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Abstract

The homogeneous system of matrix equations (X7 A+ AX, X' B +
BX) =(0,0), where (A, B) is a pair of skew-symmetric matrices of the
same size is considered: we establish the general solution and calculate
the codimension of the orbit of (A, B) under congruence.
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1 Introduction

The work is inspired by a paper of De Teran and Dopico [3]|, where the
general solution of the matrix equation X7A + AX =0 for a general square
matrix A is derived. In the subsequent article [4], they established similar
results for the matrix equation XA + AX* = 0. Generalizing these results,
De Teran et al. [5] found the general solutions of AX + XTB =0 and AX +
X*B = 0, respectively. These equations are homogeneous versions of the
Sylvester equations for congruence and *congruence, respectively, which are

*A preprint appears as Report UMINF 12.05.

"Department of Computing Science and HPC2N, Umea University, SE-901 87 Umea,
Sweden. Emails: andrii@cs.umu.se, bokg@Qcs.umu.se.

nstitute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine. Email:
sergeich@imath.kiev.ua.



important due to their relationship with palindromic eigenvalue problems
(for more detail about motivations and applications of these problems see
the introductions of [3, 4, 5] and the references therein).

Our objective is to present the general solution of the homogeneous sys-
tem of matrix equations

XTA+AX =0,

XTB+BX =0 (1)
where (A, B) is a pair of skew-symmetric n xn matrices. The set of matrices
X that satisfies the system (1) form a vector space whose dimension is also
calculated. Indeed, this dimension minus n is equal to the codimension of
the orbit of (A, B) (see Section 3.1).

Since the set {VT(A,B) + (A, B)V)|V € C™"} is the tangent space to
the congruence orbit of (A, B) at the point (A, B) the result is relevant
to the theory of deformations of matrices and system pencils. This theory
was created by V.I. Arnold (e.g., see [1]) and has been actively developing
in the last years. In particular, deformations of pairs of skew-symmetric
matrices are given in [9]. For more references about deformation theory, see
[11, 17, 10, 7, 8] and references therein.

Note also that explicit expressions for codimensions of orbits were ob-
tained recently for the following cases: matrix pencils [6], congruence orbits
of matrices [3, 7], *congruence orbits of matrices [4, 8], congruence orbits of
pairs of symmetric matrices [10], and generalized matrix products [22].

Both deformation theory and dimension/codimension calculations are
useful in the theory of orbits and their stratifications (i.e., constructing the
closure hierarchies; e.g., see [12, 13, 14, 20, 21, 19] for more details, algo-
rithms, and software):

e the theory developed in [11] is used for the stratification of orbits of
matrix pencils, controllability and observability pairs in [12, 14];

e the theory developed in [7] is used for the stratification of orbits of
matrices of bilinear forms (for small dimensions) in [15].

Using the result of this paper Matlab functions for computing codimen-
sions of congruence orbits of skew-symmetric matrix pencils were developed
and added to the Matrix Canonical Structure Toolbox [18].



The analogous motivation and importance of symmetric matrices bring
us to the problem (1) in which (A, B) is a pair of symmetric n x n matrices.
This is a part of ongoing research.

The rest of the paper is organized as follows. The main results are pre-
sented in Section 2. Without loss of generality, we consider a congruently
transformed system (1) where the skew-symmetric pair (A, B) is in canoni-
cal form. The general solution of the system (1) in explicit form is given in
Theorem 2.1. The dimensions of solution spaces and codimensions of orbits
are given in Corollary 2.1 and Corollary 2.2. In Section 3, we prove Theorem
2.1, Corollary 2.1, and Corollary 2.2. First a general result about codimen-
sion calculations is established in Section 3.1. In Sections 3.2-3.3, the nine
different cases for the solution of the (transformed) system of matrix equa-
tions are handled. We end by illustrating the results on two pairs of matrix
equations in canonical form in Section 4.

All matrices that we consider are over the field of complex numbers.

2 Main result

A pair (A, B) is said to be congruent to (A’, B") if (A’,B") = ST(A,B)S =
(STAS,STBS) for some nonsingular S. Multiplying the equations (1) by ST
and S, we obtain

STXTST.STAS+STAS-S1XS =0,
STXTST.STBS + STBS-S™1XS =0,

and so the system (1) is equivalent to the system

YTA + A'Y =0, @)

Y"B'+ B'Y =0,

where Y = S71XS. Therefore, it suffices to solve the system (1) in which

(A, B) is a canonical pair of skew-symmetric matrices up to congruence.
Define the matrices

A10
L= S| (ebyn Jordan block),
0 A



1 0 0 0 1 0
Fom| om0 Gas=| oo | ey,
0 1 0 0 0 1

and define the direct sum of matrix pairs as follows:
(A,B)®o (C,D)=(AeC,B® D).

A canonical form of a pair of skew-symmetric matrices is given in the
following lemma.

Lemma 2.1 (see [23]). Every pair of skew-symmetric complex matrices is
congruent to a direct sum, determined uniquely up to permutation of sum-
mands, of pairs of the form

-5 8L ) e o
_ 0 L.l o 1,
oLl 08

bl e B °

Thus, each pair of skew-symmetric matrices is congruent to a direct sum
of the form

a b c
(AaB)can:@Hhi()\i)@@qu ®@Lma (6>
i= j= =

consisting of direct summands of three types.

In the following, we define several parameter matrices, whose nonzero
entries pq, pa, p3, - .. are independent parameters; they will be used to express
the set of solutions of (1).

e The m xn Hankel matrices
[p1 D2 3 s ]
P2 P3 P4

Prn = Ps P ) . (a dense Hankel matrix),

D4

pm+n—1_



P1 .- DPn

P1 ... pm O o0
P =1 - - if m<nand |p, .- if m>n,
Pm 0 0 0
0
—pl -+« Dn |
Pro--- Pm O : .
PN = - if m<n and p” "l ifm>n.
Pm 0 0 Lo
[P 0]

e The matrices Py, and P2, are obtained from Py, and P, by reflec-
tion with respect to the vertical axis. The matrices P, and B}n are
obtained from P7, and P/, by reflection with respect to the horizon-
tal axis. The matrices P, and P2, are obtained from P2, and Py,
by reflection with respect to the horizontal axis. (Thus, each of these
matrices is constructed like Py, and P, but its parameter diagonals
are disposed in the corner pointed to by the arrow.)

e The m xn banded Toeplitz matrices

Pr -+ Pn-m+1 0
P = if m<n and 0if m>n,

0 b1 <+« DPn-m+1

2 0 ]
P! =0 if m<n and P it m2n.
Pm-n+1
| 0 Pm-n+1 |
e The (m + 1) x n matrices defined recurrently
Din = ymmT) 1<i<m+1 (last column (lc)),
P},‘jﬂ’n()\) = Pm+1,j = Qnjit, 1< j<n (last row),

Dij = %(pﬂlj ~pij1), 1<i<mand1<j<n~1,



and

Pil = s 1<i<m+1 (first column (fc)),
Pfc+1n()\) DPm+1,5 = O, 1<j<n (last row)

Pij = 3(Pis1j —pi-1), 1<i<mand 2 <
where A € C\{0}.

Moreover, we denote by
AN AN N N\ N N
any mn? mn? ) RmnaRmn7‘Rmn7"'7 SmTHSanSmn?"'

the parameter matrices that are obtained from P, Pmn, Pan, - .. by replac-
ing all parameters p; with ¢;, r;, and s;, respectively.

Note that when two (or more) matrices are denoted by the same letter,
they have exactly the same set of independent parametric entries (regardless
to the sizes of matrices) and the parametric entries are placed according to
the definitions above.

We say that a parameter matrix P = P(eq,...,e,) with independent pa-
rameters ei,...,&, 18 isomorphic to a parameter matrix @ = Q(0y,...,0s)
with independent parameters 0y, ..., and write

P(El,...,gs)ﬁQ(él,...,ds)

if they coincide up to relettering of parameters; that is, if there exists a
permutation o of {1,...,s} such that P(6,(1),...,0,(s)) = Q(d1,...,0s).
Let (A, B) be a canonical matrix pair and let

(A,B):(Al,Bl)@”'@(At,Bt), t:=a+b+c,

be its decomposition (6). Let P be a parameter matrix that has the same
size as A and B and the same partition into blocks:

P ... Pu
P=|: -~ i, size (Py;) = size (A;) = size (B;). (7)
Ptl oo Ptt

Write
,P((AZ,BZ)) = Pii; P((AZ,BZ), (Aj,Bj)) = (pji,Pij) if 1 < j (8)

The canonical pair (6) and the following conditions determine P uniquely
up to isomorphism:



(i) If P;; and Py have overlapping sets of parameters, then i’ = j and
=i,

(ii) The diagonal blocks of P are defined up to isomorphism by

—_Pn/n Rr?n
Panon =| g . )
:_Pn/n R;‘n
P(K,) =~ Qs Py :| , (10)
[ _a]n 0n,n+1
P(Ln) - th+1,n aIn+l] . <11>

(iii) The off-diagonal blocks of P whose horizontal and vertical strips con-
tain summands of (A, B)can of the same type are defined up to isomor-
phism by

P(Hn(A), Hi(p))

(0, 0) if \#p,
(Lf‘ ol o _P,]) a2

v N _qv N

P(KnaKm) = ([Q\ S/' Q‘\ _P/'
P<—>T + !
P(Ln,Lm) ~ ([ nm Om,n 1 ] : l Ry 0n,m+1 ]) ) (14>

T o
Qm+1,n Rn+1,m+1 Qn+1,m Pn+1,m+1

(iv) The off-diagonal blocks of P whose horizontal and vertical strips con-
tain summands of (A, B)can of different types are defined up to isomor-
phism by

P(H,(\), K,,) ~(0,0), (15)



P(Hn(A), L)

[ Omn Omn _Q;—;//m.;.lFT 0n,m+1 f)\_O
P Qi | P Oninn T

n,m+1 n,m+1 n,m+1

) Omn Omn _(F m+1 n()\))T 0n,m+1 if )\ 0
1 )
P71r(1:+1 n(>\) m+1 n()\) (F PVIr(L:+1 n(A))T On,m+1

(16)
Omn Omn Qnm+ GT 0nm+
roceis(, o JEEE v o0
n,m+ n,m+ n m+1 n,m+

Theorem 2.1. Let the system (1) be given by the canonical pair (6) of skew-
symmetric matrices for congruence. Let P(my,...,ms) be a parameter matriz
satisfying conditions (i)—(iv). Then

{P(ar,...,as)|(as,...,as) e C°} (18)
is the set of all solutions of the system (1).

Corollary 2.1. If the system (1) is given by the canonical pair (6), then the
dimension of its solution space (18) is equal to the sum

d(A,B) = dH + dK + dL + dHH + dKK + dLL + dHK + dHL + dKL (19)
whose summands correspond to

e the direct summands of (6):

a b c
dH:=3ZpZ-, dK:=SZqZ-, dL:=c+22ri;
i=1 i=1

i=1
e the pairs of direct summands of (6) of the same type:

dyp =4 ). min(p;,p;), dgr =4 min(g;, q;),

i<y i<y
Xi=Aj
2 afry=r;
drr =Y (2max(ry,r;) +€5), in which & := f L
e 1 ifri#ry;



e the pairs of direct summands of (6) of different types:

dpi =0, dpp =2 Zpu dir =2 ZQZ
1,] ,J

The set of matrix pairs that are congruent to a pair (A, B) of skew-
symmetric n x n matrices is a manifold in the complex n? — n dimensional
space of all pairs of skew-symmetric n x n matrices. This manifold is the
orbit of (A, B) under the action of congruence. The vector space

T(A,B) = {VT(A,B) + (A, B)V|V e C" (20)

is the tangent space to the congruence class of (A, B) at the point (A, B)
since

(I+eV)T(A,B)(I+¢eV)
=(A,B)+e(VT(A,B)+ (A, B)V)+ VT (A, B)V

for all n-by-n matrices V and each € € C. The dimension of the orbit of
(A, B) is the dimension of its tangent space at the point (A, B); it is well
defined because the dimensions of tangent spaces at all points of the orbit are
equal (e.g., see [2]). The codimension of the orbit of (A, B) is the dimension
of the normal space of its orbit at the point (A, B), which is equal to the
dimension n? —n of the space of all pairs of skew-symmetric n x n matrices
minus the dimension of the orbit of (A, B).

Corollary 2.2. The codimension of the congruence orbit of the canonical
pair (6) of n x n skew-symmetric matrices is equal to

d(A,B) -n, (21)
in which da gy is the dimension (19) of the solution space of system (1).

Note that the codimensions of the orbits of canonical matrices A under
congruence and *congruence are given in [7, 3] and [4]; unlike (21) they
are exactly equal to the dimensions of the solution spaces of the equations
XA+AXT=0and XA+ AX*=0.



3 Solution of the system of matrix equations

In this section we prove Theorem 2.1 and Corollary 2.1. Each direct canonical
summand in (6) is of the form H, (\), K, or L, (see (3)-(5)), and so we
need to determine:

e 3 types of the diagonals blocks of P, each of them corresponds to one
type of canonical summands (sections 3.2-3.3);

e 3 types of the off-diagonal blocks of P, each of them corresponds to
the different pairs of canonical summands of the same type (sections
3.4-3.5);

e 3 types of the off-diagonal blocks of P, each of them corresponds to the
different pairs of canonical summands of the different types (sections

3.6-3.8).

Corollary 2.2 is essentially restated and proved as Lemma 3.1 in Section
3.1.

3.1 On codimension computations

Let us state a general result about the codimension computations.

Theorem 3.1. Let X and Z be finitely generated vector spaces and X =
Y ® N. Then for any surjective linear map f:Z —Y we have that

dim N =dim X —dim Z + dim Ker f.

Proof. The proof follows immediately after we note that dimZ = dimY +
dim Ker f. O]

Lemma 3.1. The codimension of the orbit of (A, B) € C»" x C»™  where
Crnxn 4s the space of skew-symmetric n x n matrices, can be calculated as
follows:

codim(orbit(A, B)) =dimV (A, B) -n
in which V(A, B) :={X e C»"|XT(A,B) + (A,B)X =0}.

10



Proof. The result could be obtained from Theorem 3.1 but we give an inde-
pendent proof. Define the function f: C*"* - T'(A, B) where T(A, B) is a
tangent space at the point (A, B) (see (20)) such that

X~ XT(A B)+ (A B)X.
The mapping is obviously a surjective homomorphism thus dim C»" =
dimT(A, B) + dimV (A, B). Also at every point (A, B) € C»" x C»" we
have the decomposition
Cr"xCrm=T(A,B)® N(A, B),
where N (A, B) is a normal space at the point (A, B). Therefore

codim(orbit(A, B)) = dim N(A, B) = dim(C™" x C™*) - dim T'(A, B)
= dim(C™" x C»") = dim C™™ + dim V (A, B) = n* —=n - n* + dim V (A, B)
=dimV (A, B) —n.

]

3.2 Solution for H and K blocks

In this section we solve the system (1) for (A, B) = H,(\) and (A, B) = K,,.
We start by considering (A, B) = H,(\) and partition X conformally with
the 2 x 2 block structure of H,()\) and obtain the following system of matrix

equations:
XL xI 1o 1, . 0 I,(|Xu1 X2 |0 O
XL, XL{|-I, © -I, 0][Xa Xan| [0 Of
X X4 0 Jn(N) N 0 Jo(AN) [ X1 Xa2| |0 O
XL XL I[1-J.(\)T 0 —Jp(M)T 0 Xo1 Xoo| [0 Of
which is equivalent to

X21—X2Tl X1T1+X22 _ 0 0
~Xu-X3 Xf,-Xi ’

“XT (T + (M) Xy X, (A +Ju(M) X ] [0 0
XL TN = J,(NTXy XLJ,(A) = Ju(W)T X |~ '

11



This system decomposes into three different systems; each of them corre-
sponds to one pair of blocks. Indeed, we have four pairs of blocks but two of
them are equal up to the sign and transposition.

First consider the system corresponding to the (1,2)-blocks:

Xirl + XQQ = 0,
X1T1Jn(>\) + Jn()\)XQQ =0.

Note that

= Xa2Jn(A) + Jn(N) Xaz = =AXn2 = X2/ (0) + T (0) Xz2 + AX s
= —X29,(0) + J,(0) Xag. (23)

Analogously, we can transform the systems corresponding to the (1,1)- and
(2,2)-blocks of (22), and therefore we can put A =0 in these systems.
Thus we have the equation

~ X220, (0) + J,,(0) Xas = 0, (24)

and by [16, Ch. VIII] the solution X, = Py, and therefore X, = —P; =
—-Py,. Here and hereafter when we write that the unknown matrix is equal
to a parametric matrix, we mean that any matrix obtained by replacing the
parameters with any complex numbers is a solution and there is no solution
of the system that can not be obtained in this way.

Now consider the system corresponding to the (2,2)-blocks:

XQl - X2Tl = 0,
-~ X1 J,(0)T + J,(0) Xy = 0.

So we are looking for symmetric solutions of —Xy;J,(0)” + J,,(0) Xo; = 0. To
solve this equation we use the solution of the first system. Multiplying (24)
by the n-by-n flip matrix
0 1
Z = (25)
1 0

from the right hand side and taking into account that Z2? = I and Z.J,(0)Z =
Jn(0)T we get —(X222)J,,(0)T + J,,(0)(X22Z) = 0. Taking into account the
independence of the systems (hereafter we will usually skip this phrase in
explanations) we have Xy = X997 = Q;nZ = Qpy, which is already symmetric.

12



Finally, the system corresponding to the (1,1)-blocks is:

X - X12=0,

XlTQJn(O) - JH(O)TXlg = O
Again we are looking for symmetric solutions of X15.J,(0) — J,(0)T X5 =
0. Now we multiply (24) by (-Z) but from the left hand side and get

(ZXQQ)Jn(O) - Jn(O)T(ZXQQ) = 0. Thus we have X12 = ZXQQ = ZR;n = Rr?n
which is already symmetric. Altogether we obtain

X:[Q\ P/"l'

Therefore the general solution of the system (22) is X = P(H,(\)) (9).
Since the solution does not depend on A (see equation (23)), the sys-
tem with (A,B) = K, has the same solution X = P(K,) (10). We
have 3n independent parameters in every of them therefore dy = dy :=
dim V' (H,(\)) =dim V (K, ) = 3n and by Corollary 2.2 codim(orbit H,()\)) =
codim(orbit K,,) = 3n —2n = n.

3.3 Solution for L blocks

In this section we solve the system (1) for (A, B) = L,.
We partition X conformally with the 2 x 2 block structure of L, and
obtain the following system

XL XLl 0 F, N 0 Fo|Xu Xiof |0 0

XL XLI[|-EF 0 -FT 0 [| X1 Xaof |0 0f

XTI X4 0 G, N 0 G,||X1n Xi2| |0 O

XL XL I[1-GT 0 -GT 0 |[Xa1 Xo2| [0 O
corresponding to the following pairs of blocks

—Xgng-f-FnXgl XﬂFn+FnX22 _ 00
_XgQFg_FEXH XlTQFn—FEXlg - 0 oy’

26
l_XglG£+GnX21 XﬂGn+GnX22]_lO O] ( )

-XLGT -GrX,, XLG,-GLX 00

Since the pairs of blocks at positions (1,2) and (2,1) are equal up to the sign
and transposition, (26) also decomposes into three different systems.

13



First consider the system corresponding to the (1,1)-blocks:

_XleFnT +F, X5 =0,

27
XTGT + Gy X =0, (27)
To satisfy the first equation of (27) X, has to have the following form
11 Ti2 T13 ... Tin Tip+l
T2 T2 T23 ... T2n T2psl
X2T1 =|%13 L23 T33 ... T3n T3n+l
Tin T2n T3n -+ Tnn Tnn+l
Substituting Xs; into the second equation of (27) we have
i1 Ti2 13 ... Tin Tip+l 0 0
iz L2z Loz ... Xon Lomar |fg
— (%13 T2z T33 ... T3n T3n+l 0
0 1
Tin T2n T3n - Tpn Tnn+l
[ T11 T12 13 ... Tin ]
0 1 0 iu i22 §23 i2n
+ 13 23 8 n | _ g,
0 0 1
T1in Ton T3n .. Tnn
| T1n+1 T2n+1 T3n+1 -+ Tnn+l
Multiplying and identifying at entry level, we obtain
~Tije1 + Tie1j = 0 1f 7 < g,
Tij+1 — Ti+lj = 0if7> j,
0=0if7 =7,
where 4,7 = 1,...,n. Now it follows that X1 = P,,,1 is the general solution
of (27), which has 2n independent parameters.
Next consider the system corresponding to the (1,2)-blocks:
XlTan'FFnXQQ :O, (28)

XlTlGn + GnXQQ =0.

14



To satisfy the first equation of (28), Xy must have the following form

0
_X1T1 :

X22 = (29>

0 )
U1 cen Yn+1

where X7, = [x;;] is an n x n matrix. After substituting this value of X in
the second equation of (28)

r11 ... Tip 0 1 0 0 1 0 _J_:H ' _x.ln 0
. . : .. + .. . . — 0’
Zot oo Zan |0 o 1| lo o 1f[Fm o T O
n oo Yn Yns1
we obtain
T21 —T11 22 ... —Tip-1 1T T2 —T1n
T31  —X21t+ T3z ... —Tap-1t Tap —ZTan
el S =0.
Tpl —Tp-111TTp2 ... ~Tpp-1t1Tpp —Tn-1n
it —Tpl — Yo cee ~Tpn-1 — YUn ~Tpn — Yn+1

This means that Xoy = al,,1 and from (29) X3 = —al,,. The pair (X, Xa2)
is the general solution of the system (28) and it has only one parameter.
Now consider the system corresponding to the (2,2)-blocks:

XlTQFn - FgXlg = O,

30
XlTQGn - GZXlg = O ( )

To satisfy the first equation of (30) X;2 must have the following form

11 12 T13 ... Tin 0

T12 To2 X223 ... Topn 0
X12 =213 X923 X33 ... I3p 0].

Tin Top T3n ... Tpp O

15



Substituting X, into the second equation of (30) we obtain

11 T12 T13 ... Tin
T12 T2z T23 ... Top 0 1 0]
T13 23 T33 ... T3n .
0 0 1
Tin To2n T3n --- Tnn -
0 0 O ... 0
0 0 —ZEH T12 T13 . T1n 0
1 - Tig Toz Loz ... Top 0
- 0 Tiz T3 T3z ... Tzp 0]=0,
0 1
| 21, Ton X3 ... Tpn O
or equivalently
0 T11 T12 x13 ce Tin-1 T1in
—I11 0 L2 — T13 X23 — T14 coe Top-1 —Tin Lon
—Ti2  T13— Ta2 0 T33—Tog ... T3p_1—Top T3p
—Z13 L14 — T23 Xo4 — 33 0 oo Tap-1—T3p Tan | =0.
~Tin-1 Tin —T2pn-1 T2n —T3p-1 L3n ~— Tap-1 - -- 0 Tnn
| —T1n —Ton —I3n —Tyn ce —Tnn O _

It is clear that X2 = 0 (skew-diagonal-wise). Altogether we have

X = |: _ajn 0n,n+1] )

Pn+1,n alpi

Thus the general solution of the system (26) is X = P(L,) (11). We have
2n + 1 independent parameters in X thus dy, := dim V' (L,) = 2n + 1 and by
Corollary 2.2 codim(orbit(L,)) =2n+1-(2n+1) =0.

3.4 Interaction between H,(\) and H,,(i) blocks and
between K, and K,, blocks

Let us explain how (1) is changed when (A, B) = (A1, By) @ (A2, Bs). It
is enough to consider only the first matrix equation (the second is treated

16



analogously):
X XT1A; 0 Al 0 [ Xy Xo
T T + =0,
Xy X0 A 0 As|| X5 Xy
or equivalently
XlTAl + Ale XgAQ + A1X2 -0
X2TA1 + A2X3 XZAQ + A2X4 -
The off-diagonal blocks XTI Ay + A; X5 and XJ A; + A2 X5 are the same up to
the skew-symmetry and it is enough to investigate just one of them.
In this section we calculate off-diagonal blocks of the solution of the sys-
tem (1) when Ay = H,(\) and Ay = H,, (). We remark that the system with
A, = K,, and Ay = K,,, have the same solution and is therefore omitted in the

discussion that follows.
We consider the following system of equations

0 L, Jo 5], oo
a6 B

(31)
Rl 0 Jm(u)]+l 0 Jn(A)]Szlo 0],

T 0 ~L,(NT 0 0 0

where R and S are 2n-by-2m matrices. In the notation at the beginning
of this section R = X7 and S = X,; we change the notation to avoid over-
indexing. The solution space of the system above is called the interaction
between H,(\) and H,, (1) and denoted by inter( H,,(\), H,,(1t)). The notion
of interaction will be used (without analogous explanation) for all off-diagonal
blocks.

From the first equation in (31) we have

Sll 512 _ _R22 R21
521 522 R12 _Rll .

By substituting this value of S in the second equation,

R11 ng 0 Jm(ﬂ) 0 Jn()\) _R22 Rgl -0
Rgl R22 —Jm(,u)T O * —Jn(A)T O R12 _Rll - ’

we obtain

[ “Riodm ()T + Ju(M)Ri2 RurJm(p) = Ju(AN) Ry ] 0.

32
_R22Jm(,u)T + Jn()\)TRm R21Jm(ﬂ) - Jn()\)TRm ( )
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The matrix equation decomposes into four independent matrix equations.
By [16, Ch.VIII] the equation Ry;J, (1) = J,(A\)Ryy in the (1,2)-block has
the solution Ry; =0 if A # p and Ry; = Py, if X = p.

All equations are independent and therefore we have to use different pa-
rameters to express the general solutions of the four blocks in (32).

Analogously to Section 3.2, we multiply the equations in (32) by the
flip matrix Z (25) from right, left, or both sides. Using that Z2? = I and
ZJ(N)Z = J(A)T we obtain the following general solutions for the remaining
three equations:

(1, 1)—b10(3k2 —R12Jm(u)T + Jn()\)ng = RHZZJm(IU)Z - Jn(A)RHZ
0 if \+

therefore Ris = —R11Z = 1 K

Qnm  if A=p.

(2, 2)-blOCk2 Rgljm(,u) - Jn()\)TRgl = ZRHJm(M) - ZJn()\)ZZRH
0 if \+

therefore Ry = ZRy; = 1 .

Ry if A= p.

(2,1)-block:  =Roo ()T + Jy(\) ' Roy = ZR11 ZZ J0(11) Z = ZJn(N)ZZR11 Z

0 if A% p,

therefore Ryy = ~ZRy1Z = {Sr‘fm it A = p.

Altogether we have

0 if A#pu, 0 it A#p,
Pn‘gn Rr\)‘mn . and X2 =S= _Sr{m R;‘m
Q\ S;, 1f)‘:ﬂ’7 Q'\ _P/'

X3=RT =
’ if A=

Therefore we have obtained that the interaction between H,,(\) and H,, (1)
is of the form (X35,X2) = P(H,(N), Hn(p)) (12) and similarly (X3, X5) =
P(K,, Kn) (13) when A; = K,, and Ay = K,,,. Calculating independent pa-
rameters we obtain dxk := dim(inter(K,, K,,)) = 4min(n,m) and

0 it A+ p,

dpp = dim(inter(H, (), Hp (1)) = {4 min(n,m) if A= p.
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3.5 Interaction between L, and L,,

Due to the explanation in the previous subsection, it suffices to consider
Ry Ri|| O F, N 0  F,|[S: Si2f |0 0
R21 R22 —Fg; 0 —Fg 0 521 522 - 0 0}’
Ri1 R 0 Gn N 0  Gn||Su Si2| |0 0
R21 R22 —Gg 0 —GZ 0 Sgl SQQ - 0 oy’

where R and S are the required (2n + 1)-by-(2m + 1) matrices.
After perfoming the matrix multiplications, we have

—R12F£+Fn521 RllFm+FnSQQ _ O O
_RZQF;}Z;_FESH RglFm—FgSu - 0 o}’

—R12G£+Gn321 Rlle+Gn522 _ 0 0
_RQQGE_GEASHl Rgle—GZSm 10 of

This system of matrix equations decomposes into four independent sys-
tems of matrix equations each of them corresponds to one pair of blocks.
Consider first the (1,1)-blocks:

—ngFnj; + Fn521 = 0,

33
—ngGZ,; + Gn521 =0. ( )
From the first equation of (33) we obtain that
1474 b1
So1 = [ ] yRips=|W : |, where W is any n-by-m matrix.
aq Ay,
bn,
(34)
Therefore
by W
-\w |G+ G, =0,
b aq [07%%
n
or equivalently
Wa1 — W12 W2 —W13 ... Wop-1—~ Wim Wy, — by
W31 — Wa2 W32 — W3 ... W3zp-1~ W W3y, — by
........................................................... =0,
Wp1 — Wp-12 Wp2 —Wp-13 ... Wnm-1—~ Wp-1m Wnpm — bm—l
a1 — Wnp2 Az — Wn3 s Ap-1 — Wpm Ap — bm



where ¢;5,1 <7 <n,1 <j <m are entries of W. Thus we have that Sy =
Qn+1m, 1€, an (n + 1) x m dense Hankel matrix, Ris = Qpms1, 1€, an
nx(m+1) dense Hankel matrix, with common nxm part (see (34)), and a,, =
by It follows that the sets of parametric entries of Sy and Ry, are exactly
the same, and therefore they are denoted by the same letter. Calculating
the number of independent parameters in the solution we obtain that the
dimension of the solution space is equal to n + m.

Consider now the system of equations corresponding to the (1,2)-blocks:

Ry Fy + F,S2 =0,

Ri1Gp + GpSa = 0. (35)
From the first equation of (35) we can express Sy as
0
Sp=| T it (36)
by ... b

where Ryy = [ri;] is n-by-m. Substituting Sy, into the second equation of (35)
we obtain

0
—R11
Rlle + Gn 0 =0,
bl PO bm+1
or equivalently
—T21 1 —T22 oo Tim-1 —Tom T1im
—T31 To1 —T32 coe Tom-1 —T3m Tom
................................................. =0.
“Thnl Tn-11—"Th2 -+ Thn-1m-1—"Tnm T'n-1m
bl Tn1 + bz .. Tnm-1 T bm Tom + bm+1

Thus we have that Ry; = Py, and correspondingly S22 = P74 ., Recall that
the n x m part, starting form the top-left corner of Sy is equal to Ry (see
(36)). Thus the parametric entries of both matrices are the same. Therefore
we have that the dimension of the solution space is equal to m —n + 1.

The system of equations corresponding to the (2,1)-blocks:

RQQF,Z; + ngll = O,

37
}%QQGE1 + GESH = O, ( )
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is equal to the previous one up to the transposition and interchanging the
roles of n and m. Thus we have that S;; = R%m and Ry = R}Hl’mﬂ. Like
in the previous case the n x m part, starting form the top-left corner, of
Ry is equal to S7;. Thus the parametric entries of both matrices are the
same. Therefore we have that the dimension of the solution space is equal
ton-m+ 1.

Consider now the system of equations corresponding to the (2,2)-blocks:

RQlFm_FgSIQ=07

38
RQle - GZSlz = O ( )
From the first equation of (38) we have
0 0
Roy = [O 0] , S12=|Q |, in which @ =[g¢;] is any n-by-m matrix.
. 0

Substituting S and Re; in the second equation of (38) we have

0
@ Gn-GFlQ :]=0,
0O ... 0
0
or equivalently
0 qd11 e dim-1 d1m
—q11 21 —q12 .- QPm-1"9m {2m
............................................ =0.
—Gn-11 49n1 —Gn-12 .-+ dnm-1 —Gn-1m YGnm
—qn1 —(n2 cee —Udnm 0

Now it follows that @) = 0,,,, and thus both Si» and Ry are zero blocks.
Altogether we have

P=T 0., :
X3:RT:[ nm 7+1‘|andX2:S:[an 0n,m+1‘|.

T o
Qm+1,n Rn+1,m+1 Qn+1,m Pn+1,m+1

Therefore we have obtained that the interaction between L,, and L,, is of the
form (X3, Xs) = P(Ly, L) (14) and by calculating the number of indepen-
dent parameters we obtain

2n + 2 if n=m,

drr, := dim(inter(L,, L,,)) =
LL ( ( ) {2 max(n,m)+1 if n+m.
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3.6 Interaction between H,()\) and K,

In this subsection we compute off-diagonal blocks of the solution of the system
(1) which correspond to the diagonal blocks H,,(\) and K, :

0 Jm(0) 0 I, 0 0
7| L5 Bl a]
(39)
where R, S are the required 2n-by-2m matrices.

=Jn(0)T 0 I, 0
00
0 0}’
From the first equation we have

Rl_o lm]+l 0 Jn(A)]S
5—[ 0 In“RH 312” 0 Jm(O)]
-1, 0||Ry Ral|-Jn(T 0 |’

Lo 0|70 0

or equivalently
S Sz _ —Ry2J(0)T Ro1Jmm(0)
So1 Saz R13Jm(0)T =Ri1Jin(0) |
We substitute this value of S in the second equation, i.e.

[Rn 312“ 0 Im] l 0 Jn(/\)H—RQQJm(O)T Rme(o)]_O
Ryt Roo||-In 0|T|-7.(00T 0 || Riadin(O)T —RiJn(0)| ™"

and we get

l “Ris + Jo(\ Risdm(0)T Rut = Ju(A) Rir Jm(0) ] S0 (40)

—R22 + Jn()\)TRQQJm(O)T R21 — Jn()\)TRme(O)

This matrix equation corresponds to four independent matrix equations and
we start to consider the (1,1)-block: Ris = J,(A)R12J,(0)T, where Ryy =
[1i7] is n x m. At entry level we have

—rij+)\rij+1:0 1f1<]<m_1, iz”?

-1;;=0 if1<i<n, j=m.

This system has only one solution, the trivial one Ry = 0%,
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Analogously to sections 3.2 and 3.4 we multiply the equations in (40)
by Z (25) from right, left, or from both sides. Once again using Z2? = [
and ZJ(A\)Z = J(A)T we obtain the general solution of the remaining three
equations:

(1, 2)—b10Ck3 Rll - Jn(A)RHJm(O) = —ngZ + Jn()\)R12ZZJm(O)TZ
thus R11 = —RuZ = Onxm-

(2,1)-block: — Ray + J, (M) RaoJin(0)T = ~ZRy9 + ZJ,(\) ZZ R15J,,(0)T
thus R22 = ZR12 = Onxm-

(2, 2)—b10(}k2 RQl_Jn()\)TR21Jm(0) = —ZRIQZ-FZJn(A)ZZR12ZZJm(O)TZ
thus R21 = —ZRHZ = Onxm-

Altogether we obtain X3 = RT =0 and X, = S = 0. Thus we have proved
that the interaction between H,(\) and K, is of the form (X3, X5) =
P(H,(\), K,,) (15) and, in particular, dy := dim(inter( H,(\), K,,)) = 0.

3.7 Interaction between H,(\) and L,,

In this subsection we compute the off-diagonal blocks of the solution of the
system (1) which correspond to the diagonal blocks H,,(\) and L,, :

o £, [0 1, 0 0
a0 G)sel ol

0o a, 0 J.(\) 0 0
Rl—Gg 0]*[—Jn(A)T 0 ]S:lo 0]’

where R, S are the required 2n-by-(2m + 1) matrices.
From the first equation we have

g 0 L||Ru R 0 Fy,
(-1, O||Ry Rx||[-Ff 0|

m

Sll Sl2 _ _R22F71r: RZlFm
S21 S22 R12F7z’; _RllFm ‘
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Substituting this value of S into the second equation we obtain

Ry Ry 0 Gn N 0 Jo(N) || -R2FY RoiFy, -0
Ro Bow||-GT 0 [ T|-2.00" 0 || RuFT -RuE, |7

which corresponds to the four independent matrix equations:

—ngG% + Jn()\)ngFg; Rlle - Jn()\)RllFm -0
—RQQCTYZI + Jn()\)TRQQFg: Rzle - Jn()\)TRglFm o

We start to consider the (1,1)-block: Ri2GL = J,(A\)RoF)L, where the ma-
trix Ryp = [r;] is nx (m+1). At entry level we get

-T2 + )\TH + 791 —T13+ )\7’12 + 799 - —T1im+1 T )\T’lm + Tom
—7“22+)\’I"21+7“31 —7”23+)\T22+7"32 _T2m+1+>\r2m+7ﬂ3m
......................................................................... =0.
“Tp-12 + ATpo11+ Tl ~Tpo13 + ATpo12 4 Tha oot —Thsimed + ATpctm + Tam
—Tpa + ATn1 —Tp3 + A2 . ~Trmal + ATnm

If X\ = 0 then the general solution of the system is Rjp = P\ If A #0 then

n,m+1°
the answer is more complicated and can be computed recurrently as follows:

Tim+1 = On-it+1, 1 <i<n (last column),
Rig = {7Tnj = yeget> 1<j<m+1 (last row),
1 . .
Tij = 5 (Tije1 = Tiv1j) I<i<nmand 1<j<m+1.

T _ plc
Therefore we have Ry, = P, .

To find the solution for RyeGT = J,(A\)T RaaFl we need to multiply the
answer for the first equation by Z (see (25)) from the left side because

~RpoGL + (N ' Ry FY = ~ZR15GE + ZJ, (N ZZRyp FL.

Therefore Ry = ZRy2 and thus RI, = RT,Z thus for A = 0 we have Ry =
ZQN, . =QF ., and for A # 0 we have RL, = RT,Z = Pl 7 = P

n,m+1l = ¥nm+l m+1,n m+1,n

fact, P,  is obtained from PY , = by reversing the order of columns).

Consider the equation Ry Gy, = J,,(A)Ry1 Fppn, in which nxm matrix Ry =
[ri;]. Multiplying the matrices we have

(in

AT =T T11 = AT12 = T'22 Tim-1 = AT1m = Tom T1im
—Argp — T3 To1 = ATgg = T'32 e Tom-1= AT2m = T3m Tom
....................................................................... =0.
_/\Tn—ll —Tn1 Tn-11— )\Tn—12 —Tn2 .. Tp-im-1— /\Tn—lm —Tnm Tn-1m
_/\Tnl Tn1 — )\rnQ s Tnm-1 — )\Tnm T'nm
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The system has only one solution which is Ry; = 0. Tacking into account that
RQle—Jn()\)TRglFm = ZRlle—ZJn()\)ZZRHFm we have Rgl = ZRH =0.
Altogether we get

[ 0w O .

T Q/T ] if A=0,

n,m+1

XS _ RT _ i n,gﬁ-l 0
P () QF (A)] if A0,
|~ m+1,n m+1,n

_Qim+1F£ On,m+1]

X, = g-1t Pr:\m-%-lFrjnﬂ On7m+1
_(Fm £SL+1,n()\))T On,m+1

| (FmP}riH,n(/\))T 0n7m+1

if A=0,

] if A£0.

Therefore we have obtained that the interaction between H,()\) and L,, is
of the form (X3, X5) = P(H,(\), L) (16) and calculating the number of
independent parameters we obtain that dyy, := dim(inter(H,(\), L,,)) = 2n.

3.8 Interaction between K, and L,,

In this subsection we compute off-diagonal blocks of the solution of the system
(1) which correspond to the diagonal blocks K,, and L,, :

0 £, 0 J.(0) 0 0
RL%% 0]+[nhmﬂ‘ 0 ]S:L)OL
o &, [o 1, 0 0
nler Gl G)sp ol

where R, S are the required 2n-by-(2m + 1) matrices.
From the second equation we have

g 0 LR R 0 Gm
B _[n 0 Rgl R22 —G%; ’
S Sz _ -Ry»GL Ry G,

So1 Sag RsGE  —RiyGn |
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By substituting this value of S in the first equation, i.e.

Ry Ri|| O F, N 0 Jn(0) [| -R2GL,  RxnG,, _0
Ro1 Rao —Fg; 0 —Jn(O)T 0 ngG% —RHGm o

we obtain

(41)

—ngFg; + Jn(O)RUGZL RHFm - Jn(O)RHGm -0
_RQQF,;'E + Jn(O)TRQQG% RglFm - Jn(O)TRgle -

This matrix equation decomposes into the four independent matrix equations
each of them corresponds to the one block. We start to consider the (1,1)-
block: RiaFL = J,(0)R12GL, where Ry = [r;;] is nx (m+1). At entry level
we have

—Tr11 + 722 —Tri2+t7T23 ... “TimtTome
—Ta21 + 732 —Trog+733 ... —ToymtT3m41
............................................... =0.
“Tn-11tTh2 ~Tp-12+t7Tp3 .. —Tpoim + Tnm+l
—Tn1 —Tn2 s —Tam

The solution of the (1,1)-block system is Ry = P” which also defines

n,m+1?

So1. Next we consider the (2,1)-block of (41). Since,
_RQQFg; + Jn(O)TRQQG% = —ZngFg; + ZJn(O)ZZRmG%,

we get Roo = Z Ry = ZQZ:m+1 = szﬂ, where Z is the flip matrix (25).

The (1,2)-block of (41) corresponds to Ry1Fy, = J,(0)R11G,,, where ma-

trix Ry = [r;;] is n x m. At the entry level we have

11 T2 —Ta21 "3—To2 ... Tim —T2m-1 —Tom

21 T22 —T31 Ti3—=7T32 ... Tom —T3m-1 ~Tom
........................................................ =0,
Tn-11 Tn-12"Thl Tn-13 = Th2 -+ Tn-1m ~Thm-1 —Tnm

Tnl T'n2 T'n3 .. Tnm 0

The system has only one solution, namely Ri1 = 0y,xm-
For the (2,2)-block we have

RQlFm - Jn(O)TRzle = ZRHFm - ZJn(O)ZZRHGm,
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and therefore Ry; = ZR11 = 0. Altogether we obtain

0 0 _Q§‘ GT 0 1
X.=RT = mn mn and X, = S = n,m+1~m n,m+ ] .
3 I‘P/ﬂT QNT ] i [ Pn//:'valG% On,m+1

n,m+1 n,m+1

We have proved that the interaction between K, and L,, is of the form
(X3, X5) = P(Ky, L) (17) and calculating the number of independent pa-
rameters we obtain that dgy, = dim(inter(K,, L,,)) = 2n.

4 Two examples

We illustrate our results by considering two different pairs of matrix equations
(1). Assume that X is the solution of a pair of matrix equations (1) where the
matrix pair is taken in canonical form (6). Then the general solution X of (1)
can be expressed as X = SX S, where S is the congruence transformation
that brings (A, B) to canonical form.

Example 4.1. Consider the system of matrix equations (1) where (A, B) =
Ky & K3 ® Ly (13 x 13 skew-symmetric matrix pair). By Theorem 2.1 the
solution X of this system is

X1 | T2 —X7 0 0 0 0 Tg 0 —X9 0 0 0
r3 | X1 25 0 0 0 0 -x4 0 Ty 0 0 0
0 0 —X10 0 0 0 0 T19 0 —T9292 0 0 0
0 0 —T11 —T10 0 0 T19 X290 —T92 —XT23 0 0 0
Ty | Te || T2 —T11 —Tio | T19 T Tor || —Toz —Tosa | O 0 0
Ty | T7 || T13 T14 Ti5 | 10 T11 T12 Ti7 I8 0 0 0
0 0 T14 15 0 0 10 T11 16 T17 0 0 0
0 0 T15 0 0 0 0 10 0 16 0 0 0
0|0 0 0 0 0 0 0 ||-z95 O 0 0 0
0|0 0 0 0 0 0 0 0 -x295| O 0 0
0 0 T16 0 0 0 0 T2 L6 o7 o5 0 0
0 0 T17 T16 0 0 @90 w23 Tt T2g 0 @95 O
Ty | To || Tig T1r  Tie |Taz T2z Tag || T2z X2 | O 0 a3

where z; e C,i=1,...,29.
The dimension of the solution space is d(4,5) = 29 (the number of inde-

pendent parameters in X ) and therefore the codimension of the congruence
orbit of (A4, B) is equal to 16 (= d(a,p) —n).
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Ezample 4.2. Consider the system of matrix equations (1) where (A, B) =
Hy(N) @ Ly, A # 0 (9 x 9 skew-symmetric matrix pair). By Theorem 2.1 the
solution X of this system is

-2 0 |0 Ts va -5 0O 0 0
- -x1 | x5 Tg 55+ 2/\%9 -50+35] 0 0 0
I3 Ty T i) §—8—2—x37 %—% 0 0 0
Ty 0 |0 1 = = 0O 0 0
0 0 |0 0 -1 0 o 0 0 |,
0 00 0 0 -1 0O 0 0
xg T7 | Ty 10 T14 T15 0 0 =z

where z; e C,;i=1,...,15.

The dimension of the solution space is d(4 ) = 15 (the number of inde-
pendent parameters in X) and therefore the codimension of the congruence
orbit of (A, B) is equal to 6 (= d(a,5) —n).
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