
Metadata Management in Multi-Grids
and Multi-Clouds

Daniel Espling∗

LICENTIATE THESIS, SEPTEMBER 2011
DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY
SWEDEN

∗ Previously Henriksson.

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

espling@cs.umu.se

Copyright c© 2011 by the author(s)
Except Paper I, c© Elsevier B.V., 2010

Paper II, c© IEEE Computer Society Press, 2009
Paper III, c© IEEE Computer Society Press, 2011

ISBN 978-91-7459-281-8
ISSN 0348-0542
UMINF 11.08

Printed by Print & Media, Umeå University, 2011

Abstract

Grid computing and cloud computing are two related paradigms used to access and use
vast amounts of computational resources. The resources are often owned and managed
by a third party, relieving the users from the costs and burdens of acquiring and man-
aging a considerably large infrastructure themselves. Commonly, the resources are
either contributed by different stakeholders participating in shared projects (grids), or
owned and managed by a single entity and made available to its users with charging
based on actual resource consumption (clouds). Individual grid or cloud sites can form
collaborations with other sites, giving each site access to more resources that can be
used to execute tasks submitted by users. There are several different models of collab-
orations between sites, each suitable for different scenarios and each posing additional
requirements on the underlying technologies.

Metadata concerning the status and resource consumption of tasks are created dur-
ing the execution of the task on the infrastructure. This metadata is used as the primary
input in many core management processes, e.g., as a base for accounting and billing,
as input when prioritizing and placing incoming task, and as a base for managing the
amount of resources allocated to different tasks.

Focusing on management and utilization of metadata, this thesis contributes to a
better understanding of the requirements and challenges imposed by different collab-
oration models in both grids and clouds. The underlying design criteria and resulting
architectures of several software systems are presented in detail. Each system ad-
dresses different challenges imposed by cross-site grid and cloud architectures:

• The LUTSfed approach provides a lean and optional mechanism for filtering
and management of usage data between grid or cloud sites.

• An accounting and billing system natively designed to support cross-site clouds
demonstrates usage data management despite unknown placement and dynamic
task resource allocation.

• The FSGrid system enables fairshare job prioritization across different grid
sites, mitigating the problems of heterogeneous scheduling software and local
management policies.

The results and experiences from these systems are both theoretical and practical,
as full scale implementations of each system has been developed and analyzed as
a part of this work. Early theoretical work on structure-based service management
forms a foundation for future work on structured-aware service placement in cross-
site clouds.

iii

iv

Populärvetenskaplig
Sammanfattning

Grid computing och cloud computing är två besläktade metodiker för att komma åt och
nyttja stora mängder datorresurser, exempelvis för att göra omfattande beräkningar
och simuleringar eller till lagring av väldigt stora mängder data. Datorresurserna ägs
och underhålls ofta av en tredje part, vilket besparar användarna kostnaderna och
mödan att införskaffa och underhålla den stora infrastrukturen själva, speciellt som
den stora mängden datorkraft oftast bara behövs under kortare perioder. Vanligtvis
är resurserna antingen ägda av flera oberoende parter som deltar i gemensamma pro-
jekt (grid), eller ägda av en enda organisation och görs tillgängliga för allmänheten
(eller en begränsad mängd användare) för att sedan debitera användare för datorkraften
de faktiskt använder (clouds). Enskilda grids eller clouds kan samarbeta med andra
aktörer för att få tillgång till än större mängder resurser som kan användas till att
köra jobb åt användarna. Det finns flera olika samarbetsmodeller mellan aktörer som
lämpar sig för olika tillfällen, och varje modell medför ytterligare krav på den under-
liggande tekniken.

När jobb körs på infrastrukturen skapas metadata, information om statusen hos
jobbet och mängden resurser som förbrukas när jobbet körs. Dessa metadata är det
huvudsakliga underlaget för flera interna processer i infrastrukturen. Exempelvis
används det som bas för fakturering, som beslutsunderlag för att välja vilken ordning
man ska prioritera jobb och som en indikation för när mängden resurser som tilldelats
ett jobb behöver ökas eller minskas.

Med fokus på hanteringen och nyttandet av jobbmetadata bidrar denna avhandling
till en djupare förståelse för de problem och krav som uppkommer i grids eller clouds
som använder datorresurser från flera olika aktörer. Underliggande designkriterier
och de resulterande arkitekturerna för flera mjukvarusystem presenteras i detalj. Varje
system fokuserar på olika delar av de utmaningar som sammarbetsmodeller för grids
och clouds medför:

• LUTSfed bidrar med filtrering och hantering av metadata mellan flera grids och
clouds på ett minimalistisk och smidigt sätt.

• Ett system för bokföring och fakturering från grunden designat för att stödja
flera clouds demonstrerar hur användningsdata kan hanteras utan kännedom om
var jobben körs eller vetskap om hur mycket resurser jobbet kräver.

v

Populärvetenskaplig Sammanfattning

• FSGrid möjligör prioritering baserad på tidigare förbrukningsdata på ett en-
hetligt sätt över flera grids, oavsett skillnader i underliggande mjukvaror eller
lokala policies.

Resultaten och erfarenheterna från dessa system är inte enbart teoretiska, eftersom
fullskaliga implementationer av samtliga system har utvecklats och analyserats som
en del av det här arbetet. Tidiga teoretiska resultat med fokus på placering av jobb i
clouds där den interna strukturen hos jobbet tas i beaktning skapar en grund för vidare
arbete inom ämnet.

vi

Preface

This thesis contains an introduction to grid and cloud computing, with focus on meta-
data management, and the below listed papers. The author changed surname from
Henriksson to Espling just prior to printing this thesis, which is why the articles in-
cluded in this thesis are printed under a different name than the thesis itself.

Paper I E. Elmroth and D. Henriksson. Distributed Usage Logging for Federated
Grids. Future Generations Computer Systems, 26(8):1215–1225, 2010.

Paper II E. Elmroth, F. Galán, D. Henriksson, and D. Perales. Accounting and
Billing for Federated Cloud Infrastructures. In GCC ’09: Proceedings of
the 2009 Eighth International Conference on Grid and Cooperative Com-
puting, pages 268–275, Washington, DC, USA, 2009. IEEE Computer
Society.

Paper III L. Larsson, D. Henriksson, and E. Elmroth. Scheduling and Monitoring
of Internally Structured Services in Cloud Federations. In Proceedings of
IEEE ISCC 2011, pages 173–178, 2011.

Paper IV P-O. Östberg, D. Henriksson, and E. Elmroth. Decentralized, scalable,
Grid Fairshare Scheduling (FSGrid). 2011. Submitted.

This research was conducted using the resources of the High Performance Com-
puting Center North (HPC2N) and the UMIT research lab. Financial support has been
provided by The Swedish Research Council (VR) under contract 621-2005-3667, by
the European Community’s Seventh Framework Programme ([FP7/2001-2013]) under
grant agreement no. 215605 (RESERVOIR) and no. 257115 (OPTIMIS).

In addition to the publications included in the thesis, the following papers on re-
lated subjects has also been produced in the context of this work:

• M. Lindner, F. Galán, C. Chapman, S. Clayman, D. Henriksson, and E. Elmroth.
The Cloud Supply Chain: A Framework for Information, Monitoring, Account-
ing and Billing. In 2nd International ICST Conference on Cloud Computing
(CloudComp 2010).

• M. B. Yehuda, O. Biran, D. Breitgand, K. Meth, B. Rochwerger, E. Salant,
E. Silvera, S. Tal, Y. Wolfsthal, J. Cáceres, J. Hierro, W. Emmerich, A. Galis,
L. Edblom, E. Elmroth, D. Henriksson, F. Hernández, J. Tordsson, A. Hohl,
E. Levy, A. Sampaio, B. Scheuermann, M. Wusthoff, J. Latanicki, G. Lopez,

vii

Preface

J. Marin-Frisonroche, A. Dörr, F. Ferstl, S. Beco, F. Pacini, I. Llorente, R. Mon-
tero, E. Huedo, P. Massonet, S. Naqvi, G. Dallons, M. Pezzé, A. Puliato, C. Ra-
gusa, M. Scarpa, and S. Muscella. RESERVOIR - an ICT infrastructure for
reliable and effective delivery of services as utilities. Technical report, IBM
Haifa Research Laboratory, 2008.

• G. Katsaros, G. Gallizo, R. Kübert, T. Wang, J. O. Fito, and D. Henriksson. A
Multi-level Architecture for Collecting and Managing Monitoring Information
in Cloud Environments. In CLOSER 2011 : International Conference on Cloud
Computing and Services Science (CLOSER), 2011. Accepted for publication.

viii

Acknowledgments

First and foremost, I would like to thank my supervisor Erik Elmroth for creating
(and maintaining) a pleasant, supportive, and inspiring research environment, and for
always finding the time despite being a resource constantly subject to overbooking.
I am also very grateful for the help and feedback given by my co-supervisor, Johan
Tordsson, who took the time to give feedback on this thesis in mid July despite being
on vacation and despite Tour de France running on TV.

A big thank you to all collaborators, colleagues in and outside our group, and
coauthors of papers both within and outside the bounds of this thesis. You are too
numerous to be mentioned by name, but interacting with the lot of you and sharing
your views of things to solve shared problems is what makes this job interesting.
We are also blessed with a very competent, kind, and understanding administrational
staff, both for technical and non-technical tasks. Thank you for making our everyday
working lives easier and for never backing down from challenges such as installing
software we produce, or sorting my post-laundry traveling receipts.

A special thanks to Lars Larsson, my constant 2vX ally. Not only for daily com-
pany, support, and interesting discussions, but also for teaching me to leverage obscure
tools and features, and for explaining countless times why things like gqap are per-
fectly sane commands to learn by heart.

Last but definitely not least I would like to thank my closest family and my friends
for providing an outstanding environment to grow up, live, and hopefully grow old in.
To my recently wedded wife Maria Espling, with whom I share everything (including
the hassle of changing name halfway through a PhD): Du är mitt guld också.

Umeå, September 2011
Daniel Espling

ix

x

Contents

1 Introduction 1

2 Grid Computing 5
2.1 Grid as an Infrastructure 6
2.2 Federated Grids 7

3 Cloud Computing 11
3.1 Virtualization 13
3.2 Cloud as an Infrastructure 14
3.3 Grids and Clouds Compared 16
3.4 Cloud Collaborations 17

3.4.1 Cloud Computing Scenarios 19

4 Task Metadata Management 23
4.1 Monitoring 23
4.2 Accounting and Billing 25
4.3 Scheduling and Placement 27
4.4 Elasticity 28

5 Summary of the Papers 29
5.1 Paper I 29
5.2 Paper II 30
5.3 Paper III 30
5.4 Paper IV 30

6 Future Work 33
6.1 Service Monitoring 33
6.2 Accounting and Billing 33
6.3 Fairshare Scheduling 34

Paper I 53

Paper II 69

Paper III 81

Paper IV 91

xi

xii

Chapter 1

Introduction

Computing capacity available as a utility similar to water or electricity has
been a vision for a very long time, with the predictions of John McCarty dating
from the early sixties often seen as the starting point [62, 64]. Fifty years later
there have been several incarnations of this paradigm, with the same underlying
goal of computing capacity as a utility. Most often, the new paradigm does not
entirely overlap with the previous paradigms in scope, leaving niches for several
generations of paradigms to coexist.

Two of the most recent paradigms for computing as a utility are grid
computing and cloud computing. We refer to the paradigms at large simply
as grids and clouds, and use the terms site or provider to emphasize a single
supplier in either paradigm. Work units sent to a grid are usually denoted
jobs while those sent to a cloud are called services1. As cloud computing is a
quite wide term (see Chapter 3), a cloud service can denote several different
things. As most of this thesis focus on infrastructure management, we use
service to denote self-contained work units supplied to infrastructure providers
for execution. We also use the term taskto denote both grid jobs and cloud
services, and each term separately when referring only to either.

Grids and clouds are both fundamentally ways to group existing (hetero-
geneous) computer resources into an abstract pool of resources, and making
those resources available to users as a virtual coherent infrastructure. Starting
out with similar objectives, grids have evolved into reliable, high performing
platforms mostly used for large-scale scientific computing while clouds has
emerged as a remote hosting and execution option for many different kinds of
software. Chapter 2 and Chapter 3 describe these paradigms in more detail.

Other relevant paradigms are, e.g., High Performance Computing (HPC) [44]
and High Throughput Computing (HTC) [111]. HPC systems focus on running
parallel jobs on centralized, dedicated hardware with very high performance
in terms of, e.g., computational speed and network latency. HTC on the other
hand focuses on maximizing the use of distributed, widely heterogeneous, and

1Not to be confused with Web Services [30] as a technology.

1

unreliable resources not for the sake of a single job but for the general system as
a whole. Even though, from a management perspective, HPC and HTC avoids
many of the challenges of grids and clouds covered by this thesis, concepts such
as those in Paper I (accounting data management) and Paper IV (decentralized
fairshare scheduling) can be applied to HPC and HTC environments as well.

Individual grids and clouds can be joined into even bigger pools of resources
through collaborations. These multi-grid and multi-cloud environments pose
additional challenges for the management of submitted tasks, and several
different collaboration models with unique challenges exists [55, 57]. One such
collaboration model is federations of grids or clouds, where a single grid or
cloud may utilize resources from other sites, commonly as part of bilateral
resource exchange agreements. For grids, large projects such as the Large
Hadron Collider (LHC) [108] has outgrown the capacity of any single grid and
require cross-grid solutions to cope with the high resource demand. Similarly,
clouds form collaborations to cope with surges in demand when local resources
are not sufficient, giving the impression of clouds as endless pools of resources.
In some cases, the collaborating cloud may in turn outsource the execution to a
third cloud site, creating a chain of delegation from the originating site to the
site where the task is finally executed. Clients for grids and clouds should be
kept unaware and unconcerned about whether the infrastructure is part of a
collaboration or not, and will normally not be aware of on which collaborating
site a submitted task is finally executed (as long as the job does not have
explicit restrictions on placement). Therefore, the underlying infrastructure
itself must deal with any heterogeneity or additional complexity imposed by
the collaborative environment, for example the task metadata management.

Metadata concerning, e.g., the resource consumption or duration of a task
are collected during (or after) the execution of a task. This metadata has to be
collected and managed equally regardless of if the task executes locally or at
a collaborating site, as the data is commonly used as basis for many internal
processes in both grids and clouds. The process of collecting, sharing, and
managing run time information about a task is called monitoring. Grids normally
only use monitoring information regarding the state of physical resources, and
utilize job metadata generated upon job completion for tasks such as accounting,
billing, and job scheduling. Clouds typically rely solely on run time monitoring
data for internal management processes, as cloud services does not have a fixed
execution time.

The focus of thesis is how to collect, manage, and utilize task metadata in
different collaboration models of grids and clouds. The thesis investigates how
these fundamental tasks are affected by the barriers imposed by collaborations
such as federations, e.g., technical heterogeneity, distributed and (site-wise)
self-centric decision making, and incomprehensive information on the state and
availability of remote resources. Papers I and II focus primarily on the collection
and management of task metadata, while papers III and IV focus on how to
utilize the task metadata for resource allocations in clouds and grids.

The following summarizing chapters presented prior to the papers provides

2

a general introduction and context to topics relevant to the presented papers:
Chapter 2 presents a basic overview of grid computing.Chapter 3 describes cloud
computing, including a detailed explanation of the infrastructure management
of clouds and several different collaboration scenarios. Chapter 4 presents an
overview of task metadata management in both grids and clouds. Papers are
summarized in Chapter 5 and potential directions for future work are outlined
in Chapter 6 before the bibliography finalizes the summarizing chapters.

3

4

Chapter 2

Grid Computing

The foundation of an open networking structure that would later emerge into
the Internet was laid by the National Science Foundation (NSF) [123] back in
1986, when the NFSNET backbone was built to connect five supercomputers
in the U.S. [62, 107]. Twenty five years later the Internet has evolved into a
general utility used by more than two billion people [119]. Meanwhile, grid com-
puting [62] has emerged as a technology and paradigm focusing on the original
intent of the Internet – interconnecting resources to form supercomputers.

The analogy between the Internet and grid computing runs deep. The
Internet started out as several isolated networks (for example CSNET [35] and
ARPANET [2]) only available to specific research communities [107]. Since then,
it has evolved into a ubiquitous, unified, and commonly available communications
utility. Grid computing stems from the vision of offering computer resources
as easily and transparently as electricity using the power grid (and hence the
name), while in reality the concept of The Grid is still at the stage of early
Internet; existing grids are isolated networks targeting specific communities,
primarily used for large-scale research projects.

Grid computing as a concept has grown vast enough to encompass many
different tools for many different tasks, becoming a group of related technologies
rather than a single unified utility. This, and the fact that there is no absolute
definition distinguishing grids from other distributed environments, leads to some
confusion on what should be considered a grid. Among many definitions [21, 36,
155], the most commonly used definition by Foster [60] comes in the form of a
three point checklist, defining grids as systems that: ”coordinates resources that
are not subject to centralized control ...”, ”using standard, open, general-purpose
protocols and interfaces ...”, ”to deliver nontrivial qualities of service”.

Foster’s definition is widely accepted but not standardized, and there are
major grid efforts (such as the LHC Computing Grid (LCG) [97]) that groups
resources under centralized control while still being referred to as a grid. The
view on grids underlying the work presented in this thesis is very similar to
Foster’s definition, with emphasis on decentralized control of resources and

5

autonomy of participating sites.
Since the initial vision of offering general-purpose computational capacity

as a utility, grid computing has evolved into a tool mostly used to enable
infrastructure for large-scale scientific projects, such as the Large Hadron
Collider (LHC) [108], the World-wide Telescope [159], and the Biomedical
Informatics Research Network [73]. In many cases, grids are not only means
to share raw computational resources but also makes it possible to share data
from important scientific instruments. The project-oriented business model,
technical problems (often related to software dependencies), and interoperability
issues are a some reasons why the use of grid resources are mostly restricted
to specific scientific communities [11, 64]. For these communities, however,
grids have made it possible to address problems previously out of reach in
terms of computational resource requirements or available scientific tools. A
comprehensive overview of grid computing and its implications and uses in
several fields (bioinformatics, medicine, astronomy, etc.) is given by Foster and
Kesselman [62]. Although this book dates from 2004, the conceptual aspects of
grids have not changed notably since.

2.1 Grid as an Infrastructure

The overall purpose of grid computing is to interconnect resources which may
be owned by different actors in different countries, have different physical
characteristics (CPU frequency, CPU architecture, network bandwidth, disk
space, etc.) and run different operating systems and software stacks. These
resources are consumed by users commonly organized in collaborating scientific
communities, Virtual Organizations [63].

A wide variety of grid middlewares including [8, 13, 47, 61, 97, 156, 161, 167]
are used as intermediate software layers for job submission and job management
in grids. The vast set of different middlewares has created interoperability
problems between the middlewares themselves [55], creating an additional niche
for software to ease the burden to work with different middlewares [5, 51, 70,
144, 170].

Grid jobs can normally be seen as a self-contained bundle of computational
jobs and input data which can be executed independently across different nodes
to generate a set of output data. The jobs are batch-oriented and normally
no user interaction with the job is required or even possible during execution
time, which limits the scope of applications suitable for execution on grids. For
non-trivial jobs, however, there is commonly considerable amounts of inter-
process communication required during job execution. The Job Submission
Description Language (JSDL) [9] is a widely accepted standard for specifying
job configuration properties such as hardware requirements, execution deadlines,
and sets of input and output file required or generated by the computations.

When running a job on a grid, the first step is to select which of the available
resources to execute on. This can either be done manually by the user, or

6

by the support of a resource broker [26, 54, 99]. Once a suitable resource has
been selected, the job is submitted for execution to the local scheduler of that
resource. Common technologies for local resource scheduling includes Maui [84]
and SLURM [181]. In contrast to the local scheduler, the broker does not
have full control over the resources and must rely on best-effort scheduling of
jobs [146].

The lack of user interactions makes it possible for a grid to schedule (and
re-schedule) jobs, as there are normally no strict restrictions on when the job
should run. Advance reservations allows users to reserve specific execution
times if required, most often at the expense of overall resource utilization
due to creation of small unusable gaps prior to the start-time of the reserved
jobs [149]. Backfilling techniques [121, 154] are commonly used to increase
resource utilization, and may also be used to mitigate the loss of utilization
caused by reservations. There are many different strategies to grid job scheduling,
some focusing on, e.g, scheduling for the benefit of a single application [18],
optimizing the job wait time [77], optimizing the total system throughput [82],
avoiding starvation1, or to offer advance reservations. An early overview and
performance comparison of grid scheduling techniques can be found in [79].

Another parameter commonly used in scheduling is fairness. The concept,
originating from [88], is commonly used in scheduling to take previous consump-
tion and user shares into account, prioritizing jobs for users higher if that user
has a lot of unspent shares. There are several approaches to fairshare scheduling
in grids, e.g., [38, 43, 45, 49, 94, 96]. The definition of fairness varies between
the different approaches, some measuring the total resource utilization, others
the number of accepted jobs or the number of missed deadlines per user [129].
All approaches uses some historical utilization data as input in the scheduling
process.

A modern batch system scheduler can be configured in many ways to strive
towards one or more objectives, normally using weighed combinations of several
parameters. The scheduler prioritizes the jobs dynamically and submits jobs for
execution on the local resources. After job completion, a usage record [112] is
generated with metadata concerning the job. This information is subsequently
used for internal grid process such as accounting and fairshare scheduling. For
more information about metadata management, see Chapter 4.

2.2 Federated Grids

As mentioned in the Internet analogy at the start of the chapter, grids emerged
as isolated islands similarly to the early isolated networks now made a part of the
unified Internet. The initial vision of grid was a wide spanning resource network
functioning as a utility, and there are several efforts to create federations
of grids [20, 65, 106, 132], where grids unifies (parts of) their resources for

1Starvation occurs when some jobs are constantly neglected in favor or other jobs, starving
them of resources.

7

common use while still retaining full control over the local infrastructure. For
example, the Swedish and Norwegian national grids [125, 150] are two of the
actors contributing resources to the Nordic Data Grid Facility (NDGF) [124]
consortium. Even though the resources are acquired, owned, and managed by
each national grid, a subset of the jobs executed on these resources are run
on the behalf of NDGF. In a federation of grids, each site must remain a fully
functional autonomous grid in itself, unlike regular computational resources
constituting a normal grid which may rely on common grid functionality in
order to function. Therefore, federated grids require fully decentralized, but
interoperable, solutions in particular for scheduling and metadata management.

The motivations behind federations of grids are not only technical, but often
economical or political to consolidate resources and promote collaborations. For
instance, EGEE (originally Enabling Grids for E-science in Europe) project [105]
is a series of projects initiated by the European Union to create a wide spanning
computational grid infrastructure based mainly on the gLite [104] middleware.
European Grid Initiative (EGI) [98] is a substantial European initiative to
further unify national grids across Europe, largely continuing on the EGEE
effort but with a significant focus on seamless interoperability and integration
of several different underlying technologies.

Interoperability between different grid deployments is a considerable chal-
lenge. Field et al. [58] present a comprehensive overview of challenges in grid
collaborations, based on their experiences from work on the EGEE project
and co-chairing the Grid Interoperation Now (GIN) [136] efforts. The authors
describe several approaches to achieve technical interoperability, and conclude
that standardization efforts is the best way to achieve technical interoperability
despite demonstrating that enforcing standardization is a time consuming and
non-trivial task [58]. Field et al. also emphasize the need to not only consider
technical difficulties, but also the differences in operational processes which
may prevent seamless interoperability [58]. Task metadata management and
compatible monitoring are two of the challenges highlighted by Field et al. that
are also within the scope of this thesis.

The TeraGyroid project [132] also presents experiences from federated re-
source usage. In this project they execute tasks on resources belonging to the US
TeraGrid [28] and the UK e-Science Grid [80]. They found that they had to port
and configure the application to each resource on the grids on which it should be
run, and also had to spend considerable efforts to persuade site administrators
in both grids to accept certificates issued by the other party [132].

Boghosian et al. [20] provide invaluable insights on the challenges and ad-
vantages of grid federations. In this project, the efforts off three different groups
are united to create a federated environment to execute applications which are
not embarrassingly parallel. Similarly to the TeraGyriod project [132], these
groups spent large efforts on interoperability at the user and middleware layers,
saying that the ”...the probability of success is likely to decrease exponentially
with every additional independent grid.”. They also state that ”Interoperation
between Grids today requires much more than just tedious manual effort; it

8

requires almost heroic effort.”, Boghosian et al. found that the primary barrier
was not technical, but rather ”... the varying levels of evolution and maturity
of the constituent Grids.” as a result of differences in purposes, priorities, and
expertise of the collaborating sites [20].

One of the biggest challenges in federated grids is scheduling [20, 40, 56],
especially of non-trivial jobs as the correct execution of a parallel job often
means that the job has to be executed in parallel across different sites. The way
in which jobs are shared between a set of grids decides the structure and relations
of grids within a federation. Fundamental work on distributed scheduling for
independent tasks is presented in [106], using meta-schedulers to schedule a
common queue of jobs in and between different grids. Other solutions are based
on hierarchically organizing grids [17, 83]. Here, a local grid can regard another
grid as a very large local resource with special characteristics, and outsource
job execution to another grid using standard interfaces.

De Assunção et al. outline the InterGrid [40], a solution based on inter-grid
routing analogous to connecting different ISP networks [40, 116], and provides
a good overview on the challenges associated with a unified grid. Unfortunately,
there are no indications of implementations or practical evaluations of this
approach.

9

10

Chapter 3

Cloud Computing

Cloud computing has emerged as a broad concept for remote hosting and
management of applications, platforms, or server infrastructure, while still
offering interactions with remote resources as if they where provisioned locally.
The term cloud computing originates from the custom of representing computer
(or telephone) networks using a drawing of a cloud, hiding the exact location
of where things are located or how they are connected. The same analogy
applies to computational clouds; the location and other underlying details of
remote resources are abstracted and hidden from the user, and the resources
are available “on the cloud”.

Similarly to grids, cloud computing lacks a crisp and commonly accepted
definition and there are many different views (e.g. [64, 68, 75, 176]) as to what
constitutes a cloud, and what differs a cloud from a grid (see Section 3.3). Two
of the most commonly used definitions originates from the National Institute
of Standards and Technology (NIST) [166], and Vaquero et al. [169]. NIST
defines [115] cloud computing as:

“... a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or
service provider interaction.”

This definition is general enough to encompass practically all different cloud
approaches, while the one by Vaquero et al. [169] has additional (non-strict)
conditions of Service Level Agreements (SLAs) that guarantees capacity to
consumers:

“Clouds are a large pool of easily usable and accessible virtualized re-
sources (such as hardware, development platforms and/or services).
These resources can be dynamically reconfigured to adjust to a vari-
able load (scale), allowing also for an optimum resource utilization.

11

This pool of resources is typically exploited by a pay-per-use model
in which guarantees are offered by the Infrastructure Provider by
means of customized SLAs.”

The above definitions overlap to a large extent, focusing on easy, on-demand
access to hardware, application platforms, or services with low delays in the
release and provisioning of additional resources. Both definitions employs three
widespread service models / scenarios to subdivide the area of cloud computing
into subareas:

Infrastructure as a Service (IaaS)
In IaaS solutions, hardware computing resources are made available to
consumers as if they were running on dedicated, local machines. The im-
pression of dedicated hardware is commonly achieved by utilizing hardware
virtualization techniques, making it possible to host several virtualized
system on the same physical host. Some examples of IaaS providers
includes Amazon Elastic Compute Cloud (EC2) [7], Rackspace [135], and
VMware vCloud Express [172].

Platform as a Service (PaaS)
Instead of offering access to (virtualized) hardware resources, PaaS sys-
tems offers deployment of applications or systems designed for a specific
platform, such as a programming language or a custom software envi-
ronment. PaaS systems includes Google App Engine [71], Saleforce’s
Force.com environment [177], and upcoming projects such as 4Caast [1],
CumuloNimbo [37, 131], and Contrail [120], all supported by the European
Seventh Framework Programme.

Software as a Service (SaaS)
Web-based applications including, e.g., Microsoft Office Live [117], Google
Apps [72] (not to be confused with App Engine), and the gaming platform
OnLive [126] are available to consumers online without the need to install
and manage the software locally. The software is instead hosted and
managed on remote machines, making it possible to run software (including
graphic intensive computer games) on remote servers instead of the local
machine.

Of these subareas, SaaS and PaaS are normally developed and maintained
by a single administrative unit while IaaS sometimes makes use of resources
from several different clouds (similarly to federation of grids). Therefore, the
remainder of this thesis focuses on IaaS concepts of clouds, and more specifically
on the implications imposed by considering and utilizing resources from more
than one infrastructure provider. However, many of the managerial concepts
described in Chapter 4 can be applied to, e.g., PaaS and SaaS environments as
well.

12

3.1 Virtualization

Hardware virtualization techniques [14, 134] provide means of dynamically
segmenting the physical hardware, making it possible to run several different
Virtual Machines (VMs) on the same physical hardware at the same time. Each
VM is a self contained unit, including an operating system, and booting a VM is
very much like powering on a normal desktop computer. The physical resources
are subdivided, managed, and made available to the executing VMs through a
Hypervisor (also called VM Monitor).

The concept of virtualization dates from the late 1960s but have been
largely unused for quite some time, until it gained renewed interest in the late
1990s. The oft cited reason is that the widespread x86 processor technology
was cumbersome and impractical to virtualize compared to its predecessors,
and also became cheap enough to increase the number of computers instead
of focusing on virtualization [95]. The late 1990s saw efficient software-based
virtualization of the x86 platform, and hardware support for virtualization in
processors was released in the mid 2000s [3, 22].

Virtualization is the underlying packaging and abstraction technology for
basically all IaaS clouds, and there are also several initiatives for using virtual-
ization in HPC and grid computing. For example, Keahey et al. [90] suggest
using VMs in grids to, e.g, better meet quality of service demands and provide
easier portability between execution environments. Haizea [151] is a scheduling
framework utilizing VMs as a tool to maximize utilization while still supporting
advance reservations by suspending and resuming VMs. This way,small gaps
between jobs can be utilized by resuming a previously suspended VM. An
analysis and comparison of virtualization technologies for HPC is presented by
Walters et al. [174].

There are several different technologies for virtualization, which Walters et
al. [174] present and organize into four different categories:

Full Virtualization Uses a hypervisor to fully emulate system hardware, mak-
ing it possible to run unmodified guest operating systems at the expense
of performance. Well known implementations include VirtualBox [175],
Parallels Desktop [130], and Microsoft Virtual PC [81].

Native Virtualization Native virtualization makes use of hardware support
in processors to make the costly translations of instructions from full vir-
tualization in hardware instead of software. Known technologies includes
KVM [95], Xen [14], and VMware [171].

Paravirtualization In Paravirtualization [178], the operating system in the
virtual machine [147] is modified to make use of an API provided by
the hypervisor to achieve better performance than full virtualization.
Xen [14] and VMware [171] are two well established technologies supporting
Paravirtualization.

13

Operating System-level Virtualization Unix based virtualization systems
such as OpenVZ [128] can provide operating system-level virtualization
without hypervisors by running several user instances sharing a single
kernel.

Virtualization techniques in different categories are generally incompatible,
and for paravirtualization there might be interoperability issues even between dif-
ferent versions of the same hypervisor technology. The hardware support makes
native virtualization perform almost at the same level as paravirtualization,
keeping the losses imposed by virtualization at a couple of percent [3, 14].

There are several benefits of using virtualization in system management
(see, e.g., [142]), but the most important ones in the context of this thesis are:
VMs are self contained systems, making it possible to execute the VM on all
compatible hypervisors; VMs can be paused and resumed; and VMs can be
migrated (moved) either by pausing them and resuming them on another host
or by moving them without suspending them. Migration a VM without (non-
neglectable) downtime is known as live migration [32]. There are several schemes
for optimizing the migration process, and live migration of VMs can be done
with marginal downtime [23, 32, 158]. Being able to execute VMs on remote
hosts without severe software dependencies, and the ability to relocate VMs
without major effort or downtime forms the core of multi-site cloud computing
concept.

3.2 Cloud as an Infrastructure

The starting point of cloud computing as an infrastructure is arguably Ama-
zon [7] offering the provisioning of their resources to anyone, without the need
of any application process or long-term commitments, and charging users only
for the resources they actually consume.

The quick provisioning of resources makes it possible for consumers to adapt
their current resource requirements with very short delays by starting up or
stopping VMs according to their needs. To avoid having to customize large
amounts of VMs individually, a VM template (or type) is often used to start up
several identical instances1.

When starting several instances of VMs it is the responsibility of the software
running inside each VM to synchronize with the other running instances, for
example by registering with a load balancer. Some configuration settings, such
as the IP of the load balancer, cannot be encoded into the template itself, either
because it is not available until run time or because it needs to be unique for
each VM instance. The process of configuring each instance automatically is
called contextualization [90, 91, 165]. Contextualization is usually performed
just prior to booting a VM, and pausing or resuming (or migrating) a VM does
not cause another round of contextualization.

1These terms are not to be confused with ”Instance Types“, which are predefined hardware
configurations of VMs offered by, e.g., Amazon EC2 [7].

14

There are three main actors involved in cloud infrastructures, illustrated
in Figure 1. The Infrastructure Provider (IP) owns and manages the physical
resources and any supporting software that is required for infrastructure man-
agement. The Service Provider (SP) is responsible for the contents the service
itself, installing and managing the software running inside the VMs. End users
are the consumers of the service offered by the SP.

Even though the actors are conceptually separate, the same organization
may of course both own the infrastructure, host services on the infrastructure,
and be the end users of their own service. There is also a many-to-many relation
between the SPs and IPs, and a single IP normally hosts services from many
SPs in a multitennant manner (using the isolation of VMs to keep them from
interfering each other). Similarly, a single SP may run services (or even parts
of services) on several IPs.

Service Provider (SP)

Figure 1: Three main actors for cloud IaaS: the Infrastructure Provider(s) make
resources available to Service Provider(s), who in turn offer a software service
to End Users.

The IaaS service model is normally offered by the IP, but may have supporting
functionality running in the SP. The software running inside the service managed
by the SP may consist any type of software, which may (or may not) be other
flexible platforms such as PaaS or SaaS solutions. Notably, PaaS or SaaS
systems are not required to be hosted on underlying IaaS infrastructures by the
service providers, but the variation in resource requirements of PaaS or SaaS
systems lends itself well to such solutions. Similarly, SaaS systems may (or may
not) be hosted with the support of an underlying PaaS system.

From a resource management perspective, deploying a service to an IP is
very much like starting a normal computer application – its lifetime and usage
patterns are unknown to the underlying operating system, but the system is
still responsible for managing and multitasking different applications without
detailed instructions from the user. In an operating system, less prioritized tasks
are often neglected in favor of higher prioritized ones, mitigating the problem
of insufficient available resources. Similarly, some cloud vendors makes use of

15

less prioritized instances (such as Amazon’s Spot Instances [6]) to increase the
utilization when the system is not under heavy load. When resources are running
low, the IP can may either free up resources by stopping less prioritized services,
or by outsourcing the executions of some VMs to other IPs (see Section 3.4).

Security and privacy concerns are commonly seen as the main limiting factor
of clouds as a general utility [64, 85]. Compared to grids, where access usually
is preceded by face-to-face identity validations and certificate generation, clouds
has a relaxed security model reminiscent of regular Internet sites, using Web
based forms for sign up and management, and emails for password retrievals [64].
This relaxed security is a great benefit in terms of usability, but limits the trust
of major companies considering using clouds for business-sensitive applications.
While the ongoing work on cloud security is progressing (see e.g., [31, 85]),
privately hosted and managed clouds has become an option for dealing with
sensitive data while still gaining some benefits from the cloud computing
paradigm.

Early results of scientific computing using clouds are presented in [89],
although most of the results are based on ”clouds” where a user has to apply
by email for the free execution of a VM during short period of time (hours).
The lack of quick on-demand provisioning, the need for manual interactions
with the providers prior to execution, and the lack of a utility based business
model makes it highly debatable whether the systems used in [89] should be
considered clouds at all, or rather an extension of the authors earlier published
work on Virtual Workspaces in grids [90].

3.3 Grids and Clouds Compared

While both technologies can be seen as enabling technologies to utilize all
kinds of computational infrastructure, the main differences are primarily not
about technical solutions; as already mentioned, the utilization of virtualized
environments to ease deployment and execution for tasks was known in grids
before the cloud era [90]. Instead, clouds and grids have emerged as two different
paradigms due to approaching the vision of computing capacity as a utility
from different angles.

• Grids are designed to support sharing of pooled resources (normally high
performing parallel computers) owned and administered by different orga-
nizations, primarily targeting users with hardware requirements surpassing
the capacity of commodity hardware (e.g. thousands of processor cores or
hundreds of terabytes of storage).

• The development of clouds as a technology is driven by economies of
scale [148], where the increased utilization of existing (often commodity)
hardware resources offers lower operational expenses for the infrastructure
providers, which in turn makes it possible for such providers to offer
hardware leasing at prices comparable to in-house hosting.

16

The differences in scope between the paradigms cause considerable differences
in e.g. business models, architecture, and resource management. In the context
of this thesis, the most interesting differences are those between grid jobs and
cloud services, including how resources are provisioned to the supplied tasks.
More in-depth comparisons between clouds and grids can be found in, e.g., [64].

Grid jobs by nature are computational jobs executed on infrastructures with
very high (combined) performance, granting exclusive access to resources for
the job until it is completed before assigning the resources to the next job in the
queue. The capacity requirements and execution time of grid jobs are normally
known beforehand, and used as input in job scheduling. Cloud services, on the
other hand, are expected to start almost immediately after they are submitted
and to run without a fixed execution time until the service is explicitly canceled.
The service runs on its assigned share of resources, which may increase or
decrease during service execution. Conceptually, the way resources are managed
is analogous to time-sharing [137] (grids) vs. space-sharing [157] (clouds) in
operating systems.

The extensive use of VMs in cloud computing also means that the delays
for starting up and terminating jobs are greater than those of grid computing,
as VMs adds quite a bit of overhead in data transfer and start-up times. To
generalize, grids are inherently more suitable for applications with high demands
on stability and performance by guaranteeing them exclusive access to resources
over a short period of time. Clouds are more suitable for less critical long-running
tasks suitable for execution on public or shared hardware, and normally offers
support for scaling up and down the amount of allocated resources according to
the current needs.

The boundaries between grids and clouds are not absolute and generous
definitions of either terms creates a large potential overlap. The technologies can
also be used in combination. For example, deployment of the Sun Grid Engine
(SGE) [69] in a cloud infrastructure is one of the use cases of the RESERVOIR
project (see Section 3.4)[141], showing the plausibility of utilizing the flexibility
of clouds to host a grid middleware. To make use of the flexibility of the
infrastructure, the SGE was deployed using a master VM for job distribution
and several instances of worker VMs for job execution, adapting the amount of
worker nodes according to the amount of jobs waiting to be executed [33].

Another effort to run cluster software on IaaS infrastructure presented by
Keahey et al. is called Sky Computing [92]. In this approach, resources from
three different Universities are combined into ”Virtual Clusters”. Hadoop [179]
and Message Passing Interface (MPI) [74] cluster software is hosted on the
different VMs, creating a cluster utilizing resources from three university sites.

3.4 Cloud Collaborations

Similarly to federations of grids, clouds can be joined together in different
collaboration models to take advantage of the joint infrastructure. While the

17

main advantage of federated grids is the increased capacity, clouds may also take
advantage of collaborations to, e.g., offer geographical redundancy or execute
services at geographically advantageous locations otherwise outside the available
infrastructure. The economical model of clouds gives rise to several different
forms of collaborations, described in Section 3.4.1. In some scenarios, a cloud
may provision resources from one or more remote cloud(s) using the regular
client interfaces, removing the need for prior resource exchange agreements.

In the basic case, the SP interacts with a single IP and is kept unaware of
whether the IP uses resources as a part of a collaboration or not. In collaborative
cases, the original IP site where the service was submitted is referred to as the
primary site, while any collaborating sites are the remote sites. The control
of the service and responsibility towards the SP remains in the primary site
regardless of where the service is actually executed, and the primary site is also
responsible for ensuring that SLAs are maintained or compensated for. To be
able to utilize remote resources, the use of resources between IP sites may be
governed by separate SLAs or framework agreements [24], stipulating the terms
of resource exchange between IPs.

As with grid computing, the use of several clouds introduces a lot of hetero-
geneity problems that ultimately only can be resolved using standardization
efforts. Native (hardware) virtualization is a first major step to standardization
on the lowest hardware level. There are also efforts to create standardized and
general formats for specifying virtual machines and virtual hard drives [42, 118]
and general cloud APIs [34, 41, 113, 127], but neither standard has yet emerged
as a generally accepted candidate.

VM incompatibility issues aside, there are a number of operational challenges
imposed by the used of collaborative clouds. Since each site retains its full
autonomy, and its own policies and objectives, the internal workings of each
site are largely obscured to other sites in the collaborations. This means each
site only has details available regarding local resources, and at best incomplete
information regarding the state in other sites. Service provisioning across
clouds therefore has to be based on probabilities and statistics rather than
complete information. Another challenge not present in single clouds is that
sites participating in collaborations may have external events affecting the state
of a service and resource availability of the infrastructure. For example, a remote
site may place services on the infrastructure of the primary site, or force the
withdrawal of VMs running on the infrastructure of the remote site and therefore
forcing the primary site to re-plan the placement across the infrastructure.

The RESERVOIR (Resources and Services Virtualization without Barri-
ers) [138, 139, 140, 180] project focus on creating and validating the concept
of cloud federations across several infrastructure providers through several use
cases, including running SGE [69] and SAP [145] applications on the federated
infrastructure. One of the results of the project is the design and creation of
Virtual Application Networks (VANs) [78]. These overlay networks, extending
previous work from e.g. [164], offers one solution to allow VMs being a part of
internal private networks to be migrated to other sites in the federation without

18

being disconnected. These VANs can be used to manage monitoring information
for services spanning several cloud sites, see Section 4.1. The RESERVOIR
project also outlines a common specification for cloud services [66, 139] to
facilitate interoperability, made by extending the standard Open Virtualization
Format [42].

The OPTIMIS [57] project targets the creation of a toolkit of components
able to (among other things) support multiple cloud scenarios without extensive
changes to the software itself. The project [57] also outlines interesting conflicts
of interest between the different actors (SPs and IPs). For example, the ambition
of the IP to maximize profit is usually contradictory to the SP ambitions of
hosting services at a low cost without neglecting the service performance.

3.4.1 Cloud Computing Scenarios

The relation between different clouds in collaboration is commonly modeled as
different deployment scenarios [57, 139], depending on the type of interactions
between the different sites in the collaboration. We divide the scenarios into
three main categories, federated clouds, multi-clouds, and private clouds, each
described and illustrated in the coming subsections. Different scenarios can
also be combined into hybrid clouds, with bursted private clouds commonly
used as an example. Note that all collaboration scenarios are multi-clouds in
the sense that they span more than one cloud. The term is used in this more
general sense in the title of this thesis, but used in a more specific case in this
subsection to describe a specific collaboration scenario. This is done in order to
stay in line with, e.g., [57].

Figure 2a shows a simplified model of a standard cloud which is used as the
starting point when describing the other deployment scenarios. As previously
mentioned in Chapter 3, a single IP normally hosts the services of several SPs,
although only a single SP is shown in the illustrations.

Federated Clouds

Federations of clouds (Figure 2b) are formed at the IP level, making it possible
for infrastructure providers to make use of remote resources without involving
or notifying the SP owning the service. Gaining access to more resources is not
the only potential benefit of placing VMs in a remote cloud. Other reasons
include fault tolerance, economical incentives, or the ability to meet technical
or non-technical constraints (such as geographical location) [138] which would
not be possible within the local infrastructure.

Provisioning of remote resources through federations can be done with several
remote sites at the same time, using factors such as cost, energy efficiency, and
previous performance to decide which resources to use [57]. In some cases, a
service may be passed along from a remote site for execution at a third party
site, creating a chain of federations. As each participant in the chain is only

19

Service Provider (SP)

(a) A standard cloud de-
ployment.

Service Provider (SP)

(b) Two cloud IPs form a federation.

Figure 2: The illustration on the left shows a standard cloud scenario, where
one or more SPs are using the resources of a single IP. In the federated case,
shown on the right, an IP may employ other IPs to host (parts of) the running
services without involving the SP.

aware of the closest collaborating sites, special care has to be taken in the VM
management and information flow in such scenarios [53].

Multi-Clouds

The scenario where the SP itself is involved in moving and prioritizing between
different IP offerings is called a Multi-cloud [57] scenario. In this case, illustrated
in Figure 3, the SP is responsible for planning, initiating, and monitoring the
execution of services running on different IPs. Any interoperability issues has
to be detected and managed by the SP, affecting the set of sites which can be
used for multi-cloud deployments.

The automatic selection and management of different alternatives using
brokers is a well known approach for, e.g., grid computing [56, 93]. As shown
in [57, 163], brokers can also be used as an intermediate component in multi-
cloud scenarios. In this case, illustrated in Figure 4, the broker is placed between
the SP and the IP. The broker may act as an SP to the IP and as an IP to the
SP, containing a lot of the complexity of multi-cloud deployments within the
broker itself [57].

Tordsson et al. [163] provide an overview and practical experiences of cloud
brokering, including quantified results of performance gained from the brokering
of resources belonging to different cloud providers.

Private Clouds

Private clouds, shown in Figure 5a are cloud deployments hosted within the
domain of an organization or a company not made available for use by the
general public [10]. Such deployments circumvents many of the security concerns
related to hosting services in public clouds by keeping the execution within
the same security domain, while still offering a computational infrastructure to
internal users.

20

Service Provider (SP)

Figure 3: In multi-cloud scenarios, the SP itself may control and decide the
deployment of a service using several different IPs.

Broker

Figure 4: In brokered multi-cloud, a dedicated broker component is used by the
SP to simplify the deployment and management process.

Similarly to grids, private clouds only have a finite set of resources and
therefore the infrastructure must at some point, prioritize, enqueue, or reject
service requests in order to satisfy SLA agreements [153]. It is also likely that
private clouds are based on collaboration models between peers rather than
pay-per-use alternatives. This creates a need for a service model closer to that
of grids than public clouds, and so far there has been little focus in literature
on the specific challenges of private clouds.

Hybrid Clouds

Hybrids between different scenarios can be used to overcome limitations of single
usage scenarios. For example, to avoid the problem of finite resources in private
clouds, such clouds may temporarily employ the resources of external public
cloud providers. These bursted private clouds (described in e.g., [153]) offers a
combination of the security and control advantages of private clouds and the
seemingly endless scalability of public clouds, but requires very sophisticated
placement policies to guarantee the integrity of the system. The relation between
private and bursted private clouds is illustrated in Figure 5.

Sotomayor et al. [153] outline the general concepts of hybrid clouds and
provides an overview of different cloud technologies and their support for hybrid
models. In their work, OpenNebula [152] is used to create hybrid cloud solutions

21

Private Cloud

Service Provider (SP)

(a) Private cloud.

Private Cloud

Service Provider (SP)

(b) Bursted private cloud (hybrid)

Figure 5: Private clouds offer stronger guarantees on control and security as
the whole infrastructure can be administered within the same security domain.
If needed, private clouds may have less sensitive tasks be executed on a public
cloud instead, forming a hybrid cloud scenario commonly referred to as bursted
private cloud.

based on a private infrastructure and a set of cloud drivers used to burst to
different external providers such as Amazon EC2 [7] or ElasticHosts [46].

22

Chapter 4

Task Metadata
Management

The primary focus of this thesis is the collection, management, and use of
task metadata in distributed and multi-provider infrastructures such as grids
and clouds. Previous chapters have introduced the fundamental concepts of
the main paradigms, including different collaboration models, and this chapter
outlines internal infrastructure procedures related to task metadata.

The task metadata contains information about, e.g., the duration, status,
and resource consumption of a running task, and forms the primary source of
feedback for different internal procedures in the infrastructure. The following
sections covers gathering and managing of task metadata, and describes different
internal grid and cloud infrastructure processes using the metadata as the
primary input.

4.1 Monitoring

Monitoring is the process of gathering information about infrastructure or a
service during run time. In grid systems, the focus of monitoring lies on the
health, performance, and status of the infrastructure resources [173, 183]. This
information is subsequently used for fault detection and recovery, prediction of
resource performance, and also to tune the system for better performance [162].
Grid monitoring is slightly out of scope regarding task metadata management,
as monitoring is normally not performed regarding the grid jobs themselves
(see [183] for a comprehensive overview of grid monitoring). Instead, metadata
concerning the result and status of a grid job is collected once the job has
terminated (in the shape of usage records), regardless of if the job succeeded to
complete successfully or not. Creation and management of these records are
further discussed in Section 4.2.

Monitoring of running services is fundamental in clouds as monitoring data

23

is the primary input used in most internal management procedures. The lack of
compatible monitoring is one of the main incompatibility hurdles of cross-site
clouds [10, 103]. There are three different kinds of monitoring data used in
clouds, measurements from the infrastructure, the hypervisor, or from within
the service itself:

• Infrastructure specific measurements showing the health and utilization
of physical resources. Monitoring the state of infrastructure resources is
not a specific problem for cloud computing, and the same tools used for
general purpose system monitoring (such as Nagios [16], Ganglia [114], or
collectd [59]) can be used also in these contexts.

• Data concerning the resource consumption of individual VMs running on
the hardware can be obtained by communicating with the VM hypervisor,
or by using tools (such as the libvirt [109] API) that are capable of
operating across several different hypervisors. The VM information is
commonly used to perform the fulfillments of SLAs or as input to elasticity
and service profiling.

• Service specific Key Performance Indicators (KPIs) are used to measure
and manage monitoring values specific to the service. These values are
normally only available from inside the service software itself, and might
constitute values such as the current number of active sessions to a Web
based application or the number of concurrent transactions in a database
system. These values can be used to perform, e.g., elasticity.

Measuring and managing monitoring KPIs from inside the service itself is an
interesting problem that is not yet well studied [86]. Some cloud solutions (such
as RESERVOIR [139]) have a strong separation between service management
and the VM itself, in the sense that the VM is unaware of the location of the
management components, and the management components are unaware of the
location of the VM. This location unawareness [48, 53, 78] has a great influence
on what techniques can be used to make the service specific data available to
the cloud infrastructure from inside the VMs.

An important factor to consider in cloud collaborations is that more than
one site might be interested in the monitoring data produced for a given service.
For this reason, naive solutions such as sending the data from inside the VM to
an external internet endpoint cannot be used in, e.g., federation scenarios, as
the data would not be visible to the infrastructure on the remote site1. There
is also no guarantee that all VMs of a service has external network access [78].
Instead, the monitoring data has to flow back from the executing site to the
primary site through any intermediaries (if any).

The Lattice framework [33] presents a solution for service level monitoring
based on customized virtual networks (VANs [78]) to pass measurements from
inside the VMs to the infrastructure on the outside without external network

1Recall that VMs are not re-contextualized when they are migrated.

24

access. In this solution, the functionality of the network broadcast directive
is overridden and used for monitoring tasks instead. However, without the
customized virtual networks this solution would not be possible, and so this is
not a generally applicable alternative.

An alternative based on File System in User Space (FUSE) [160] is outlined
in [53]. In this solution, FUSE is used to create a small application that simulates
a hard drive partition. File system calls (such as writes) result in a normal
programmer controlled method call in the application, and the complexity of
externalizing the data can be hidden inside the FUSE based application. The
problems of actually externalizing the data without knowing the location of
some management component remains unsolved, however.

An architecture and implementation of a service oriented monitoring frame-
work for use in cloud infrastructures is presented in [87]. This approach does
not seem to consider the problem imposed by service level management nor
federations, but instead focuses on monitoring of information from different
sources and for use in real-time applications.

4.2 Accounting and Billing

Accounting systems are responsible for metering and managing records on
resource consumption by users in grids or clouds. In grids, a Usage Record [112]
for a job is usually created once the job has finished executing. The usage record
contains a lot of general metadata about the job, such as when it was started and
finished, and may also contain a summary of the combined resource consumption
of a job in terms of, e.g., amount of data transferred on the network. Cloud
systems normally rely on run time monitoring of service resource consumption
as a basis for accounting.

In federations of grids, the accounting data generated upon job completion
is usually important both for the originating grid site, the executing grid site,
and possibly any consortium or organization linking these resources together.
Managing usage records in such environments is the subject of Paper I [52]. For
cross-site cloud computing, the aggregation of data from different site is usually
managed by the underlying monitoring system, as accounting is not the only
internal cloud process depending on the aggregated raw monitoring data.

One of the major differences between grids and clouds is the underlying
economical model, which can be clearly linked to the origins of each paradigm
and to the niches they occupy today. For grids, the most common solutions
are based collaborative sharing models where the usage data is converted to
abstract currencies [15, 67, 133]. Abstract credits are normally awarded to users
through an out-of-band application procedure, in which a steering committee
allocates credits to different projects based on scientific merit. These credits
can then be exchanged for computing time on the infrastructure. There are
numerous suggestions on how to achieve economical models and architectures
for use in grids, commonly based on auctions or other market-based schemes,

25

some of which can be found in [12, 25, 27, 50, 101, 182]. Nakai and Van Der
Wijngaart [122] presents an in-depth economical analysis of the feasibility and
expectations of markets in grid scheduling, proving that the use of markets is
not generally applicable and may not lead to the desired outcomes [122].

Many grid accounting systems also support converting the abstract currencies
to real monetary units (at least by easily extending the core mechanisms), but
real economical models for grid usage has never been widely adopted. One
reason could be that the allocation of abstract credits means that stakeholders
can partly affect the utilization of the infrastructure. The use of real money
could mean that smaller projects could be constantly outbid by other consumers,
preventing them from utilizing the common infrastructure.

In public clouds, users are free to request as much resources as they require on
the short term, and paying only for the resources they are currently requesting.
In such systems, the accounting data (based on monitoring) is used as input in
the billing process, converting the hardware measurements to real monetary
bills using different pricing schemes.

The two major payment models used in clouds are prepaid and postpaid,
used in the same manner as in the mobile-phone industry. Prepaid, where
credits are purchased in advance and consumed in accordance with resource
consumption, offers greater control over the maximum costs but running out of
credits may cause the service to stop executing. Postpaid, where the consumer is
billed at regular intervals for the previous usage, is more sensitive to unexpected
amounts of resource consumption, but does not risk running out and hence
disturbing the service execution.

Many cloud providers employ overbooking strategies [143] and sell more
resources than is actually available, relying on probabilistic models that not
all resources are be requested at the same time [76]. However, overbooking
strategies ultimately leads to increased amounts of broken SLAs, and each
broken SLA generates compensations to the SP. Therefore, dealing with both
costs and compensations is a major requirements for accounting in clouds.
Birkenheuer et al. [19] show that overbooking schemes are valid options and
can achieve a 20% increase in profit even when considering compensations for
broken SLAs.

Deployment scenarios such as bursted private clouds or cloud federations
offers seemingly unlimited hardware resources, as there may always be resources
available at collaborating sites. In theory, this means that also the amount
of accounting (and monitoring) data generated by services in the cloud is
unlimited. Accounting data is commonly considered financial data, with means
there are high demands on storing and managing such data over a long period
of time (at least ten years in some jurisdictions). This creates a resource
provisioning problem for the management of accounting data similar to the
problem addressed by cloud computing itself. Totally scalable solutions for such
data has not yet been fully established, but initial work on this subject can be
found in, e.g., [39, 110].

26

4.3 Scheduling and Placement

The process of assigning incoming tasks to available resources, usually denoted
Scheduling for grids and Placement for clouds (although scheduling is sometimes
used also for cloud services), is one of the internal processes often relying on
task metadata for future decisions.

In grid computing, fairshare scheduling [38, 45, 49] is a wide-spread approach
where the scheduler tries to distribute computational resources according to
predefined usage shares. The scheduler normally operate on aggregated task
metadata for each user and compares the previous usage to the users predefined
allocation of resources, using the difference between promised and utilized
resources as a factor for prioritizing incoming jobs. The data used in the
fairshare process is usually based on usage records, obtained either by querying
the underlying accounting system or by receiving such records straight from
the infrastructure. The accuracy and availability of usage records and the
delay before the data is made available to the fairshare scheduler directly
affects the performance and convergence time in the system. Preliminary
results in quantifying the relation between task metadata management and job
convergence is presented in Paper IV, and further evaluation of these factors
are part of future work.

Similarly to grid scheduling, cloud placement can be focused on several
objectives and the objectives of each autonomous site may be different [24].
Even within a single site there might be several conditions to consider, and there
is often a trade-off between multiple factors such as maximizing the utilization
of the infrastructure while minimizing the risk of breaking SLAs. Currently,
the amount of broken SLAs seems to be the primary means of measuring the
suitability of a cloud deployment. The placement problem takes very different
forms in different cloud scenarios. The limited resources in private clouds
creates a need for similar solutions as employed in grid computing, as the total
amount of requested capacity will be larger than the available resources at some
point [153]. In public clouds, the resources are seemingly unlimited and solutions
of the placement problem for an IP can focus on optimizing the revenue while
minimizing the risk of breaking SLAs [24]. Hybrid scenarios such as bursted
private clouds have different challenges as the utilization of the limited local
resources must be balanced with the higher costs (and insecurity) of the public
resources. As shown by Van den Bossche et al. [168], approaches which perform
very well in public clouds may perform drastically worse in bursted private
cloud settings due to very large differences in the required time to find an
optimal solution when considering also the internal resources. Similarly to
fairshare scheduling in grids, the quality and availability of monitoring data and
the delays imposed by collaborations is likely to have a great impact on cloud
placement, but quantification and further analysis of these areas are subject to
future work.

27

4.4 Elasticity

The ability to quickly request or release resources in response to the current load
of a service is one of the most prominent features of cloud computing. Elasticity
is the process of automating the decisions for when to scale up or down and
transfer the decision making from human administrators to processes running
in SP or in the infrastructure. By specifying a set of Elasticity Rules [141]
and include the rules in the service manifest [66], the rules for scaling a service
becomes an integral part of the service itself. The rules can be used to specify,
e.g., how many users can be served by each VM instance, which may be used
in combination with reactive or predictive models to calculate the number of
required instances [4].

There are two types of elasticity, horizontal elasticity and vertical elastic-
ity [4]. In horizontal elasticity, the number of VM instances of a certain type is
increased or decreased to correlate with the current load. In vertical elasticity,
the amount of hardware resources assigned to one or more VM(s) (such as the
amount of RAM or number of CPUs) is dynamically increased or decreased.
Horizontal elasticity puts additional strain on the application running inside
the VMs, as the system itself must synchronize the tasks between the different
instances. Vertical elasticity, on the other hand, requires that the operating
system and application running inside the VM is capable of making efficient
use of, e.g., a dynamic amount of available RAM.

The elasticity process is normally based on monitoring data concerning
the hardware consumption of the VM, or on KPIs monitored from inside the
application itself. To shorten the reaction time, elasticity requires up do date
measurements regarding the state or KPIs of each VM regardless of where in
the (cross-site) infrastructure each VM is running. Normally, the time required
for instantiation of new VMs is a few minutes, but recent efforts by, e.g., Lagar-
Cavilla et al. [100] has shown that new VMs can be started up in the matter of
seconds using techniques similar to fork system calls. To avoid becoming the
bottleneck, performance is a key requirement for monitoring solutions designed
to support rapid elasticity.

28

Chapter 5

Summary of the Papers

The publications in this thesis focus on different aspects of task data man-
agement, including collecting of task data, management of the data within a
distributed grid or cloud environment, and how the collected data can be used
in different internal procedures such as accounting, billing, or job scheduling.

5.1 Paper I

Paper I [52] investigates how task data collected across autonomous nodes in
different distributed grid or cloud usage scenarios can be managed and shared
to other parties in the collaboration. The scenarios considered in this paper are
hierarchies of grids, mutual grid collaborations, and federations of clouds.

In the paper, we identify a set of requirements from the different usage
scenarios, and use these requirements to evaluate several different approached to
task data sharing in these environments. This process results in the implementa-
tion and evaluation of a light-weight component (LUTSfed) controlling the flow
of usage information between different parts of the collaboration. This process
is made non-intrusive and optional by reusing existing read and write interfaces
of the data management components, and adds support for different cardinality
(one-to-many, many-to-one, many-to-many) in usage sharing. We demonstrate
how the LUTSfed component can be used to realize the three different usage
scenarios by configuring and deploying the component in different ways, without
affecting the operation of the already running data management components in
different parts of the collaboration.

The performance of the stand-alone LUTSfed component is evaluated in
different scenarios, including relations of different cardinality between the
number of source and target components and the performance losses inferred
by using the LUTSfed component.

29

5.2 Paper II

Paper II [48] investigates accounting and billing in the federated cloud environ-
ments introduced in the RESERVOIR project. The paper is based on two new
use cases not present in traditional grid and cloud environments; accounting
for cloud services for which the number of sub-components is dynamic and
unknown to the accounting system, and accounting for cloud services in which
also the placement of sub-components in the federated infrastructure is dynamic
and unknown.

A set of requirements for an accounting and billing system in federated clouds
is formulated based on the use cases and general non-functional requirements.
Existing grid accounting systems are evaluated based on these requirements, but
no existing alternative is found to fully support the set of requirements imposed
by this environment. Instead, a new architecture for a cloud focused accounting
and billing subsystem is proposed. This new architecture is designed from the
start to fulfill the requirements imposed by the federated cloud environment.
Paper II describes the proposed architecture is detail.

5.3 Paper III

Paper III [103] provides a unified view on a set of managerial challenges present
in cloud federations, namely representation, placement, and monitoring of
cloud services. A cloud service may constitute of several different subsystem,
such as internal networks and shared file storage nodes, and may also have
different requirements and restrictions for placement in different parts of the
service. Paper III presents a model for expressing the internal structure of cloud
services including, e.g., geographical or intra-component affinities (placement
restrictions).

When performing placement of cloud services, the placement restrictions
expressed in the service structure must be considered. Migrating (moving) parts
of the service to another host may require cascading migrations in order to
adhere to the specified affinities. We present a model for placement that abides
the specified constraints, and extend this model with a heuristic to determine
which parts of the service that are suitable for migration.

The placement process is partly based on monitoring data collected from
different parts of the cloud federation. The paper presents a data distribution
architecture based on semantic metadata annotations that may be used to
bridge the gap imposed by monitoring systems in different parts of the cloud
federations.

5.4 Paper IV

Paper IV [129] presents the design and functional evaluation of a grid-wide
support system for job prioritization based on fairshare allocations, based on

30

earlier work published in [49].
The proposed system is a distributed, stand-alone, support-system usable

by job schedulers to externalize the fairshare prioritization procedure. The
paper presents a distributed tree-based policy model for specifying user shares
hierarchically, making it possible for a project to subdivide its own share of
usage into specific shares per user and/or sub-project. The paper describes
an algorithm for prioritizing user jobs based on predefined user shares and
historical usage data. Finally, the decentralized architecture used to realize
the system is described in detail. The overall system behavior and its ability
to accurately prioritize jobs in different scenarios is demonstrated, showing
that system is capable of achieving grid-wide fairshare also in the presence of
dynamically changing policies and run-time site failures. Performance results
show that the convergence rate of the system is greatly affected by delays in
data updates, highlighting the relation between task metadata management
and system performance.

31

32

Chapter 6

Future Work

As discussed in this thesis, task metadata management is a fundamental task
in both grids and clouds and the data is used as the primary input to many
different processes. The following sections present categories of future work
related to the topics described in the thesis.

6.1 Service Monitoring

As outlined in Section 4.1, the problem of monitoring of internal service data is
an open but important problem in cloud computing. The data extracted from
the application running in the VM is commonly used in, e.g., accounting and
elasticity, and data extraction must be coherent and with low delays regardless
of if the site is participating in a collaboration or not. A general solution for
extracting information from inside the VM and making it available to the cloud
infrastructure is one potential area for future work, possibly considering the aid
of the hypervisor software itself by employing specific system calls similar to
those used in paravirtualization.

6.2 Accounting and Billing

Research on accounting and billing is so far focused on IaaS clouds, quantifying
resource consumption in similar ways as in grid computing. A possible future
work direction is to investigate if and how these systems would have to evolve
to be applicable also to PaaS and SaaS environments.

Private (and hybrid) clouds are popular alternatives for hosting sensitive
applications, but so far accounting and billing for these kinds of clouds have
not been thoroughly explored. The usage models of private clouds is most
likely closer to those of a collaborative grid than a public cloud, and the
monetary based compensation system used in public clouds may therefore not
be applicable. Similarly, bursted private clouds probably has to incorporate

33

limitations on how much external resources may be provisioned, and by which
users [168].

As briefly mentioned in Section 4.2, the amount of accounting and billing data
in scenarios such as bursted private clouds or cloud federation can potentially be
unlimited. Since this data is commonly required to be stored and managed for
a long period of time provisioning resources for management of accounting and
billing data is a resource scaling problem yet unsolved. This problem is briefly
discussed in [110], outlining record data aggregation and scalable database
back-ends as two possible approaches to this problem. However, further work
is required to determine the implications on data consistency and durability
if using scalable database back-ends such as ElasTras [39], Cassandra [102] or
BigTable [29].

6.3 Fairshare Scheduling

Future work on fairshare scheduling in grids as outlined in Paper IV [129]
includes more in-depth analysis of different algorithms for calculating fairness
based on the historical usage and user allocations. Different algorithms and
different settings of parameters such as the amount of historical data to consider
is likely to have a large impact on the behavior of the system.

Early results on the impact of task metadata management on the accuracy
of fairshare is presented in Paper IV, and further analysis and quantification
within this area is subject to future work. As outlined in [49] the inclusion of
estimated times for running jobs in the fairshare process may also have a great
impact on the accuracy and convergence rate of the system, and is one possible
avenue for further studies especially with regard to the additional requirements
on metadata management associated with dealing also with running jobs.

Further integration work with different scheduler software and evaluation of
the system performance over a long time in a real deployment is also part of
future work.

34

Bibliography

[1] 4CaaSt project. Morfeo 4CaaSt. http://4caast.morfeo-project.org/,
September 2011.

[2] J. Abbate. From ARPANET to INTERNET: A history of ARPA-
sponsored computer networks, 1966-1988. 1994.

[3] K. Adams and O. Agesen. A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th interna-
tional conference on Architectural support for programming languages and
operating systems, pages 2–13. ACM, 2006.

[4] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An Adaptive Hybrid Elasticity
Controller for Cloud Infrastructures. 2011. Submitted.

[5] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. Van Nieuwpoort, A. Reinefeld, F. Schintke, et al. The grid
application toolkit: toward generic and easy application programming
interfaces for the grid. Proceedings of the IEEE, 93(3):534–550, 2005.

[6] Amazon.com, Inc. Amazon EC2 Spot Instances. http://aws.amazon.

com/ec2/spot-instances/, September 2011.

[7] Amazon.com, Inc. Amazon Elastic Compute Cloud. http://aws.amazon.
com/ec2, September 2011.

[8] D. Anderson. BOINC: A system for public-resource computing and storage.
In 5th IEEE/ACM International Workshop on Grid Computing, pages
4–10, 2004.

[9] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, A. S. Mc-
Gough, D. Pulsipher, and A. Savva. Job Submission Description Language
(JSDL) specification, version 1.0. http://www.ogf.org/documents/GFD.
136.pdf, September 2011.

[10] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. Above the clouds:
A berkeley view of cloud computing. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

35

[11] H. Bal, C. de Laat, S. Haridi, K. Jeffery, J. Labarta, D. Laforenza,
P. Maccallum, J. Mass, L. Matyska, T. Priol, et al. Next Generation Grid
(s) European Grid Research 2005–2010. Information Society Technologies,
European Commission, Expert Group Rep, 2003.

[12] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based
load management in federated distributed systems. In Proceedings of
the 1st conference on Symposium on Networked Systems Design and
Implementation-Volume 1, pages 15–15. USENIX Association, 2004.

[13] J. Baldassari, D. Finkel, and D. Toth. SLINC: A Framework for Volunteer
Computing. In S. Zheng, editor, Proceedings of the 18th IASTED Inter-
national Conference on Parallel and Distributed Computing and Systems,
2006.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 164–177. ACM, October 2003.

[15] A. Barmouta and R. Buyya. GridBank: A Grid Accounting Services
Architecture (GASA) for Distributed Systems Sharing and Integration.
In Workshop on Internet Computing and E-Commerce, Proceedings of the
17th Annual International Parallel and Distributed Processing Symposium
(IPDPS 2003), IEEE Computer Society Press, USA, April, pages 22–26,
2003.

[16] W. Barth. Nagios: System and Network Monitoring. No Starch Press,
San Francisco, CA, USA, 2nd edition, 2008.

[17] C. Baumbauer, S. Goasguen, and S. Martin. Bouncer: A globus job
forwarder. In Proc. 1st TeraGrid Conf, 2006.

[18] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, et al. Adaptive computing
on the grid using AppLeS. Parallel and Distributed Systems, IEEE
Transactions on, 14(4):369–382, 2003.

[19] G. Birkenheuer, A. Brinkmann, and H. Karl. The gain of overbooking. In
Job Scheduling Strategies for Parallel Processing, pages 80–100. Springer,
2009.

[20] B. Boghosian, P. Coveney, S. Dong, L. Finn, S. Jha, G. Karniadakis,
and N. Karonis. Nektar, spice and vortonics: Using federated grids for
large scale scientific applications. In Challenges of Large Applications in
Distributed Environments, 2006 IEEE, pages 34–42. IEEE, 2006.

36

[21] M. Bote-Lorenzo, Y. Dimitriadis, and E. Gómez-Sánchez. Grid charac-
teristics and uses: a grid definition. In Grid Computing, pages 291–298.
Springer, 2004.

[22] J. S. Bozman and G. P. Chen. Optimizing Hardware for x86 Server
Virtualization. White Paper.

[23] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-
area migration of virtual machines including local persistent state. In VEE
’07: Proceedings of the 3rd international conference on Virtual execution
environments, pages 169–179. ACM, June 2007.

[24] D. Breitgand, A. Marashini, and J. Tordsson. Policy-Driven Service
Placement Optimization in Federated Clouds. Technical Report H-0299,
IBM Research Report, 2011.

[25] J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng, D. Parkes, M. Seltzer,
J. Shank, and S. Youssef. Egg: An extensible and economics-inspired
open grid computing platform, 2006.

[26] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture for a
resource management and scheduling system in a global computational
grid. In hpc, page 283. Published by the IEEE Computer Society, 2000.

[27] R. Buyya, D. Abramson, and S. Venugopal. The grid economy. Proceedings
of the IEEE, 93(3):698–714, 2005.

[28] C. Catlett. The philosophy of TeraGrid: building an open, extensible,
distributed TeraScale facility. In CCGrid, page 8. Published by the IEEE
Computer Society, 2002.

[29] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed storage
system for structured data. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’06), 2006.

[30] R. Chinnici, J. Moreau, A. Ryman, and S. Weerawarana. Web services
description language (wsdl) version 2.0 part 1: Core language. W3C
working draft, 26, 2004.

[31] M. Christodorescu, R. Sailer, D. Schales, D. Sgandurra, and D. Zamboni.
Cloud security is not (just) virtualization security: a short paper. In
Proceedings of the 2009 ACM workshop on Cloud computing security,
pages 97–102. ACM, 2009.

[32] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live Migration of Virtual Machines. In Proceedings of
the 2nd ACM/USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 273–286. ACM, May 2005.

37

[33] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino, L. Va-
quero, K. Nagin, and B. Rochwerger. Monitoring Service Clouds in the
Future Internet. In Towards the Future Internet - Emerging Trends from
European Research, pages 115–126, Amsterdam, The Netherlands, The
Netherlands, 2010. IOS Press.

[34] Cloud Computing Interoperability Forum. Unified Cloud Interface Project.
http://www.cloudforum.org/, September 2011.

[35] D. Comer. The computer science research network CSNET: A history
and status report. Communications of the ACM, 26(10):747–753, 1983.

[36] CoreGRID. CoreGRID annual report 2007. http://www.coregrid.net/
mambo/content/view/310/301/, September 2011.

[37] CumuloNimbo project team. CumuloNimbo: Highly Scalable Transac-
tional Multi-Tier PaaS Main menu. http://www.cumulonimbo.eu/, July
2011.

[38] E. Dafouli, P. Kokkinos, and E. Varvarigos. Fair Execution Time Es-
timation Scheduling in Computational Grids. Distributed and Parallel
Systems, pages 93–104, 2008.

[39] S. Das, S. Agarwal, D. Agrawal, and A. El Abbadi. Elastras: An elastic,
scalable, and self managing transactional database for the cloud. 2009.

[40] M. De Assunção, R. Buyya, and S. Venugopal. InterGrid: A case for
internetworking islands of Grids. Concurrency and Computation: Practice
and Experience (CCPE), 20(8):997–1024, 2008.

[41] Distributed Management Task Force. Cloud Management Standards.
http://www.dmtf.org/standards/cloud, September 2011.

[42] Distributed Management Task Force, Inc. Open Virtualization Format
Specification. DMTF 0243 (Standard), Feb. 2009.

[43] N. Doulamis, E. Varvarigos, and T. Varvarigou. Fair Scheduling Algo-
rithms in Grids. IEEE Transactions on Parallel and Distributed Systems,
18:1630–1648, 2007.

[44] K. Dowd. High performance computing. O’Reilly & Associates, Inc., 1993.

[45] C. L. Dumitrescu, M. Wilde, and I. Foster. A model for usage policy-
based resource allocation in grids. Policies for Distributed Systems and
Networks, 2005. Sixth IEEE International Workshop on, pages 191 – 200,
June 2005.

[46] ElasticHosts Ltd. ElasticHosts. http://www.elastichosts.com/,
September 2011.

38

[47] M. Ellert, M. Grønager, A. Konstantinov, B. Konya, J. Lindemann,
I. Livenson, J. Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen.
Advanced Resource Connector middleware for lightweight computational
Grids. Future Generation computer systems, 23(2):219–240, 2007.

[48] E. Elmroth, F. Galán, D. Henriksson, and D. Perales. Accounting and
Billing for Federated Cloud Infrastructures. In GCC ’09: Proceedings
of the 2009 Eighth International Conference on Grid and Cooperative
Computing, pages 268–275, Washington, DC, USA, 2009. IEEE Computer
Society.

[49] E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized
system for Grid-wide fairshare scheduling. In H. Stockinger et al., editors,
First International Conference on e-Science and Grid Computing, pages
221–229. IEEE CS Press, 2005.

[50] E. Elmroth, P. Gardfjäll, O. Mulmo, and T. Sandholm. An OGSA-Based
Bank Service for Grid Accounting Systems. In J. Dongarra et al., editors,
Applied Parallel Computing. State-of-the-art in Scientific Computing,
volume 3732 of Lecture Notes in Computer Science, pages 1051–1060.
Springer-Verlag, 2005.

[51] E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P.-O. Östberg.
Designing general, composable, and middleware-independent Grid in-
frastructure tools for multi-tiered job management. In T. Priol and
M. Vaneschi, editors, Towards Next Generation Grids, pages 175–184.
Springer-Verlag, 2007.

[52] E. Elmroth and D. Henriksson. Distributed Usage Logging for Federated
Grids. Future Generations Computer Systems, 26(8):1215–1225, 2010.

[53] E. Elmroth and L. Larsson. Interfaces for Placement, Migration, and
Monitoring of Virtual Machines in Federated Clouds. In Eighth Inter-
national Conference on Grid and Cooperative Computing (GCC 2009),
pages 253–260, Los Alamitos, CA, USA, August 2009. IEEE Computer
Society.

[54] E. Elmroth and J. Tordsson. A Grid resource broker supporting advance
reservations and benchmark-based resource selection. In J. Dongarra,
K. Madsen, and J. Waśniewski, editors, Applied Parallel Computing -
State of the Art in Scientific Computing, Lecture Notes in Computer
Science vol. 3732, pages 1061–1070. Springer-Verlag, 2006.

[55] E. Elmroth and J. Tordsson. Grid Resource Brokering Algorithms En-
abling Advance Reservations and Resource Selection Based on Perfor-
mance Predictions. Future Generation Computer Systems. The Interna-
tional Journal of Grid Computing: Theory, Methods and Applications,
24(6):585–593, 2008.

39

[56] E. Elmroth and J. Tordsson. A standards-based Grid resource brokering
service supporting advance reservations, coallocation and cross-Grid in-
teroperability. Concurrency Computat.: Pract. Exper., 21(18):2298–2335,
2009.

[57] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri,
R. Sirvent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimi-
trakos, S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia,
A. Kipp, S. Wesner, M. Corrales, N. Forgó, T. Sharif, and C. Sheridan.
OPTIMIS: a holistic approach to cloud service provisioning. 2011. Ac-
cepted.

[58] L. Field, E. Laure, and M. Schulz. Grid deployment experiences: Grid
interoperation. Journal of Grid Computing, 7(3):287–296, 2009.

[59] Florian Forster. collectd. http://collectd.org/, September 2011.

[60] I. Foster. What is the grid? a three point checklist. GRID today, 1(6):32–
36, 2002.

[61] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.
Journal of Computer Science and Technology, 21(4):513–520, 2006.

[62] I. Foster and C. Kesselman. The Grid: Blueprint for a new computing
infrastructure. Morgan Kaufmann, 2004.

[63] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of High Performance
Computing Applications, 15(3):200–222, 2001.

[64] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid comput-
ing 360-degree compared. In Grid Computing Environments Workshop,
2008. GCE’08, pages 1–10. Ieee, 2008.

[65] P. Fowler, S. Jha, and P. Coveney. Grid-based steered thermodynamic
integration accelerates the calculation of binding free energies. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 363(1833):1999, 2005.

[66] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M. Vaquero.
Service Specification in Cloud Environments Based on Extensions to Open
Standards. In Proceedings of the Fourth International ICST Conference
on COMmunication System softWAre and middlewaRE, COMSWARE
’09, pages 19:1–19:12, New York, NY, USA, 2009. ACM.

[67] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm.
Scalable Grid-wide capacity allocation with the SweGrid Accounting
System (SGAS). Concurrency Computat.: Pract. Exper., 20(18):2089–
2122, 2008.

40

[68] J. Geelan. Twenty One Experts Define Cloud Computing. Virtual-
ization, August 2008. Electronic Magazine, article available at http:

//virtualization.sys-con.com/node/612375.

[69] W. Gentzsch. Sun grid engine: Towards creating a compute power grid.
In Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM
International Symposium on, pages 35–36. IEEE, 2001.

[70] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. Von Laszewski,
C. Lee, A. Merzky, H. Rajic, and J. Shalf. SAGA: A Simple API for Grid
Applications. High-level application programming on the Grid. Computa-
tional Methods in Science and Technology, 12(1):7–20, 2006.

[71] Google Inc. Google App Engine. http://code.google.com/appengine/,
September 2011.

[72] Google, Inc. Google Apps. http://www.google.com/apps/, September
2011.

[73] J. Grethe, C. Baru, A. Gupta, M. James, B. Ludaescher, M. Martone,
P. Papadopoulos, S. Peltier, A. Rajasekar, S. Santini, et al. Biomedical
informatics research network: building a national collaboratory to hasten
the derivation of new understanding and treatment of disease. Studies in
health technology and informatics, 112:100–110, 2005.

[74] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel
programming with the message passing interface. 1999.

[75] G. Gruman and E. Knorr. What cloud computing really means. InfoWorld,
April 2008. Electronic Magazine, available at http://www.infoworld.

com/d/cloud-computing/what-cloud-computing-really-means-031.

[76] R. Guerin, H. Ahmadi, and M. Naghshineh. Equivalent capacity and
its application to bandwidth allocation in high-speed networks. Selected
Areas in Communications, IEEE Journal on, 9(7):968–981, 1991.

[77] F. Guim and J. Corbalan. A job self-scheduling policy for HPC infrastruc-
tures. In Job Scheduling Strategies for Parallel Processing, pages 51–75.
Springer, 2008.

[78] D. Hadas, S. Guenender, and B. Rochwerger. Virtual Network Services For
Federated Cloud Computing. Technical Report H-0269, IBM Technical
Reports, Nov. 2009.

[79] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation
of job-scheduling strategies for grid computing. Grid Computing GRID
2000, pages 191–202, 2000.

[80] T. Hey and A. Trefethen. The UK e-science core programme and the grid.
Future Generation Computer Systems, 18(8):1017–1031, 2002.

41

[81] J. Honeycutt. Microsoft Virtual PC 2004 Technical Overview. Microsoft,
Nov, 2003.

[82] B. Hong and V. Prasanna. Distributed adaptive task allocation in hetero-
geneous computing environments to maximize throughput. In Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th International,
page 52. IEEE, 2004.

[83] E. Huedo, R. Montero, and I. Llorente. A recursive architecture for
hierarchical grid resource management. Future Generation Computer
Systems, 25(4):401–405, 2009.

[84] D. Jackson, Q. Snell, and M. Clement. Core Algorithms of the Maui
Scheduler. In D. Feitelson and L. Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, volume 2221 of Lecture Notes in Computer
Science, pages 87–102. Springer Berlin / Heidelberg, 2001.

[85] B. Kandukuri, V. Ramakrishna Paturi, and A. Rakshit. Cloud security
issues. In 2009 IEEE International Conference on Services Computing,
pages 517–520. IEEE, 2009.

[86] G. Katsaros, G. Gallizo, R. Kübert, T. Wang, J. O. Fito, and D. Henriks-
son. A Multi-level Architecture for Collecting and Managing Monitoring
Information in Cloud Environments. In CLOSER 2011: International
Conference on Cloud Computing and Services Science (CLOSER). Ac-
cepted for publication.

[87] G. Katsaros, G. Kousiouris, S. Gogouvitis, D. Kyriazis, and T. Varvarigou.
A service oriented monitoring framework for soft real-time applications.
In Service-Oriented Computing and Applications (SOCA), 2010 IEEE
International Conference on, pages 1–4. IEEE.

[88] J. Kay and P. Lauder. A fair Share scheduler. Commun. ACM, 31(1):44–55,
1988.

[89] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa. Science
clouds: Early experiences in cloud computing for scientific applications.
Cloud computing and applications, 2008, 2008.

[90] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces:
Achieving quality of service and quality of life in the Grid. Scientific
Programming, 13(4):265–276, 2005.

[91] K. Keahey and T. Freeman. Contextualization: Providing one-click virtual
clusters. In eScience, 2008. eScience’08. IEEE Fourth International
Conference on, pages 301–308. IEEE, 2008.

[92] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes. Sky computing.
Internet Computing, IEEE, 13(5):43 –51, September – October 2009.

42

[93] A. Kertész and P. Kacsuk. A taxonomy of grid resource brokers. Distributed
and Parallel Systems, pages 201–210, 2007.

[94] K. H. Kim and R. Buyya. Fair resource sharing in hierarchical virtual
organizations for global grids. In GRID ’07: Proceedings of the 8th
IEEE/ACM International Conference on Grid Computing, pages 50–57,
Washington, DC, USA, 2007. IEEE Computer Society.

[95] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
Linux virtual machine monitor. In Proceedings of the Linux Symposium,
volume 1, pages 225–230, 2007.

[96] S. D. Kleban and S. H. Clearwater. Fair Share on High Performance
Computing Systems: What Does Fair Really Mean? In CCGRID ’03:
Proceedings of the 3st International Symposium on Cluster Computing
and the Grid, page 146, Washington, DC, USA, 2003. IEEE Computer
Society.

[97] J. Knobloch and L. Robertson. LHC computing Grid technical design
report. http://lcg.web.cern.ch/LCG/tdr/, September 2011.

[98] D. Kranzlmuller. The future European Grid Infrastructure - Roadmap
and challenges. In Information Technology Interfaces, 2009. ITI’09.
Proceedings of the ITI 2009 31st International Conference on, pages
17–20. IEEE, 2009.

[99] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey
of Grid resource management systems for distributed computing. Softw.
Pract. Exper., 32(2):135–164, 2002.

[100] H. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin, S. Rumble,
E. De Lara, M. Brudno, and M. Satyanarayanan. SnowFlock: rapid
virtual machine cloning for cloud computing. In Proceedings of the 4th
ACM European conference on Computer systems, pages 1–12. ACM, 2009.

[101] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. Huberman. Tycoon: An
implementation of a distributed, market-based resource allocation system.
Multiagent and Grid Systems, 1(3):169–182, 2005.

[102] A. Lakshman and P. Malik. Cassandra-A Decentralized Structured Storage
System. In Workshop on Large Scale Distributed Systems and Middleware
(LADIS), 2009.

[103] L. Larsson, D. Henriksson, and E. Elmroth. Scheduling and Monitoring
of Internally Structured Services in Cloud Federations. In Proceedings of
IEEE ISCC 2011, pages 173–178, 2011.

43

[104] E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek,
O. Mulmo, F. Pacini, F. Prelz, J. White, et al. Programming the Grid with
gLite. Computational Methods in Science and Technology, 12(1):33–45,
2006.

[105] E. Laure and B. Jones. Enabling Grids for e-Science: The EGEE Project.
Grid computing: infrastructure, service, and applications, page 55, 2009.

[106] K. Leal, E. Huedo, and I. Llorente. A decentralized model for scheduling
independent tasks in Federated Grids. Future Generation Computer
Systems, 25(8):840–852, 2009.

[107] B. Leiner, V. Cerf, D. Clark, R. Kahn, L. Kleinrock, D. Lynch, J. Postel,
L. Roberts, and S. Wolff. A brief history of the Internet. Internet Society,
10, 2003.

[108] LHC Project Webpage. http://lhc.web.cern.ch/lhc/, September
2011.

[109] libvirt development team. libvirt: The virtualization api. http://libvirt.
org/, September 2011.

[110] M. Lindner, F. Galán, C. Chapman, S. Clayman, D. Henriksson, and
E. Elmroth. The Cloud Supply Chain: A Framework for Information, Mon-
itoring, Accounting and Billing. In 2nd International ICST Conference
on Cloud Computing (CloudComp 2010).

[111] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for
high throughput computing. SPEEDUP journal, 11(1):36–40, 1997.

[112] R. Mach, R. Lepro-Metz, B. Hamilton, S. Jackson, and L. McGinnis.
Usage Record Format Recommendation. Draft Rec-UR-Usage, Global
Grid Forum, Usage Record WG, March, 2005.

[113] Manifesto, O.C. Open Cloud Manifesto. Availabe online: www.

opencloudmanifesto. org/ , 20, 2009.

[114] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia Distributed
Monitoring System: Design, Implementation And Experience. Parallel
Computing, 30:2004, 2003.

[115] P. Mell and T. Grance. The NIST definition of cloud computing. National
Institute of Standards and Technology, 53(6), 2009.

[116] C. Metz. Interconnecting ISP networks. Internet Computing, IEEE,
5(2):74–80, 2001.

[117] Microsoft Corporation. Microsoft Office Live. http://www.officelive.
com, September 2011.

44

[118] Microsoft Corporation. Virtual Hard Disk Image Format Specification,
September 2011.

[119] Miniwatts Marketing Group. World Internet Usage Statistics News and
World Population Stats. http://www.internetworldstats.com/stats.
htm, September 2011.

[120] C. Morin. Open computing infrastructures for elastic services: contrail ap-
proach. In Proceedings of the 5th international workshop on Virtualization
technologies in distributed computing, pages 1–2. ACM, 2011.

[121] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling.
IEEE transactions on parallel and distributed systems, 12(6):529–543,
2001.

[122] J. Nakai and R. Van Der Wijngaart. Applicability of markets to global
scheduling in grids. NAS Report, pages 03–004.

[123] National Science Foundation. US National Science Foundation (NSF).
http://www.nsf.gov/, September 2011.

[124] Nordic Data Grid Facility. http://www.ndgf.org/, September 2011.

[125] NorGrid. http://www.norgrid.no/, September 2011.

[126] OnLive, Inc. OnLive.com. http://www.onlive.com, September 2011.

[127] Open Grid Forum OCCI-WG. Open Cloud Computing Interface. http:
//www.occi-wg.org/, September 2011.

[128] OpenVZ project team. OpenVZ Wiki. http://www.openvz.org, Septem-
ber 2011.

[129] P.-O. Östberg, D. Henriksson, and E. Elmroth. Decentralized, scalable,
Grid Fairshare Scheduling (FSGrid). 2011. Submitted.

[130] Parallels. Parallels Optimized Computing. http://www.parallels.com/
eu/, September 2011.

[131] F. Perez-Sorrosal, M. Patiño-Martinez, R. Jimenez-Peris, and B. Kemme.
Elastic si-cache: consistent and scalable caching in multi-tier architectures.
The VLDB Journal, pages 1–25.

[132] S. Pickles, R. Blake, B. Boghosian, J. Brooke, J. Chin, P. Clarke,
P. Coveney, N. González-Segredo, R. Haines, J. Harting, et al. The
TeraGyroid experiment. In Proceedings of the Workshop on Case Studies
on Grid Applications at GGF, volume 10, page 2004, 2004.

45

[133] R. Piro, A. Guarise, and A. Werbrouck. An Economy-based Accounting
Infrastructure for the DataGrid. In Proceedings of the 4th International
Workshop on Grid Computing (GRID2003), 2003.

[134] G. Popek and R. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17(7):412–421,
1974.

[135] Rackspace, US Inc. Rackspace Cloud. http://www.rackspace.com/

cloud/, September 2011.

[136] M. Riedel, E. Laure, T. Soddemann, L. Field, J. Navarro, J. Casey,
M. Litmaath, J. Baud, B. Koblitz, C. Catlett, et al. Interoperation
of world-wide production e-science infrastructures. Concurrency and
Computation: Practice and Experience, 21(8):961–990, 2009.

[137] D. Ritchie and K. Thompson. The UNIX time-sharing system. Commu-
nications of the ACM, 17(7):365–375, 1974.

[138] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin,
J. Tordsson, C. Ragusa, S. C. E. Levy, A. Maraschini, P. M. H. Muñoz,
G. Toffetti, and M. Villari. RESERVOIR : When one cloud is not enough.
IEEE Computer, 2011. Accepted.

[139] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Em-
merich, and F. Galán. The RESERVOIR model and architecture for open
federated cloud computing. IBM Journal of Research and Development,
53(4), 2009. Paper 4.

[140] B. Rochwerger, C. Váquez, D. Breitgand, D. Hadas, M. Villari, P. Mas-
sonet, E. Levy, A. Galis, I. Llorente, R. Montero, Y. Wolfsthal, K. Nagin,
L. Larsson, and F. Galán. An Architecture for Federated Cloud Computing.
Cloud Computing, 2010.

[141] L. Rodero-Merino, L. Vaquero, V. Gil, F. Galán, J. Fontán, R. Montero,
and I. Llorente. From infrastructure delivery to service management in
clouds. Future Generation Computer Systems, 26(8):1226–1240, 2010.

[142] M. Rosenblum. The reincarnation of virtual machines. Queue, 2(5):34–40,
2004.

[143] M. Rothstein. An airline overbooking model. Transportation Science,
5(2):180, 1971.

[144] M. Russell, P. Dziubecki, P. Grabowski, M. Krysinśki, T. Kuczyński,
D. Szjenfeld, D. Tarnawczyk, G. Wolniewicz, and J. Nabrzyski. The
vine toolkit: A java framework for developing grid applications. Parallel
Processing and Applied Mathematics, pages 331–340, 2008.

46

[145] SAP. SAP Enterprise Resource Planning. http://www.sap.com/erp,
visited April 2011, September 2011.

[146] J. Schopf. Ten actions when Grid scheduling. In J. Nabrzyski, J. Schopf,
and J. Wȩglarz, editors, Grid Resource Management State of the art and
future trends, chapter 2. Kluwer Academic Publishers, 2004.

[147] L. Seawright and R. MacKinnon. VM/370-A Study of Multiplicity and
Usefulness. IBM Systems Journal, 18(1):4–17, 1979.

[148] J. Silvestre. Economies and diseconomies of scale. The New Palgrave: A
Dictionary of Economics, 2:80–84, 1987.

[149] W. Smith, I. Foster, and V. Taylor. Scheduling with Advance Reservations.
In 14th International Parallel and Distributed Processing Symposium,
pages 127–132, 2000.

[150] SNIC. SweGrid - The Swedish GRID Initiative. http://www.snic.vr.

se/projects/swegrid, September 2011.

[151] B. Sotomayor, K. Keahey, and I. Foster. Combining Batch Execution and
Leasing Using Virtual Machines. In HPDC - The ACM/IEEE Interna-
tional Symposium on High Performance Distributed Computing, 2008.

[152] B. Sotomayor, R. Montero, I. Llorente, I. Foster, and F. de Informatica.
Capacity leasing in cloud systems using the OpenNebula engine. Cloud
Computing and Applications, 2008, 2008.

[153] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual
infrastructure management in private and hybrid clouds. IEEE Internet
Computing, 13:14–22, 2009.

[154] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Charac-
terization of backfilling strategies for parallel job scheduling. In Parallel
Processing Workshops, 2002. Proceedings. International Conference on,
pages 514–519. IEEE, 2002.

[155] H. Stockinger. Defining the grid: a snapshot on the current view. The
Journal of Supercomputing, 42(1):3–17, 2007.

[156] A. Streit, D. Erwin, T. Lippert, D. Mallmann, R. Menday, M. Rambadt,
M. Riedel, M. Romberg, B. Schuller, and P. Wieder. UNICORE - from
project results to production grids. In L. Grandinetti, editor, Grid
Computing: The New Frontiers of High Performance Processing, Advances
in Parallel Computing 14, pages 357–376. Elsevier, 2005.

[157] K. Suzaki and D. Walsh. Implementing the Combination of Time Sharing
and Space Sharing on AP/Linux. In Job Scheduling Strategies for Parallel
Processing, pages 83–97. Springer, 1998.

47

[158] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of delta
compression techniques for efficient live migration of large virtual ma-
chines. In Proceedings of the 7th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages 111–120. ACM, 2011.

[159] A. Szalay and J. Gray. The world-wide telescope. Science, 293(5537):2037,
2001.

[160] M. Szeredi. Filesystem in userspace. http://fuse.sourceforge.net/,
September 2011.

[161] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in
practice: The Condor experience. Concurrency Computat. Pract. Exper.,
17(2–4):323–356, 2005.

[162] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and
R. Wolski. A grid monitoring architecture. 2002.

[163] J. Tordsson, R. Montero, R. Vozmediano, and I. Llorente. Cloud brokering
mechanisms for optimized placement of virtual machines across multiple
providers. 2010. Submitted for journal publication.

[164] M. Tsugawa and J. Fortes. A virtual network (ViNe) architecture for
grid computing. In Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, pages 10–pp. IEEE, 2006.

[165] Ubuntu Community. CloudInit - Community Ubuntu Documentation.
https://help.ubuntu.com/community/CloudInit, September 2011.

[166] U.S. Department of Commerce. National Institute of Standards and
Technology. http://www.nist.gov, September 2011.

[167] H. Using Windows. Server 2008 job scheduler. Microsoft Corporation,
Published: June, 2008.

[168] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Cost-Optimal
Scheduling in Hybrid IaaS Clouds for Deadline Constrained Workloads.
In 2010 IEEE 3rd International Conference on Cloud Computing, pages
228–235. Ieee, 2010.

[169] L. M. Vaquero, L. Rodero-Merino, J. Cáceres, and M. Lindner. A break
in the clouds: towards a cloud definition. SIGCOMM Comput. Commun.
Rev., 39(1):50–55, 2009.

[170] S. Venugopal, R. Buyya, and L. Winton. A Grid service broker for
scheduling e-science applications on global data Grids. Concurrency
Computat.: Pract. Exper., 18(6):685–699, May 2006.

48

[171] VMWARE. VMware VMotion: Live migration of virtual machines with-
out service interruption datasheet. http://www.vmware.com/files/pdf/
VMware-VMotion-DS-EN.pdf, September 2011.

[172] VMware, Inc. VMware vCloud Express. http://www.vmware.com/

solutions/cloud-computing/public-cloud/vcloud-express.html,
September 2011.

[173] A. Waheed, W. Smith, J. George, and J. Yan. An infrastructure for mon-
itoring and management in computational grids. Languages, Compilers,
and Run-Time Systems for Scalable Computers, pages 619–628, 2000.

[174] J. Walters, V. Chaudhary, M. Cha, S. Guercio Jr, and S. Gallo. A
Comparison of Virtualization Technologies for HPC. In 22nd International
Conference on Advanced Information Networking and Applications, pages
861–868. IEEE, 2008.

[175] J. Watson. Virtualbox: bits and bytes masquerading as machines. Linux
Journal, 2008(166):1, 2008.

[176] A. Weiss. Computing in the clouds. NetWorker, 11(4):16–25, 2007.

[177] C. D. Weissman and S. Bobrowski. The design of the force.com multitenant
internet application development platform. In Proceedings of the 35th
SIGMOD international conference on Management of data, SIGMOD ’09,
pages 889–896, New York, NY, USA, 2009. ACM.

[178] A. Whitaker, M. Shaw, S. Gribble, et al. Denali: Lightweight virtual
machines for distributed and networked applications. Technical report,
Citeseer, 2002.

[179] T. White. Hadoop: The Definitive Guide. Yahoo Press, 2010.

[180] M. B. Yehuda, O. Biran, D. Breitgand, K. Meth, B. Rochwerger, E. Salant,
E. Silvera, S. Tal, Y. Wolfsthal, J. Cáceres, J. Hierro, W. Emmerich,
A. Galis, L. Edblom, E. Elmroth, D. Henriksson, F. Hernández, J. Tords-
son, A. Hohl, E. Levy, A. Sampaio, B. Scheuermann, M. Wusthoff, J. La-
tanicki, G. Lopez, J. Marin-Frisonroche, A. Dörr, F. Ferstl, S. Beco,
F. Pacini, I. Llorente, R. Montero, E. Huedo, P. Massonet, S. Naqvi,
G. Dallons, M. Pezzé, A. Puliato, C. Ragusa, M. Scarpa, and S. Muscella.
RESERVOIR - an ICT infrastructure for reliable and effective delivery of
services as utilities. Technical report, IBM Haifa Research Laboratory,
2008.

[181] A. Yoo, M. Jette, and M. Grondona. SLURM: Simple Linux Utility for Re-
source Management. In D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
editors, Job Scheduling Strategies for Parallel Processing, volume 2862
of Lecture Notes in Computer Science, pages 44–60. Springer Berlin /
Heidelberg, 2003.

49

[182] J. Yu, S. Venugopal, and R. Buyya. A market-oriented grid directory
service for publication and discovery of grid service providers and their
services. The Journal of Supercomputing, 36(1):17–31, 2006.

[183] S. Zanikolas and R. Sakellariou. A taxonomy of grid monitoring systems.
Future Generation Computer Systems, 21(1):163–188, 2005.

50

I

Paper I

Distributed Usage Logging for Federated Grids∗

Erik Elmroth and Daniel Henriksson

Dept. Computing Science and HPC2N, Umeå University
SE-901 87 Umeå, Sweden

{elmroth, danielh}@cs.umu.se
http://www.cs.umu.se/ds

Abstract: We present a non-intrusive solution to the increasingly important prob-
lem of shared logging for overlapping and federated Grid environments. The solution
addresses three usage scenarios of hierarchical Grids, mutual cross-Grid resource uti-
lization, and federated Cloud computing infrastructures. The approach is evaluated
by extending the existing SweGrid Accounting System (SGAS) with a light-weight
component that makes the system applicable to a wide range of usage scenarios. The
proposed architecture is characterized by its simplicity, flexibility, and generality, and
the new key component by its non-intrusiveness, flexibility, and ability to manage high
load. We present requirements derived from three usage scenarios, and also include
an in-depth description of the architecture and design, as well as the implementation
and performance evaluation of a new component written for use with SGAS. We con-
clude from a performance evaluation that the sharing of usage data is not likely to be
a limiting performance factor even in large-scale Grid scenarios.

Key words: accounting, shared logging, grid computing, SGAS, federated grids,
federated clouds

∗ By permission of Elsevier B.V.

53

54

Future Generation Computer Systems 26 (2010) 1215–1225

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Distributed usage logging for federated Grids
Erik Elmroth, Daniel Henriksson ∗
Department of Computing Science & HPC2N, Umeå University, SE-901 87 Umeå, Sweden

a r t i c l e i n f o

Article history:

Received 20 May 2009
Received in revised form
14 December 2009
Accepted 1 February 2010
Available online 6 February 2010

Keywords:

Accounting
Shared logging
Grid computing
SGAS
Federated Grids
Federated Clouds

a b s t r a c t

We present a non-intrusive solution to the increasingly important problem of shared logging for
overlapping and federated Grid environments. The solution addresses three usage scenarios of
hierarchical Grids,mutual cross-Grid resource utilization, and federated Cloud computing infrastructures.
The approach is evaluated by extending the existing SweGrid Accounting System (SGAS) with a light-
weight component that makes the system applicable to a wide range of usage scenarios. The proposed
architecture is characterized by its simplicity, flexibility, and generality, and the new key component
by its non-intrusiveness, flexibility, and ability to manage high load. We present requirements derived
from three usage scenarios, and also include an in-depth description of the architecture and design, as
well as the implementation and performance evaluation of a new component written for use with SGAS.
We conclude from a performance evaluation that the sharing of usage data is not likely to be a limiting
performance factor even in large-scale Grid scenarios.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Shared logging is an increasingly important problem for
accounting and usage tracking in overlapping and federated Grid
environments. Large scientific projects such as the Large Hadron
Collider [1] have outgrown the capacity of any existing single
Grid, making federations of Grids more and more common. We
present a flexible architecture for usage logging in federated
Grids, and also describe the design of a self-contained light-weight
mediator component that abstracts the sharing of usage data from
the systems involved by operating only on methods available to
regular clients. This approach is evaluated by implementing a
component primarily targeting the SweGrid Accounting System
(SGAS) [2,3]. Background information on SGAS is provided in
Section 2 to set the context inwhich this new component operates.

The accounting architecture is designed to be non-intrusive
to existing accounting system installations and to meet the
requirements of the following three usage scenarios:
• Hierarchies of (parts of) Grids.A common usage scenario in inter-

national research collaborations is that a large international or-
ganization or project is allocated fractions of several (national)
Grids. In addition to the requirements for logging for internal
reporting in each Grid, the international organizations need to
log their combined usage on all Grids in the federation.

• Mutual cross-Grid resource utilization. In order to efficientlymeet
load peaks in (e.g., national) Grids, the ability to perform inter-
Grid resource exchange is of increasing interest. This in turn

∗ Corresponding author. Tel.: +46 705709331; fax: +46 907866126.
E-mail addresses: elmroth@cs.umu.se (E. Elmroth), danielh@cs.umu.se

(D. Henriksson).

gives rise to requirements on inter-Grid logging of resource
usage, as both the producing and consuming organizations need
to document all cross-Grid resource consumption.

• Cost compensation in federated Cloud computing infrastructures.

In federated Cloud infrastructures, such as RESERVOIR [4], it
is crucial for the different sites forming the infrastructure to
accurately exchange usage data.

By analyzing the proposed architecture in light of these us-
age scenarios, we show that the solution is flexible and adaptable
enough to join arbitrary structures of hierarchies and collabora-
tions. An example of a hierarchy even more complex than the
above usage scenarios is illustrated and discussed in Section 6.

The rest of this paper is organized as follows: Section 2 presents
the background, including an overview of the SGAS accounting
system. Section 3 elaborates on the three major usage scenarios
motivating this research. The requirements of the new support for
logging in a federation ofGrids is presented in Section 4. The overall
architecture is presented and motivated in Section 5. The design
and implementation of a component realizing the architecture are
presented in Section 6 followed by a performance evaluation in
Section 7. Future work and some concluding remarks are given in
Sections 8 and 9, respectively.

2. Background

2.1. SGAS

The SweGrid Accounting System (SGAS) [5,2,3] is a capacity
allocation management system for Grid environments. Typically,
SGAS is used to maintain a credit-based allocation model where

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.02.001

55

1216 E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225

projects are granted allowances to be spent across resources on the
Grid. These allowances are collectively enforced by the resources
in a soft, real-time manner.

SGAS is a flexible service-oriented accounting system, designed
for use in a wide range of Grid environments. Independent evalua-
tions have found SGAS superior to existing alternative accounting
systems, in particular with respect to interoperability, ability for
integration, portability, accounting beyond one community, stan-
dards support, security, fault tolerance, accuracy, administration,
and verification [6,7]. The system is implemented using the Globus
Toolkit 4 (GT4) [8].

SGAS is designed for flexibility and adaptability to be used
in widely different usage scenarios. To achieve this, the system
consists of three self-sustaining components, each responsible for
a distinct and independent part of the accounting procedure [2]:

• Bank: The bank service manages usage quotas and aggregated
resource consumption for a set of resources facilitating
coordinated quota enforcement on the Grid. Credits are pre-
allocated to users and partly consumed as users run Grid jobs.
An abstract currency referred to as Grid Credits is used within
the system, making it possible to change the policies for credit
allocation and if applicable change the mapping from Grid
Credits to real currencies, without affecting the accounting
system. However, the Bank component is only concerned with
handling the accounts and the abstract Grid Credits, and is
unconcerned with the type of resources being used or how
utilization of various types of resources is mapped to Grid
Credits.

• Logging and Usage Tracking Service (LUTS): XML-based usage
records for completed jobs are published by the Grid sites and
stored in the LUTS through a Web service interface. The LUTS
uses an XML database back-end to store the usage records in a
native format.

• Job Account Reservation Manager (JARM): The JARM component
acts as a bridge between local resources and the Grid-wide
accounting context. This interaction is done by intercepting
calls between the Grid middleware component dealing with
job submission and the local resource management systems.
When such calls are intercepted by the JARM, an amount of
credits sufficient to cover the expected resource consumption
of the job are reserved prior to the job execution. The JARM
is also responsible for mapping usage to Grid Credits using
configurable policy managers. Local resource policies specify
if jobs without a successful reservation should be allowed to
execute or not (or possibly execute with a lower priority),
depending on, for example, the current load on the system.
SGAS supports different JARM implementations, making it
possible to adapt the accounting system to Grid infrastructures
with different job submission mechanisms.

A typical usage scenario for an SGAS-equipped system starts
with a job arriving at a Grid job manager, for example aWS-GRAM
or ARC GridManager, on a resource. Before the job is forwarded
to the local resource manager for execution, the JARM makes a
reservation of credits in the Bank. The amount of credits reserved
is typically based on a user-specified estimate of the maximum
amount of resources required to complete the job. If there are
sufficient credits in the Bank, the job is executed. Once the job
has completed, sufficient credits to cover the definite amount of
consumed resources is deducted from the previous reservation,
and the surplus of reserved credits (if any) is released to the Bank
account for later use. At this stage, a usage record containing the
details of the job execution is storedwithin the logging component
(LUTS).

A Grid system can use one or both of the Bank and LUTS com-
ponents. A typical example where the LUTS is used independently

of a Bank is usage scenarios where only usage logging is required,
for instance when using a periodic billing approach based on the
accumulated usage information stored in the LUTS. In this scenario
real-time quota enforcement is not required, and therefore the sys-
tem can run without the Bank component.

2.2. Usage records

Resource sharing between different Grid sites, portability, and
inter-Grid interoperability can be considerably facilitated by using
a common format for basic accounting and usage data, such as
the usage records format (OGF-UR) [9] proposed by the Open Grid
Forum (OGF) [10]. The proposal covers the basic building blocks
and representation of accounting records.

The SGAS LUTS is capable of logging any kind of XML data
supplied and is not dependent on the data conforming to the OGF-
UR format. The implementation of the component described in
Section 6 makes use of one of the properties specified in the OGF-
UR recommendation called RecordIdentity to filter out duplicate
usage records. By using a time stampattribute added to each record
upon insertion into the LUTS, it is also possible to identify recently
added records.

As discussed in Section 3.3, the OGF-URmight not be applicable
for all type of ‘‘jobs’’, but as long as the usage data is represented in
XML and contains the required RecordIdentity property, any kind
of present and future representation of usage records is compatible
with this logging and federation approach.

3. Usage scenarios

Three different usage scenarios have been identified to provide
a framework for this research. The use cases are presentedwithout
relating to the architecture proposed in Section 5, and are general
to the concept of shared logging within federated Grid and Cloud
environments.

Each use case is presented in the following subsections, cover-
ing both the general case and a specific scenario for each of the
cases. Section 6.2 reviews and evaluates the design of the proposed
federation architecture in the context of these use cases.

3.1. Hierarchies of Grids

A common usage scenario in international research collabora-
tions is that of a large international organization or project which
is allocated fractions of several (national) Grids. Each of these Grids
needs to perform usage logging for their own reporting and the in-
ternational organization needs to log their usage on all Grids. In
this scenario, it is crucial that the local resource owners maintain
control of the local resources to preserve the independence of each
collaborating Grid, and the ability to maintain functional account-
ing of local resource usage within the local Grid. A special case of
this scenario is when, e.g., a local site manages its own logging for
some or all of its resources, and subsequently wishes to share por-
tions of the usage records with other sites participating in the Grid.

An example of such collaboration is the cooperation between
the Nordic DataGrid Facility (NDGF) [11] and SweGrid [12]. NDGF
is a consortium where SweGrid is one of the participants, and a
subset of the jobs run on SweGrid are run by NDGF users. In this
scenario, the usage data from SweGrid jobs associated with NDGF
for the accounting purposes of both SweGrid and NDGF. Moreover,
SweGrid usage records concerning jobs unrelated to NDGF must
be kept private and unexposed. Since SGAS is already used in both
SweGrid and NDGF, changes to the existing SGAS environments
must be kept to an absolute minimum when adding the shared
logging capabilities.

56

E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225 1217

3.2. Mutual cross-Grid resource utilization

In order to efficiently meet load peaks in Grids, the ability to
perform inter-Grid resource exchange is of increasing interest. This
in turn gives rise to requirements on cross-Grid logging of resource
usage, as both the producing and the consuming organization
need to document all cross-Grid resource consumption. Unlike
the previous usage scenario, Grids in this scenario are not
hierarchically structured and so the sharingmust be done between
peers in a mutual fashion. From the point of view of each Grid, it is
important to monitor all local jobs run on the local infrastructure,
all local jobs run on any remote infrastructure, and also all remote
jobs run on the local infrastructure.

Consider, for instance, the two national Grids of Sweden and
Norway, SweGrid andNorGrid [13], forming an inter-Grid resource
exchange agreement. The requirements are that the usage records
related to this capacity exchange should be available for bothGrids,
while it is important to maintain confidentiality and protect usage
records that are not associated with cross-Grid usage.

3.3. Cost compensation in federated Cloud computing infrastructures

Cloud computing [14] is a term used to describe an infrastruc-
ture providing computational resources on demand, with built-in
flexibility (typically referred to as elasticity) to react to changes in
utilization and provide scalability to meet the new load. Many of
the technologies and components developed for Grid computing
can be reused for Cloud computing.

Future Cloud infrastructures are likely to be composed of more
than one collaborating site, creating a federated infrastructure
that poses new challenges for accounting of resource usage [15].
Services run on Cloud infrastructures are often different from
Grid jobs as they do not have a limited execution time and their
resource consumption per time unit may vary. This makes them
unsuitable for post-completion accounting and could also make
the usage records hard to represent using the OGF-UR format,
since these usage records are job-centric. Services, or distinct
components as a part of a service, can usually run on remote sites in
different domains, or be migrated between sites during the course
of their execution. The migration of a running service component
can potentially fragment the usage data across multiple sites.
Components of Cloud services are normally run inside virtual
machines to make the migration possible despite heterogeneous
environments. This means that accounting has to be done for
each virtual machine, or even for the combined consumption
of several virtual machines running on different administrative
domains. This can infer variations in the structure and shape of
the accounting data, increasing the importance of flexibility with
regards to the format and content of each record.

One example of a federated Cloud infrastructure is RESER-
VOIR [4]. In RESERVOIR, sites form framework agreements allow-
ing the sites to deploy service components on (or migrate services
to) another site if the amount of available local resources are in-
sufficient. The site fromwhich the service originates is denoted the
primary site, and any collaborating site running one ormore service
component is called a remote site. At any time during the service
execution it is crucial for the primary RESERVOIR site to accurately
retrieve relevant usage data from collaborating remote RESERVOIR
sites. Using RESERVOIR, usage information for each component in a
service needs to be periodically recorded by the site currently run-
ning the component, and this information has to be aggregated at
the primary site to create unified usage data for the entire service.

4. Requirements

Theuse cases in Section 3 formabase of requirements for the re-
sulting architecture. The requirements derived from the use cases

are complemented with requirements affecting performance and
security, and the following list items summarizes the requirements
on the federated logging solution:

• Req. 1 CARDINALITY: The architecture must enhance the
normal functionality of local logging by usage reporting with
different cardinality between information producers (Grids)
and logging databases (one-to-one, one-to-many,many-to-one,
and many-to-many).

• Req. 2 NON-INTRUSIVE: The shared logging functionality
should be an optional and non-intrusive addition to already
running installations of accounting systems. Changes to existing
system environments should be kept to an absolute minimum.

• Req. 3 BATCH-WISE PROCESSING: The system should allow for
batch-wise processing of usage records in order to minimize
overhead and increase throughput.

• Req. 4 DUPLICATION: For consistency and performance reasons,
the risk of duplication of usage records in the same database
should be minimized.

• Req. 5 ISOLATION: Use of shared logging should not pose
a threat to the exposure of records not associated with the
resource exchange, and only the relevant recordsmust bemade
available to collaborating parties.

• Req. 6 DATA VARIATION: The system must be flexible enough
to handle variations in information stored for accounting.

• Req. 7 AUTONOMY: The system must allow resource owners
and individual Grids to preserve autonomy.

• Req. 8 MULTIPLE FEDERATIONS: A Grid must be able to
participate in more than one federation at a time. For example,
a single Grid should be able to participate in two or more
hierarchical Grids and a mutual exchange setup at the same
time.

5. Architecture

Four different architectural approaches have been evaluated
with respect to the requirements presented. The approaches are
briefly described below, together with some details about why the
selected approach has been found advantageous over the other
three. In the description below, the term database is widened to
include also entire logging components such as the SGAS LUTS.

• Common centralized database. In this approach, each collabo-
rating Grid defers its own usage logging database and instead
performs all usage logging in a common database used by all
participating Grids. In effect, each resource directly sends all
logging data to a database common for the collaborating Grids
instead of to a database specific to each Grid. This approach
clearly facilitates the aggregation of usage data independently
of which Grid has been used. However, it violates several of
the above requirements, including that it affects the individ-
ual Grids’ autonomy, it poses risks to the privacy of data not
relevant to the federation, and it has serious scalability limita-
tions as different Grids enter multiple different collaborations
or takes part in several concurrent exchanges or hierarchical ar-
rangements.

• Resource-driven shared logging. Logging into multiple databases
can be done by having each resource directly perform usage
logging to more than one target database. The databases can
be individually selected for each resource consumption, and the
additional logic to achieve this can be placed at the resources.
Although this approach can be developed to meet most of the
requirements, it has a major weakness in the complexity added
to each resource. This in turn has consequences in the form
of additional administrative burdens for each individual Grid
resource when new Grid collaborations are formed, as well as
performance penalties at the time of job submission. Another

57

1218 E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225

drawback of this approach is that it requires modifications of
the components within the accounting system that performs
the usage logging to support logging to a changing set of
databases. However, it should be noted that if Grid-wide usage
quota enforcement also is to be performed towards multiple
instances, this approach may have to be reconsidered.

• Client-level shared logging. With client-level shared logging we
refer to relying on a single client to perform reading froma set of
source databases and posting the results to one or more target
databases. The client can reuse existing client interfaces to read
and write the data, and this way neither the source nor target
databases will be aware of the sharing taking place. This means
that the source and target databases can remain unaware of
the sharing procedure, and no alternation of the databases is
required. Another advantage is that several kinds of databases
can be included in the sharing procedure if they offer the same
kind of interfaces, or if the component responsible for the
interactions is adapted to support the different technologies.
The main drawback with this approach is that the data to be
shared between a set of databases is sent twice, once from
the source database to the client and once from the client to
the target database. This is quite similar to, e.g., how RSS [16]
feeds can be combined to form a single digest (see, e.g., [17])
where only thosematching a specified pattern are included. The
digested RSS feeds and the client-level shared logging approach
share the same weakness since the data is being sent (at least)
twice, but they also share the same advantages since data can
be combined and filtered from several different sources while
still keeping the final consumer (or target database) unaware of
this procedure.

• Materialized database views. Another approach with similarities
to the client-level shared logging described above is that of
materialized views [18], which is an established technique to
create database views that can be updatedwhen the underlying
data changes. This can also be applied to distributed databases,
making it possible to host a specific materialized view in a
single database which would have similar properties to that of
a target database in the approach above, since data from several
sources matching a specified pattern in both cases would be
sent to a unified location even before it is requested. The main
drawback with these approaches is that the materialized views
approach is less generic as it requires an underlying database
software with support for generating and maintaining these
kind of views. It is also considerably harder to make several
different accounting systems use the same database software
as opposed to creating a client-level shared logging component
capable of communicating with several different interfaces.
Based on the above analysis, the client-level shared logging

approach is determined to be the most suitable approach in or-
der to achieve the distributed usage logging for federated Grids.
Compared to the other alternatives, this approach has substantial
advantages in terms of decentralization, non-intrusiveness, Grid
autonomy, and ease of integration with already running account-
ing system installations. The performance, efficiency, and stability
of the different solutions are of less importance for this decision,
as we argue that the above non-technical factors are more rele-
vant in order to meet the requirements. However, we still have to
ensure that performance is not a bottleneck, and for that reason a
performance evaluation of the suggested approach can be found in
Section 7.

Of the non-technical factors listed above, the most central one
is the non-intrusiveness and abstraction offered by doing the in-
teraction with the databases using the normal client interfaces
for reading and writing records. This offers great advantages in
flexibility as the underlying specifics of each database compo-
nent can be ignored, and also makes it possible to support sev-
eral different accounting system technologies by implementing

technology-specific clients (or using a common interface, if pos-
sible). Widespread use of a common format (such as the OGF-
UR recommendation) makes it likely that the usage records are
represented in the same format across different accounting sys-
tems. If this is not the case for a particular accounting system, the
technology-specific parts of the client-level shared logging com-
ponent can be extended to perform a transformation of the data
into the common format before transferring the data to the target
database. The drawback of having to send the data twice can be
mitigated by co-hosting the client with either the source database
or the target database. These alternatives are elaborated on later in
upcoming sections.

In our case, we have chosen SGAS as the accounting system
in which to implement the client-level approach. The remaining
sections describes and evaluates a proposal for an architecture
that is implemented using SGAS. The proposed architecture is
presented in the next subsection, and its ability to meet the
requirements from Section 4 is further investigated in Section 6.2.

5.1. Architecture for Client-level shared logging in SGAS

In SGAS, usage records are normally stored within a LUTS
component running within the administrative domain of the Grid.
The proposed architecture extends the existing SGAS logging
functionality with an additional component that can filter out and
forward usage record between sets of LUTSes at regular intervals.
We refer to this component as the LUTS federation component
(LUTSfed). This component is designed to act as a client from the
point of view of each LUTS, and reuse the client mechanisms for
reading and writing records.

Two of the key features of the proposed architecture are
simplicity and flexibility. The architecture is designed to be easy to
comprehend, modify, and extend in the future. By reusing existing
functionality we can rely on the native database of the source LUTS
to compose result sets of usage records to be sent along to the
target LUTSes, the components in the architecture of the LUTSfed
are kept minimalistic and light-weight. This has a positive impact
on scalability and performance, and all future improvements to
the reused code in SGAS will be automatically adopted by the
federation component.

By using specific queries when reading from the source LUTS,
the set of usage records to be shared can be limited to a subset of
the available records, e.g., those related to a specific project or all
records that have a specific tag for this purpose. The database back-
end of the LUTS natively supports XPath [19] queries. XPath is able
to select sets of XML instances based on the value of any attribute
or element in the instance, which means that the queries can be
constructed to target any part of the usage records, regardless if
these records comply with a common format or not.

Since the LUTSfed component is independent of any specific
LUTS instance, it can (given sufficient permissions) operate on a set
of source LUTSes and send the resulting data along to a set of target
LUTSes. This way, the component supports different cardinality
between the sources and targets. Fig. 1 shows an overview of the
interaction between the new LUTSfed component and the LUTSes
of two different existing SGAS installations. Of course, the LUTSfed
component can also be used to share usage records within a Grid,
e.g., from a LUTS running at a local site to another LUTS responsible
for Grid-wide accounting.

The LUTSfed can be hosted and maintained either within the
administrative domain of the source LUTS, the target LUTS, or by a
third party. Security ismaintained regardless of the environment in
which the LUTSfed component is run by using the existing security
architecture from GT4 including the fine-grained authorization
support contributed by SGAS [3]. However, accessing usage records
published by other users requires super-user privileges, and since
sharing such privileges could possibly violate the isolation of usage

58

E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225 1219

Fig. 1. An overview of the LUTSfed interaction with existing LUTSes. The federation component reads usage records from one or more sources, and publishes the results to
one or more targets.

Fig. 2. A sample LUTSfed entry file. Each entry contains a source, a query, and one or more targets.

records not being relevant to the federation, it is recommended to
run the LUTSfed component in conjunction with the source LUTS.

6. Design and implementation

As stated in Section 4, one requirement for the LUTSfed com-
ponent is to harmonize with other components of the accounting
systems. In the SGAS case, this is achieved by preserving the
service-oriented approach used in the SGAS design, and by imple-
menting the LUTSfed component as a stand-alone Web service ca-
pable of running either in its ownWeb service container or within
the same service container as other SGAS components.

When the LUTSfed is initialized it reads user configured entries

from the entry file. A simple example of an entry file is illustrated in
Fig. 2. Each entry specifies a source LUTS, an XPath query, and one
or more target LUTSes. This enables shared logging using multiple
queries with multiple sources and targets using a single LUTSfed
component.

SGAS provides functionality for periodic task scheduling, very
much like a server-side cron (scheduled periodical execution)
mechanism. On every iteration, each entry from the entry file is
processed as shown in Fig. 3, in the order they are specified. The
length of the period between executions can be adjusted in a
configuration file, and this file is automatically reloaded without
restarting the LUTSfed. The LUTSfed also reuses existing SGAS
code for querying and publishing records. Reuse of these methods
ensures that the interactionwith the LUTS components is the same
regardless of whether records are published using a JARM, a client
program, or as a part of the sharing procedure.

The LUTS automatically adds a creationTime attribute to records
when they are added to the database. To avoid conflicts, this
data has to be removed from the usage records before they are
forwarded to a target LUTS. This removal of the creation time
attribute is required since a LUTS does not accept records where
this attribute already exists.

The querying mechanism in LUTSfed automatically augments
the queries with time constraints. This can reduce the size of the
result sets considerably as only records added since the last inter-
action are selected. This is achieved by appending an additional
XPath constraint, targeting the LUTS creationTime attribute, to the
query specified by the user. The time stamp used in this filtering is
the time stamp of the most recent record previously processed for
this entry and target, and LUTSfed stores these time stamps persis-
tently by using a time stamp data access object (DAO).

Fig. 3. Overview of the main LUTSfed interactions when evaluating an entry. The
LUTSfed component sends a query to the source LUTS and forwards the result set to
the target LUTS. The query includes the time stamp of the most recently processed
record to avoid processing older records several times, and these time stamps are
managed by the time stamp DAO.

Result sets obtained from the source LUTSes are processed
batch-wise to reduce the memory footprints related to creating
and parsing potentially large amounts of SOAP wrapped data. A
result of the abovementioned time stamp filtering approach is that
at most one redundant batch of records is processed after a crash.

The LUTSfed component receives the records as plain text
representing XML. This data does not have to be unmarshalled
(and subsequentlymarshalled) in the LUTSfed, which considerably
reduces the load on this component.

6.1. SGAS improvements related to its use in federations of Grids

A few general improvements to SGAS have been made during
the development of the architecture of the LUTSfed component.
These improvements are valuable also in environments not using
the LUTSfed component, but are of particular interest in this
context as they eliminate the risk of duplication of usage records
in the LUTS. In Section 7, it is shown that the performance impact
of these changes is negligible.

• Duplicated records can, e.g., due to misconfiguration or restart
of a client, be published in a target LUTS. To compensate for
this, the LUTS database has been modified to allow only one
record with the same RecordIdentity attribute (see Section 2.2).
XML instances that donot contain this attribute are not affected.
Moreover, in case alternative ways of publishing entries to the

59

1220 E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225

LUTS become available in the future, the logging system can
with this improvement avoid duplicates without relying on the
client(s) to guarantee uniqueness of input data.

• Another modification related to the one mentioned above is
that the LUTS database now uses a unique time stamp per
record, instead of a unique time stamp per batch of records.
This is achieved by using simple mutual exclusion directives
when assigning the time stamps, ensuring that the time stamp
is unique. In additions to the effects alreadymentioned, this also
makes the architecture more resilient to crashes during large
batch processing.

6.2. Applicability to use cases

This section reviews the design and implementation of the
proposed architecture for shared logging in general and the
LUTSfed component in particular, in terms of the use cases
specified in Section 3. The requirements specified in Section 4 are
fulfilled as follows:

• Req. 1 CARDINALITY: The logging procedure is enhanced with
inter-site loggingwith support for different cardinality (one-to-
one, one-to-many, many-to-one, and many-to-many) defined
in the entry file (shown in Fig. 2). For environments with strict
security requirements, many-to-one andmany-to-many can be
achieved by using several LUTSfed instances.

• Req. 2 NON-INTRUSIVE: The LUTSfed is an optional and non-
intrusive addition to already running instances of SGAS, as the
component can be added without affecting already existing
components. It can be run in the same service container as
other components or in a dedicated one. No modifications to
the existing SGAS environment are required.

• Req. 3 BATCH-WISE PROCESSING: In LUTSfed, usage records
are processed batch-wise, reusing existing SGAS code for this
purpose.

• Req. 4 DUPLICATION: The LUTSfed implementation presented
avoids redundant record processing by augmenting the queries
sent to the source LUTS with time stamps of the most recently
processed record for each entry and target.

• Req. 5 ISOLATION: The LUTSfed component reuses the security
framework employed by the other SGAS components. By
running the LUTSfed component in the same administrative
domain as the source LUTS, the sharing can be easily configured
to ensure that only relevant records are made available to
collaborating parties.

• Req. 6 DATA VARIATION: Any XML-based usage records that
contains a RecordIdentity element can be managed by the
LUTSfed component without any limitations on functionality.
The queries can be designed to filter on any available element
or attribute of the relevant usage records.

• Req 7 AUTONOMY: The LUTSfed only makes use of Grid-
specific LUTSes using their native interfaces and without
any requirements that affects the Grids’ or resource owners’
autonomy.

• Req 8 MULTIPLE FEDERATIONS: The inherent flexibility of the
LUTSfed componentmakes possible to formarbitrary structures
and hierarchies of LUTSes, while still hiding this sharing
procedure from the underlying accounting system.

To meet the requirements of the three usage scenarios, the
presented architecture can be configured as follows.

In the hierarchical Grid usage scenario, shared logging can be
used to easily aggregate the usage records of all jobs related to
the multi-Grid project run on any participating site, while the
participating site can share the appropriate usage records without
exposing data about unrelated jobs. This can be achieved by using
a simple hierarchical structure where the participants relay usage

records to a centralized LUTS using their own instance of the
LUTSfed service (see Fig. 4).

However, if a sufficient trust relation is established between the
sites, or if the requirement of total privacy for usage records not
relevant to the federation can be relaxed, there is an alternative
configuration for this use case. By hosting the LUTSfed component
at a third (trusted) party or within the site of the target LUTS, the
same LUTSfed component can be used for extracting data from all
contributing Grids. This configuration is illustrated in Fig. 5.

The inter-Grid resource utilization use case can be solved using
the same setup as initially discussed in the hierarchical Grid
usage scenario, but the drawback is that usage records related
to the inter-Grid utilization would be published in a separate
LUTS compared to the usage records of unrelated jobs. This could
complicate report generation, since records from more than one
LUTS have to be collected and processed. Another approach is to
cross-link the existing LUTSes of the different Grids, and share
usage records between them. This approach is illustrated in Fig. 6.
Since participants run their own LUTSfed components, records that
are not related to the federation are ensured to remain private and
unavailable from other sites.

The scenario concerning cost compensation in federated Cloud
computing infrastructures (Scenario 3) can be solved using the
same setup as shown in Fig. 4, but has higher demand on
flexibility because services can be migrated between sites during
their execution. The LUTSfed can be configured to filter usage
records on any attribute or value identifying the site of origin,
and any matching usage records are then transferred back to and
aggregated in the LUTS of the originating site.

Notably, if sufficient trust relations are established, e.g., via a
common trusted party, the LUTSfed-based architecture allows for
great flexibility. For example, in a scenario where SweGrid and
NorGrid both performs cross-Grid resource utilization and (each of
them individually) contributes resources to NDGF, an architecture
can be set up with anything from four LUTSfed instances (each
having one of the roles illustrated above) to one LUTSfed taking
care of all sharing of usage data.

A more complicated usage scenario, along with a proposed
solution, is shown in Figs. 7 and 8. The specifications for this
scenario are as follows:

• Grid A and B have a mutual exchange of usage records across
Grid boundaries, and also participate (possibly with several
other Grids) in Collaboration 1.

• Collaboration 1 may in turn be a part of other larger
organizations, so usage records originating from jobs run on
behalf of Collaboration 1 must be aggregated on and managed
collectively.

• Grid C also is a part of the scenario, but does not have any formal
collaborations with A or B.

• Each Grid have several sites contributing resources (but only
those for Grid A, Site X–Z, are covered in more detail).

• Site X has no local need for storing usage info, and can share any
usage records on a Grid-wide level.

• Site Y and Z contribute only with part of their resources to Grid
A, and Site Z also contribute with some resources to Grid C.

The above usage scenario can be managed by using several
instances of LUTSes and LUTSfed components. Fig. 7 shows the
proposed solution at the inter-Grid level, and here each Grid
and the collaboration hosts a LUTS of their own to manage
records common for organization. Grid A and B also host LUTSfed
components that manage both the mutual sharing of records
with each other, and also the sharing of usage records related to
Collaboration 1. The collaboration also hosts a LUTSfed component
to manage the sharing of records with any larger projects or
organizations the collaboration is a part of.

60

E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225 1221

Fig. 4. Overview of a shared logging scenario in the context of the Grid hierarchy usage scenario (Scenario no. 1). Each Grid that is to forward accounting data to the
higher-level LUTS runs their own LUTSfed component, forwarding (a subset of) their usage records to a centralized LUTS.

Fig. 5. An overview of a second approach to the Grid hierarchy usage scenario (Scenario no. 1). A LUTSfed component within a trusted environment queries the LUTSes of
participating Grids.

Fig. 6. In the cross-Grid utilization usage scenario (Scenario no. 2), each participant run its own LUTSfed component responsible for transferring usage records to the LUTS
running on any cooperating Grid.

The internal setup of Grid A is shown in Fig. 8. Since Site X has
no need for local logging, the usage records from its resources are
sent directly to the LUTS of Grid A. Site Y has a LUTS of its own
to manage the local logging, but allows the LUTSfed component of
GridA to read and share the relevant records. Site Z also contributes
to Grid C, and therefore a local LUTSfed component is responsible
of sharing records with the LUTSes of both A and C depending on
which Grid is responsible for the job.

7. Performance evaluation

The proposed architecture for shared logging provides great
flexibility for configuration in terms of the number and placement
of LUTS and LUTSfed components. Hence, the performance
of the system follows directly from the performance of the
individual components. The performance of the LUTS component
is thoroughly analyzed in [2]. In this section, we present a
performance analysis for the LUTSfed component and discuss the
overall system performance.

The performance evaluation of the LUTSfed component has
been measured in a test environment with 17 identical machines,
each equipped with an Intel Core 2 Quad Q9300, 4 × 2500 MHz
CPU, 4 GB ofmemory, and connected to a shared 100Mbit network
with several switches (some of which are connected to a Gigabit
backbone, thus allowing the total amount of data concurrently
being transferred to exceed 100Mbit). Each node is runningDebian
5 (kernel 2.6.27.3) as the operating system, and GT4 4.0.8 as the
service container.

All computers in the test environment run components based
on SGAS version 2.2.0. Eight nodes were set up to host the source
LUTSes, and another eight were configured to host the set of
target LUTSes. The LUTSfed component was installed on the 17th
machine, and the total execution time of each test was measured
from the time the query was initiated in the LUTSfed component
to when the final insert was completed in all target LUTSes.

The LUTSfed component was configured to transfer all records
matching a simple query, using an entry file similar to the one

61

1222 E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225

Fig. 7. Grids A and B share usage records with each other, and also with a joint Collaboration 1. The Collaboration can in turn forward the records elsewhere. Note that
Grid C is omitted in this illustration.

Fig. 8. Sites X, Y, and Z all contribute to Grid A, and Site Z also contributes to Grid C. Site X publishes records straight to the LUTS of A. Site Y hosts a LUTS of its own, so
relevant records are transferred to the LUTS of A using the common LUTSfed instance. Similarly, Site Z shares relevant records with both A and C, but in this case using a
local LUTSfed instance.

shown in Fig. 2, which was modified to incorporate up to eight
sources and targets, respectively. Before each test, the sourceswere
loaded with pre-generated sets of usage records, where different
subsets of the records matched the specified query. Each usage
record was based on a single authentic usage record from an
existing SGAS environment, with a modified identity to make each
record unique.

In the evaluation, we present measurements covering both
many-to-one scenarios where records from several source LUTSes
are sent to a single target LUTS, and one-to-manywhere one source
LUTS shares its records with several target LUTSes. Pure write
and read operations in the LUTSes were also measured to give
an indication of the maximal performance of these operations.
In these measurements, reading 100,000 records all matching a
specified query took 218 s, and writing 100,000 unique records
took 259 s. (Also see Fig. 11 for comparisons between times for
writing and record sharing.) Note that when using the LUTSfed
component, the component first reads a small amount of records
from the source, and then publishes these records to the target

using a separate thread. Therefore, reading from the source and
writing to the target can be performed in parallel.

The result of the first set of tests is summarized in Fig. 9. Here,
records from a single source LUTS are transferred to one, two,
four, or eight different target LUTSes using the same query. Tests
where performed using sets of usage records with 1%, 10%, and
100% shares of records matching the XPath query, respectively.
Fig. 9 shows that the time to transfer data from a single source
to several targets is at most linear with respect to the number
of targets. The fact that the time is less than proportional to the
number of targets is explained by the source’s ability to cache data
to be transferred, which here is possible as the same query used to
filter out data to be transferred to all sources.Writing operations in
the target LUTSes can also be done in parallel to read operations in
the sources, which increases the general throughput of the system.
For very large amounts of data, the limited network capacity will
become the limiting factor.

Fig. 10 shows the results of transferring (sharing) records from
many different sources to a single target LUTS. Note that the same

62

E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225 1223

Fig. 9. Usage records are shared between a single source LUTS and several target
LUTSes. Sets of 100,000 usage records are used, and the share of matching usage
records is either 1%, 10%, or 100%.

Fig. 10. In this scenario, usage records are transferred from several sources to a
single target LUTS. Sets of 100,000 usage records with either 1%, 10%, or 100% of
the records matching the specified query are also used in this scenario. A memory
limitation prevents testing the case where a total of 800,000 records are sent from
all eight sources to a single target LUTS.

measurements between a single source and a single target are
included both in this scenario and in the previous one. As can
be seen in the figure, the results are approximately linear with
respect to the number of sources. As previouslymentioned, reading
the records consumes less time than writing the records, and so
writing to the target becomes the limiting factor in this scenario.

The case where a total of 800,000 records are sent from eight
different sources to a single target could not be completed due
to a memory limitation of the Java container for the target LUTS
in our test environment. The maximum heap size in Java on 32-
bit Linux is roughly 1.7 GB [20], and very large amounts of data
inserted into the SGAS database back-end over a short period
of time will cause the virtual machine to run out of memory,
as memory cannot be freed quickly enough by the Java Garbage
Collector. This limitation can be avoided simply by performing the
sharing of usage records more often, since this keeps the memory
requirements down, but this is not interesting with regards to this
performance evaluation as this in effect already is covered by the
four-to-one usage scenario, running twice as often.

To put the measurements presented in Fig. 10 in perspective,
the time to perform only writes to a target LUTS from several
other computers was also measured. These measurements were
performed by isolating the write calls in the LUTSfed component,

Fig. 11. The time of the total sharing process compared to the time performing
only inserts of generated usage records in a remote LUTS. The time measurements
are for 100,000 records per source, both for sharing and for pure inserts.

using data generated dynamically to avoid any IO overhead. These
measurements are illustrated in Fig. 11.

From these figures combined, we can conclude that the usage
record sharing does not infer a substantial overhead compared to
doing writes directly to the database. The average delay of sharing
compared to purewrite operations is 150µs,which is about 6.5% of
the average total processing time. Because the difference between
sharing records and pure write operations is so small, we can
conclude that reading from the source LUTS and publishing to
the target LUTS has been successfully parallelized. We can clearly
see that the one-to-many scenario scales at least linearly with
the number of targets, due to data caching in the source. In the
many-to-one case, the times for sharing also scales linearly with
regard to the amount of sources. In the worst case scenario (four-
to-one), records were shared at a rate of approximately 2.2 ms per
record, or just below 450 records per second. Notably, the ability
to transfer 450 records per second is sufficient for most realistic
usage scenarios today.

As an extreme example, let us consider a scenario where
we need to transfer all data for a federated Grid from several
distributed LUTSes into a single LUTS using a single LUTSfed
component, and that the federated Grid includes one million
compute nodes running jobs with an average duration of one hour.
In this case, the single LUTSfed component would have to run for
37 minutes every hour. As the sharing is initiated and controlled
by the LUTSfed component, rather than by each compute node,
the gathering of records can be done in sequence without risk of
congestion in case all nodes would happen to finish their jobs at
the same time. If such or evenmore extreme use is anticipated, we
would argue that a scalable deployment usingmultiple LUTSes and
LUTSfed components would be amore normal configuration of the
proposed architecture. As amatter of fact, with current technology,
the ability to efficiently manage, aggregate, and in other waymake
efficient use of millions of user records per hour is more of a
challenge than to make the proposed shared logging architecture
scale to these numbers.

Comparing themeasurements between, e.g., running the eight-
to-one scenario with 10% matching records (for a total of 80,000
records in this case) and simply writing the equivalent of 100,000
matching records to the LUTS yields some interesting results. In
this case, running eight-to-one is considerably faster even though
the amount of data to transfer is only reduced by 20%. This is
because when a single thread is doing only writes to the database
(as in the test conducted) a new call to the target LUTS has to be
done per part of the data set. If there aremultiple threadswriting to
a LUTS at the same time, processing an incoming call to the service

63

1224 E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225

in the front-end of the LUTS can be performed in parallel to a write
operation in the database located in the back-end. This means that
several concurrent write operation will be faster than a sequence
of operations managed by a single thread. The same behavior can
also be observed in the one-to-many scenarios, comparing, e.g., the
time towrite 10%matching records to eight different target LUTSes
compared to writing 100% matching records once to a single LUTS.
The differences are even more clear in this case, since the one-
to-many scenarios can rely extensively on the database cache to
reduce the effects of read operations, while the call processing
overhead stays the same.

We remark that the sharing of usage data is normally not a time
critical process, and therefore is performed in batches at regular
intervals, such as once per day. Therefore, even in today’s largest
Grids, the sharing of usage records in realistic scenarios will be
performed in minutes, or even seconds.

The performance of the modified LUTS (see Section 6.1) was
also compared to the previous version of SGAS. In this test, a set
of 100,000 records as before was used, with 10% of the records
matching the specified query. The total time for sharing these
records was measured several times using both target LUTSes
running SGAS version 2.0 and target LUTSes running the modified
2.2.0 version. No significant difference in performance based on
the SGAS version could be observed, and this clearly motivates the
choice of additional resilience offered by these improvements.

8. Related work

Shared logging is an increasingly more important problem
for accounting in overlapping and federated Grid environments.
Despite this fact, the problem has so far only been shown
limited attention in the literature. This could partly be due to the
substantial amounts of efforts still being devoted to developing
appropriate accounting solutions within specific Grids, and partly
because of the additional complexities introducedbyGrids running
different middlewares and accounting systems.

However, some related projects should be highlighted. For
example, the DEISA project [21] has put efforts into accounting
systems with sharing functionality similar to the one described
in this paper, although low-level details of their solution are not
presented [22].

With the aim to facilitate exchange of accounting data between
Grids, the OMII-Europe [23] has been working on interoperability
betweendifferent accounting systems bymaking themsupport the
RUS interface [24].

Very much related to the problem of usage logging in federated
Grids are the challenges involved with creation federations or
collaborations that incorporates existing Grid solutions. One
approach based on a common gateway component and peering of
requests is presented in [25]. Another approach presented in [26]
is to create a hierarchy of Grids by abstracting remote Grids and
presenting them to the local system in the same way as a local
resource. These approaches can both be seen as suitable usage
scenarios for the work presented in this paper.

Other clearly related work includes a range of accounting
systems, and the German D-Grid evaluation and comparison of
seven such systems (APEL, DGAS, GASA, GRASP, GSAX, Nimrod/g,
and SGAS) [6]. Notably, also the D-Grid efforts aim at an
architecture involving multiple accounting systems.

9. Concluding remarks

We have proposed a solution to the problem of federated
Grid accounting by evaluating and presenting an architecture for
shared logging. The proposed architecture has a strong focus on
being optional and non-intrusive for existing accounting system

installations, while still offering extensibility and adaptability to
support complex usage scenarios. We have also presented the
implementation of a component for use in SGAS environments that
has been used to evaluate the performance of the approach.

The resulting LUTSfed component is highly configurable, light-
weight, and flexible enough to cover a wide range of usage
scenarios. Based on the performance evaluation presented, we
conclude that the performance of the new LUTSfed component is
sufficient for not being a bottleneck in realistic scenarios also on
the most large-scale Grids of today.

General improvements to SGAS have also been made during
this research, and performance evaluations show that we achieve
greater resilience and reliability at an insignificant cost in
performance.

The future plans for the extended SGAS architecture include
further research on how to achieve shared logging in a, in terms
of middlewares and accounting systems, heterogeneous envi-
ronment. Outside the scope of this research project is also the
customization and adaption of the presented architecture for pro-
duction use. The use of the federated logging approach to provide
usage data for performing Grid-wide fairshare scheduling [27] will
also be investigated.

Acknowledgements

This work has been supported by the Swedish Research Council
(VR) under contract 621-2005-3667, and by the RESERVOIR project
supported by the European Community’s Seventh Framework
Program under grant agreement no. 215605. This research was
conducted using the resources of High Performance Computing
Center North (HPC2N).

We are grateful to Josva Kleist, Lars Larsson, Mats Nylén, Henrik
Thostrup Jensen, Johan Tordsson, and Mattias Wadenstein for
providing feedback on, and improving the quality of this work.

We are also grateful to the anonymous referees for their
valuable comments and suggestions.

References

[1] LHC project webpage, December 2009. http://lhc.web.cern.ch/lhc/.
[2] P. Gardfjäll, E. Elmroth, L. Johnsson, O.Mulmo, T. Sandholm, ScalableGrid-wide

capacity allocation with the SweGrid Accounting System (SGAS), Concurrency
and Computation: Practice and Experience 20 (18) (2008) 2089–2122.

[3] T. Sandholm, P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, A service-
oriented approach to enforce Grid resource allocations, International Journal
of Cooperative Information Systems 15 (3) (2006) 439–459.

[4] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente, R. Montero,
Y.Wolfsthal, E. Elmroth, J. Caceres,M. Ben-Yehuda,W. Emmerich, F. Galán, The
RESERVOIR model and architecture for open federated cloud computing, IBM
Journal of Research and Development 53 (4) (2009) Paper 4.

[5] E. Elmroth, P. Gardfjäll, O. Mulmo, T. Sandholm, An OGSA-based bank service
for grid accounting systems, in: J. Dongarra, et al. (Eds.), Applied Parallel
Computing. State-of-the-art in Scientific Computing, in: Lecture Notes in
Computer Science, vol. 3732, Springer-Verlag, 2005, pp. 1051–1060.

[6] C.-P. Rückemann, W. Müller, G. von Voigt, Comparison of grid accounting
concepts for D-Grid, in: Proceedings of the Cracow Grid Workshop, CGW’06,
Academic Computer Centre CYFRONET AGH, Cracow, Poland. October 15–18,
2006.

[7] M. Göhner, M. Waldburger, F. Gubler, G.D. Rodosek, B. Stiller, An accounting
model for dynamic virtual organizations, Journal of Grid Computing 7 (2)
(2009) 181–204.

[8] I. Foster, Globus toolkit version 4: Software for service-oriented systems,
Journal of Computer Science and Technology 21 (4) (2006) 513–520.

[9] R. Mach, R. Lepro-Metz, B.A. Hamilton, S. Jackson, L. McGinnis, Usage record
format recommendation, Draft Rec-UR-Usage, Global grid forum, Usage record
WG, March, 2005.

[10] Open grid forum, December 2009. http://www.ogf.org/.
[11] Nordic data grid facility, December 2009. http://www.ndgf.org/.
[12] SweGrid, December 2009. http://www.swegrid.se/.
[13] NorGrid, December 2009. http://www.norgrid.no/.
[14] National institute of standards and technology, systems and network security

group, Draft NIST working definition of cloud computing, 2009.

64

E. Elmroth, D. Henriksson / Future Generation Computer Systems 26 (2010) 1215–1225 1225

[15] E. Elmroth, F. Galán, D. Henriksson, D. Perales, Accounting and billing for
federated cloud infrastructures, in: 2009 Eighth International Conference on
Grid and Cooperative Computing, GCC 2009, IEEE Computer Society Press,
ISBN: 978-0-7695-3766-5, 2009, pp. 268–275.

[16] D. Winer, RSS 2.0 specification, 2003,
http://cyber.law.harvard.edu/rss/rss.html.

[17] Feed informer, December 2009. http://feed.informer.com.
[18] A. Gupta, I.S. Mumick, Maintenance of materialized views: Problems,

techniques, and applications, Bulletin of the Technical Committee on Data
Engineering 18 (1995) 3–18.

[19] J. Clark, S. DeRose, et al., XML Path Language (XPath) Version 1.0, W3C
Recommendation 16 (1999) 1999. http://www.w3.org/TR/1999/REC-xpath-
19991116/.

[20] E. Pasch, Linux on system z performance hints & tips,
http://www.linuxvm.org/present/SHARE111/S2591ep.pdf.

[21] Distributed European infrastructure for supercomputing applications web
page, December 2009. http://www.deisa.eu/.

[22] J. Reetz, T. Soddemann, B. Heupers, J. Wolfrat, Accounting facilities in the
European supercomputing Grid DEISA. 2007.

[23] OMII-Europe project page, December 2009. http://omii-europe.org/.
[24] S. Newhouse, J. MacLaren, Resource usage service RUS. global grid forum

resource usage service working group draft-ggf-rus-service-4, 2005.
[25] M.D. De Assunção, R. Buyya, S. Venugopal, InterGrid: A case for internetwork-

ing islands of Grids, Concurrency and Computation: Practice and Experience
(CCPE) 20 (8) (2008) 997–1024.

[26] E. Huedo, R.S. Montero, I.M. Llorente, A recursive architecture for hierarchical
grid resource management, Future Generation Computer Systems 25 (4)
(2009) 401–405.

[27] E. Elmroth, P. Gardfjäll, Design and evaluation of a decentralized system for
grid-wide fairshare scheduling, in: e-Science, IEEE Computer Society, 2005,
pp. 221–229.

Erik Elmroth is Professor, Head of the Department of
Computing Science, and Deputy Director for the High Per-
formance Computing Center North (HPC2N), at Umeå Uni-
versity, Sweden. His research background includes grid
computing, parallel computing, algorithms for managing
memory hierarchies, linear algebra library software, and
ill-posed eigenvalue problems. He is co-recipient of the
SIAM Linear Algebra Prize 2000, for the most outstanding
linear algebra publication world-wide during the preced-
ing three-year period. He currently leads the Grid comput-
ing research (www.gird.se) at Umeå University, focusing

on infrastructure and application tools for grid and federated cloud computing. In-
ternational experiences include a year at NERSC, Lawrence Berkeley National Lab-
oratory, University of California, Berkeley, and one semester at the Massachusetts
Institute of Technology (MIT), Cambridge, MA. Erik is member of the Swedish Re-
search Council’s Committee for Research Infrastructures (KFI) and Vice Chair of its
expert group on e-science. He has been appointed the Scientific Secretary for two
e-science groups of the Nordic Council of Ministers (NCM).

Daniel Henriksson is a Ph.D. student at the Department
of Computing Science, Umeå University, Sweden. He
received hismasters degree in Computing Science in 2007,
and began a Ph.D. program shortly after finishing his
masters degree. His research areas are Grid and Cloud
computingwith topics such as accounting, federated Grids
and Clouds, and elastic Cloud infrastructures.

65

66

II

Paper II

Accounting and Billing for Federated Cloud
Infrastructures∗

Erik Elmroth1, Fermı́n Galán Márquez2, Daniel Henriksson1, and
David Perales Ferrera2

1 Dept. Computing Science and HPC2N, Umeå University
SE-901 87 Umeå, Sweden

{elmroth, danielh}@cs.umu.se
http://www.cs.umu.se/ds

2 Telefónica Investigación y Desarrollo, Spain
{fermin, perales}@tid.es

http://www.tid.es

Abstract: Emerging Cloud computing infrastructures provide computing resources
on demand based on postpaid principles. For example, the RESERVOIR project de-
velops an infrastructure capable of delivering elastic capacity that can automatically
be increased or decreased in order to cost-efficiently fulfill established Service Level
Agreements. This infrastructure also makes it possible for a data center to extend
its total capacity by subcontracting additional resources from collaborating data cen-
ters, making the infrastructure a federation of Clouds. For accounting and billing,
such infrastructures call for novel approaches to perform accounting for capacity that
varies over time and for services (or more precisely virtual machines) that migrate
between physical machines or even between data centers. For billing, needs arise for
new approaches to simultaneously manage postpaid and prepaid payment schemes for
capacity that varies over time in response to user needs. In this paper, we outline usage
scenarios and a set of requirements for such infrastructures, and propose an account-
ing and billing architecture to be used within RESERVOIR. Even though the primary
focus for this architecture is accounting and billing between resource consumers and
infrastructure provides, future support for inter-site billing is also taken into account.

∗ By permission of IEEE Computer Society Press.

69

70

1

Accounting and Billing for Federated Cloud
Infrastructures

Erik Elmroth∗, Fermı́n Galán Márquez†, Daniel Henriksson∗, and David Perales Ferrera†
∗Department of Computing Science and HPC2N, Umeå University, Sweden

Email: {elmroth, danielh}@cs.umu.se
†Telefónica Investigación y Desarrollo, Spain

Email: {fermin, perales}@tid.es

Abstract—Emerging Cloud computing infrastructures provide
computing resources on demand based on postpaid principles.
For example, the RESERVOIR project develops an infrastructure
capable of delivering elastic capacity that can automatically
be increased or decreased in order to cost-efficiently fulfill
established Service Level Agreements. This infrastructure also
makes it possible for a data center to extend its total capacity
by subcontracting additional resources from collaborating data
centers, making the infrastructure a federation of Clouds.

For accounting and billing, such infrastructures call for novel
approaches to perform accounting for capacity that varies over
time and for services (or more precisely virtual machines) that
migrate between physical machines or even between data centers.
For billing, needs arise for new approaches to simultaneously
manage postpaid and prepaid payment schemes for capacity that
varies over time in response to user needs.

In this paper, we outline usage scenarios and a set of require-
ments for such infrastructures, and propose an accounting and
billing architecture to be used within RESERVOIR. Even though
the primary focus for this architecture is accounting and billing
between resource consumers and infrastructure provides, future
support for inter-site billing is also taken into account.

I. INTRODUCTION

Cloud computing has become an established paradigm for
running services on external infrastructure, where virtually
unlimited capacity can be dynamically allocated to suit the
current needs of customers and where new instances of a
service can be deployed within a short time frame. Although
the term Cloud computing has come to include several
kinds of technologies offering remote execution and service
management, it is used in this paper to denote scalable elastic
data center infrastructures offering dynamic and cost-efficient
service provisioning.

There are many different Cloud computing solutions avail-
able, such as Amazon Elastic Compute Cloud [1]. However,
different Cloud computing solutions are rarely compatible with
each other and this creates a kind of vendor lock-in which is
not only limiting to the customer, but also limits the potential
of Cloud computing as a whole since separate Cloud computing
solutions are unable to interoperate.

Grid computing can be seen as one of several predecessors
to Cloud computing. Grid computing is often about making
large computations using large amounts of resources, whileas
Cloud computing is more about making large amounts of
resources available to many different applications over a longer
period of time. Clouds leverage modern technologies such as

virtualization to provide the infrastructure needed to deploy
services as utilities. Still, Cloud computing and Grid computing
share a lot of the underlying technology and many concepts
from Grid computing can be modified and made suitable for
Cloud computing as well.

Resources and Services Virtualization without Barriers
(RESERVOIR) [2] is a research project partly funded by
the European Union, focused on federation of Clouds at the
infrastructural level. The federated Cloud approach, where
a single entity serves as a gateway to different independent
solutions, is one way to solve the limited interoperability, as
different technologies can be unified and abstracted towards the
consumers. This approach is also a cost-efficient alternative to
over dimensioning the amount of servers in order to cope with
peak loads, as extra resources from other sites in the federated
Cloud can be utilized during peaks. Similarly, underutilized
resources can be made available for other sites during periods
of lower load as an extra source of income.

There are two major challenges with regard to accounting
and billing in federated Cloud infrastructures. Accounting and
billing must be carried out in a fair and standardized way
both: (a) between the user1 and the infrastructure owner; and
(b) between the sites making up the federation. In this paper,
we focus on accounting and billing between the owner of the
infrastructure and the consumer. Future support for inter-site
accounting and billing is also taken into account and briefly
mentioned, but most of the details are left for future work.

The main contribution of this paper is a proposal for a
federated Cloud accounting and billing architecture primarily
for use within the RESERVOIR project. The proposed archi-
tecture is motivated by usage scenarios and requirements, and
also supplemented with a requirement fulfillment analysis to
show how the architecture meets the requirements. Existing
Grid accounting systems has been analyzed, and even though
no existing system fulfills all requirements, the solution can
be based on an existing Grid accounting system which is
considerably modified and extended to provide the additional
functionality.

The parts of the overall RESERVOIR architecture that are
relevant for accounting and billing are described in detail in this

1In this paper, user and customer refer to the Service Provider (SP) that uses
the cloud infrastructure to deploy services. The terms should not be confused
with service end users, which could be customer from the point of view of
the SP, but not from the point of view of the cloud infrastructure provider.

71

2

document, and more information on the RESERVOIR model
and architecture can be found in [2].

The paper is organized as follows: Section II presents back-
ground information and a motivation of the work. Section III
contains usage scenarios and requirements with regards to
accounting in a federated Cloud environment. Section IV
presents a summary of the analysis of existing Grid accounting
systems, including brief descriptions of the different technolo-
gies. Accounting and billing for the RESERVOIR project is
presented in Section V. Future work and some concluding
remarks are given in Section VI.

II. BACKGROUND AND MOTIVATION

In the context of RESERVOIR, and this paper, the term
Virtual Execution Environment (VEE) is used to denote
the isolated environment where customer applications are
executed and maintained. This includes both Virtual Machines
(VMs) and Virtual Java Service Containers (VJSC). VMs are
managed using traditional virtualization technologies. VJSC is a
technology currently developed by Sun within the RESERVOIR
project, where Java applications can be deployed in virtual
containers that can be handled similarly to virtual machines
and thus migrated across hosts. The VEE concept offers
advantages in isolation since each VEE contains one self-
contained service component, in billing since the VEEs are well
defined accounting units, and also in dependency management
as constraints such as affinity can be realized between sets
of VEEs. A service consists of one or several VEEs, and as
explained later the number of VEEs in a service can change
dynamically during the lifetime of the service.

A. RESERVOIR

RESERVOIR is a European Framework Programme project
focused on creating an infrastructure for federated Clouds. An
Infrastructure Provider (IP) is an organization operating one or
more sites (i.e. data centers) in the RESERVOIR cloud, and
the different IPs share load according to framework agreements
among them. The IP normally does not interact directly with
end users, but with a Service Provider (SP) that deploys services
to the infrastructure to be used by the end users. Each SP may
offer different business solutions and alternatives towards the
end users depending on the needs of their customers, and any
services can be hosted on the same IP.

As an IP technology, RESERVOIR incorporates Business
Service Management (BSM) and also strongly advocates
interoperability among Cloud providers [2]. One key aspect
of BSM in the context of Cloud computing is dealing with
Service Level Agreements (SLAs). These agreements can be
seen as a mutual contract between the SP and the IP, regulating
the expected allocated capacity per service that the SP should
obtain for the agreed price and also any compensations for not
fulfilling this agreement.

The RESERVOIR architecture, as illustrated in Figure 1, is
a three-tier software stack where each layer has a clear and
well isolated responsibility. The layers are separated by general
interfaces designed to promote interoperability both horizontally
between different Cloud providers, but also vertically between

Service Manager (SM)

VEE Manager (VEEM)

Cross-site service

Single-host service

Multi-host service

Fig. 1. The RESERVOIR architecture is made up of three different layers. The
SM is the topmost layer, responsible for communicating with Service Providers
and managing services on a larger scale. The VEEM layer is responsible for
more fine-grained control over each service component, including placement
and placement policies both locally and across sites. The VEEH layer hosts the
VEEs and manages capacity allocation and metering. Well defined interfaces
separates the layers, and the same interface (VMI) is used both between the
SM and the VEEM and between the VEEMs of different sites. VEEs making
up a single service can run either on a single host, on different hosts at the
same site, or at different hosts belonging to different sites.

different implementations of each layer. There are three main
interfaces, the VEE Host Interface (VHI) that separates the
two lower layers, the VEE Manager Interface (VMI) that both
separates the upper two layers and also is used for inter-site
communication, and the Service Manager Interface (SMI) that
provides service management functionality between the SP and
the SM, and therefore is the primary interface between SPs
and the RESERVOIR federated cloud.

The different layers of the RESERVOIR architecture are:

• Service Manager: The topmost layer of the architecture
is the Service Manager (SM). Components at this layer
are concerned with services as a whole rather than the
specific VEEs that make up a service. This includes, e.g.,
accounting and billing, SLA enforcement, monitoring, and
services deployment. Notably, the SM components are
not aware of, or concerned with, where the VEEs making
up a service are actually run. The interaction between the
RESERVOIR infrastructure and the SPs is also handled
at this layer.

• VEE Manager: Components at the VEE Manager
(VEEM) layer are responsible for interacting with the
SM and VEEH at the local site, but also horizontally with
the VEEMs of other sites. Components at the VEEM
layer are not concerned with services per se, but deals
with sets of one or more VEEs that may have placement
constraints (such as affinity) with other VEEs. The main
responsibility of the VEEM layer is to optimize and
manage the placement of VEEs, both locally and between
different sites.

• VEE Host: The VEE Hosts (VEEHs) are responsible for

72

3

running and monitoring each single VEE. Each VEEH
runs a specific virtualization technology, and translates
commands sent by the VEEM through the common
VEEH Interface to commands suitable for the underlying
technology.

One important aspect of the RESERVOIR architecture is that
a VEE can potentially run on one of several local hosts or even
at a remote site. Also illustrated in Figure 1, the components on
the SM level will never be aware of such placement decisions,
as this placement is managed on, and abstracted by, the VEEM
layer. It is also possible for a VEEM to re-locate running VEEs
dynamically during the lifetime of the service. Similarly, the
VEE itself is not aware of its placement (which can be remote
or local relative to its origin), and this loose coupling between
the VEE and the executing site is both a key feature and a
complicating factor for, e.g., accounting and billing.

During inter-site communication, the VEEM of the local site
will act as an SM with regards to the VEEM of the remote site.
Since the same interface is used for inter-site and SM-VEEM
communication, the same operations are used in both scenarios.

Monitoring and accounting data in RESERVOIR are made
up of two different kind of measurements:

• The virtualization platform monitors the consumption and
allocation of physical resources for each VEE.

• The disk images making up each VEE may contain special
software that measures Key Performance Indicators (KPIs)
that are used to provide application specific measurements.
This makes it possible to formulate SLAs in application
specific terms, e.g., the maximum number of active
customers per server instance for a Web shop.

These data are processed by components in the SM both
to identify SLA violations and perform billing. Two different
kinds of payment model will initially be available:

• Postpaid: The SP is billed at regular intervals for the
accumulated resource consumption during the previous
billing period.

• Prepaid: Using this payment model, credits are purchased
by the SP in advance and subsequently consumed in
accordance with the resource consumption of the deployed
services.

These payment models are analogous to models that have
proven to be successful within, e.g., the mobile phone industry.
By extending these models to also support compensations for
SLA violations, the payment models should be able to fulfill the
needs of RESERVOIR, while still being easy to comprehend.

III. USAGE SCENARIOS AND REQUIREMENT ANALYSIS

An accounting and billing architecture for federated Cloud
infrastructure has to be designed to meet the requirements of
scenarios that are not present in traditional Grid (and possibly
Cloud) infrastructures. Two identified challenges that strongly
affect the design of the accounting and billing system are
presented in the following sections, with each section covering
one specific usage scenario.

A. Accounting for executing processes with unknown and
dynamic placement

In a federated Cloud environment, the actual placement of
the VEE will not always be known to the entire system, and
may also change during the course of the service lifetime. This
is especially true for RESERVOIR, due to the aforementioned
abstraction of placement towards components in the SM.

Consider the case where a service running on RESERVOIR
is made up of a single VEE. The deployment of this VEE is
initiated by the SM. An identifier for the VEE that can be
used to control the life cycle of the VEE is obtained upon
deployment, but where the VEE is actually running is unknown
to the components in the SM. During the course of the service
execution, the placement of the VEE is subject to re-evaluation
using placement heuristics by components at the VEEM layer,
and this may result in the VEE being temporarily suspended
and subsequently re-deployed either on another local host or
on a remote host without notifying any of the SM components.

B. Accounting for services composed of an varying number of
VEEs

An important concept of Cloud computing is that the number
of VEEs composing a service can be dynamically increased
or decreased to cope with a change in demand. A reduced
demand implies that one or more VEEs can be shut down
or suspended to make capacity available for other tasks and
reduce costs for the SP, while an increase in demand can lead
to new VEEs being deployed to share the load of the entire
service.

In this scenario it is also possible that the accounting and
billing configuration for the entire service is changed while
the system is running. This could be, e.g., that the payment
model is changed from prepaid to postpaid, and this must
be possible to do without having to stop and re-deploy any
running software.

C. Requirements

Sections III-A and III-B outline usage scenarios with
challenges that are typical for federated Clouds, and for
RESERVOIR in particular. A list of requirements have been
extracted from these challenges. Furthermore, this list of
requirements is complemented with general requirements that
are not due to any of the two usage scenarios, but still are
important to consider when designing the architecture.

• Req. 1 LOCATION UNAWARENESS: The accounting
system must be able to account for both VEEs running
locally and those running at remote sites without being
aware of the placement of any service component. This
includes being adaptable to dynamic changes in placement
of a VEE during its execution. Also relevant is that since
a VEE is not aware of its own placement, it has to have
a loose connection (if any) to the accounting system.

• Req. 2 SERVICE ELASTICITY: The number of VEEs
underlying and fulfilling a service can change dynamically,
and the accounting system must be designed to handle
this without relying on keeping track of the amount and
identities of currently active VEEs.

73

4

• Req. 3 SERVICE BILLING: The billing for the execution
of a service must be done on a per service basis, and not
for each VEE. Multiple billing methods must be supported
(including, e.g., postpaid and prepaid). The payment
model (or account) of a service must be changeable
without affecting components outside the accounting and
billing system, and without enforcing any restarts or re-
deployments.

• Req. 4 COMPLEX PRICING: The function that calculate
prices from the accounting information must be able to
incorporate complex pricing rules depending of several
factors such as, e.g., customer history or seasonal dis-
counts.

• Req. 5 ADAPTABLE DESIGN: The accounting system
must be open for modifications to cope with future changes
and enhancements. In other words, it must be possible to
change the functionality in practically any component of
the system to, e.g., add new hardware measurements and
KPIs or change the interaction with other components.

• Req. 6 FLEXIBLE DATA FORMAT: The format used for
accounting data must handle both hardware measurements,
such as CPU or memory consumption, and any application
specific KPIs (e.g. database transactions per second). It
should also be possible to add aggregation functionality in
the future, without modifying the format of the accounting
data.

• Req. 7 SERVICE ACCOUNTING: The accounting sys-
tem must be suitable for long running services, and not
limited to tasks with a limited execution time. It is also
important that the solution supports aborting or suspending
a running service due to, e.g., a lack of credits.

• Req. 8 COMPENSATIONS: Both usage and compensa-
tions (due to breaking SLAs) must be accounted. The
system must support complex schemes incorporating
arbitrary functions for calculating the compensations.

IV. EVALUATION OF EXISTING GRID ACCOUNTING
SYSTEMS

As no accounting system focused on Cloud computing
could be found, several different Grid accounting systems were
evaluated as a first step to creating the accounting and billing
architecture for RESERVOIR. By extending an existing Grid
accounting system, less time has to be spent on the common
mechanisms and the focus can instead be on developing
the Cloud (and federated Cloud) specific functionality. Both
commercial and open-source alternatives were considered,
although commercial system are considerably harder to extend
due to the closed source code. The full evaluation is out of
scope for this paper, and only the result of the evaluation
and brief information on the most promising candidates are
presented herein.

The analysis of open source alternatives was focused on the
Distributed Grid Accounting System (DGAS) [3], GridBank
/ Grid Accounting Services Architecture (GASA) [4], and
SGAS [5]. Although several different commercial systems were
considered, including Sun ARCo [6], HP Enterprise Usage
Management [7], Verizon UMS [8], BMC Software Usage [9],

and IBM Tivoli Usage and Accounting Manager [10] (ITUAM),
we only present the open source alternatives in this paper. This
is because detailed technical information to be used in a fair
evaluation is not as easily available for the commercial solutions.
For the open source alternatives, the in-depth comparisons done
by [11] and [12] were used as reference.

A. Grid Accounting Systems

This section presents brief descriptions of the different Grid
accounting system that proved the most likely candidates to be
extended into the RESERVOIR accounting and billing system.

1) SGAS: SGAS is a capacity allocation system for Grid
environments. A credit-based allocation model is used where
projects are granted allowances to be spent across resources
on the Grid. These allowances are collectively enforced by the
resources in real-time, with the details of the enforcement
specified by local policies. SGAS consists of three self-
sustaining components, each responsible for a distinct and
optional part of the accounting procedure:

• Bank: The bank service manages quotas and resource
consumption for all resources using it, facilitating coordi-
nated quota enforcement on the Grid. Credits are allocated
to users and then consumed each time the user runs a job
on the Grid.

• Logging and Usage Tracking Service (LUTS): XML-
based usage records for completed jobs are published by
the Grid sites and stored in the LUTS through a Web
service interface. The LUTS uses an XML database back-
end to store the usage records in a native format.

• Job Account Reservation Manager (JARM): The com-
ponent acts as a bridge between local resources and
the Grid-wide accounting context. Local job submissions
are intercepted by the JARM, and sufficient credits are
reserved in the Bank prior to job execution. Once a job
has been completed, this reservation is resolved and the
surplus of reserved credits (if any) is returned to the Bank
account.

A typical usage scenario for an SGAS-equipped system starts
with a job being submitted to a Grid job manager, for example
a WS-GRAM [13] component or ARC [14] GridManager, on
a resource. Before the job is forwarded to the local resource
manager for execution, the JARM makes a reservation of
credits in the Bank. The amount of credits reserved is typically
based on a user-specified estimate of the maximum amount of
resources required to complete the job. If there are sufficient
credits in the Bank, the job is executed. Once the job has
completed, sufficient credits to cover the definite amount of
consumed resources is deducted from the previous reservation,
and any remaining credits are return. At this stage, a usage
record containing the details of the job execution is stored in
the LUTS. Local policies decides if a job that consumes more
than the estimated amount of resources should be aborted or
allowed to complete.

A Grid system setup can use one or more of the SGAS
components independently of each other. For instance, if real-
time quota enforcement is not required, and the system can
run without the Bank component.

74

5

2) Distributed Grid Accounting System: DGAS is an
accounting system originally developed for the European
DataGrid project, and subsequently adopted by the Enabling
Grids for E-sciencE (EGEE) project for further development.
DGAS is designed to support a full-stack solution from usage
metering up to account balancing supported by economical
models. DGAS is composed of three independent layers, each
responsible for a well defined part of the accounting procedure.

• Usage Metering: The usage metering layer is responsible
for composing usage records by parsing logs from underly-
ing batch systems, and subsequently pass the usage records
to the above accounting layer. The metering process in
DGAS is designed to ensure that the metering data can be
distinctly mapped back to the executing user, the active
resource, and the job currently being run.

• Usage Accounting: DGAS uses components called Home
Location Registers (HLR) to manage accounts associated
with users or resources. The HLR components can be
responsible for a subset of usage records, making the
system scalable and resilient to single component failures.

• Account Balancing and Resource Pricing: Special
components called Price Authorities (PAs) are responsible
for the resource pricing. The PAs support several different
pricing algorithms that can be dynamically linked by the
PA, making it possible to support the resource owners
different requirements.

DGAS can be seen as a zero-sum system of resource
exchange, where credits spent on a job run on resources owned
by another virtual organization in turn can be distributed among
(and subsequently spent by) users of that virtual organization.

3) GridBank / Grid Accounting Services Architecture: Grid-
Bank is an infrastructure for accounting in computational Grids.
One of the major differences between GridBank and other
accounting system is the support provided for computational
economy and service cost negotiation.

The infrastructure in GridBank is based on a central server,
connecting producers and consumers of Grid resources. The
accounts are maintained centrally, making it convenient to
manage users within the system.

GridBank is developed as a part of the Gridbus [15] project,
and based on the Globus Toolkit [16]. Most notably, the security
framework is reused to provide secure sockets and single sign-
on mechanisms.

When submitting a job the client negotiates the service cost
per time unit and picks the most suitable Grid Service Provider
to run the job. The client contacts the GridBank Server and,
given that the client has sufficient funds to run the job, a
GridCheque is issued. The GridCheque is sent along with the
job when the job is submitted. During job execution, usage
records related to the job and these records are used to redeem
the payments using the GridCheque.

B. Discussion

The requirements listed in Section III-C were used as a
base for evaluation, and many of the requirements are specific
for a Cloud (or even federated Cloud) environment. As a
consequence, neither of the examined existing accounting

systems (that are primarily designed for Grid usage) fulfill
all the requirements without modifications. However, SGAS
proved to be the alternative that is closest to the envisioned
solution, even though a large amount of the functionality is
missing.

The main reason why SGAS is deemed the strongest candi-
date is that the software is open source and the components of
SGAS are very isolated in their concern, which makes it pos-
sible to reuse only some of the existing components. Another
advantage of this loose coupling is that fresh components can be
developed as independent modules that are not tightly coupled
with other components in the SGAS accounting system.

DGAS was another candidate that is also open source, in
productional use by, e.g., the EGEE, and supports different
kinds of accountable resources. The main drawback of DGAS
is the tight integration with the workload management system,
as this limits the potential of adaptability to suit the needs of
RESERVOIR. The non-standard components also make partly
adaptions of the system more cumbersome and time consuming.

GridBank has several advantages, especially a strong security
framework and usage records being compliant with the OGF
format recommendation. Its potential of being the base for the
RESERVOIR accounting and billing framework is however
limited by having components that are not conforming to
standards (making any extensions GridBank specific), and also
by a strict architectural subdivision of consumers and provides.

V. ARCHITECTURE FOR ACCOUNTING AND BILLING

A description of the resulting architecture for accounting and
billing in RESERVOIR is presented in this section followed
by an analysis on how the suggested architecture fulfills the
previously identified requirements.

A. Proposed Architecture

This section describes a proposed architecture that com-
bines the know-how of existing accounting system with the
requirements and features of the RESERVOIR infrastructure.
The architecture composes an Accounting layer, focused on
collecting and managing the data which components in the
Billing layer use as their input. Also included in the architecture
is a Business layer that forms the link between the technical
system and the SPs in terms of, e.g., pricing, invoicing, and
service management. This paper is mostly focused on the
Accounting and Billing layers, but the Business layer is also
covered to offer a complete picture of the system. An overview
of the different layers and their components can be seen
in Figure 2. Some of the components in the architecture
(shown with dashed borders in the figure), notably the SLA
Violation Assessment, the VEEM Accounting Manager, and the
Service Life-cycle Manager are gateway components between
the accounting system and other parts of the RESERVOIR
architecture. Also shown in the figure is the Accounting
Database (ADB) and the Business Information Database
(BIDB). These components are not specific to the architecture,
and can be realized using any available database technology.

One important aspect is that neither of the accounting
or billing components are concerned with the form of the

75

6

Fig. 2. Overview of the proposed architecture for accounting and billing within
the RESERVOIR Service Manager. The figure shows the main components of
the suggested architecture, with the connectors indicating the main interactions
between components. Components with a dashed border in the figure handle
the communication with other parts of the RESERVOIR SM system.

accounting data, apart from the presence of an ABC identifier
(described in Section V-A2) and a site identifier which uniquely
identifies the Infrastructure Provider where the accounted
data was generated. The specific format and content of the
accounting data are only the concern of the lower level
components supplying the data and to the business components
translating the data into credits. Thus, the attributes measured
and billed for can change without affecting the accounting and
billing components.

Accounting data used within RESERVOIR are based both
on measurements on the system level and on the application
level. On the system level, the VEEH can obtain information
by measuring, e.g., the CPU or memory consumption of a VEE.
On the application level, software specific KPIs are measured
from inside the VEE using custom software (probes or agents),
and the data are used to monitor special properties of the
particular application.

The remainder of this section will discuss each layer in more
detail, and describe the concern of the different components
together with the main inter-component interactions.

1) Accounting Layer: The Accounting layer is responsible
for the interaction with the surrounding infrastructure, collect-
ing usage data from the VEEM level and data regarding SLA
violations from other components in the Service Manager. The
primary component is the SM Accounting Manager (SMAM)
that together with the underlying Accounting Database (ADB)
offers persistent storage and management of usage data and
violations. The SMAM is supplied with data regarding SLA
violations from the SLA Violation Assessment component, and
these SLA violation are taken into account by components at
the Billing layer. Similarly, the VEEM Accounting Manager
(VAM) is responsible for collecting usage data from the local
site, mark them with the site ID, and supply this to the SMAM
at regular intervals.

The SMAM is the only component that interfaces with the
ADB, and this single point of interaction makes it possible to
abstract the technical details of the ADB from other components
in the proposed architecture. This means the underlying
database technology may be replaced without affecting any
other component than the SMAM.

As mentioned in Section II-A, the VEEM acts as an SM
towards a remote VEEM when dealing with migrated VEEs.
This is also true when dealing with the accounting data, and
the local VAM will act as an intermediate when dealing with
accounting data received from the remote site (stamping the
accounting data with its own site ID).

Aggregation and other kinds of data transformation can be
added both to the VAM in order to reduce the network load
between the SM and the VEEM, and to the SMAM to process
the data before storing it in the database. Where to perform
which kind of data transformation is specific for each site, and
depends on, e.g., which interval is used for the accounting data
and the capacity and size of the site in question.

2) Billing Layer: The Billing layer is primarily made up
of the Postpaid Engine and the Prepaid Engine, supported by
the Service Configuration Analyzer (SCA) and the Service
Life-cycle Manager (SLM) that are part of both the business
and billing layers.

When a service is deployed, the SLM contacts the SCA
to validate the Deployment Descriptor (DD). This file is a
description of the planned deployment of a service, including
the hardware requirements. The SCA analyzes the DD from
a business perspective to apply business oriented deployment
restrictions. This could be, e.g., taking into account the cus-
tomer history and the profitability of admitting the deployment.
Included in the DD is also the payment method to use for the
service, and the validity of these parameters, for instance that
the user and account to be billed exists, is also established
at this time. In the case of the prepaid payment alternative,
the amount of available credits is also verified to ensure that
the service is able to run for at least a short while before the
credits run out.

When the planned deployment of the service has been veri-
fied, the SCA will generate a unique identifier for this particular
service. This identifier is referred to as the Accounting, Billing,
and Compensation (ABC) identifier, and all usage records and
SLA violation reports concerning this service will contain this
identifier. Using this approach, it is possible to address all
VEEs of a service (or the usage data / violation data related
to any VEE of a service), without knowing where they are
run or how many they are. Similar results can be obtained by
using the service identifier as the common parameter, and SCA
implementations could use the service identifier used in others
SM components as the ABC identifier. From the point of view
of the accounting and billing architecture, the origin of the
ABC identifier is not relevant, as far as each service has an
unique ABC associated.

Note that all services, regardless of payment model, will
have such an identifier. This makes it possible to change the
payment model for a service dynamically, for example from
postpaid to prepaid, without affecting any components outside
the accounting and billing subsystem.

The SLM calls the SCA once to evaluate the deployment
of the service (as mentioned above), and this call is followed
by another when the service is actually deployed. This is
because the time-span between admitting a service and actually
deploying it can be very large (and there is formally no
guarantee that an admitted service will ever be deployed).

76

7

Fig. 3. The figure shows the procedure for the Prepaid Engine. The Prepaid
Engine registers in the SM Accounting Manager to listen for updates when
instructed to do so by the Service Configuration Analyzer. The Business
Information Manager supplies the conversion from data concerning usage and
violation to credits, and also makes decisions about what to do when the
account runs low on credits.

The Postpaid Engine is responsible for generating an invoice
from the data stored in the SMAM, when triggered by
the Framework Agreement Manager (FAM) and Business
Information Manager (BIM) components in the Business layer.
These components are described in more detail in Section V-A3.
This invoice generation can be triggered manually, but is
typically done automatically at designated times to generate
an invoice for, e.g., the previous month or quarter. When
generating an invoice the BIM triggers the Postpaid Engine to
gather the usage data from the SMAM, and also provides the
Postpaid Engine with metadata required to convert the usage
into credits. Also specified in this call is the period to bill, and
which ABC identifiers to include in the invoice.

The procedure regarding prepaid accounts is described below,
and also illustrated in Figure 3. When the deployment call
(1) is made, the SCA will trigger the Prepaid Engine (2), and
the Prepaid Engine will in turn contact the SMAM to start
receiving updates for all records and violations containing
the ABC identifier relevant for this service (3). The Prepaid
Engine keeps track of the balance for all prepaid accounts in
use, and makes the relevant withdrawals (or compensations) as
usage data and violation records are received from the SMAM
(4). The BIM supplies the Prepaid Engine with the mappings
between the ABC identifiers and actual accounts to bill, and
also supplies the pricing function. If an account is running low
on credits, or when running out of credits, the BIM is contacted
and the appropriate action is established based on business rules
(5). When running low on credits, this could typically involve
notifying the associated account owner by calling the FAM
(6). When the credits are insufficient to continue running the
service, a reaction could be, e.g., changing the payment model
to postpaid, or instructing the SLM to suspend the running
service (7).

The Prepaid Engine keeps the state of each account within
the component itself in memory, and periodically sends a
snapshot of the state to the BIM for persistent storage. If the
Prepaid Engine is restarted, the previous stored state can be
obtained from the BIM.

3) Business Layer: As briefly mentioned in the previous
section, the main components of the Business layer are the
BIM and the FAM. The BIM is responsible for storing

and managing business information, based on an associated
Business Information Database (BIDM). This information
includes SPs, federated IPs (including the catalog of resources
offered by each one) and the deployment restrictions used by the
SCA. Specially relevant from the point of view of accounting
and billing is the business context for the conversions from
technical data to invoices or other business elements. These
business contexts are supplied to both Payment Engines when
generating bills or, in the case of the Prepaid Engine, converting
from usage or violations to credits. This is also where the
mapping between an ABC identifier and an account is made,
and the persistence for accounts in the system is also within
the purview of the BIM.

The FAM deals with user management including the external
interface of the accounting and billing system. A user can access
the FAM to, e.g., deposit credits, see the current balances of
the user’s accounts, browse the bills history, etc. The FAM
can also notify the users when, for instance, an account is
running out of credits. The FAM also offers interfaces for
administration used to, e.g., manage user accounts or configure
the resource catalog and pricing functions stored in the BIM.

B. Requirements fulfillment

In this section we analyze how the proposed architecture
effectively addresses and fulfills the requirements enumerated
in Section III-C.

• Req. 1 LOCATION UNAWARENESS: Each VEEM Ac-
counting Manager collects accounting data from all VEEs
running at that particular site. This way, all accounting data
originating from a VEE are sent to the VEEM currently
responsible for the execution of the VEE. The data are
then propagated backwards until they reach the VEEM
Accounting Manager, and subsequently components in
the SM, on the primary site (the site from which the VEE
originates). This way, the SM does not have to be aware
of where the VEE is deployed in order to collect the
accounting data, and the VEE is not aware of the data
being propagated to another site if the VEE is deployed
remotely. Note that the presence of the site ID does not
violate this requirement.

• Req. 2 SERVICE ELASTICITY: As described in Sec-
tion V-A2, each VEE has an associated ABC identifier
that can be used to map between a VEE and the service to
which it belongs. This way, the amount of VEEs making
up a service can change dynamically without affecting
the accounting and billing system.

• Req. 3 SERVICE BILLING: This requirement is also
fulfilled using the proposed ABC identifier. The mapping
between a group of VEEs and the associated account
can be changed by modifying the mapping within the
accounting system. The identified account in turn deter-
mines which payment method is used. A single customer
can have several accounts, where each account is of either
payment type.

• Req. 4 COMPLEX PRICING: The billing components are
supplied with business context information from the BIM
making the actual mapping between usage and credits

77

8

decoupled from the billing process itself. This means the
complexity is managed within the business model, making
it a policy decision rather than a mechanism.

• Req. 5 ADAPTABLE DESIGN: Large parts of the ac-
counting and billing system are developed specifically
for this project, and the external components that are
being incorporated into the design are available under
compatible open source licenses. Since the source code
is available, it is possibly to change the behavior of any
component within the system as necessary.

• Req. 6 FLEXIBLE DATA FORMAT: The format of the
accounting data is not relevant to neither the accounting
nor the billing components (as explained in Section V-A).
This means that the format of the accounting data can
change, as long as the ABC identifier and site ID are
present.

• Req. 7 SERVICE ACCOUNTING: The accounting sys-
tem does periodical measurements of usage, and so is
not dependent on a service finishing executing within a
designated time frame. In addition, the Prepaid Engine can
contact the SLM to suspend or cancel a service (depending
on local policies) when the account used by the service
is running out of credits.

• Req. 8 COMPENSATIONS: From the point of view of the
accounting and billing system, compensations are dealt
with in the same way as accounting data, although the data
is supplied by different components. The main reason for
the separation of SLA violation detection and accounting
data management is that several components, such as those
managing deployment of new instances, might be affected
by an SLA violation while the accounting data is only
relevant for the accounting and billing subsystems. The
business components are then responsible for converting
data concerning both usage and SLA violations into
credits, and the billing components treats this information
in the same way when creating invoices or modifying the
balance of a prepaid account.

VI. CONCLUSIONS AND FUTURE WORK

In this document we have presented a solution for an
accounting and billing architecture for use in RESERVOIR
and possibly other federated Cloud environments. Although
neither of the Grid accounting systems fulfills all the identified
requirements for federated clouds, SGAS was found to be
the most suitable one to be used as a starting point. Finally,
the suggested approach was also evaluated with regard to the
requirements to ensure that no known issues remain unresolved.

The focus of the work done so far has been the design of the
accounting and billing system, taking existing alternatives, the
overall RESERVOIR architecture, and the requirements of the
solution into account. This has resulted in a loosely coupled
architecture for accounting and billing that is also flexible
enough to be adapted to future changes in requirements.

Some parts of the system are already under development,
namely those concerning deployment (BIM and SCA) and the
most central components for the accounting part (the accounting
managers). Future work includes implementing and evaluating

remaining parts of the system, and integrating all components
with the general RESERVOIR architecture. In addition, inter-
site accounting and billing are also yet to be fully integrated
with the suggested architecture.

ACKNOWLEDGMENTS

This work has been partly supported by the RESERVOIR
project as a part of the European Community’s Seventh
Framework Programme under grant agreement no. 215605.

We also thank Lars Larsson, Johan Tordsson, and Emilio
Torres for providing feedback on, and improving the quality
of this work.

REFERENCES

[1] Amazon Web Services, LLC., “Amazon Elastic Compute Cloud,” Visisted
March 30, 2009, 2006. [Online]. Available: http://aws.amazon.com/ec2/

[2] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, L. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Cáceres, M. Ben-Yehuda,
W. Emmerich, and F. Galán, “The RESERVOIR Model and Architecture
for Open Federated Cloud Computing,” IBM Systems Journal, 2009, to
appear.

[3] R. Piro, A. Guarise, and A. Werbrouck, “An Economy-based Accounting
Infrastructure for the DataGrid,” in Proceedings of the 4th International
Workshop on Grid Computing (GRID2003), 2003.

[4] A. Barmouta and R. Buyya, “GridBank: A Grid Accounting Services
Architecture (GASA) for Distributed Systems Sharing and Integration,”
in Workshop on Internet Computing and E-Commerce, Proceedings
of the 17th Annual International Parallel and Distributed Processing
Symposium (IPDPS 2003), IEEE Computer Society Press, USA, April,
2003, pp. 22–26.

[5] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm,
“Scalable Grid-wide capacity allocation with the SweGrid Accounting
System (SGAS),” Concurrency and Computation: Practice and Experi-
ence, vol. 20, no. 18, pp. 2089–2122, 2008.

[6] Sun Microsystems, “SGE Accounting and Reporting Console
(ARCo).” [Online]. Available: http://wikis.sun.com/display/GridEngine/
Accounting+and+Reporting+Console+(ARCo)

[7] HP, “Enterprise Usage Management Solution overview and features.”
[Online]. Available: http://h20229.www2.hp.com/products/ium ent/index.
html

[8] Verizon, “Usage Management System.” [Online].
Available: http://www22.verizon.com/it/products-services/
telecom-software-applications/billing/mediation-rating/ums-index.html

[9] BMC Software, “BMC Software Usage.” [Online]. Avail-
able: http://www.bmc.com/products/proddocview/0,2832,19052 19429
18235405 106787,00.html

[10] IBM, “Ibm tivoli usage and accounting manager -
product overview,” Visited March 31, 2009. [Online].
Available: http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/
com.ibm.ituam.doc 7.1/overview/tuam pdf overview.pdf

[11] M. Göhner, M. Waldburger, F. Gubler, G. Rodosek, and B. Stiller, “An
Accounting Model for Dynamic Virtual Organizations,” University of
Zürich, Department of Informatics, Tech. Rep. No. 2006.11, November
2006.

[12] C.-P. Rückemann, W. Müller, and G. von Voigt, “Comparison of Grid
Accounting Concepts for D-Grid,” in Proc. Cracow Grid Workshop 06,
Cracow, October 2006.

[13] I. Foster, “Globus toolkit version 4: Software for service-oriented systems,”
in IFIP International Conference on Network and Parallel Computing,
LNCS 3779, H. Jin et al., Eds. Springer-Verlag, 2005, pp. 2–13.

[14] B. Konya, “Advanced Resource Connector (ARC)-The Grid Middleware
of the NorduGrid,” Lecture Notes in Computer Science, pp. 10–10, 2004.

[15] R. Buyya, “Grid Economy Comes of Age: Gridbus Technologies for
Service-Oriented Cluster and Grid Computing,” in Proceedings of the
2 nd IEEE International Conference on Peer-to-Peer Computing (P2P
2002), Linkoping, Sweden, Sept, 2002, pp. 5–7.

[16] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit. Intl J,” Supercomputer Applications, vol. 11, no. 2, pp. 115–128,
1997.

78

III

Paper III

Scheduling and Monitoring of Internally Structured
Services in Cloud Federations∗

Lars Larsson, Daniel Henriksson, and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University
SE-901 87 Umeå, Sweden

{larsson, danielh, elmroth}@cs.umu.se
http://www.cs.umu.se/ds

Abstract: Cloud infrastructure providers may form Cloud federations to cope with
peaks in resource demand and to make large-scale service management simpler for
service providers. To realize Cloud federations, a number of technical and managerial
difficulties need to be solved. We present ongoing work addressing three related key
management topics, namely, specification, scheduling, and monitoring of services.
Service providers need to be able to influence how their resources are placed in Cloud
federations, as federations may cross national borders or include companies in direct
competition with the service provider. Based on related work in the RESERVOIR
project, we propose a way to define service structure and placement restrictions us-
ing hierarchical directed acyclic graphs. We define a model for scheduling in Cloud
federations that abides by the specified placement constraints and minimizes the risk
of violating Service-Level Agreements. We present a heuristic that helps the model
determine which virtual machines (VMs) are suitable candidates for migration. To
aid the scheduler, and to provide unified data to service providers, we also propose
a monitoring data distribution architecture that introduces cross-site compatibility by
means of semantic metadata annotations.

∗ By permission of IEEE Computer Society Press.

81

82

Scheduling and Monitoring of Internally Structured
Services in Cloud Federations

Lars Larsson, Daniel Henriksson, Erik Elmroth
Department of Computing Science and HPC2N

Umeå University, Umeå, Sweden
Email: {larsson, danielh, elmroth}@cs.umu.se

Abstract—Cloud infrastructure providers may form Cloud
federations to cope with peaks in resource demand and to make
large-scale service management simpler for service providers. To
realize Cloud federations, a number of technical and managerial
difficulties need to be solved. We present ongoing work address-
ing three related key management topics, namely, specification,
scheduling, and monitoring of services. Service providers need
to be able to influence how their resources are placed in Cloud
federations, as federations may cross national borders or include
companies in direct competition with the service provider. Based
on related work in the RESERVOIR project, we propose a
way to define service structure and placement restrictions using
hierarchical directed acyclic graphs. We define a model for
scheduling in Cloud federations that abides by the specified
placement constraints and minimizes the risk of violating Service-
Level Agreements. We present a heuristic that helps the model
determine which virtual machines (VMs) are suitable candidates
for migration. To aid the scheduler, and to provide unified data to
service providers, we also propose a monitoring data distribution
architecture that introduces cross-site compatibility by means of
semantic metadata annotations.

I. INTRODUCTION

Cloud computing has the potential to offer cost-efficient
and seemingly unlimited computational capacity to resource
consumers, and more importantly, to deal seamlessly with
unexpected spikes in resource consumption that would be
unmanageable for in-house hosting alternatives. The problem of
maintaining sufficient resources is transferred from the resource
consumers to Cloud Infrastructure Providers (IPs). We refer
to the consumers of Cloud infrastructure as Service Providers
(SPs), which typically are companies who in turn offer services
to end users. Service-Level Agreements (SLAs) specify the
terms under which the SP provisions resources from the IP
and at what cost, and define economical penalties if the IP
fails to deliver accordingly.

IPs can collaborate on workload sharing and resource sub-
contracting to easier cope with spikes in resource consumption
or other unexpected events that affects hosting of services.
Such collaboration may exploit pricing differences at Cloud
IPs which can yield savings, even for a low amount of
requested resources [1]. We use the same definition for Cloud
federations and framework agreements as in [2], namely that
Cloud federations allow IPs to subcontract resources at remote
Cloud sites when local resources are running low, as governed
by bilateral framework agreements. The SP needs not be aware
of such subcontracting and only interacts with the original IP.

Cloud bursting can be seen as a special case of federation where
resources are only provisioned by one party from the other,
usually by a private Cloud from a public provider. Alternatively,
an SP may directly host a service across several IPs. As in [3],
we refer to this as a multi-provider hosting and consider it to
be separate from Cloud federations. In multi-provider hosting,
management and service orchestration across several sites is
managed by the SP. In Cloud federations, the IP manages
provisioning and monitoring of remote resources on behalf of
the SP. IP-level management of e.g. elasticity and SLAs in
Cloud federations [4] or federation/multi-hosting hybrids [3]
is currently under research.

In this paper, we present ongoing work related to solving core
management issues that arise specifically in Cloud federations.
Specifying service structure and placement constraints affords
the SP a sufficient amount of control over service deployment
in Cloud federations. Schedulers must take this information
into account when determining placement for each service
component, and may use migration as a tool to optimize
placement according to some management objective. Once
a component has been placed and is executing, its state must
be monitored to make placement optimization possible. Our
contributions are the following:

• we define a hierarchical graph structure for service
representation and intra-service rule specification which
impacts scheduling within the Cloud federation,

• we present a scheduling model and heuristic that optimizes
VM placement via local and remote migration, and

• we present a semantic monitoring data distribution archi-
tecture, which provides interoperability between different
Cloud infrastructure monitoring systems.

The remainder of the paper is organized as follows. Section II
briefly describes the design principles and the features that
motivate our work. Section III presents how a graph may be
used to represent structured services with rules concerning
component placement and includes an example thereof. In
Section IV, we present a model and heuristic for a scheduler that
takes placement constraints into account for local and remote
placement of VMs in the Cloud federation. Section V introduces
an architecture of a system aimed to provide compatibility
for disparate monitoring systems via employing semantic
metadata to bridge the differences. The paper is concluded in
Section VII.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 173

83

II. DESIGN PRINCIPLES AND MOTIVATING FEATURES

In this section, we briefly describe the design principles and
features that motivate our work. We formulate the principle
of location unawareness based on [5] and [6] such that it
states that neither the management system nor the VMs should
be needlessly aware of current VM placement. From the
management point of view, this means that e.g. the scheduler is
perfectly aware of whether a given VM is placed at a local host
or at a remote site R, but it does not know which particular
host at R hosts the VM (and it cannot request to change this
placement). The VM may even have been delegated to another
partner site by R without notifying the original IP.

From the VM point of view, location unawareness implies
that the VM is not aware of its current hosting within the
Cloud federation, including its location in the network. Thus,
virtualized overlay networks must span across sites and allow
VMs to keep all private and public IP addresses, even during
migration from one site to another. Offering such networking
functionality is the topic of ongoing research [6] and currently
not offered by any commercial vendors.

Data and computation provisioning in federated Clouds raises
concerns regarding locality, both from a performance and a
legislative point of view [7], [8]. To ensure that resources are
provisioned satisfactorily while retaining location unawareness,
affinity and anti-affinity rules may be specified. We use the same
definition of affinity as [9] i.e. to denote a set of placement
constraining relationships between sets of related VMs. We use
the term AA-constraints where both affinity and anti-affinity
are applicable, and each term alone if something applies only
to either affinity or anti-affinity.

Without loss of generality, we consider three levels of AA-
constraints, namely host, (Cloud) site, and geographical region.
For an affinity level L, if VM types A and B are in the
relation, a scheduler must place all instances of these types
so that placement restrictions are adhered to, e.g. instances
must be placed on the same host machine or at the same site
if this is the specified affinity relation. Conversely, anti-affinity
requires that instances of VM types may not be placed on the
same level, e.g. on the same host or at the same site. Using
several AA-constraints, it is possible to restrict placement such
that, e.g., all VMs must be placed on different hosts, avoid
a certain competitor site, and may never be migrated to or
placed in a region where certain legislation applies.

III. SERVICE REPRESENTATION

Some model is required to allow the SP to specify both
the structure of the service and AA-constraints. We propose
that hierarchical directed acyclic graphs (DAGs) are suitable
service representations. The reasons are twofold: (a) there is
an implied or explicitly stated structure between resources, e.g.
between attached storage units and computational resources
(parent-child relationship); and (b) AA-constraints may apply
only to certain related service subsets (sibling relationship). In
our formulation, trees are insufficient since a node may require
more than one parent, for example if a VM is part of two
otherwise disjoint internal networks.

Table I
NODE TYPES USED TO DEFINE THE STRUCTURE OF A SERVICE.

Node type Abbr. Description

Service Root Common ancestor for all service com-
ponents.

Compute Resource C
Compute resource, which can be con-
nected to networks and storage units.

AA-constraint A

Metadata for use within a scheduler
to determine placement according to
affinity and anti-affinity rules. Scope
may either be type or instance and
must be specified.

Block Storage Sb
A mountable data storage for a Com-
pute resource. Cf. Amazon EBS.

File Storage Sf

Data storage which may be accessed
by multiple Compute resources simul-
taneously. Cf. Amazon S3.

Internal Network Ni
Internal network for all underlying
Compute resources and File storages.

External Network Ne

External network connection (IP ad-
dress) for the parent Compute or File
storage resource.

Special meaning is reserved for the words type and instance
when used to describe resources: types act as templates for
instances, and one-to-many instances can be instantiated of each
type. Table I lists node types with description and abbreviation.
Nodes of type AA-constraints (A) only affect Compute (C) and
File storage (Sf) nodes. The other resources, networks and
block storage, implicitly or explicitly belong to instances of
either C or Sf , and thus are covered by the same AA-constraints
as the node to which they belong.

Figure 1 shows examples of structures which can be
composed into valid hierarchical DAGs. The relationship
marked with edges create parent-child relationships. Instances
of child nodes are attached to each instance of their parent.
Both A and internal network (Ni) nodes may be nested to
arbitrary depth. Nodes of type A stipulate constraints for all
descendants as described above. For nested Ni nodes, C and
Sf nodes require a virtual network interface for each ancestor
of type Ni and each descendant of external network (Ne) nodes
to connect them to each of these network instances.

An AA-constraint affects all descending C and Sf nodes but
may have different scope, either type or instance, as specified
as an attribute of the constraint. An AA-constraint with type
scope affects how instances of a type can be placed in relation
to instances of other types, but not instances of the same type.
An AA-constraint with instance scope affects all descending
instances regardless of type, and therefore also affects instances
of the same type. For example, consider an AA-constraint A1

specifying ”not same host” with two underlying compute node
types C1 and C2:

1) If the scope of A1 is type scope, no instance of type C1

may be placed at the same host as an instance of type
C2. (However, two instances of C1 may be placed at the
same host.)

2) If the scope of A1 is instance scope, no pair of instances
of either type (C1 or C2) may be placed at the same
host.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 174

84

Figure 1. Rules defining valid inter-node relationships for service definition DAGs. C denotes Compute resources, A denotes AA-constraints, Sf and Sb

denote file and block storage, respectively, and Ni and Ne denote internal and external networks. Valid terminal nodes are marked with a border. Further node
description can be found in Table I.

Figure 2. Example of a three-tier Web application service represented using a
DAG which includes AA-constraints and network setup. Node types are shown
in Figure 1, and labels have been added for clarity.

A. Service Definition Example

We exemplify this structure by describing a typical three-tier
Web application in Figure 2 as a DAG. Immediately below the
service root node, an AA-constraint states that all descendants
of all resource types must be located in Europe. Thus, a
scheduler may choose freely among Cloud federation partner
sites located in Europe, but not elsewhere. An internal network
resource node specifies that all its descendants are connected
to a single local network instance. In addition, instances of the
front end compute resource type are accessible via per-instance
individual external IP addresses. A type scope anti-affinity
constraint forbids placement of instances of the primary and
secondary database servers at the same physical host. For
the secondary database servers, an instance scope anti-affinity
constraint explicitly forbids placement of instances at the same
host, for fault-tolerance reasons. An individual block storage
is attached to each compute node instance.

IV. MODEL FOR SCHEDULING IN FEDERATED CLOUDS

Scheduling is the process by which a VM management
system decides on which physical host machine or partner
site within a Cloud federation a VM should be placed. The
general problem is to create a placement mapping between
VMs and physical hosts such that placement fulfills certain
management objectives [3], e.g. to maximize profit, avoiding
loss of reputation, maximizing resource usage, etc. Mappings

are evaluated using a number of factors, e.g. power consumption
of physical host machines, economical penalties stipulated in
pertinent SLAs, etc.

We present fundamental ongoing work for scheduling based
on a model that takes AA-constraints, e.g. the ones shown in
Figure 2, into account. The model assumes that migration can
be used to optimize placement, but avoids unnecessary or risky
(in terms of SLA violation risk) migrations.

The model regards remote sites as logical local hosts with
different service-level characteristics, e.g. network capacity.
Thus, management is simplified while still representing the
performance and SLA-related differences between the local
and the remote site(s).

Our model is formally described as follows. Let V be the set
of VMs that need placement and H be the set of hosts to our
disposal (including remote sites as logical members of H). M
denotes a set of mappings mv,h ∈M of VM v to host h stating
that VM v is placed on h. Time is discretized and each interval
has one active mapping. We wish to determine a new mapping
Mn based on an old mapping Mn−1 such that net profit is
maximized. Net profit is expressed as the difference between
a benefit function B(V), a cost function C(M) (models e.g.
power usage due to the current host utilization), and estimated
SLA-related costs due the inherent risk of performance loss
associated with migration S(Mn−1,Mn) in modifying the old
mapping into the new one. We express this in Equation 1.

maximize

(
B(V)−

H∑

h=1

V∑

v=1

C(Mn)− S(Mn−1,Mn)

)

(1)
Note that if a mapping M makes use of remote resources in

the Cloud federation, this will likely incur a larger cost C(M)
but (hopefully) also reduce the expenses if an SLA is violated,
since the remote site also must provide compensations in that
case. For sufficiently large problem instances, investigation of
all possible new mappings to determine which gives sufficiently
small values for S(Mn−1,Mn) is too computationally intensive
to be feasible. To that end, we define a heuristic to avoid wasting
time investigating migrations that have a high risk of resulting
in SLA violations.

A. Migratability heuristic

We define a migratability function Mig(v,M) of a VM v
given a current mapping M , where low migratability value
implies that migration of v from its mapping in M is less

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 175

85

desirable. The scheduler uses this heuristic in an attempt of
minimizing S(Mn−1,Mn) from Equation 1, while still being
open to performing migrations to optimize placement.

Due to affinity relationships, it is not sufficient to consider
the migratability of a single VM in isolation. Rather, for a
given proposed migration of a VM v from one host or site
to another location, let O denote the set of other VMs that
must also be migrated due to affinity constraints. We then
define Mig(O,M) as the migratability function for all o ∈ O,
relative to the mapping M . Obviously, if the selected new
location for a VM is a remote site, the scheduler uses site and
geographical level affinity to determine eligibility since actual
host deployment is not known at remote sites due to location
unawareness. The remote site must abide by affinity rules or
reject the request to run the VMs if unable to do so. Also, due
to anti-affinity constraints, the set O may be limited in which
host machines may be used for placement of the VMs. The
value of Mig(O,M) depends on the migratability value of
each individual VM o ∈ O.

For a single VM v, the factors that determine Mig(v,M)
relate to the cost and risk of violating pertinent SLAs. The
risk calculation is based on:

• Long-term high-level monitoring data collected on the
usage patterns of the VM and the service it belongs to.
For instance, this helps determine if the service usually
peaks in usage at some regular intervals, e.g. the end of
the month.

• Short-term low-level monitoring data from the hypervisor
internals regarding the memory usage of the VM. As the
number of dirtied memory pages per time unit increases,
estimated migration time for the VM increases [10].

• Sizes of storage and volatile memory that have to be
transferred to the new destination and current network
utilization, as well as other currently active migrations.
If shared storage is used, typically only volatile memory
must be transferred. If, however, the VM is to be migrated
to another Cloud, it may be required to transfer the regular
storage as well.

The migratability heuristic prunes the search space and helps
the scheduler concentrate only on potentially fruitful mappings.
The heuristic identifies and confirms the intuition that the
easiest VMs to migrate are the ones that have few affinity (and
to lesser extent, anti-affinity) relations to other VMs, are not
currently (or in the near foreseeable future) highly active, and
such that decreased performance due to migration will not be
costly in terms of SLA violations.

As summarized in [11], even in research VM management
projects, schedulers are quite rudimentary: by default, only
various subsets of greedy, round-robin, and explicit (manual)
scheduling are supported. Most schedulers will also avoid
performing migration of a VM once it has found its initial
placement, which leads to sub-optimal performance and pos-
sibly higher energy costs than necessary. Although research
has been made on this topic [2], there is to our knowledge
currently no scheduler software that takes AA-constraints into
account that is open to the research community.

V. MONITORING DATA DISTRIBUTION IN CLOUD
FEDERATIONS

All Cloud sites offer monitoring of virtual resources, however,
there are many different and incompatible monitoring systems
in current use and this causes integration problems. We present
our ongoing MEDICI project, a monitoring data distribution
architecture that collects data from various existing monitoring
systems, marks it up with semantic metadata, and publishes it to
subscribers, one of which is a semantic database. The database
allows complex queries on the semantic self-describing data,
and the result can be transformed into a desired output format.

The MEDICI architecture is designed to leverage existing
software for its core operation in a scalable way. The compo-
nents of the architecture shown in Figure 3 are as follows:

• Monitored infrastructure. A virtual Cloud infrastructure
that is monitored continuously, e.g. computational re-
sources, storage entities, and interconnecting networks.

• Data annotator/publisher. Data annotators and publishers
are the core of the MEDICI system, providing:

– Canonicalization and semantic annotation of monitor-
ing values by plugins. The annotations conform to
OWL (Web Ontology Language) ontologies, facilitat-
ing parsing and conversion at the consumer level.

– Preparation of annotated monitoring data which is
then published to the distribution hub.

• Distribution hub. Distribution hubs distribute semantically
annotated monitoring data to a set of subscribers.

• Subscribers. Any consumer implementing the hub’s proto-
col may be a subscriber, enabling e.g. external components,
the SPs, and other Clouds in the federation to gain access
to the data using a single hub. As shown in Figure 3, the
hub may distribute both public and private streams of data.
This distinction makes it possible to prevent inappropriate
disclosure of data to different parties.

• SPARQL endpoints. SPARQL [12] endpoints are databases
that act as subscribers and are deployed either locally or
remotely. They make it possible to aggregate data from
the federation and make SPARQL queries on the data.

The architectural components in MEDICI are designed
to expose remotely invokable interfaces and the number of
instances of each component may due to loose coupling be
independently increased to handle scalability gracefully.

The raw monitoring values and basic metadata (interval
length, information source, and monitoring system identifier for
future parsing by plugins) are transferred from the monitored
infrastructure to the data annotator/publisher using light-weight
REST methodology by system-specific plugins. The data may
be extracted using e.g. libvirt [13], which is compatible with
several underlying hypervisor technologies. Plugins may also
be developed for other monitoring systems, e.g. collectd and
Nagios. Higher-level service-specific data, e.g. “number of
currently logged in users”, can also be distributed by the system.

The data annotator/publisher maintains a separate set of
plugins for handling various input of raw monitoring values.
Upon data arrival, the appropriate plugin creates a semantically

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 176

86

Figure 3. Overview of the MEDICI monitoring data distribution architecture.

annotated transformation from the raw data format in MEDICI
canonical form. The data is then transferred to a distribution
hub, which handles delivery to the subscribers.

The MEDICI canonical form for infrastructure data is based
on the data set provided by libvirt. This choice was made
for two reasons: (a) libvirt is compatible with most popular
hypervisors; and (b) libvirt provides a reasonable subset of
infrastructure-related measurements. However, note that since
MEDICI uses extensible OWL ontologies, specific plugins can
be developed for any input format. This allows service-specific
data to be distributed.

The SPARQL endpoint acts as a subscriber to the hub and
exposes its data via a rich semantic query language. This may
be used for complicated queries, including queries for inclusion
or inspection of remote monitoring data and accounting in a
federated Cloud setting. It is i.e. possible to make queries
that transform the remotely published data into data using the
same measurement intervals as done locally, making it easier
to apply the same mathematical functions for accounting and
SLA violation detection purposes.

The distribution hub conforms to the PubSubHubbub [14]
protocol, which uses the Atom format for data transport. We
consider Atom suitable for this purpose for several reasons: (a)
it is simple, incurs relatively low overhead, and is well-defined;
(b) it is easily viewable in a Web browser or feed aggregator,
requiring very little special software for a large variety of use
cases; and (c) as an XML format it is easy to translate into other
formats, and can transport other (semantic) XML data well, in
addition to being platform independent. PubSubHubbub enables
close to real-time updates of information in a scalable way,
and by design of the PubSubHubbub protocol, the functionality
of the hub is transparently hidden from consumers.

The strengths of this approach are that (a) plugins can be
developed for specific monitoring already in use at Cloud sites;
(b) plugins should not have a large negative performance impact
on monitoring systems; and (c) publishing data to a database
upon which semantic queries can be invoked, the data from a
remote site can be queried and transformed into a format that
is compatible with the monitoring system on the local site.

The architecture enables location unawareness from the
management point of view, since it aids in bridging the gap
between the management systems used at different Cloud sites,
making monitoring data from one Cloud site easily integratable
with the other.

VI. RELATED WORK

Service structure does currently not have wide-spread support.
APIs such as Amazon EC2 or Open Cloud Computing Interface

(OCCI) allow the SP to specify parent-child relationships (e.g.
storage unit s is the child of VM v), but do not support
sibling relationships such as the anti-affinity in Figure 2. As
for AA-constraints, large public clouds such as Amazon EC2
and Microsoft Azure allow the SP to choose a coarse-grained
geographical location, but not on finer levels such as site or
host. To our knowledge, this functionality is currently only
also available in [9], [3].

Verma et al. [15] present a power- and migration-cost
aware scheduler (pMapper) upon which we have based our
contribution. There are a number of differences between their
work and ours: (a) our scheduling model may also be applied
in a federated rather than an isolated Cloud; (b) the scheduling
model presented here has the notion of AA-constraints between
VMs; and (c) since our model is also usable for federations, it
takes other costs than power and migration into account.

Breitgand et al. [2] present a scheduler with support for both
affinity and cross-federation capabilities. They have developed
Integer Linear Program formulations for placement strategies,
and use the COIN-OR solver to obtain solutions. Our approach
is different in that it provides a heuristic to determine which
VMs should be easiest to migrate, making it suitable for local
search algorithms.

Li et al. [16] extend upon the work in [1] by adding support
for dynamic rescheduling and using migration to optimize
placement of VMs across a multi-provider hosting scenario.
Their broker acts on the behalf of a single SP, rather than at
the IP level. The impact of using different instance templates
(e.g. different VM sizes in Amazon EC2) as Cloud offerings
may differ is studied. Since the broker acts on behalf of the SP,
it does not have to avoid violating SLAs but instead attempts
to minimize service downtime due to cold migrations. Since
their model includes the possibility to assign per-VM penalties
for migration, the migratability heuristic can be adapted for
use within this system.

Existing approaches for monitoring in Clouds are presented
in, e.g., [17], [18]. Both present relevant ways of extracting
and managing data, but do not employ semantic metadata
to achieve cross-Cloud compatibility. Said et al. [19] present
a system and algorithm for automatically adding extensible
semantic metadata by inferring structure from Globus Grid
monitoring data. In addition to architectural differences, the
key conceptual difference between that and our approach is
that we believe that monitoring system-specific plugins produce
richer semantic metadata than a generic algorithm could. Their
algorithm infers a structure and annotates the data accordingly,
but does not handle input from non-Globus systems and does

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 177

87

not aim at making monitoring systems cross-compatible.
Passant et al. [20] use PubSubHubbub to provide close to

real-time updates of data sets matching SPARQL queries. The
result is turned into Atom feeds, which in turn are published
using PubSubHubbub. This approach gives real-time updated
streams of specific data, which could be used in conjunction
with the MEDICI system to provide access to only relevant
subsets of the information.

VII. CONCLUSIONS

This work describes ongoing work on fundamental service
management tasks key to federated Cloud environments. We
present a hierarchical graph structure representing a service and
any placement restrictions placed upon the service components,
such as site-level affinity, usable in Cloud federations. This
way of structuring a service and defining AA-constraints offers
a certain amount of control to the SP, which is then enforced
by the IP. This facilitates management considerably for an SP
compared to multi-provider hosting scenarios.

We define a model for scheduling in Cloud federations
that abides by SP-specified AA-constraints. We present a
heuristic that helps the model determine which VMs are suitable
candidates for migration. The model is designed for optimizing
placement both within a single site and in a Cloud federation.
The heuristic is based on the intuition that the VMs that are
most potentially costly in terms of SLA violations are those
which are highly active, have AA-constraints that require further
migrations, and where most data needs to be transferred.

All management of services in Cloud federations, including
scheduling, requires cross-site compatible monitoring systems.
Current monitoring systems are incompatible in both data
format and semantics of what the data represents. To help
overcome these issues, we present MEDICI, a monitoring
data distribution architecture that annotates data with semantic
metadata. Interaction with the data is made simple and flexible
e.g. by publishing it to a semantic database upon which
SPARQL queries can be made.

ACKNOWLEDGMENTS

The research that led to these results is partially supported
by the European Community’s Seventh Framework Programme
(FP7/2001-2013) under grant agreements no. 215605 (RESER-
VOIR) and no. 257115 (OPTIMIS) and the Swedish Gov-
ernment’s strategic research project eSSENCE. We thank the
anonymous referees for their valuable feedback.

REFERENCES

[1] J. Tordsson, R. Montero, R. Vozmediano, and I. Llorente, “Optimized
placement of virtual machines across multiple clouds,” 2010, submitted
for journal publication.

[2] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-driven service
placement optimization in federated clouds,” IBM Research Report, Tech.
Rep. H-0299, 2011.

[3] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, C. Zsigri, R. Sirvent,
J. Guitart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimitrakos,
S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia,
A. Kipp, S. Wesner, M. Corrales, N. Forgó, T. Sharif, and C. Sheridan,
“OPTIMIS: a holistic approach to cloud service provisioning,” in First
IEEE International Conference on Utility and Cloud Computing (UCC
2010), December 2010, accepted.

[4] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda,
W. Emmerich, and F. Galan, “The reservoir model and architecture
for open federated cloud computing,” IBM Journal of Research and
Development, vol. 53, no. 4, pp. 4:1 –4:11, July 2009. [Online].
Available: http://dx.doi.org/10.1147/JRD.2009.5429058

[5] E. Elmroth and L. Larsson, “Interfaces for Placement, Migration,
and Monitoring of Virtual Machines in Federated Clouds,” in Eighth
International Conference on Grid and Cooperative Computing (GCC
2009). Los Alamitos, CA, USA: IEEE Computer Society, August 2009,
pp. 253–260. [Online]. Available: http://dx.doi.org/10.1109/GCC.2009.36

[6] D. Hadas, S. Guenender, and B. Rochwerger, “Virtual Network Services
For Federated Cloud Computing,” IBM Technical Reports, Tech. Rep.
H-0269, Nov. 2009. [Online]. Available: http://domino.watson.ibm.com/
library/cyberdig.nsf/papers/3ADF4AD46CBB0E6B852576770056B848

[7] K. Jeffery and B. Neidecker-Lutz, Eds., The Future Of Cloud Computing,
Opportunities for European Cloud Computing Beyond 2010. European
Commission, Information Society and Media, January 2010. [Online].
Available: http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf

[8] I. Brandic, S. Pllana, and S. Benkner, “High-level composition of QoS-
aware Grid workflows: an approach that considers location affinity,” in
Workshop on Workflows in Support of Large-Scale Science. In conjunction
with the 15th IEEE International Symposium on High Performance
Distributed Computing, Paris, France, 2006.

[9] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M.
Vaquero, “Service Specification in Cloud Environments Based on
Extensions to Open Standards,” in Proceedings of the Fourth International
ICST Conference on COMmunication System softWAre and middlewaRE,
ser. COMSWARE ’09. New York, NY, USA: ACM, 2009, pp. 19:1–
19:12. [Online]. Available: http://doi.acm.org/10.1145/1621890.1621915

[10] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of Delta
Compression Techniques for Efficient Live Migration of Large Virtual
Machines,” in VEE ’11: Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2011).
ACM, March 2011, accepted for publication.

[11] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE Internet
Computing, vol. 13, pp. 14–22, 2009.

[12] E. Prud’hommeaux and A. Seaborne, “SPARQL query language
for RDF,” W3C, Tech. Rep., January 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

[13] libvirt development team, “libvirt: The virtualization api,” December
2005. [Online]. Available: http://libvirt.org/

[14] B. Fitzpatrick, B. Slatkin, and M. Atkins, “PubSubHubbub Core 0.3,”
February 2010. [Online]. Available: http://pubsubhubbub.googlecode.
com/svn/trunk/pubsubhubbub-core-0.3.html

[15] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and Migration Cost
Aware Application Placement in Virtualized Systems,” in Middleware
2008, ser. Lecture Notes in Computer Science, V. Issarny and R. Schantz,
Eds. Springer Berlin / Heidelberg, 2008, vol. 5346, pp. 243–264.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-89856-6 13

[16] W. Li, J. Tordsson, and E. Elmroth, “Modelling for dynamic cloud
scheduling via migration of virtual machines,” 2011, to appear.

[17] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino,
L. Vaquero, K. Nagin, and B. Rochwerger, “Monitoring Service Clouds
in the Future Internet,” in Towards the Future Internet - Emerging
Trends from European Research. Amsterdam, The Netherlands, The
Netherlands: IOS Press, 2010, pp. 115–126.

[18] G. Katsaros, G. Kousiouris, S. Gogouvitis, D. Kyriazis, and T. Varvarigou,
“A service oriented monitoring framework for soft real-time applications,”
in Service-Oriented Computing and Applications (SOCA), 2010 IEEE
International Conference on. IEEE, pp. 1–4.

[19] M. Said and I. Kojima, “S-MDS: Semantic Monitoring and Discovery
System for the Grid,” Journal of Grid Computing, vol. 7, pp.
205–224, 2009, 10.1007/s10723-008-9111-2. [Online]. Available:
http://dx.doi.org/10.1007/s10723-008-9111-2

[20] A. Passant and P. Mendes, “sparqlPuSH: Proactive notification of
data updates in RDF stores using PubSubHubbub,” in Scripting
for the Semantic Web Workshop (SFSW2010) at ESWC2010, 2010.
[Online]. Available: http://www.semanticscripting.org/SFSW2010/papers/
sfsw2010 submission 6.pdf

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 178

88

IV

Paper IV

Decentralized, Scalable, Grid Fairshare Scheduling
(FSGrid)

Per-Olov Östberg, Daniel Henriksson, and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University
SE-901 87 Umeå, Sweden

{p-o, danielh, elmroth}@cs.umu.se
http://www.cs.umu.se/ds

Abstract: This work addresses Grid fairshare allocation policy enforcement and
presents FSGrid, a decentralized system for Grid-wide fairshare job prioritization. The
presented system builds on three contributions; a flexible tree-based pol- icy model
that allows delegation of policy definition, a job prioritization algorithm based on lo-
cal enforcement of distributed fairshare policies, and a decentralized architecture for
non-intrusive integration with existing scheduling systems. The system supports or-
ganization of users in virtual organizations and divides usage policies into local and
global policy components that are defined by resource owners and virtual organiza-
tions. The architecture realization is presented in detail along with an evaluation of
system behavior in an emulated environment. The system is shown to meet schedul-
ing objectives and convergence noise (mechanisms counteracting policy allocation
convergence) are characterized and quantified. System mechanisms are shown to be
scalable in tests using realistic policy allocations.

Key words: Grid scheduling, Fairshare scheduling, Fair share scheduling, Grid allo-
cation policy enforcement

91

92

Decentralized, Scalable, Grid Fairshare Scheduling (FSGrid)

Per-Olov Östberg and Daniel Henriksson and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden

Abstract

This work addresses Grid fairshare allocation policy enforcement and presents FSGrid, a decentralized system for
Grid-wide fairshare job prioritization. The presented system builds on three contributions; a flexible tree-based pol-
icy model that allows delegation of policy definition, a job prioritization algorithm based on local enforcement of
distributed fairshare policies, and a decentralized architecture for non-intrusive integration with existing scheduling
systems. The system supports organization of users in virtual organizations and divides usage policies into local and
global policy components that are defined by resource owners and virtual organizations. The architecture realization
is presented in detail along with an evaluation of system behavior in an emulated environment. The system is shown
to meet scheduling objectives and convergence noise (mechanisms counteracting policy allocation convergence) are
characterized and quantified. System mechanisms are shown to be scalable in tests using realistic policy allocations.

Keywords: Grid scheduling, Fairshare scheduling, Fair share scheduling, Grid allocation policy enforcement

Email address: {p-o, danielh, elmroth}@cs.umu.se

[http://www.cs.umu.se/ds] (Per-Olov Östberg and Daniel
Henriksson and Erik Elmroth)

Preprint submitted to Future Generation Computer Systems March 14, 2011

93

1. Introduction

The core idea of fairshare scheduling is to sched-
ule jobs with respect to what fraction of preallocated
resource capacity job owners have consumed within a
finite time window [12]. Existing schedulers such as
Maui [11] and Simple Linux Utility for Resource Man-
agement (SLURM) [19] have built-in mechanisms for
fairshare, but are not designed to support Grid environ-
ments that span multiple administrative domains, utilize
heterogeneous schedulers, and require support for site
autonomy in allocation policies. This work addresses a
need for a global mechanism for Grid allocation policy
enactment and presents FSGrid, a system for decentral-
ized fairshare job prioritization that operates on global
(Grid-wide) usage data and provides fairshare support
to resource site schedulers.

Much work on Grid infrastructure have been directed
towards virtualization of job and resource management,
but many state of the art Grids still lack adaptability and
flexibility in usage policy enactment. Rigidity in allo-
cation mechanisms can effectively restrict many of the
main use cases for Grids and, e.g., force end-users to
perform manual resource selection to meet usage allo-
cation criteria not supported by automated brokers. To
facilitate the Grid vision of transparency in end-user re-
source utilization, policy enactment mechanisms that
virtualize Grid-level usage allocation are required. To
facilitate scalability in system deployment and admin-
istration, Grid fairshare enactment systems should also
allow delegation of policy administration, use scalable
fairshare calculation algorithms, and support manage-
ment of Grid-scale volumes of usage data.

The proposed system provides a flexible capacity al-
location policy model that maps organizational struc-
tures directly to policy specifications. The policy model
separates policy specifications into local and global
components, and delegates policy component admin-
istration to policy actors, e.g., Virtual Organizations
(VOs) [10] and projects. Resource sites mount global
policy components onto local policies to form policy
trees, which allows global policy allocation updates
(performed by policy actors) to be transparently prop-
agated to resource sites.

The fairshare algorithm operates on usage data and
compares consumed resource capacity to policy-defined
capacity allocations. Fairshare is calculated for each
level in the tree-based policy model and enforced top-
down, ensuring fairshare balance between policy sub-
groups to take precedence over balance within sub-
groups. As local policy components are defined by site
administrators and form top levels of policy trees, site

owners retain full control over site resources.
FSGrid employs an architecture for distributed stor-

age of usage data, and maintains periodic summaries
at resource sites. With minimal demands on the con-
tent of usage data, the system integrates seamlessly with
accounting systems, facilitating automated tracking of
Grid-level usage data. FSGrid places a component close
to resource site schedulers that local scheduling mech-
anisms invoke to replace existing fairshare calculations,
imposing minimal changes to existing deployment en-
vironments. The main building blocks of FSGrid are:

• A Grid usage policy allocation model that supports
recursive delegation of policy administration.

• An algorithm for efficient calculation of job priori-
tization from usage data and allocation policies.

• A decentralized and distributed architecture for
dynamic fairshare policy enactment that imple-
ments the proposed fairshare algorithm and inte-
grates with minimum intrusion into existing high-
performance computing resource environments.

The evaluation presented in this work assumes a
general model of Grid environments built on High-
Performance Computing (HPC) resource sites, where
jobs are fed from a batch system into a (cluster) sched-
uler. While this model is representative for many cur-
rent Grid environments, the proposed system is not lim-
ited to HPC deployment Grids. The proposed system
can be utilized by any system that performs execution
order prioritization of jobs. The proposed system con-
tains no functionality for advanced scheduling mecha-
nisms, e.g., job preemption, and is to be viewed as an
independent job prioritization component rather than a
full policy enforcement or job scheduling mechanism.

Ordering of jobs with respect to differences be-
tween usage allocation and resource consumption al-
lows schedulers to achieve a fairshare job prioritization
semantic of “least favored first”. This creates a global
self-adjusting policy enactment mechanism that helps
users receive resource capacity as defined by policy al-
locations. By definition of an allocation policy model
for VOs, a fairshare algorithm operating on the policy
model, and an architecture for distribution and decen-
tralization of policy enforcement, we extend an existing
fairshare mechanism to Grid level.

In FSGrid, we define fairness in terms of convergence
of resource consumption to policy-defined prealloca-
tions over time. As a point of departure, this work builds
on earlier efforts [9] where preliminary versions of the

2

94

policy model and algorithm are presented. A compre-
hensive differentiation and discussion of new and prior
results is given in Section 6.2.

The rest of the paper is structured as follows. In
the first sections we present the building blocks of the
FSGrid system; a tree-based policy model (Section 2),
an algorithm for efficient calculation of fairshare vec-
tors (Section 3), and a decentralized architecture for
scheduler-based Grid allocation policy enactment (Sec-
tion 4). These are followed by a performance evaluation
and a discussion of the proposed system in sections 5
and 6, and a survey of related work in Section 7. Fi-
nally, Section 8 outlines possible directions for future
work, and the paper is concluded in Section 9.

2. A Tree-Based Usage Policy Model

Grids are typically formed through joint collabora-
tions of autonomous resource sites. The amount of re-
sources contributed to a specific collaboration normally
differs between sites, and may vary over time. Grid pol-
icy models, i.e. mechanisms for mapping user identities
to resource allocations, must allow site administrators
to specify resource allocations on multiple levels, e.g.,
between local and Grid jobs, or different Grid collabora-
tions (e.g., VOs). As Grid user bases are usually formed
as VOs, Grid policy mechanisms are required to adapt
to dynamic changes in VO structure.

As illustrated in Figure 1, FSGrid employs a model
for specification of usage allocations in policy trees.
Policy tree nodes contain tuples of VO identity strings,
i.e. strings uniquely identifying a VO entity (e.g., a
user or a project), and usage share values. A usage
share value expresses a relative usage preallocation of
resource capacity within a policy group (a set of VO
identities that are policy tree siblings). The user U4 al-
location of 0.2 in Figure 1 is interpreted as U4 being al-
located 20 percent of whatever resource capacity (e.g.,
monthly CPU hours) is allocated to project P1.

This model allows VOs to map internal structure di-
rectly onto policy trees, and express both organizational
hierarchy (tree structure) and relationships between and
within policy groups (node share values) in a single
structure. There are no limitations on policy organiza-
tion other than VO identities being unique within tree
levels, i.e. within policy groups or projects.

Expression of allocation quotas in relative usage met-
rics (e.g., share percentages) rather than absolute capac-
ity metrics (e.g., CPU hours) virtualizes both the cur-
rency used in the system and allocation of resource site
capacity. Separation of allocation quotas from resource
capacity metrics allows policy quota allocations to be

mapped to custom metrics, provides a semantic for re-
allocation of unused policy allocations, and insulates al-
location enforcement mechanisms from volatility in re-
source site capacity.

As FSGrid policy trees express relative share ratios
and make no assumptions of tree structure, policy trees
can be constructed from multiple sources by mounting
subtrees onto leaf nodes in a policy tree (see Figure 1).
FSGrid makes a semantic distinction between local and
global share policies. Local share policies are root poli-
cies defined by resource site administrators for individ-
ual resource clusters. Global share policies are inde-
pendent policy trees defined by VOs, and are mounted
onto local policy trees by resource site administrators
(also illustrated in Figure 1). Local policies express
what global policies to enact and relative resource al-
locations between them. Local share policies may have
local queue components that allow site administrators
to reserve resource capacity for local (non-Grid) jobs.
Global policy trees express structure and allocations for
VO components, e.g., groups, projects, and users.

As policy tree construction can be distributed and per-
formed recursively, FSGrid delegates policy component
(subtree) administration to policy actors. Delegation of
policy specification allows policy actors, e.g., individ-
ual projects in a VO, to define policy components (sub-
trees) and mount these onto (leaf) nodes in parent policy
trees, i.e. updating usage policy allocations without in-
volving resource site administrators. Mounting global
policy components to local policy trees allows resource
site owners to subdivide and allocate resource site ca-
pacity shares to virtual organizations, which can further
subdivide and allocate resource site capacity shares re-
cursively within their organization.

Mounting of policy components onto policy trees
does not violate the node peer uniqueness criteria of the
policy model as subtree root nodes are overwritten by
policy tree nodes in the mounting process. Paths in pol-
icy trees uniquely qualify both VO identities (the bot-
tom path node) and chains of relationships between VO
identities and policy ancestors.

3. A Grid Fairshare Algorithm

Fairshare scheduling relies on prioritization of jobs
with respect to consumption of resource capacity pre-
allocations. In FSGrid, job prioritization is performed
through comparison of fairshare vectors, vectors of fair-
share balance values calculated from paths in fairshare
trees. Fairshare trees inherit structure from policy trees
and are calculated from comparisons of policy trees and

3

95

Figure 1: Delegation of policy specification to policy actors. Resource capacity allocations are subdivided recursively
in usage shares. Resource site RS local share policy contains preallocated usage shares for virtual organizations (VO1
and VO2) and local job queue (LQ). Administration of policy components is delegated to organization and project
administrators.

historical usage data. As paths in policy trees define an-
cestries of VO identities, comparison of fairshare vec-
tors offer a computationally efficient way to simultane-
ously perform scheduling prioritization on multiple lev-
els in policy trees.

The FSGrid fairshare algorithm performs calculation
of fairshare vectors in two steps. First, a fairshare tree
is calculated (once per resource site, illustrated in Fig-
ure 3) from an FSGrid policy tree and historical usage
data. Second, fairshare vectors representing each VO
identity in the system are calculated from the fairshare
tree (once per VO identity, illustrated in Figure 4), and
associated to jobs.

3.1. Fairshare Tree Calculation

Calculation of fairshare trees is done in two steps.
First, a usage tree is constructed by recursively (bottom-
up) replacing all node values in a policy tree with a cu-
mulative usage sum. This value is calculated as the sum
of all usage data found in the usage time window for
the node VO identity and the sum of all child node val-
ues. To facilitate comparison of usage and policy data,
node values are normalized to [0, 1]. Normalization is
performed by replacing each node value with the node’s
relative share of the sum of all node values on the tree
level. If no usage data is found (i.e. all sibling nodes
have value zero), all sibling nodes in the tree level re-
ceive equal shares. Like in policy trees, all tree level
node values sum to 1 after normalization.

Second, a fairshare tree is calculated by node-wise
application of a fairshare operator on the policy and
usage trees (illustrated in Figure 3). Fairshare operators
compare share values from policy and usage trees and
quantify a distance from the current to the ideal system
fairshare balance state (where all users utilize resource
capacity according to policy capacity preallocations).
The policy and usage trees are identical in structure, and
have node values in [0, 1]. Node values in the resulting

fairshare tree are in [−1, 1], and quantify a difference
between policy usage preallocation and actual resource
consumption (as defined by the fairshare operator used).
Node value sign indicates direction (positive values un-
deruse, negative overuse), and magnitude quantifies dis-
tance to policy-usage balance. All tree level node values
in fairshare trees sum to 0. Like a policy tree contains
all information required for policy enactment for a VO
or a resource site, a fairshare tree contains all informa-
tion required to perform fairshare prioritization of jobs
on a resource site.

3.2. Fairshare Vector Calculation

Once a fairshare tree has been calculated, individual
VO identity fairshare vectors are calculated (illustrated
in Figure 4). As paths in fairshare trees uniquely define
ancestries of VO identities, combining fairshare tree
node values (top-down) along a tree path creates vec-
tors that contain fairshare information for hierarchies of
VO identities. After vector calculation, node values (x)
are transformed to integer elements (y) as

y = f loor((
x + 1

2
) ∗ 9999) (1)

where
x ∈ [−1, 1]

y ∈ [0, 9999]

This results in integer vectors that can be serialized
to strings and compared lexicographically. The value
9999 is an upper limit constant determining the numeri-
cal resolution of vector element integer representations.

For arithmetic comparison of vectors, where vectors
are projected to one-dimensional value spaces, vectors
are required to be of uniform length. Therefore, vectors
are appended zero value elements until they reach max-
imum vector length (defined by fairshare tree depth).
Zero is chosen as pad value as it expresses policy-usage

4

96

Figure 2: Construction of usage trees from (distributed) usage data is done in two steps: 1. Raw usage trees inherit
structure from policy trees and node values are defined by cumulative summation of usage data for all usage identities
at or below the current node. In the illustration, project P2 consumes 10 usage credits. 2. Usage trees are normalized
to enable policy comparison through recalculation of node values as relative shares of node tree level usage data.

Figure 3: The FSGrid fairshare calculation algorithm. Fairshare trees are calculated by node-wise application of a
fairshare distance measure operator on the policy tree and the usage tree, in the illustration the absolute fairshare
operator p − u. Done once per Grid site and scheduling step.

balance in fairshare trees. As illustrated in Figure 4,
padding is performed prior to transformation to integer
vectors in the vector extraction algorithm.

Prioritization of jobs based on fairshare vector com-
parison results in hierarchical ranking of VO identi-
ties. Vector comparisons express differences in policy-
defined preallocations and actual resource capacity con-
sumption on multiple policy levels. As comparison is
done on job ownership VO identity level, all jobs owned
by the same VO identity receive the same priority.

In this framework, fairshare scheduling can be
viewed as an optimization problem where the distance
from each VO identity’s usage state and the system bal-
ance axis are sought to be minimized simultaneously.
By prioritizing jobs by fairshare distances, a schedul-
ing policy of “least favored first” is enacted. The term
convergence is in this context defined to refer to VO
identities’ resource capacity consumptions approaching
policy-defined usage preallocations over time. Con-
versely, any mechanism counteracting system conver-
gence in this context is defined to be convergence noise.

3.3. Fairshare Distance Measure Operators

For fairshare job prioritization, a mechanism to quan-
tify differences between usage share preallocations and
resource usage is required. To construct a metric for
comparison, FSGrid defines a two-dimensional value

space spanned by unit basis vectors for policy share pre-
allocations (p) and resource capacity consumption (u).
The system balance state, where resource consumptions
equal policy allocations, forms an axis (u = p) transect-
ing the value space diametrically.

By ordering VO identities by the distance from their
current usage state (a function of p and u) to the system
balance axis (u = p), a fairshare job prioritization order
is established. For distance measurement, FSGrid de-
fines a fairshare operator (d) constituted by an absolute
(da) and a relative (dr) component. To increase system
configurability, relative operator component influences
are regulated by a weight (k).

d = kda + (1 − k)dr (2)

where
da = p − u (3)

dr =

(
p − u

p

)2

for u < p

0 for u = p

−
(p − u

u

)2
for u > p

(4)

k, p, u ∈ [0, 1]

d, da, dr ∈ [−1, 1]

While any arbitrary operator (with arbitrary value

5

97

Figure 4: VO identity fairshare vectors are calculated and padded to uniform length. Node values ([−1, 1]) are
converted to integer values ([0, 9999]). Fairshare vectors are calculated once per VO identity in fairshare trees.

space) may be chosen for fairshare distance measure-
ment, operator selection impacts complexity and design
of the system. For example, uniform and symmetric
value spaces make distance interpretation intuitive, zero
distance balance points facilitates padding of fairshare
vectors, and unit distance magnitude facilitates scaling
of fairshare balance values. Conceptually the absolute
fairshare operator can be seen as a geometrical measure-
ment of the distance between resource consumption and
policy allocations in usage credits. The relative fair-
share operator expresses a ratio between resource ca-
pacity consumption and policy preallocations.

The requirement for a combined operator stems from
the behavior of the individual operator components. In
situations where a VO identity does not utilize allocated
capacity, the absolute operator degenerates and divides
unused allocations evenly among VO identity peers. In
situations where no usage data is available (e.g., at start-
up) the absolute operator favors users with large usage
shares. In situations where zero policy allocations are
assigned VO identities with reported usage, the relative
operator yields a maximum distance regardless of dif-
ferences in usage consumptions. By design, the relative
operator has a higher resolution far from balance, and a
lower resolution near balance. Combining the two op-
erator components allows FSGrid to operate more ro-
bustly, and provides administrators the ability to cus-
tomize the fairshare operator.

3.4. Combining Job Prioritization Mechanisms
As defined here, fairshare scheduling implies only a

prioritization order for jobs. Jobs with low fairshare
values may be scheduled if there are resources avail-
able and no jobs with higher fairshare prioritization
value in queue. Jobs are by this mechanism not pre-
empted or stalled, and fairshare scheduling is to be con-
sidered a soft scheduling mechanism. If policy fair-
ness is more important than resource utilization, sched-
ulers may combine fairshare prioritization with external
mechanisms that, e.g., reject jobs with fairshare values
below a certain threshold.

Some schedulers, such as Maui and SLURM, calcu-
late a linear combination of multiple scheduling factors
to determine job prioritization order. In these cases, a
scalar fairshare rank value computed by the FSGrid al-
gorithm can be used as a fairshare component in the lin-
ear combination. If so, the fairshare vector must be pro-
jected onto a limited value range to restrict the final pri-
oritization value’s range, which may affect the numer-
ical stability of fairshare prioritization. To avoid this,
projection of the fairshare balance values (fairshare vec-
tor elements) to a more restricted value range may be
replaced with an algorithm that assigns values to vec-
tor elements according to group-wise sort order. This
will project the fairshare vector to a truncated value
range, preserving vector sort order while truncating dis-
tances between vectors uniformly. Typically, schedulers
that use linear combinations of scheduling factors allow
site administrators to configure weights to determine to
what extent fairshare factors influence job prioritization.

4. A Decentralized Grid Fairshare Architecture

The policy model and algorithm of sections 2 and 3
provide a mechanism for fairshare prioritization of jobs
based on usage allocation and resource consumption.
As usage allocation policies are constructed from dis-
tributed policy components, and the algorithm operates
on usage data from multiple distributed resource sites,
an architecture managing distribution of data and com-
putations is required.

As illustrated in Figure 5, the architecture of FSGrid
is designed as a distributable Service-Oriented Archi-
tecture (SOA) where blocks of functionality in the FS-
Grid fairshare algorithm are identified and exposed as
services. The FSGrid architecture contains three ma-
jor blocks of functionality; policy administration, usage
data monitoring, and fairshare vector calculation; which
also constitute integration points between FSGrid and
the deployment environment.

To facilitate computational efficiency and reduce
communication overhead of the system, a number of ob-

6

98

Figure 5: The FSGrid architecture. System functionality is segmented into distributable services. The system inte-
grates with cluster schedulers, requires policy definitions from organizations, usage data from Grid accounting sys-
tems, and (optionally) identity mappings from batch systems. Deployment patterns are expected to be site-dependent.

servations about the interaction patterns of the function-
ality blocks can be made. Fairshare vectors are required
for job prioritization and should be recalculated when-
ever updated policy allocations or usage data are avail-
able. As schedulers require access to fairshare vectors
whenever scheduling decisions are made, e.g., when job
queues change or periodic scheduling cycle events oc-
cur, the fairshare vector calculation block should be lo-
cated close to the scheduler. The policy administra-
tion and usage data monitoring blocks are by nature
distributed, but should for reduction of communication
overhead have a cache component close to the fairshare
vector calculation block.

The computational complexities of computing fair-
share trees and vectors are low, and both operations can
be precomputed and results cached, making them well
suited for implementation in Web Services. Calculation
of the fairshare tree is performed once per resource site
and scheduling step, and calculation of fairshare vectors
is performed once per VO identity owning a job in the
scheduling queue.

Note that the design of the system does not assume
coordination of component actions, or synchronization
of distributed state, but rather realizes a set of au-
tonomous components that combined form a decentral-
ized fairshare architecture. Global fairshare resource
allocation is enacted through concurrent, asynchronous
local computations on distributed data.

To minimize the system deployment footprint, all ser-
vices are designed to integrate non-intrusively with ex-
isting infrastructure and minimize network traffic re-
quired by the system. Service deployment patterns are
expected to vary from site to site, but are recommended
to be based on the pattern illustrated in Figure 5 to min-
imize communication overhead.

4.1. Architecture Components

As illustrated in Figure 5, FSGrid is constituted by
five services and a set of plug-ins for scheduler pri-
oritization, usage data submission, and identity reso-
lution. To facilitate seamless integration into existing
HPC deployments, the architecture is implemented in
Java and exposes service functionality through WSDL
SOAP Web Services deployed in Apache Axis2 ser-
vice containers. Integration with HPC cluster sched-
ulers (currently Maui and SLURM) is done through in-
jection of FSGrid clients into scheduler exposed priori-
tization customization points.

4.1.1. Policy Distribution Service (PDS)
The Policy Distribution Service (PDS) provides a ser-

vice interface to FSGrid usage policy allocations. Inter-
nally, the PDS collates policy components from multi-
ple sources, e.g., XML files, HTTP web resources, other
PDSs; assembles a policy tree; and publishes policies
through the service interface. As multiple PDS may
be chained, and data read remotely, the PDS provides
a flexible mechanism for delegating policy definition
to VO and site administrators. To FSGrid and FSGrid
clients, the PDS provides an easy to use interface for
policy retrieval, and can be to, e.g., monitor updates in
policy allocations.

4.1.2. Usage Statistics Service (USS)
The Usage Statistics Service (USS) is designed to

provide time-resolved histograms of usage data on a
per-user basis. To reduce the amount of data, the ser-
vice interface accepts updates in a format semantically
equivalent to summaries of Open Grid Forum (OGF)
Usage Records [17], and exposes usage summaries for
requested time windows. Internally, the USS stores

7

99

usage histograms for known users in a database, and
maintains a usage summary cache to minimize invoca-
tion response time. The USS is the only required part
of FSGrid that receives input data from the surround-
ing system environment. As usage data constitutes the
currency that drives FSGrid fairshare, it is vital to FS-
Grid system coherency that each job usage record is
only reported to a single USS. As the USS provides a
histogram-based view of historical usage data, it can
be used by FSGrid services and clients to assess usage
statistics for individual VO identities on individual re-
source sites.

4.1.3. Usage Monitoring Service (UMS)
The main task of the Usage Monitoring Service

(UMS) is to provide a service interface for computa-
tion of (normalized) usage trees from policy trees. In-
ternally the UMS compiles data from a set of known
USSs, maintains a database of USS usage summaries,
a time-resolved per-user usage cache, a cache of previ-
ously known policy trees, and agents to monitor USSs
and precompute usage trees. The UMS also maintains a
customization point for moderation of usage data influ-
ence through a time window and usage decay function
plug-in. The UMS provides an interface for summariz-
ing usage records from multiple (USS) data sources and
mapping these to (provided) usage policies, and can be
used by FSGrid services and clients to get normalized
usage data views.

4.1.4. Identity Resolution Service (IRS)
Key to enabling fairshare scheduling of jobs in FS-

Grid is to be able to access historical usage records for
VO identities. As VO identities may be translated to
local cluster or site users when jobs are dispatched to
batch queues, schedulers may lack access to VO iden-
tities. The IRS exposes an interface for storing and ac-
cessing VO identity to job associations, and is primarily
used to resolve job ownerships. Use of the IRS in FS-
Grid is optional. If a scheduler has access to VO identity
job ownership data, these may be used directly when re-
questing scheduling prioritization information.

4.1.5. Fairshare Calculation Service (FCS)
The Fairshare Calculation Service (FCS) offers a flex-

ible service interface that provides access to the FSGrid
policy-based fairshare tree, fairshare vectors for speci-
fied VO identities (or jobs), and preformatted fairshare
tuples that contain VO identities, fairshare vectors, and
scalar fairshare prioritization values. The rich interface
of the FCS is designed to facilitate flexibility in imple-
mentation of scheduler integration plug-ins. Internally,

the FCS maintains caches for job identifier to VO iden-
tity maps, policy, usage, and fairshare trees, as well as
agents for monitoring services (PDSs and UMSs) and
precomputing fairshare trees. The FCS allows configu-
ration of UMS and PDS connections, PDS deployments,
and monitoring scheduling intervals.

4.1.6. Integration Plug-Ins
In addition to the services of FSGrid, a set of inte-

gration plug-ins is also considered part of the FSGrid
architecture. Depending on the FSGrid deployment en-
vironment, integration plug-ins for scheduler job priori-
tization, usage data submission, and VO identity resolu-
tion may be required. Design of scheduler plug-ins de-
pend on scheduler architecture, but typically consist of
an FCS client implemented in the same language as the
scheduler and possibly routines for calculation, trans-
formation, and caching of fairshare prioritization data.
Design of plug-ins for usage data submission and VO
identity resolution depend on accounting system and
scheduler architecture, and will typically consist of USS
and IRS clients.

As many Grid computing environments build on ex-
isting HPC deployments, which typically are required
to maintain HPC interfaces (e.g., batch systems) in co-
existence with Grid interfaces, it is vital to design Grid
systems to impose a minimum intrusion level when in-
tegrating Grid components with existing HPC deploy-
ments. The FSGrid architecture is designed to have
as few and simple integration points as possible while
still maintaining compatibility with a general model for
HPC deployment based Grid environments.

Typical Grid FSGrid integrations include

• Replacement of a local scheduler (fairshare) job
prioritization mechanism with an FCS invocation
client.

• Injection of a mechanism for submission of usage
data to the USS. This can be done in multiple ways,
e.g., through a scheduler job monitoring plug-in, or
a resource site or Grid accounting system.

• Optional injection of a job ownership resolution
component. If VO identity job ownership data
is not available to the scheduler, a job ownership
mapping between job and original VO identity can
be stored in the IRS. This data can be submitted at
any point prior to invocation of the FCS. Submis-
sion is typically expected to be done by the system
responsible for translation of VO identities to local
resource site users, e.g., a batch system.

8

100

4.2. (Concurrency in) Data and Control Flow

Data and control flows of an FSGrid deployment con-
sist of five autonomous and concurrent processes:

1. A set of PDSs monitors a set of data sources and
periodically compiles policy trees.

2. A set of USSs receives (summarized) usage re-
ports for jobs and builds time-resolved usage his-
tograms.

3. A UMS monitors a set of (local or remote) USSs,
periodically retrieves updates, and assembles us-
age summaries. The UMS precomputes usage
trees for known policy trees, and on demand for
unknown policy trees (which are added to the
cache structure).

4. An IRS receives VO identity job ownership data
and maintains a directory for ownership resolution.

5. An FCS monitors a PDS and periodically retrieves
policy trees and calculates usage (via a UMS) and
fairshare trees. The FCS maintains a cache of pre-
computed fairshare vectors (based on precomputed
fairshare trees), and does not compute fairshare
vectors for unknown VO identities.

The data required to drive the system, usage data and
usage policy allocations, are provided by accounting
systems and VO, project, and resource site administra-
tors respectively. FSGrid assumes that jobs are sched-
uled in an order influenced by fairshare prioritization
and that usage costs for all jobs are reported to the sys-
tem. Should resource sites utilize FSGrid to prioritize
jobs without reporting usage data, resource consump-
tion costs for jobs running on such sites do not con-
tribute to fairshare calculation results and imbalances in
global resource consumption may occur. Conversely,
should resource sites report usage data without utilizing
FSGrid as a job prioritization mechanism, global fair-
share convergence will suffer oscillations correlated in
size to resource site capacity. As the core balancing
mechanism of FSGrid is self-adjusting, global fairshare
balance will converge over time.

Specification of usage policies can be seen to be a
largely manual process, while usage data submissions
are expected to be fully automated. Through these five
processes, the FSGrid system provides an automated,
decentralized, and self-adjusting mechanism for Grid-
wide fairshare enactment of usage policy allocations.

4.3. Time Window and Decay Function

As illustrated in Figure 6, FSGrid defines a finite us-
age data time window (typically a configurable amount

Figure 6: Usage data histogram time window. Usage
decay functions modulate influence of usage data.

of days into the past) to restrict the influence of histor-
ical usage data on the fairshare mechanism. As also il-
lustrated, FSGrid employs a customizable usage decay
function to modulate how usage statistics influence the
fairshare mechanism. The time window width limits the
scope of usage statistics influence (data outside the time
window does not affect FSGrid behavior). The granu-
larity of the time window histogram slots affect the res-
olution of the fairshare mechanism. The usage decay
function modulates usage statistics by, e.g., increasing
or decreasing influence of more recent usage statistics
on system behavior. In the FSGrid architecture, both
time window parameters are configurable, and the us-
age decay function is exposed as a customization point
in the UMS. Further study of the impact of usage decay
functions in this context is subject for future work.

5. Evaluation

To evaluate core system functionality and isolate
noise sources (i.e. mechanisms counteracting system
convergence), a number of tests designed to quantify as-
pects of FSGrid’s technical performance are employed.
These tests are run in an emulated system environment
and are designed to introduce and illustrate system me-
chanics. As the purpose of this evaluation is to evaluate
system ability to enact policy allocations in a distributed
environment rather than demonstrate system integration
in a production deployment, use of an emulated system
environment is sufficient. In the evaluation, the follow
tests are performed:

• Noise characterization tests (Section 5.1). Investi-
gate and characterize FSGrid noise mechanisms.

• Noise interaction tests (Section 5.2). Investigate
interaction between different noise types and illus-
trate impact of system deployment patterns on sys-
tem performance.

• Policy enactment tests (Section 5.3). Investigate
FSGrid ability to enact policy allocations in decen-

9

101

tralized multi-site deployments employing multi-
ple asynchronized concurrent schedulers. Quantify
and evaluate FSGrid ability to adapt to dynamic
changes in policy allocations and distributed sys-
tem failures.

• Scalability tests (Section 5.4). Investigate FSGrid
ability to cope with realistically sized policy allo-
cations and quantify system scalability in the pres-
ence of large amounts of usage data and updates.

All evaluation tests are performed on a set of four
identical 1.8 GHz quad core AMD Opteron CPU, 4 GB
RAM machines, interconnected using a Gigabit Ether-
net network. For functionality tests, an additional set of
four identical 2 GHz AMD Opteron CPU, 2 GB RAM
machines, interconnected with a 100 Mbps Ethernet net-
work are used. All machines are running Ubuntu Linux
and Axis2 1.5. The Java version used in tests is 1.6, and
Java memory allocation pools range from 512 MB to 1
GB in size. For system integration tests SLURM 2.1.2
is employed as batch system and cluster scheduler.

Functionality tests are performed using a discrete-
event simulator emulating an execution environment
consisting of a batch system, a cluster scheduler, a clus-
ter, and an accounting system. The batch system reg-
isters (in the IRS) and feeds the scheduler sets of jobs.
The scheduler invokes the FCS to prioritize jobs and al-
locates them to cluster hosts. The accounting system
submits usage reports to the USS upon job completions.
Job start and end timestamps are used to evaluate FS-
Grid ability to enact resource capacity allocations.

Simulation job arrival models saturate scheduling
queues in the sense that schedulers have access to at
least one job for each usage policy VO identity at all
times. Single-site system emulations are run on a sin-
gle host, multi-site system emulations as a set of non-
communicating systems run concurrently on multiple
hosts. Cross-site synchronization is performed exclu-
sively by UMSs, which have access to USSs for all sites,
emulating a distributed Grid configuration.

All tests are, unless stated otherwise, run using iden-
tical parameter sets and the policy tree illustrated in Fig-
ure 1. USS and UMS update intervals are set to 1 sec-
ond, usage time windows are 10 slots wide and set to a
granularity of 1 hour (system wall clock time), all clus-
ters have a single host, and job lengths are either fixed to
1 or stochastic and uniformly distributed between 1 and
5000 time units long. To eliminate them as parameters
in measurements, absolute and relative fairshare oper-
ators are equally weighted (k = 0.5). Usage decay is
disabled (i.e. usage decay function is constant y = 1),
and the usage cost metric used is job length (CPU time).

Job failures do not affect FSGrid convergence rates as
failed jobs do not get reported to the accounting system
and appear as diminished resource capacity.

5.1. Noise Characterization
As we refer to system ability to over time enact

policy-defined resource capacity allocations as system
convergence (to policies), we define any mechanism
counteracting this process as convergence noise. To il-
lustrate system convergence to policy allocations, we
isolate policy (sub)groups, i.e. groups of nodes with
a common parent, and render cumulative resource con-
sumption for individual VO identities as a function of
number of jobs run in the group. To maximize the in-
fluence of noise in measurements, we isolate the policy
subgroup containing the VO identity with the lowest to-
tal usage share (P1 in Figure 1).

In FSGrid, there are two primary mechanisms coun-
teracting system convergence, variance in job usage
costs and usage data update latencies. To isolate im-
pact of variance in job usage cost, we emulate a single-
site FSGrid deployment with stochastic job usage costs
drawn from a uniform [1,5000] probability distribution.
To eliminate impact of usage data update latencies on
system convergence, each scheduling step is delayed to
allow usage data updates from prior jobs to propagate
to the FCS between scheduling steps. As illustrated in
Figure 7a, usage cost variance amplifies oscillations in
system convergence. When compared to ideal conver-
gence, differences in usage costs manifest as additive
noise in convergence adjustments. In Figure 7a, job us-
age cost variance noise is illustrated as vertical offsets
in convergence oscillations.

To isolate impact of usage data update latencies, we
emulate a single-site deployment with uniform job us-
age cost (cost = 1) and UMS and FCS update delays
designed to allow approximately 10 jobs to be sched-
uled between FCS usage data updates. As the FSGrid
job prioritization mechanism operates on usage data for
completed jobs, i.e. has no memory for recent schedul-
ing decisions or prediction mechanism for costs of run-
ning jobs, usage data update latencies result in multi-
ple subsequent scheduling decisions being taken on the
same usage data. As illustrated in Figure 7b, this results
in amplifying convergence oscillations and significantly
lowering system convergence rate. When compared to
ideal convergence, usage data update latencies manifest
as multiplicative noise in convergence adjustments and
a divisible reduction in convergence rate.

Prior work [9] suggests that including cost for sched-
uled and running jobs in prioritization calculations re-
duce impact of usage data update latency noise on sys-

10

102

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

R
el

at
iv

e
U

sa
g
e

(%
)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(a) Job usage cost variance noise. Variations in job usage costs cause
convergence adjustments to overshoot and amplify convergence os-
cillations.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

R
el

at
iv

e
U

sa
g
e

(%
)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(b) Usage data update latency noise. Update latencies reduce granu-
larity of convergence adjustments and delay system convergence.

Figure 7: Noise characterization. Cumulative resource consumption as function of scheduled and run jobs. Conver-
gence to usage policy allocations for VO identities designated in legend. Illustration capped to region of interest.

tem performance. Future work includes evaluation of
different strategies for inclusion of this approach in
multi-site FSGrid deployments.

5.2. Noise Interaction

Under realistic FSGrid operational settings both job
usage cost variance and usage data update latencies are
likely to be present. To investigate noise interaction, we
emulate a single-site FSGrid deployment with stochas-
tic job lengths and usage update latencies. As illustrated
in Figure 8a, usage data update latencies add a multi-
plicative component to usage cost variance noise. Im-
pact of noise is amplified by lowered convergence rate.

To evaluate noise interaction in decentralized Grid
environments, we emulate a four-site FSGrid deploy-
ment with stochastic job lengths and usage data update
latencies. As illustrated in Figure 8b, parallelism of
concurrent scheduling amplifies update latency noise,
in this experiment delaying system convergence by a
factor of 10. As the number of jobs scheduled be-
tween usage data updates determine impact of update
latency noise, large numbers of computational resources
per scheduler skew system convergence at startup. As
job lengths constitute lower bounds for usage data up-
date latencies, excessive job lengths amplify update la-
tency noise. For multi-site settings, concurrent schedul-
ing with synchronized update schedules amplify update
latency noise. Conversely, asynchronicity in multi-site
update schedules allow parallel processing of usage up-
dates to increase update frequencies and mediate impact
of usage data update latency noise.

These experiments are run in an artificial environ-
ment, but outline a few interactions between mecha-
nisms in the FSGrid fairshare job prioritization system.

Scheduling jobs after the principle of “least favored
first” creates a self-adjusting system that over time dis-
tributes resource capacity after policy allocations. Noise
from job usage cost variance and update latencies lower
system rate of convergence by affecting the convergence
adjustments (i.e. order in which jobs are run). Number
of hosts, sites, job lengths, as well as frequency and syn-
chronicity of usage data update schedules may serve to
amplify convergence noise. Over time, relative impact
of each noise source and type lessen, as more usage data
affect scheduling prioritization. As long as usage data
time windows are large enough to contain enough data
for the system to converge, the system remains stable.

5.3. Policy Enactment

To evaluate system ability to respond to external
events such as dynamic changes in site availability or
policy allocations, we emulate an eight-site FSGrid de-
ployment with stochastic job lengths and usage data up-
date latencies over an extended period of time. To study
impact of site volatility, four sites are removed after ap-
proximately 25000 jobs are scheduled. After approx-
imately 50000 jobs are scheduled, the local allocation
policy RS is altered to transfer 10 percent from each of
the allocations for VO1 and LQ to VO2.

As illustrated in Figure 9a, eight concurrent sched-
ulers cause significant initial convergence noise. At ap-
proximately 25000 jobs four schedulers are removed,
and convergence noise is reduced (also visible at ap-
proximately 10000 jobs in Figure 9b). At approximately
50000 jobs the usage policies are updated and all sched-
ulers adapt to new scheduling priorities. It takes ap-
proximately the same amount of jobs currently in the
time window to reach the level of convergence achieved

11

103

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

R
el

at
iv

e
U

sa
g
e

(%
)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(a) Interaction of usage cost variance and update latency noise. Im-
pact of usage cost variance noise amplified by delayed convergence.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

R
el

at
iv

e
U

sa
g
e

(%
)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(b) Concurrent scheduler noise augmentation. Impact of usage data
update latency noise amplified by parallelism in scheduling.

Figure 8: Noise interaction. Cumulative resource consumption as function of scheduled and run jobs. Convergence
to usage policy allocations for VO identities designated in legend. Illustration capped to region of interest.

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000

R
el

at
iv

e
U

sa
g
e

(%
)

Jobs

/VO1
/LQ

/VO2

(a) Adaptation to site failures and updated usage policy allocations.

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000

R
el

at
iv

e
U

sa
g
e

(%
)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(b) Adaptation to site failures and subgroup isolation.

Figure 9: Policy enactment. Cumulative resource consumption as function of scheduled and run jobs. Convergence
to usage policy allocations for VO identities designated in legend. Illustration capped to region of interest.

12

104

before the policy shift. As also illustrated in Figure 9a,
convergence rate is a function of the relative share ratio,
the VO identity with the lowest policy allocation (LQ)
converges slowest.

As illustrated in Figure 9b, which illustrates policy
group P1 of Figure 9a, altering the policy allocation of
an individual policy group does not affect other groups
in the same policy tree. Note that this simulation con-
tains multiple shifts of the usage data time window,
which do not visibly affect system convergence.

5.4. Scalability Tests
To evaluate FSGrid ability to function in production

environments, we run large scale tests over longer pe-
riods of time using realistically sized policy allocations
and system configurations. System convergence is val-
idated for tests using policy allocations with thousands
of users running millions of jobs.

For tests using a balanced policy tree (symmetrically
distributed users with equal allocation shares) contain-
ing 1000 users, 100 projects, and 10 VOs, the system
is shown to converge and exhibit stable performance
consistent with the behavior illustrated in tests using
smaller policy trees. System behavior is shown to be
deterministic and stable in tests using more than 4 mil-
lion jobs. First 5000 jobs of such a test are shown
in Figure 10. Tests using symmetric policy trees with
1000 users and equal allocation shares show faster con-
vergence rates than tests using small asymmetrical pol-
icy trees. Exact system convergence rate depends on a
number of factors including, e.g., policy tree shape, us-
age allocation share variance, job length variance, up-
date delays, and site synchronicity, and is considered
out of scope for this work. Further scalability and in-
tegration tests in production environments, as well as
analysis of convergence factors and formulation of con-
vergence rate formulas are subject for future work.

6. Discussion

The system evaluation of Section 5 demonstrates
technical aspects of FSGrid and shows how Grid-wide
fairshare job prioritization can be realized. While this
evaluation is performed in an emulated environment,
the evaluation demonstrates key aspects of system func-
tionality, scalability of system mechanisms, and system
ability to enact policy usage allocations. Full-scale test-
ing and evaluation of the system in production environ-
ments is subject for future work.

The remained of this section discusses fairness in
scheduling, differences between global and local fair-
share scheduling, and relates this work to earlier efforts.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

R
el

at
iv

e
U

sa
g
e

(%
)

Jobs

/VO0
/VO1
/VO2
/VO3
/VO4
/VO5
/VO6
/VO7
/VO8
/VO9

Figure 10: Convergence of total resource consumption
for 10 different VOs. The system comprises a total of
1000 users symmetrically distributed with equal alloca-
tion shares over 100 projects and 10 VOs. Over 4 mil-
lion jobs are run with stable convergence behavior. Il-
lustration capped to region of interest (first 5000 jobs).

6.1. Global and Local Fairshare

FSGrid provides a framework for global (Grid-
wide) fairshare scheduling. Existing schedulers (such
as SLURM and Maui) contain fairshare prioritization
mechanisms, but are designed for local (resource site)
fairshare scheduling, using a single share policy, a com-
mon scheduler technology, and consider only local us-
age data. FSGrid offers a model for global fairshare
where sites may have different share policies, use dif-
ferent schedulers, and operate on global usage data.

Local fairshare is often sufficient to manage job pri-
oritization for HPC, as user identities are normally as-
sociated with a single site. In Grids, computational re-
sources from several sites are aggregated into a com-
mon pool of resources available to all users of that Grid.
The jobs of Grid users should be given the same pri-
oritization regardless of which site in the Grid the job
is submitted to, and the combined use across the Grid
should be used for fairshare. For this, a global fairshare
mechanism is required.

Although FSGrid is designed for global fairshare, the
system can also be used for local fairshare job prioriti-
zation. Compared to local fairshare, global fairshare has
additional challenges that include:

• Operation across administrative domains.

• Heterogeneity in technology, performance, avail-
ability, scheduling models, and allocation models.

• Greater usage data volumes.

13

105

• Usage and policy data updates has to be propagated
to all participating sites, and each update may trig-
ger a fairshare recalculation.

• Many different actors (site schedulers) depend on
the same fairshare values simultaneously.

FSGrid may be deployed and configured in many
different ways to suit individual environments. Any
scheduler capable of calling Web Services can be in-
tegrated with FSGrid, and the policy model is based
on site-specific local policies under full control of lo-
cal administrators. To cope with Grid data volumes,
fairshare values for known users are precomputed and
cached. Similarly, as summaries of all usage for each
slot in the time window are maintained at user level, us-
age updates only trigger recalculation of summaries for
affected slots. Updated summaries are used in compu-
tation of fairshare values in following iterations.

Summaries and precomputed fairshare values are
maintained at each FSGrid installation (normally one
per site), and each scheduler can be served by a local
FSGrid instance. As summaries are stored at each FS-
Grid instance, each site can have differently sized time
windows (see Section 4.3) and purge usage data outside
of the time window without affecting other sites.

6.2. Prior Work

This work builds on earlier efforts presented in [9],
where preliminary versions of the policy model and
simulations of the algorithm are presented. The main
contributions of this work are a proposed architecture
for realization of a decentralized system based on this
algorithmic model, adaptations of the policy model and
algorithm to facilitate distribution of the system, and a
technical evaluation and analysis of the system. The
architecture is designed for use in large scale environ-
ments, and focused on scalability through distribution
and parallelization of data management and computa-
tions. Modifications of preliminary results presented in
[9] include:

• Realization of the system. Prior work presented a
simulation of the algorithm. This work presents a
realization of a distributed system that is evaluated
in an emulated environment.

• Extension of the fairshare algorithm with a frame-
work for more fine-grained differentiation of re-
source consumption (fairshare operators).

• Increased precision of vector elements to allow a
greater resolution in fairshare vectors.

• Reformulation of policy formats and interpreta-
tions to allow for dynamic updates of allocation
policies.

7. Related Work

The fair Share scheduler [12] introduces the concept
of user-level fair resource allocation in uni-processor
sharing environments. The work introduces concepts
such as fairness over time, support for different entitle-
ments for different users, hierarchical policy structures,
and sub-group isolation.

An evaluation of fair share in clusters or HPC systems
is presented in [15]. Applicability of previous work on
uni-processor sharing [12] to Grids or HPC systems is
analyzed and simulated using logged data for thousands
of real jobs. Effects of fair share on job prioritization are
found to be small, partly because average system utiliza-
tion is not high enough to cause enqueueing of jobs and
partly because other factors (e.g. CPU requirements)
are more deciding than differences in job priority.

Buyya et al. present a variation of the original FSGrid
resource allocation strategy of [13]. Sub-groups (such
as a sub-VO) may have dedicated resource allocations
that can be used in conjunction with allocation of an-
cestor nodes. Consumption cost is used to select which
allocation to use if several suitable alternatives are avail-
able. The aim is to maximize resource utilization, and
fair allocation of resources between siblings in a hierar-
chy is not taken into consideration. An extension that
also provides fair resource sharing is presented in [14].
Node job arrival rates are assumed to be known for all
nodes in the system and the problem is formulated as a
waiting time minimization problem. Jobs that cannot be
immediately scheduled are rejected, and as jobs arrive
with an assumed Poisson distribution, minimizing wait-
ing time affects job acceptance rate. In [14] fairness is
measured by job acceptance rate for different users.

Fair Execution Time Estimation (FETE) schedul-
ing [2] is another take at Grid fair scheduling, where
jobs are scheduled according to expected completion
time as if running on a time-sharing system instead of a
space-sharing system. Focus of this approach is to min-
imize risk of missing deadlines for submitted jobs.

Another hierarchical model presented in [8, 6], is
used to allot resources from different sites to VOs and
from VOs to users. Each sub-allocation includes both
a burst allocation and an epoch allocation to control
resource consumption in short- and long-term, respec-
tively. GRUBER [7], is an architecture of this model
that acts as a broker for resource usage Service Level
Agreements (SLAs).

14

106

DI-GRUBER [5] extends GRUBER and adds support
for distributed VO policy decision points. In these sys-
tems, VO polices are analogous to global policies in
FSGrid and manage suballocation of resources within a
VO. In contrast to FSGrid (where each site loads and en-
forces global policies), DI-GRUBER calls external de-
cision points for VO policy decisions.

An evaluation of Grid resource allocation mecha-
nisms is presented in [16]. Three different mechanisms
considered are volunteer, agreement-based, and eco-
nomic resource allocation. The agreement-based allo-
cation mechanism used in the evaluation is based on
earlier FSGrid work ([9]). The agreement based method
was shown to have better overall resource utilization and
suffer less degradation from high numbers of users com-
pared to alternative approaches.

A comprehensive study on share scheduling mecha-
nisms is presented in [3]. The study includes a thor-
ough mathematical analysis of different strategies for
share scheduling in uniprocessor, multiprocessor, and
distributed systems.

More algorithms for fair scheduling in Grids are pre-
sented in [4]. The primary objective is to adhere to
task deadlines. All tasks receive an equal share of re-
sources regardless of number of jobs submitted. Ex-
cess resources not required by a task are divided equally
among tasks that require more resources. Tasks may
also be weighted to receive more than their equal share
of available capacity.

A game-theoretic approach to fair Grid resource man-
agement is presented in [18]. This work considers the
case where local scheduling decisions may be taken to
optimize the system from the local schedulers point of
view, and evaluates consequences of different levels of
local scheduler autonomy in terms of (fair) scheduling.

Fair decentralized scheduling for Desktop Grids is
presented in [1]. Fairness in this case is defined as min-
imizing the overhead of running each task on a shared
infrastructure compared to a dedicated one. FSGrid de-
fines fairness differently, and measures fairness as the
difference between the expected and actual share of to-
tal resource consumption.

8. Future Work

A number of possible directions for future work are
identified. Further investigation of trade-offs between
FSGrid convergence parameters is expected to increase
understanding of system behavior. Evaluation of im-
pact of update latencies, usage decay functions, and job
scheduling patterns are likely to influence parameteriza-
tion and further development of the system. Evaluation

of experiences from integration of the system in produc-
tion use Grid deployments are expected to be of interest
for further development of the system. Incorporation of
scheduled and running jobs in fairshare job prioritiza-
tion is likely to reduce impact of usage data update la-
tency noise. Integration of the FSGrid job prioritization
mechanism with additional cluster scheduling systems
is expected to be of interest for system adoption.

9. Conclusion

In this work we present FSGrid, a decentralized sys-
tem for fairshare-based Grid usage policy enactment
built on three main contributions; a flexible policy
model, a scalable fairshare calculation algorithm, and a
decentralized architecture for parallelized fairshare pri-
oritization of jobs. The system design is presented in
detail, along with a performance evaluation and a dis-
cussion of the system.

The policy model supports mapping of VO structures
onto policies, delegation of policy specification, and vir-
tualization of usage credits. The fairshare calculation al-
gorithm is self-adjusting and noise-stable, virtualizes re-
source site capacity, provides subgroup isolation within
policy allocations, and adapts to changes in usage data
and policy allocations. The architecture of the system is
designed to facilitate decentralization of system deploy-
ments, precomputation and caching of scheduling data,
and integrates non-intrusively with existing scheduling
systems. The presented system can be utilized for job
prioritization and scheduler-based policy enactment in
Grid and HPC environments.

The performance evaluation illustrates the FSGrid
policy allocation mechanism, demonstrates the feasibil-
ity of the approach, and identifies factors that manifest
as noise in system convergence. The evaluation investi-
gates trade-offs between convergence noise factors, and
suggests how impact of these factors may be reduced.
The discussion relates the proposed system to similar
work and systems, and outlines the role of the system in
Grid environments.

Acknowledgments

The authors extend their gratitude to Peter Gardfjäll
for prior work, Lars Karlsson and Lars Larsson for feed-
back and discussions, and Raphaela Bieber-Bardt for
work related to the project. The authors also acknowl-
edge Tomas Ögren and Åke Sandgren for technical as-
sistance to the project.

This work has been done in collaboration with the
High Performance Computing Center North (HPC2N)

15

107

and has been funded in part by the Swedish Re-
search Council (VR) under Contract 621-2005-3667,
the Swedish National Infrastructure for Computing
(SNIC), and the Swedish Government’s strategic re-
search project eSSENCE. The authors also acknowl-
edge the Lawrence Berkeley National Laboratory
(LBNL) for supporting the project under U.S. Depart-
ment of Energy Contract DE-AC02-05CH11231.

References

[1] J. Celaya and L. Marchal. A Fair Decentralized Scheduler for
Bag-of-Tasks Applications on Desktop Grids. In CCGRID ’10:
Proceedings of the 2010 10th IEEE/ACM International Confer-
ence on Cluster, Cloud and Grid Computing, pages 538–541,
Washington, DC, USA, 2010. IEEE Computer Society.

[2] E. Dafouli, P. Kokkinos, and E. A. Varvarigos. Fair Execution
Time Estimation Scheduling in Computational Grids. In P. Kac-
suk, R. Lovas, and Z. Nmeth, editors, Distributed and Parallel
Systems, pages 93–104. Springer US, 2008.

[3] J. De Jongh. Share scheduling in distributed systems. PhD the-
sis, Delft Technical University, 2002.

[4] N. Doulamis, E. Varvarigos, and T. Varvarigou. Fair Schedul-
ing Algorithms in Grids. IEEE Transactions on Parallel and
Distributed Systems, 18:1630–1648, 2007.

[5] C. Dumitrescu, I. Raicu, and I. Foster. DI-GRUBER: A Dis-
tributed Approach to Grid Resource Brokering. In SC ’05: Pro-
ceedings of the 2005 ACM/IEEE conference on Supercomputing,
page 38, Washington, DC, USA, 2005. IEEE Computer Society.

[6] C. L. Dumitrescu and I. Foster. Usage Policy-Based CPU Shar-
ing in Virtual Organizations. In GRID ’04: Proceedings of
the 5th IEEE/ACM International Workshop on Grid Computing,
pages 53–60, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[7] C. L. Dumitrescu and I. Foster. GRUBER: A Grid Resource
Usage SLA Broker. In J. C. Cunha and P. D. Medeiros, edi-
tors, Euro-Par 2005 Parallel Processing, volume 3648 of Lec-
ture Notes in Computer Science, pages 465–474. Springer Berlin
/ Heidelberg, 2005.

[8] C. L. Dumitrescu, M. Wilde, and I. Foster. A model for us-
age policy-based resource allocation in grids. Policies for Dis-
tributed Systems and Networks, 2005. Sixth IEEE International
Workshop on, pages 191 – 200, jun. 2005.

[9] E. Elmroth and P. Gardfjäll. Design and evaluation of a
decentralized system for Grid-wide fairshare scheduling. In
H. Stockinger et al., editors, First International Conference on
e-Science and Grid Computing, pages 221–229. IEEE CS Press,
2005.

[10] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid:
Enabling scalable virtual organizations. International Journal
of High Performance Computing Applications, 15(3):200–222,
2001.

[11] D. Jackson, Q. Snell, and M. Clement. Core Algorithms of
the Maui Scheduler. In D. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, volume 2221
of Lecture Notes in Computer Science, pages 87–102. Springer
Berlin / Heidelberg, 2001.

[12] J. Kay and P. Lauder. A fair Share scheduler. Commun. ACM,
31(1):44–55, 1988.

[13] K. H. Kim and R. Buyya. Policy-based Resource Allocation in
Hierarchical Virtual Organizations for Global Grids. In SBAC-
PAD ’06: Proceedings of the 18th International Symposium

on Computer Architecture and High Performance Computing,
pages 36–46, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[14] K. H. Kim and R. Buyya. Fair resource sharing in hierarchical
virtual organizations for global grids. In GRID ’07: Proceed-
ings of the 8th IEEE/ACM International Conference on Grid
Computing, pages 50–57, Washington, DC, USA, 2007. IEEE
Computer Society.

[15] S. D. Kleban and S. H. Clearwater. Fair Share on High Perfor-
mance Computing Systems: What Does Fair Really Mean? In
CCGRID ’03: Proceedings of the 3st International Symposium
on Cluster Computing and the Grid, page 146, Washington, DC,
USA, 2003. IEEE Computer Society.

[16] S. Krawczyk and K. Bubendorfer. Grid resource allocation: al-
location mechanisms and utilisation patterns. In AusGrid ’08:
Proceedings of the sixth Australasian workshop on Grid com-
puting and e-research, pages 73–81, Darlinghurst, Australia,
Australia, 2008. Australian Computer Society, Inc.

[17] R. Mach, R. Lepro-Metz, S. Jackson, and L. McGinnis. Usage
Record - Format Recommendation, 2007.

[18] K. Rzadca, D. Trystram, and A. Wierzbicki. Fair Game-
Theoretic Resource Management in Dedicated Grids. In CC-
GRID ’07: Proceedings of the Seventh IEEE International Sym-
posium on Cluster Computing and the Grid, pages 343–350,
Washington, DC, USA, 2007. IEEE Computer Society.

[19] A. Yoo, M. Jette, and M. Grondona. SLURM: Simple Linux
Utility for Resource Management. In D. Feitelson, L. Rudolph,
and U. Schwiegelshohn, editors, Job Scheduling Strategies for
Parallel Processing, volume 2862 of Lecture Notes in Computer
Science, pages 44–60. Springer Berlin / Heidelberg, 2003.

16

108

