
Simulation relations as a means for
pattern-matching in treebanks

Johanna Björklunda,1,∗, Lars-Daniel Öhmanb,1

a Dept. Comp. Sci, Ume̊a University, 901 87 Ume̊a Sweden
b Dept. Math. and Math. Stat., Ume̊a University, 901 87 Ume̊a Sweden

Abstract

We consider the problem of finding the occurrences of a pattern tree t in a treebank
represented as a directed acyclic graph g, and propose a two-tiered technique, consist-
ing of a preprocessing routine and a search algorithm. We assume that whereas the
treebank itself is large and more or less static, the pattern tree is small and frequently
updated. To model varying abstraction levels in the data, we work with partially ordered
alphabets and compute simulation relations rather than equivalence relations. For in-
stance, vertices and edges are labelled with elements from a pair of preorders PΣ and PΓ

instead of unstructured alphabets. Under the above assumptions, we obtain a search
algorithm that runs in time O(|PΣ|+ height (t) |t| |(V/Rg)|2 |PΓ|), where (V/Rg) is the
number of equivalence classes in the coarsest simulation relation Rg on the vertex set V
of g. The size of the treebank thus only affects the running time of the search algo-
rithm indirectly, and this is due to the groundwork done by the preprocessing routine in
time O(|PΣ|+ height (g) |g| |(V/Rg)|2 |PΓ|).

Keywords: pattern matching, simulation, treebanks, complexity

1. Introduction

The last decade has seen immense progress in the fields of sensor and memory tech-
nology. The greater ease with which data can be collected and stored paves the way for
statistical approaches to a wide range of application areas, including machine transla-
tion (Koehn, 2010), bioinformatics (Lee, 2010), and network analysis (Kolaczyk, 2009).
However, the distillation of information from raw data requires algorithms and data
structures that support indexing, analysis, and search. For these purposes, hierarchi-
cal approaches often prove particularly useful, as exemplified by standardized markup
languages derived from XML that structure content as trees with auxiliary links. As
demonstrated by Maneth et al. (2008), XML documents can be compactly represented
as directed acyclic graphs (DAG).

∗Principal corresponding author. Tel. +46 70 603 94 59, Fax. +46 90 786 99 95.
Email addresses: johanna.bjorklund@cs.umu.se (Johanna Björklund),

lars-daniel.ohman@cs.umu.se (Lars-Daniel Öhman)
1Supported by Vinnova within the Vinnmer programme.

Preprint submitted to Elsevier November 30, 2011

In this work, we study the pattern-matching problem for treebanks (i.e., sets of trees)
and investigate how their inherent hierarchical structure can be used to facilitate searches.
The scenario is that we have a large but more or less static treebank, consisting of e.g.
XML formatted data or syntactically annotated text, that we frequently want to search
for occurrences of relatively small, but varying, patterns. This search task is formalised
as a pattern-matching problems for acyclic graphs, where the input is a set of trees T
and an additional pattern tree t. The problem is: Does t occur as a pattern in T? In
other words, is there an edge-preserving mapping that takes the vertices of t to those of
a tree t′ ∈ T? To save space, the large set T should be represented as a DAG g, whereas
the comparatively small t may be given as an ‘uncompressed’ tree.

To solve this problem, we propose a two-step pattern-matching algorithm that con-
sists in a preprocessing routine that is computationally demanding but only computed
once, and a light-weight pattern-matching routine that is executed for every new search
tree. The preprocessing consists in deriving the unique coarsest simulation relation on
the node set V of the object treebank, through step-wise refinement of an approximating
relation. The pattern-matching algorithm then retraces the steps taken by the prepro-
cessing routine to decide to what equivalence class [v] the root node v of a pattern tree
belongs. The algorithm does not recompute the actual refinement steps, but follows
instead a trail of ‘breadcrumbs’, i.e., a sequence of stored feature vectors. Once [v] has
been found, the occurrences of t in the treebank is quite simply the vertex set [v] \ {v}.

1.1. Related work

Pattern matching has been studied extensively for graphs in general, but also for
restricted forms such as acyclic graphs and trees. When a graph is acyclic, we measure
its height as the length of the longest path from a source vertex to a sink vertex. In our
review of related work, g and t denote the object graph and pattern tree, respectively.
We write Vx for the vertex set of the graph x and Ex for the edge set. The vertices
are labelled with elements from a preorder PΣ and the edges with elements from a pre-
order PΓ. With this notation, the complexity expression for our preprocessing routine
is O(|PΣ| + height (g) |g| |(Vg/Rg)|2 |PΓ|), where (Vg/Rg) is the number of equivalence
classes in coarsest simulation relation Rg on the vertex set of g. The search routine is
closely guided by the preprocessing routine, and this shines through in its time com-
plexity: O(|PΣ|+ height (t) |t| |(Vg/Rg)|2 |PΓ|). It is worth noticing that the size of the
treebank only affects the running time of the search routine indirectly through Rg.

There is, to the best of our knowledge, no previous work on pattern matching for
treebanks that considers structured vertex and edge alphabets. To relate our results
to those of others before us, we focus temporarily on the special case where both pre-
orders are identity relations and the alphabets themselves are fixed and do not appear
in the complexity expressions. Under these restrictions, the complexity expression for
the preprocessing routine is simplified to O(height (g) |g| |(Vg/Rg)|2) and the correspond-

ing complexity expression for the search routine becomes O(height (t) |t| |(Vg/Rg)|2)).
Another obstacle for comparison is the appearance of |(Vg/Rg)| as a factor in the two
expressions. Since we are working with acyclic graphs, the number of equivalence classes
with respect to Rg is bounded from below by height (g), and from above by |g|. Intu-
itively, the size of the simulation relation Rg is inversely proportional to the number of
reoccurring substructures in the graph.

2

Wuu et al. (2000) also divides the computational work between a preprocessing step
and a search routine, but in their scenario, it is the pattern tree that is fixed and the object
tree that varies. The authors obtain a running time of O(|t| h) for the preprocessing step,
where h is the height of a certain tree constructed during preprocessing, is bounded from
above by |t|, and a running time of O(|g| log|g|) for the actual matching. Whether
their algorithm or ours is more efficient seems to depend on the amount of reoccurring
structures in the data; we leave a closer comparison and perhaps also a fusing of the
results as a subject for future work.

Simulation as a means for pattern-matching has also been investigated by Fan et al.
(2010). The authors use a notion of bounded simulation rather different from ours, in
which edges can be mapped onto paths bounded in length by some constant k. This
leads to an algorithm that computes the largest occurrence in time

O
(
|Vg| |Eg|+ |Vt| |Vg|2 + |Vg| |Vt|

)
.

Using a stack-based approach, Chen et al. (2005) obtain a pattern-matching algorithm

for DAGs that executes in time O(|g| |t|2). Cheng et al. (2008) present and empirically
evaluate a pattern-matching algorithm based on reachability join. Another empirical
study is conducted by Yao and Zhang (2004) who consider tree pattern-matching algo-
rithms within the context of XML Querying.

Wang et al. (2002) supply an algorithm for finding approximate patterns with respect
to a certain edit-distance in undirected acyclic graphs. In the context of edit distances,
pattern-matching for trees has also been treated under the name tree inclusion by Bille
(2005). Kilpelinen and Mannila (1995) presented a decision algorithm for ordered trees
that runs in time O(|g| |t|). This bound was improved upon by Chen (1998) who gave an
O(|g| |leaves (t)|) algorithm, where leaves (t) is the subset of Vt that lacks outgoing edges.

A closely related problem is that of subgraph isomorphism, which consists in deciding
whether a given graph g has a subgraph g′. Since the subgraph isomorphism problem
generalises both the maximum clique problem and the Hamilton path problem, it is NP-
hard (Ullmann, 1976; Chen et al., 2008). However, polynomial time algorithms exists
for restricted versions of the problem, such as those provided by Sundaram and Skiena
(1995) for subgraphs with bounded flower number.

Regarding our theoretical framework, (bi-)simulation relations for graphs were first
introduced by Milner (1982) as a formal means of investigating transition systems, and
then extended to the weighted setting by Buchholz (2008) almost three decades later.
An efficient algorithm for computing simulations relations on tree structures has been
presented by Abdulla et al. (2008) and lifted to the weighted setting by Maletti (2009).

1.2. Outline

The disposition of this paper is as follows. Section 2 contains those concepts from
algebra and automata theory on which our presentation rests. Section 3 establishes a
theoretical framework and introduces the notion of approximated simulation. Section 4
outlines the preprocessing and search routines together with a discussion of their com-
putational complexity. Section 5 first considers a special case of our framework and then
turns to pattern matching for ordered trees. Section 6 contains concluding remarks and
suggestions for future work.

3

2. Preliminaries

This section reviews useful notions and notations from the fields of algebra and tree
automata. For an introduction to the latter field, see e.g. the survey by Comon et al.
(1997) or the handbook by Droste et al. (2009). The relational modelling of graphs is
inspired by a book on rewriting systems by Baader and Nipkow (1998).

Sets and numbers. We write B for the set of truth values {0, 1} and the N for
the natural numbers, or N+ if we wish to exclude 0 from N. For k ∈ N, we write [k]
for {1, . . . , k}. As a special case, we have [0] = ∅.

An alphabet is a finite nonempty set. Let S be a set. The strings over S, written S∗,
is the set of all finite sequences of elements of S, the empty string ε is the unique sequence
w ∈ S∗ of length 0, and S+ = S∗ \ {ε}. The power set of S, i.e. the set of all subsets of
S, is denoted by pow (S).

Relations. Let S be a set and R,P ⊆ S × S relations. The composition of R and P
is RP = {(s, s′′) | ∃s′ ∈ S : (s, s′) ∈ R ∧ (s′, s′′) ∈ P}.

We write R−1 for the inverse of R, and R∗ for the transitive closure of R. In other
words, R−1 = {(s′, s) | (s, s′) ∈ R} and R∗ is the smallest superset of R such that
(s, s′), (s′, s′′) ∈ R∗ implies (s, s′′) ∈ R∗.

The relation R is:

• the identity relation IS on S if R = {(s, s) | s ∈ S};
• reflexive if IS ⊆ R;

• transitive if RR∗ = R;

• symmetric if (s, s′) ∈ R implies that (s′, s) ∈ R;

• antisymmetric if (s, s′) ∈ R and (s′, s) ∈ R implies that s′ = s;

• an equivalence relation if it is reflexive, transitive and symmetric; and

• a preorder if it is reflexive and transitive.

We denote by R? the reflexive and transitive closure of R, i.e., R? = (R ∪ R−1)∗.
For s ∈ S, R(s) denotes the set {s′ | (s, s′) ∈ R}. This operation is lifted to sets in the
natural way, i.e., for S′ ⊆ S, we have R(S′) = ∪s∈S′R(s).

Partitions. Let S be a set, and let R and P be relations on S. We say that R is
a refinement of P if R ⊆ P, and that R is a proper refinement of P if R ⊂ P. The
equivalence class (or block) of an element s ∈ S with respect to a preorder R is the
set [s]R = {s′ | (s, s′), (s′, s) ∈ R}. By definition, [s]R and [s′]R are are either equal or
disjoint, so R induces a partition (S/R) = {[s]R | s ∈ S} of S. If it is clear from the
context which relation R is intended, we write [s] for [s]R.

Orders. Let R ⊆ V × V be a preorder. The upset of v ∈ V with respect to R is
simply R(v). An element v ∈ V is maximal with respect to R if R(v) = [v]R. For the
remainder of this paper, Σ and Γ are fixed but arbitrary alphabets, and PΣ and PΓ are
fixed but arbitrary preorders on Σ and Γ, respectively.

A partial order is an antisymmetric preorder. Given a preorder R on V , we denote
by R̂ the partial order on (V/R) given by R̂ = {([v], [v′]) | (v, v′) ∈ R}. If for any s, s′ it
holds that either (s, s′) or (s′, s) ∈ R, then R is a total order.

4

Graphs. A (vertex- and edge-labelled) graph is a tuple g = (V,E, s, l) where V is a set
of vertices and E is a binary relation on V representing edges. The mappings s : V 7→ Σ
and l : E 7→ Γ are the vertex- and edge-labellings of g, respectively. To avoid always
stating the entire tuple, we denote by Vg and Eg the sets V and E of g, respectively.
Furthermore, we use v

γ→ v′ as a shorthand for (v, v′) ∈ E ∧ l((v, v′)) = γ.
Let g = (V,E, s, l) be a graph and V ′ ⊆ V . The size of g is |g| = |V | + |E|. The

subgraph of g induced by V ′ is the graph g[V ′] = (V ′, E ∩ (V ′ × V ′), s, l), with the
mappings s and l properly restricted.

A path through g is a sequence v1, . . . , vk of vertices such that (vi, vi+1) ∈ E for every
i ∈ [k − 1]. The path is a cycle if v1 = vk. The length of a path v1, . . . , vk is k − 1. The
vertex v′ ∈ V is reachable from v ∈ V or, in other terminology, there is a path from v to
v′ if v′ ∈ E∗(v). The height (g) of g is the length of the longest path through g.

The graph g is acyclic if IV ∩ E∗ = ∅ and connected if V × V ⊆ E?. Let g be an
acyclic graph. The subgraph g attached at U ⊆ Vg, which we write as g|U is g[E∗g (U)].
Informally, the subgraph attached at U consists of everything ‘downstream’ from U .
Using the notion of height, we stratify the vertices of g by letting

V ig = {v ∈ Vg | height (g|{v}) ≤ i}

for every i ∈ [height (g)], where we may drop the g from Vg if it is clear from the context.

Trees. The graph g = (V,E, s, l) is a tree if

• (V,E ∪ E−1) is acyclic, and

• there is a unique vertex v such that V = E∗(v). If such a v exists, then it is referred
to as the root of t and denoted by root(t).

From this definition, it follows immediately that every tree is connected and acyclic. The
leaves of a tree t, written leaves (t), is the set {v ∈ V ′ | E(v) = ∅}.

A subtree of t rooted at v ∈ Vt, henceforth denoted by t|v, is a subgraph of t attached
at {v}. A subtree is direct if it is rooted at a vertex in E(root(t)). We denote the set of
all subtrees of t by subtrees (t).

We write a tree t = (V,E, s, l) with direct subtrees t1, . . . , tk as as σ[γ1 : t1, . . . , γk : tk],
where σ = s(root(t)) and γi = l((root(t), root(ti))) for every i ∈ [k]. If k = 0, we omit
the brackets and write t simply as σ.

3. Theoretical framework

We address the following informally stated pattern-matching problem for trees.

Given a comprehensive treebank and a sequence of pattern trees, at what
positions in the treebank do the pattern trees occur?

We shall assume that the treebank is represented by a DAG g for the sake of compactness,
but that the pattern trees, being comparatively small and given in a one-by-one fashion,
are stored as regular trees. In our formalisation, we take the statement that a pattern
tree t occurs in g to mean that there is a mapping that identifies t with a connected
subgraph t′ of g. When there are vertex- or edge-labellings involved, these are to be

5

respected by the projection. To avoid unnecessary loss of generality, we shall not require
the labellings of t and t′ to be identical, but rather that the labels assigned to the vertices
and edges of t are consistently ‘smaller’ than those assigned to the vertices and edges
of t′. An intuitive interpretation is that g can in some sense accommodate for t.

Definition 1 (Occurrence). A tree t = (Vt, Et, st, lt) occurs in a directed acyclic graph
g = (Vg, Eg, sg, lg) at vertex v ∈ Vg if there is a function ϕ : Vt 7→ Vg such that:

• ϕ(root(t)) = v;

• for every u ∈ Vt, (st(u), sg(ϕ(u))) ∈ PΣ;

• for every e = (v1, v2) ∈ Et, e′ = (ϕ(v1), ϕ(v2)) ∈ Eg and (lt(e), lg(e
′)) ∈ PΓ.

The function ϕ is a certificate that t occurs in g at v. The occurrences of t in g is the
vertex set

occurg(t) = {v ∈ Vg | t occurs at v} .

The central task of our pattern-matching problem can now be formalised in terms of
Definition 1:

Problem 2. Given a DAG g and a tree t, find occurg(t).

Since we wish to compute the set occurg(t) for a fixed DAG g but varying pattern
trees t, we propose a two-tiered solution that consists of (i) a preprocessing routine that
derives an index structure from g, and (ii) a search routine that takes advantage of
the index structure to find the occurrences of some particular pattern tree. The index
structure that we have in mind is the coarsest simulation preorder on g, that is, the most
inclusive of a particular class of relations on Vg, which we will now define.

Intuitively, a vertex v′ ∈ Vg simulates a vertex v ∈ Vg if every sequence of steps along
directed edges that can be taken when starting from v, can also be taken when starting
from v′. As Lemma 12 will show, if a vertex v′ simulates a vertex v, then every tree that
occurs at v also occurs at v′.

Definition 3 (Simulation). Let g = (V,E, s, l) be a graph. The binary relation R on
V is a simulation on g if (v, v′) ∈ R implies that:

1. (s(v), s(v′)) ∈ PΣ; and

2. for every u ∈ V , γ ∈ Γ such that v
γ→u; there are u′ ∈ R(u), γ′ ∈ PΓ(γ) such that

v′
γ′

→u′.

Recall that a relation R is said to be coarser than a relation R′ if R′ ⊆ R.

Lemma 4. For every graph g, there is a unique coarsest simulation Rg on g.

Proof. Let R1 and R2 be distinct simulations on g = (V,E, s, l). We show that
the relation R = (R1 ∪ R2)∗, which is strictly coarser than R1 and R2, is a simula-
tion on g. The proof has its starting point in the simple observation that whenever

6

(v, v′) ∈ R = (R1 ∪R2)∗ there are vertices v1, . . . , vk ∈ V such that v = v1, v′ = vk, and
(vi, vi+1) ∈ R1 ∪R2 for every i ∈ [k − 1].

Let us first verify that Condition 1 of Definition 3 is met. Since R1 and R2 are
simulations, (s(vi), s(vi+1)) ∈ PΣ for every i ∈ [k − 1]. Since PΣ is a preorder it is
transitive, so also (s(v), s(v′)) ∈ PΣ.

To verify Condition 2, assume that v1
γ→u1 and that v, v′ and v1, . . . , vk are as above.

By induction on the length of the sequence v1, . . . , vk and the fact thatR1 andR2 are sim-
ulations it follows that for every i ∈ [k−1], there are ui+1 ∈ R1(ui)∪R2(ui), γi+1 ∈ PΓ(γi)

such that vi+1
γi+1→ ui+1. Since both R and PΓ are preorders and thus transitive, we have

(u1, uk) ∈ R and (γ1, γk) ∈ PΓ. Thus Condition 2 is satisfied, and thus R is a simulation.
Since g is finite, there is a finite number of simulations, and thus, by applying the

above construction, we see that there exists a unique coarsest simulation. �

The coarsest simulation on g (which shall henceforth be denoted by Rg) can be
computed through an iterative refinement of the preorder induced by PΣ on Vg, as
detailed in Definition 5. When these approximation steps eventually reach a fix-point,
the sought simulation has been obtained.

Definition 5 (Approximated simulation). Let g = (V,E, s, l) be a directed graph.
The 0-approximated simulation on g is the relation

R0 = {(v, v′) ∈ V × V | (s(v), s(v′)) ∈ PΣ} .

For every i ∈ N+, the i-approximated simulation on g is

Ri = {(v, v′) ∈ Ri−1 | ∃u ∈ V, γ ∈ Γ : v
γ→u⇒

∃u′ ∈ Ri−1(u), γ′ ∈ PΓ(γ) : v′
γ′

→u′} .

Note that an approximated simulation is not in general a simulation, but as we shall
see, the approximation sequence converges to the coarsest simulation Rg on g.

Lemma 6 (Refinement). For every i ∈ N,

1. Ri is a preorder;

2. Ri ⊆ {(v, v′) ∈ V × V | (s(v), s(v′)) ∈ PΣ}; and

3. Ri+1 ⊆ Ri.

Proof. Let us first show that Ri is a preorder. It follows directly from Definition 5 that
Ri is reflexive for every i ∈ N. For i = 0, the transitivity of Ri follows from the fact
that PΣ is a preorder. For i ≥ 1, suppose that (v, v′), (v′, v′′) ∈ Ri, u ∈ V , γ ∈ Γ, and

v
γ→u. By Definition 5, there exists a u′ ∈ Ri−1(v′) and a γ′ ∈ PΓ(γ) such that v′

γ→u′.

Since (v′, v′) ∈ Ri there is also a u′′ ∈ Ri−1(u′) and a γ′′ ∈ PΓ(γ′) such that v′′
γ→u′′.

Since PΓ is a preorder and Ri−1 transitive by the induction hypothesis, (u, u′′) ∈ Ri−1

and (γ, γ′′) ∈ PΓ so (v, v′′) ∈ Ri, establishing Ri as a preorder. The two inclusions are
immediate from Definition 5. �

7

The proof of convergence is informed by a treatise on the relational coarsest partition
problem by Paige and Tarjan (1987). For the sake of completeness, we state here an
adapted version of a key lemma and the correctness proof.

Lemma 7 (Paige and Tarjan (1987), Lemma 2). For every i ∈ N, Rg ⊆ Ri.

If we compare Definition 3 and Definition 5, we see that if the relation Ri+1 coincides
with Ri then it is a simulation. By Lemma 6, we always have Ri+1 ⊆ Ri. Furthermore,
for every i ∈ N it is clear that {(v, v) | v ∈ V } ⊆ Ri so convergence is guaranteed after

at most |V |2 approximation steps. From Lemma 7 it is then a short step to Lemma 8.

Lemma 8 (Paige and Tarjan (1987), Theorem 2). There is a k ∈ N such that for
every i ≥ k, Ri is a simulation, and Ri+1 = Ri = Rg.

We are primarily interested in acyclic graphs, and for this class the approximation
sequence converges rapidly. We recall that V ig is the set of vertices of g from which all
leaves will be reached in i steps or less.

Lemma 9 (Acyclic case). Let g be an acyclic graph. For every i ≤ height (g),

Ri ∩ (V ig × Vg) = Rg ∩ (V ig × Vg) .

Proof. For every (v, v′) ∈ (V 0
g × Vg),

(v, v′) ∈ R0 ⇐⇒ (s(v), s(v′)) ∈ PΣ ⇐⇒ (v, v′) ∈ Rg .

This establishes a base for an inductive proof over the structure of g.
For the induction, let (v, v′) ∈ Rg∩(V ig ×Vg). From Lemma 6 we know that Rg ⊆ Ri,

so Rg ∩ (V ig × Vg) ⊆ Ri ∩ (V ig × Vg).
Suppose now that we have (v, v′) ∈ Ri ∩ (V ig × Vg). From Lemma 6 it follows that

(v, v′) ∈ Ri−1, and from Definition 5 it follows that for all u ∈ Vg, γ ∈ Γ, such that v
γ→u,

there are u′ ∈ Ri−1, γ′ ∈ PΓ(γ) such that v′
γ′

→u′. Since g is acyclic, u ∈ V i−1
g . Due

to the induction hypothesis, we thus always have that (u, u′) ∈ Rg. Being the coarsest
simulation on g, Rg must therefore contain (v, v′), so (v, v′) ∈ Rg ∩ (V ig × Vg), and thus

Ri ∩ (V ig × Vg) ⊆ Rg ∩ (V ig × Vg). �

Note that by the definition of V ig , for every i ≥ height (g) it holds that Ri ⊆ (V ig ×Vg).
We therefore have the following corollary.

Corollary 10 (Acyclic bound). If g is acyclic and i ≥ height (g), then Ri = Rg.

From an inductive argument, quite similar to the proof of Lemma 9, it follows that a
vertex located higher up in g cannot be simulation-dominated by a vertex located at a
lower level. More formally:

Propostition 11 (Stratified simulation). Let g be an acyclic graph with height h and
let R be a simulation on g. Then,

R ⊆
⋃

i,j∈[h], i≤j

V ig × V jg .

8

Proposition 11 means in particular that the root of a tree cannot be simulated by any
other node in the tree, so if R is a simulation on the tree t, then R(root(t)) = {root(t)}.

We are now ready to relate the notions of occurence and approximated simulation.

Lemma 12 (Upward closed). Let g be a DAG, t a tree, and Rj a j-approximated
simulation on the disjoint union g] t for some j ≥ height (t). Then

occurg]t(t) = Rj(root(t)) .

Proof. It is clear t = σ[γ1 : t1, . . . , γk : tk] occurs in g] t = (Vg]t, Eg]t, sg]t, lg]t) at
root(t). We prove by induction on the height of t, that t also occurs in g] t at v ∈ Vg]t
if and only if (root(t), v) ∈ Rj . The following line of argument can be used both for
the base case, when height (t) and k are zero, and for the inductive step, when height (t)
and k are greater than zero.

(root(t), v) ∈ Rj

⇐⇒ by Definition 5

(root(t), v) ∈ Rj−1 ∧

∀i ∈ {1, . . . , k} : ∃vi ∈ Rj−1(root(ti)), γ
′
i ∈ PΓ(γi) : v

γ′
i→ vi

⇐⇒ by Lemma 6 and the induction hypothesis

(σ, sg]t(v)) ∈ PΣ ∧

∀i ∈ {1, . . . , k} : ∃vi ∈ occurg]t(ti), γ
′
i ∈ PΓ(γi) : v

γ′
i→ vi

⇐⇒ by Definition 1

v ∈ occurg]t(t)

�

Combining Lemma 9, Lemma 12, and Proposition 11, we finally arrive at Theorem 13.

Theorem 13. Let g be a DAG, t a tree with root vt, and Rj a j-approximated simulation
on g] t for some j ≥ height (t). Then,

occurg(t) = Rj(vt) \ Vt = Rg]t(vt) \ {vt} .

4. Algorithm

We propose a two-tiered approach to pattern matching that consists of a preprocess-
ing routine and a search routine, henceforth referred to as Preprocess and Search,
respectively. The input to Preprocess is a corpus of trees, represented as a DAG g.
The routine computes and stores a sequence of approximated simulations R0,R1, . . . (see
Definition 5) until the unique coarsest simulation Rg on Vg is found.

The input to the algorithm Search is a pattern tree t together with the sequence
of relations R0,R1, . . . ,Rg computed by Preprocess; the output is the set of vertices

9

occurg(t) where t occurs in g. The algorithm Search begins by verifying that the height
h of t does not exceed that of g — if it does, the routine simply returns the empty set
and exits. Search then computes the h-approximated simulation R′h on the graph g] t,
based on the relations R0, . . . ,Rh and returns R′h(root(t)) \ {root(t)}.

The correctness of this approach follows from Theorem 13, so what remains is to
find the time complexities of the two routines. For this purpose, we fix an acyclic graph
g = (V,E, s, l). In our computations, we represent a preorder R on a set V by the
Hasse diagram, as introduced by Vogt (1985), for the partial order R̂, together with an
enumeration of the elements of [v]R for every [v]R ∈ (V/R). The size |P| of P is thus
taken to be the combined size of these two data structures.

To get a uniform upper bound we state and prove Lemma 14.

Lemma 14. For every i ∈ N, |R̂i| ≤ |(V/Rg)|2.

Proof (Sketch). The edges of a Hasse diagram H with vertex set VH is a subset of

VH × VH , so H has no more than |VH |2 edges. By Lemma 8, Rg ⊆ Ri, so it follows that

for every i ∈ N, |(V/Ri)| ≤ |(V/Rg)|, so |R̂i| ≤ |(V/Rg)|2. �

Let us first establish the cost of computing approximated simulations.

Lemma 15 (Approximation refinement). The computational cost of obtaining and
refining an approximation is as follows.

1. The relation R0 is computed in O(|V |+ |PΣ|) computation steps.

2. For every i ∈ N, Ri+1 is derived from Ri in time O(|g| |(V/Rg)|2 |PΓ|).

Proof. A representation of R0 can be obtained from a representation of PΣ by adding
to every vertex [σ] in the Hasse diagram for P̂Σ, a reference to every vertex in the set
{s−1(σ′) | σ′ ∈ [σ]}. The time required for the initiation step is thus O(|V |+ |PΣ|).

The relation Ri+1 is derived from Ri as follows:

1. For every [u] ∈ (V/Ri), the vertices in the upset Ri(u) of u are marked with ‘[u]’.
This can be done in time O((|R̂i| + |V |) |(V/Ri)|) if the Hasse diagram of R̂i is
traversed bottom-up.

2. Another bottom-up traversal is made, this time of the graph g. The annotations
that were made in Step 1 are now used to establish the characteristic function
char : V × (V/Ri)× (Γ/PΓ) 7→ B defined by

char(v, [u], [γ]) =

{
1 if ∃γ′ ∈ [γ],∃u′ ∈ Ri(u), : v

γ′

→u′ , and
0 otherwise.

The cost of this step is O(|g| |(V/Ri)| |PΓ|).

3. Finally, we refine Ri into Ri−1 by modifying its Hasse diagram to account for the
new evidence in char . The cost for this step is

O
(
|(V/Ri)| |(Γ/PΓ)| (|V |+ |R̂i+1|)

)
.

10

To simplify the complexity expression, we use the following inequalities:

1. |(V/Ri)| ≤ |(V/Rg)| ≤ |V | ≤ |g|,

2. |R̂i+1| ≤ | (V/Rg) |2, and

3. |(Γ/PΓ)| ≤ |PΓ|.

The cost per refinement step then becomes O(|g| |(V/Rg)|2 |PΓ|). �

Theorem 16 (Preprocess). Let g be a DAG and Rg the coarsest simulation on g. On

input g, Preprocess can be computed in time O(|PΣ|+ height (g) |g| |(V/Rg)|2 |PΓ|).

Proof. By Lemma 15, R0 can be initialised in O(|V |+ |PΣ|) computation steps, and
by Corollary 10, height (g) refinement steps are needed. Also by Lemma 15, refining

the relation Ri requires O(|g| |(V/Rg)|2 |PΓ|) operations. Combining the cost of the
initialisation step and the height (g) approximation refinements we have our result. �

Theorem 17 (Search). Let g be a DAG, t a tree and R = {Ri | i ∈ [height (g)]} the
family of approximated simulations computed by Preprocess on input g. The time
complexity of Search is O(|PΣ|+ height (t) |t| |(V/Rg)|2 |PΓ|).

Proof (Sketch). Initially checking the height of t can be done in time O(height (t)),
which is assumed to be negligible in comparison with e.g. traversing g once.

To find the occurrences occurg(t), the routine computes the height (t)-approximated
simulation Rh on g] t. Since g and t are disjoint, the initialisation of R0 and refinement
steps can be organised so that the vertices of g and t are processed separately. Since Rh
has already been computed on g by Search, what remains is to complete the compu-
tation of Rh by retracing the refinement steps done by Preprocess for the vertices in
t. To find a bound of the execution time, it suffices to substitute height (t) and |t| for
height (g) and |g|, respectively, in the proof of Lemma 15. �

5. Restrictions and extensions

5.1. Graph structure

Recall that PΣ and PΓ are preorders on the vertex alphabet Σ and edge alphabet Γ,
respectively. The simplest case of the general investigation is when both alphabets are
trivial (or, equivalently, when both preorders are trivial). In this case, Problem 2 reduces
to a purely structural problem in the theory of directed graphs. Absent considerations
of the ordering of edge- and vertex labels, the following proposition can be easily proven,
by considering the respective definitions of occurrence and graph isomorphism.

Propostition 18. If t is isomorphic to a subgraph of g, then t occurs in g.

The converse of the proposition is obviously not true, and examples of this can be
found easily. If we denote by C(g) the set of graphs that can be produced from g by
means of the operation of identifying pairs of vertices v, v′ for which there exists a w
such that (v, w) ∈ Eg and (v′, w) ∈ Eg and removing multiple edges to keep the graph
simple, then we can formulate the following result.

11

Propostition 19. The tree t occurs in g, if and only if t is isomorphic to a subgraph of
some graph in C(g).

The proof of this proposition consists in little more than translating the definition of
occurrence into the terminology employed here.

5.2. Ordered trees

With non-trivial alphabets and preorders, there is more structure to work with, and
so called ordered graphs are of particular interest for many applications. Simply put, an
acyclic graph g is ordered if the preorder PΓ on the edge alphabet is a total order when
restricted to the outgoing edges of each and every vertex v in Vg. More formally:

Definition 20 (Ordered acyclic graph). An acyclic graph g = (V,E, s, l) is ordered
if, for every v ∈ V , PΓ is a total order on {l((v, v′)) | (v, v′) ∈ E}.

To search for patterns in an ordered tree, we can use pattern trees in which every
edge e is labelled with a subset of Γ. When we execute the search algorithm, we interpret
an edge label γ in the object tree as the label {γ} and use set specification as our preorder:
Somewhat counter-intuitively, the set S dominates the set S′ if S ⊆ S′.

Let us illustrate this principle with an example.

Example 21. Suppose that we have a corpus of syntactically annotated texts by Shake-
speare, and that we want to search this corpus for the following: a sentence in which
there is a verb phrase that begins with the word “are”, immediately followed by a noun
phrase, but which is not the first constituent of the sentence. These semantics are cap-
tured by the pattern tree in Figure 1. The sets that label its edges are given as intervals
of natural numbers (augmented with an additional maximal element ∞).

Figure 2 depicts the syntax tree assigned by the Stanford parser to a quote from
Shakespeare’s Hamlet. For our purposes, we consider the outgoing edges of each vertex
to be labelled by {1}, {2}, {3}, The edge labels are not written out explicitly in the
figure, but can be deduced from the left-to-right order of the edges; at each node the first
edge from the left is labelled {1}, the second edge is labeled {2} and so on. Under the
specification preorder, the pattern tree in Figure 2 occurs at the root of the parse tree,
so it it contains the syntactical fragment that we were looking for.

S

VP

NPVBP

are

[1, 1]

[1, 1] [2,∞]

[2,∞]

Figure 1: A pattern tree t that matches against a language of syntactical fragments.

12

S

...VP

NP

PP

NP

NP

NNP

Horatio

,NP

NN

earth

CC

and

NN

heaven

IN

in

NP

NNS

things

JJR

more

VBP

are

NP

EX

There

Figure 2: A syntax tree for the sentence There are more things in heaven and earth, Horatio....

6. Conclusion and future work

By introducing and building on a theoretical framework of approximated simulations,
we obtained a search algorithm that is only affected indirectly by the size of the object
treebank T , namely, through the size of the coarsest simulation relation on a DAG
representation of T . The trade-off is the need for a relatively expensive preprocessing
step, but this may well be justifiable if the object treebank seldom updated.

Future work will aim to combine the ideas presented in this paper with techniques
to lessen the computational complexity with respect to the pattern tree. We are also
interested in investigating the usefulness of our notion of occurrence for algorithmic
query learning, and in lifting the results to more general families of graphs.

References

Abdulla, P. A., Bouajjani, A., Kaati, L., March 2008. Computing simulations over tree automata:
Efficient techniques for reducing tree automata. In: Ramakrishnan, C. R., Rehof, J. (Eds.), 14th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
Budapest, Hungary, 2008. Springer, Heidelberg, Germany, pp. 93–108.

Baader, F., Nipkow, T., 1998. Term rewriting and all that. Cambridge University Press, New York, NY,
USA.

Bille, P., June 2005. A survey on tree edit distance and related problems. Theoretical Computer Science
337 (1–3), 217–239.

Buchholz, P., 2008. Bisimulation relations for weighted automata. Theoretical Computer Science 393 (1-
3), 109–123.

Chen, L., Gupta, A., Kurul, M. E., September 2005. Stack-based algorithms for pattern matching on
dags. In: Böhm, K., Jensen, C. S., Haas, L. M., Kersten, M. L., Larson, P.-Å., Ooi, B. C. (Eds.),
Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway,
2005. ACM, pp. 493–504.

Chen, W., 1998. More efficient algorithm for ordered tree inclusion. Journal of Algorithms 26, 370–385.

13

Chen, Y., Thurley, M., Weyer, M., 2008. Understanding the complexity of induced subgraph isomor-
phisms. In: Proceedings of the 35th international colloquium on Automata, Languages and Program-
ming, Part I. Springer Verlag, Heidelberg, Germany, pp. 587–596.

Cheng, J., Yu, J. X., Ding, B., Yu, P. S., Wang, H., April 2008. Fast graph pattern matching. Proceedings
of the 24th International Conference on Data Engineering, Cancun, Mexico, 2008, 913–922.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M., 1997. Tree
automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, release
October, 2002.

Droste, M., Kuich, W., Vogler, H., 2009. Handbook of Weighted Automata, 1st Edition. Springer Verlag,
Heidelberg, Germany.

Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y., 2010. Graph pattern matching: From intractable
to polynomial time. In: Jagadish, H. V. (Ed.), Proceedings of the 37th International Conference on
Very Large Data Bases, Seattle, WA, 2010. Vol. 3. pp. 264–275.

Kilpelinen, P., Mannila, H., 1995. Ordered and unordered tree inclusion. Siam Journal on Computing
24, 340–356.

Koehn, P., January 2010. Statistical Machine Translation. Cambridge University Press, Cambridge,
England.

Kolaczyk, E. D., 2009. Statistical analysis of network data: Methods and models. Springer Series in
Statistics, 386.

Lee, J. K., 2010. Statistical bioinformatics: a guide for life and biomedical science researchers. Methods
of Biochemical Analysis. Wiley-Blackwell, Oxford, England.

Maletti, A., 2009. A backward and a forward simulation for weighted tree automata. In: Proceedings of
the 3rd International Conference on Algebraic Informatics. CAI ’09. Springer-Verlag, Berlin, Heidel-
berg, pp. 288–304.

Maneth, S., Mihaylov, N., Sakr, S., 2008. XML tree structure compression. In: Proceedings of the
International Workshop on Database and Expert Systems Applications, Turin, Italy, 2008. IEEE
Computer Society, Los Alamitos, CA, USA, pp. 243–247.

Milner, R., 1982. A Calculus of Communicating Systems. Springer Verlag, Heidelberg, Germany.
Paige, R., Tarjan, R., 1987. Three partition refinement algorithms. SIAM Journal on Computing 16 (6),

973–989.
Sundaram, G., Skiena, S. S., 1995. Recognizing small subgraphs. Networks 25, 183–191.
Ullmann, J. R., 1976. An Algorithm for Subgraph Isomorphism. Journal of the ACM 23 (1), 31–42.
Vogt, H. G., 1985. Leçons sur la résolution algébrique des équations. Vuibert et Nony, Paris, France.
Wang, J. T. L., Zhang, K., Chang, G., Shasha, D., 2002. Finding approximate patterns in undirected

acyclic graphs. Pattern Recognition 35.
Wuu, H.-T. L., tzu Lu, H., Yang, W., December 2000. A simple tree pattern-matching algorithm. In:

Proceedings of the Workshop on Algorithms and Theory of Computation, Chiyayi, Taiwan. pp. 1–8.
Yao, J. T., Zhang, M., 2004. A fast tree pattern matching algorithm for XML query. In: Proceedings of

the IEEE/WIC/ACM International Conference on Web Intelligence, 2004. IEEE Computer Society,
Washington, DC, USA, pp. 235–241.

14

