

PDLAQR1: An improved version of the

ScaLAPACK routine PDLAHQR

By

Meiyue Shao

UMINF-11/22

UMEÅ UNIVERSITY
DEPARTMENT OF COMPUTING SCIENCE

SE-901 87 UMEÅ
Sweden

PDLAQR1: An improved version of the

ScaLAPACK routine PDLAHQR∗

Meiyue Shao
Department of Computing Science and HPC2N

Ume̊a University
myshao@cs.umu.se

April 27, 2012

Abstract

PDLAQR1 is a modified version of ScaLAPACK (version 1.8.0) routine
PDLAHQR. In this note we summarize the difference between these routines.
Some anomalies in the old routine are identified and fixed. We also im-
plement some new features such as aggressive early deflation to improve
the performance. The new routine is both faster and more reliable than
the old one.

1 Introduction

The ScaLAPACK [2] routine PDLAHQR implements a parallel pipelined QR al-
gorithm [7]. To our knowledge it is the only publicly available parallel software
of the QR algorithm on distributed memory systems. Recently a novel parallel
QR algorithm [5] has been developed, which is more than a magnitude faster
compared to PDLAHQR for sufficiently large problems. In the routine PDHSEQR for
the novel parallel QR algorithm, some eigensolvers for relatively small problems,
such as LAPACK’s [1] DLAHQR/DLAQR4 and ScaLAPACK’s PDLAHQR, are called
in the aggressive early deflation (AED) [3, 5, 8] stage. Therefore we have decided
to refine the ScaLAPACK routine PDLAHQR to make it more efficient and reliable.
We present all major updates we have made to PDLAHQR in this report. These
updates include some new features and bug fixes. Some algorithmic discussions
for AED can been found in [8]. This note is a complement to [8] which focuses
on further developments. The modified version of PDLAHQR, named PDLAQR1, is
used in the software of the novel parallel eigensolver PDHSEQR1.

∗Technical Report UMINF-11.22, revised in April 2012.
1The software of the novel parallel QR algorithm is now available as a part of ScaLAPACK

version 2.0.

1

2 New Features

2.1 Aggressive early deflation

Aggressive early deflation is an efficient deflation strategy for the QR algorithm
and its variants. We have developed a new routine PDLAQR2 to handle AED in
PDLAQR1. Firstly the AED window is gathered to local memory on the processor
who owns the first entry of the AED window. Then we call the LAPACK routine
DLAQR3 to deal with the local AED process. The output of DLAQR3 is broad-
casted to all other processors. The implementation is slightly different from the
preliminary version presented in [8] so that the new implementation guarantees
data consistency over processors even on a heterogeneous architecture. Finally,
the corresponding off-diagonal blocks are updated by DGEMM/PDGEMM. After re-
turning from PDLAQR2, we compute eigenvalues of a trailing submatrix of the
same size as the AED window to obtain shifts for the next QR sweep. The size
of work space in PDLAQR1 is about 6MB larger compared to that in the original
PDLAHQR so that it is large enough to hold all working copies of matrices (also
for the purpose of conventional deflation, see Section 2.2). Further details about
the implementation is available in [8].

2.2 Conventional deflation

Besides the implementation of AED, we have also enhanced the conventional
deflation part in PDLAHQR. In the old routine, only 1 × 1 or 2 × 2 diagonal
blocks can be deflated directly. Hence a pipelined QR sweep is needed even if
the active block is as small as 3× 3. Since PDLAHQR is usually much slower than
LAPACK’s DLAHQR/DLAQR4 for small matrices, it is sensible to handle a larger
active block locally. Also the corresponding off-diagonal blocks can be updated
in a blocked manner.

The Implementation of this functionality is very similar to that for AED.
This work is performed in a new routine PDLAQR4, which is almost identical to
PDLAQR2 except for the local calculation. Once a small active block (NH ≤ 385)
is detected, we copy it to local memory and call LAPACK’s DLAHQR/DLAQR4
to solve the small eigenvalue problem. Then the corresponding off-diagonal
blocks are updated by DGEMM/PDGEMM. Now for matrices of size up to 385× 385,
PDLAQR1 is almost as fast as DLAHQR/DLAQR4. For larger matrices, this strategy
at least saves a lot of work during the final stages of the pipelined QR algorithm.
Sometimes global convergence also helps to deflate some diagonal blocks. As we
have reported in [8], the total execution time can be reduced by a non-negligible
amount by adopting this strategy.

2.3 Restriction on 2× 2 diagonal blocks

The quasi-upper triangular matrix computed by PDLAHQR is not in standard real
Schur form; some 2×2 diagonal blocks can contain real eigenvalues. As we need
to use PDLAQR1 as an eigensolver inside the AED phase [5, 8], it is helpful to

2

impose all 2×2 blocks to only have complex conjugate eigenvalues. Thus we need
to modify the code snippet in the deflation stage. Once a 2×2 block is deflated,
we apply the LAPACK routine DLAQR1 to resolve this block into standard real
Schur form. In this case a 2×2 block which contains two real eigenvalues is split
into two 1 × 1 blocks. Then a PBLAS style routine PDROT is called to update
the corresponding off-diagonal parts. For the newly implemented branch which
handles a large deflated block, the quasi-upper triangular block is always in
standard real Schur form, since DLAHQR/DLAQR4, which is called by PDLAQR4,
always does the right job.

3 Fixed Anomalies

3.1 Wrong eigenvalues in WR and WI

In certain cases PDLAHQRmay fail to read out the converged eigenvalues correctly.
We have rewritten the code snippet for extracting eigenvalues from a 2× 2 di-
agonal block in a simpler manner. For larger deflated windows, DLAHQR/DLAQR4
always returns correct eigenvalues (see Section 2.2). Now the eigenvalues in WR

and WI are correctly read out. Likely the bug has been removed by our updates.

3.2 Improper usage of PDLACONSB

Suppose we have found two consecutive small subdiagonal entries hi,i−1 = α
and hi+1,i = β satisfying αβ = O(ϵ), where ϵ is the machine precision. It is
possible to introduce the bulge from the i-th row instead of the top-left corner
of H, i.e.,

H =

× × × × × × ×
× × × × × × ×

α × × × × ×
β × × × ×

× × × ×
× × ×

× ×

,

UTH =

× × × × × × ×
× × × × × × ×

× × × × × ×
f × × × × ×
f + × × × ×

× × ×
× ×

,

3

UTHU =

× × × × × × ×
× × × × × × ×

× × × × × ×
f × × × × ×
f + × × × ×

+ + × × ×
× ×

.

The i-th column of U is parallel to

0
...
0

(hi,i − σ1 − σ2)hi,i + σ1σ2 + hi,i+1β
(hi,i + hi+1,i+1 − σ1 − σ2)β

hi+2,i+1β
0
...
0

, (1)

where σ1 and σ2 are the shifts. Very hopefully the 3×3 Householder vector has
the form

ω =

Θ(1)
Θ(β)
O(β)

 .

If so the two fill-ins (marked as f in the matrices above) are of size O(αβ) and
hence can be safely dropped. This technique is called aggressive deflation [9] but
it is not essentially a direct deflation. It was firstly proposed by Francis in [4]
for the purpose of saving computations. Another reason for using this technique
was mentioned in [7], namely that consecutive small subdiagonal elements may
cause some bulges deliver inaccurate information of the shifts.

PDLACONSB is the routine which looks for two consecutive small subdiagonal
entries and tests whether a bulge can be introduced at such a place. If there
are no suitable places in the middle of the active block, it returns the top-left
corner as the start position for introducing the bulge. In PDLAHQR, PDLACONSB is
called only once within a pipelined QR step, that is, only the first pair of shifts
is tested but all other shifts are introduced at the same place without testing.
(This does not exactly match the discussion in [7].) The “correctness” of this
strategy is based on the following fact. Suppose U = I − 2ωωT where

ω =

Θ(1)
Θ(β)
O(β)
0

 (2)

4

and a bulge is introduced like

UT

Θ(1) Θ(1) Θ(1) Θ(1)
Θ(β) Θ(1) Θ(1) Θ(1)

Θ(1) Θ(1) Θ(1)
Θ(1) Θ(1)

U =

O(1) O(1) O(1) O(1)
O(β) Θ(1) Θ(1) Θ(1)
O(β) Θ(1) Θ(1) Θ(1)
O(β) O(β2) Θ(1) Θ(1)

 ,

the “two-consecutive-small-subdiagonal” structure can be preserved after the
bulge is introduced and chased down. However this decision is too aggressive
because the nonzero entries may not always be distributed in the same magni-
tude as we expected above. Most bulges are introduced without really checking
the magnitude of fill-ins. The strategy is safe only for the first pair of shifts.
When introducing another bulge from the same position, the Householder vec-
tor ω may not still keep the same structure as shown in (2) if some O(1) entries
in H become too small or the O(β) entry becomes large during the pipelined
QR sweep. It is also possible that some shifts can destroy the structure (2) of
ω according to (1). Moreover, even if the “two-consecutive-small-subdiagonal”
structure is always well preserved, the magnitude of dropped fill-ins can be sev-
eral times larger than ϵ. Then the accuracy becomes a bit worse than what
we normally expect. Thus it is numerically unreliable if the fill-ins are dropped
without further checking. We have observed some inaccurate outputs caused
by this strategy. For matrices of the class hessrand (random upper Hessenberg
matrices whose nonzero entries are uniformly distributed in [−1, 1]), the relative
residuals ∥QTAQ− T∥F /∥A∥F are typically around 10−11; sometimes they can
be as large as 10−5. For the benchmark matrix AF23560, PDLAHQR also returns
large residuals [5].

There are several possible ways to fix this problem, for example
(1) Skip PDLACONSB and always introduce bulges from the top-left corner of the
active block;
(2) For every pair of shifts, call PDLACONSB to find a start position;
(3) Call PDLACONSB once but skip bulges which can not be safely introduced [7];
(4) Modify PDLACONSB so that it is able to find a common start position suitable
for all bulges.
The first approach is the easiest but no work in the bulge-chasing phase can
be saved. The second approach may cause different bulges have different start
positions, which makes it complicated to chase bulges in parallel. The third
approach contradicts a little to the original idea of introducing bulges from the
middle—transmit correct shifts to the bottom; information of some shifts is lost.
The fourth approach also seems complicated because it is as expensive as gen-
erating the first column of the shift polynomial

∏NS
k=1(H − σkI). According to

our experimental results, PDLACONSB most probably returns the top-left corner
as the start position. For the cases when PDLACONSB does return a position in
the middle of the active block, only less than 0.3% of the starting positions are
far away from the top-left corner (with distance ≥ 50). Notice that PDLACONSB
is not a cheap routine since it needs to perform some communications. So we
usually save very little work in average by calling PDLACONSB. If a more con-
servative criterion (e.g., the second approach) is used, we expect more cost and

5

less benefit. On the other hand, tiny small subdiagonal entries rarely prevent
implicit QR algorithm from convergence [10]. Even if forward instability really
occurs, AED can still help deflating other eigenvalues which are transmitted
accurately. Thus we decided to adopt the first approach, i.e., simply skipping
PDLACONSB. With this modification, the relative residuals for the problematic
matrices have been decreased to the scale 10−13 ∼ 10−14.

4 Some Other Remarks

PDLAQR1 inherits most restrictions in PDLAHQR (e.g., NB ≥ 6, DESCA = DESCZ)
except for that 2× 2 diagonal blocks are now in standard Schur form. We tried
to remove the restriction that A(1, 1) needs to lie on processor (0, 0) by modi-
fying some calls to NUMROC and INFORG1L in PDLAQR1, PDLACP3 and PDLASMSUB.
But the restriction has not been totally removed yet. We tolerate this problem
because usually we need to copy the submatrix to work space before it is passed
to PDLAQR1 (see [6] for details). As for the maximum number of shifts, we do not
plan to increase the limit since PDLAQR1 is only designed to solve medium-size
problems. For large-scale problems, a more efficient solver PDHSEQR is preferred.
As another modification, we add the recently removed workspace query func-
tionality back to make this routine have the same calling convention with other
ScaLAPACK routines2.

In PDLAHQR/PDLAQR1, a lot of computations are performed by DLAREF and
DGEMM. These computational kernels can be parallelized with multiple threads.
This extension allows the code to work on modern hybrid distributed memory
systems.

References

[1] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J.
Dongarra, J. J. Du Croz, A. Greenbaum, S. J. Hammarling, A. McKenney,
and D. C. Sorensen. LAPACK User’s Guide, 3rd Edition. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon,
J. J. Dongarra, S. Hammarling, G Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK User’s Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1997.

[3] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm.
part II: Aggressive early deflation. SIAM Journal on Matrix Analysis and
Applications, 23(4):948–973, 2002.

2In ScaLAPACK version 2.0.1, PDLAHQR is not replaced by PDLAQR1 for downward compat-
ibility since the latter one requires more work space. Patches are applied to PDLAHQR to fix
the anomalies mentioned in Section 3.

6

[4] J. G. F. Francis. The QR transformation: A unitary analogue to the LR
transformation — Part 2. the Computer Journal, 4(4):332–345, 1962.

[5] R. Granat, B. K̊agström, and D. Kressner. A novel parallel QR algorithm
for hybrid distributed memory HPC systems. SIAM Journal on Scientific
Computing, 32(4):2345–2378, 2010.

[6] R. Granat, B. K̊agström, D. Kressner, and M. Shao. Parallel library soft-
ware for the multishift QR algorithm with aggressive early deflation. Tech-
nical report, Department of Computing Science and HPC2N, (in prepara-
tion).

[7] G. Henry, D. S. Watkins, and J. J. Dongarra. A parallel implementation
of the nonsymmetric QR algorithm for distributed memory architectures.
SIAM Journal on Scientific Computing, 24(1):284–311, 2002.

[8] Bo K̊agström, Daniel Kressner, and Meiyue Shao. On aggressive early
deflation in parallel variants of the QR algorithm. In Kristján Jónasson,
editor, Applied Parallel and Scientific Computing (PARA 2010), volume
7133 of Lecture Notes in Computer Science, pages 1–10, Berlin Heidelberg,
2012. Springer-Verlag.

[9] G. W. Stewart. Matrix Algorithms. Volume II: Eigensystems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[10] D. S. Watkins. Forward stability and transmission of shifts in the QR
algorithm. SIAM Journal on Matrix Analysis and Applications, 16(2):469–
487, 1995.

7

