

Then for an essentially nonnegative matrix A with ρ̂(A) < mn, R̃m(A) ≥ 0, we have
Um,n(A)≥ eA. Similar to the lemmas for Lm,n(A), we are able to obtain some conclu-
sions for Um,n(A).

Lemma 3.4. If A ∈ RN×N is essentially nonnegative, then for positive integers m and
n satisfying mn > ρ̂(A), we have

lim
n→∞

Um,n(A) = lim
m→∞

Um,n(A) = eA. (3.13)

Furthermore, if m > 2, the truncation error is bounded by

es(A)/n Âm+1

nm(m+1)!m
e

n−1
n A≤Um,n(A)−eA≤ es(A)/n Âm+1

nm(m+1)!m

(
I− Â

mn

)−1
Um,n(A)

n−1
n .

(3.14)

The componentwise estimate is also available; but we need a different approach.
Notice that for any nonnegative matrix X , we have

eX ≤ T̃m(X) = eX + R̃m(X)≤ eX [I + R̃m(X)],

and then

T̃m

(X
n

)n
− eX ≤

[(
I + R̃m

(X
n

))n

− I
]

eX ≤
[(

1+ R̃m

(C(X)

n

))n

−1
]

eX .

For an essentially nonnegative matrix A, it is sufficient to verify that

Um,n(A)− eA = es(A)
[
Um,n(Â)− eÂ

]
.

Hence we obtain the following theorem.

Theorem 3.5. Let A ∈ RN×N be an essentially nonnegative matrix. Then for any
positive integers m and n satisfying mn >C(A), we have

0≤Um,n(A)− eA ≤
[(

1+ R̃m

(C(A)
n

))n

−1
]

eA. (3.15)

69

Paper III

Notice that

R̃m(x)∼
xm+1

(m+1)!m
,

then once R̃m
(
C(A)/n

)
is small, we have

[(
1+ R̃m

(C(A)
n

))n

−1
]

eA ∼ C(A)m+1

nm(m+1)!m
eA,

which is similar to (3.6) in Theorem 3.3.
Similar to the lower bound, Um,n(A) has the monotonicity property

Um,n(A)≥Um+1,n(A) and Um,n(A)≥Um,2n(A), (3.16)

which can be verified by comparing the corresponding coefficients in the Maclaurin
series. In analogy to (3.8), we conjecture

Um,n(A)≥Um,n+1(A). (3.17)

Choosing appropriate values for m and n is similar and in some sense simpler
compared to that for the lower bounds. If a good estimate of ρ̂(A) is available, we can
apply the à priori estimate

(
1+ R̃m

(C(A)
n

))n

−1≤ τ. (3.18)

Otherwise, we can use either

Âm+1

nm(m+1)!m

(
I− Â

mn

)−1
T̃m

(Â
n

)n−1
≤ τ

1+ τ
T̃m

(Â
n

)n
(3.19)

or
Âm+1

nm(m+1)!m

(
I− Â

mn

)−1
T̃m

(Â
n

)n
≤ τ

1+ τ
T̃m

(Â
n

)n
(3.20)

as an à posteriori estimate. If (3.19) is used, it is advisable to choose n = 2k + 1
instead of n = 2k so that evaluating T̃m(Â/n)n−1 does not require extra cost. Both
inequalities (3.19) and (3.20) imply that

T̃m

(Â
n

)n
− eÂ ≤ τeÂ.

A notable difference between Um,n(A) and Lm,n(A) is that the matrix inverse is
needed for evaluating the upper bound. Since I− Â/(mn) is an M-matrix, its inverse
can be calculated accurately using GTH-type algorithms [1]. Actually by increasing
the scaling, [I− Â/(2mn)]−1 can be safely computed even by standard Gaussian elim-
ination without pivoting because it is always well-conditioned in the sense of compo-
nentwise perturbation (see Lemma 4.4). The subtractions on the diagonal never cause
serious cancellation and can be interpreted as small relative backward errors. Both
GTH-type algorithms and Gaussian elimination can adopt block variants so that most
computational work is done in Level 3 BLAS. This feature is useful when the perfor-
mance is important. Algorithm 2 implements an upper bound computation similar to
Algorithm 1.

70

3. Algorithms

Algorithm 2 Upper Bound Algorithm for eA, with A essentially nonnegative

Require: Â ∈ RN×N
+ , m ∈ N, τ > u, τ0 > Rmin, MAXITER ∈ N

(optional) balancing (see Section 3.4)
k←

⌈
log2

(
N +max{Â(i, i)}

)⌉
+1

ε ← τ +1, ε0← ε
while ε0 ≥ ε ≥ τ

1+τ and k ≤ MAXITER do
n← 2k, ε0← ε
Try U ←Um,n(A)
if ρ̂(A)≥ mn then

W ← n(Â/n)m+1

(m+1)!m

(
I− Â

mn

)−1
U

ε ←max
{

W (i, j)
U(i, j)

: U(i, j)≥ τ0

}

k← k+
1
m

log2(ε/τ)
else

k← k+1
end if

end while
E←U
if ε ≥ τ then

Report failure
end if
(optional) reversed balancing

3.3 Interpolation and interval algorithms with improved accuracy

In this section, we present interpolation algorithms based on the upper and lower
bounds with potentially improved accuracy. In addition, we present a novel high ac-
curacy interval-type algorithm based on these bounds.

Sometimes both an upper bound and a lower bound of eA or eAv (for some vec-
tor v ≥ 0) are of interest. Certainly we are able to apply Algorithm 1 and Algo-
rithm 2 separately to obtain these bounds. But we expect more useful outputs by
merging them. Notice that Um,n(A)−Lm,n(A) =

[
Um,n(A)− eA

]
+
[
eA−Lm,n(A)

]
, so

the difference between the upper bound and the lower bound is also componentwise
small compared to eA. Thus we obtain a simpler à posteriori error estimate if both
Lm,n(A) and Um,n(A) have already been calculated. In principle, any matrix X satis-
fying Lm,n(A) ≤ X ≤Um,n(A) is a good approximation of eA when both bounds are
sufficiently accurate. We can expect an (m+1)-th order approximation by interpolat-
ing between Lm,n(A) and Um,n(A). Similar to the proofs of Lemma 3.1 and Lemma 3.4,
it is straightforward to show

lim
x→0

ex−Tm(x/n)n

xm+1 = m lim
x→0

T̃m(x/n)n− ex

xm+1 =
1

nm(m+1)!
.

71

Paper III

Therefore
Em,n(A) =

m
m+1

Um,n(A)+
1

m+1
Lm,n(A)

is an (m+1)-th order approximation of eA. The interpolation can also be interpreted
as a weighted average. A formal conclusion is stated in the following theorem.

Theorem 3.6. Let A ∈ RN×N be essentially nonnegative and let m, n be positive inte-
gers satisfying mn >C(A). Then

0≤ Em,n(A)− eA ≤ m
m+1

[(
1+ R̃m

(C(A)
n

))n

−1+
C(A)m+2−C(A)m+1

nm(m+1)!m

]
eA.

(3.21)

Proof. Without loss of generality, we can assume A ≥ 0. From Lemma 3.1 and
Lemma 3.4 we have

Em,n(A)− eA =
m

m+1
[
Um,n(A)− eA]+ 1

m+1
[
Lm,n(A)− eA]

≥ 1
m+1

[
mR̃m

(A
n

)
−Rm

(A
n

)]
e

n−1
n A.

Notice that

mR̃m(X)−Rm(X) =
∞

∑
k=1

[
1

m!mk−1 −
m+1

(m+ k)!

]
Xm+k ≥ 0

holds for any nonnegative matrix X , and therefore we obtain

Em,n(A)− eA ≥ 0.

On the other hand,

Lm,n(A)− eA ≤− Am+1

nm(m+1)!

=
Am+1

nm(m+1)!
(
eA− I

)
− Am+1

nm(m+1)!
eA

≤ Am+2−Am+1

nm(m+1)!
eA.

Therefore

Em,n(A)− eA

≤ m
m+1

[(
1+ R̃m

(A
n

))n

−1+
Am+2−Am+1

nm(m+1)!m

]
eA

≤ m
m+1

[(
1+ R̃m

(C(A)
n

))n

−1+
C(A)m+2−C(A)m+1

nm(m+1)!m

]
eA,

72

3. Algorithms

based on the fact that
[
1+ R̃m

(x
n

)]n
−1− xm+1

nm(m+1)!m

has nonnegative coefficients in its Maclaurin expansion.

Remark 6. From the definition of T̃m(x), we are able to see that the terms up to or-
der m− 2 are shared when evaluating Tm(Â/n) and T̃m(Â/n) simultaneously. This
observation is also valid for some alternative approaches such as (3.11).

In applications [13] where accurate bounds are extremely important, it is advisable
to switch the rounding modes during the calculation so that

fl[Lm,n(A)]≤ Lm,n(A)≤ eA ≤Um,n(A)≤ fl[Um,n(A)] (3.22)

is guaranteed regardless of rounding errors. We will prove this property in the next
section. In this case Lm,n(A) and Um,n(A) need to be calculated separately and no
computational cost can be saved. This approach can indeed be seen as an interval
algorithm [16] but without any explicit use of interval arithmetic. The interpolation
step can still be applied although fl[Em,n(A)] is not guaranteed to be another upper
bound of eA. The complete algorithm is summarized as Algorithm 3 which provides
both lower and upper bounds and a higher order approximation in between. Because
of (3.22), this algorithm is more reliable in practice than Algorithm 1 and Algorithm 2
but it is also more costly.

3.4 Essentially nonnegative matrices

In the previous discussions, all definitions and conclusions are valid for essentially
nonnegative matrices. The key technique is to shift the matrix to a nonnegative matrix
so that some properties of completely monotonic functions and Lemma 3.2 can be
applied. Some extra care must be taken during the shifting. If we compute eÂ and es(A)

straightforwardly, it is possible that eÂ causes overflow but es(A) is small enough so
that the desired result eA is still representable with floating point numbers. Therefore
shifting needs to be handled carefully when s(A)< 0. Since

eA =
(
eA/n)n

=
(

es(A)/neÂ/n
)n

,

the shift s(A)/n might be safe if n is large enough. The same observation can also be
applied to Lm,n(A) and Um,n(A), i.e.,

Lm,n(A) =
[

es(A)/nTm

(Â
n

)]n

, (3.23)

Um,n(A) =
[

es(A)/nT̃m

(Â
n

)]n

. (3.24)

By applying the scaling before shifting, we are most likely able to avoid unnecessary
overflow. This trick is commonly used in computations of Markov models (e.g., see

73

Paper III

Algorithm 3 Interval Algorithm for eA, with A essentially nonnegative

Require: Â ∈ RN×N
+ , m ∈ N, τ > u, τ0 > Rmin, MAXITER ∈ N

(optional) balancing (see Section 3.4)
k←

⌈
log2

(
N +max{Â(i, i)}

)⌉
+1

ε ← τ +1, ε0← ε
L← A, U ← ∞
while ε0 ≥ ε ≥ τ and k ≤ MAXITER do

n← 2k, ε0← ε
L←max

{
L, fl[Lm,n(A)]

}

(Try) U ←min
{

U, fl[Um,n(A)]
}

ε ←max
{

U(i, j)−L(i, j)
L(i, j)

: U(i, j)≥ τ0

}

k← k+
1
m

log2(ε/τ)
end while
E← 1

m+1
L+

m
m+1

U

if ε ≥ τ then
Report failure

end if
(optional) reversed balancing

[17, 26]). Moreover, we suggest that the shifting strategies (3.23) and (3.24) are al-
ways used even for A≥ 0 since some entries of eÂ might underflow. In case that |s(A)|
is extremely large so that n has to be large to avoid overflow/underflow, we conclude
from Section 2 that the condition number of the problem is also large. Such problems
need special attention, and are not investigated in this paper.

Balancing is another commonly used technique for computing the matrix expo-
nential, and can be applied in all the algorithms discussed in this section. It helps
slightly to improve the accuracy when summing up poorly scaled numbers. Notice
that balancing cannot reduce ρ̂(A) so it does not help reducing the condition number
and computational cost. We provide balancing as an optional step. For essentially
nonnegative matrices, since ‖A‖∞ can be reduced by balancing, the technique can
help avoiding potential overflow/underflow. Although balancing is not always safe for
some eigenvalue problems [22], extensive numerical experiments in [18] show that it
is unlikely to be harmful when computing matrix functions.

4 Rounding Error Analysis

In this section we provide error bounds taking into account effects of finite precision
arithmetic. The bounds usually overestimate the errors in practice; their main purpose
is to provide the evidence for the forward stability of the algorithms. If there are no

74

4. Rounding Error Analysis

overflows or (gradual) underflows in the calculation, the rounding error is modeled by

fl(a◦b) = (a◦b)(1+ ε), |ε| ≤ u, (4.1)

where “◦” is +, −, ×, or ÷. We further assume that N2u� 1, which is a reasonable
requirement in practice, so that all O(u2) terms are negligible.

Firstly, the matrix polynomial Tm(A/n) can be computed stably. It is not difficult
to prove the following conclusion by induction.

Lemma 4.1. If A ∈ RN×N
+ , then for any positive integers m and n, we have

∣∣∣∣fl
[

Tm

(A
n

)]
−Tm

(A
n

)∣∣∣∣≤
[
(m+1)(N +2)u+O(u2)

]
Tm

(A
n

)
.

For the scaling procedure, the following lemma is slightly modified from Theo-
rem 4.9 in [2]. It is well-known that squaring is the most dangerous step in the whole
algorithm since the error can grow quickly. The error bound for repeated squaring is
almost attainable in the worst case. However, the error estimate is usually too pes-
simistic, especially when there are no significant cancellations during this procedure.
We have already seen in Section 3 that sometimes perturbations in a nonnegative ma-
trix B can even decay during the repeated squaring process. The full understanding
of the squaring phase is still an open problem [15]. It is good to keep in mind that
repeated squaring can be dangerous, but that this is not always the case.

Lemma 4.2. Let ∆B ∈RN×N be the perturbation of a nonnegative matrix B satisfying
|∆B| ≤ εB for some 0≤ ε < (100N)−1. Then for n = 2k, we have

∣∣fl
[
(B+∆B)n]−Bn∣∣≤

[
n(N + ε)u+O(εu+u2)

]
Bn.

By substituting Lemma 4.1 into Lemma 4.2, we obtain the rounding error for
Algorithm 1. A similar theorem can be found in [8].

Theorem 4.3. Let A be an N ×N essentially nonnegative matrix and let m, n be
positive integers satisfying eA−Lm,n(A)≤ τeA. Then

∣∣fl[Lm,n(A)]− eA∣∣≤
[
τ +n(m+2)(N +2)u+O(u2)

]
eA.

To obtain the rounding error for Um,n(A), the inverse of the M-matrices is the only
different part compared to Lm,n(A). Let M be an N×N nonsingular M-matrix with
the Jacobi splitting M = D−F where D is diagonal and F has zero diagonal entries.
Then Lemma 4.4 characterizes the sensitivity of M−1 by γ = ρ

(
D−1F

)
. Once mn >

2ρ̂(A), M = I− Â/(mn) is a well-conditioned nonsingular M-matrix with γ < 1/2.
Moreover, the LU factorization of M satisfies s(U) ≥ 1/2. This indicates that M−1

can be calculated componentwise accurately via standard Gaussian elimination. The
error bound is given by Lemma 4.5.

Lemma 4.4. [24] Assume M is an N×N nonsingular M-matrix. Let ∆M be a pertur-
bation to M satisfying |∆M| ≤ ε |M| where 0≤ ε < (1− γ)/(1+ γ). Then we have

∣∣(M+∆M)−1−M−1∣∣≤
(

2− γ
1− γ

Nε +O(ε2)

)
M−1.

75

Paper III

Lemma 4.5. Let B ∈ RN×N
+ satisfying ρ(B) < 1/2. Then the inverse of M = I−B

calculated by standard Gaussian elimination without pivoting satisfies
∣∣fl
(
M−1)−M−1∣∣≤

[
(15N2 +5N +2)u+O(u2)

]
M−1.

Sketch of Proof. First, we state that the LU factorization of M satisfies

|fl(L) fl(U)−M| ≤
[
4.01Nu+O(u2)

]
|M| .

This conclusion can be proven by induction. We remark that during the proof we rely
on the fact that the Schur complement satisfies

|M22|+M21M−1
11 M12 ≤ 3

∣∣M22−M21M−1
11 M12

∣∣ ,

based on the assumption ρ(B)< 1/2. Then from Lemma 4.4 we obtain
∣∣∣
[
fl(L) fl(U)

]−1−M−1
∣∣∣≤
[
3N(4.01N +1)u+O(u2)

]
M−1.

It is well-known that the inverse of triangular M-matrices can be calculated accurately
using the back substitution method. The componentwise relative error is bounded by
(N2 +N +1)u+O(u2) (see [9, 23]). Therefore we have

∣∣fl
(
M−1)−M−1∣∣

≤
∣∣∣
[
fl(L) fl(U)

]−1−M−1
∣∣∣+
∣∣∣fl
[
[fl(L) fl(U)]−1]−

[
fl(L) fl(U)

]−1
∣∣∣

≤
[
(12.03N2 +3N)u+2(N2 +N +1)u+O(u2)

]
M−1.

Then we are able to obtain the rounding error for Um,n(A) similar to Theorem 4.3.

Theorem 4.6. Let A be an N ×N essentially nonnegative matrix and let m, n be
positive integers satisfying mn > 2ρ̂(A) and Um,n(A)− eA ≤ τeA. Then

∣∣fl[Um,n(A)]− eA∣∣≤
[
τ +n(m+15N)(N +2)u+O(u2)

]
eA.

If true bounds of eA are required, we need to switch the rounding modes during
the calculation to achieve this goal. The rounding error can be modeled as

fl(a◦b) = (a◦b)(1− ε1), fl(a◦b) = (a◦b)(1+ ε2), 0≤ ε1,ε2 ≤ 2u.

We are still able to use the standard rounding model (4.1) by setting 2u as the machine
epsilon. Therefore all previous conclusions are still valid for the interval algorithm.
Then we only need to verify the property (3.22). Obviously, fl[Lm,n(A)] ≤ Lm,n(A) is
easy to be satisfied by simply switching the rounding mode to round towards−∞. For
the upper bound, the tricky part is to achieve fl

(
M−1

)
≥M−1, where M = I−A/(mn)

is an M-matrix. For example, GTH-type algorithms [1] do not have this property.
Firstly, fl(M) is obtained by fl(M) =− fl

[
fl[A/(mn)− I]

]
≤M. Consider one step

of Gaussian elimination for calculating the LU factorization

M =

[
M11 M12
M21 M22

]
=

[
1

L21 I

][
M11 M12

S22

]
,

76

5. Numerical Experiments

where S22 is the Schur complement. The factorization can be computed via

fl(L21) =− fl(|L21|) =− fl
[

fl(|M21|)
fl(M11)

]
≤ L21,

fl(S22) =− fl
[
fl(|L21|) fl(|M12|)− fl(M22)

]
≤ S22.

By applying the same procedure recursively to S22, we are able to conclude that the
LU factorization M = LU satisfies

fl(L) = fl(L)≤ L, fl(U) = fl(U)≤U.

Suppose M−1 is computed by solving two triangular linear systems under the rounding
mode to round towards +∞, the solution satisfies

fl
(
M−1)≥ fl(U)−1 fl(L)−1 ≥U−1L−1 = M−1.

The conclusion can be generalized to block LU factorization and some algorithmic
variants for computing M−1 as long as fl(L) and fl(U) are true bounds of L and U ,
respectively. Therefore if the actual upper bound is important, we prefer standard
Gaussian elimination rather than GTH-type algorithms. In practice all calculations
can be done without switching the rounding mode (under the rounding mode to round
towards +∞).

The error bounds presented in this section confirm the componentwise accuracy
of the algorithms proposed in Section 3. Although Algorithm 3 can always produce
reliable solutions regardless of roundoff, the rounding error analysis still proves that
the interval algorithm does not severely overestimate the error. In practice the à poste-
riori error is usually better than the priori error based on truncation and rounding error
analysis.

5 Numerical Experiments

In this section, we present and discuss some experimental results. All experiments are
tested with Algorithm 3, implemented in C99. Matrix multiplications are performed
by the optimized GEMM routine from the GotoBLAS library; while other operations,
such as block LU factorization and solving triangular systems, are carefully coded
so that they are not ruined by the compiler. For the parameter setting, we choose
m = 7 as the truncation order. It is relatively small compared to the recommended
value (m = 13) so that we are able to see that “overscaling” is not too harmful in
practice. The relative and absolute tolerances are set to τ = 1024Nu ≈ 2.3×10−13N
and τ0 = Rmin/u ≈ 1.0× 10−292, respectively. The maximum iteration number is
set to MAXITER = 52 which is more than needed. Balancing is not used in the ex-
periments to show that our algorithm is not sensitive to bad scaling in the original
matrix. The switching of rounding modes are done by the standard library function
fesetround(). As a comparison, we also run the same tests for MATLAB’s expm
function (version R2011b) which is an excellent general purpose solver. We choose

77

Paper III

eight test matrices which are commonly used. All entries in the exponentials can be
represented by normalized floating point numbers (i.e. no overflow or (gradual) un-
derflow).

Example 1. [6]

A =

[
−0.01 1015

0 −0.01+10−6

]
.

Example 2. [5, 6]

A =

−16 260 260 260

0 −16 260 260

0 0 −1 260

0 0 0 −1

 .

Example 3. [21] The 10×10 Forsythe matrix

A =

0 1
. . .

. . .

. . . 1
10−10 0

10×10

.

Example 4. [26] The 50×50 one-dimensional Laplacian matrix

A =−T50 =

−2 1

1
. . .

. . .
. . .

. . . 1
1 −2

50×50

.

Example 5. The 128×128 Jordan block with zero eigenvalues

A = J128(0) =

0 1
. . .

. . .

. . . 1
0

128×128

.

Example 6. [26] The adjacency matrix of a 2-nearest ring network of 200 nodes
with four extra shortcuts 16–30, 74–85, 90–128, 138–147, modelling a small-world
network. It is generated by smallw(200,2,0.03), where smallw.m is from the
MATLAB toolbox CONTEST1 [19].

Example 7. [26] The two-dimensional Laplacian matrix on a 42×42 grid with Dirich-
let boundary condition

A =−T40,40 =−(T40⊗ I40 + I40×T40).

1 CONTEST: http://www.mathstat.strath.ac.uk/research/groups/numerical analysis/contest

78

5. Numerical Experiments

TABLE 1: Componentwise relative errors of the test examples.
Matrix ID C(A) τ posteriori error log2 n #(iter) expm

1 ≈ 1 4.5×10−13 6.7×10−16 2 1 1.0×10−2

2 18 9.1×10−13 2.5×10−13 9 2 1.0×100

3 9.1 2.3×10−12 8.0×10−14 7 3 1.8×10−14

4 ≈ 51 1.1×10−11 2.7×10−12 10 2 2.6×106

5 127 2.9×10−11 9.7×10−12 11 2 9.7×1077

6 ≈ 203 4.5×10−11 3.6×10−11 9 2 1.8×107

7 ≈ 1603 3.6×10−11 1.7×10−11 11 1 4.2×106

8 2047 4.6×10−10 5.6×10−11 15 2 6.0×10−13

Example 8.

A = 1400× J2048(−1/2) =

−700 1400
. . .

. . .

. . . 1400
−700

2048×2048

.

The à posteriori error estimates for the testing examples are listed in Table 1. If
the exact solution is not known, we use the output of Algorithm 3 as the “accurate”
solution, since the à posteriori error for Algorithm 3, provided by itself, is always reli-
able regardless of rounding error. Algorithm 3 successfully solves all these problems
to desired accuracy, while MATLAB’s expm function only produces componentwise
accuracy for two of them. In fact, for Examples 1, 2 and 6, the normwise forward
errors of expm are also large (1.0×10−2, 1.0×100, and 3.7×10−1, respectively).

Example 5 is of our particular interest. The exact solution is known as

(
eA)(i, j) =

{
0, i > j,

1
(j−i)! , i≤ j,

whose nonzero entries are the coefficients in the Maclaurin series of ex. Algorithm 3
terminates successfully with n = 2048. Therefore the first 128 terms in the Maclaurin
series of T7

(
x/2048

)2048 and T̃7
(
x/2048

)2048 both agree with those terms in ex within
a relative error of 10−11. Since 1/128! < 2.6×10−216, the remaining terms are very
tiny. This is an intuitive way to understand why our method can always produce high
relative accuracy. Example 8 is a very challenging problem because the magnitude of
nonzero entries in the solution vary from 10−304 to 10302. Algorithm 3 still provides
componentwise accurate bounds for this extreme case. Interestingly, expm also does
a good job for this difficult example but fails for Example 5 which should be easier.
A brief explanation is that expm tries to avoid “unnecessary” scaling in Example 5
and thus loses the opportunity to recover small entries in the solution. For most ex-
amples Algorithm 3 uses two iterations since the estimate of proper n based on the
convergence rate is quite accurate. Example 3 requires one more iteration because the
second step produces slightly larger error than the estimated one due to roundoff.

79

Paper III

Remark 7. In practice m = 13 is recommended as the truncation order for double
precision floating point numbers. Algorithm 3 can solve most of these examples in
one iteration with this setting. But the convergence rate can be better understood with
a smaller truncation order since we need to predict the scale factor from an improper
initial guess.

6 Conclusions

Taylor expansions are usually not the first choice for calculating the exponentials of
general matrices. However, by carefully choosing the order of expansion and the scale
factor, it is preferred when the matrices are nonnegative. We make use of the nonnega-
tivity and establish accurate à priori estimates of the lower and upper bounds. We also
show that the weighted average of the bounds derives a higher-order approximation.
These theoretical results lead to different variations of the algorithms. Some simi-
lar techniques can also be applied to analyze the truncation error for Padé methods.
But how to accurately compute the Padé approximant is still a challenging problem.
Rounding error analysis ensures the stability of the proposed algorithms. The interval
algorithm also provides componentwise error estimates regardless of roundoff. We
tested these new algorithms with some commonly used matrices.

Acknowledgements

The authors would like to thank Bo Kågström and Daniel Kressner for fruitful discus-
sions and constructive comments and proposals.

References

[1] A. S. Alfa, J. Xue, and Q. Ye. Accurate computation of the smallest eigenvalue
of a diagonally dominant M-matrix. Math. Comp., 71(237):217–236, 2002.

[2] M. Arioli, B. Codenotti, and C. Fassino. The Padé method for computing the
matrix exponential. Linear Algebra Appl., 240:111–130, 1996.

[3] M. Benzi and G. H. Golub. Bounds for the entries of matrix functions with
applications to preconditioning. BIT, 39(3):417–438, 1999.

[4] B. Codenotti and C. Fassino. Error analysis of two algorithms for the computa-
tion of the matrix exponential. Calcolo, 29(1):1–31, 1992.

[5] P. I. Davies and N. J. Higham. A Schur-Parlett algorithm for computing matrix
functions. SIAM J. Matrix Anal. Appl., 25(2):464–485, 2003.

[6] L. Deng and J. Xue. Accurate computation of exponentials of triangular essen-
tially non-negative matrices. J. Fudan University (Natural Science), 50(1):78–
86, 2011.

80

References

[7] E. Estrada and D. J. Higham. Network properties revealed through matrix func-
tions. SIAM Rev., 52(4):696–714, 2010.

[8] C. Fassino. Computation of Matrix Functions. PhD thesis, University of Pisa,
1993.

[9] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.

[10] N. J. Higham. Functions of Matrices: Theory and Computation. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[11] N. J. Higham. The scaling and squaring method for the matrix exponential re-
visited. SIAM Rev., 51(4):747–764, 2009.

[12] B. Kågström. Bounds and perturbation bounds for the matrix exponential. BIT,
17(1):39–57, 1977.

[13] R. B. Kearfott and V. Kreinovich, editors. Applications of Interval Computations,
volume 3 of Applied Optimization. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1996.

[14] C. S. Kenney and A. J. Laub. A Schur-Fréchet algorithm for computing the
logarithm and exponential of a matrix. SIAM J. Matrix Anal. Appl., 19(3):640–
663, 1998.

[15] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49, 2003.

[16] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2009.

[17] R. B. Sidje. Inexact uniformization and GMRES methods for large Markov
chains. Numer. Linear Algebra Appl., 18:947–960, 2011.

[18] M. Stadelmann. Matrixfunktionen — Analyse und Implementierung. Master’s
thesis, ETH Zürich, 2009.

[19] A. Taylor and D. J. Higham. CONTEST: A controllable test matrix toolbox for
MATLAB. ACM Trans. Math. Software, 35(4):26:1–26:17, 2009.

[20] C. F. Van Loan. The sensitivity of the matrix exponential. SIAM J. Numer. Anal.,
14(6):971–981, 1977.

[21] R. C. Ward. Numerical computation of the matrix exponential with accuracy
estimate. SIAM J. Numer. Anal., 14(4):600–610, 1977.

[22] D. S. Watkins. A case where balancing is harmful. Electron. Trans. Numer.
Anal., 23:1–4, 2006.

81

Paper III

[23] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press,
1965.

[24] J. Xue and E. Jiang. Entrywise relative perturbation theory for nonsingular M-
matrices and applications. BIT, 35(3):417–427, 1995.

[25] J. Xue and Q. Ye. Entrywise relative perturbation bounds for exponentials of
essentially non-negative matrices. Numer. Math., 110(3):393–403, 2008.

[26] J. Xue and Q. Ye. Computing exponentials of essentially non-negative matrices
entrywise to high relative accuracy. Math. Comp., to appear.

82

Department of Computing Science
Umeå University, SE-901 87 Umeå
www.cs.umu.se

ISSN 0348-0542
ISBN 978-91-7459-430-0
UMINF 12.07

