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larsk@cs.umu.se

Copyright c© 2011 by Lars Karlsson
Except Paper I, c© ACM, 2009

Paper III, c© F. G. Gustavson, L. Karlsson, and B. Kågström, 2011
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Abstract

Dense linear algebra represents fundamental building blocks in many computational
science and engineering applications. The dense linear algebra algorithms must be
numerically stable, robust, and reliable in order to be usable as black-box solvers
by expert as well as non-expert users. The algorithms also need to scale and run
efficiently on massively parallel computers with multi-core nodes.

Developing high-performance algorithms for dense matrix computations is a chal-
lenging task, especially since the widespread adoption of multi-core architectures.
Cache reuse is an even more critical issue on multi-core processors than on uni-core
processors due to their larger computational power and more complex memory hi-
erarchies. Blocked matrix storage formats, in which blocks of the matrix are stored
contiguously, and blocked algorithms, in which the algorithms exhibit large amounts
of cache reuse, remain key techniques in the effort to approach the theoretical peak
performance.

In Paper I, we present a packed and distributed Cholesky factorization algorithm
based on a new blocked and packed matrix storage format. High performance node
computations are obtained as a result of the blocked storage format, and the use of
look-ahead leads to improved parallel efficiency. In Paper II and Paper III, we study
the problem of in-place matrix transposition in general and in-place matrix storage for-
mat conversion in particular. We present and evaluate new high-performance parallel
algorithms for in-place conversion between the standard column-major and row-major
formats and the four standard blocked matrix storage formats.

Another critical issue, besides cache reuse, is that of efficient scheduling of com-
putational tasks. Many weakly scalable parallel algorithms are efficient only when
the problem size per processor is relatively large. A current research trend focuses
on developing parallel algorithms which are more strongly scalable and hence more
efficient also for smaller problems.

In Paper IV, we present a framework for dynamic node-scheduling of two-sided
matrix computations and demonstrate that by using priority-based scheduling one can
obtain an efficient scheduling of a QR sweep. In Paper V and Paper VI, we present
a blocked implementation of two-stage Hessenberg reduction targeting multi-core ar-
chitectures. The main contributions of Paper V are in the blocking and scheduling
of the second stage. Specifically, we show that the concept of look-ahead can be ap-
plied also to this two-sided factorization, and we propose an adaptive load-balancing
technique that allow us to schedule the operations effectively.
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Sammanfattning

Matrisberäkningar är fundamentala byggblock i många beräkningstunga teknisk-veten-
skapliga applikationer. Algoritmerna måste vara numeriskt stabila och robusta för att
användaren ska kunna förlita sig på de beräknade resultaten. Algoritmerna måste
dessutom skala och kunna köras effektivt på massivt parallella datorer med noder
bestående av flerkärniga processorer.

Det är utmanande att uveckla högpresterande algoritmer för täta matrisberäkningar,
särskilt sedan introduktionen av flerkärniga processorer. Det är ännu viktigare att
återanvända data i cache-minnena i en flerkärnig processor på grund av dess höga
beräkningsprestanda. Två centrala tekniker i strävan efter algoritmer med optimal
prestanda är blockade algoritmer och blockade matrislagringsformat. En blockad al-
goritm har ett minnesåtkomstmönster som passar minneshierarkin väl. Ett blockat
matrislagringsformat placerar matrisens element i minnet så att elementen i specifika
matrisblock lagras konsekutivt.

I Artikel I presenteras en algoritm för Cholesky-faktorisering av en matris kompakt
lagrad i ett distribuerat minne. Det nya lagringsformatet är blockat och möjliggör
därigenom hög prestanda. Artikel II och Artikel III beskriver hur en konventionellt
lagrad matris kan konverteras till och från ett blockat lagringsformat med hjälp av
en ytterst liten mängd extra lagringsutrymme. Lösningen bygger på en ny parallell
algoritm för matristransponering av rektangulära matriser.

Vid skapandet av en skalbar parallell algoritm måste man även beakta hur de
olika beräkningsuppgifterna schemaläggs på ett effektivt sätt. Många så kallade svagt
skalbara algoritmer är effektiva endast för relativt stora problem. En nuvarande forskn-
ingstrend är att utveckla så kallade starkt skalbara algoritmer, vilka är mer effektiva
även för mindre problem.

Artikel IV introducerar ett dynamiskt schemaläggningssystem för två-sidiga ma-
trisberäkningar. Beräkningsuppgifterna fördelas statiskt på noderna och schemaläggs
sedan dynamiskt inom varje nod. Artikeln visar även hur prioritetsbaserad schema-
läggning tar en tidigare ineffektiv algoritm för ett så kallat QR-svep och gör den effek-
tiv. Artikel V och Artikel VI presenterar nya parallella blockade algoritmer, designade
för flerkärniga processorer, för en två-stegs Hessenberg-reduktion. De centrala bidra-
gen i Artikel V utgörs av en blockad algoritm för reduktionens andra steg samt en
adaptiv lastbalanseringsmetod.
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Paper IV L. Karlsson and B. Kågström. A Framework for Dynamic Node-Scheduling
of Two-Sided Blocked Matrix Computations2. In Proceedings of PARA
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Paper V L. Karlsson and B. Kågström. Efficient Reduction from Block Hessen-
berg Form to Hessenberg Form using Shared Memory3. In Proceedings
of PARA 2010, LNCS. Springer, (to appear).
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Chapter 1

Introduction

The subject of parallel matrix computations deals with the development and
analysis of parallel and high-performance algorithms for a variety of different
matrix computations, e.g., solving a linear system of equations, computing a
linear least squares approximation, computing eigenvalues and eigenvectors,
and computing singular value decompositions [37]. The emphasis is on devel-
oping stable, robust, and high-performance algorithms applicable to all scales
from personal computers to massively parallel supercomputers with multi-core
processors and accelerators. The aim is to produce reliable black-box solvers
that can then be used as building blocks in established as well as future ap-
plications in, e.g., science and engineering. Hence the research is intentionally
decoupled from any particular application and the end products are often dis-
seminated in comprehensive proprietary as well as open source state-of-the-art
software libraries [19, 84, 6, 44, 83, 73, 46, 45].

Since it is central to the topic, let us briefly introduce the concept of a
matrix. An m×n matrix A is essentially a table with mn entries arranged into
m rows and n columns. The entry on the i-th row and j-th column is denoted
by aij or A(i, j) or (A)ij . A matrix is square if m = n and it is rectangular
otherwise. The transpose of an m×n matrix A, which we denote by AT , is an
n×m matrix B = AT such that bij = aji, i.e., the rows of A are the columns
of AT . For example,

A =
[
1 2 3
4 5 6

]
and AT =

[
1 4
2 5
3 6

]

illustrate a 2× 3 rectangular matrix A and its 3× 2 transpose AT . A (square)
matrix A is symmetric if AT = A, in which case aij = aji.

Matrix addition and subtraction are defined component-wise for matrices
of the same size. Matrices can also be multiplied together, but the definition
of matrix multiplication is slightly more complicated than the definition of
matrix addition. Specifically, if A and B are matrices of size m× p and p× n,
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respectively, then the matrix product C = AB is an m × n matrix defined by
the entries

cij =
p∑

k=1

aikbkj .

Due to the associativity and commutativity of scalar addition and multiplica-
tion, it is possible to express matrix multiplication in different ways. In the
setting of High-Performance Computing (HPC), block matrix multiplication
plays a key role. A block matrix is an M × N matrix in which each entry,
which we now call a block, is a matrix in itself. We illustrate this concept by
a small example:

A =




a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66


 =

[
A11 A12 A13

A21 A22 A23

]
.

In particular, we have the block

A12 =

[
a13 a14

a23 a24

a33 a34

]
.

It turns out that the scalar definition of matrix multiplication extends to block
matrices in a straightforward way. Specifically, let A and B be M × P and
P ×N block matrices, respectively. Then C = AB is an M ×N block matrix
defined by the blocks

Cij =
P∑

k=1

AikBkj .

Block matrix multiplication is well defined if all the matrix multiplications that
appear in the sum above are defined. In other words, the k-th block column of
A must have the same number of columns as there are rows in the k-th block
row of B.

The subject of matrix computations is loosely divided into the study of
dense and sparse matrices. This division is motivated by the fact that a sparse
matrix, i.e., a matrix in which a relatively large number of the entries are zero,
must be treated with care in order to preserve its sparsity structure and thereby
keep the computational cost and the storage requirements under control. In
dense matrix computations, on the other hand, the matrix is either entirely
filled in with non-zero elements or has a regular structure that is relatively
easy to preserve, e.g., it may be upper/lower triangular, banded, symmetric,
etc. Besides the algorithmic aspects of, e.g., complexity and reliability, im-
portant issues in the implementation of dense matrix computations are the
minimization of communication, both with memory and with other processors,
and effective load balancing across the processors.
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HPC is a large and active research area that studies a broad range of topics
related to the design and analysis of efficient and scalable parallel algorithms
and parallel computers. Interest in HPC has recently increased significantly
due to the shift from uni-core to multi-core processors and heterogeneous pro-
cessors/systems [8]. As a consequence, parallel computing is now being applied
on a large scale to mass-market applications in addition to its traditional ap-
plications in science and engineering.

Development of high-performance algorithms is challenging since in addition
to the full set of problems related to the development of sequential programs,
one must now also take into account the limitations and opportunities of the
hardware on which the parallel programs are supposed to run. On the other
hand, one often desires to have portability of both code and performance from
one system to another. Thus, the conflicting goals of hardware awareness and
portability implies that one should not tailor algorithms too much to a partic-
ular system but instead try to exploit whatever common features they might
have. Fortunately, past experiences show that it often suffices to develop al-
gorithms for a few broad classes of systems, e.g., shared memory, distributed
memory, accelerators, and hybrids of these, and then adapt the resulting algo-
rithms to particular systems by relying on optimized low-level libraries and/or
tuning of algorithmic parameters.

Besides having algorithms that are reliable and robust, it is highly desirable
that the algorithms can maintain a high efficiency when they are moved to a
larger parallel computer. In general, if we increase the number of processors but
keep the problem size constant, then the efficiency of a parallel algorithm tends
to go down due to the fact that more processors also means that there are less
data to store and process on each processor and hence the parallel overhead
increases. An algorithm that maintains a high efficiency even when run on
many processors relative to the problem size is said to be strongly scalable.

On the other hand, if we increase the problem size but keep the number of
processors constant, then the efficiency tends to go up since the computational
work assigned to each processor increases with the problem size and so the
parallel overhead becomes easier to amortize. Scalable parallel algorithms can
offset a drop in efficiency caused by moving to a larger parallel computer by
also simultaneously increasing the problem size. Depending on how much the
problem size must be increased to maintain a fixed efficiency, we can claim that
one algorithm is more weakly scalable than another. Research has recently
focused on developing strongly scalable algorithms, especially for multi-core
architectures, in an effort to improve the efficiency of algorithms on a wide
range of problem sizes that are not large enough to fully benefit from weak
scalability.

The present thesis deals with a few important topics in parallel dense ma-
trix computations. The targets include both distributed-memory systems and
multi-core architectures.
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Chapter 2

Principles of Parallel Dense
Matrix Computations

The aim of this chapter is to introduce some fundamental principles of parallel
dense matrix computations. See, e.g., [37, 43], for more detailed discussions.

2.1 Cache Reuse and Blocked Algorithms
High-performance algorithms have to deal with the relatively high latency and
low bandwidth of the main memory. Processors are equipped with deep mem-
ory hierarchies, i.e., multiple small and fast so called cache memories located
between the processor and the main memory, in order to reduce the main
memory’s negative effects on performance. The caches have lower latencies
and higher bandwidths than the main memory and can therefore improve the
effective latency and bandwidth. However, caches can only improve perfor-
mance for certain types of memory access patterns. In particular, random
memory accesses do not benefit at all from cache memories, whereas contigu-
ous (or stride-1) memory accesses are ideal. Algorithms must reuse data stored
in the caches multiple times in order to run efficiently. As we will see, this
means reconsidering the design of both algorithms and data structures, since
there are orders of magnitude differences in performance between the best and
the worst memory access patterns.

The collection of fundamental linear algebra operations can be divided into
three categories based on the type of objects that appear as inputs and outputs.
Operations such as the dot product, xT y, and the vector update or saxpy, y ←
αx + y, involve only vectors and are therefore called vector–vector operations
(or Level 1 operations in the BLAS [20] terminology). Operations that involve
both matrices and vectors are known as matrix–vector (Level 2) operations.
Examples include the matrix-vector product, y ← Ax, and the outer product
update, A ← A − xyT . The third type involves only matrices and are called
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matrix–matrix (Level 3) operations.
The operations in Level 1 and Level 2 perform only a few floating point op-

erations (flops) per word of input/output, which means that they have limited
cache reuse when the operands do not fit in cache. For example, the outer prod-
uct update A← A−xyT , where A is an m×n matrix, requires 2mn flops and
has mn+m+ n words of input/output. The Level 3 operations, on the other
hand, benefit from a surface-to-volume effect and, depending on the shape and
size of the matrices involved, can require many flops per word of input/output.
For example, the Level 3 matrix multiplication operation C ← C +AB, where
A, B, and C are n×n matrices, requires 2n3 flops but involves only 3n2 words
of input/output. Moreover, this potential for cache reuse can be realized in
practice, yielding high-performance implementations of the Level 3 operations
capable of nearly attaining the theoretical peak performance.

If we count the number of bytes transferred to and from memory, b, as
well as the number of flops, f , then the arithmetic intensity, defined as f/b,
measures the amount of cache reuse and should ideally be larger than a system-
dependent constant in order for the implementation to be efficient on that
particular system.

The BLAS (Basic Linear Algebra Subprograms) is a widely adopted stan-
dard interface to a wide spectrum of operations covering the three levels dis-
cussed above [20, 61, 60, 15, 84, 10]. The idea behind the BLAS is to provide
a standard interface to computational linear algebra kernels, which can then
be optimized and tuned for particular computer architectures. The BLAS
thereby enables portability of both code and performance for higher-level li-
braries. Among the many diverse operations in the BLAS, the matrix multi-
plication and add operation, GEMM, defined as C ← βC + α op(A) op(B) where
op(X) is either X or its transpose XT has a special status since all the other
Level 3 operations can be expressed as mostly GEMM operations [61, 60]. Besides
being universal, the GEMM operation is also highly regular and promotes reuse
not only at the level of caches but also at the level of processor registers. In
fact, GEMM is one of the few operations that map well enough to the features of
a typical high-performance processor that the theoretical peak performance is
within reach.

Based on the above considerations of cache reuse and portability, it follows
that one should aim to express matrix computations in terms of GEMM and/or
other Level 3 operations. Unfortunately, it turns out that some matrix com-
putations are simpler to express in terms of Level 1 and Level 2 operations
than in terms of Level 3 operations [43]. The key to obtaining Level 3 perfor-
mance is often to formulate algorithms in terms of operations on matrix blocks.
For this reason, high-performance linear algebra algorithms are often referred
to as blocked algorithms. Moreover, some computations can be expressed re-
cursively, which often yields an automatic multi-level blocking [47, 41]. Such
algorithms are called cache-oblivious, since they automatically adapt to the
memory hierarchy at run time [42].

The amount of cache reuse is influenced not only by the algorithms but

6



also by the data structures. This is due to the fact that caches transfer data
in contiguous blocks, called cache lines, each of which can store dozens of
(contiguously stored) matrix entries. Therefore, the amount of data that is
actually transferred to/from a cache memory in response to a memory refer-
ence can be larger than the amount of data actually referenced. This means
that the layout of matrices in memory (the so called matrix storage format or
data layout) influences the cache reuse by determining the volume of trans-
ferred data. The optimal choice of data layout depends on the algorithm.
In particular, since the memory access pattern of a blocked algorithm dif-
fers from that of an unblocked one, their optimal data layouts also differ.
The standard row- and column-major data layouts, in which rows or columns
of the matrix are stored contiguously, are suitable for unblocked algorithms,
but blocked and recursive data layouts are more suitable for blocked algo-
rithms [10, 9, 48, 41, 32, 31, 53, 5, 63, 70, 65].

In a distributed-memory environment, the matrices must be distributed
across the processors such that a subset of the matrix entries are stored locally
on each processor [37, 19]. A matrix distribution specifies for each entry of
the matrix on which processor that entry should be stored. While one can
conceive of many different matrix distribution schemes, only a few are of prac-
tical interest. The most common class of distributions assign a (not necessarily
contiguous) sub-matrix, called the local sub-matrix, to each processor. The
local sub-matrix is then stored using, e.g., the column-major data layout or
some blocked data layout. A sub-matrix is defined by a subset of the columns
and a (possibly different) subset of the rows. A distribution is said to be one-
dimensional if one of these two subsets is equal to the entire set, and it is said
to be two-dimensional otherwise.

The block column distribution is an example of a one-dimensional matrix
distribution. Let us illustrate by distributing an 8 × 8 matrix A across four
processors. The entries of A are assigned to the four processors (numbered
from 0 to 3) as follows:

A =




0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3
0 0 1 1 2 2 3 3



, A0 =




a11 a12

a21 a22

a31 a32

a41 a42

a51 a52

a61 a62

a71 a72

a81 a82



.

The entries in the local sub-matrix A0 belonging to processor 0 is also shown
above.

Even though one-dimensional distributions are simple, they unfortunately
also limit the scalability of many algorithms [33]. Figure 1 illustrates one
of the disadvantages of the block column distribution in particular and one-
dimensional distributions in general. Figure 1 shows how the computational
region of a typical factorization algorithm gradually shrinks toward the bottom
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right corner of the matrix. Note in particular that the data stored on processor 0
is used only in the first of the four iterations in this example.

Figure 1: Progression of the computational region in (right-looking) factor-
ization algorithms. The entire matrix is involved in the first iteration, but in
subsequent iterations the computational region gradually shrinks toward the
bottom right corner of the matrix.

Many distributed-memory matrix computations have better scalability if
they are used in conjunction with a two-dimensional instead of a one-dimensional
distribution. In particular, the block-cyclic distribution has proven to be a good
compromise between load balance on the one hand and efficient communication
patterns on the other hand. In the block-cyclic distribution, the matrix is first
partitioned into blocks of some fixed size and then the blocks are distributed
cyclically in both dimensions. Instead of providing a formal definition, let us
illustrate by distributing an 8× 8 matrix A on four processors:

A =




0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
2 2 2 3 3 3 2 2
2 2 2 3 3 3 2 2

0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
2 2 2 3 3 3 2 2
2 2 2 3 3 3 2 2



, A0 =




a11 a12 a13 a17 a18

a21 a22 a23 a27 a28

a51 a52 a53 a57 a58

a61 a62 a63 a67 a68


 .

As before, the matrix A0 above denotes the local sub-matrix belonging to
processor 0. Note that by using this two-dimensional distribution, the compu-
tational regions shown in Figure 1 become more evenly distributed.

The matrix is distributed in units of blocks instead of individual entries
because of a trade-off between the cost of communication and load balance.
In particular, the ScaLAPACK library uses the block-cyclic distribution with
a generally non-unit block size [19]. The Elemental project [73], on the other
hand, aims to develop a dense linear algebra library similar in functionality
to ScaLAPACK, but based on a pure cyclic distribution (i.e., with unit block
size).
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2.2 Task Decomposition and Scheduling
In order to run on a parallel computer, a computation must be decomposed
into tasks that can then be scheduled onto the processors. Both of these steps
can be realized in many different ways. The aim of this section is to discuss
those that are most relevant to the papers included in this thesis.

The task decomposition can either be determined statically (i.e., at compile
time) or dynamically (i.e, at run time). In both cases, the task decomposition
may or may not be dependent on the number of processors. Bit-wise repro-
ducible results are difficult to guarantee unless the task decomposition is both
static and independent of the number of processors. On the other hand, a
dynamic task decomposition is useful if one wants to adaptively balance the
load at run time.

In order to make the discussion more concrete, let us consider the following
block outer product update:

C ← C −AB,

where C is m× n and A is m× k and B is k × n. The cost of this block outer
product is 2mnk flops. We introduce parallelism by partitioning the rows of A
and the columns of B into blocks. Specifically, we partition the m rows of A
into r blocks of size m1,m2, . . . ,mr and the n columns of B into c blocks of
size n1, n2, . . . , nc. For example, if we set r = 3 and c = 2 we obtain rc = 6
independent tasks of the form Cij − AiBj , each with a cost of 2minjk flops,
since

C = C −AB =



C11 C12

C21 C22

C31 C32


←



C11 −A1B1 C12 −A1B2

C21 −A2B1 C22 −A2B2

C31 −A3B1 C32 −A3B2


 .

If we set the block sizes such that mi = nj = K for some constant K, then
the tasks have a uniform size (i.e., 2K2k flops) and the decomposition is static
and independent of the number of processors. If we instead set the number of
blocks such that r = c =

√
p, and set the block sizes such that mi = m/

√
p

and nj = n/
√
p, where p is the number of processors, then the tasks are again

uniformly sized and the decomposition is static, but now it depends on the
number of processors. Lastly, if we make the choice regarding the number of
blocks r and c and/or the block sizes mi and nj at run time, then we get a
dynamic task decomposition.

The granularity of the tasks is an important consideration since not only
does it affect the number of tasks and hence the scheduling overhead, but it
also affects the performance of the tasks. A fine-grained decomposition exposes
a lot of parallelism but makes it difficult to perform each task efficiently. In
contrast, a coarse-grained decomposition exposes less parallelism but improves
the performance of each task. In other words, there is a trade-off between the
amount of exposed parallelism and the performance of each task. Finding a
suitable balance can be tricky, and this issue is explored in, e.g., [3].
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Figure 2: (a) An example task graph (DAG) with uniform processing times,
and (b) an optimal scheduling of the task graph onto three processors.

Once the tasks are known they can be scheduled onto the available proces-
sors. The order in which the tasks can be run is often constrained by precedence
constraints, each of which says that one task must finish before another one
can start. The scheduling of tasks must of course respect these constraints in
order for the computation to yield correct results. A common way to model
tasks with precedence constraints is as a task graph, i.e., as a Directed Acyclic
Graph (DAG), where the nodes represent tasks and the edges represent prece-
dence constraints. For example, consider the task graph in Figure 2(a). We
see that we have to start with task 1 since all other tasks depend on it either
directly or indirectly. Then we can choose between tasks 2–4 or even do them
all in parallel, and so on. If we assume that the tasks have uniform processing
times, then the schedule shown in Figure 2(b) is optimal in the sense that it
has minimal length, since any schedule must respect the linear order imposed
by the critical path 1 → 2 → 5 → 6 → 8 → 9 → 10, which is highlighted in
Figure 2(a). A path with maximal length, where the length of a path is defined
as the sum of the processing times, is said to be a critical path. A critical path
imposes a lower bound on the parallel execution time since the tasks on any
path must be performed in sequence. Unfortunately, it turns out to be very
expensive to find an optimal schedule even with such an unrealistic assumption
as uniform processing times. In reality, processing times are often noisy, dif-
ficult to model accurately, and due to the presence of caches they might even
depend on the schedule. For these reasons, we are forced to use heuristics when
scheduling matrix computations.

Let us consider the parallelization of the one-sided matrix factorizations
LU, Cholesky, and QR in order to introduce the important concept of look-
ahead. In their right-looking variants, one-sided factorization algorithms can
be structured as an outer loop where each iteration has two parts: First a “panel
factorization”, which applies the factorization to a narrow block of columns (a
panel), followed by a “trailing matrix update”, which updates the trailing matrix
based on the previously factored panel. Let us map each of these operations
to a task. Figure 3(a) illustrates the resulting task graph. Note that the

10



(a) (b)

Iteration 1

Iteration 2

Iteration 3

Figure 3: Illustration of the look-ahead concept in factorization algorithms.
“Panel factorizations” are gray nodes, and “trailing matrix updates” are white
nodes.

dependencies force us to execute the tasks in sequence, and, in particular,
we cannot overlap “panel factorizations” with “trailing matrix updates”. This
limits the strong scalability, especially on multi-core architectures, since “panel
factorizations” are more difficult to parallelize and often perform worse than
the “trailing matrix updates”.

Fortunately, it turns out that the next “panel factorization” does not depend
on all of the current “trailing matrix update” [34]. Indeed, we only need to
update the next panel in order to proceed. Let us therefore refine the task
decomposition in Figure 3(a) by splitting the “trailing matrix update” in two:
One task for the updating of the next panel and another task for the updating of
the rest of the trailing matrix. Figure 3(b) illustrates the corresponding refined
task graph. Note that the new task decomposition allows us to overlap the next
“panel factorization” with (most of) the current “trailing matrix update”. This
technique of performing “panel factorizations” early is known as look-ahead and
is a key to improving the strong scalability of factorization algorithms [27, 50,
57].

The task decompositions in Figure 3 expose too little parallelism and we
need to further decompose the update tasks into subtasks. We begin by con-
sidering the scheduling of a basic factorization algorithm without look-ahead.
Since the “panel factorizations” do not parallelize as well as the “trailing matrix
updates”, we assign them to a single processor. We can, however, parallelize
the “trailing matrix updates” by, e.g., distributing its subtasks evenly across
all processors. Figure 4(a) schematically illustrates an execution trace based
on this task decomposition. There are four processors in this example, each
one shown on its own row in the trace. Note that while the first processor is
performing a “panel factorization”, all other processors are idly waiting for it
to finish, thereby wasting resources.

Let us now consider the scheduling of a factorization algorithm with look-
ahead. For the same reasons as before, we assign the “panel factorizations”
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Figure 4: Schematic illustrations of execution traces for (a) a basic factoriza-
tion algorithm, and (b) a factorization algorithm with look-ahead. A “panel
factorization” is a gray box, and a “trailing matrix update” is a white box. The
number within a box indicates the iteration to which that task belongs. For
clarity, only the first three iterations are illustrated.

to a single processor. We also assign the (small) update of the next panel to
that same processor. However, we distribute the rest of the “trailing matrix
updates” evenly across the remaining processors. Figure 4(b) illustrates an
execution trace based on this task decomposition. Note that after the first
“panel factorization”, all processors except the first one are busy until the very
end. The first processor, however, is idle some of the time since its work load
is not balanced with respect to the others.

Figure 4(b) suggests that we can improve the utilization of the first processor
by assigning to it also a small portion of the rest of the “trailing matrix updates”.
However, we should not assign more work than what is necessary to eliminate
the gaps in the schedule. If we want the subtasks of a “trailing matrix update”
to be coarse-grained, e.g., one subtask per processor, then we must determine
a priori how much work to assign to each processor in order to balance the
load. Therefore, we need to model the execution time of the tasks on the first
processor somehow. In Paper V [57], we use this technique, in conjunction
with a model that is adapted at run time, in an effort to obtain balanced
coarse-grained tasks in the context of a two-sided factorization algorithm with
look-ahead.

Another way to improve the utilization of the first processor is to partition
the “trailing matrix update” into tasks with finer granularity and use dynamic
scheduling, e.g., via a (centralized or decentralized) task pool [62, 64, 29, 11,
74, 72]. This approach has the advantage that there is no need to model the
execution time of any of the tasks. However, a fine-grained decomposition
might reduce the performance of local computations too much.

Figure 4(b) also suggests that the sequence of dependent tasks assigned
to the first processor restricts the strong scalability of the algorithm. Indeed,
once the number of processors reaches a certain critical point, the first processor
will be active throughout the entire execution and impose a lower bound on
the overall execution time. Partly motivated by this scalability problem, so
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called tiled algorithms further decompose also the tasks assigned to the first
processor in an effort to extract more parallelism and reduce the length of the
critical paths in the task graph [74, 11, 29, 1, 67, 66, 23, 22, 80, 52, 2, 28, 64,
62, 63, 27, 30].

A natural extension of the idea to overlap the execution of different op-
erations, e.g., “panel factorization” and “trailing matrix update”, within an
algorithm is to overlap tasks from one algorithm with tasks from another algo-
rithm. To make the implementation of this idea practical, one probably needs
to rely on some sort of dynamic scheduling framework [2, 51, 21, 71, 30].

Hybrid systems consisting of several multi-core processors connected to one
or more computational accelerators (e.g., GPUs) present new challenges with
respect to task decomposition and load balancing. See, e.g., [7, 12, 13, 14, 36,
76] for some recent developments in this direction.
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Chapter 3

Background

The aim of this chapter is to provide some background information on the
various topics discussed in the included papers.

3.1 Householder Reflections
At the core of dense matrix computations lies a collection of matrix factor-
izations. Examples include the one-sided matrix factorizations LU, Cholesky,
and QR as well as the two-sided reductions to the Hessenberg, bidiagonal, and
tridiagonal forms. The two-sided reductions are typically based on orthogonal
transformations because of their favorable numerical stability properties. Pa-
per V and Paper VI rely on a specific type of orthogonal transformation called
Householder reflections, which we review next.

A Householder reflection is an orthogonal matrix of the form

Q = I − 2
vT v

vvT , (3.1)

where v ∈ Rn is some non-zero vector [43]. By choosing v in a certain way,
we can map a given (non-zero) n-vector x to a multiple of a given (non-zero)
n-vector y. Specifically, given x and y we can construct Q of the form (3.1)
such that Qx = ±(‖x‖2/‖y‖2)y. In particular, if we choose y = e1, where
e1 =

[
1 0 · · · 0

]T , then Q zeros all but the first entry in the vector x [43].
Let us show how to find the Householder vector v given the vectors x and

y. We have

Qx = x− 2vTx

vT v
v,

and since we desire to have Qx as a multiple of y, we must have v as a linear
combination of x and y. Assuming that v = x+ αy, we get

vTx = xTx+ αxT y and vT v = xTx+ 2αxT y + α2yT y.
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Consequently, we can write Qx as

Qx =
(

1− 2
xTx+ αxT y

xTx+ 2αxT y + α2yT y

)
x−

(
2α
vTx

vT v

)
y,

i.e., we can express Qx as a linear combination of x and y. In order for Qx to
be a multiple of y, we must set the coefficient of x to zero. We hence get

α = ±‖x‖2‖y‖2
and so v = x± ‖x‖2‖y‖2

y.

In the important special case when y = e1, we have ‖y‖2 = 1 and so we can
find v simply by adding or subtracting the norm of x from the first entry of x.

Note that we need n parameters, i.e., the n components of v, in order to
annihilate n − 1 entries. If we overwrite the annihilated entries with n − 1
of the parameters, then we need one additional word of storage to store the
last parameter. The LAPACK convention is to scale v such that v1 = 1. The
scaling factor is stored separately. Thus in practice, a Householder reflection
is often represented in the form

Q = I − τvvT where τ =
2
vT v

and v1 = 1,

with the entries v2 thru vn stored in the entries annihilated by the reflection and
the scaling factor τ stored in an additional word of storage. We have already
seen that Householder reflections are cheap to compute. They are also cheap
to apply. Indeed, the cost of applying a Householder reflection Q = I − τvvT

to an n-vector x is approximately 4n flops if we perform the update as follows:

x← Qx = x− v(τ(vTx)).

Applying a Householder reflection to a matrix is essentially a Level 2 oper-
ation, i.e., a matrix–vector operation, and is therefore slow if the matrix does
not fit in cache. As it turns out, many algorithms apply not just one but a
product of several Householder reflections. Such products can be expressed in
a format known as the (compact) WY representation and applied using Level 3
operations [18, 78, 43, 54].

The compact WY representation can be defined recursively as follows. If
Q = I − τvvT is a Householder reflection, then Q = I − V TV T , where V = v
and T = τ , is its compact WY representation. If we let I−V1T1V

T
1 denote the

compact WY representation of the product Q1Q2 · · ·Qr1 and let I − V2T2V
T
2

denote the compact WY representation of the product Z1Z2 · · ·Zr2 , then

Q1 · · ·Qr1Z1 · · ·Zr2 = (I − V1T1V
T
1 )(I − V2T2V

T
2 ) = I − V TV T

is the compact WY representation of their product, where

V =
[
V1 V2

]
and T =

[
T1 −T1V

T
1 V2T2

0 T2

]
.
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The computation and application of the upper triangular matrix T requires
some additional flops, but this extra cost is negligible if the order n of the
Householder reflections is much larger than the number of reflections in the
product.

3.2 Hessenberg Decomposition
A matrix H is in (upper) Hessenberg form if the entries of H are zero below its
first sub-diagonal [82, 43]. For example, the following matrix is in Hessenberg
form:

H =




× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×



,

where × denotes a (possibly) non-zero entry. Any square n × n real matrix
A ∈ Rn×n can be reduced to Hessenberg form by an orthogonal similarity
transformation, i.e., a transformation of the type

A← QTAQ where QTQ = I.

We now describe the standard one-stage Hessenberg reduction algorithm [43],
which is based on Householder reflections. We begin by partitioning A:

A =
[
a11 aT

12

a21 A22

]
.

Then we construct a Householder reflection Q1 of order n− 1 such that QT
1 a21

becomes a multiple of e1. Next, we update A via the similarity transformation

A←
[
a11 a12Q1

QT
1 a21 QT

1 A22Q1

]
=
[

a11 a12Q1

±‖a21‖2e1 QT
1 A22Q1

]
.

Note that A is now in Hessenberg form in its first column since only the first
entry of QT

1 a21 is non-zero. We can apply the same procedure to reduce each
column in turn from left to right and thereby reduce the entire matrix to
Hessenberg form using a total of n − 2 reflections of order n − 1, n − 2, . . . , 2.
In summary, the algorithm computes a Hessenberg matrix H such that

H = QTAQ, where Q = Q̃1Q̃2 · · · Q̃n−2 and Q̃k =
[
Ik

Qk

]
.

Let us illustrate the transitions from dense matrix to Hessenberg form on a
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5× 5 matrix:



◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦




︸ ︷︷ ︸
A

7→




◦ • • • •
• • • • •
• • • •
• • • •
• • • •




︸ ︷︷ ︸
Q̃T

1 AQ̃1

7→




◦ ◦ • • •
◦ ◦ • • •
• • • •
• • •
• • •




︸ ︷︷ ︸
Q̃T

2 Q̃T
1 AQ̃1Q̃2

7→




◦ ◦ ◦ • •
◦ ◦ ◦ • •
◦ ◦ • •
• • •
• •




︸ ︷︷ ︸
Q̃T

3 Q̃T
2 Q̃T

1 AQ̃1Q̃2Q̃3

The non-zero entries are indicated above by a circle (◦) and the recently mod-
ified non-zero entries are indicated by a bullet (•). Note that this two-sided
algorithm is another example where the computational region shrinks during
the computation (see Figure 1 and Section 2.1) and so a two-dimensional dis-
tribution of the matrix is preferred for distributed-memory computing.

The standard one-stage Hessenberg reduction algorithm requires (10/3)n3+
O(n2) flops if we are satisfied with having Q returned in factored form. If we
want to computeQ explicitly, then the reflections can be accumulated efficiently
in reverse order, i.e., by computing

Q = Q̃1(· · · (Q̃n−3(Q̃n−2I)) · · · ).

This backward accumulation scheme is cheaper than forward accumulation
since the initial sparsity of the identity matrix is preserved far longer if we
apply the reflections in reverse order [43].

We illustrate the progression of the non-zero entries in the backward accu-
mulation scheme by a 5× 5 example:



◦
◦
◦
◦
◦




︸ ︷︷ ︸
I

7→




◦
◦
◦
• •
• •




︸ ︷︷ ︸
Q̃3I

7→




◦
◦
• • •
• • •
• • •




︸ ︷︷ ︸
Q̃2Q̃3I

7→




◦
• • • •
• • • •
• • • •
• • • •




︸ ︷︷ ︸
Q̃1Q̃2Q̃3I

.

The cost of explicitly computing Q via the backward accumulation scheme is
(4/3)n3 +O(n2) flops, i.e., an additional 40% compared to only computing H.

The cache-efficiency of the algorithm above can be improved by casting
some of the flops in terms of Level 3 operations through the (compact) WY
representation [18, 78, 38, 75]. However, the best known formulation, i.e.,
[75], still performs 20% of the flops as large matrix–vector multiplications,
which is a slow Level 2 operation. One way around this problem is to use
hybrid CPU/GPU computing [81]. Another way is to use a two-stage reduction
algorithm, which we describe next.

In the two-stage algorithm, the input matrix is first reduced to a block Hes-
senberg form with r > 1 non-zero sub-diagonals, and then the block Hessenberg
form is reduced to actual Hessenberg form using a bulge-chasing procedure sim-
ilar to the algorithms used for symmetric band reduction [16, 17, 79, 77, 68].
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The first stage (Stage 1) can be realized in a manner similar to the one-stage
algorithm, only with Householder reflections of a slightly smaller order. The
Stage 1 algorithm does not, however, inherit the performance problems of the
one-stage algorithm and is therefore quite efficient [58, 62]. The second stage
(Stage 2) is very different from Stage 1, so let us describe it in some detail.

QT
1

Q1 Q2 Q3

QT
2

QT
3

1

3

5

2 4 6

PT
1

PT
2

PT
3

P1 P2 P3

7

9

11

8 10 12

(b)(a)

(d)(c)

Figure 5: Illustration of the first two sweeps of Stage 2. (a) Input matrix in
block Hessenberg form with r = 4 non-zero sub-diagonals, (b) the first sweep,
(c) the input to the second sweep, and (d) the second sweep.

The basic idea for Stage 2 is to reduce the columns from left to right us-
ing Householder reflections of (at most) order r. Consider Figure 5(a), which
illustrates a block Hessenberg matrix with r = 4 non-zero sub-diagonals. In
the first sweep (i.e., iteration), the first column is reduced by a Householder
reflection Q1 as illustrated by Step 1 in Figure 5(b). When Q1 is applied on
the right-hand side (Step 2) in order to complete a similarity transformation,
a bulge consisting of unwanted non-zero entries appears in the strictly lower
triangular part of the sub-diagonal block in position (3, 2). The fill-in entries
are shown as bold crosses (×) in Figure 5. The next step is to reduce the first
column of the newly created bulge using a second reflection, Q2, applied to
the left-hand side in Step 3. But when Q2 is applied to the right-hand side
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in Step 4, a second bulge appears further down the diagonal in block (4, 3).
The process ends at the bottom right corner of the matrix. In this example,
the first sweep is completed by reducing the first column of the second bulge
(Steps 5–6).

The result of the first sweep is illustrated in Figure 5(c) with a slightly
modified block partitioning. The second sweep is completely analogous to the
first and is illustrated in Figure 5(d). Note in particular that the partially
reduced bulges that were left by the first sweep align with the bulges created in
the second sweep. This explains why one should reduce only the first column
and not the entire bulge.

For a fixed value of r, the cost of Stage 1 is (10/3)n3 +O(n2) flops for the
reduction to block Hessenberg form and an additional (4/3)n3 + O(n2) flops
for the explicit formation of the orthogonal transformation matrix. Hence, the
cost of Stage 1 alone is comparable to the cost of the entire one-stage reduction
algorithm. Moreover, the cost of Stage 2 is non-negligible. Indeed, Stage 2
requires 2n3+O(n2) flops for the reduction (bulge-chasing) to Hessenberg form
and an additional 2n3 +O(n2) flops for explicit accumulation of the reflections.
Interestingly, the number of sub-diagonals, r, has only a minor impact on the
cost of the two-stage algorithm provided that r � n.

One-stage Two-stage
H H and Q H H and Q

# flops (10/3)n3 (14/3)n3 (16/3)n3 (26/3)n3

Table 3.1: The number of flops required for the one-stage and two-stage algo-
rithms with and without explicit formation of the orthogonal transformation
matrix.

The number of flops required for the one-stage and two-stage algorithms
with and without explicit accumulation of the orthogonal transformation ma-
trix are summarized in Table 3.1. However, these flop counts hide the fact
that some flops can be applied more efficiently than others. In Paper V and
Paper VI, we describe a novel implementation of the two-stage algorithm on
multi-core architectures and show that despite requiring many more flops, the
two-stage algorithm can be made to run much faster than the one-stage algo-
rithm since it allows for more cache reuse.

3.3 Cholesky Factorization
A square n× n real matrix A ∈ Rn×n is said to be symmetric positive definite
if A = AT (i.e., A is symmetric) and the inequality xTAx > 0 holds for all
nonzero real vectors 0 6= x ∈ Rn (i.e., A is positive definite). Matrices which are
symmetric positive definite arise naturally in many applications. For instance,
if B has full column rank, then the matrix A = BTB is symmetric positive
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definite because AT = (BTB)T = BTB = A and 0 6= x ∈ Rn implies

xTAx = xT (BTB)x = (Bx)T (Bx) = ‖Bx‖22 > 0.

If A is symmetric positive definite, then the linear system Ax = b can be
stably solved by computing the so called Cholesky factorization A = LLT of A,
where L is a unique lower triangular matrix with positive diagonal entries [43].
After factorizing A, one finds the solution x = A−1b = L−TL−1b by solving
first the lower triangular system Ly = b for y and then the upper triangular
system LTx = y for x. There are many different algorithms for computing the
Cholesky factorization of a dense matrix. Let us derive a recursive algorithm.
We begin by partitioning A into a 2× 2 block matrix

A =
[
B CT

C D

]
(3.2)

such that both B and D are square. By equating corresponding blocks in the
equation

A =
[
B CT

C D

]
=
[
L11 0
L21 L22

] [
LT

11 LT
21

0 LT
22

]
= LLT (3.3)

we obtain, in particular, the three block equations

B = L11L
T
11, C = L21L

T
11, and D − L21L

T
21 = L22L

T
22. (3.4)

Since L11 is lower triangular with positive diagonal entries, it has full row
rank and so L11L

T
11 (and hence B) is symmetric positive definite and L11 must

therefore be the Cholesky factor of B. Thus, we can compute L11 by recursively
factorizing B. Now that we have computed the block L11, we can also compute
the block L21 = CL−T

11 by solving a triangular system with multiple right-hand
sides. The last remaining block of L, i.e., the block L22, also has full row rank
since it is lower triangular with positive diagonal entries and so D − L21L

T
21

must be symmetric positive definite and L22 its Cholesky factor, which we
compute recursively. Algorithm 1 formally presents the steps described above.

Algorithm 1 Recursive Cholesky factorization: L = chol(A)
1: if A is 1× 1 then
2: A = α > 0, so return L =

√
α.

3: else
4: Partition A =

[
B CT

C D

]
such that both B and D are square.

5: Recursively compute L11 ← chol(B).
6: Compute L21 = CL−T

11 by solving the triangular system L21LT
11 = C.

7: Update D ← D − L21LT
21.

8: Recursively compute L22 ← chol(D).

9: Return L =

[
L11 0
L21 L22

]
.

10: end if
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Algorithm 1 requires (1/3)n3+O(n2) flops. We can reformulate Algorithm 1
using a loop instead of recursion by replacing the recursive call on line 5 with
a call to a non-recursive Cholesky factorization algorithm, and replacing the
tail-recursive call on line 8 with a loop. The resulting non-recursive algorithm
is referred to as the “right-looking” variant of Cholesky factorization because
it reads the right-most parts of A during the computation of D − L21L

T
21 on

line 7. The right-looking variant is suitable for parallel computing, especially
on distributed-memory systems, since the operation on line 7 is easy to paral-
lelize [33].

3.4 Matrix Storage Formats
As we have briefly touched upon already, the cache reuse is determined in part
by the algorithm and in part by the data layout. The aim of this section is
to introduce a few dense matrix storage formats. We temporarily switch to a
zero-based index convention in order to simplify the notation.

If we store the m × n matrix A in the two-dimensional C array A[m][n]
using the convention that

A[i][j] = aij ,

then the C language standard tell us that the entry aij is stored at offset in+ j
from the base address of the array A. Hence the rows of the matrix A are stored
contiguously, and for this reason we refer to

(i, j) 7→ in+ j

as the row-major storage mapping. We can also store the matrix A in the array
B[n][m] (note the opposite order of m and n) using the convention that

B[j][i] = aij .

Now the columns instead of the rows of the matrix A are stored contiguously
and we therefore refer to

(i, j) 7→ jm+ i

as the column-major storage mapping. The column-major storage format is
used in, e.g., the BLAS [20], LAPACK [6], and ScaLAPACK [19] libraries.

Since the row- and column-major storage formats are not ideally suited
for blocked matrix computations, we would rather like to use blocked storage
formats. Suppose that we can factor m = Mmb and n = Nnb. Then we can
also partition A into an M ×N block matrix

A =




A0,0 · · · A0,N−1

...
...

AM−1,1 · · · AM−1,N−1
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such that each block Ai,j has size mb × nb. We trivially have

(Ai2,j2)i1,j1 = aij where i = i2mb + i1 and j = j2nb + j1.

Thus, we can identify the entry aij either by the pair (i, j) or by the quadruple
(i2, i1, j2, j1) defined implicitly by the relations above. Using the quadruple
representation, we can store A in the row-major format using the (non-trivial)
four-dimensional C array AA[M][mb][N][nb] with the convention that

AA[i2][i1][j2][j1] = (Ai2,j2)i1,j1 = aij .

The corresponding offset from the base address of AA is

i2mbNnb + i1Nnb + j2nb + j1 = (i2mb + i1)n+ (j2nb + j1) = in+ j,

which shows that the array AA stores the matrix A in the row-major format.
Just as we can reorder the dimensions of the array A to go from the row-

major storage format to the column-major storage format (i.e., to the array B),
we can similarly reorder the dimensions of the four-dimensional array AA and
go to 4! = 24 different storage formats. Two of these formats correspond to
the row- and column-major storage formats. In addition, four of the formats
correspond to what we call the standard blocked storage formats, each of which
stores the blocks of A contiguously and use the row- and/or column-major
storage formats to lay out the blocks and the entries within each block. The
four blocked storage formats correspond to arrays in which the dimensions M
and N (in any order) come before the dimensions mb and nb (in any order).
Specifically, we have the following array representations of the four blocked
storage formats:

CCRB[N][M][nb][mb], CCRB[j2][i2][j1][i1] = aij ,

CRRB[N][M][mb][nb], CRRB[j2][i2][i1][j1] = aij ,

RCRB[M][N][nb][mb], RCRB[i2][j2][j1][i1] = aij ,

RRRB[M][N][mb][nb], RRRB[i2][j2][i1][j1] = aij .

Let us also add the row- and column-major formats to the list:

CM[N][nb][M][mb], CM[j2][j1][i2][i1] = aij ,

RM[M][mb][N][nb], RM[i2][i1][j2][j1] = aij .

In Paper II [55] and Paper III [51], we study the problem of rearranging the
entries of any of these six arrays in-place, i.e., using only a constant amount
of additional storage, such that the new arrangement corresponds to one of
the other arrays. In Paper III [51], we develop new parallel storage format
conversion algorithms targeted for multi-core architectures.

The storage formats that we have discussed so far are aimed at storing a
full dense matrix. However, a significant amount of storage can be saved if,
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for instance, the matrix is triangular or symmetric since only about half of the
matrix entries need to be stored explicitly. We refer to storage formats that
exploit the structure of the matrix to save space as packed storage formats.

The so called Square Block Packed (SBP) storage format [50] is applicable
to triangular and symmetric matrices. This packed format enables Level 3
performance and is suitable for tiled algorithms. We assume without loss of
generality that the matrix A is n× n and lower triangular. Given a block size
nb, we partition A into a block matrix

A =




A0,0 · · · A0,N−1

...
...

AN−1,0 · · · AN−1,N−1


 ,

such that each block Ai,j is square and of size nb × nb. If the matrix size n is
not an integer multiple of nb, then we embed A as the n× n leading principal
sub-matrix of a slightly larger matrix B of size dn/nbenb×dn/nbenb and store
B in the SBP format. We hence assume from now on that n is an integer
multiple of nb. In the SBP format, each block of A is stored contiguously in
the column-major storage format and only the blocks in the lower triangular
part of A are stored explicitly. For example, if n = 8 and nb = 2, then using
the SBP format we store the entries marked with a (below) as well as the
redundant entries marked with ?:

A =




a ?
a a
a a a ?
a a a a
a a a a a ?
a a a a a a
a a a a a a a ?
a a a a a a a a




.

The blocks of A in the lower triangular part are stored contiguously in the
following order:

A =




1
2 5
3 6 8
4 7 9 10


 .

The motivation for storing also some redundant entries is that this makes the
storage format simpler while only slightly increasing the storage requirements.

In Paper I [50], we define a tiled distributed-memory version of SBP and use
it to implement a distributed-memory Cholesky factorization algorithm using
packed storage.
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3.5 QR Sweep
The classical QR algorithm (see, e.g., [43] and the references therein) reduces
a real Hessenberg matrix H to real Schur form via an orthogonal similarity
transformation. Specifically, the QR algorithm computes an orthogonal matrix
Q such that S = QTHQ is block upper triangular with square diagonal blocks
of size 1 × 1 or 2 × 2, as illustrated in Figure 6. The eigenvalues of H can be
read off from the main block diagonal of S: Each 2 × 2 block corresponds to
a complex conjugate pair of eigenvalues and each 1× 1 block corresponds to a
real eigenvalue.

H S = QT HQ

Figure 6: Illustration of a matrix H in Hessenberg form being reduced to a
matrix S in real Schur form by an orthogonal similarity transformation.

One of the dominant computational kernels in the QR algorithm is the so
called QR sweep, in which a bulge is introduced in the top left corner of the
Hessenberg matrix and then chased down and eventually off the main diagonal
by a sequence of orthogonal similarity transformations. The basic step is illus-
trated below for a 7× 7 Hessenberg matrix H with an outlined 4× 4 bulge on
the main diagonal:




× × × × × × ×
× × × × × × ×

h1 × × × × ×
h2 × × × × ×
h3 × × × × ×

× × ×
× ×




︸ ︷︷ ︸
H

7→




× × × × × × ×
× × × × × × ×

α × × × × ×
0 × × × × ×
0 × × × × ×

+ + × × ×
× ×




︸ ︷︷ ︸
QT HQ

.

By constructing a Householder reflection Q̃ of order 3 such that

Q̃T



h1

h2

h3


 =



α
0
0


 ,

we can effectively move the bulge one step further down the main diagonal by
subjecting H to the similarity transformation

H ← QTHQ where Q =



I2

Q̃
I2


 ,
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as illustrated above. The process can be repeated until the bulge disappears
off of the bottom right corner of the matrix.

A drawback with bulge chasing is that a straightforward implementation
of it has a very low arithmetic intensity if the matrix is too large to fit in
cache. Part I [24] of the SIAG/LA 2003 Prize winning paper [25] explains
how to chase not one but multiple small bulges as a tightly coupled chain,
which enables more cache reuse and Level 3 performance. The example below
illustrates the chasing of a chain consisting of two tightly coupled bulges one
step down the main diagonal:




× × × × × × × ×
h1 × × × × × × ×
h2 × × × × × × ×
h3 × × × × × × ×

g1 × × × ×
g2 × × × ×
g3 × × × ×

× ×




︸ ︷︷ ︸
H

7→




× × × × × × × ×
α × × × × × × ×
0 × × × × × × ×
0 × × × × × × ×

+ + + × × × ×
0 × × × ×
0 × × × ×

+ + × ×




︸ ︷︷ ︸
QT HQ

.

By constructing two Householder reflections Q̃1 and Q̃2 such that

Q̃T
1



h1

h2

h3


 =



α
0
0


 and Q̃T

2



g1
g2
g3


 =



β
0
0


 ,

we can effectively move the two bulges by applying the transformation

H ← QTHQ where Q = Q1Q2 = Q2Q1

and Q1 and Q2 are the natural extensions of Q̃1 and Q̃2 to the size of H, i.e.,

Q1 =



I1

Q̃1

I4


 and Q2 =



I4

Q̃2

I1


 .

By chasing a long chain of bulges several steps and delaying most of the
updates, a comparatively large number of flops can be accumulated in a small
orthogonal matrix Q and then applied efficiently using the Level 3 operation
GEMM [25]. Figure 7 illustrates the general setting.

Figure 7 shows a chain of bulges being chased from the top left corner to the
bottom right corner of the window block W by applying an orthogonal matrix
Q of the same size as W to both sides of the matrix. The window block W is
updated via the transformation

W ← QTWQ.

The two off-diagonal blocks R and L (see Figure 7) are updated via the trans-
formations

R← RQ and L← QTL,
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W

R

L

Figure 7: Illustration of the bulge chasing procedure in the small-bulge multi-
shift QR algorithm [24]. The three bulges within the window block W are
chased down the main diagonal via a specially constructed orthogonal matrix
Q. The window block is updated via the transformationW ← QTWQ. The off-
diagonal block R is updated from the right via R← RQ, and the off-diagonal
block L is updated from the left via L← QTL.

thus completing a similarity transformation of the entire matrix.
In Paper IV [56], we develop and analyze a distributed-memory implemen-

tation of the updating part of the bulge-chasing procedure. We consider the
problem of efficiently scheduling the operations on a block-cyclically distributed
matrix in the case where the size of the window block W is about the same as
the distribution block size. Simply performing (in parallel) first the update of
R and then the update of L does not work very well since only a fraction of
the processors (√p or 2

√
p if p processors are arranged in a √p×√p mesh) are

active in each of the updates.
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Chapter 4

Summary of the Papers

Papers I–III [50, 55, 51] are primarily concerned with blocked matrix storage
formats. In Paper I [50], we consider a distributed blocked and packed storage
format and use it to implement a tiled distributed-memory implementation of
right-looking Cholesky factorization with look-ahead. In Papers II–III [55, 51],
we consider blocked storage formats for full matrices and, in particular, the
efficient parallel and in-place conversion between all combinations of the four
standard blocked storage formats and the standard row- and column-major
formats.

Papers IV–VI [56, 57, 58] are concerned with the scheduling of two-sided
transformations both for parallel efficiency and for cache reuse. In Paper IV [56],
we investigate the scheduling of bulge chasing in a distributed-memory envi-
ronment with the aim of improving the utilization of the processors. In Pa-
per V [57], we improve the basic algorithm for the second stage of the two-stage
Hessenberg reduction algorithm by reordering its operations to increase the
arithmetic intensity. The problem of how to effectively schedule the operations
on multi-core architectures is also considered in this paper. In Paper VI [58], we
build on Paper V [57] and construct a novel parallel implementation of the full
two-stage Hessenberg reduction algorithm. We also discuss the issues related
to the implementation of the first stage and contribute a two-level blocked and
parallel algorithm.

4.1 Paper I
We continue the work in [49] and present a distributed-memory realization of
the Square Block Packed (SBP) format called DSBP. It allows the storage of a
symmetric matrix using only slightly more than half the storage required for the
full matrix. We also implement and evaluate three right-looking distributed-
memory Cholesky factorization algorithms on top of the DSBP format. The
Basic variant is comparable to the ScaLAPACK Cholesky factorization routine
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PDPOTRF except that it uses the DSBP format and is a tiled algorithm. The
Static variant improves on the Basic variant by using one level of look-ahead,
which results in a near-optimal schedule in which the update of the next panel is
interleaved with the factorization of that panel. Also, the tiles produced by the
panel factorization are communicated to the other processors asynchronously
and in an overlapped fashion. The Dynamic variant tries to further improve the
Static variant by addressing a few issues observed in the schedules produced
by the Static variant.

Experiments show that the idle time overhead in the Static variant is neg-
ligible on at least one of the processors. This suggests that no improvements
to the schedules produced by the Static variant are possible without also dis-
tributing the work differently across the processors. Experiments show that
the Dynamic variant performs almost identically to the Static variant, a result
which can be explained by the observed near-optimality of the Static variant.
The Basic variant as well as its closely related ScaLAPACK routine PDPOTRF
perform quite similarly and significantly worse than both the Static and the
Dynamic variants.

4.2 Paper II
We consider the problem of efficiently transposing a rectangular matrix in-
place, i.e., changing the storage format of anm×nmatrix A from column-major
to row-major without using more than a constant amount of extra storage. We
review a number of existing techniques for out-of-place, in-place, and semi in-
place transposition including, for instance, the algorithms by Eklundh [40],
Dow [39], and Alltop [4]. We propose a notation in which many of the trans-
position algorithms can be expressed and hence more easily be understood and
compared.

The so called cycle-following algorithms are a key class of in-place transpo-
sition algorithms in which the cycle structure of the underlying permutation is
exploited in order to shift the entries of the matrix around their corresponding
cycles. The cycle-following algorithms have a minimal number of memory ref-
erences, but they incur some overhead when finding the cycle structure. In this
paper, we evaluate, among other things, the effectiveness of known algorithms
for finding the cycle structure. In Paper III [51], we improve on this work by
developing a new and more efficient algorithm for the problem of finding the
cycle structure.

We show with experiments using sequential implementations that a three-
stage, blocked, and in-place algorithm for matrix transposition compares favor-
ably with both semi in-place and out-of-place algorithms, with the exception of
Dow’s V5 algorithm, which is the fastest of the considered algorithms for small
matrices. For larger matrices however, the performance of the V5 algorithm
deteriorates since the temporary buffer it uses grows too large for the cache
and so the memory traffic increases substantially.
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4.3 Paper III
This paper also considers the in-place transposition problem but focuses on the
conversion of matrix storage formats in-place between the two standard for-
mats (row- and column-major) and the four standard blocked formats (CCRB,
CRRB, RCRB, and RRRB). We also develop parallel implementations target-
ing multi-core architectures. In-place transposition is the key computational
kernel in the storage format conversion algorithms, and we base our work on
cycle-following in-place transposition algorithms. At the core of these algo-
rithms lies the problem of finding the cycle structure of the transposition per-
mutation

P (k) = kn mod (mn− 1)

on the domain 0 < k < mn − 1. Especially in a parallel environment, it is
important to be able to find the cycle structure quickly and a priori in order
to do effective load balancing across multiple processors/cores. Therefore, we
develop in this paper a new algorithm, based on the ideas in [69], that is several
orders of magnitude faster than previous algorithms (e.g., [85, 26]). We show
via experiments on multi-socket and multi-core systems that our new algorithm
reduces the overhead of finding the cycle structure down to negligible levels
(e.g., fractions of 1%). Moreover, a one-stage conversion using our in-place
algorithm is often faster than out-of-place conversion, besides using much less
extra storage.

4.4 Paper IV
We consider the problem of improving a statically scheduled distributed-memory
implementation of two-sided matrix computations by adding dynamic schedul-
ing on the nodes and asynchronous and overlapped communications between
the processors. As a model problem we consider the QR sweep. Traditional
static scheduling techniques fail to deliver acceptable levels of efficiency and
one has to resort to either multiple chains, alternative matrix distributions,
or very large window sizes. The aim of this paper is to show that one can
achieve high levels of efficiency even without these techniques. We show that
the real problem with the QR sweep lies in the scheduling of the operations.
The (node-)dynamic scheduler we propose builds an explicit DAG representa-
tion of the computations and communications on each node at run time based
on an annotated (node-)sequential message-passing code. In order to control
the schedule, we assign a priority to each task. We show via experiments
that our priority-based dynamic scheduler can realize what we call a dual anti-
diagonal wavefront pattern that effectively keeps the processors busy and raises
the efficiency to more than 70% on 100 processors.
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4.5 Paper V
This paper describes a new blocked and parallel algorithm for the critical part
(Stage 2) of the two-stage Hessenberg reduction algorithm on multi-core archi-
tectures. The problem considered is that of reducing an n×n block Hessenberg
matrix with r � n non-zero sub-diagonals to Hessenberg form via an orthogo-
nal similarity transformation. Known algorithms for symmetric band reduction
are straightforward to generalize to the block Hessenberg case, but the stan-
dard implementation strategies, e.g., pipelining, do not yield acceptable levels
of performance in the generalized case. The fundamental problem is that the
accesses to the upper triangular part of the block Hessenberg matrix are difficult
to organize in a manner that effectively uses the cache memories and the cores
of a multi-core processor. In this paper, we contribute an efficient blocked and
parallel algorithm that leverages techniques such as look-ahead and adaptive
load balancing. Look-ahead hides the otherwise significant overhead caused
by the equivalent of the panel factorizations in one-sided factorization algo-
rithms. Adaptive load balancing yields coarse-grained tasks and a balanced
load despite an inherently one-dimensional task decomposition and multiple
barrier-style synchronization points per iteration of the main loop.

4.6 Paper VI
In this paper, we consider the complete two-stage Hessenberg reduction algo-
rithm and compare it against the corresponding one-stage algorithms found
in LAPACK and ScaLAPACK. We also describe a dynamically scheduled im-
plementation of the first stage in detail. The task decomposition in the first
stage is static and the two most critical operations are coarsely decomposed in
order to maximize the performance of each task. Some of the updates are also
delayed in order to reduce the idle time overhead otherwise caused by the panel
factorizations. The look-ahead technique cannot be used in the first stage due
to data dependencies.

Experiments show that our implementation of the two-stage algorithm is
faster than the one-stage algorithm implemented in LAPACK and ScaLA-
PACK. The new code is faster both when only the Hessenberg matrix H as well
as when both H and the orthogonal transformation matrix Q are computed
explicitly.

32



Chapter 5

Other Publications

Besides the six papers included in this thesis, I have also been a co-author of
the following two peer-reviewed papers (I and III) and my licentiate thesis (II).

I. Fred Gustavson, Lars Karlsson, and Bo Kågström. Three Algorithms
for Cholesky Factorization on Distributed Memory using Packed Storage.
In Applied Parallel Computing: State of the Art in Scientific Computing
(PARA 2006), LNCS 4699, pages 550-559, Springer, 2007.

II. Lars Karlsson. Blocked and Scalable Matrix Computations — Packed
Cholesky, In-Place Transposition, and Two-Sided Transformations. Li-
centiate Thesis, Dept. of Computing Science, Umeå University, Sweden,
2009. Technical Report UMINF 09.11, ISBN 978-91-7264-788-6.

III. Bo Kågström, Lars Karlsson, and Daniel Kressner. Computing Codi-
mensions and Generic Canonical Forms for Generalized Matrix Products.
Electronic Journal of Linear Algebra, (to appear). Preprint available as
Technical Report 2010-17, SAM, ETH Zurich, Switzerland.
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Chapter 6

Conclusion and Future Work

The in-place storage format conversion algorithms are quite mature at this
point, and they are currently used in the PLASMA library [2]. The low over-
head incurred by our new algorithm for finding the cycle structure of the trans-
position permutation suggests that the approach should scale well to larger
multi-core systems.

Since our early experiments with dynamic node-scheduling of two-sided
transformations in Paper IV [56], the supercomputer architectures have changed
considerably. The nodes now typically have multiple multi-core processors con-
nected to some shared memory and possibly also some computational acceler-
ators such as GPUs. Several large projects are currently developing dynamic
schedulers for matrix computations aimed at multi-core systems with or with-
out attached accelerators. Some attempts have also been made in the direction
of distributed-memory systems. The issue of efficient message passing has not
been thoroughly addressed though. In particular, there is a trade-off between
overlap of communication with computation and latency that appears diffi-
cult to solve in a general way. It is likely that the MPI standard will need
to be revised in order to better support dynamically scheduled algorithms. In
particular, asynchronous notification of completed message transfers instead of
polling or blocking is one desirable new feature.

The discovery that the second stage of two-stage Hessenberg reduction algo-
rithm can be formulated as a blocked algorithm makes the two-stage reduction
algorithm competitive and even faster than the standard one-stage algorithm.
This opens up a great deal of possible future work. In the short term, the
proposed algorithms need to be evaluated and adapted to emerging multi-core
architectures. In the long term, the algorithms can be implemented and eval-
uated on distributed-memory systems. The algorithms might also generalize
to two-stage Hessenberg-triangular reduction [35, 59], which opens up further
possibilities. Another possible direction is to look at the use of tiled algorithms
and/or blocked storage formats.
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