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Abstract

The homogeneous system of matrix equations (XTA+AX,XTB+
BX) = (0,0), where (A,B) is a pair of skew-symmetric matrices of the
same size is considered: we establish the general solution and calculate
the codimension of the orbit of (A,B) under congruence.
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1 Introduction

The work is inspired by a paper of De Terán and Dopico [3], where the
general solution of the matrix equation XTA +AX = 0 for a general square
matrix A is derived. In the subsequent article [4], they established similar
results for the matrix equation XA + AX∗ = 0. Generalizing these results,
De Terán et al. [5] found the general solutions of AX +XTB = 0 and AX +
X∗B = 0, respectively. These equations are homogeneous versions of the
Sylvester equations for congruence and *congruence, respectively, which are
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important due to their relationship with palindromic eigenvalue problems
(for more detail about motivations and applications of these problems see
the introductions of [3, 4, 5] and the references therein).

Our objective is to present the general solution of the homogeneous sys-
tem of matrix equations

XTA +AX = 0,
XTB +BX = 0, (1)

where (A,B) is a pair of skew-symmetric n×n matrices. The set of matrices
X that satisfies the system (1) form a vector space whose dimension is also
calculated. Indeed, this dimension minus n is equal to the codimension of
the orbit of (A,B) (see Section 3.1).

Since the set {V T (A,B) + (A,B)V )�V ∈ Cn×n} is the tangent space to
the congruence orbit of (A,B) at the point (A,B) the result is relevant
to the theory of deformations of matrices and system pencils. This theory
was created by V.I. Arnold (e.g., see [1]) and has been actively developing
in the last years. In particular, deformations of pairs of skew-symmetric
matrices are given in [9]. For more references about deformation theory, see
[11, 17, 10, 7, 8] and references therein.

Note also that explicit expressions for codimensions of orbits were ob-
tained recently for the following cases: matrix pencils [6], congruence orbits
of matrices [3, 7], *congruence orbits of matrices [4, 8], congruence orbits of
pairs of symmetric matrices [10], and generalized matrix products [22].

Both deformation theory and dimension/codimension calculations are
useful in the theory of orbits and their stratifications (i.e., constructing the
closure hierarchies; e.g., see [12, 13, 14, 20, 21, 19] for more details, algo-
rithms, and software):

• the theory developed in [11] is used for the stratification of orbits of
matrix pencils, controllability and observability pairs in [12, 14];

• the theory developed in [7] is used for the stratification of orbits of
matrices of bilinear forms (for small dimensions) in [15].

Using the result of this paper Matlab functions for computing codimen-
sions of congruence orbits of skew-symmetric matrix pencils were developed
and added to the Matrix Canonical Structure Toolbox [18].
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The analogous motivation and importance of symmetric matrices bring
us to the problem (1) in which (A,B) is a pair of symmetric n × n matrices.
This is a part of ongoing research.

The rest of the paper is organized as follows. The main results are pre-
sented in Section 2. Without loss of generality, we consider a congruently
transformed system (1) where the skew-symmetric pair (A,B) is in canoni-
cal form. The general solution of the system (1) in explicit form is given in
Theorem 2.1. The dimensions of solution spaces and codimensions of orbits
are given in Corollary 2.1 and Corollary 2.2. In Section 3, we prove Theorem
2.1, Corollary 2.1, and Corollary 2.2. First a general result about codimen-
sion calculations is established in Section 3.1. In Sections 3.2–3.3, the nine
di↵erent cases for the solution of the (transformed) system of matrix equa-
tions are handled. We end by illustrating the results on two pairs of matrix
equations in canonical form in Section 4.

All matrices that we consider are over the field of complex numbers.

2 Main result

A pair (A,B) is said to be congruent to (A′,B′) if (A′,B′) = ST (A,B)S =(STAS,STBS) for some nonsingular S. Multiplying the equations (1) by ST

and S, we obtain

STXTS−T ⋅ STAS + STAS ⋅ S−1XS = 0,
STXTS−T ⋅ STBS + STBS ⋅ S−1XS = 0,

and so the system (1) is equivalent to the system

Y TA′ +A′Y = 0,
Y TB′ +B′Y = 0, (2)

where Y ≡ S−1XS. Therefore, it su�ces to solve the system (1) in which(A,B) is a canonical pair of skew-symmetric matrices up to congruence.
Define the matrices

Jn(�) ∶=
���������

� 1 0
� �� 1

0 �

���������
(n-by-n Jordan block),
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Fn ∶=
�������
1 0 0� �
0 1 0

�������
, Gn ∶=

�������
0 1 0� �
0 0 1

�������
(n-by-(n + 1)),

and define the direct sum of matrix pairs as follows:

(A,B)⊕ (C,D) = (A⊕C,B ⊕D).
A canonical form of a pair of skew-symmetric matrices is given in the

following lemma.

Lemma 2.1 (see [23]). Every pair of skew-symmetric complex matrices is

congruent to a direct sum, determined uniquely up to permutation of sum-

mands, of pairs of the form

Hn(�) ∶= �� 0 In−In 0
� , � 0 Jn(�)−Jn(�)T 0

�� , � ∈ C, (3)

Kn ∶= �� 0 Jn(0)−Jn(0)T 0
� , � 0 In−In 0

�� , (4)

Ln ∶= �� 0 Fn−F T
n 0

� , � 0 Gn−GT
n 0

�� . (5)

Thus, each pair of skew-symmetric matrices is congruent to a direct sum
of the form

(A,B)can = a�
i=1 Hhi(�i)⊕ b�

j=1Kqj ⊕ c�
l=1 Lrl , (6)

consisting of direct summands of three types.
In the following, we define several parameter matrices, whose nonzero

entries p1, p2, p3, . . . are independent parameters; they will be used to express
the set of solutions of (1).

• The m × n Hankel matrices

Pmn ∶=
��������������

p1 p2 p3 p4
p2 p3 p4 ⋅
p3 p4 ⋅
p4 ⋅⋅

pm+n−1

��������������
(a dense Hankel matrix),
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P↖mn ∶=
�������
p1 . . . pm 0⋮ � �
pm 0 0

�������
if m � n and

�����������

p1 . . . pn⋮ � 0
pn �
0

0

�����������
if m > n,

P�mn ∶=
�������
p1 . . . pm 0⋮ � �
pm 0 0

�������
if m � n and

��������������

p1 . . . pn⋮ �
pn ⋮⋮ pm�
pm 0

��������������
if m > n.

• The matrices P↗mn and P�mn are obtained from P↖mn and P�mn by reflec-
tion with respect to the vertical axis. The matrices P↘mn and P�mn are
obtained from P↗mn and P�mn by reflection with respect to the horizon-
tal axis. The matrices P↙mn and P�mn are obtained from P↖mn and P�mn

by reflection with respect to the horizontal axis. (Thus, each of these
matrices is constructed like P↖mn and P�mn but its parameter diagonals
are disposed in the corner pointed to by the arrow.)

• The m × n banded Toeplitz matrices

P↔mn ∶=
�������
p1 . . . pn−m+1 0� �
0 p1 . . . pn−m+1

�������
if m � n and 0 if m > n,

P ↕mn ∶= 0 if m < n and

��������������

p1 0⋮ �
p1

pm−n+1 � ⋮
0 pm−n+1

��������������
if m � n.

• The (m + 1) × n matrices defined recurrently

P lc
m+1,n(�) =

�����������
pin = ↵1

�m−i+1 , 1 � i �m + 1 (last column (lc)),

pm+1,j = ↵n−j+1, 1 � j � n (last row),

pij = 1
�(pi+1j − pij+1), 1 � i �m and 1 � j � n − 1,
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and

P fc
m+1,n(�) =

�����������
pi1 = ↵1

�m+1−i , 1 � i �m + 1 (first column (fc)),

pm+1,j = ↵j, 1 � j � n (last row),

pij = 1
�(pi+1j − pij−1), 1 � i �m and 2 � j � n,

where � ∈ C�{0}.
Moreover, we denote by

Qmn,Q
↖
mn,Q

�
mn, . . . , Rmn,R

↖
mn,R

�
mn, . . . , Smn, S

↖
mn, S

�
mn, . . .

the parameter matrices that are obtained from Pmn, P
↖
mn, P

�
mn, . . . by replac-

ing all parameters pi with qi, ri, and si, respectively.
Note that when two (or more) matrices are denoted by the same letter,

they have exactly the same set of independent parametric entries (regardless
to the sizes of matrices) and the parametric entries are placed according to
the definitions above.

We say that a parameter matrix P ≡ P ("1, . . . , "s) with independent pa-
rameters "1, . . . , "s is isomorphic to a parameter matrix Q ≡ Q(�1, . . . , �s)
with independent parameters �1, . . . , �s and write

P ("1, . . . , "s) � Q(�1, . . . , �s)
if they coincide up to relettering of parameters; that is, if there exists a
permutation � of {1, . . . , s} such that P (��(1), . . . , ��(s)) = Q(�1, . . . , �s).

Let (A,B) be a canonical matrix pair and let

(A,B) = (A1,B1)⊕ ⋅ ⋅ ⋅ ⊕ (At,Bt), t ∶= a + b + c,
be its decomposition (6). Let P be a parameter matrix that has the same
size as A and B and the same partition into blocks:

P =
�������
P11 . . . P1t⋮ � ⋮Pt1 . . . Ptt

�������
, size (Pii) = size (Ai) = size (Bi). (7)

Write

P((Ai,Bi)) ∶= Pii, P((Ai,Bi), (Aj,Bj)) ∶= (Pji,Pij) if i < j. (8)

The canonical pair (6) and the following conditions determine P uniquely
up to isomorphism:
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(i) If Pij and Pi′j′ have overlapping sets of parameters, then i′ = j and
j′ = i.

(ii) The diagonal blocks of P are defined up to isomorphism by

P(Hn(�)) � �−P↙nn R↘nn
Q↖nn P↗nn� , (9)

P(Kn) � �−P↙nn R↘nn
Q↖nn P↗nn� , (10)

P(Ln) � � −↵In 0n,n+1
Pn+1,n ↵In+1� . (11)

(iii) The o↵-diagonal blocks of P whose horizontal and vertical strips con-
tain summands of (A,B)can of the same type are defined up to isomor-
phism by

P(Hn(�), Hm(µ))
�
�������������

(0, 0) if � ≠ µ,
�
�
������
P↙mn R↘mn

Q↖mn S↗mn

������ ,
������
−S↙nm R↘nm
Q↖nm −P↗nm

������
�
� if � = µ, (12)

P(Kn,Km) � ��P↙mn R↘mn

Q↖mn S↗mn
� , �−S↙nm R↘nm

Q↖nm −P↗nm�� , (13)

P(Ln, Lm) � �� P↔T
nm 0m,n+1

Qm+1,n R↕Tn+1,m+1� , �
R↕nm 0n,m+1

Qn+1,m P↔n+1,m+1�� . (14)

(iv) The o↵-diagonal blocks of P whose horizontal and vertical strips con-
tain summands of (A,B)can of di↵erent types are defined up to isomor-
phism by P(Hn(�),Km) � (0, 0), (15)
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P(Hn(�), Lm)

�
�������������������

�
�
������

0mn 0mn

P�T
n,m+1 Q�T

n,m+1

������ ,
������
−Q�n,m+1F T

m 0n,m+1
P�n,m+1F T

m 0n,m+1
������
�
� if � = 0,

�
�
������

0mn 0mn

P lc
m+1,n(�) Qfc

m+1,n(�)
������ ,
������
−(FmQfc

m+1,n(�))T 0n,m+1(FmP lc
m+1,n(�))T 0n,m+1

������
�
� if � ≠ 0,

(16)

P(Kn, Lm) � �� 0mn 0mn

P�T
n,m+1 Q�T

n,m+1� , �
−Q�n,m+1GT

m 0n,m+1
P�n,m+1GT

m 0n,m+1�� . (17)

Theorem 2.1. Let the system (1) be given by the canonical pair (6) of skew-
symmetric matrices for congruence. Let P(⇡1, . . . ,⇡s) be a parameter matrix

satisfying conditions (i)–(iv). Then

{P(a1, . . . , as) � (a1, . . . , as) ∈ Cs} (18)

is the set of all solutions of the system (1).

Corollary 2.1. If the system (1) is given by the canonical pair (6), then the

dimension of its solution space (18) is equal to the sum

d(A,B) = dH + dK + dL + dHH + dKK + dLL + dHK + dHL + dKL (19)

whose summands correspond to

• the direct summands of (6):

dH ∶= 3 a�
i=1

pi, dK ∶= 3 b�
i=1

qi, dL ∶= c + 2 c�
i=1

ri;

• the pairs of direct summands of (6) of the same type:

dHH ∶= 4 �
i�j

�i=�j

min(pi, pj), dKK ∶= 4�
i�j

min(qi, qj),

dLL ∶=�
j�i
(2max(ri, rj) + "ij) , in which "ij ∶=

�������
2 if ri = rj,
1 if ri ≠ rj;
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• the pairs of direct summands of (6) of di↵erent types:

dHK ∶= 0, dHL ∶= 2�
i,j

pi, dKL ∶= 2�
i,j

qi.

The set of matrix pairs that are congruent to a pair (A,B) of skew-
symmetric n × n matrices is a manifold in the complex n2 − n dimensional
space of all pairs of skew-symmetric n × n matrices. This manifold is the
orbit of (A,B) under the action of congruence. The vector space

T (A,B) ∶= {V T (A,B) + (A,B)V �V ∈ Cn×n} (20)

is the tangent space to the congruence class of (A,B) at the point (A,B)
since

(I + "V )T (A,B)(I + "V )
= (A,B) + "(V T (A,B) + (A,B)V ) + "2V T (A,B)V

for all n-by-n matrices V and each " ∈ C. The dimension of the orbit of(A,B) is the dimension of its tangent space at the point (A,B); it is well
defined because the dimensions of tangent spaces at all points of the orbit are
equal (e.g., see [2]). The codimension of the orbit of (A,B) is the dimension
of the normal space of its orbit at the point (A,B), which is equal to the
dimension n2 − n of the space of all pairs of skew-symmetric n × n matrices
minus the dimension of the orbit of (A,B).
Corollary 2.2. The codimension of the congruence orbit of the canonical

pair (6) of n × n skew-symmetric matrices is equal to

d(A,B) − n, (21)

in which d(A,B) is the dimension (19) of the solution space of system (1).

Note that the codimensions of the orbits of canonical matrices A under
congruence and *congruence are given in [7, 3] and [4]; unlike (21) they
are exactly equal to the dimensions of the solution spaces of the equations
XA +AXT = 0 and XA +AX∗ = 0.
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3 Solution of the system of matrix equations

In this section we prove Theorem 2.1 and Corollary 2.1. Each direct canonical
summand in (6) is of the form Hn(�), Kn, or Ln (see (3)–(5)), and so we
need to determine:

• 3 types of the diagonals blocks of P , each of them corresponds to one
type of canonical summands (sections 3.2–3.3);

• 3 types of the o↵-diagonal blocks of P , each of them corresponds to
the di↵erent pairs of canonical summands of the same type (sections
3.4–3.5);

• 3 types of the o↵-diagonal blocks of P , each of them corresponds to the
di↵erent pairs of canonical summands of the di↵erent types (sections
3.6–3.8).

Corollary 2.2 is essentially restated and proved as Lemma 3.1 in Section
3.1.

3.1 On codimension computations

Let us state a general result about the codimension computations.

Theorem 3.1. Let X and Z be finitely generated vector spaces and X =
Y ⊕N . Then for any surjective linear map f ∶ Z → Y we have that

dimN = dimX − dimZ + dimKer f.

Proof. The proof follows immediately after we note that dimZ = dimY +
dimKer f .

Lemma 3.1. The codimension of the orbit of (A,B) ∈ Cn×n
c × Cn×n

c , where

Cn×n
c is the space of skew-symmetric n × n matrices, can be calculated as

follows:

codim(orbit(A,B)) = dimV (A,B) − n
in which V (A,B) ∶= {X ∈ Cn×n�XT (A,B) + (A,B)X = 0}.

10



Proof. The result could be obtained from Theorem 3.1 but we give an inde-
pendent proof. Define the function f ∶ Cn×n → T (A,B) where T (A,B) is a
tangent space at the point (A,B) (see (20)) such that

X �XT (A,B) + (A,B)X.

The mapping is obviously a surjective homomorphism thus dimCn×n =
dimT (A,B) + dimV (A,B). Also at every point (A,B) ∈ Cn×n

c × Cn×n
c we

have the decomposition

Cn×n
c ×Cn×n

c = T (A,B)⊕N(A,B),
where N(A,B) is a normal space at the point (A,B). Therefore
codim(orbit(A,B)) = dimN(A,B) = dim(Cn×n

c ×Cn×n
c ) − dimT (A,B)

= dim(Cn×n
c ×Cn×n

c ) − dimCn×n + dimV (A,B) = n2 − n − n2 + dimV (A,B)
= dimV (A,B) − n.

3.2 Solution for H and K blocks

In this section we solve the system (1) for (A,B) = Hn(�) and (A,B) =Kn.
We start by considering (A,B) = Hn(�) and partition X conformally with
the 2×2 block structure of Hn(�) and obtain the following system of matrix
equations:

�XT
11 XT

21

XT
12 XT

22
� � 0 In−In 0

� + � 0 In−In 0
� �X11 X12

X21 X22
� = �0 0

0 0
� ,

�XT
11 XT

21

XT
12 XT

22
� � 0 Jn(�)−Jn(�)T 0

� + � 0 Jn(�)−Jn(�)T 0
� �X11 X12

X21 X22
� = �0 0

0 0
� ,

which is equivalent to

� X21 −XT
21 XT

11 +X22−X11 −XT
22 XT

12 −X12
� = �0 0

0 0
� ,

� −XT
21Jn(�)T + Jn(�)X21 XT

11Jn(�) + Jn(�)X22−XT
22Jn(�)T − Jn(�)TX11 XT

12Jn(�) − Jn(�)TX12
� = �0 0

0 0
� .

(22)
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This system decomposes into three di↵erent systems; each of them corre-
sponds to one pair of blocks. Indeed, we have four pairs of blocks but two of
them are equal up to the sign and transposition.

First consider the system corresponding to the (1,2)-blocks:
XT

11 +X22 = 0,
XT

11Jn(�) + Jn(�)X22 = 0.
Note that

−X22Jn(�) + Jn(�)X22 = −�X22 −X22Jn(0) + Jn(0)X22 + �X22= −X22Jn(0) + Jn(0)X22. (23)

Analogously, we can transform the systems corresponding to the (1,1)- and(2,2)-blocks of (22), and therefore we can put � = 0 in these systems.
Thus we have the equation

−X22Jn(0) + Jn(0)X22 = 0, (24)

and by [16, Ch. VIII] the solution X22 = P↗nn and therefore X11 = −P↗T
nn =−P↙nn. Here and hereafter when we write that the unknown matrix is equal

to a parametric matrix, we mean that any matrix obtained by replacing the
parameters with any complex numbers is a solution and there is no solution
of the system that can not be obtained in this way.

Now consider the system corresponding to the (2,2)-blocks:
X21 −XT

21 = 0,−XT
21Jn(0)T + Jn(0)X21 = 0.

So we are looking for symmetric solutions of −X21Jn(0)T + Jn(0)X21 = 0. To
solve this equation we use the solution of the first system. Multiplying (24)
by the n-by-n flip matrix

Z ∶=
�������
0 1�
1 0

�������
(25)

from the right hand side and taking into account that Z2 = I and ZJn(0)Z =
Jn(0)T we get −(X22Z)Jn(0)T + Jn(0)(X22Z) = 0. Taking into account the
independence of the systems (hereafter we will usually skip this phrase in
explanations) we have X21 =X22Z = Q↗nnZ = Q↖nn which is already symmetric.
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Finally, the system corresponding to the (1,1)-blocks is:
XT

12 −X12 = 0,
XT

12Jn(0) − Jn(0)TX12 = 0.
Again we are looking for symmetric solutions of X12Jn(0) − Jn(0)TX12 =
0. Now we multiply (24) by (−Z) but from the left hand side and get(ZX22)Jn(0) − Jn(0)T (ZX22) = 0. Thus we have X12 = ZX22 = ZR↗nn = R↘nn
which is already symmetric. Altogether we obtain

X = �−P↙nn R↘nn
Q↖nn P↗nn� .

Therefore the general solution of the system (22) is X = P(Hn(�)) (9).
Since the solution does not depend on � (see equation (23)), the sys-
tem with (A,B) = Kn has the same solution X = P(Kn) (10). We
have 3n independent parameters in every of them therefore dK = dH ∶=
dimV (Hn(�)) = dimV (Kn) = 3n and by Corollary 2.2 codim(orbitHn(�)) =
codim(orbitKn) = 3n − 2n = n.
3.3 Solution for L blocks

In this section we solve the system (1) for (A,B) = Ln.
We partition X conformally with the 2 × 2 block structure of Ln and

obtain the following system

�XT
11 XT

21

XT
12 XT

22
� � 0 Fn−F T

n 0
� + � 0 Fn−F T

n 0
� �X11 X12

X21 X22
� = �0 0

0 0
� ,

�XT
11 XT

21

XT
12 XT

22
� � 0 Gn−GT

n 0
� + � 0 Gn−GT

n 0
� �X11 X12

X21 X22
� = �0 0

0 0
� ,

corresponding to the following pairs of blocks

�−XT
21F

T
n + FnX21 XT

11Fn + FnX22−XT
22F

T
n − F T

n X11 XT
12Fn − F T

n X12
� = �0 0

0 0
� ,

�−XT
21G

T
n +GnX21 XT

11Gn +GnX22−XT
22G

T
n −GT

nX11 XT
12Gn −GT

nX12
� = �0 0

0 0
� .

(26)

Since the pairs of blocks at positions (1,2) and (2,1) are equal up to the sign
and transposition, (26) also decomposes into three di↵erent systems.
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First consider the system corresponding to the (1,1)-blocks:
−XT

21F
T
n + FnX21 = 0,−XT

21G
T
n +GnX21 = 0. (27)

To satisfy the first equation of (27) X21 has to have the following form

XT
21 =
�����������

x11 x12 x13 . . . x1n x1n+1
x12 x22 x23 . . . x2n x2n+1
x13 x23 x33 . . . x3n x3n+1⋮ ⋮ ⋮ � ⋮ ⋮
x1n x2n x3n . . . xnn xnn+1

�����������
.

Substituting X21 into the second equation of (27) we have

−
�����������

x11 x12 x13 . . . x1n x1n+1
x12 x22 x23 . . . x2n x2n+1
x13 x23 x33 . . . x3n x3n+1⋮ ⋮ ⋮ � ⋮ ⋮
x1n x2n x3n . . . xnn xnn+1

�����������

���������

0 0
1 �� 0
0 1

���������

+
�������
0 1 0� �
0 0 1

�������

��������������

x11 x12 x13 . . . x1n

x12 x22 x23 . . . x2n

x13 x23 x33 . . . x3n⋮ ⋮ ⋮ � ⋮
x1n x2n x3n . . . xnn

x1n+1 x2n+1 x3n+1 . . . xnn+1

��������������
= 0.

Multiplying and identifying at entry level, we obtain

−xij+1 + xi+1j = 0 if i < j,
xij+1 − xi+1j = 0 if i > j,

0 = 0 if i = j,
where i, j = 1, . . . , n. Now it follows that XT

21 = Pnn+1 is the general solution
of (27), which has 2n independent parameters.

Next consider the system corresponding to the (1,2)-blocks:
XT

11Fn + FnX22 = 0,
XT

11Gn +GnX22 = 0. (28)
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To satisfy the first equation of (28), X22 must have the following form

X22 =
���������

0−XT
11 ⋮

0
y1 . . . yn+1

���������
, (29)

where XT
11 = [xij] is an n × n matrix. After substituting this value of X22 in

the second equation of (28)

�������
x11 . . . x1n⋮ � ⋮
xn1 . . . xnn

�������
�������
0 1 0� �
0 0 1

�������
+
�������
0 1 0� �
0 0 1

�������

���������

−x11 . . . −x1n 0⋮ � ⋮ ⋮−xn1 . . . −xnn 0
y1 . . . yn yn+1

���������
= 0,

we obtain

−
�����������

x21 −x11 + x22 . . . −x1n−1 + x2n −x1n

x31 −x21 + x32 . . . −x2n−1 + x3n −x2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xn1 −xn−11 + xn2 . . . −xnn−1 + xnn −xn−1n−y1 −xn1 − y2 . . . −xnn−1 − yn −xnn − yn+1

�����������
= 0.

This means that X22 = ↵In+1 and from (29) X11 = −↵In. The pair (X11,X22)
is the general solution of the system (28) and it has only one parameter.

Now consider the system corresponding to the (2,2)-blocks:
XT

12Fn − F T
n X12 = 0,

XT
12Gn −GT

nX12 = 0. (30)

To satisfy the first equation of (30) X12 must have the following form

X12 =
�����������

x11 x12 x13 . . . x1n 0
x12 x22 x23 . . . x2n 0
x13 x23 x33 . . . x3n 0⋮ ⋮ ⋮ � ⋮ ⋮
x1n x2n x3n . . . xnn 0

�����������
.

15



Substituting X12 into the second equation of (30) we obtain

��������������

x11 x12 x13 . . . x1n

x12 x22 x23 . . . x2n

x13 x23 x33 . . . x3n⋮ ⋮ ⋮ � ⋮
x1n x2n x3n . . . xnn

0 0 0 . . . 0

��������������

�������
0 1 0� �
0 0 1

�������

−
���������

0 0
1 �� 0
0 1

���������

�����������

x11 x12 x13 . . . x1n 0
x12 x22 x23 . . . x2n 0
x13 x23 x33 . . . x3n 0⋮ ⋮ ⋮ � ⋮ ⋮
x1n x2n x3n . . . xnn 0

�����������
= 0,

or equivalently

����������������

0 x11 x12 x13 . . . x1n−1 x1n−x11 0 x22 − x13 x23 − x14 . . . x2n−1 − x1n x2n−x12 x13 − x22 0 x33 − x24 . . . x3n−1 − x2n x3n−x13 x14 − x23 x24 − x33 0 . . . x4n−1 − x3n x4n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−x1n−1 x1n − x2n−1 x2n − x3n−1 x3n − x4n−1 . . . 0 xnn−x1n −x2n −x3n −x4n . . . −xnn 0

����������������

= 0.

It is clear that X12 = 0 (skew-diagonal-wise). Altogether we have

X = � −↵In 0n,n+1
Pn+1,n ↵In+1� .

Thus the general solution of the system (26) is X = P(Ln) (11). We have
2n + 1 independent parameters in X thus dL ∶= dimV (Ln) = 2n + 1 and by
Corollary 2.2 codim(orbit(Ln)) = 2n + 1 − (2n + 1) = 0.
3.4 Interaction between Hn(�) and Hm(µ) blocks and

between Kn and Km blocks

Let us explain how (1) is changed when (A,B) = (A1,B1) ⊕ (A2,B2). It
is enough to consider only the first matrix equation (the second is treated

16



analogously):

�XT
1 XT

3

XT
2 XT

4
� �A1 0

0 A2
� + �A1 0

0 A2
� �X1 X2

X3 X4
� = 0,

or equivalently

�XT
1 A1 +A1X1 XT

3 A2 +A1X2

XT
2 A1 +A2X3 XT

4 A2 +A2X4
� = 0.

The o↵-diagonal blocks XT
3 A2 +A1X2 and XT

2 A1 +A2X3 are the same up to
the skew-symmetry and it is enough to investigate just one of them.

In this section we calculate o↵-diagonal blocks of the solution of the sys-
tem (1) when A1 =Hn(�) and A2 =Hm(µ). We remark that the system with
A1 =Kn and A2 =Km have the same solution and is therefore omitted in the
discussion that follows.

We consider the following system of equations

R � 0 Im−Im 0
� + � 0 In−In 0

�S = �0 0
0 0
� ,

R � 0 Jm(µ)−Jm(µ)T 0
� + � 0 Jn(�)−Jn(�)T 0

�S = �0 0
0 0
� ,

(31)

where R and S are 2n-by-2m matrices. In the notation at the beginning
of this section R = XT

3 and S = X2; we change the notation to avoid over-
indexing. The solution space of the system above is called the interaction
between Hn(�) and Hm(µ) and denoted by inter(Hn(�),Hm(µ)). The notion
of interaction will be used (without analogous explanation) for all o↵-diagonal
blocks.

From the first equation in (31) we have

�S11 S12

S21 S22
� = �−R22 R21

R12 −R11
� .

By substituting this value of S in the second equation,

�R11 R12

R21 R22
� � 0 Jm(µ)−Jm(µ)T 0

� + � 0 Jn(�)−Jn(�)T 0
� �−R22 R21

R12 −R11
� = 0,

we obtain

� −R12Jm(µ)T + Jn(�)R12 R11Jm(µ) − Jn(�)R11−R22Jm(µ)T + Jn(�)TR22 R21Jm(µ) − Jn(�)TR21
� = 0. (32)
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The matrix equation decomposes into four independent matrix equations.
By [16, Ch.VIII] the equation R11Jm(µ) = Jn(�)R11 in the (1,2)-block has
the solution R11 = 0 if � ≠ µ and R11 = P↗nm if � = µ.

All equations are independent and therefore we have to use di↵erent pa-
rameters to express the general solutions of the four blocks in (32).

Analogously to Section 3.2, we multiply the equations in (32) by the
flip matrix Z (25) from right, left, or both sides. Using that Z2 = I and
ZJ(�)Z = J(�)T we obtain the following general solutions for the remaining
three equations:

(1,1)-block: −R12Jm(µ)T + Jn(�)R12 = R11ZZJm(µ)Z − Jn(�)R11Z

therefore R12 = −R11Z =
�������
0 if � ≠ µ,
Q↖nm if � = µ.

(2,2)-block: R21Jm(µ) − Jn(�)TR21 = ZR11Jm(µ) −ZJn(�)ZZR11

therefore R21 = ZR11 =
�������
0 if � ≠ µ,
R↘nm if � = µ.

(2,1)-block: −R22Jm(µ)T + Jn(�)TR22 = ZR11ZZJm(µ)Z −ZJn(�)ZZR11Z

therefore R22 = −ZR11Z =
�������
0 if � ≠ µ,
S↙nm if � = µ.

Altogether we have

X3 = RT =
�������������

0 if � ≠ µ,������
P↙mn R↘mn

Q↖mn S↗mn

������ if � = µ, and X2 = S =
�������������

0 if � ≠ µ,������
−S↙nm R↘nm
Q↖nm −P↗nm

������ if � = µ.
Therefore we have obtained that the interaction between Hn(�) and Hm(µ)
is of the form (X3,X2) = P(Hn(�),Hm(µ)) (12) and similarly (X3,X2) =P(Kn,Km) (13) when A1 = Kn and A2 = Km. Calculating independent pa-
rameters we obtain dKK ∶= dim(inter(Kn,Km)) = 4min(n,m) and

dHH ∶= dim(inter(Hn(�),Hm(µ))) =
�������
0 if � ≠ µ,
4min(n,m) if � = µ.
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3.5 Interaction between Ln and Lm

Due to the explanation in the previous subsection, it su�ces to consider

�R11 R12

R21 R22
� � 0 Fm−F T

m 0
� + � 0 Fn−F T

n 0
� �S11 S12

S21 S22
� = �0 0

0 0
� ,

�R11 R12

R21 R22
� � 0 Gm−GT

m 0
� + � 0 Gn−GT

n 0
� �S11 S12

S21 S22
� = �0 0

0 0
� ,

where R and S are the required (2n + 1)-by-(2m + 1) matrices.
After perfoming the matrix multiplications, we have

�−R12F T
m + FnS21 R11Fm + FnS22−R22F T
m − F T

n S11 R21Fm − F T
n S12

� = �0 0
0 0
� ,

�−R12GT
m +GnS21 R11Gm +GnS22−R22GT
m −GT

nS11 R21Gm −GT
nS12
� = �0 0

0 0
� .

This system of matrix equations decomposes into four independent sys-
tems of matrix equations each of them corresponds to one pair of blocks.
Consider first the (1,1)-blocks:

−R12F
T
m + FnS21 = 0,−R12G
T
m +GnS21 = 0. (33)

From the first equation of (33) we obtain that

S21 = � W
a1 . . . am

� ,R12 =
�������

b1
W ⋮

bn

�������
, where W is any n-by-m matrix.

(34)
Therefore

−
�������

b1
W ⋮

bn

�������
GT

m +Gn � W
a1 . . . am

� = 0,
or equivalently

�����������

w21 −w12 w22 −w13 . . . w2m−1 −w1m w2m − b1
w31 −w22 w32 −w23 . . . w3m−1 −w2m w3m − b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wn1 −wn−12 wn2 −wn−13 . . . wnm−1 −wn−1m wnm − bm−1
a1 −wn2 a2 −wn3 . . . an−1 −wnm an − bm

�����������
= 0,
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where qij,1 � i � n,1 � j � m are entries of W . Thus we have that S21 =
Qn+1,m, i.e., an (n + 1) × m dense Hankel matrix, R12 = Qn,m+1, i.e., an
n×(m+1) dense Hankel matrix, with common n×m part (see (34)), and an =
bm. It follows that the sets of parametric entries of S21 and R12 are exactly
the same, and therefore they are denoted by the same letter. Calculating
the number of independent parameters in the solution we obtain that the
dimension of the solution space is equal to n +m.

Consider now the system of equations corresponding to the (1,2)-blocks:
R11Fm + FnS22 = 0,
R11Gm +GnS22 = 0. (35)

From the first equation of (35) we can express S22 as

S22 =
���������

0−R11 ⋮
0

b1 . . . bm+1

���������
, (36)

where R11 = [rij] is n-by-m. Substituting S22 into the second equation of (35)
we obtain

R11Gm +Gn

���������

0−R11 ⋮
0

b1 . . . bm+1

���������
= 0,

or equivalently

�����������

−r21 r11 − r22 . . . r1m−1 − r2m r1m−r31 r21 − r32 . . . r2m−1 − r3m r2m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−rn1 rn−11 − rn2 . . . rn−1m−1 − rnm rn−1m
b1 rn1 + b2 . . . rnm−1 + bm rnm + bm+1

�����������
= 0.

Thus we have that R11 = P↔nm and correspondingly S22 = P↔n+1,m+1. Recall that
the n ×m part, starting form the top-left corner of S22 is equal to R11 (see
(36)). Thus the parametric entries of both matrices are the same. Therefore
we have that the dimension of the solution space is equal to m − n + 1.

The system of equations corresponding to the (2,1)-blocks:
R22F

T
m + F T

n S11 = 0,
R22G

T
m +GT

nS11 = 0, (37)
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is equal to the previous one up to the transposition and interchanging the
roles of n and m. Thus we have that S11 = R↕nm and R22 = R↕n+1,m+1. Like
in the previous case the n × m part, starting form the top-left corner, of
R22 is equal to S11. Thus the parametric entries of both matrices are the
same. Therefore we have that the dimension of the solution space is equal
to n −m + 1.

Consider now the system of equations corresponding to the (2,2)-blocks:
R21Fm − F T

n S12 = 0,
R21Gm −GT

nS12 = 0. (38)

From the first equation of (38) we have

R21 = � Q
0 . . . 0

� , S12 =
�������

0
Q ⋮

0

�������
, in which Q = [qij] is any n-by-m matrix.

Substituting S12 and R21 in the second equation of (38) we have

� Q
0 . . . 0

�Gm −GT
n

�������
0

Q ⋮
0

�������
= 0,

or equivalently

�����������

0 q11 . . . q1m−1 q1m−q11 q21 − q12 . . . q2m−1 − q1m q2m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−qn−11 qn1 − qn−12 . . . qnm−1 − qn−1m qnm−qn1 −qn2 . . . −qnm 0

�����������
= 0.

Now it follows that Q = 0n×m and thus both S12 and R21 are zero blocks.
Altogether we have

X3 = RT = � P↔T
nm 0m,n+1

Qm+1,n R↕Tn+1,m+1� and X2 = S = � R↕nm 0n,m+1
Qn+1,m P↔n+1,m+1� .

Therefore we have obtained that the interaction between Ln and Lm is of the
form (X3,X2) = P(Ln, Lm) (14) and by calculating the number of indepen-
dent parameters we obtain

dLL ∶= dim(inter(Ln, Lm)) =
�������
2n + 2 if n =m,

2max(n,m) + 1 if n ≠m.
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3.6 Interaction between Hn(�) and Km

In this subsection we compute o↵-diagonal blocks of the solution of the system
(1) which correspond to the diagonal blocks Hn(�) and Km ∶

R � 0 Jm(0)−Jm(0)T 0
� + � 0 In−In 0

�S = �0 0
0 0
� ,

R � 0 Im−Im 0
� + � 0 Jn(�)−Jn(�)T 0

�S = �0 0
0 0
� ,

(39)

where R,S are the required 2n-by-2m matrices.
From the first equation we have

S = � 0 In−In 0
� �R11 R12

R21 R22
� � 0 Jm(0)−Jm(0)T 0

� ,
or equivalently

�S11 S12

S21 S22
� = �−R22Jm(0)T R21Jm(0)

R12Jm(0)T −R11Jm(0)� .
We substitute this value of S in the second equation, i.e.

�R11 R12

R21 R22
� � 0 Im−Im 0

� + � 0 Jn(�)−Jn(�)T 0
� �−R22Jm(0)T R21Jm(0)

R12Jm(0)T −R11Jm(0)� = 0,
and we get

� −R12 + Jn(�)R12Jm(0)T R11 − Jn(�)R11Jm(0)−R22 + Jn(�)TR22Jm(0)T R21 − Jn(�)TR21Jm(0)� = 0. (40)

This matrix equation corresponds to four independent matrix equations and
we start to consider the (1,1)-block: R12 = Jn(�)R12Jm(0)T , where R12 =[rij] is n ×m. At entry level we have

−rij + �rij+1 + ri+1j+1 = 0 if 1 � i � n − 1, 1 � j �m − 1,
−rij + �rij+1 = 0 if 1 � j �m − 1, i = n,

−rij = 0 if 1 � i � n, j =m.

This system has only one solution, the trivial one R12 = 0n×m.
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Analogously to sections 3.2 and 3.4 we multiply the equations in (40)
by Z (25) from right, left, or from both sides. Once again using Z2 = I
and ZJ(�)Z = J(�)T we obtain the general solution of the remaining three
equations:

(1,2)-block: R11 − Jn(�)R11Jm(0) = −R12Z + Jn(�)R12ZZJm(0)TZ
thus R11 = −R12Z = 0n×m.

(2,1)-block: −R22 + Jn(�)TR22Jm(0)T = −ZR12 +ZJn(�)ZZR12Jm(0)T
thus R22 = ZR12 = 0n×m.

(2,2)-block: R21−Jn(�)TR21Jm(0) = −ZR12Z+ZJn(�)ZZR12ZZJm(0)TZ
thus R21 = −ZR12Z = 0n×m.

Altogether we obtain X3 = RT = 0 and X2 = S = 0. Thus we have proved
that the interaction between Hn(�) and Km is of the form (X3,X2) =P(Hn(�),Km) (15) and, in particular, dHK ∶= dim(inter(Hn(�),Km)) = 0.
3.7 Interaction between Hn(�) and Lm

In this subsection we compute the o↵-diagonal blocks of the solution of the
system (1) which correspond to the diagonal blocks Hn(�) and Lm ∶

R � 0 Fm−F T
m 0

� + � 0 In−In 0
�S = �0 0

0 0
� ,

R � 0 Gm−GT
m 0

� + � 0 Jn(�)−Jn(�)T 0
�S = �0 0

0 0
� ,

where R,S are the required 2n-by-(2m + 1) matrices.
From the first equation we have

S = � 0 In−In 0
� �R11 R12

R21 R22
� � 0 Fm−F T

m 0
� ,

or equivalently

�S11 S12

S21 S22
� = �−R22F T

m R21Fm

R12F T
m −R11Fm

� .
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Substituting this value of S into the second equation we obtain

�R11 R12

R21 R22
� � 0 Gm−GT

m 0
� + � 0 Jn(�)−Jn(�)T 0

� �−R22F T
m R21Fm

R12F T
m −R11Fm

� = 0,
which corresponds to the four independent matrix equations:

� −R12GT
m + Jn(�)R12F T

m R11Gm − Jn(�)R11Fm−R22GT
m + Jn(�)TR22F T

m R21Gm − Jn(�)TR21Fm
� = 0.

We start to consider the (1,1)-block: R12GT
m = Jn(�)R12F T

m, where the ma-
trix R12 = [rij] is n × (m + 1). At entry level we get

�����������

−r12 + �r11 + r21 −r13 + �r12 + r22 . . . −r1m+1 + �r1m + r2m−r22 + �r21 + r31 −r23 + �r22 + r32 . . . −r2m+1 + �r2m + r3m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−rn−12 + �rn−11 + rn1 −rn−13 + �rn−12 + rn2 . . . −rn−1m+1 + �rn−1m + rnm−rn2 + �rn1 −rn3 + �rn2 . . . −rnm+1 + �rnm

�����������
= 0.

If � = 0 then the general solution of the system is R12 = P�n,m+1. If � ≠ 0 then
the answer is more complicated and can be computed recurrently as follows:

R12 =
�����������
ri,m+1 = ↵n−i+1, 1 � i � n (last column),

rnj = ↵1
�m−j+1 , 1 � j �m + 1 (last row),

rij = 1
�(rij+1 − ri+1j), 1 � i < n and 1 � j <m + 1.

Therefore we have RT
12 = P lc

m+1,n.
To find the solution for R22GT

m = Jn(�)TR22F T
m we need to multiply the

answer for the first equation by Z (see (25)) from the left side because

−R22G
T
m + Jn(�)TR22F

T
m = −ZR12G

T
m +ZJn(�)ZZR12F

T
m.

Therefore R22 = ZR12 and thus RT
22 = RT

12Z thus for � = 0 we have R22 =
ZQ�n,m+1 = Q�n,m+1 and for � ≠ 0 we have RT

22 = RT
12Z = P lc

m+1,nZ = P fc
m+1,n (in

fact, P fc
m+1,n is obtained from P lc

m+1,n by reversing the order of columns).
Consider the equation R11Gm = Jn(�)R11Fm, in which n×m matrix R11 =[rij]. Multiplying the matrices we have

�����������

−�r11 − r21 r11 − �r12 − r22 . . . r1m−1 − �r1m − r2m r1m−�r21 − r31 r21 − �r22 − r32 . . . r2m−1 − �r2m − r3m r2m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−�rn−11 − rn1 rn−11 − �rn−12 − rn2 . . . rn−1m−1 − �rn−1m − rnm rn−1m−�rn1 rn1 − �rn2 . . . rnm−1 − �rnm rnm

�����������
= 0.

24



The system has only one solution which is R11 = 0. Tacking into account that
R21Gm−Jn(�)TR21Fm = ZR11Gm−ZJn(�)ZZR11Fm we have R21 = ZR11 = 0.
Altogether we get

X3 = RT =
�������������������

������
0mn 0mn

P�T
n,m+1 Q�T

n,m+1

������ if � = 0,
������

0mn 0mn

P lc
m+1,n(�) Qfc

m+1,n(�)
������ if � ≠ 0,

X2 = S =
�������������������

������
−Q�n,m+1F T

m 0n,m+1
P�n,m+1F T

m 0n,m+1
������ if � = 0,

������
−(FmQfc

m+1,n(�))T 0n,m+1(FmP lc
m+1,n(�))T 0n,m+1

������ if � ≠ 0.
Therefore we have obtained that the interaction between Hn(�) and Lm is
of the form (X3,X2) = P(Hn(�), Lm) (16) and calculating the number of
independent parameters we obtain that dHL ∶= dim(inter(Hn(�), Lm)) = 2n.
3.8 Interaction between Kn and Lm

In this subsection we compute o↵-diagonal blocks of the solution of the system
(1) which correspond to the diagonal blocks Kn and Lm ∶

R � 0 Fm−F T
m 0

� + � 0 Jn(0)−Jn(0)T 0
�S = �0 0

0 0
� ,

R � 0 Gm−GT
m 0

� + � 0 In−In 0
�S = �0 0

0 0
� ,

where R,S are the required 2n-by-(2m + 1) matrices.
From the second equation we have

S = � 0 In−In 0
� �R11 R12

R21 R22
� � 0 Gm−GT

m 0
� ,

or equivalently

�S11 S12

S21 S22
� = �−R22GT

m R21Gm

R12GT
m −R11Gm

� .
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By substituting this value of S in the first equation, i.e.

�R11 R12

R21 R22
� � 0 Fm−F T

m 0
� + � 0 Jn(0)−Jn(0)T 0

� �−R22GT
m R21Gm

R12GT
m −R11Gm

� = 0,
we obtain

� −R12F T
m + Jn(0)R12GT

m R11Fm − Jn(0)R11Gm−R22F T
m + Jn(0)TR22GT

m R21Fm − Jn(0)TR21Gm
� = 0. (41)

This matrix equation decomposes into the four independent matrix equations
each of them corresponds to the one block. We start to consider the (1,1)-
block: R12F T

m = Jn(0)R12GT
m, where R12 = [rij] is n × (m + 1). At entry level

we have

�����������

−r11 + r22 −r12 + r23 . . . −r1m + r2m+1−r21 + r32 −r22 + r33 . . . −r2m + r3m+1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−rn−11 + rn2 −rn−12 + rn3 . . . −rn−1m + rnm+1−rn1 −rn2 . . . −rnm

�����������
= 0.

The solution of the (1,1)-block system is R12 = P�n,m+1, which also defines
S21. Next we consider the (2,1)-block of (41). Since,

−R22F
T
m + Jn(0)TR22G

T
m = −ZR12F

T
m +ZJn(0)ZZR12G

T
m,

we get R22 = ZR12 = ZQ�n,m+1 = Q�n,m+1, where Z is the flip matrix (25).
The (1,2)-block of (41) corresponds to R11Fm = Jn(0)R11Gm, where ma-

trix R11 = [rij] is n ×m. At the entry level we have

�����������

r11 r12 − r21 r13 − r22 . . . r1m − r2m−1 −r2m
r21 r22 − r31 r13 − r32 . . . r2m − r3m−1 −r2m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
rn−11 rn−12 − rn1 rn−13 − rn2 . . . rn−1m − rnm−1 −rnm
rn1 rn2 rn3 . . . rnm 0

�����������
= 0,

The system has only one solution, namely R11 = 0n×m.
For the (2,2)-block we have

R21Fm − Jn(0)TR21Gm = ZR11Fm −ZJn(0)ZZR11Gm,
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and therefore R21 = ZR11 = 0. Altogether we obtain

X3 = RT = � 0mn 0mn

P�T
n,m+1 Q�T

n,m+1� and X2 = S = �−Q�n,m+1GT
m 0n,m+1

P�n,m+1GT
m 0n,m+1� .

We have proved that the interaction between Kn and Lm is of the form(X3,X2) = P(Kn, Lm) (17) and calculating the number of independent pa-
rameters we obtain that dKL ∶= dim(inter(Kn, Lm)) = 2n.
4 Two examples

We illustrate our results by considering two di↵erent pairs of matrix equations
(1). Assume that X is the solution of a pair of matrix equations (1) where the
matrix pair is taken in canonical form (6). Then the general solution X̂ of (1)
can be expressed as X̂ = SXS−1, where S is the congruence transformation
that brings (A,B) to canonical form.

Example 4.1. Consider the system of matrix equations (1) where (A,B) =
K1 ⊕K3 ⊕ L2 (13 × 13 skew-symmetric matrix pair). By Theorem 2.1 the
solution X of this system is

���������������������������

−x1 x2 −x7 0 0 0 0 x6 0 −x9 0 0 0
x3 x1 x5 0 0 0 0 −x4 0 x8 0 0 0

0 0 −x10 0 0 0 0 x19 0 −x22 0 0 0
0 0 −x11 −x10 0 0 x19 x20 −x22 −x23 0 0 0
x4 x6 −x12 −x11 −x10 x19 x20 x21 −x23 −x24 0 0 0
x5 x7 x13 x14 x15 x10 x11 x12 x17 x18 0 0 0
0 0 x14 x15 0 0 x10 x11 x16 x17 0 0 0
0 0 x15 0 0 0 0 x10 0 x16 0 0 0

0 0 0 0 0 0 0 0 −x25 0 0 0 0
0 0 0 0 0 0 0 0 0 −x25 0 0 0
0 0 x16 0 0 0 0 x22 x26 x27 x25 0 0
0 0 x17 x16 0 0 x22 x23 x27 x28 0 x25 0
x8 x9 x18 x17 x16 x22 x23 x24 x28 x29 0 0 x25

���������������������������

,

where xi ∈ C, i = 1, . . . ,29.
The dimension of the solution space is d(A,B) = 29 (the number of inde-

pendent parameters in X) and therefore the codimension of the congruence
orbit of (A,B) is equal to 16 (= d(A,B) − n).
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Example 4.2. Consider the system of matrix equations (1) where (A,B) =
H2(�) ⊕ L2,� ≠ 0 (9 × 9 skew-symmetric matrix pair). By Theorem 2.1 the
solution X of this system is

������������������

−x1 0 0 x5 −x9
�2 −x9

� 0 0 0−x2 −x1 x5 x6 −x10
�2 + 2x9

�3 −x10
� + x9

�2 0 0 0
x3 x4 x1 x2

x8
�2 − 2x7

�3
x8
� − x7

�2 0 0 0
x4 0 0 x1

x7
�2

x7
� 0 0 0

0 0 0 0 −x11 0 0 0 0
0 0 0 0 0 −x11 0 0 0

x8
�2 − 2x7

�3
x7
�2

x9
�2

x10
�2 − 2x9

�3 x12 x13 x11 0 0
x8
� − x7

�2
x7
�

x9
�

x10
� − x9

�2 x13 x14 0 x11 0
x8 x7 x9 x10 x14 x15 0 0 x11

������������������

,

where xi ∈ C, i = 1, . . . ,15.
The dimension of the solution space is d(A,B) = 15 (the number of inde-

pendent parameters in X) and therefore the codimension of the congruence
orbit of (A,B) is equal to 6 (= d(A,B) − n).
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