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Abstract

A broad discussion on the representational problems of cognitive sci-
ence is presented. Two common classes of representations, symbol based
propositional representations and input-output mappings referred to as
weak representations, are described and their relation to the physical sym-
bol system (PSS) and connectionist approaches (CA) is discussed. Four
problems often used as critique of PSS, the ontological assumption, the
frame problem, the symbol grounding problem and the frame of reference,
is shortly presented and it is concluded that these problems to some extent
also apply to many connectionist models. Embodied cognitive science is
presented and it is argued that weak representations used in embodied
agents avoid the four fundamental problems, but are instead subject to
the problem of adaptation. It appears that, in order to solve the problem
of adaptation, some bias for generalization has to be introduced, which
also would reintroduce the problems with propositional representations.
The conclusion is that the fruitful solution to the fundamental represen-
tational problems of cognitive science is to focus on these problems with
a joint view of propositional and weak representations, rather than trying
to rule out one in favor for the other.

Keywords: representation, physical symbol system, ontological assumption,
frame problem, symbol grounding

1 Introduction

The question of how the human brain implement our mind is subject for in-
tensive discussion within the field of cognitive science. One of the most heavily
debated aspects of the mind is the notion of representations. The literature on
models of cognition spans from classical symbol systems (Johnson-Laird, 1986)
to anti-representalistic approaches such as Dreyfus’ Phenomenology (Dreyfus,
1972, 1992). In between we find works such as Fodor’s Language of Thought
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(Fodor, 1987b) and Dennet’s Intentional Stance (Dennett, 1989). There works
has numerous differences and similarities and could be categorized along a num-
ber of dimensions. One of the most emphasized categorizations found in litera-
ture may be the distinction between the body of work supporting the Physical
Symbol Systems (PSS) and theories aligning with a Connectionist Approach
(CA). The notion of PSS was coined by Newell and Simon (Newell & Simon,
1976) and pushes the argument that cognition is essentially computation in
terms of symbol manipulation, independent of the precise physical implementa-
tion (Pylyshyn, 1986). CA is less well defined (Ellis & Humphreys, 1999), but
generally implies a refusal of the PSS hypothesis and emphasizes distributed
and parallel models that resemble the physical architecture of the brain more
closely than PSS models.

A number of other differences follows this division. Approaches relying heav-
ily on symbols appear to be primarily concerned with higher level cognitive
abilities, such as reasoning and long term planning, e.g., Johnson-Laird (1986).
In contrast, CA are more often concerned with cognitive abilities on lower ab-
straction levels, such as swinging a tennis racket or recognizing an object in a
scene (Dreyfus, 1998).

Large marts of the literature on the subject supports one of these two ap-
proaches, and explicitly or implicitly rules out the other. In the present work,
I argue that both PSS and CA face the same fundamental problems and that
better understanding of cognition is not reached by ruling out one of the ap-
proaches, but by uniting them.

2 Representations

The word representation entails a large variety of meanings and some elabo-
ration of this term may therefore be in place. The term propositional repre-
sentation is used to refer to the kind of representations most often present in
classical cognitive science (Stillings et al., 1995), where mental representations
are implemented by a symbol system. Symbol systems can be defined as 1) a
set of arbitrary "physical tokens" scratches on paper, holes on a tape, events in
a digital computer, etc. that are 2) manipulated on the basis of "explicit rules"
that are 3) likewise physical tokens and strings of tokens. The rule-governed
symbol-token manipulation is based 4) purely on the shape of the symbol tokens
(not their "meaning"), i.e., it is purely syntactic, and consists of 5) "rulefully
combining" and recombining symbol tokens. There are 6) primitive atomic sym-
bol tokens and 7) composite symbol-token strings. The entire system and all its
parts — the atomic tokens, the composite tokens, the syntactic manipulations
both actual and possible and the rules — are all 8) "semantically interpretable:"
The syntax can be systematically assigned a meaning e.g., as standing for ob-
jects, as describing states of affairs. (Harnad, 1990)

Symbol system rely on an ontology, i.e., a specification of what entities ex-
ist in the world, what attributes and relations they have and how they should
be grouped and categorized. The ontology specifies what things a symbol could
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represent, without specifying how the relation between the symbol and the refer-
ant is established. Propositional representations can be implemented in a PSS
(Newell & Simon, 1976).

An alternative use of the term representation is here called weak represen-
tation and refers to an non-symbolic input-output mapping. Weak representa-
tions can be implemented with a connectionist approach, e.g., artificial neural
networks (Sejnowski & Rosenberg, 1987) or dynamic systems (Freeman, 1991).
While these systems does not necessarily qualify as systems able to implement
propositional representations they are able to construct complex input-putput
mappings. Weak representations are representations in the sense that an out-
put pattern can be reconstructed given an input pattern, but typically does not
support deductive reasoning and has problems explaining declarative memory
(Stillings et al., 1995, p. 115). For this reason, weak representations are often
put forward by thaws who argue against representations, e.g., Dreyfus (1998);
Brooks (1991b). Despite the lack of an explicit model on which the system can
reason, systems implementing weak representations has been able to show many
forms of intelligent behavior, e.g., Brooks (1991a); Pfeifer & Scheier (1997), and
has therefore been put forward as a plausible model for cognition as a whole.

It should be pointed out that the conflict between the supporters of sym-
bolic representations and thaws who favor weak representations are mostly in
terms of how the system is analyzed. On the one hand, almost all CA found in
literature, which typically implement weak representations, are themselves im-
plemented in a computer and consequently are represented symbolically (Ellis
& Humphreys, 1999). On the other hand, there are connectionist systems, e.g.,
cellular automata, able to implement a Turing Machine as a weak representation
(Gardner, 1970).

Since CA are typically closer to the neurological implementation, it seams
natural to think that it is a better description on a lower abstraction level,
while PSS better describes brain function on a higher abstraction level. How-
ever, when using PSS and CA as descriptions of the function of a computer,
their abstraction ordering appears to be the other way. PSS is clearly in closer
resemblance with the low-level mechanisms of a digital computer, which may
produce higher level computations better described in terms of CA.

3 Four problems of propositional representation

One of the most fundamental critiques against symbolic representations has
been formulated as a refusal of the ontological assumption. The Ontological
Assumption, as phrased by Dreyfus (1992, p. 206), states that “everything
essential to intelligent behavior must in principle be understandable in terms
of a set of determinate independent elements”’. The challenge of the ontological
assumption lies primarily in how it is formulated. The requirement for a set
of determinate independent elements allowing knowledge to be stored as a set
of facts has several problems. Dreyfus (1992, p. 38) argues that “there is
no argument why we should expect to find elementary context-free features
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characterizing a chair type, nor any suggestion as to what these features might
be”. Further criticism has been put forward by Churchland (1981) where the
domain dependence of propositional representations is pointed out, among many
other problems. Within classical cognitive science, theories on concept forming
such as scripts and schemes has faced similar criticism (Stillings et al., 1995,
p. 88). Even though several alternative theories has been proposed, typically
probabilistic versions of the original theories, a general accepted solution has
not been found.

A neighboring problem with symbolic representations is the difficulty to rea-
son about change. In order to allow an agent to reason about consequences of
action the representation must in some way encode all possible consequences
that may occur for each action. Even though one can explicitly encode all flu-
ents, i.e. all changing conditions, that change as a consequence of action, it is
much more difficult to formalize the fluents that does not change without explic-
itly naming them and by consequence introduce an exploding requirement for
so called frame axioms. This problem was first identified by McCarthy & Hayes
(1969) and have become known as the Frame Problem. In situation calculus,
the frame problem has been solved using Successor State Azioms (Reiter, 1991),
but the it remains unsolved in the general case.

A third fundamental problem with symbolic representations is known as the
Symbol Grounding Problem (Harnad, 1990). The symbol grounding problem is
essentially the problem of connecting the symbols in a PSS with their respective
referents. Harnad demonstrates the symbol grounding problem both by the
Chinese Room Argument (Searle, 1980) and his own Chinese learning example:

“Suppose you had to learn Chinese as a first language and the
only source of information you had was a Chinese/Chinese dic-
tionary! ... How can you ever get off the symbol/symbol merry-
go-round? How is symbol meaning to be grounded in something
other than just more meaningless symbols?” (Harnad, 1990)

The forth problem is known as the Frame of Reference (Pfeifer & Scheier,
2001, p. 112) and is different from the previous problems in that it criticizes
propositional representations from a design perspective rather than a purely
representative. With the Frame of Reference, Pfeifer and Scheier highlights the
difference between the perspective of the agent and the perspective of an ob-
server studying the agent. Even though the symbols may be suitable, maybe
even necessary, for describing the behavior of an agent from the observer’s per-
spective, it must not be taken as the internal mechanism of the agent. The
behavior of an agent is always a combination of the internal mechanism and its
environment, and can not be described on the basis of the internal mechanisms
alone. The argument extends to include the complexity of behavior: “The com-
plexity we observe in a particular behavior does not always indicate accurately
the complexity of the underlying mechanism” (Pfeifer & Scheier, 2001, p. 112),
implying that even if it is possible to describe cognition in terms of PSS, we
may end up solving a much harder problem than evolution did when producing
the cognitive system.
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4 Defense of propositional representations

These problems have of course not gone unnoted by the supporters of the sup-
porters of symbol systems. Fodor (1987a) presents an extensive discussion on
the Frame Problem where he argues that it represents a deep fundamental prob-
lem in epistemological philosophy and links to the “Hamlet’s problem: when to
stop thinking”. Fodor takes a pragmatical position and argues that the Frame
Problem may partly be solved by identifying the relevant aspects of the situa-
tion. However, this response is far from satisfactory since the difficulty now is
to determine what is and what isn’t relevant (Zalta, 2004), which may be just
as hard to do in the general case.

Along the same lines, Fodor argues that the Symbol Grounding essentially
is about connecting the symbol system to the world in “the right way”, e.g.,
(Fodor, 1994). I understand this position as admitting that Symbol Grounding
may be difficult by never the less keeping the positing that it has to be done.
Harnad (2002) criticizes Fodor on this point, since he has not provided a clear
description of what the right way is. However, Harnad also admits that “if the
symbolic approach ever succeeds in connecting its meaningless symbols to the
world in the right way, this will amount to a kind of wide theory of meaning,
encompassing the internal symbols and their external meanings via the yet-to-
be-announced causal connection.”

Other parts of Fodor’s defense of propositional representations and specifi-
cally Language of Thought shoots in my opinion above the fundamental criti-
cism. In his argumentation with Aunty, the voice of the Establishment, Fodor
starts out from the following position:

“First, she concedes that there are beliefs and desires and that
there is a matter of fact about their intentional contents; there’s
a matter of fact, that is to say, about which proposition the in-
tentional object of a belief or a desire is. Second, Aunty accepts
the coherence of physicalism. It may be that believing and de-
siring will prove to be states of the brain, and if they do that’s
OK with Aunty. Third, she is prepared to concede that beliefs
and desires have causal roles and that overt behavior is typically
the effect of complex interactions among these mental causes.”

(Fodor, 1987b)

I find this unsatisfying since I believe that many supporters for weak repre-
sentations would not even agree to these initial positions that Fodor obviously
sees as a mater of fact. As I understand Fodor, he sees beliefs and desires as
just as obviously existing as anything else in the world, and if we are to deny
the existence of beliefs then we could just as well deny the existence of humans
or trees. On this account, I think it is hard to argue against Fodor. However,
he seems to directly draw the conclusion that since there are beliefs and de-
sires, they have to be the mechanism of cognition. This is a much less obvious
conclusion and is in my opinion a typical example of the Frame of Reference
mentioned in Section 3.
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Never the less, even if beliefs and desires may not produce cognition, it is
reasonable to argue that they should reflect relevant aspects of cognition. From
this point, Fodor (1987b) makes a strong argument for the Language of Thought.
If a symbol processing system is aligned with the world such that the symbols are
manipulated in a way that corresponds to the events of the world, I understand
that Fodor would be happy to say that they have intentional content.

In a neighboring line of reasoning, Fodor (1987b) pushes the systematicity
of thought, makes a strong argument why thoughts have to be systematic and
concludes that their thereby has to be a language of thought. The alternative,
as Fodor pushes it, would be “memorizing an enormous phrase book”. His
conclusion may be an oversimplification but is still effective since the initial
proportions for weak representations were essentially a large set of if X then
Y -statements, where X is a percept and Y is an action.

Even if not without problems, propositional representations may still be
the best way to view mental representations. As argued by Pfeifer & Scheier
(2001), much of the criticism presented in Section 3 applies just as much to
connectionist models. Pfeifer and Scheier takes the famous NETtalk model as
an example. NETtalk, by Sejnowski & Rosenberg (1987), is an artificial neural
network that learns to convert English text to speech, by mapping sequences of
characters to phonemes. The model is distributed, parallel and robust. It learns
and generalizes in a way that has similarities with human language accusation
and has plausible neural implementation. In the hidden layer of the network,
an emergent categorization of vowels and consonants is produced. Still, it is
in Pfeifer and Scheier’s view essentially a symbolic system. NETtalk is not
grounded in any environment, the meaning of both input and output of the
network has to be interpreted by a human. It also implements an ontology,
both in terms of it’s seven character input window and it’s set of phoneme
output nodes. Furthermore, NETtalk is trained using supervised learning, where
the correct input-output mappings are specified by the programmer, and the
apparently emergent organization of categories is essentially nothing but data
clustering.

The NETtalk example illustrates the necessity for another classification of
representations. A very interesting attempt is made by Pfeifer & Scheier (2001)
within the framework of Embodied Cognitive Science.

5 Embodied Cognitive Science

During the last decade, a branch of cognitive science known as Embodied Cog-
nitive Science has grown more popular. In general terms, the trend pushes the
role of the environment in cognitive processes and that cognition must not be
seen as a process of the agent as much as a consequence of the interactions be-
tween the agent and its environment. Following the somewhat louse definition
proposed by Pfeifer & Scheier (2001), a complete intelligent agent has to be
adaptive, autonom, self-sufficient, embodied, and situated. An agent aligning
to these terms solve all four problems outlined in Section 3. A simple example
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of such agents are the Braitenberg Vehicles (Braitenberg, 1986). These agents
are not implementing symbols since the sensors and motors are not said to refer
to something else, as was the case with the NETtalk model, and the control
mechanism is nothing but non-linear connections between sensors and motors.
Braitenberg Vehicles implement no world ontology and carry no model of the
world that may be subject to the frame problem. They also align to the frame
of reference by that they are designed in a strict agent centric manner. Even
though their behavior may be seen as complex, involving decisions and inten-
tions, these properties are merely constructs made by the observer.

A critical feature of the Braitenberg Vehicles, and all other agents that are
complete in Pfeifer & Scheier (2001) terms, is that the actions of these agents af-
fects the sensor input. These places the relation bedtween sensors and actuators
in a new perspective since percepts can be seen as a function of action, involving
the environment, just as much as an action is a response to a specific percept.
With this argument in mind, Pfeifer & Scheier (1997) propose Sensory-Motor
Coordination (SMC), a control architecture where representations are created
within the sensory-motor space. In contrast to the stimuli-response approaches
proposed by Braitenberg (1986), Brooks (1986) and others, SMC implements
control and perception are the same process, a coordination of sensors and ac-
tuators. It should be pointed out that Pfeifer & Scheier (2001) does not argue
that weak representations used in SMC are ontology free. The sensory-motor
space is also an ontology, referred to as a low-level specification, describing the
agent-world interaction in terms of sensors and actuators. One important differ-
ence is however that the low-level specification is provided by the embodiment
of the agent, and completely world and task invariant. The world may of course
change, requiring the agent to develop new sensors and actuators in order to
cope with its environment, but in terms of behavior it provides much more
flexibility than the classical world ontology.

Since weak representations do not provide an explicit memory, learning is
phrased in terms of adaptation (McFarland, 1991). Pfeifer & Scheier (2001)
hereby makes a clear distinction between CA and weak representations by ar-
guing that even though distributed, parallel and robust networks may have ad-
vantages over symbol systems, it is the embodiment and adaptation that does
the trick.

From this argument it should be clear that the four problems of propositional
representations are essentially not problems of symbol systems as such, but
rather the problem of representations that are not grounded in behavior. Even
though discussions like the one above has been taken as arguments against the
possibility to implement truly intelligent machines, e.g. Dreyfus (1992), I see
no reason why the input-output mapping of an embodied agent can not be
established by a symbol manipulating system. However, embodied cognitive
science can still be seen as an argument against the PSS hypothesis in the sense
that cognition, from an embodied perspective, takes place in the interaction
between the agent and its environment, and it is consequently hard to see where
a computational level should appear.
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6 Adaptation

In the previous section, it was concluded that the four problems of propositional
representations is solved by an embodied agent that learns by adapting its input-
output connections, i.e., changing its weak representation. But there is one
fundamental problem left: How should the agent adapt?

Weak representations merely map input to output, and if some new knowl-
edge is to be stored, the mapping must change. However, it is far from obvious
how this mapping is to be changed. In contrast to propositional representation
where the facts are explicit and may be updated as necessary, a weak represen-
tation does not make facts explicit and it is therefore very hard to pick out the
relations that is to be modified.

Adaptivity is often said to have two components, one conservative and one
innovative (Pfeifer & Scheier, 2001). The tradeoff between these two aspects of
adaptation can be found in many forms through large parts of the literature.
Piaget (1952) distinguished between assimilation and accommodation as two
aspects of child development, Carpenter & Grossberg (1988) described a trade-
off between stability-flexibility in adaptive pattern recognition, and the notion
of exploitation versus exploration is well known through the literature on re-
inforcement learning, e.g. Sutton & Barto (1998). The two components can
even be found in evolutionary theory as the tradeoff between inheritance and
mutation.

In a general sense, the difficulty to choose between “doing what you know”
and “doing something new” is captured by the “no free lunch” theorems (Ho &
Pepyne, 2002; Wolpert & Macready, 1997). The argument illustrates the need
for bias in learning. In order to know how to adapt to a certain situation, some
pre-judge is required, specifying how the information that we have can be gener-
alized. This is essentially what the ontology of the propositional representation
provides. The reason reactive robots are so good doing insect-like behavior is
that their ontology, the low-level specification, corresponds to the selected tasks.
Braitenberg Vehicles are just as unable to play chess as Deep blue is unable to
avoid obstacles, the difference is essentially in terms of what kind of ontology
that is provided.

7 Conclusion

Two distinct categories of representations has been identified, propositional
representations and weak representations. The distinction between these two
classes reflects an debate within the field of artificial intelligence that has been
present for the last thirty years. Supporters of weak representations argue that
the propositional approach is doomed since symbol based representations are
based on the ontological assumption, subject to the frame problem and does
not ground symbols in the world. On the contrary, reactive agents employing
weak representations are unable to abstract and create representations outside
their own ontology, the low-level specification. Both kinds of representations
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can in principle solve the problem: The symbol system merely has to connect
to the world in the right way, and the weak representations have to adapt to
the new situation, in the right way.

I believe that one important point put forward in the criticism against sym-
bolic representations are that all knowledge are context dependent to some
extent. The problem with world onthologies is not the requirement for explicit
facts per say, but the requirement for context-free facts. Heidegger introduces
the notion of Being-in-the-world in his argument that the world itself provides
the fundamental context (Guignon, 1983). Dreyfus (1992, p. 207) continues: “in
order to understand an utterance, structure a problem, or recognize a pattern,
a computer must select and interpret its data in terms of a context. But how
are we to impart this context itself to the computer?”

As I understand Dreyfus’ requirement for contezt it is essentially a situation-
dependent ontology, i.e., a specification of all aspects of the world that are
relevant for the present situation. This may of course not be what Dreyfus
argues since he clearly can not see how such context dependent knowledge could
be represented in a computer, but I still believe it pinpoints a critical problem
of PSS and more importantly, provides a possible solution.

I believe that, in order to propose a coherent theory of representation, it
is time to stop focusing on the debate between symbolic and non-symbolic ap-
proaches to representation, and in stead focus on their common issues. Even
though a discussion of possible solutions is outside the scope of this report,
I believe that we have come a long way if we have identified the fundamental
problems common to both classes of representations, namely to balance the bias
provided by an ontology with the proclivity of changing the ontology in order
to connect it with the world. An introduction to several approaches with the
ambition to solve this common representational problem, inherit from informa-
tion theory, computational neuroscience, and robotics, can be found in Billing
(2009).
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