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Abstract

We analyze the perturbations of polynomial matrices of full normal-rank via the study of pertur-
bations of linearizations of such polynomial matrices. We show that a full normal-rank polynomial
matrix has the same structural elements as its right (or left) linearization. Furthermore, the linearized
pencil has a special structure that can be taken into account when studying its stratification. This
yields constraints on the set of achievable eigenstructures. We explicitly show which these constrains
are. These results allow us to derive necessary and sufficient conditions for cover relations between
two orbits or bundles of the linearization of full normal-rank polynomial matrices. The result is
exemplified on two mechanical systems: A controlled uniform platform with two degrees of freedom
and a half-car passive suspension system with four degrees of freedom.
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1 Introduction

Polynomial matrices play an important role in the study of dynamical systems described by sets of
differential-algebraic equations (DAEs) with constant coefficient matrices

Pdx
(d)(t) + . . .+ P1x

(1)(t) + P0x(t) = f(t), t ≥ 0, (1)

where x(·) ∈ Cn, f(·) ∈ Cm, Pi ∈ Cm×n, and x(i)(t) is the i-th derivative of the vector x(t). Taking the
Laplace transform of a DAE system (1) and imposing zero initial conditions, yields the algebraic equation

P (s)x̂(s) = f̂(s) with P (s) := Pds
d + . . .+ P1s+ P0, s ∈ C,

where d is the degree of P (s), and x̂(·) and f̂(·) are the Laplace transforms of x(t) and f(t), respectively.
Throughout the paper, we assume that the leading coefficient matrix Pd is nonzero so that the highest
degree is indeed d (we say it has exact degree d). The importance of using polynomial models is widely
recognized and can be found in basic references such as [17, 36, 26, 34]. For example, polynomial matrices
appear when studying linearizations of mechanical systems [37], multibody dynamics [12], and vibration
analysis of buildings, machines, and vehicles [29].

When the polynomial matrix P (s) is square and regular (this is when det(P (s)) is not identically zero)
then the solutions of the set of differential equations (1) with zero initial conditions mainly depend on
the zeros of P (s) and their multiplicities. The fine structure of this so-called zero structure is described
in more detail by the elementary divisors of P (s). But if P (s) is singular (this is when det(P (s)) is
identically zero for any s or when P (s) is non-square) then the solution set of (1) becomes more complex
and depends on the left and right nullspaces of P (s). These null spaces describe, respectively, constraints
one needs to impose on f(t) for (1) to have compatible solutions, and degrees of freedom in the solution
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set of (1). It is therefore crucial to understand well the complete eigenstructure of P (s) since this will
determine the properties of the solution set of (1).

Unfortunately, the eigenstructure of P (s) is quite sensitive to perturbations in the matrix coefficients
Pi and one wants therefore to accurately describe how that structure can change when small variations
are applied to these coefficients. Such a study can be performed by so called versal deformations of the
eigenstructure of the Jordan and Kronecker canonical forms as introduced in [1] for square matrices.
One tool that can be used to analyze the qualitative information of nearby systems is the theory of
stratification [10, 9, 13, 25]. A stratification reveals the closure hierarchy of orbits and bundles of nearby
canonical structures and gives important qualitative information about the underlying dynamical system.
It shows which canonical structures can be reached by a small perturbation and the relation among these
structures. A stratification can be represented as a graph where each node represents an orbit or bundle
of a canonical structure and an edge corresponds to a covering relation. When two orbits (or bundles) of
canonical structures are nearest neighbors in the closure hierarchy they fulfil a cover relation. Such cover
relations can be expressed as combinatorial rules acting on integer sequences representing a subset of the
structural elements.

Closure and cover relations have been studied, e.g., in [1, 14, 9, 10, 4, 33] for matrices and first order
polynomial matrices (matrix pencils), in [13, 16, 19, 21] for system pencils associated with state-space
systems, and in [8, 21, 22] for system pencils associated with descriptor and singular systems. In this
paper, we extend these results to the case of polynomial matrices by making use of linearizations. These
linearizations are matrix pencils, but with the constraint that some elements of the coefficient matrices
are 0 or 1, which reduces the set of possible eigenstructures that can be achieved.

Recently problems related to stratification of polynomial matrices have been addressed in [32] and
[7]. In [32], it is shown that the map between the orbit space of an controllable matrix pair (A,B)
and a polynomial matrix P (s) is a homeomorphism under stated assumptions. The orbits considered
are the orbits of matrix pairs under system similarity and the orbits of polynomial matrices under right
equivalence. Moreover, necessary and sufficient conditions for a polynomial matrix to be in the closure
of another are derived.

The rest of the paper is organized as follows. In Section 2, we start by describing the different
eigenstructure elements that a polynomial matrix can have and make the link with the eigenstructure
elements of matrix pencils. In Section 3, we describe linearizations of polynomial matrices that preserve
these eigenstructure elements. Sections 4 and 5 describe in more detail the constrained versal deformations
for the so-called scalar and matrix case. In Section 6, we discuss the relations between the polynomial
and the pencil representations. We continue in Section 7 to introduce integer partitions and minimal
coin moves that are used to represent the structure integer partitions in Section 8 and which appear in
the covering rules. Section 9 introduces the polynomial matrix space and we define concepts like orbits
and bundles for polynomial matrices, and their codimensions expressed in terms of the structure integer
partitions. In Section 10, the cover relations for orbits and bundles of full normal-rank polynomial
matrices are derived. Finally, in Section 11 we illustrate and apply the stratification theory on two
examples of mechanical systems.

2 Structural elements of P (s)

The eigenstructure elements of a polynomial matrix require the definition of the Smith normal form and
of unimodular matrices.

Definition 2.1 A square polynomial matrix M(s) is said to be unimodular if its determinant is constant
and non-zero.

Definition 2.2 Two polynomial matrices P (s) and P̃ (s) of the same size are called equivalent if

P (s) = M(s)P̃ (s)N(s),

for some unimodular matrices M(s) and N(s) of conforming sizes.

Notice that unimodular matrices have a polynomial inverse that is also unimodular and that products
of unimodular matrices are also unimodular, from which it follows that they form a transformation
group. Under this transformation group a unique canonical form of an arbitrary polynomial matrix can
be obtained.
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Definition 2.3 [15] The Smith normal form of an arbitrary m×n polynomial matrix P (s) is the quasi
diagonal matrix obtained under unimodular transformations Ml(s) and Mr(s) applied to the rows and
columns of P (s):

Ml(s)P (s)Mr(s) =



e1(s) 0 . . . 0

0 e2(s)
. . .

... Or,n−r
...

. . .
. . . 0

0 . . . 0 er(s)

Om−r,r Om−r,n−r


(2)

where each ej(s) is monic and divides ej+1(s) for j = 1, . . . , r− 1. The polynomials ej(s) are unique and
are called the invariant polynomials of P (s).

A (non-unique) zero α ∈ C of P (s) is a zero of any ej(s) and its finite elementary divisors are the
factors (s− α)hj of each ej(s); their powers are non-increasing:

h1 ≥ h2 ≥ · · · ≥ hr ≥ 1. (3)

The index r is called the normal-rank of P (s) and it is equal to the rank of P (s) at any values of s ∈ C
which is not a zero of P (s).

We say that an m × n polynomial matrix has full normal-rank if its normal-rank r = min(m,n).
Consequently, if r = m then n ≥ m and if r = n then n ≤ m.

For the zero s =∞, there are several different characterizations. We will use here the definition based
on the so-called reversed polynomial matrix.

Definition 2.4 For a polynomial matrix P (s) of degree d, the reversed polynomial matrix revP (µ) is

revP (µ) := µdP (
1

µ
) = Pd + Pd−1µ+ . . .+ P0µ

d, (4)

which is obtained from the substitution s = 1
µ in the polynomial matrix P (s).

Definition 2.5 The finite elementary divisors µhj of the zero µ = 0 of revP (µ) are the infinite elemen-
tary divisors 1/shj of the polynomial matrix P (s).

Notice there exist other definitions of infinite zero structure [26, 38] but one can easily find relations
between them [39].

A polynomial matrix P (s) that has normal-rank r smaller than m and/or n, has also left and right
null spaces that can be represented by polynomial bases as one can see from (2). In order to define the
null space structure, we need to define minimal polynomial bases.

Definition 2.6 The n×r polynomial matrix N(s) with the highest column degrees {d1, . . . , dr} is column
reduced, if the highest degree coefficient matrix Nh, whose j-th column is the coefficient of sdj in the
j-th column of N(s), also has full column rank. Its normal-rank is therefore also equal to r.

We recall here a lemma about column reduced matrices, that will be useful in the rest of the paper.
Proof can be found in, e.g., [26].

Lemma 2.1 Every n× r polynomial matrix N(s) of normal-rank r can be transformed by a unimodular
column transformation V (s) to a column reduced matrix N(s)V (s) with non-increasing column degrees
dj , j = 1, . . . , r. An additional constant and invertible row transformation R will transform the highest

degree coefficient matrix of RN(s)V (s) to

[
Ir
0

]
.

Remark 2.1 The dual result obviously holds as well. Every r×m polynomial matrixN(s) of normal-rank
r can be transformed by a unimodular row transformation U(s) to a row reduced matrix U(s)N(s) with
non-increasing row degrees dj , j = 1, . . . , r. An additional constant and invertible column transformation
C will transform the highest degree coefficient matrix of U(s)N(s)C to

[
Ir 0

]
.
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Definition 2.7 The n× r polynomial matrix N(s) is called a minimal basis for the space spanned by its
columns if N(s) has full column rank for all finite s ∈ C and if it is column reduced. The column degrees
{d1, . . . , dr} of any minimal basis for a particular space, are unique and are called the minimal indices of
that space.

We are now ready to define the remaining eigenstructure elements of P (s).

Definition 2.8 Let P (s) be an m× n polynomial matrix of normal-rank r and let

NT
` (s)P (s) = 0, P (s)Nr(s) = 0 (5)

where the m× (m− r) polynomial matrix N`(s) and the n× (n− r) polynomial matrix Nr(s) are column
reduced. The left and right null space structures of the polynomial matrix P (s) are then the column degrees
{η1, . . . , ηm−r} and {ε1, . . . , εn−r} of N`(s) and Nr(s), respectively.

The column degrees {η1, . . . , ηl0} and {ε1, . . . , εr0} are called the left (row) and right (column) minimal
indices, respectively, where l0 = m− r and r0 = n− r.

We point out here that if we apply the above definitions to a first order (or linear) polynomial matrix
P (s) we retrieve the definitions of the structural elements obtained from the Kronecker canonical form
(KCF) of a matrix pencil sH +G. Any general mp × np matrix pencil sH +G can be transformed into
KCF in terms of an equivalence transformation with two nonsingular matrices U and V [15]:

U(sH +G)V −1

= diag(Lε1 , . . . , Lεr0 , J(λ1), . . . , J(λq), Nh1
, . . . , Nhg∞

, LTη1 , . . . , L
T
ηl0

),
(6)

where J(λi) = diag(Jh1(λi), . . . , Jhgi
(λi)), i = 1, . . . , q, and gi is the geometric multiplicity of the finite

eigenvalue λi and g∞ the geometric multiplicity of the infinite eigenvalue. Here λi is a distinct eigenvalue
of sH +G which coincides with a zero of P (s) in Definition 2.3. The four types of canonical blocks are:

Jhk
(λi) :=


s− λi −1

. . .
. . .

. . . −1
s− λi

 , Nhk
:=


−1 s

. . .
. . .

. . . s
−1

 ,

Lεk :=


s −1

. . .
. . .

. . .
. . .

s −1

 , and LTηk :=



s

−1
. . .

. . .
. . .

. . . s
−1


,

where

• Jhk
(λi) is a hk × hk Jordan block at a finite eigenvalue λi, corresponding to a finite elementary

divisor of degree hk, namely (s− λi)hk ,

• Nhk
is a hk × hk Jordan block at the infinite eigenvalue, corresponding to an infinite elementary

divisor of degree hk, namely 1/shk ,

• Lεk is an εk × (εk + 1) right singular block, corresponding to a right null vector of minimal degree
εk, namely [1, s, . . . , sεk ]T , and

• LTηk is an (ηk + 1)× ηk left singular block, corresponding to a left null vector of minimal degree ηk,
namely [1, s, . . . , sηk ].

L0 and LT0 blocks are of size 0 × 1 and 1 × 0, respectively, and each of them contributes with a column
or row of zeros in the KCF.

In Section 3, we present a linearization of the polynomial matrix in the form of a matrix pencil and we
show that most of the structural elements of P (s) are preserved as the structural elements of the linear
pencil.
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3 Linearizations

The classical approach to analyze and determine the structural elements of (1) is to study linearizations of
polynomial matrices P (s), which result in a large linear matrix pencil sH +G [2, 17]. A linearization is not
unique, instead there exist several different, e.g., see [3, 5, 6, 30]. Here we only consider the so called right
and left linearizations (also called second and first companion linearizations, respectively). We remark
that the companion linearizations are potentially more ill-conditioned relative to P (s). However, when
the 2-norms of the coefficient matrices of P (s) are all around one, they are almost equally conditioned
[20].

The right linearization of an m×n polynomial matrix P (s), which is equivalent to the so called second
companion form, has the form

sHr +Gr := s


Im

. . .

Im
Pd

+


0 P0

−Im
. . . P1

. . . 0
...

−Im Pd−1

 . (7)

In this section, we show the relations between the eigenstructure elements of P (s) of normal-rank m
and those of the matrix pencil sHr +Gr of size dm× dn. To do this we make use of the following lemma
[15].

Lemma 3.1 Two polynomial matrices P (s) and Q(s) are equivalent if and only if they have the same
invariant polynomials.

When left multiplying sHr +Gr (7) with an appropriate unimodular matrix we obtain
Im sIm . . . sd−1Im

. . .
. . .

...
. . . sIm

Im

 (sHr +Gr) =


0 P (s)

−Im
. . . X2(s)
. . . 0

...
−Im Xd(s)

 , (8)

where the Xi(s), for i = 2, . . . , d, are polynomial matrices as well. An additional unimodular right
transformation then gets rid of the matrices Xi(s):

0 P (s)

−Im
. . . X2(s)
. . . 0

...
−Im Xd(s)



Im X2(s)

. . .
...

Im Xd(s)
Im

 =

[
P (s)

−Im(d−1)

]
.

Together with Lemma 3.1 we have now shown that sHr +Gr and P (s) have the same finite elementary
divisors.

For the infinite elementary divisors, we need to compare the elementary divisors of the eigenvalue
µ = 0 of the reversed pencil Hr + µGr with those of the reversed polynomial revP (µ) defined in (4). We
now multiply Hr + µGr on the left with an appropriate unimodular matrix in µ:

Im

µIm
. . .

...
. . .

. . .

µd−1Im . . . µIm Im

 (Hr + µGr) =


Im Yd(µ)

. . .
...

Im Y2(µ)
revP (µ)


where again the matrices Yi(µ) are polynomial matrices in µ and can be eliminated by an additional
unimodular transformation applied to the right:

Im Yd(µ)
. . .

...
Im Y2(µ)

revP (µ)



Im −Yd(µ)

. . .
...

Im −Y2(µ)
Im

 =

[
Im(d−1)

revP (µ)

]

showing that Hr + µGr and revP (µ) have the same elementary divisors. We have thus derived the
following theorem (see also [17]).
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Theorem 3.2 The polynomial matrix P (s) and the linearized pencil sHr +Gr defined in (7), have the
same finite and infinite elementary divisors.

In order to address the null space structure, we recall a lemma, proved in [39].

Lemma 3.3 Let
[
X1 X2

] [ Y1
Y2

]
= 0 and let X1 and

[
Y1
Y2

]
have full column rank, then Y2 must

also have full column rank.

We now use this to prove the following theorem for the right null space structures of P (s) and
sHr +Gr.

Theorem 3.4 Let N(s) be a minimal basis for the right null space of the pencil sHr +Gr and partition
it as follows (where N2(s) has n rows):

sIm P0

−Im
. . .

...
. . . sIm Pd−2

−Im sPd + Pd−1


[
N1(s)
N2(s)

]
= 0. (9)

Then N2(s) is a right minimal basis of P (s) with the same minimal indices as N(s).

Proof. We first apply the same left transformation as in (8) to (9), yielding
0 P (s)

−Im
. . . X2(s)
. . . 0

...
−Im Xd(s)


[
N1(s)
N2(s)

]
= 0. (10)

Clearly, this implies that P (s)N2(s) = 0 and applying Lemma 3.3 to this for any finite value s, implies
that N2(s) has full column rank for any finite value of s.

Let us now partition the highest degree coefficient matrix Nh in a similar fashion. Then, equating the
highest degree coefficients of the top m(d− 1) equations of (9) yields Im 0

. . .
...

Im 0

[ Nh1
Nh2

]
= 0.

This implies that Nh1 = 0 and Nh2 has full column rank. Therefore, N2(s) is a minimal basis with the
same minimal indices as N(s). �

Remark 3.1 The following example shows that one can not say the same for the left minimal indices of
P (s) and sHr +Gr:

P (s) :=

[
s s2

1 s

]
=

[
s
1

] [
1 s

]
, sHr +Gr =


s 0 0 0
0 s 1 0
−1 0 1 s
0 −1 0 1

 .
Indeed, the minimal left null spaces of P (s) and sHr +Gr are respectively

[
1 −s

]
and

[
1 −s s −s2

]
and their minimal index is different.

Thus we have proved that an m×n polynomial matrix P (s) of normal-rank m has the same structural
elements as the so-called right linearization sHr +Gr (7).

For the left minimal indices we consider the left linearization

sH` +G` := s


sIn

. . .

sIn
Pd

+


0 −In

. . .
. . .

0 −In
P0 P1 . . . Pd−1

 , (11)

for which the dual result holds. Notably, the matrix pencil sH` +G` is equivalent to the so called first
companion form.

We synthesize the results of this section in the following theorem.
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Theorem 3.5 Let P (s) be an m× n polynomial matrix of normal-rank r, then

1. if r = m, P (s) has the same structural elements as sHr +Gr defined in (7),

2. if r = n, P (s) has the same structural elements as sH` +G` defined in (11),

3. for any r, P (s) has the same elementary divisors as sHr +Gr and as sH` +G`, and

4. for any r, P (s) has the same right minimal indices as sHr +Gr and the same left minimal indices
as sH` +G`.

4 Scalar case

In this section, we look at the case where m = 1 and we assume that the polynomial matrix has exact
degree d (nonzero leading coefficient Pd). This of course implies that the polynomial matrix has normal-
rank 1 as well since it is nonzero. The Smith form of such a polynomial matrix is quite special since it
contains exactly one polynomial e(s), which is the greatest common divisor of the scalar polynomials in
P (s) :

P (s) :=
[
p1(s) . . . pn(s)

]
, e(s) := gcd {p1(s), . . . , pn(s)} .

If k is the degree of e(s) then there are n − 2 right minimal indices equal to 0 and one equal to d − k.
The other structure elements are all the possible structures one can find in a scalar polynomial of degree
k. We synthesize the conclusions in the following theorem.

Theorem 4.1 A 1×n polynomial matrix P (s) of exact degree d has only one elementary divisor (s−λi)hi

for each zero λi, n−2 right minimal indices equal to zero, and one right minimal index equal to ε1 satisfying∑
i

hi + ε1 = d.

All structures satisfying these constraints are possible for such a polynomial matrix.

Corollary 4.2 A 1×1 scalar polynomial p(s) of exact degree d has only one elementary divisor (s−λi)hi

for each zero λi satisfying ∑
i

hi = d.

All structures satisfying these constraints are possible for such a polynomial.

Clearly this is not reflected in the general form sH +G of the pencil sHr +Gr, but it is a result of the
fact that sHr +Gr has fixed elements equal to 0 and 1. This problem is also related to the controllability
of a generalized state-space system with n− 1 inputs. For this, we relabel the polynomials as follows:

a(s) := p1(s), B(s) :=
[
p2(s) . . . pn(s)

]
,

where we assume for simplicity that the highest degree coefficient of a(s) is non-zero and that of B(s) is
equal to zero. This can be achieved by a constant row transformation of P (s) (which does not affect the
conclusions), where the highest degree coefficient of a(s) is used as pivot to eliminate those of B(s). One
can then consider the following partitioning of the linearization of P (s) :

[
sE +A B

]
:=


s a0 B0

−1
. . . a1 B1

. . . s
...

...
−1 sad + ad−1 Bd−1

 ,

where B0, . . . , Bd−1 are 1 × (n − 1) matrices. The controllability of this generalized state-space pair is
equivalent to the existence of a gcd e(s) of the polynomials of P (s) = [ a(s) B(s) ]. The dimension of the
uncontrollable space is also equal to the degree of e(s). Rather than analyzing this using the perturbations
of
[
sE −A B

]
one can look at perturbations for this row vector of polynomials to have a common

divisor.
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5 Matrix case

In this section, we derive similar conditions for full normal-rank polynomial matrices as for the scalar
case presented in Theorem 4.1 and Corollary 4.2. We will prove the following results.

Theorem 5.1 An m × n polynomial matrix P (s) of exact degree d and normal-rank m has m finite

elementary divisors (s − λi)h
(i)
j , j = 1, . . . ,m, for each zero λi, m infinite elementary divisors 1/sh

(∞)
j ,

and n−m right minimal indices εj, j = 1, . . . , n−m (some of these indices can be trivially zero) satisfying

m∑
j=1

q∑
i=1

h
(i)
j +

m∑
j=1

h
(∞)
j +

n−m∑
j=1

εj = dm. (12)

All structures satisfying these constraints are possible for such a polynomial matrix.

Remark 5.1 The dual result for when P (s) has normal-rank n is given by interchanging m and n, and
replacing the right minimal indices ε with the left minimal indices η in the theorem above.

Corollary 5.2 An m × m polynomial matrix P (s) of exact degree d and normal-rank m has m finite

elementary divisors (s−λi)h
(i)
j , j = 1, . . . ,m, for each zero λi, and m infinite elementary divisors 1/sh

(∞)
j

(some of these indices can be trivially zero) satisfying

m∑
j=1

q∑
i=1

h
(i)
j +

m∑
j=1

h
(∞)
j = dm. (13)

All structures satisfying these constraints are possible for such a polynomial matrix.

We thus need to show that all these structures may occur in an m×n polynomial matrix P (s) of exact
degree d. The fact that these constraints are necessary, is evident since an m × n polynomial matrix of
rank r = m can have only r non-trivial elementary divisors for each zero. The fact that these constraints
are sufficient, on the other hand, requires a proof. Our proof is based on unimodular transformations,
which leave the finite elementary divisors unchanged, but may change the infinite elementary divisors. We
therefore make a change of variables, such that the polynomial matrix has no finite elementary divisors
at infinity. For this we need the following lemma.

Lemma 5.3 Let P (s) be an m × n polynomial matrix of exact degree d and full normal-rank m which
has no zero at s = ω. Then putting s = 1

µ + ω, the transformed polynomial matrix

Pω(µ) := µdP (
1

µ
+ ω) = Pd(1 + µω)d + Pd−1µ(1 + µω)(d−1) + . . .+ P0µ

d

has the same right nullspace structure as P (s), no zero at infinity, and its finite elementary divisors are
given by (

µ− 1

(λi − ω)

)h(i)
j

, j = 1, . . . ,m, and µh
(∞)
j , j = 1, . . . ,m. (14)

Proof. This follows directly from the correspondence with the Kronecker structure of the linearized
pencil sH +G. The linearization of the transformed polynomial matrix Pω(µ) is given by (1 + µω)H +
µG = µ(ωH+G)+H, which has the same right null space structure as sH +G and the same elementary
divisors except for the transformations given in (14). �

Note that a full normal-rank polynomial matrix P (s) without zeros at infinity must have a highest
degree coefficient matrix Pd which has full rank as well. We now show that the result of Corollary 5.2
holds for a polynomial matrix without infinite elementary divisors.

Proof of Corollary 5.2. Let P (s) be in Smith canonical form and h1 ≥ · · · ≥ hm ≥ 1 be the degrees
of its elementary divisors, then the highest degree coefficient matrix is the identity matrix Im. Moreover,
since P (s) has no elementary divisors at infinity, Corollary 5.2 imposes that

∑m
i=1 hi = dm. We now show

that such a polynomial matrix can be transformed using unimodular transformations to one of degree
d with highest degree coefficient matrix Pd = Im. This would imply that there always is a polynomial
matrix of degree d that satisfies Corollary 5.2.

We construct such a polynomial matrix by recursively reducing the difference between h1 and hm
while

∑m
i=1 hi remains the same. At the end of this process all hi will be equal to d. Assume for this
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that h1 > d then we must have hm < d, otherwise the ordered sequence of hi could not sum up to dm.
In the transformation U(s)P (s)V (s) = P̂ (s) below, we only show the elements of highest column degrees

in P (s) and P̂ (s) :

 1
I

1 s


s

h1

. . .

shm


−1

I
sδ 1

 =

 s
h1−1

. . .

xsh1−1 shm+1

 , (15)

where δ = h1 − hm − 1 and x is arbitrary. Clearly, this transformation yields a new column reduced
matrix but with the smallest column degree increased by one and the largest column degree decreased
by one. The reduction can be continued since we can use Lemma 2.1 to put again the new matrix in
normalized column reduced form. Eventually we obtain an m ×m polynomial matrix of degree d with
prescribed elementary divisors and Pd = Im. �

Proof of Theorem 5.1. In order to prove Theorem 5.1, we have to construct an m × n polynomial
matrix P (s) with given Smith form, but also with given right minimal indices. In [26], it is shown how
to construct a polynomial matrix Pr(s) with prescribed right minimal basis Nr(s), such that Pr(s) has
full column rank for all finite s ∈ C (i.e. no nontrivial elementary divisors). If we pre-multiply Pr(s)
with a diagonal matrix Pf (s) of given finite elementary divisors as shown above, then P (s) := Pf (s)Pr(s)
satisfies P (s)Nr(s) = 0 and it has the prescribed elementary divisors. According to Remark 2.1 we
can further transform it to a row reduced matrix W (s)P (s)R with highest row degree coefficient matrix
Ph =

[
0 Im

]
and with non-increasing row degrees d1, . . . , dm. This new matrix W (s)P (s)R has still

the prescribed elementary divisors; the new matrix R−1Nr(s) is a minimal basis for W (s)P (s)R and its

highest column degree matrix must be of the type

[
C
0

]
since it is orthogonal to Ph. Moreover, C is

invertible since R−1Nr(s) is still column reduced. The further transformation R−1Nr(s)C
−1 still yields a

right minimal basis but now with highest degree matrix Nh =

[
In−m

0

]
; we will denote the corresponding

column degrees by ε1, . . . , εn−m since they are the right minimal indices of P (s).

We now assume that we start with a pair of matrices P (s)Nr(s) = 0 with the above conditions on
the highest degree coefficient matrices. The conditions of Theorem 5.1 imply that

∑m
i=1 di = dm. If all

the coefficients di are not equal to d we again update the pair.

We now update simultaneously the matrices P (s) and Nr(s) while making sure that: (i) Nr(s) remains
a right minimal basis of P (s) with the same minimal indices; and (ii) P (s) has the same invariant

polynomials. In the transformation U(s)P (s)V (s) = P̂ (s) displayed below, we only show the elements of

highest row degrees in P (s) and P̂ (s):

−1 sδ

I
1


 sd1

0
. . .

sdm



In−m 0

1
0 I

1 s


=

 sd1−1

0
. . .

xsd1−1 sdm+1

 ,
where δ = d1 − dm − 1 and x is arbitrary. Just as in the previous reduction these transformations are
unimodular and hence the elementary divisors of P (s) and P̂ (s) are the same but the smallest row index
dm increased by 1 and the largest row index d1 decreased by 1. Meanwhile, the right minimal indices
did not change, because the corresponding right nullspace underwent the transformation V −1(s)Nr(s) =

N̂r(s). Below we show only the highest column degree elements in Nr(s) and N̂r(s) :


In−m 0

−s 1
0 I

1




sε1

. . .

sεn−m

0


=


sε1

. . .

sεn−m

xsε1 · · · xsεn−m

0

 .
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Clearly, only row n + 1 of N̂r(s) may contribute to the highest degree matrix, but it will not affect the
minimal indices. Again, we can continue the recursive updating transformations until all powers di = d,
which completes the proof of Theorem 5.1. �

For completeness we include the following two corollaries for polynomial matrices with a full rank
highest degree coefficient matrix Pd. The proofs are omitted since, as shown above, a full normal-rank
polynomial matrix can always be transformed to one with a full rank Pd via a change of variables.

Corollary 5.4 Let P (s) = Pds
d+. . .+P1s+P0 be an m×n polynomial matrix of exact degree d, normal-

rank m, and with Pd of full row rank. Possible structural elements of P (s) are those of Theorem 5.1
excluding the infinite elementary divisors.

Corollary 5.5 Let P (s) = Pds
d+. . .+P1s+P0 be an m×m polynomial matrix of exact degree d, normal-

rank m, and det(Pd) 6= 0. Possible structural elements of P (s) are those of Corollary 5.2 excluding the
infinite elementary divisors.

6 Polynomial versus pencil representation

The matrix pencils sHr +Gr and sH` +G` corresponding to the right and left linearizations of a full
normal-rank m × n polynomial matrix P (s) = Pds

d + . . . + P1s + P0, can be expressed as the system
pencils

SR(s) = sHr +Gr = s
[
E 0

]
+
[
A B

]
and SL(s) = sH` +G` = s

[
E
0

]
+

[
A
C

]
, (16)

respectively. If the highest degree coefficient matrix Pd has full row or column rank, the system pencils
in (16) can be transformed into

SC(s) = s
[
Idm 0

]
+
[
Ã B̃

]
or SO(s) = s

[
Idn
0

]
+

[
Ã

C̃

]
, (17)

respectively, where SC(s) has full row rank and SO(s) has full column rank. The structural elements of

SC(s) only depend on the matrix pair (Ã, B̃) and those of SO(s) on (Ã, C̃). In the next section, we show
that the stratification rules for SR(s) and SL(s) can be derived from the stratification rules for general
matrix pencils sH +G, and the rules for SC(s) and SO(s) from general matrix pairs (A,B) and (A,C),
respectively.

In the following, we illustrate how a polynomial matrix can be expressed in the form of a system
pencil using three examples. We focus on polynomial matrices of full normal-rank and with a highest
degree coefficient matrix Pd of full row rank. The first example is of general form and the remaining two
are taken from applications.

Example 6.1 Consider the differential equation

Ddx
(d)(t) +Dd−1x

(d−1)(t) + . . .+D1x
(1)(t) +D0x(t) =

−Nd−1u(d−1)(t)− . . .−N1u
(1)(t)−N0u(t),

(18)

where Dk ∈ Cm×m and Nk ∈ Cm×p. It can be expressed as[
Dd 0

] [x(d)(t)
u(d)(t)

]
+
[
Dd−1 Nd−1

] [x(d−1)(t)
u(d−1)(t)

]
+ . . .+

[
D0 N0

] [x(t)
u(t)

]
= 0, (19)

with the associated m× (m+ p) polynomial matrix P (s) =
[
Dd 0

]
sd + . . .+

[
D0 N0

]
of degree d. If

P (s) has full normal-rank m and det(Dd) 6= 0 then we have the companion linearization

s


Im 0

. . .
...

Im 0

+


0 D−1d D0 D−1d N0

−Im
. . . D−1d D1 D−1d N1

. . . 0
...

−Im D−1d Dd−1 D−1d Nd−1

 , (20)

which is a system pencil of the form SC(s). Similarly, the left linearization of a polynomial matrix with
full normal-rank n and det(Dd) 6= 0 corresponds to the system pencil SO(s).
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Example 6.2 Consider a controlled dynamical system which can be expressed by its equation of motion
on the form

Mẍ+ Cẋ+Kx = Eu,

where M , C, and K are the mass, damping, and stiffness matrices, respectively, E is the input (control)
matrix, x is a vector of positive variables, and u is a vector of control variables. Assuming the mass
matrix M is positive definite, the linearization of the associated polynomial matrix can be expressed by
the companion form [

sI +A B
]

=

[
sI M−1K M−1E
−I sI +M−1C 0

]
,

where I is the identity matrix of conforming size. The (2, 3)-block is a zero matrix since u̇ does not
appear in the equation of motion.

Example 6.3 Consider an LTI system represented by the state-space model

ẋ(t) = Ax(t) +Bu(t), (21)

where A ∈ Cn×n, B ∈ Cn×m, x(t) is the state vector, and u(t) is the input vector.

The controllability of an LTI system only depends on the matrices A and B, hence the matrix pair
(A,B) is usually referred to as the controllability pair [13, 25]. The system (21) has the correspond-
ing controllability pencil SC(s) =

[
sIn +A B

]
. For the definition of controllability see any standard

textbook on control theory, e.g., [26, 36].

7 Integer partitions and coins

In the next section we use integer partitions to represent the structural elements of a matrix or matrix
pencil and coin moves to define the stratification rules. Here, we recall the definitions by quoting [10, 13].

An integer partition κ = (κ1, κ2, . . .) of an integer K is a monotonically non-increasing se-
quence of integers (κ1 ≥ κ2 ≥ · · · ≥ 0) where κ1 +κ2 + · · · = K. The union τ = (τ1, τ2, . . .) of
two integer partitions κ and ν is defined as τ = κ ∪ ν where τ1 ≥ τ2 ≥ · · · . Furthermore, the
conjugate partition of κ is defined as ν = conj(κ), where νi is equal to the number of integers
in κ that are equal to or greater than i, for i = 1, 2, . . .

If ν is an integer partition, not necessarily of the same integer K as κ, and κ1 + · · · + κi ≥
ν1 + · · ·+ νi for i = 1, 2, . . ., then κ ≥ ν. When κ ≥ ν and κ 6= ν then κ > ν. If κ, ν and τ are
integer partitions of the same integer K and there does not exist any τ such that κ > τ > ν
where κ > ν, then κ covers ν.

An integer partition κ = (κ1, . . . , κn) can also be represented by n piles of coins, where the
first pile has κ1 coins, the second κ2 coins and so on. An integer partition κ covers ν if ν
can be obtained from κ by moving one coin one column rightward or one row downward, and
keep κ monotonically non-increasing. Or equivalently, an integer partition κ is covered by τ
if τ can be obtained from κ by moving one coin one column leftward or one row upward, and
keep κ monotonically non-increasing. These two types of coin moves are defined in [10] and
called minimum rightward and minimum leftward coin moves, respectively (see Figure 1).

Figure 1: Minimum leftward and rightward coin moves illustrate that κ = (2, 2, 1, 1) is covered by
τ = (3, 1, 1, 1) and κ = (2, 2, 1, 1) covers ν = (2, 1, 1, 1, 1).
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8 Structure integer partitions

We can now represent the structural elements of matrix pencils defined in Section 2 as integer partitions
(notation from [13]):

(i) The column minimal indices as ε = (ε1, . . . , εr0), where ε1 ≥ ε2 ≥ · · · ≥ εr1 > εr1+1 = · · · = εr0 = 0.
From the conjugate partition (r1, . . . , rε1 , 0, . . .) of ε we define the integer partition R(sH +G) = (r0) ∪
(r1, . . . , rε1).

(ii) The row minimal indices as η = (η1, . . . , ηl0), where η1 ≥ η2 ≥ · · · ≥ ηl1 > ηl1+1 = · · · = ηl0 = 0.
From the conjugate partition (l1, . . . , lη1 , 0, . . .) of η we define the integer partition L(sH +G) = (l0) ∪
(l1, . . . , lη1).

(iii) For each distinct finite eigenvalue λi, i = 1, . . . , q, with the finite elementary divisors on the

form (s − λi)h
(i)
1 , . . . , (s − λi)h

(i)
gi , where h

(i)
1 ≥ · · · ≥ h

(i)
gi ≥ 1, we introduce the integer partition hλi

=

(h
(i)
1 , . . . , h

(i)
gi ) which is known as the Segre characteristic. The conjugate partition J λi

(sH +G) =
(j1, j2, . . .) of hλi

is the Weyr characteristic of λi.
(iv) For the infinite eigenvalue with the infinite elementary divisors on the form µh1 , µh2 , . . . , µhg∞ ,

with h1 ≥ · · · ≥ hg∞ ≥ 1, we introduce the integer partition h∞ = (h1, . . . , hg∞) which is known as the
Segre characteristic for the infinite eigenvalue. The conjugate partition N (sH +G) = (n1, n2, . . .) of h∞
is the Weyr characteristic of the infinite eigenvalue.

The integer partitions above are referred to as structure integer partitions [13]. In addition, the
condensed notation R, L, J , and N is used for the integer partitions corresponding to the right and left
singular structures, and the Jordan structures of the finite and infinite eigenvalues, respectively, when it
is obvious from the context.

9 The polynomial matrix space

Consider the 2d2mn-dimensional space of dm× dn complex matrix pencils sH +G with Frobenius inner
product
〈sH +G, sH̃ + G̃〉 ≡ tr(GG̃∗ +HH̃∗). Let us for now only consider matrix pencils with d = 1 (see
also [9, 10]). The orbit of an m× n matrix pencil:

O(sH +G) = {U(sH +G)V −1 : det(U) · det(V ) 6= 0}, (22)

is the manifold of all equivalent matrix pencils, i.e., a manifold in the 2mn-dimensional space. All matrix
pencils in the same orbit have the same canonical form, with the eigenstructure fixed. A bundle defines
the union of all orbits with the same canonical form but with the eigenvalues unspecified, B(sH +G) :=⋃
λi
O(sH +G) [1].

The dimension of O(sH +G) is equal to the dimension of the tangent space to O(sH +G) at sH +G:

tan(sH +G) = {sTH + TG = s(XH −HY ) + (XG−GY )},

where X ∈ Cm×m and Y ∈ Cn×n. The orthogonal complement of the tangent space is the normal space,
nor(sH +G) = {sZH + ZG} where ZHH

∗ + ZGG
∗ = 0 and H∗ZH + G∗ZG = 0. The dimension of the

normal space is called the codimension of O(sH +G), denoted by cod(sH +G). The codimension of the
corresponding bundle is one less for each unspecified distinct eigenvalue. For example, a matrix pencil
with k unspecified eigenvalues and the rest with known specified eigenvalues has cod(B(sH +G)) =
cod(O(sH +G))− k.

While a general matrix pencil of size dm × dn belongs to the complete pencil space, a polynomial
matrix of degree d > 1 only resides in a subspace of the pencil space. An intuitive way to realize this is to
consider, e.g., the right linearization sHr +Gr in (7) of a polynomial matrix. The right linearization is
a matrix pencil with several fixed elements, where each fixed element decreases the degree of freedom by
one. Following [11, 28], the set of dm×(dm−m+n) sHr +Gr form a (d+1)mn-dimensional affine space
in the pencil space, which is called the Sylvester space and denoted by syl(sHr +Gr). The manifold of
equivalent polynomial matrices belong to the Sylvester space and is

O(sHr +Gr) = {sH̃r + G̃r = U(sHr +Gr)V
−1 : sH̃r + G̃r ∈ syl(sHr +Gr),

det(U) · det(V ) 6= 0}.

Lemma 5.3 shows that any full normal-rank polynomial matrix can be transformed such that Pd
obtains full row-rank via a change of variables. Therefore, it follows that the codimension of O(sHr +Gr)
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coincides with the codimension of the orbit of a matrix pair (A,B) associated with the system pencil
SC(s) in (17) [13]:

cod(sHr +Gr) = cRight + cJor + cJor,Right, (23)

where

cRight =
∑
εk>εl

(εk − εl − 1), cJor =

q∑
i=1

gi∑
k=1

(2k − 1)h
(i)
k , and cJor,Right = r0

q∑
i=1

gi∑
k=1

h
(i)
k .

The codimension of O(sH` +G`) coincides with the codimension of the orbit of a matrix pair (A,C)
associated with the system pencil SO(s) in (17) [13]:

cod(sH` +G`) = cLeft + cJor + cJor,Left, (24)

where

cLeft =
∑
ηk>ηl

(ηk − ηl − 1), cJor =

q∑
i=1

gi∑
k=1

(2k − 1)h
(i)
k , and cJor,Left = l0

q∑
i=1

gi∑
k=1

h
(i)
k .

10 Stratifications

In this section, we present the stratification of orbits and bundles of full normal-rank polynomial matrices
P (s).

The closure hierarchy of orbits (or bundles) is a stratification that we represent by a connected graph
[10, 13]. The nodes of the graph correspond to orbits (or bundles) of canonical structures and the edges
to their covering relations. The organization of the graph is from bottom to top (or top to bottom) with
nodes in decreasing (or increasing) order of codimension. For an example see Figure 3.

Besides the orbit (or bundle) itself, the closure includes all orbits (or bundles) represented by the
nodes which can be reached by a downward path in the graph. With a downward path we mean a path
for which all edges start in a node and end in another node below in the graph. Similarly, a path in the
opposite direction is called an upward path.

We remark that by adding a small perturbation to a matrix pencil (e.g., corresponding to a lineariza-
tion of P (s)), it is always possible to make it more generic corresponding to a node along an upward path
from the orbit (or bundle). In general, it is not possible to insist on a downward move by just adding a
small perturbation of a given matrix pencil. However, the cases when a structure below in the hierarchy
actually is nearby is often of particular interest, as it shows that a more degenerate structure can be
found by a small perturbation. In a practical application this could mean that a controllable system is
close to an uncontrollable one, which eventually could lead to a disaster.

By picking random matrix pencils of the same size, they will almost all have the same canonical
structure, corresponding to the most generic case with the lowest codimension in the closure hierarchy.
On the other side, the most degenerate case, or equivalently, the least generic case has the highest
codimension. These extreme cases are represented by the topmost node (most generic) and the bottom
node (least generic) in the closure hierarchy graph. For example, general rectangular matrix pencils may
have several generic cases, but only one least generic case corresponding to a matrix pencil with only zero
entries.

10.1 Known results for matrix pencils and matrix pairs

We recall the existing results for matrix pencils and matrix pairs in order to extend them to polynomial
matrices in Section 10.2.

Theorem 10.1 below states the necessary and sufficient conditions for an orbit of two matrix pencils
sH +G and sH̃ + G̃ to be closest neighbours in a closure hierarchy, i.e. O(sH +G) covers O(sH̃ + G̃),
where the orbit is the manifold of strictly equivalent matrix pencils (22). Notably, for the structure
integer partition J λi the eigenvalue λi belongs to the extended complex plane C, i.e., λi ∈ C ∪ {∞}.
Furthermore, the restrictions on r0 and l0 in rules 1 and 2 correspond to that the number of Lk and LTk
blocks cannot change. The corresponding set of rules for bundles of matrix pencils is derived in [10].
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Theorem 10.1 [10] Given the structure integer partitions L, R, and J λi
of sH +G, where λi ∈ C,

one of the following if-and-only-if rules finds sH̃ + G̃ fulfilling orbit covering relations with sH̃ + G̃:

(1) Minimum rightward coin move in R (or L).

(2) If the rightmost column in R (or L) is one single coin, move that coin to a new rightmost column
of some J λi

(which may be empty initially).

(3) Minimum leftward coin move in any J λi .

(4) Let k denote the total number of coins in all of the longest (= lowest) rows from all of the J λi
.

Remove these k coins, add one more coin to the set, and distribute k + 1 coins to rp, p = 0, . . . , t
and lq, q = 0, . . . , k − t− 1 such that at least all nonzero columns of R and L are given coins.

Rules 1 and 2 are not allowed to make coin moves that affect r0 (or l0).

The next theorem states the necessary and sufficient conditions for an orbit of two controllability pairs
to be closest neighbours in a closure hierarchy, where we consider the orbit under feedback equivalence:

O(A,B) =

{
P
[
sI +A B

] [P−1 0
R Q−1

]
: det(P ) · det(Q) 6= 0

}
.

Theorem 10.2 [13] Given the structure integer partitions R and J λi of a controllability pair (A,B),

one of the following if-and-only-if rules finds (Ã, B̃) fulfilling orbit covering relations with (A,B).

(1) Minimum rightward coin move in R.

(2) If the rightmost column in R is one single coin, move that coin to a new rightmost column of some
J λi

(which may be empty initially).

(3) Minimum leftward coin move in any J λi
.

Rules 1 and 2 are not allowed to do coin moves that affect r0.

The corresponding set of rules for bundles of controllability pairs and orbits and bundles for observ-
ability pairs are also derived in [13].

Theorem 10.3 [18, 40] Let A ∈ Cn×n and B ∈ Cn×m, then the most generic structure of the con-
trollability pair (A,B) has R = (r0, . . . , rα, rα+1) where r0 = · · · = rα = m, rα+1 = n mod m, and
α = bn/mc. The least generic controllability pair has m L0 blocks and n Jordan blocks of size 1 × 1
corresponding to an eigenvalue of multiplicity n.

10.2 Stratification of polynomial matrices

As we have shown in Section 6, right and left linearizations of full normal-rank polynomial matrices can
be expressed, respectively, as the system pencils SR(s) and SL(s) in (16). However, these linearizations
result in a system pencil with a very special structure. We will now show that the covering relations
between orbits and bundles of polynomial matrices can be derived from the covering relations for general
matrix pencils. To do this we first state the following lemma.

Lemma 10.4 Let sHr +Gr be the right linearization (7) of an m×n polynomial matrix P (s) of normal-
rank m. A perturbation in the non-fixed elements of sHr +Gr corresponds to a perturbation in the
coefficient matrices of P (s). Moreover, the corresponding perturbed sHr +Gr and P̃ (s) have the same
structural elements.

A similar relation holds between a polynomial matrix of normal-rank n and its left linearization
sH` +G`.

Proof. We prove the lemma for m× n polynomial matrices P (s) of normal-rank m.
Assume that sHr +Gr is the right linearization of P (s), i.e., they have the same structural elements.

Let sH̃r + G̃r be a perturbed pencil of sHr +Gr for which the structural elements differ from them of
sHr +Gr. Note, only the non-fixed elements in sHr +Gr are allowed to be perturbed. From Theorem 3.5
we have that there exits a polynomial matrix P̃ (s) with the same structural elements as sH̃r + G̃r which

is also the right linearization of P̃ (s). Therefore, a structured perturbation in the linearization of P (s)
corresponds to a perturbation in P (s). �
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Table 1: Given the structure integer partitions R and J λi of sHr +Gr associated with a full normal-rank

polynomial matrix P (s), one of the following if-and-only-if rules finds sH̃r + G̃r fulfilling orbit or bundle
covering relations with sHr +Gr.
A. O(sHr + Gr) covers O(sH̃r + G̃r):

(1) Minimum rightward coin move in R.

(2) If the rightmost column inR is one single coin, move
that coin to a new rightmost column of some J λi

(which may be empty initially).

(3) Minimum leftward coin move in any J λi
as long as

j
(i)
1 does not exceed m.

Rules 1 and 2 are not allowed to do coin moves that affect
r0.

B. O(sHr + Gr) is covered by O(sH̃r + G̃r):

(1) Minimum leftward coin move inR, without affecting
r0.

(2) If the rightmost column in some J λi
consists of one

coin only, move that coin to a new rightmost column
in R.

(3) Minimum rightward coin move in any J λi
.

C. B(sHr + Gr) covers B(sH̃r + G̃r):

(1) Same as rule 1 above.

(2) Same as rule 2 above, except it is only allowed to
start a new set corresponding to a new eigenvalue
(i.e., no appending to non-empty sets).

(3) Same as rule 3 above.

(4) Let any pair of eigenvalues coalesce, i.e., take the
union of their sets of coins.

D. B(sHr + Gr) is covered by B(sH̃r + G̃r):

(1) Same as rule 1 above.

(2) Same as rule 2 above, except that J λi
must consist

of one coin only.

(3) Same as rule 3 above.

(4) For any J λi
, divide the set of coins into two new

partitions so that their union is J λi
.

Remark 10.1 Lemma 10.4 implicitly shows that the map between the orbit spaces of sHr +Gr and
P (s) is a homeomorphism, i.e., the continuous map f : O(P (s))→ O(sHr +Gr) is a bijection. See also
[32].

Lemma 10.4 allows us to formulate the covering relations of an m × n full normal-rank polynomial
matrix P (s) in terms of coin rules on the structure integer partitions of its linearization. For consistency
with earlier published results in [10, 13] our new findings in Theorem 10.5 (with Table 1) and colloraries
are stated using the same notation and similar formulations. Notably, the eigenvalue λi corresponding
to the structure integer partition J λi belongs to C.

Theorem 10.5 Let P (s) be an m× n polynomial matrix of exact degree d and normal-rank m, and let
sHr +Gr be its right linearization (7). Given the structure integer partitions R and J λi

of sHr +Gr,

where λi ∈ C, one of the if-and-only-if rules of A–D in Table 1 finds sH̃r + G̃r fulfilling orbit or bundle
covering relations with sHr +Gr.

The rules for the dual left linearization sH` +G` (11), associated with the polynomial matrix P (s) of
normal-rank n, are obtained by exchanging R with L and m with n in Table 1.

Proof. The new restrictions in the rules, with respect to the cover rules in Theorem 10.1 for
general matrix pencils sH +G, follow directly from Theorem 5.1. The restrictions are: No LT blocks can
exist (rule (4) in Theorem 10.1 cannot be applied). Since there can at most be m finite and m infinite

elementary divisors, j
(i)
1 in J λi for any λi ∈ C can at most be m. Finally, r0 in R must be n−m, which

implies that the number of L blocks remains fixed and is n−m. �
Comments to Table 1: The restriction for rules A.(1) and A.(2) implies that the number of right

singular blocks remain fixed, and rule A.(3) corresponds to the nilpotent case.
It is now straightforward to derive the cover relations for square full normal-rank polynomial matrices.

Notably, these rules coincide with the cover rules for matrices [1, 10] with the exception of that the number
of Jordan blocks is restricted by the normal-rank.

Corollary 10.6 Let P (s) be an m × m polynomial matrix of exact degree d and normal-rank m, and
let sHr +Gr be its right linearization (7). Given the structure integer partition J λi of sHr +Gr, where

λi ∈ C, rule (3) of A–B and rules (3) and (4) of C–D in Table 1 find sH̃r + G̃r fulfilling orbit or bundle
covering relations with sHr +Gr.

The rules for the dual left linearization sH` +G` (11), associated with the polynomial matrix P (s) of
normal-rank n, are obtained by the rules specified above where m is exchanged with n.

Proof. The proof follows directly from Theorem 10.5 together with the restrictions of Corollary 5.2.
�
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The following theorem gives the cover relations for full normal-rank polynomial matrices with a full
rank highest degree coefficient matrix. Note that the eigenvalues λi corresponding to the structure integer
partitions J λi

are all finite.

Corollary 10.7 Let P (s) = Pds
d + . . . + P1s + P0 be an m × n polynomial matrix of exact degree d,

normal-rank m, and with Pd of full row rank. Furthermore, let sHr +Gr be its right linearization (7),
where Hr ≡

[
Idm 0dm×n−m

]
. Given the structure integer partitions R and J λi

of sHr +Gr, where

λi ∈ C, one of the if-and-only-if rules of A–D in Table 1 finds sH̃r + G̃r fulfilling orbit or bundle covering
relations with sHr +Gr.

The rules for the dual left linearization sH` +G` (11), associated with the polynomial matrix P (s) of
normal-rank n and with Pd of full column rank, are obtained by exchanging R with L and m with n in
Table 1.

Proof. The proof can be derived from Corollary 5.4 together with either Theorem 10.2 for matrix
pairs or Theorem 10.5 for matrix pencils.

The only restriction, with respect to the cover rules in Theorem 10.2, is that j
(i)
1 for any eigenvalue

λi can at most be m (or n if normal-rank is n).
The only restriction, with respect to the cover rules in Theorem 10.5, is that there cannot exist infinite

eigenvalues since Hr has full row rank (or H` has full column rank if normal-rank is n). �
The canonical structure elements of the most and least generic orbits or bundles in the stratification

of a full normal-rank polynomial matrix are given by the next theorem. Notably, the most generic m×n
cases correspond to most generic matrix pairs, while the least generic (most degenerate) cases do not
have a similar correspondence.

Theorem 10.8 Let P (s) be an m×n polynomial matrix of exact degree d and full normal-rank r, where
m 6= n.

If r = m, the most generic orbit (or bundle) of P (s) has the structure integer partition R =
(r0, . . . , rα, rα+1) where r0 = · · · = rα = n−m, rα+1 = (dm) mod (n−m), and α = b(dm)/(n−m)c.

There exist several least generic orbits with the same codimension. The least generic orbits have
R = (n−m) and J λi

, i = 1, . . . , d, which are constructed as follows. Let κ = (k1, . . . , kd) = (m, . . . ,m).
Divide the integer partition κ between J λi

, i = 1, . . . , d, such that their union is κ. One or several J λi

can be empty.
The least generic bundle has R = (n − m) and J λ = (j1, . . . , jd) = (m, . . . ,m), i.e., m Jd blocks

corresponding to a single eigenvalue of multiplicity m.
If r = n, the most and least generic orbits (or bundles) of P (s) are obtained by exchanging R with L

and interchanging m and n in the above expressions.

Proof. Most generic: Since the codimension (23) coincides with the codimension for matrix pairs (A,B)
if normal-rank is m (or (A,C) if normal-rank is n), it follows that the most generic orbit and bundle have
the same canonical forms as the corresponding matrix pairs [40, 13] (no restrictions on the structural
elements exist).

Least generic orbit: Theorem 5.1 states that all structural elements add up to dm. Since all right min-
imal indices εi = 0 (i.e., only L0 blocks exist) they make no contribution to the sum (12). Consequently,∑
h
(i)
j = dm, where one of the eigenvalues may be infinite. Moreover, dm is an integer and we have at

most m nonzero elementary divisors for each eigenvalue, therefore there are at most d eigenvalues. Two
extreme cases exist: (i) only one eigenvalue λ1, which means that the canonical form must be m Jordan
blocks of size d × d (J λ1

= (m, . . . ,m)); (ii) d distinct eigenvalues λi, which means that each of them
has m Jordan blocks of size 1 × 1 (J λi

= (m), i = 1, . . . , d). Since the sum of all elementary divisors∑
h
(i)
j = dm, the number of (distinct) eigenvalues does not change the codimension. Therefore, all possi-

ble splittings of κ = (k1, . . . , kd) = (m, . . . ,m) into one or several J λi
, i = 1, . . . , d, are possible. Indeed,

the number of least generic orbits is equal to the number of combinations in the dominance ordering of
the integer d.

In the bundle case, the least generic bundle has only one multiple eigenvalue corresponding to J λ = κ.
�

Finally, we consider square m×m polynomial matrices P (s) of exact degree d and with full normal-
rank r = m, and only illustrate here with and example where m = d = r = 2. There are five most
generic cases: O(J4(µ1)), O(J3(µ1) ⊕ J1(µ2)), O(J2(µ1) ⊕ J2(µ2)), O(J2(µ1) ⊕ J1(µ2) ⊕ J1(µ3)), and
O(J1(µ1) ⊕ J1(µ2) ⊕ J1(µ3) ⊕ J1(µ4)). Each of them are independent, i.e. they belong to different
closure hierarchy graphs with the following least generic orbits: O(2J2(µ1)), O(J2(µ1)⊕J1(µ1)⊕J1(µ2)),
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O(2J1(µ1)⊕2J1(µ2)), O(2J1(µ1)⊕J1(µ2)⊕J1(µ3)), andO(J1(µ1)⊕J1(µ2)⊕J1(µ3)⊕J1(µ4)), respectively.
We remark that the last of the five cases above, indeed, is a stratification with only one node. The
stratification of the five cases can be obtained from the closure hierarchy graph of a regular matrix
pencil, with the restriction that it at most can be m elementary divisors associated with each eigenvalue.

11 Examples

To illustrate the stratification theory we make use of two mechanical systems. The first is a uniformed
platform and the second is a half-car suspension model. The software tool StratiGraph [24, 23] is used
to generate and visualize the closure hierarchy graphs.

Before we move on to the examples we introduce a condensed notation for the KCF, used in Strati-
Graph. A general block diagonal matrix A = diag(A1, A2, . . . , Ab) with b blocks can be represented as a
direct sum

A ≡ A1 ⊕A2 ⊕ · · · ⊕Ab ≡
b⊕

k=1

Ak.

Now, the KCF (6) can compactly be expressed as

U(sH +G)V −1 ≡ L⊕ LT ⊕ J(λ1)⊕ · · · ⊕ J(λq)⊕ N,

where

L =

r0⊕
k=1

Lεk , LT =

l0⊕
k=1

LTηk , J(λi) =

gi⊕
k=1

Jhk
(λi), and N =

g∞⊕
k=1

Nhk
.

Notice that blocks of the KCF in the direct sum notation above are, without loss of generality, ordered
so that the singular blocks (L and LT ) appear first.

11.1 Uniform platform

The first example consists of a thin uniform platform supported at both ends by springs [13, 31]. The
platform has mass m and length 2l, and the springs have elasticity coefficients k1, k2 and viscous damping
coefficients c1, c2, see Figure 2. The vertical position z of the platform’s center, the angle ϕ, and their

F

ϕ

z
k2c2

c1k1

∆l

Figure 2: Mechanical system consisting of a uniform platform controlled by a vertical force [13, 31].

velocities can be controlled by the vertical force F . The force is applied vertically onto the platform at
a distance ∆l, −1 ≤ ∆ ≤ 1, from the center of the platform.

In [13], the controllability pair corresponding to the linearized model of the uniform platform was
analyzed using stratifications. Here we will study the system using its polynomial matrix representation.
The equations of motion linearized near the equilibrium are

mz̈ + (c1 + c2)ż + (k1 + k2)z + l(c1 − c2)ϕ̇+ l(k1 − k2)ϕ = F,

Jϕ̈+ l(c1 − c2)ż + l(k1 − k2)z + l2(c1 + c2)ϕ̇+ l2(k1 + k2)ϕ = −∆lF,
(25)
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Figure 3: The graph shows the complete bundle stratification of a 4 × 5 system pencil associated with
a general matrix pair (A,B). The light grey area marks the complete bundle stratification of the right
linearization (27), and the dark grey area the only possible bundles for the uniform platform. The
numbers on the left are the codimensions of the bundles on each level, which are the same for the system
bundles and the corresponding linearizations of the polynomial matrix representations.

where J = ml2/3 is the moment of inertia of the platform around the gravity center. This system can
be written as a second-order differential equation on the form

Mẍ+ Cẋ+Kx = Eu, where

M =

[
m 0
0 J

]
, C =

[
c1 + c2 l(c1 − c2)
l(c1 − c2) l2(c1 + c2)

]
,

K =

[
k1 + k2 l(k1 − k2)
l(k1 − k2) l2(k1 + k2)

]
, E =

[
1
−∆l

]
, x =

[
z
ϕ

]
, and u = F.

(26)

By definition, the mass matrix M is non-singular and M−1 = diag(m−1, J−1), hence the associated
polynomial matrix has full normal-rank r = 2 and the highest degree coefficient matrix is non-singular.
Using the technique in Example 6.2, the right linearization of the associated 2× 3 polynomial matrix of
(26) is [

sI4 +A B
]

=

[
sI2 M−1K M−1E
−I2 sI2 +M−1C 0

]
. (27)

The complete bundle stratification of a general system pencil
[
sI4 +A B

]
of size 4× 5 is shown in
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Figure 4: Half-car passive suspension model.

Figure 3. However, since the dynamics of the platform can be represented by a polynomial matrix we can
instead use Corollary 10.7. This reveals that the stratification of (27) only consists of the bundles high-
lighted by the light grey area in Figure 3. Notably, the bundle for the system pencil and the corresponding
bundle (with the same canonical form) for the linearization have in general different dimensions, but their
codimensions are the same. Additionally, not all bundles or part of these exist for this specific example
due to the fixed 1 (one) in the E matrix of (26). The least generic possible structure can be determined
by setting the parameters c1, c2, k1, k2, and ∆ to zero (l and m must remain non-zero), which restricts
the number of possible bundles to the four highlighted by the dark grey area (see also the discussion in
[13]). The most generic B(L4) corresponds to a controllable system, while the bundles with codimension 1
and 2 correspond to uncontrollable systems with one and two uncontrollable modes. Finally, the system
associated with B(L2 ⊕ J2(µ1)) of codimension 3 has two multiple uncontrollable modes.

11.2 Half-car suspension model

The second example describes the half-car passive suspension model with four degrees of freedom shown
in Figure 4, where ki are stiffnesses, ci dampings, li lengths, mi masses, and Jp ≈ mblf lr is the body
moment of inertia. The model represents one side of a car (front and rear suspension), where the pitch ϕ
and heave motion zb of the vehicle body and the vertical translation of the front and rear axles (zf and
zr, respectively) can be analyzed. Typical values for a passenger sedan can be found in, e.g., [35].

The equations of motion of the half-car suspension model are:

mf z̈f = ktf (zf − qf ) + kf (zb − ϕlf − zf ) + cf (żb − ϕ̇lf − żf ) +mfg, (28)

mr z̈r = ktr (zr − qr) + kr(zb + ϕlr − zr) + cr(żb + ϕ̇lr − żr) +mrg, (29)

mbz̈b = kf (zf − zb + ϕlf ) + kr(zr − zb + ϕlr) + cf (żf − żb + ϕ̇lf ) (30)

+ cr(żr − żb − ϕ̇lr) +mbg,

Jpϕ̈ = −kf lf (zf − zb + ϕlf )− cf lf (żf − żb + ϕ̇lf ) + krlr(zr − zb + ϕlr) (31)

+ crlr(żr − żb − ϕ̇lr).

Let the state vector be x =
[
zf zr zb

]T
, and the input vector be u =

[
qf qr g

]T
, where qf , qr

are the road heights. Then the equations (28)–(30) can be represented in matrix form by the second-order
differential equation

Mẍ+ Cẋ−Kx− Cpϕ̇−Kpϕ = Eu, (32)

and (31) as

Jpϕ̈+ kpϕ̇+ cpϕ− CTp ẋ−KT
p x = 0, (33)
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where

M = diag(mf ,mr,mb), E =

1 0 mf

0 1 mr

0 0 mb

 ,
C =

 cf 0 −cf
0 cr −cr
−cf −cr cf + cr

 , K =

ktf − kf 0 kf
0 ktr − kr kr
kf kr −kf − kr

 ,
Cp =

[
−cf lf crlr cf lf − crlr

]T
, Kp =

[
−kf lf krlr kf lf + krlr

]T
,

cp = cf l
2
f + crl

2
r , and kp = kf l

2
f + krl

2
r .

Using the Laplace variable s, (32) and (33) can be expressed as

Ms2x+ Csx−Kx− Cpsϕ−Kpϕ = Eu, and

Jps
2ϕ+ kpsϕ+ cpϕ− CTp sx−KT

p x = 0,
(34)

respectively. Eliminating ϕ from (34) leads to the fourth-order differential equation

P4x
(4) + P3x

(3) + P2x
(2) + P1x

(1) + P0x = Q2u
(2) +Q1u

(1) +Q0u, (35)

where

P4 = JpM, P3 = kpM + JpC,

P2 = kpC + cpM − JpK − CpCTp , P1 = cpC − kpK −KpC
T
p − CpKT

p ,

P0 = cpK −KpK
T
p , Q2 = JpE, Q1 = kpE, and Q0 = cpE.

Using the technique outlined in Section 6 and assuming that Jp and M are non-singular, the right
linearization of the associated 3× 6 polynomial matrix of (35) is

[
sI12 +A B

]
=


sI3 P−14 P0 P−14 Q0

−I3 sI3 P−14 P1 P−14 Q1

−I3 sI3 P−14 P2 P−14 Q2

−I3 sI3 + P−14 P3 0

 , (36)

where A ∈ C12×12 and B ∈ C12×3.

The complete stratification of (36) has 6416 different orbits! Instead of computing the complete graph
we only derive the subgraph shown in Figure 5. The graph represents all the controllable orbits (on the
left) together with the closest uncontrollable orbits with one uncontrollable mode (on the right) which can
be reached by a perturbation of the polynomial matrix coefficients. The most generic orbit with KCF 3L4

corresponds to the case when the three transformed inputs {ũ1, ũ2, ũ3} in the linearization control four
states each, while the least generic controllable orbit (O(L12 ⊕ 2L0) with codimension 22) corresponds
to when ũ1 controls all twelve states. And finally, one example taken from the uncontrollable part of the
graph is when the two suspensions do not have any damping (cf = cr = 0). Such a configuration belongs
to O(L5 ⊕ 2L3 ⊕ J1(µ1)) with codimension 6. In practice, this means that the corresponding orbit for a
suspension system with low damping factor is likely to be close to O(L5 ⊕ 2L3 ⊕ J1(µ1)).
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De Téran, and Volker Mehrmann.

This work presents research results supported by the Swedish Foundation for Strategic Research un-
der grant A3 02:128, UMIT Research Lab via an EU Mål 2 project, and the Belgian Network DYSCO
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Figure 5: Subgraph of the complete orbit stratification of the polynomial system (36). The nodes in the
right-most part of the graph represent the orbits of uncontrollable systems with one uncontrollable mode.
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[8] A. D́ıaz, M. I. Garćıa-Planas, and S. Tarragona, Local perturbations of generalized systems
under feedback and derivative feedback, Comput. Math. Appl., 56 (2008), pp. 988–1000.
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