
Virtual Infrastructures for Computational Science:
Software and Architectures for

Distributed Job and Resource Management

Per-Olov Östberg

PHD THESIS, MARCH 2011
DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY
SWEDEN

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

p-o@cs.umu.se

Copyright c© 2011 by authors
Except Paper I, c© Springer-Verlag, 2008

Paper II, c© Crete University Press, 2008
Paper III, c© Springer-Verlag, 2007
Paper VI, c© Springer-Verlag, 2011
Paper VIII, c© SciTePress, 2011

ISBN 978-91-7459-194-1
ISSN 0348-0542
UMINF 11.02

Printed by Print & Media, Umeå University, 2011

Abstract

In computational science, the scale of problems addressed and the resolution of solu-
tions achieved are often limited by the available computational capacity. The current
methodology of scaling computational capacity to large scale (i.e. larger than individ-
ual resource site capacity) includes aggregation and federation of distributed resource
systems. Regardless of how this aggregation manifests, scaling of scientific compu-
tational problems typically involves (re)formulation of computational structures and
problems to exploit problem and resource parallelism. Efficient parallelization and
scaling of scientific computations to large scale is difficult and further complicated
by a number of factors introduced by resource aggregation, e.g., resource heterogene-
ity and coupling of computational methodology. Scaling complexity severely impacts
computation enactment and necessitates the use of mechanisms that provide higher
abstractions for management of computations in distributed computing environments.

This work addresses design and construction of virtual infrastructures for scientific
computation that abstract computation enactment complexity, decouple computation
specification from computation enactment, and facilitate large-scale use of compu-
tational resource systems. In particular, this thesis discusses job and resource man-
agement in distributed virtual scientific infrastructures intended for Grid and Cloud
computing environments. The main area studied is Grid computing, which is ap-
proached using Service-Oriented Computing and Architecture methodology. Thesis
contributions discuss both methodology and mechanisms for construction of virtual
infrastructures, and address individual problems such as job management, application
integration, scheduling job prioritization, and service-based software development.

I addition to scientific publications, this work also makes contributions in the form
of software artifacts that demonstrate the concepts discussed. The Grid Job Manage-
ment Framework (GJMF) abstracts job enactment complexity and provides a range of
middleware-agnostic job submission, control, and monitoring interfaces. The FSGrid
framework provides a generic model for specification and delegation of resource allo-
cations in virtual organizations, and enacts allocations based on distributed fairshare
job prioritization. Mechanisms such as these decouple job and resource management
from computational infrastructure systems and facilitate the construction of scalable
virtual infrastructures for computational science.

iii

iv

Sammanfattning

Inom beräkningsvetenskap begränsar ofta mängden tillgänglig beräkningskraft både
storlek på problem som kan ansättas såväl som kvalitet på lösningar som kan uppnås.
Metodik för skalning av beräkningskapacitet till stor skala (dvs större än kapaciteten
hos enskilda resurscentras) baseras för närvarande på aggregering och federation av
distribuerade beräkningsresurser. Oavsett hur denna resursaggregering tar sig uttryck
tenderar skalning av vetenskapliga beräkningar till storskalig nivå att inkludera om-
formulering av problemställningar och beräkningsstrukturer för att bättre utnyttja pro-
blem- och resursparallellism. Effektiv parallellisering och skalning av vetenskapliga
beräkningar är svårt och kompliceras ytterligare av faktorer som medföljer resurs-
aggregering, t.ex. heterogeneitet i resursmiljöer och beroenden i programmerings-
modeller och beräkningsmetoder. Detta utbytesförhållande illustrerar komplexiteten i
utförande av beräkningar och behovet av mekanismer som erbjuder högre abstraktions-
nivåer för hantering av beräkningar i distribuerade beräkningsmiljöer.

Denna avhandling diskuterar design och konstruktion av virtuella beräkningsinfra-
strukturer som abstraherar komplexitet i utförande av beräkningar, frikopplar design
av beräkningar från utförande av beräkningar samt underlättar storskalig användning
av beräkningsresurser för vetenskapliga beräkningar. I synnerhet behandlas jobb-
och resurshantering i distribuerade virtuella vetenskapliga infrastrukturer avsedda för
Grid och Cloud computing miljöer. Det huvudsakliga området för avhandlingen är
Grid computing, vilket adresseras med service-orienterad beräknings- och arkitektur-
metodik. Arbetet diskuterar metodik och mekanismer för konstruktion av virtuella
beräkningsinfrastrukturer samt gör bidrag inom enskilda områden som jobbhantering,
applikationsintegrering, jobbprioritering och service-baserad programvaruutveckling.

Utöver vetenskapliga publikationer bidrar detta arbete också med bidrag i form av
programvarusystem som illustrerar de metoder som diskuteras. The Grid Job Manage-
ment Framework (GJMF) abstraherar komplexitet i hantering av beräkningsjobb och
erbjuder en uppsättning middleware-agnostiska gränssnitt för körning, kontroll och
övervakning av beräkningsjobb i distribuerade beräkningsmiljöer. FSGrid erbjuder en
generisk modell för specifikation och delegering av resurstilldelning i virtuella organi-
sationer och grundar sig på distribuerad rättvisebaserad jobbprioritering. Mekanismer
som dessa frikopplar jobb- och resurshantering från fysiska infrastruktursystem samt
underlättar konstruktion av skalbara virtuella infrastrukturer för beräkningsvetenskap.

v

vi

Preface

This thesis consists of a brief introduction to the field, a short discussion of the main
problems studied, and the following papers.

Paper I E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing
Service-Based Resource Management Tools for a Healthy Grid Ecosys-
tem. In R. Wyrzykowski et al., editors, Parallel Processing and Applied
Mathematics, Lecture Notes in Computer Science, vol. 4967, pages 259–
270. Springer-Verlag, 2008.

Paper II E. Elmroth and P-O. Östberg. Dynamic and Transparent Service Com-
positions Techniques for Service-Oriented Grid Architectures. In S. Gor-
latch, P. Fragopoulou, and T. Priol, editors, Integrated Research in Grid
Computing, pages 323–334. Crete University Press, 2008.

Paper III E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg. De-
signing General, Composable, and Middleware-Independent Grid Infras-
tructure Tools for Multi-Tiered Job Management. In T. Priol and M. Vane-
schi, editors, Towards Next Generation Grids, pages 175–184. Springer-
Verlag, 2007.

Paper IV P-O. Östberg and E. Elmroth. GJMF - A Composable Service-Oriented
Grid Job Management Framework. Submitted for journal publication,
2010.

Paper V P-O. Östberg and E. Elmroth. Impact of Service Overhead on Service-
Oriented Grid Architectures. Submitted for conference publication, 2011.

Paper VI E. Elmroth, S. Holmgren, J. Lindemann, S. Toor, and P-O. Östberg. Em-
powering a Flexible Application Portal with a SOA-based Grid Job Man-
agement Framework. In A.C. Elster et al., editors, Applied Parallel Com-
puting: State of the Art in Scientific Computing, Lecture Notes in Com-
puter Science, vol. 6127. Springer-Verlag. To appear, 2011.

Paper VII P-O. Östberg, D. Henriksson, and E. Elmroth. Decentralized, Scalable,
Grid Fairshare Scheduling (FSGrid). Submitted for journal publication,
2011.

vii

Preface

Paper VIII P-O. Östberg and E. Elmroth. Increasing Flexibility and Abstracting
Complexity in Service-Based Grid and Cloud Software. In F. Leymann,
I. Ivanov, M. van Sinderen, and B. Shishkov, editors, Proceedings of
CLOSER 2011 - International Conference on Cloud Computing and Ser-
vices Science. SciTePress. Accepted, 2011.

This research was conducted using the resources of the High Performance Com-
puting Center North (HPC2N). Financial support has been provided by The Swedish
Research Council (VR) under Contract 621-2005-3667, the Swedish Government’s
strategic research project eSSENCE, and the European Community’s Seventh Frame-
work Programme (FP7/2001-2013) under Grant agreement 257115 (OPTIMIS). The
author acknowledges the Lawrence Berkeley National Laboratory (LBNL) for sup-
porting the work under U.S. Department of Energy Contract DE-AC02-05CH11231.

In addition to the included papers, material and results from the following publi-
cations are included in the thesis.

E. Elmroth and P-O. Östberg. A Composable Service-Oriented Architecture for
Middleware-Independent and Interoperable Grid Job Management. Technical Report
UMINF 09.14, Department of Computing Science, Umeå University, October 2009.

P-O. Östberg. Architectures, Design Methodologies, and Service Composition Tech-
niques for Grid Job and Resource Management. Licentiate Thesis, Technical Report
UMINF 09.15, ISSN 0348-0542, ISBN 978-91-7264-861-6, Department of Computing
Science, Umeå University, October 2009.

M. Jayawardena, C. Nettelblad, S. Toor, P-O. Östberg, E. Elmroth, S. Holmgren. A
Grid-Enabled Problem Solving Environment for QTL Analysis in R. In Proceedings
of the 2nd International Conference on Bioinformatics and Computational Biology
(BICoB), ISCA, ISBN 978-1-880843-76-5, pp. 202-209, 2010.

viii

Acknowledgements

A number of people have directly or indirectly contributed to the work of this thesis
and deserve acknowledgement. First of all, I would like to thank my advisor Erik
Elmroth for not only the opportunities provided and all the hard work, but also for his
patience, enthusiasm, and the positive environment he creates in our research group.
On the same note, I would also like to thank my co-advisor Bo Kågström for inspir-
ing discussions, and the unique perspective he brings to them. Among my (current
and former) colleagues in our research group I would like to thank Lars Larsson and
Johan Tordsson for lengthy discussions of all things more or less related to our work,
and (in no particular order) Francisco Hernández, Daniel Henriksson, Petter Svärd,
Wubin Li, Ahmed Ali-Eldin, Lei Xu, Ewnetu Bayuh Lakew, Mina Sedaghat, Tomas
Ögren, Mikael Öhman, Sebastian Gröhn, Raphaela Bieber-Bardt, Arvid Norberg, Pe-
ter Gardfjäll, Lennart Edblom, Christina Igasto, and Markus Karlsson for all their
contributions to our collective effort. Among our research partners I would like to
thank Sverker Holmgren, Jonas Lindemann, Salman Toor, Mahen Jayawardena, Carl
Nettelblad, and Lavanya Ramakrishnan for interesting collaborations, and the support
staff of the High-Performance Computing Center North (HPC2N) for their contribu-
tions and knowledge of the research systems used. At the Lawrence Berkeley National
Laboratory, I would like to thank my hosts, Deb Agarwal and Horst Simon, as well as
Keith Jackson, Dan Gunter, Tahgrid Samak, and Keith Beattie for unique experiences
and interesting discussions. For valuable discussions and constructive feedback on
my licentiate thesis, I would also like to thank Vladimir Vlassov and Frank Drewes.
Finally, on a personal level, I would like to thank my family and friends for all the
love and support they provide. None of this would be possible without you.

Thank you all.

ix

x

Contents

1 Introduction 1

2 Enactment of Scientific Computations 3
2.1 Heterogeneity in Scientific Computations 3
2.2 Paradigms for Computation Enactment 4

2.2.1 High-Performance Computing (HPC) 5
2.2.2 High-Throughput Computing (HTC) 6
2.2.3 Many-Task Computing (MTC) 7
2.2.4 Peer-to-Peer Computing (P2P) 8

2.3 Coupling and Enactment Complexity 9
2.3.1 Special Purpose Hardware Approaches 9
2.3.2 Workflows and Parameter Sweeps 10

2.4 Virtual Infrastructures for Computational Science 11

3 Grid Computing 13
3.1 Applications 14
3.2 Infrastructure 16
3.3 Job and Resource Management 18

3.3.1 Aggregation and Federation of Resources 18
3.3.2 Resource Management 19
3.3.3 Resources and Middlewares 20
3.3.4 Resource Brokering 21
3.3.5 Job Control 22
3.3.6 Job Management 23
3.3.7 Usage Allocation Enforcement 24

3.4 (Non-Intrusive) Interoperability 25

4 Cloud Computing 27
4.1 Service Models 28

4.1.1 Infrastructure-as-a-Service (IaaS) 28
4.1.2 Platform-as-a-Service (PaaS) 29
4.1.3 Software-as-a-Service (SaaS) 29

4.2 Virtualization 29
4.3 Infrastructure 30
4.4 Scientific Applications 31
4.5 Comparing Grid and Cloud Computing 33
4.6 Sky Computing 34

xi

Contents

5 Virtual Infrastructure Software Development 37
5.1 Distributed Computing 37
5.2 Service-Oriented Computing (SOC) 39
5.3 Service-Oriented Architecture (SOA) 40
5.4 Web Services 41

5.4.1 SOAP Style Web Services 41
5.4.2 RESTful Web Services 42

5.5 Loose Coupling 43
5.6 Service Coordination 44
5.7 Security 46
5.8 An Ecosystem of Infrastructure Components 46

6 Summary of Contributions 49
6.1 Job and Resource Management 49
6.2 Usage Allocation Enactment 50
6.3 Sustainable Service Software Development 52
6.4 Papers 53

6.4.1 Paper I 53
6.4.2 Paper II 54
6.4.3 Paper III 54
6.4.4 Paper IV 54
6.4.5 Paper V 55
6.4.6 Paper VI 55
6.4.7 Paper VII 56
6.4.8 Paper VIII 56

Paper I 77

Paper II 93

Paper III 109

Paper IV 123

Paper V 167

Paper VI 181

Paper VII 195

Paper VIII 215

xii

Chapter 1

Introduction

This work addresses software, architecture, and infrastructure design for vir-
tual scientific computational environments. In particular, it discusses con-
struction of virtual infrastructures that are capable of scaling computations to
global scale while abstracting complexity of computation enactment. Contri-
butions are made to individual problems such as job and resource management,
fairshare-based job prioritization, and software development methodology.

Scientific computation is a broad field with applications in many domains of
science and industrial settings. Evolution of scientific computation methodol-
ogy is fast and construction of infrastructures for computational science lies at
the front edge of technical development. Scaling of scientific computations typi-
cally involve parallelization of problems and mapping of computational tasks to
aggregated resource sets. At large scale, a number of factors complicate efficient
enactment of scientific computations. For example, coupling of computational
applications to specific types of resource sets and heterogeneity in computation
methodologies severely impact the complexity of computation enactment.

The approach taken in this work addresses these issues through design and
implementation of abstractive virtual infrastructures for distributed computa-
tional science. The virtual infrastructures discussed decouple computational
applications from computation enactment, abstract complexity introduced by
heterogeneity in computation methodology, and facilitate large-scale use of ag-
gregated computational capacity. The vision of this work details infrastructures
that provide transparency in resource utilization, scalability in computational
capability, and flexibility in usage scenarios and system applicability. The main
area addressed is Grid computing infrastructure design and application integra-
tion, which is approached using Service-Oriented Computing and Architecture
methodology. Thesis contributions include scientific publications addressing,
e.g., virtual infrastructure job and resource management, fairshare-based re-
source capacity allocation enactment, and software and architecture design for
virtual scientific computational infrastructures, as well as software artifacts
intended for construction of virtual computational science infrastructures.

1

The rest of this thesis is structured as follows. Section 2 provides a brief
introduction to enactment of scientific computations and a discussion of the
relationship between heterogeneity and coupling of computational methodol-
ogy and the complexity of computation enactment. Section 3 discusses Grid
computing, an approach to construction of virtual infrastructures for computa-
tional science based on aggregation and federation of computational resources
into large virtual computational environments. Section 4 details Cloud comput-
ing, a paradigm for construction of virtual computational infrastructure based
on hardware-enabled paravirtualization technologies and exposure of compu-
tational capacity as services in stratified service models. Section 5 gives an
introduction to software development for virtual infrastructures and discusses
methodology for distributed and service-oriented software development in Grid
and Cloud environments. Section 6 summarizes the contributions of the thesis,
relates thesis contributions to the field, and presents the thesis papers.

2

Chapter 2

Enactment of Scientific
Computations

Efficient enactment of scientific computations is a widely studied and complex
field. Due to potential performance gains, computational applications are often
optimized for specific resource environments, or utilize computational frame-
works that make extensive assumptions about computational resource organi-
zation and characteristics. In general, such assumptions introduce a degree
of coupling between computational applications and infrastructure that com-
plicates migration of computational applications between environments and
reduce the general applicability of computational methodology. To illustrate
some of the complexity of enactment of scientific computations, and motivate
the use of virtual infrastructures for computational science, here follows a brief
introduction to some current paradigms for scientific computation and a dis-
cussion of the relationships between concepts such as computation coupling
and heterogeneity and the complexity of enactment of computations.

2.1 Heterogeneity in Scientific Computations

Scientific computations employ computer-based resources to quantify, analyze,
simulate, and in other ways investigate phenomena that can be modeled com-
putationally. Use of computation as a tool influences development of not only
traditional computational sciences and engineering, but finds application in
fields as diverse as, e.g., financial modeling, geographical mapping, social stud-
ies, meteorology, and life sciences. In addition to computation, computer-based
resources are highly utilized to manage, store, and analyze datasets that re-
sult from scientific experiments, observations, and simulations. Data mining
and analysis techniques are used to extract knowledge from data, and provide
a foundation for scientific experimentation even in non-traditional computa-
tional fields. Scientific computation is a broad field with applications in most

3

established sciences, and computation methodology and resources provide tools
applicable to a wide variety of scientific and industrial problems.

In computational science, the scale of problems addressed and the resolu-
tion of solutions achieved tend to be limited by the available computational
capacity. Access to faster and more powerful computational resources enable
new methodologies, facilitate new forms of scientific collaborations, and al-
low scientists to address larger and more complex problems. As the cost of
constructing (individual) computer systems increases dramatically beyond the
capabilities of commercially viable mass produced high-end systems, compu-
tational capacity is typically scaled up through aggregation of multiple (pos-
sibly distributed) resource systems. Regardless of whether this aggregation
manifests as physical compute clusters, federations of resource sites, or virtual
collaborations over the Internet, scaling of scientific computational problems
typically involves (re)formulation of computational structures and problems to
exploit problem parallelism and mapping of computations onto parallel compu-
tational resources. Aggregation of computational resource capacity introduces
hardware and software heterogeneity in computational resource sets, as well as
heterogeneity in methodologies for computation specification and enactment.

Due to its broad applicability, scientific computation is a field with exten-
sive heterogeneity in methodology, approaches, and tools. Problems addressed
range in scope from design of nano-materials and simulation of molecule inter-
actions to long-term analysis of global climate changes and metric expansion
of space, and are naturally addressed using domain-specific methodologies. To
properly address complex problems and increase knowledge yields from large
experiments, scientific computations are often performed in interdisciplinary
collaborations. Projects that bring together scientists from different fields,
with varying traditions of computing and levels of computing experience, tend
to introduce further heterogeneity in computation methodology and tool re-
quirements. Heterogeneity in computation methodology is dynamic and evolves
with development of computational models, availability of computational tools,
and formulation of new problems and interdisciplinary collaborations.

2.2 Paradigms for Computation Enactment

A number of paradigms for scientific computations that each have unique re-
quirements for computation enactment exist. Variation in approaches arises
from factors such as heterogeneity in problem and solution requirements, appli-
cability of traditional methodology, and availability and functionality of tools.
Common to all these paradigms is the exploitation of problem parallelism to
increase computation scalability. Scalability within parallel scientific compu-
tations can be measured in multiple ways, but is typically quantified using
metrics that express the proportions of overhead or speedup introduced by
parallelization relative to the number of computational resources used and a
corresponding sequential solution [122].

4

Traditional definition of computing infrastructure details computational re-
sources and systems native to computational resources. In this work the defi-
nition of (virtual) computing infrastructure is extended to include middlewares
and other software frameworks that provide abstraction layers to facilitate vir-
tualization of computation and increase transparency in resource utilization.
The term virtual infrastructure is here used to refer to systems that collectively
are used to enact utilization of computational resources, typically through ab-
straction and virtualization of computation enactment, data management, and
computational resources.

Evolution of methodology for computation is affected by a number of fac-
tors ranging from introduction of new technology such as multi- and many-core
Central Processing Units (CPUs) to paradigm shifts such as the advents of
Grid and Cloud computing. Design of infrastructures for computational sci-
ence and computational methodology evolve together and influence each other.
This work studies construction of virtual infrastructures for computational sci-
ence that aim to abstract enactment of computation and allow computational
methodologies to evolve within computational paradigms without limitations
imposed by complexity in computation enactment.

To illustrate some of the challenges in enactment of scientific computations,
here follows a brief overview of current computational paradigms and (con-
crete and virtual) infrastructures for scientific computation. The definition
of computation paradigm used here details methodology for computation en-
actment, and application- and system-level computation behavior rather than
algorithms and methods for actual computations. With this definition, classi-
fication of computational paradigms can be performed by observation of facets
of paradigm methodology, for example how separation and coordination of
computations are expressed (e.g., explicit or implicit control flows), what syn-
chronization requirements are imposed on parallel computations (ranging from
fine-grained explicit synchronization to embarrassingly parallel problems), or
how computations are steered and visualized (e.g., batch or interactive appli-
cations). Characterization of scientific computations can be done by paradigm
or by computational and data requirements and topology, behavior of com-
putational applications, or the type of computational infrastructure used for
computation enactment.

2.2.1 High-Performance Computing (HPC)

High-Performance Computing (HPC) [49] is a paradigm for utilization of high-
end computational resources for addressing and solving large computational
problems as quickly as possible. HPC computations typically consist of tightly
coupled, synchronized, parallel, and highly optimized code running on ded-
icated high-end systems. Considered traditional supercomputing, HPC ap-
plications include engineering problems, large-scale mathematical problems,
physics and chemistry simulations, and other similar problems that are well
understood and where performance gain can be achieved by mapping compu-

5

tations to homogeneous high-end resource sets. HPC applications are typically
designed for high resource utilization and maximization of computational effi-
ciency, make strict assumptions about homogeneity in resource capabilities and
interconnects, and aim to achieve high performance through fine-grained syn-
chronization using communication frameworks and programming models such
as Message Passing Interface (MPI) [177] mechanisms.

Traditional HPC deployments organize (predominantly) homogeneous sets
of high-end computational resources dedicated full-time to computation. To-
day, HPC resources are normally organized in clusters of network-accessible
servers and administrated and operated in computing centers. HPC resources
typically employ low latency, high bandwidth interconnects and distribute
program executions (jobs) to resources through batch systems and central-
ized schedulers. As resource site schedulers have complete information about
queued, pending, and running jobs, and continuously updated views of the state
and availability of computational resources, HPC scheduling environments can
enact advanced job requirements and achieve high resource utilization rates
through, e.g., backfilling [178] and fairshare [114] job prioritization techniques.

In the HPC model, end-users can make extensive assumptions about the
homogeneity and capacity of the computational resources, as well as about
the system environment of the resources. End-users are expected to provide
executables compatible with resource hardware and software environments, and
submit jobs through batch systems or portals. Data files are accessed through
shared file systems or staged in and out of the execution environment, and
storage requirements for data files and maximal runtime limits for computations
are often expected to be quantified by end-users in advance.

For end-users, the HPC computational model requires extensive knowledge
about resource environments. HPC system complexity may impact end-user
productivity directly or indirectly through, e.g., batch queue latencies compli-
cating error diagnostics and development of computational applications, or by
requiring users with resource allocations on multiple resource sites to main-
tain concurrent compatibilities with multiple environments. Efficient use of
HPC computational resources requires high end-user maturity in computa-
tional methodology as well as advanced programming experience.

2.2.2 High-Throughput Computing (HTC)

High-Throughput Computing (HTC) [128] is a computational paradigm that
defines computational efficiency in terms of throughput over time, i.e. without
imposition of strict deadlines for computations. HTC applications typically
break computational problems into large numbers of small, loosely coupled
subproblems without interdependencies. As such, HTC computational tasks
can be processed in parallel, and make low or no assumptions about synchro-
nization of computations or the computational capacity of resource sets. HTC
computations tend to be separated in time, and time scales for measuring com-
putational efficiency in HTC applications may range over long periods of time,

6

e.g., weeks or months. HTC applications are often deployed on distributed
and dynamical resource sets and are concerned with resilience in addition to
efficiency in computation.

HTC infrastructures encompass distributed systems where coordination
nodes distribute computational tasks to autonomous clients running on dy-
namic resources. Task distribution is often fully abstracted to end-users, which
do not know where their computations are performed, and have limited influ-
ence over resource selection or the computational environment of the resources.
HTC computational resource sets typically exhibit high heterogeneity and con-
sist (at least partially) of non-dedicated (shared) resources that run computa-
tions in the background at low system priority or during machine idle phases.
In HTC systems, resource availability may vary (resources join or leave resource
sets dynamically), and computations may be preempted or deprioritized at any
time. Resource volatility is a major factor in HTC systems and infrastructures
typically provide computational resilience through fault recovery mechanisms
such as checkpointing [166] and redundancy in computation executions.

As HTC computations may be performed on volatile, non-dedicated re-
sources, HTC tasks tend to be self-contained, limited in scope, have low system
requirements, and require little or no synchronization. Computational tasks
mapped onto HTC infrastructures are typically embarrassingly parallel and
consist of large numbers of autonomous computations that can be processed
in arbitrary order. Computational tasks are matched to resources dynamically
e.g., using the classad [165] technique of Condor [183], and may employ mul-
tiple parallel executions to compensate for erroneous results from non-trusted
resources (a technique used, e.g., by BOINC [15]).

Characterizations of different kinds of HTC infrastructures can be made
on, e.g., the level of trust placed on resources (desktop Grids [119] versus vol-
unteer computing [171]), whether special purpose hardware is employed (dis-
tributed.net [1]), or the generality of the software framework used to distribute
computations (ranging for specialized applications such as SETI at home [16] to
generalized frameworks such as BOINC [15], Entropia [38], and Condor [183]).
Data management in HTC applications typically follow patterns similar to pa-
rameter sweeps, where data sets are pre-processed and segmented into smaller
blocks for individual processing, and results are assembled, post-processed, and
aggregated in synchronization steps. As HTC computations typically are sep-
arated in time, HTC computation data may require more storage capacity per
time unit than other types of computations.

2.2.3 Many-Task Computing (MTC)

Many-Task Computing (MTC) [162] is recently introduced hybrid paradigm
that aims to bridge the gap between the HPC and HTC paradigms. MTC ap-
plications are concerned with computational throughput and efficiency over lim-
ited time frames and typically run large numbers of short-lived computations.
MTC applications behave as HTC applications, but employ application-specific

7

performance metrics measuring computational efficiency over short time peri-
ods. As MTC computations tend to be short lived, enactment tasks such as
file staging and I/O operations impose a larger relative proportion of overhead,
which imposes challenges on MTC applications and systems to maintain high
computational efficiency. MTC computational efficiency is concerned with ag-
gregated computational throughput for large sets of short computations with
limitations in response times. MTC computations are typically realized on com-
putational resource sets similar to HPC deployments retrofitted with special
computation enactment frameworks such as Falkon [163] and Kestrel [181].

2.2.4 Peer-to-Peer Computing (P2P)

The Peer-to-Peer Computing (P2P) [147] paradigm reverses the traditionally
hierarchical communication model of client-server systems and focuses on con-
struction of decentralized loosely coupled networks of distributed components
(nodes). P2P systems share computational resources, capacity, or data for
distributed applications, and are organized in abstract overlay networks us-
ing decentralized organization structures such as distributed hash tables. P2P
nodes may fulfill any communication or computation role over the lifespan
of an application and are typically equally privileged within a network. As
they build on dynamical participation of peers, P2P systems are generally de-
signed for redundancy and resilience in, e.g., computation enactment or data
replication. For scientific computation, P2P systems may be utilized to share
computational capacity of resources, or to distribute, store, and replicate data.

P2P infrastructures are typically constituted by dynamically assembled
nodes that form large, highly parallel virtual systems with high throughput
for data transfers. Current visible examples of applications of P2P tech-
niques include file sharing networks and frameworks such as BitTorrent [159],
Gnutella [169], and OneSwarm [106]. P2P infrastructures can be categorized
based on infrastructure topology, e.g., by observation of how data distribution
models exploit parallelism [33], or by classification of coordination models. P2P
techniques can be used in virtual infrastructures for computational science to
e.g., distribute data or facilitate dynamic resource discovery [96, 192]. Further
characterization and analysis of P2P systems is available in [111, 136].

The benefits of P2P communication systems lie in that system-wide coordi-
nation can be distributed, replicated, and segmented (e.g., each data set gets a
unique torrent in BitTorrent). Coordination in P2P systems is computationally
cheap and can be performed by virtually any node in the system, and coor-
dination network requirements are low, allowing nodes with great variation in
link quality to participate in networks. P2P networks in general form resilient
and scalable virtual infrastructures well suited to be mapped onto distributed,
heterogeneous networks such as the Internet. The general applicability of P2P
infrastructures for computational science is however low, and application of
P2P networks tend to be limited to data distribution applications with low
security requirements.

8

2.3 Coupling and Enactment Complexity

As illustrated by the contrast between the HPC and HTC paradigms, behavior
and requirements of scientific computations vary greatly. As further illustrated
by the MTC paradigm, a range of hybrid approaches that are difficult to crisply
categorize within established computational paradigms exist and evolve with
application requirements and the development of computational environments.

In general, there exists a correlation between the degree of coupling of com-
putations, and the complexity of enactment of computations. Tightly coupled
computations like, e.g., HPC MPI applications tend to make extensive assump-
tions about synchronization, capabilities, and environments of computational
resources that affect scheduling parameters and resource requirements. Loosely
coupled computations and applications, that have low (if any) synchronization
requirements and can be run on arbitrary hosts, are better suited for enact-
ment on virtual infrastructures where resources are discovered and utilized on
demand. The impact of computation coupling on enactment and development
complexity is best illustrated by applications residing at the ends of this spec-
trum; special purpose hardware approaches and abstract workflows.

2.3.1 Special Purpose Hardware Approaches

As certain computationally expensive operations may be performed more effi-
ciently and cost-effectively on special purpose hardware platforms, a pattern
of utilizing dedicated special purpose hardware has long existed within compu-
tational science. Due to high acquisition and operation costs, special purpose
hardware systems have historically been limited to computing centers and use
of special purpose hardware considered part of the HPC paradigm. Recently
however, with the introduction of customizable special purpose hardware solu-
tions like Field-Programmable Gate Arrays (FPGAs) [191], and commercially
available mass produced technologies suitable for scientific computation such
as Graphics Processing Unit (GPU) systems [67], and Cell processor [98] based
entertainment systems, special purpose hardware systems are now more easily
attainable and find new applications within computational science.

The applicability of special purpose hardware for computations is often lim-
ited by the nature of the problem, e.g., the inherent scalability and granularity
of the computational task [37]. For example, in GPU computing, problems
are segmented into computational tasks that run in parallel threads, which
are mapped to execution pipelines on the graphics card using specialized lan-
guages and APIs such as CUDA [142] and GPGPU [129]. With GPUs, com-
putational speedup can be achieved as long as frequent task synchronization
can be avoided [37]. The GPU approach is comparable to MPI programming
in that computational threads are mapped to the graphics pipeline in a way
similar to how jobs are matched to computational resource nodes in MPI. Tools
for conversion of synchronized parallel programming models to special purpose
hardware solutions are emerging and include, e.g., OpenMP [44] code conver-

9

sion to GPGPU thread models [125]. In FPGA computing, a reconfigurable
circuit is compiled and configured to match computation patterns by special-
ized compilers in a pre-computation step. FPGA computations are in general
more efficient than traditional CPUs when sequences of large numbers of fine-
grained computational steps are to be processed [37], as is often the case in,
e.g., encryption algorithms.

Computationally, special purpose hardware systems can be highly efficient,
but are often more expensive to acquire, administrate, and maintain compared
to general purpose systems. Compared to development for standard CPU sys-
tems, special purpose hardware systems introduce new programming models
and developing or adapting applications for special purpose hardware systems
are complex tasks that often require specialized programming constructs. Seen
from a programming model point of view, the current trend of increasing com-
putational capacity in CPUs through provisioning of more cores per CPU can
be seen as a type of special purpose hardware approach. Programming models
for multi- and many-core systems currently utilize similar thread-based con-
structs as single-core CPU models. More advanced concurrent programming
constructs, e.g., transactional memory [97], are expected to be required to in-
crease programmer productivity in these kinds of environments.

2.3.2 Workflows and Parameter Sweeps

In contrast to special purpose hardware approaches that make extensive as-
sumptions about computational resource environments and achieve efficiency
by optimizing code for specific architectures, there also exist programming mod-
els for scientific computation that abstract knowledge of computation enact-
ment environments and decouple computation specification from computation
enactment. Parameter sweep and workflow applications focus on coordination
of (potentially large) sets of computational tasks and (virtualized) enactment
of computations. Computational tasks within parameter sweeps and workflows
may be mapped to any suitable computational infrastructure without affecting
the structure of the application.

Workflow systems [99] provide meta-language constructs for organizing se-
quences of computational steps that form applications and provide a high level
of abstraction of computation enactment. In computational science, workflows
are typically used to detail structured enactments of sets of sequential or paral-
lel computation tasks. For example, a workflow may detail tasks such as staging
and preprocessing of data, computation, staging and post-processing of results,
and aggregation and statistical analysis of result sets. Workflows can be further
sub-categorized as static or dynamic, control flow or data flow oriented, etc.,
and are often modeled using topological constructs such as directed acyclic
graphs. Parameter sweeps are a specific form of scientific workflows where
simulations, experiments, or tests are repeated multiple times using different
permutations of parameter sets. Computation results may be analyzed during
runtime and influence the processing of the parameter sweep, or in separate

10

post-processing steps. Computational tasks in parameter sweep applications
are typically embarrassingly parallel, i.e experiment sets using different param-
eter sets are fully independent of each other, and computations may be mapped
onto computational infrastructures in arbitrary order.

2.4 Virtual Infrastructures for Computational
Science

Tightly coupled computational methodologies that make extensive assumptions
about computational environments and computation synchronization find legit-
imate use through increased computational efficiency. However, as illustrated
by scientific workflows and parameter sweeps, there exists large classes of com-
putational applications that for reasons of complexity and computational topol-
ogy are not efficient to map to computational environments explicitly. In par-
ticular, when scaling computations to global scale (e.g., to use computational
resources from multiple resource sites), there exists an inversely proportional re-
lationship between the degree of coupling and the scalability of an application.
In general, assumptions about computation environments or synchronization
tend to increase computation enactment complexity and introduce significant
development overhead.

For reasons of computational efficiency, computational methodologies are
often designed for both problems addressed and the types of computational in-
frastructures available. As scaling of scientific computations typically involves
organizational collaborations and aggregation of computational capacity from
multiple resource sets, multiple types of heterogeneity are introduced in com-
putation enactment. As complexity of computation enactment increases as
a function of multidimensional heterogeneity, large scale resource use necessi-
tates the use of abstractive virtual infrastructures that isolate end-users from
computation enactment and provide scalability in aggregation and federation of
resource sets. The relationships between computation coupling and heterogene-
ity to the complexity of computation enactment demonstrate that abstractive
and loosely coupled models for computations are more easily scaled to large
scale resource use in virtual environments.

The approach of this work details construction of virtual scientific infras-
tructures that abstract computation enactment complexity and allow for greater
flexibility in scientific computation methodology through decoupling of compu-
tation design and enactment. Virtual infrastructures for computational science
promote computation scalability through facilitation of (automated) large scale
use of aggregated computational capacity. The remainder of this thesis dis-
cusses paradigms and methodology for construction and application of virtual
scientific computational infrastructures.

11

12

Chapter 3

Grid Computing

Grid computing [76] is a computational paradigm describing aggregation and
federation of distributed resource sets from multiple administrational domains
to form virtual high-performing computational systems. For applications, the
Grid computing paradigm is primarily concerned with transparency in resource
utilization. Applications employ middlewares, brokers, and information sys-
tems to decouple end-users from computation enactment tasks and allow dis-
covery and utilization of computational resources on demand. Grids organize
user bases in Virtual Organizations (VOs) [81] that are mapped to virtual
computational infrastructures using distributed collaborative security models.

In the last decade, Grid computing has emerged and been established as
an enabling technology for a range of computational eScience applications. A
number of definitions of Grid computing exist, e.g., [74, 80, 117, 127, 190], and
while the scientific community has reached a certain level of agreement on what
a Grid is [180], best practices for Grid design and construction are still topics
for investigation. The definition used in this thesis details Grid computing to
be a type of distributed computing focused on aggregation of computational
resources for creation of meta-scale virtual supercomputers and systems.

As a paradigm, Grid computing is concerned with service availability, per-
formance scalability, virtualization of services and resources, and resource (ac-
cess) transparency [82, 180]. The current methodology of the field is to leverage
interconnected high-end systems to create virtual systems capable of great per-
formance scalability, high availability, and collaborative resource sharing [80].
The approach taken in this work employs loosely coupled and decentralized re-
source aggregation models, assumes resources to be aggregated from multiple
ownership domains, and expects Grid systems and components to be subject
to resource contention, i.e. to coexist with competing mechanisms.

Grid technology and infrastructure have today found application in fields
as diverse as, e.g., life sciences, material sciences, climate studies, astrophysics,
and computational chemistry, making Grid computing an interdisciplinary field.
Current Grid applications occupy all niches of scientific computation, ranging

13

from embarrassingly parallel high-throughput applications to distributed and
synchronized data collation and collaboration projects.

Actors within, and contributions to, the field of Grid computing can broadly
be segmented into two main categories; application and infrastructure. Grid
applications often stem from independently developed computational method-
ologies more or less suited for use in Grid environments, and are often limited
(in Grid usage scenarios) by how well their methodology lends itself to (asyn-
chronized) parallelization. Motivations for migration to Grid environments
vary, but often include envisioned performance benefits, synergetic collabora-
tion effects, and facilitation of large-scale resource utilization.

Typically, Grids are designed to provide a level of scalability beyond what is
offered by individual supercomputer systems. System requirements vary with
Grid application needs, and usually incorporate advanced demands for stor-
age, computational, or transmission capacity, which places great performance
requirements on underlying Grid infrastructure at both component and system
level. These conditions, combined with typical interdisciplinary requirements of
limited end-user system complexity, automation, and high system availability,
make Grid infrastructure design and resource federation challenging tasks.

3.1 Applications

Utilization of Grid technology affords the scientific community to study prob-
lems too large to address using conventional computing technology. Use of
Grids has resulted in creation of new types of applications and new ways to
utilize existing computation-based technology [80]. Grid applications can based
on application requirements be segmented into categories such as

• computationally intensive, e.g., interactive simulation efforts such as the
SIMRI project [25], and very large-scale simulation and analysis applica-
tions such as the Astrophysics Simulation Collaboratory [170].

• data intensive, e.g., experimental data analysis projects such as the Eu-
ropean Data Grid [173], and image and sensor analysis applications such
as SETI@home [16].

• distributed collaboration efforts, e.g., online instrumentation tools such
as ROADnet [94], segmented simulation and analysis efforts such as Fold-
ing@home [123], or remote visualization projects such as the Virtual Ob-
servatory [201].

Based on computational requirements and topology of applications, com-
putational Grid applications can broadly be classified as HPC, HTC, or hybrid
approaches. Grid HPC applications are generally concerned with system peak
performance, and measure efficiency in the amount of computation performed
on dedicated resource sets within limited time frames. HPC application com-
putations are typically structured to maximize application computational ef-
ficiency for a particular problem, e.g., through MPI frameworks. Analysis of

14

workload traces for computational Grids environments [103] show that Grid
workload patterns significantly differs from traditional HPC workloads [68]
even when running on HPC resources [101, 102]. The predominant form of
computation in HPC Grids is the bag-of-tasks model, where large numbers of
computational tasks are performed more or less sequentially [104].

Grid HTC applications are conversely focused on resource utilization and
measure performance in the amount of computation performed on shared re-
source sets over extended periods of time, e.g., in tasks per month. Computa-
tionally, HTC applications are generally composed of large numbers of (small)
independent jobs running on non-dedicated resource sets without real-time con-
straints for result delivery. A number of hybrids between the HPC and HTC
paradigms exist, e.g., the more recently formulated MTC paradigm. MTC ap-
plications focus on running large amounts of tasks over short periods of time,
are typically communication-intensive but not naturally expressed using syn-
chronized communication patterns like MPI, and measure performance using
(application) domain-specific metrics [162].

Differentiation of Grid HPC, HTC, and MTC applications from correspond-
ing non-Grid applications can be done primarily on the use of dynamic resource
discovery, brokering, and Grid data staging techniques in computation enact-
ment. Beside obvious computational requirements, Grid applications typically
also impose advanced system performance requirements for, e.g.,

• storage capacity. Grid applications potentially process very large data
sets, and often do so without predictable access patterns.

• data transfer capabilities. Grid computations are typically brokered and
may be performed far from the original location of input data and applica-
tion software. Efficient data transfer mechanisms are required to relocate
data to computational resources, and return results after computation.

• usability. Grid interfaces abstract resource system complexity and use
of underlying computational resources to improve system usability and
lower learning requirements.

• scalability. Grid application system and resource requirements are likely
to vary during application runtime, requiring underlying systems and
infrastructure to access and scale computational, storage, and transfer
capabilities on demand.

• availability. Grid systems are typically constructed through aggregation
and federation of computational resources, allowing Grids to exhibit very
high levels of system availability despite system capacity varying over
time. Consistent levels of system access and quality of service improve
the perception of Grid availability and stability.

• collaboration. Grid applications and systems support levels of collabo-
ration ranging from multiple users working on shared data to multiple
organizations utilizing shared resources.

15

System complexity and the great demands and different requirements of
current Grid applications have led to the emergence of two major types of
Grids; computational Grids and data Grids. Computational Grids focus on
providing abstracted views of computational resource access, and address very
large computational problems. Data Grids focus on providing virtualization of
data storage capabilities and provide non-trivial and scalable qualities of service
for management of very large data sets. The work of this thesis is focused on
systems designed for use in computational Grid environments.

From a performance perspective, the construction of Grid systems is facili-
tated by improvements in computational and network capacity, and motivated
by general availability of highly functional and well connected end systems.
Increase in network capacity alone has lead to changes in computing geometry
and geography [80], and technology advances have made massive-scale collab-
orative resource sharing not only feasible, but approaching ubiquitous.

From an application perspective, Grid computing holds promise of more ef-
ficient models for collaboration when addressing larger and more complex prob-
lems, less steep learning curves (as compared to traditional high-performance
computing), increased system utilization rates, and efficient computation sup-
port for broader ranges of applications. While Grids have achieved much in
terms of system utilization, scalability and performance, much work on reduc-
tion of system complexity and increased system usability still remains [180].

3.2 Infrastructure

The name Grid computing originates from an analogy in the initial vision of the
field; to provide access to computational resource capabilities in a way similar
to how power grids provide electricity [80], i.e. with transparency in

• resource selection (i.e. which resource to use).

• resource location (i.e. with transparency in resource access).

• resource utilization (i.e. amount of resource capacity used).

• payment models (i.e. pay for resource utilization rather than acquisition).

In this vision, the role of Grid infrastructure becomes similar to that of
power production infrastructure: to provide capacity to systems and end-users
in cost-efficient, transparent, federated, flexible, and accessible manners. While
Grid application and user requirements vary greatly, and can be argued to be
more complex than those of power infrastructure, the analogy is apt in describ-
ing a federated infrastructure providing flexible resource utilization models and
consistent qualities of service through well-defined interfaces.

To realize a generic computational infrastructure capable of flexible uti-
lization models, it is rational to build on standardized, reusable components.
The approach of this work is to identify and isolate well-defined infrastructure

16

functionality sets, and to design interfaces and architectures for these in man-
ners that allow components to be used as building blocks in construction of
interoperable scientific applications and systems [57, 59].

From a systems perspective, the Grid computing paradigm addresses con-
cepts such as performance scalability, resource virtualization, and access trans-
parency [82]. Performance scalability here refers to the ability of a system to
dynamically increase the computational (or storage, network, etc.) capacity of
the system to meet the requirements of an application on demand. Virtualiza-
tion here denotes the process of abstracting computational resources, a practice
that can be found on all levels of a Grid. For example, Grid application use of
infrastructure is often abstracted and hidden from end-users, Grid systems and
infrastructure typically abstract the use of computational resources from the
view of applications, and access to Grid computational resources is abstracted
by middlewares and native resource access layers. The term transparency is
used to describe that, like access to systems and system components, scalability
should be automatic and not require manual efforts or knowledge of underlying
systems to realize access to, or increase in, system capacity. Typically today,
performance scalability is achieved in Grid systems through dynamic provision-
ing of multiple computational resources over networks, virtualization through
interface abstraction mechanisms, and transparency through automation of
core Grid component tasks (such as resource discovery, resource brokering, file
staging, job submission and monitoring, etc.).

To facilitate flexibility in resource usage models, Grid users and resource
allotments are typically organized in Virtual Organizations (VOs) [81]. VOs is a
key concept in Grid computing that pertains to virtualization of a system’s user
base around a set of resource-sharing rules and conditions. The formulation
of VOs stems from the dynamical nature of resource sharing where factors
such as resource availability, sharing conditions, and organizational structure
and memberships vary over time. This mechanism allows Grid resource usage
allotments to be administrated and provided by decentralized organizations, to
whom individual users and projects can apply for memberships and resource
usage credits. VOs employ scalable resource allotment mechanisms suitable for
aggregation of resource capacity across ownership domains, and provide a way
to provision resource usage without pre-existing trust relationships between
resource owners and individual Grid users.

In summary, Grid computing infrastructure should provide flexible and se-
cure resource access and utilization through coordinated resource sharing mod-
els to dynamic collections of individuals and organizations. Resources and users
should be organized in Virtual Organizations and systems be devoid of central-
ized control, scheduling omniscience, and pre-existing trust relationships.

17

Figure 1: A naive Grid model. Grids aggregate clusters of computational
resources to form larger, virtual systems. Resources may be part of multiple
Grids, and federated Grids are composed of collaborative federations of Grids.

3.3 Job and Resource Management

A key functionality set of any Grid infrastructure is job and resource manage-
ment, a term here used to collectively refer to a set of processes and issues
related to execution of programs on computational resources in distributed
virtual environments. This includes, e.g., management, monitoring, and bro-
kering of computational resources; description, submission, and monitoring of
jobs; fairshare scheduling and accounting in Virtual Organizations; and various
cross-site administrational and security issues.

Grid job and resource management tasks seem intuitive when viewed indi-
vidually, but quickly become complex when considered as parts of larger sys-
tems. A number of component design trade-offs, requirements, and conditions
are introduced by core Grid requirements for, e.g., system scalability and trans-
parency, and tend to become oxymoronic when individual component designs
are kept strictly task oriented. The approach taken in this work is to primarily
regard components as parts of systems, and focus on component interoperabil-
ity to promote system composition flexibility [59]. The focus of the job and
resource management contributions presented here is to abstract system com-
plexity and heterogeneity, and provide transparent resource utilization models
that do not couple applications to specific Grids or Grid middlewares [149].

3.3.1 Aggregation and Federation of Resources

Grid systems are composed through aggregation of multiple cooperating com-
puting systems, and federated Grid environments are realized through (possibly
hierarchical) federation of existing Grids.

18

In the naive model illustrated in Figure 1, regional organizations aggregate
dedicated cluster-based resources from local supercomputing centers to form
computational Grids. Due to the relatively homogeneous nature of today’s su-
percomputers, such Grids typically exhibit low levels of system heterogeneity,
and administrators can to a large extent influence system configuration and
resource availability. As also illustrated in Figure 1, international Grids are
typically formed from collaborative federation of regional, national, and other
existing Grids. As federated Grids typically aggregate resources from multiple
Grids and resource sites, a natural consequence of resource and Grid federation
is an increased degree of system heterogeneity. System heterogeneity may be
expressed in many ways, e.g., through heterogeneity in hardware and software,
resource availability, accessibility, and configuration, as well as in administra-
tion policies and utilization pricing. Technical heterogeneity issues are in Grid
systems addressed through interface abstraction methods and generic resource
description techniques, which allow virtualization of resources and systems.

A core requirement in Grid systems is that resource owners at all levels
retain full administrative control over their respective resources. This Grid
characteristic, to be devoid of centralized control [74], is a design trait aimed
to promote scalability in design and implementation of Grids, and imposes
a number of cross-border administration and security issues. Security issues
naturally arise in federation of computational resources over publicly acces-
sible networks, i.e. the Internet, and are in Grid infrastructures addressed
through use of strong cryptographic techniques such as Public Key Infrastruc-
tures (PKI) [134] and certificates [4]. Grid capacity allocations are typically
specified at VO level and mapped to site allocations in resource site systems.

3.3.2 Resource Management

Grid resources are typically owned, operated, and maintained by local resource
owners. Local resource sharing policies override Grid resource policies; compu-
tational resources shared in Grid environments according to defined schedules
are possibly not available to Grid users outside scheduled hours. Due to this,
and hardware and software failures, administrational downtime, etc., Grid re-
sources are generally considered volatile.

In Grid systems, resource volatility is typically abstracted using dynamic
service description and discovery techniques, utilizing loosely coupled mod-
els [196] for client-resource interaction. Local resource owners publish infor-
mation about systems and resources in information systems, and Grid clients,
e.g., resource brokers and submission engines, discover resources on demand
and utilize the best resources available during the job submission phase.

Reliable resource monitoring mechanisms are critical to operation in Grid
environments. While resource characteristics, e.g., hardware specifications and
software installations, can be considered static, factors such as resource avail-
ability, load, and queue status are inherently dynamic. To facilitate Grid
utilization and resource brokering, resource monitoring systems are used to

19

provide information systems resource availability and status data.
As resource monitoring systems and information systems in Grid environ-

ments typically exist in different administrational domains, resource status in-
formation need to be disseminated through well-defined, machine-interpretable
interfaces. The Web Services Resource Framework (WSRF) [77] specifications
address Web Service state management issues, and contain interface definitions
and notification mechanisms that may be used for this task. In Grid environ-
ments, information systems potentially contain large quantities of information
and can be segmented and hierarchically aggregated to partition resource in-
formation into manageable proportions.

3.3.3 Resources and Middlewares

A typical HPC Grid resource consists of a high-end computer system equipped
with (possibly customized) software such as

• data access and transfer utilities, e.g., GridFTP [51].

• batch systems and scheduling mechanisms, e.g., PBS [24] and Maui [185].

• job and resource monitoring tools, e.g., GridLab Mercury Monitor [20].

• computation frameworks, e.g., MPI [177] toolkits.

Grid HTC resources are of more varied nature. CPU-cycle scavenging schemes
such as Condor [183] for example typically utilize standard desktop machines,
while volunteer computing efforts such as distributed.net [1] may see use of any
type of computational resource provided by end-users. HTC Grids often deploy
software that can be considered part of Grid middlewares on computational
resources, e.g., Condor and BOINC [15] clients.

Grids are created through aggregation of computational resources, typically
using Grid middlewares to abstract complexity and details of native resource
systems such as schedulers and batch systems. Grid middlewares are (typi-
cally distributed) systems that act on top of local resource systems, abstract
native resource system interfaces, and provide interoperability between compu-
tational systems. To applications, Grid middlewares offer virtualized access to
resource capabilities through abstractive job submission and control interfaces,
information systems, and authentication mechanisms.

A number of different Grid middlewares exist, e.g., ARC [52], Globus [87],
UNICORE [182], LCG/gLite [35], and vary greatly in design and implementa-
tion. In a simplified model, Grid middlewares contain functionality for

• resource discovery, often through specialized information systems.

• job submission, monitoring, and control.

• authentication and authorization of users.

20

Figure 2: Grid resource brokering. Autonomous resource brokers act on behalf
of clients and dynamically discover and match jobs to computational resources
using job descriptions and resource state information from information systems.

Additionally, middlewares and related systems can incorporate solutions for
advanced functionality such as resource brokering [183], accounting [85], and
Grid-wide load balancing [35].

While the original motivations for construction of Grids included addressing
resource heterogeneity issues, complexity and size of Grid middlewares have led
to a range of middleware interoperability issues, and given rise to the Grid in-
teroperability contradiction [62]; Grid middlewares are not interoperable, and
Grid applications are not portable between Grids. The Grid interoperability
contradiction results in Grid applications being tightly coupled to Grid middle-
wares, and a lack of generic tools for Grid job management. The approach of
this work is to address this level of interoperability issues through abstraction
and standardization. The Grid Job Management Framework (GJMF) [149] for
example provides a range of middleware agnostic job management interfaces
that abstract middleware interoperability issues and build on standardized for-
mats for job descriptions, resource discovery, and job control.

3.3.4 Resource Brokering

A fundamental task in Grid job management is resource brokering; matching
of jobs to computational resource(s) suitable for job execution. As illustrated
in Figure 2, resource brokers typically operate on top of Grid middlewares, and
rely on information systems and job control systems to enact job executions.

Typically in Grid resource brokering, jobs are represented by job descrip-
tions, which contain machine-readable representations of job characteristics
and job execution meta-data. A number of proposed job description formats
exist, including middleware-specific solutions such as Globus RSL [75], ARC
XRSL [52], as well as standardization efforts such as the Job Submission De-
scription Language (JSDL) [17].

21

Typical information specified by job descriptions include

• program to execute.

• parameters and environmental settings.

• hardware requirements, e.g., CPU, storage, and memory requirements.

• software requirements, e.g., required libraries and licenses.

• file staging information, e.g., data location and access protocols.

• meta-information, e.g., duration estimates and brokering preferences.

Resource brokering is subject to heuristic constraints and optimality criteria
such as minimization of cost, maximization of resource computational capacity,
minimization of data transfer time, etc., and is typically complicated by factors
such as missing or incomplete brokering information, propagation latencies in
information systems, and existence of competing scheduling mechanisms [62].

A common federated Grid environment characteristic designed to promote
scalability is absence of scheduling omniscience. From this, two fundamental
observations can be made. First, no scheduling mechanism can expect to mo-
nopolize job scheduling, all schedulers are forced to collaborate and compete
with other mechanisms. Second, due to factors such as system latencies, in-
formation caching and status polling intervals, all Grid schedulers operate on
information which to some extent is obsolete [63]. In these settings, Grid bro-
kers and schedulers need to adapt to their environments and design emphasis
should be placed on coexistence [149]. In particular, care should be taken to not
reduce total Grid system performance, or performance of competing systems,
through inefficient mechanisms in brokering and scheduling processes.

3.3.5 Job Control

Once resource brokering has been performed, and rendered a suitable computa-
tional resource candidate set, jobs can be submitted to resources for execution.
For reasons of virtualization and separation of concerns, this is typically done
through Grid middleware interfaces rather than directly to native resource in-
terfaces, as resource heterogeneity issues would needlessly complicate clients
and applications. Normally, execution of a Grid job on a computational re-
source adheres to the following task sequence.

1. submission. job execution time is allocated at the resource site, i.e. the
job is submitted to a resource job execution queue.

2. stage in. job data, including data files, scripts, libraries, and executables
required for job execution are transferred to the computational resource
as specified by the job description.

3. execution. the job is executed and monitored at the resource.

22

4. stage out. job data and result files are transferred from the computational
resource as specified by the job description.

5. clean up. job data, temporary, and execution files are removed from the
computational resource.

Naturally, the ability to prematurely abort and externally monitor job ex-
ecutions must be provided by job control systems. In general, most systems of
this complexity are built in layers, and Grid middlewares typically provide job
control interfaces that abstract native resource system complexity.

As in any distributed system, a number of remote failures ranging from sub-
mission and execution failures to security credential validation and file transfer
errors may occur during the job execution process. To facilitate client failure
management and error recovery, clients must be provided failure context infor-
mation. In Grid systems, failure management is complicated by factors such as
resource ownership boundaries and resource volatility issues. Care must also
be taken to isolate jobs executions, and to ensure that distribution of failure
contexts not results in information leakage. Typically, Grids make use of ad-
vanced security features that make failure management, administration, and
direct access to resource systems complicated.

3.3.6 Job Management

Advanced high-level Grid applications require job management functionality
beyond generic resource brokering and job control capabilities. For example,
efficient mechanisms for monitoring and workflow-based scheduling of jobs are
required to facilitate management of large sets of jobs.

Conceptually, there exist two basic types of Grid job monitoring mecha-
nisms; pull-based and push-based mechanisms. In pull models, clients and
brokers poll resource status to detect and respond to changes in job and re-
source status. As jobs and Grid clients typically outnumber available Grid
resources, polling-based resource update models scale poorly. As clients and
resources exist in different ownership domains, pull models are also sometimes
considered intrusive.

In push models, Grid resources, or systems monitoring them, publish status
updates for jobs and resources in information systems or directly to interested
clients. Push updates typically employ publish-subscribe communication pat-
terns, where interested parties register for updates in advance, e.g., during job
submission. In Grid systems, push models provide several performance bene-
fits compared to pull models. Push models improve system scalability through
reduced system load and decreased communication volumes, and may some-
times simplify client-side system design as they afford clients to act reactively
rather than proactively. This reduced client complexity comes at the cost
of increased service-side complexity. As Grid resources are volatile, systems
distributed, and most Grids employ unreliable communication channels, push
models must sometimes be supplemented with pull model mechanisms [149].

23

Push notifications can also be extended to notification brokering scenarios, and
be incorporated in notification brokering schemes based on Message-Oriented
Middleware (MOM) [22] or Enterprise Service Bus (ESB) [36] frameworks. The
WS-Notification specification [90] details interfaces for push model status no-
tifications that may be used for Grid job management architectures.

A common advanced Grid application requirement is to, possibly condi-
tionally, run batches of jobs sequentially or in parallel. One way to organize
these sets is in Grid workflows [139], where job interdependencies and coordina-
tion information are expressed along with job descriptions. In simple versions,
workflows can be seen as job descriptions for sets of jobs. In more advanced
versions, e.g., the Business Process Execution Language (BPEL) [11], work-
flows may themselves contain script-like instruction sets for, e.g., conditional
execution, looping, and branching of jobs. When using workflows, Grid ap-
plications rely on workflow engines, e.g., Taverna [145] and Pegasus [47], and
Grid infrastructures to automate execution of job sets. Important questions
here include abstraction of level of detail, and balancing of automation against
level of control for advanced job management systems [56].

Advanced job management systems may also provision functionality for
customization of job execution, control, and management. In this case, job
management components should provide interfaces for customization that do
not require end-users or administrators to replace entire system components,
but rather offer flexible configuration and code injection mechanisms [59, 149].

3.3.7 Usage Allocation Enforcement

Grid usage allocations are typically specified on Virtual Organization level
and distributed using academic grant schemes. Usage allocations can take the
form of abstract usage credits, be mapped to resource specific metrics such as
CPU hours, and be enforced using dynamic quota models on resource sites.
Grid usage is typically tracked using accounting systems such as the SweGrid
Accounting System (SGAS) [85], or through monitoring of workload trace logs.

Fairshare scheduling systems (as defined by [114]) perform dynamic load
balancing in systems by live comparison of usage consumption to usage al-
lotment preallocations. Fairshare load balancing is achieved by allowing us-
age ratios to influence scheduling decisions, in effect creating priority queue
systems that rank jobs after owner usage consumption ratios. As fairshare
mechanisms using this model require access to complete views of both usage
allocation and usage consumption data, fairshare tend to be enforced locally on
resource systems (in schedulers such as Maui [185] and SLURM [204]) rather
than on abstract Virtual Organization level. The FSGrid [151] system extends
the local fairshare scheduling model to Grid level and defines a decentralized
system for global enactment of fairshare allocation through local computations
on distributed data.

24

3.4 (Non-Intrusive) Interoperability

A large portion of Grid infrastructure operation builds on automation of Grid
functionality tasks. Automation in Grid environments is achieved through Grid
component and system collaboration, and thus requires systems participating
in Grids to provide machine-interpretable and interoperable system interfaces.
Due to Grid heterogeneity issues stemming from Grid and resource federation,
properties such as platform, language, and versioning independence become
highly desirable. For these reasons, Grid components typically build on open
standards and formats, and utilize technologies that facilitate system interop-
eration [82], e.g., the Extensible Markup Language (XML) [29] and Grid Web
Services [84]. To promote non-intrusive interoperability in Grid system design,
many Grid systems are realized as Service-Oriented Architectures [144].

Grid standardization efforts have proposed interfaces for many interoper-
ability systems ranging from job description formats, e.g., JSDL [17], job sub-
mission and control interfaces, e.g., OGSA BES [78], to resource discovery,
e.g., OGSA RSS [79], and Cloud computing interfaces, but broad consensus on
best practices for Grid application and infrastructure construction is yet to be
reached. Further treatment of Grid application and infrastructure integration
issues is available in [58, 108].

25

26

Chapter 4

Cloud Computing

Cloud computing [18] is a paradigm that extends the virtualization approach
of Grid computing and focuses on virtualization of infrastructures, platforms,
and applications through isolation of job executions in virtual machines run
on consolidated servers. While Grid computing provides scalability through
federation and aggregation, Cloud computing provides elasticity through ab-
straction and virtualization. Cloud systems enable a resource utilization model
where end-users are fully decoupled from exact knowledge of where, how, and
on what physical resources computations are enacted. Cloud applications are
not limited to the batch processing model common to other paradigms, and
may be supplied custom execution environments through virtual machines.

The Cloud computing paradigm evolved from the convergence of a number
of software development and infrastructure construction trends including, e.g.,
autonomic computing [116], Grid computing [76], utility computing [30], vir-
tualization, and service-oriented software development [175]. Technologically,
development of Cloud computing was facilitated by the development of effi-
cient hardware paravirtualization technology and hypervisors (virtual machine
monitors) such as Xen [23], VMWare [198], and KVM [118],

In Cloud computing, computational resources, platforms, applications, and
infrastructures are abstracted and virtualized, and offered as services with me-
tered cost models [205, 18]. What primarily distinguishes Cloud computing
environments from other environments is that software are run as services with
unknown lifecycles and that the (virtual) infrastructure itself can be scaled dy-
namically to meet varying capacity requirements with minimal manual efforts
from administrators. The name Cloud computing stems from a metaphor for
the Internet, which is often depicted as a network cloud in network diagrams,
and references the virtualization properties of Cloud computing systems.

27

Figure 3: Cloud computing service models. Cloud environments virtualize
access to, and realization of, infrastructures, platforms, and applications (soft-
ware), and offer computational capacity through metered service models. Pro-
visioning of Cloud services is regulated in Service-Level Agreements.

4.1 Service Models

Cloud computing environments offer multiple levels of virtualization, and ser-
vices offered by Clouds are often categorized in stratified service models as
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-
as-a-Service (SaaS) services (illustrated in Figure 3).

4.1.1 Infrastructure-as-a-Service (IaaS)

Cloud Infrastructure-as-a-Service (IaaS) service models refer to provisioning of
dynamic infrastructure capabilities as virtualized environments offered as me-
tered services for agreed-upon time periods [115]. IaaS services are typically ac-
cessed through abstractive Cloud interfaces that expose APIs for instantiation
of virtual servers and coordination of customized infrastructure environments.

Through resource elasticity and server consolidation techniques, Cloud in-
frastructures are able to rapidly adapt to increased (or decreased) requirements
for computational capacity, and provide on-demand access to computational re-
sources using pay-per-use accounting models. Use of virtualized Cloud infras-
tructures facilitates management of expected and unexpected peaks in com-
putational capacity requirements, adaptation to regional variations in usage
patterns, and minimization of costs for (over)provisioning of hardware.

Typically, Cloud infrastructures utilize gateway mechanisms that accept
or reject requests for instantiation of services based on internal models for
infrastructure load and capacity. Conditions for provisioning of services in
Clouds may be specified and regulated using Service-Level Agreements (SLAs).

IaaS service models have found widespread acceptance in industry, where
providers offer access to virtualized infrastructure services in public Clouds en-
vironments such as the Amazon Elastic Compute Cloud (EC2) [12] and Simple
Storage Service (S3) [14], and Microsoft Azure [186]. For construction of pri-
vate Cloud infrastructures, a number of open source Cloud toolkits exist, e.g.,
Nimbus [140], Eucalyptus [141], and OpenNebula [72].

28

(a) Traditional virtualization. (b) Hypervisor paravirtualization.

Figure 4: Traditional virtualization versus hypervisor paravirtualization. Tra-
ditional virtualization employs virtual machines to emulate computational re-
sources on top of operating systems. Hardware-enabled paravirtualization em-
ploys hypervisors to virtualize computational resources and encapsulate pro-
gram execution environments in virtual machines.

4.1.2 Platform-as-a-Service (PaaS)

Platform-as-a-Service (PaaS) service models refer to provisioning of computa-
tional platforms as services in Cloud environments. Utilization of PaaS services
allows developers and end-users to, e.g., customize software environments, use
metered cost models for software acquisition, and adapt to multi-tenant archi-
tecture requirements. Support for machine-to-machine communication mecha-
nisms, such as Web Services, allow exposure of PaaS capabilities in integration
of heterogeneous software environments.

4.1.3 Software-as-a-Service (SaaS)

Software-as-a-Service (SaaS) is a service model where access to software pack-
ages are offered as services through metered subscription or pay-per-use cost
models. SaaS allows end-users to avoid rigid license agreements and fixed cost
models and is driven by multiple use cases in economical settings such as Cloud
computing where platforms are virtualized, network capacity is growing more
rapidly than compute capability, and computing is a tradeable commodity.

4.2 Virtualization

As indicated by the *aaS service models used to describe Cloud capabilities,
Cloud environments provide multiple levels of virtualization. The foundational
virtualization capability of Clouds lies in that Clouds utilize paravirtualiza-
tion technology and hypervisors to enact virtual machines rather than execute
binary software components (illustrated in Figure 4). Enactment of virtual
machines virtualizes and isolates programs from computational environments

29

(operating systems, libraries, and software stacks) as well as operating systems
from computational resources (hardware platforms).

Isolation of operating systems from hardware platforms extends the ca-
pabilities of software execution environments. Through service consolidation
techniques, multiple systems that do not operate at full hardware capacity
may share the same hardware resources and allow infrastructures to improve
resource utilization rates and reduce size, hardware requirements, and opera-
tional costs for computational infrastructure. As resource systems are virtual-
ized, software systems may also be mapped to virtual computational resources
with elastic resource capabilities that can be adjusted on-demand, i.e. where
hardware resources used to enact computations can be added or removed based
on current computation needs. Virtualization and encapsulation of software in
virtual machines also extend infrastructure instance management capabilities
to allow, e.g., computational environments to be paused, migrated to other
resources, and resumed with minimal impact on application performance.

For software, Cloud virtualization completely encapsulates the software ex-
ecution environment. Compatible virtual machine disk images are typically
supplied on-demand by Cloud providers, and may be customized by end-users
before instantiation in Clouds. Customization of virtual machine images allow
great flexibility in software deployment, and can be used to, e.g., support and
integrate legacy systems, provide access to customized computation environ-
ments, or emulate existing environments for isolated testing of software.

While the term virtualization has in the context of Cloud computing become
somewhat synonymous with hardware-enabled paravirtualization, it is in this
work used in the more broad sense to describe the process of making something
(e.g., computational resources or access to software libraries) virtual.

4.3 Infrastructure

The National Institute of Standards and Technology (NIST) [188] defines Cloud
computing to be ”a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction” [135].

As noted by this definition, a key enabling characteristic of Cloud computing
environments is that infrastructures are able to automate on-demand scaling
of computational capacity. To end-users, Cloud systems provide the illusion
of infinite resource capacity through dynamic infrastructure load balancing
techniques such as service consolidation, virtual machine migration, and Cloud
federation. To infrastructure providers, Cloud systems provide virtualization
capabilities that facilitate scaling, consolidation, and administration of large
resource sets. Cloud environments are by definition distributed and virtualized,
and typically focused on service-based provisioning of computational resources.

30

Cloud deployment models can be categorized based on federation and access
models in four major categories [135].

• private Clouds are operated solely for the purposes of an organization
and restrict access to Cloud resources to organization entities.

• community Clouds are operated and shared between a community of
organizations and restrict access within the community.

• public Clouds are operated by organizations or industry groups that pro-
vide Cloud services to the general public.

• hybrid Clouds are composed by multiple Clouds that are bound together
using technology that provide data and application portability within the
hybrid Cloud.

Future Cloud infrastructure models are expected to be categorized as [69]

• bursted internal Clouds where service providers utilize commercial Clouds
to extend the computational capacity of local infrastructures.

• federated Clouds where Cloud infrastructures migrate virtual machine
instances to other Clouds to extend Cloud capacity.

• multi-Clouds where dedicated Cloud brokers delegate service provisioning
between Cloud actors (end-users, client software, services, and Clouds).

For computational science, Cloud computing infrastructures provide loca-
tion transparent access to computational infrastructures that virtualize com-
putational resources and provide elastic computational capacity on-demand.
Computational applications are in the stratified Cloud service model resid-
ing in the SaaS layer and operating on virtual resources residing in the IaaS
layer. Due to the administrational flexibility and the execution environment
customizability offered by Cloud systems, scientific computational resources
are expected to be organized in private Clouds on large scale. Public Cloud
environments are currently expected to be used for scientific computations pri-
marily to meet temporary peaks in computational capacity requirements and
to avoid resource (over)provisioning costs.

4.4 Scientific Applications

While Grid and other forms of scientific computations typically take the form
of batch executions of programs that assume static resource behavior, Cloud
applications are not limited in this way. Cloud applications may be batch or
interactive, short or long running, sequential or parallel, synchronized or embar-
rassingly parallel, and may vary in computational performance with resource
and infrastructure elasticity. As Cloud applications execute within virtual ma-
chines, data management in Cloud applications tend to be decoupled from

31

machine images through distributed file systems or Cloud storage solutions.
Virtualization of storage and computational resources allows reformulation of
computational models and utilization of data-parallel programming models,
e.g., MapReduce [45] and Dryad [105], using data-centric system designs and
declarative programming languages [10].

Mapping scientific computations to Cloud environments follows the same
model as generic Cloud applications. Virtual machine disk images are acquired,
customized, and instantiated, and computations are started and controlled both
on process and virtual machine level. As Cloud environments are designed to
provide short ramp-up time, low start-up costs, and utilize metered pay-per-
use cost models, scientific computation applications may benefit from use of
Cloud environments for algorithm testing, prototype design, and small-scale
experimentation. As Clouds run software as services with unknown lifecycles,
interactive applications are expected to be easier to migrate and benefit more
from utilization of computational capacity in Cloud environments.

While the use of spot instance and trading models [203] can make access to
public Cloud computational capacity affordable for small-scale experiments, the
use of traditional computational environments tends to be more economically
feasible for large, long-running experiments. Use of computational capacity in
private Cloud environments is subject to the same kind of economical models
used in traditional computational environments.

Application migration between Cloud providers is made difficult by image,
contextualization, and API compatibility issues. The first two are addressed by
the use of virtual appliances (encapsulated virtual machine images), from which
providers can derive implementations. API compatibility issues are mediated
by providers offering semantically equivalent interfaces for, e.g., deploying and
terminating environments, and addressed through standardization [115].

For computational science, the efficiency of the use of Cloud computing in-
frastructures is likely to depend on the operational characteristics of individual
applications. For example, tightly coupled applications with explicit synchro-
nization requirements, e.g., MPI applications, may suffer performance degrada-
tions from resource elasticity and communication synchronization [107] while
high-throughput applications may be used opportunistically in Cloud schedul-
ing and potentially suffer performance degradations from virtual machine image
migration overhead [131].

Early benchmark results indicate that compared to HPC Grid resources,
Cloud resources exhibit lower suitability for computational science [197]. As
modern hypervisor technology imposes low performance overhead on computa-
tions [23, 189, 206], this is attributed to factors such as use of lower performance
network interconnects and resource sharing [152]. Emerging availability of spe-
cial purpose hardware and high-performance computing [13] services in Clouds
is likely to address these issues. Regardless of capacity issues, use of Cloud
infrastructures for computational science afford scientific applications access to
rapidly scalable computational capacity that can be used to meet temporary
increases in computational resource requirements.

32

4.5 Comparing Grid and Cloud Computing

As two major recently introduced paradigms for virtual computational infras-
tructures, Grid and Cloud computing have evolved and influenced each other
in methodology, application, and development. While the Grid and Cloud
computing paradigms share many goals and approaches, e.g., transparency
in resource utilization, virtualization of computation enactment, transparent
management of large resource sets, provisioning of computation as a utility,
and use of service-oriented utilization and development models [82], a number
of key differences between Grids and Clouds exist and can be characterized by

• origin and application. While Grid computing has emerged and found
extensive support in the scientific community, Cloud computing has pri-
marily been developed and found application in industry.

• integration models. Grid environments are constructed through fed-
eration of computational resources that are aggregated and integrated
through middlewares and standardized resource interfaces. Cloud re-
source environments are fully abstracted by Cloud infrastructure inter-
faces and may be constructed using technology of the Cloud provider’s
choosing. Standardized Cloud federation interfaces are emerging, but
have yet to gain widespread acceptance.

• economical models. Being primarily scientific environments, Grid usage
allocations are typically distributed using academic application and grant
models, and are enforced as resource utilization quotas. Cloud usage
models vary for different cloud types. Public Clouds typically employ
resource capacity metering models and charge users using pay-per-use
cost models. Private Clouds use domain-specific usage allocation models,
e.g., grant models for academic private Clouds.

• infrastructure and resource administration models. Grids aggregate com-
putational resources and form virtual systems that are mapped onto ex-
isting computational resources. A key characteristic of Grid environments
is that resource administrators retain full administrative control of their
own resources, and can explicitly control the availability, capacity, and
environment of their resources. Cloud environments isolate and virtu-
alize infrastructure, platforms, and applications, and allow end-users to
administrate virtual machines and select the amount of resource capacity
dedicated to enacting computations in virtual machines. Cloud admin-
istrators retain full control over physical resources used to enact virtual
infrastructure services.

• resource organization models. While most (HPC) Grid and Cloud com-
putational resources are organized in server models dedicated to com-
putation, Grid computational resource availability is subject to admin-
istration policies and may be provisioned through multiple concurrent

33

resource organization configurations, e.g., HPC interfaces and Grid inter-
faces. Cloud resource organization is abstracted within Cloud infrastruc-
ture and virtualized computational capacity is offered through metered
services models.

• virtualization models. Grids virtualize system-wide resource capacity,
user bases, and computation enactments tasks such as brokering and
resource selection for computational tasks. Clouds build on hardware-
enabled paravirtualization technology and virtualize computational re-
sources, infrastructures, and enactment of virtual machines.

• computation models. Grid environments are like most computational
science environments limited to batch execution models for programs,
and run job executions with finite lifecycles on physical resources. Cloud
environments enact virtual machines that can execute any kind of com-
putational task, and run software as services without lifecycles on virtual
resources with elastic computational capacity.

More extensive comparisons of Grid and Cloud computing as paradigms and
environments are available in [83, 168].

In summary, Grid and Cloud Computing are related fields that strive to
realize an existing vision of resource transparency and computing as a utility.
While Grids focus on integration and federation of resources, Clouds enable re-
source and system virtualization and provide abstraction models that isolate in-
frastructure components and introduce resource elasticity. Differences between
Grids and Clouds tend to manifest in technology drivers and infrastructure
actor stakeholding. What is shared between the two fields is a unifying view of
enabling resource usage without imposing infrastructure acquisition and oper-
ation costs directly. Dynamic and highly efficient virtual environments such as
Grid and Cloud computing environments alter existing software requirements
and usage patterns, and introduce new possibilities for computational science.

4.6 Sky Computing

While the Cloud computing paradigm extends the resource and infrastruc-
ture virtualization properties of Grid computing environments, current Cloud
computing environments lack some of the high-level computation enactment
virtualization support of Grids [164]. With the relative immaturity of the
paradigms, and the overlap of goals and methodology between Grid and Cloud
computing, hybrid approaches to realization of virtual infrastructures for scien-
tific computing are emerging. For example, Sky computing [115] is an emerging
computing pattern that combines dynamically provisioned distributed domains
built over multiple Clouds and aim to provide high-level support for virtualized
computation enactment by mapping virtual cluster and Grid environments to
Cloud infrastructures.

34

By combining the resource transparency, virtual organization support, and
accounting models of Grids with the infrastructure virtualization and resource
elasticity of Clouds, Sky computing applications aim to provide high-level ab-
straction models suitable for computational science applications in multi-Cloud
environments. Mapping of Grid environments onto Cloud infrastructures is
expected to introduce new usage models for computations and reduce the com-
plexity of maintaining and enacting computations in Grid environments [109].
The approach taken in this work is similar to Sky computing in the focus on
abstraction and decoupling of virtual infrastructures from (physical) compu-
tational infrastructure. However, this work focuses on integration across com-
putational paradigms rather than multi-Cloud integration issues, and aims to
identify suitable architecture design and software development methodologies
for abstraction of multiple types of computational infrastructures.

35

36

Chapter 5

Virtual Infrastructure
Software Development

Virtual infrastructures and dynamic environments such as those of Grid and
Cloud computing change the dynamics and interactions of computational sci-
ence software. As these environments are virtualized and distributed, software
components are often modeled and exposed as services. The definition of a soft-
ware service used here details a service to be a network-accessible software com-
ponent with an always-on semantic. The concept of Service-Oriented Comput-
ing [175] details construction of systems and software modules that are realized
as location transparent, dynamically discoverable, and self-describing (machine
understandable) software services. Dynamic service discovery and invocation
are typically resolved through use of service description techniques and service
registries. Construction of software components as location transparent, dis-
tributed services facilitates dynamic integration of systems and components in
virtual infrastructures and increases software flexibility and applicability [148]

5.1 Distributed Computing

Construction of virtual computational infrastructures for computational sci-
ence entails design and deployment of distributed systems [41] that aggregate
the computational capacity of multiple distributed, autonomous resources and
systems that communicate over networks. Distributed computing distinguishes
itself from centralized computing primarily in that fewer assumptions can be
made about availability, synchronization, and capability of computational re-
sources, and that distribution of a system typically introduces heterogeneity in
computational resources and additional failure models. In general, the study of
distributed computing problems resolves to study of trade-offs in terms of costs
for communication overhead versus computational capability gained, manage-
ment of distributed failure models, and identification and design of suitable

37

abstraction levels for distributed applications. Abstraction models provided by
computational systems today approach a level where end-users no longer are re-
quired to have extensive knowledge of where their computations are performed
or how their data are stored.

The public perception of distributed computing is that the distributed era
came about with the advent of the World Wide Web. Historically however,
distributed computing can be seen to be almost as old as computing itself.
Early supercomputers and mainframes utilized client-server interaction mod-
els that have survived to date. Most computer systems today provide some
form of Internet connect, and operating systems typically support the use of
distributed file systems, network-based data sharing, and remote compute re-
sources. When computational resources are aggregated to form distributed
systems, aggregation typically introduces heterogeneity in the resource set.
System heterogeneity manifests in many forms, e.g., hardware types, operat-
ing systems, communication stacks, software availability, or protocol types. To
manage system heterogeneity, distributed systems typically implement abstrac-
tive interfaces that virtualize system resources and capabilities.

In distributed systems, communication performance is measured using met-
rics such as latency, bandwidth, and throughput. Compared to centralized
systems, distributed systems generally suffer performance degradations from
synchronization and communication overhead. In the case of scientific compu-
tation, this can for example manifest itself in overhead for transferring data to
and from computational resources, so called data staging. Distributed systems
can often compensate for this by exploiting parallelism in system tasks, e.g., by
transferring data required for future calculations while other calculations are
performed. Peer-to-peer mechanisms like, e.g., BitTorrent [159], demonstrate
that high system-wide throughput can often result in higher performance for
individual nodes than naive point-to-point transfer schemes allow.

System performance requirements often categorize systems in distributed
system scenarios. Applications that measure performance in response times,
e.g., interactive applications, require low network latencies for computational
efficiency. Systems that measure performance in data or computational through-
put, e.g., file transfer systems, are dependent on maintaining high network
bandwidth to sustain performance. In some cases, e.g., multi-user computer
games, high bandwidth can be used to compensate for high latency by perform-
ing speculative execution and use corrections on local nodes when synchronized
state updates arrive.

For scalability reasons, public networks are today built using packet-switched
networks and maintain unreliable communication channels. As in the case of
the Transmission Control Protocol (TCP) [158], reliable communication chan-
nels may be emulated on top of unreliable mechanisms, but a number of com-
plicated interactions still result in distributed call semantics being far more
complex than centralized call semantics. Distributed failure scenarios include
e.g., synchronization errors, message drops, and communication timeouts, and
may result from programming errors (e.g., race conditions, deadlocks, and busy

38

wait overloads) or communication infrastructure errors (e.g., power outages,
network congestion, router failures, security attacks, and server overloads). In
general, synchronization and security requirements in distributed systems add
additional dimensions to development complexity and result in a need for ab-
stractive mechanisms that handle system communication and integration.

In summary, when compared to centralized systems, distributed systems
suffer overhead and complexity issues for distributed state synchronization,
distributed invocation semantics, distributed failure management, distributed
security issues, response time (latency) issues, and throughput (bandwidth)
issues. Programming models for distributed systems typically either rely on
specialized software frameworks (e.g., middlewares) for synchronization and
communication coordination, or expect programmers to handle such issues ex-
plicitly. Few programming languages today abstract distributed programming
issues beyond managing network connections. To decouple scientific compu-
tational applications from computation enactment, virtual infrastructures for
computations should not only abstract computation enactment tasks, but also
provide failure management models that abstract distributed computing errors
and provide transparency in resource utilization.

5.2 Service-Oriented Computing (SOC)

Large-scale computational science applications and virtual infrastructures, such
as Grid and Cloud environments, often build on and integrate existing com-
ponents and systems. Integration of software systems tends to produce code
specific to the integration environment and limit software reusability. To ad-
dress these issues, software services are often employed to abstract legacy com-
ponents and provide network-accessible interfaces well suited for integration.
Service-Oriented Computing (SOC) [175] is a software development paradigm
that models software components as network-accessible services and is con-
cerned with concepts such as loose coupling, late binding, and location trans-
parency. In SOC, software components are modeled as services, and systems
model service interactions defined in terms of service interfaces. Current SOC
methodology renders services as Web Services, which extend the notion of a
service to, e.g., include platform independent (often text-resolved) data types,
definition of service interfaces in machine interpretable service descriptions, and
communicate using message-oriented communication patterns.

Production of software components as services introduces new software re-
quirements on both component and system level, and skews the traditional
software development landscape. Services are typically self-contained and mod-
ular, provide high levels of interface abstraction, and shift focus from compo-
nent implementations to component interfaces. As services are loosely coupled
in multiple dimensions [155], services make few assumptions about spatial or
temporal dependencies between service clients and services, and service com-
munication tends to be kept coarse-grained and document-oriented. As service

39

invocation patterns in dynamic virtual infrastructures may vary with, e.g., re-
quest patterns, and resource and network load, asynchronous communication
patterns are often employed for non-trivial service operations.

In industry, service-oriented systems are often employed to expose legacy
functionality and integrate business systems and components. As service-
oriented systems incorporate business logic that require constant modification
to accommodate business requirements [208], production of highly maintainable
software is a key challenge of SOC [156]. Studies estimate that a majority of
software development resources are spent on software maintenance and system
updates [160, 209], which is often used to motivate the use of SOC methodology.

5.3 Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) [64] is an architectural style in SOC that
realizes software architectures in terms of services and service interfaces. Sim-
ilar to how object-orientation models objects and relationships between ob-
jects, SOA models service actors and relationships between actors. Object-
orientation has greatly influenced the development of service-orientation in
general, and SOAs in particular. Many of the goals of the paradigms over-
lap, e.g., improving software modularity and reducing maintenance overhead
and development costs, and many SOA component-level design patterns [65]
have corresponding object-orientation patterns.

SOA utilizes a high-level, top-down design perspective that focuses on iso-
lation and integration of components to form systems. Services are classified
as atomic (a.k.a. informational or simple services) or composite (i.e. services
composed of other services) [154], and are modeled based on roles, interaction
patterns, or functionality. Focus in component-level SOA design is placed on
the utility of software components, rather than the mechanism of components,
which is intended to make components easier to integrate and reuse.

Service interfaces are defined in service descriptions, and architectures are
constructed through combinations of SOA techniques such as composition, or-
chestration, choreography, and aggregation of services. SOA actors may be
modeled on, e.g., roles (developer, provider, consumer), interaction patterns
(client, service, broker), or functionality (service, aggregator, registry). As
SOA is a relatively recently introduced and widely applied field, definitions of
service-orientation and SOA tend to detail methodology and guidelines rather
than technology and realizations.

SOA design places great focus on identification and exposure of functionality
(i.e. business logic), and details design requirements for component realizations
in terms of abstraction, loose coupling, and interoperability. Key characteristics
of a SOAs include, e.g., loosely coupled and dynamic service interactions, and
service realizations that are fully abstracted by service interfaces.

In SOAs, services are typically hosted in service containers that abstract
message transport logic, handle traditional server issues, and provide manage-

40

ment interfaces for services. Service containers abstract server development
tasks and allow service developers to focus on design and implementation of
service interfaces. Techniques such as thread pooling, instance duplication,
and instance reuse make service containers efficient hosting environments that
decouple service development from distributed programming issues, and help
virtualize service instances.

5.4 Web Services

While many types of distributed component models, e.g., the Distributed Com-
ponent Object Model (DCOM) [174], the Common Object Request Broker
Architecture (CORBA) [157], or the Windows Communication Foundation
(WCF) [130], can be used to realize services in SOAs, current technology ren-
derings of SOAs tend to favor the use of Web Services. Web Services pro-
vide text-based, platform independent interfaces for message-oriented commu-
nication and build on freely available technologies and formats such as the
Hypertext Transfer Protocol (HTTP) [70], the Extensible Markup Language
(XML) [29], and the JavaScript Object Notation (JSON) [42] format.

While Web Services may provide human readable interface descriptions and
message formats, they are designed and intended for machine-to-machine com-
munication. Web Services originated as a technology for firewall-friendly dis-
tributed interprocess communication and have, due to generic applicability
and use of established technology bases, evolved into a mature communica-
tion paradigm with wide acceptance in industry and academia. There are
currently two major categories of Web Services: XML-based SOAP style Web
Services that define explicit service interface descriptions and exchange generic
messages, and RESTful Web Services that provide Web APIs for service com-
munication and expose service resources in custom formats over HTTP.

5.4.1 SOAP Style Web Services

SOAP style Web Services [154] define service interfaces and exchange mes-
sages using standardized XML-based languages and protocols. SOAP [92] is a
wire protocol (i.e. a communication protocol focused on application-level data
representation) that supports multiple communication models including, e.g.,
one-way messaging and message routing. SOAP defines an extensible message
representation model that allows protocol extension for, e.g., security and en-
cryption of messages [8]. The use of SOAP as a wire protocol allows SOAP
style Web Services to abstract message representation formats, decouple mes-
sage (and service interface) representations from message transmission, and
transfer messages over paths of intermediaries (message routing).

The Web Service Description Language (WSDL) [39] is a language for defi-
nition of self-contained and self-describing service descriptions. WSDL doc-
uments declare type sets using XML Schema [31], define service interfaces

41

in terms of message specifications, and map bindings of service interfaces to
concrete service realizations, e.g., by defining SOAP and HTTP as wire and
transmission protocols for accessing specific service instances. The use of stan-
dardized service descriptions allows SOAP style Web Service clients to dy-
namically discover and invoke services through publishing of service descrip-
tions in service registries such as Universal Description, Discovery and Inte-
gration (UDDI) [3] and automated generation of service client communication
stubs [120]. SOAP style Web Services support multiple interaction patterns,
e.g., one-way, request-response, publish-subscribe, and are recommended to use
coarse-grained, document-oriented, and literally encoded message schemes [21].

By definition, SOAP style Web Services are stateless. The Web Services
Resource Framework (WSRF) [77] defines a set of standards for addressing
service state management in SOAP style Web Services. WSRF defines mes-
sage, interface, and protocol extensions for service and resource representation,
identification, management, and aggregation.

5.4.2 RESTful Web Services

Criticism against SOAP style Web Services is typically directed against the
overhead and complexity of the SOAP and WSRF software stacks. Represen-
tational State Transfer (REST) [71] outlines an alternative approach to rep-
resentation of services in web environments. In REST, services are modeled
around resources that are exposed in custom formats and transferred using
HTTP. Resource-Oriented Architectures (ROA) [153] provide guidelines for,
e.g., definition of resource representations, mapping of resource representations
to access methods in HTTP, and identification of resources. As RESTful Web
Services utilize HTTP as the sole transmission mechanism, RESTful Web Ser-
vices are limited to request-response communication patterns.

RESTful Web Services may be implemented using standard component
models, e.g., Java Servlets [138, 187], where service interfaces may be web-based
and exposed through similar technologies such as JavaServer Pages (JSP) [26].
REST services typically provide service interface descriptions in documentation
and access to services through RESTful web APIs. REST service interface im-
plementation includes definition of structure and formats for resources, and
mapping of resource access mechanisms to HTTP methods in Create, Retrieve,
Update, and Delete (CRUD) operations. While the definition of CRUD oper-
ations is part of the service interface definition, guidelines for interpretation of
REST service interfaces exist [71]. RESTful Web Service message serialization
formats vary, and may include the use of, e.g., JSON, XML, or custom formats.

An argument sometimes made for REST is that service communication
may be cached, which is theoretically true but rarely practically useful as the
existing web infrastructure does not provide caching for all traffic. Internet
scalability for services is achieved through segmentation of the infrastructure,
in the case of the web by geographical dispersion of servers and clients.

42

5.5 Loose Coupling

Regardless of what kind of service technology is used to render SOA ser-
vices, a key focus of service-orientation is to provide architectures built using
loosely coupled components. Multiple definitions and dimensions of coupling
exist [155]. In this work focus is placed on the aspect of minimization of for-
mal knowledge required for component interaction. In terms of services, loose
coupling can manifest in, e.g., production of service descriptions that fully ab-
stract service implementations, i.e. provide all knowledge required to interact
with services. The use of platform independent and widely available technol-
ogy for service description allows service clients and service implementations
to be constructed using different programming languages and hosted in dif-
ferent environments. Loose coupling in service components facilitate system
behaviors such as dynamic service discovery, live migration and replacement of
service instances, diversity in component communication patterns, flexibility
in component integration, agility in system development, and reduced system
maintenance through increased modularity.

In addition to component-level loose coupling, it is also desirable to decouple
service instances from service environments. Like service interfaces should be
decoupled from service implementation details, service implementations should
be decoupled from service realization or hosting details. Service containers are
used to virtualize and abstract hosting of services, and can themselves be ab-
stracted in virtualization-based Cloud computing environments. For further
decoupling of service instances from service communication enactment (mes-
sage transmission), event-driven messaging engines such as Message-Oriented
Middleware (MOM) [22] or Enterprise Service Bus (ESB) [36] solutions may be
employed. ESBs and MOMs provide additional qualities of service in service
communication and message delivery, such as message routing, security, and
capability metering.

As illustrated in Figure 5, service components for client implementation,
interface implementation, logic, and state management may be separated to fa-
cilitate flexibility and scalability in service development and deployment. Sepa-
ration of service logic and interface implementations allows for the use of estab-
lished component models such as the Component Object Model (COM) [202],
the Common Object Request Broker Architecture (CORBA) [157], or Enter-
prise Java Beans (EJB) [133], and enables the use of component container
technology to virtualize and scale logic component instantiation. Similarly,
separation of state and storage management from logic implementation fa-
cilitates flexibility and scalability in storage management and allows service
implementations to be formulated as classic three-tier architectures [50].

43

Figure 5: Decoupling of service interface from service logic and state. De-
coupling of service interface implementations and service hosting environments
(in the illustration the Apache Axis2, CXF, and HTTP Server containers and
servers) from service logic gives freedom of choice in service logic implemen-
tation language and component model (in the illustration Plain Old Java Ob-
ject (POJO), Enterprise Java Beans (EJB), and Component Object Model
(COM)). Similarly, decoupling of service logic from service state management
and storage gives freedom of choice in storage technology (in the illustration
the MySQL and PostgreSQL database engines and the Amazon Simple Storage
Service (Amazon S3)).

5.6 Service Coordination

As SOA applications and systems are constructed by combining services, tools
and techniques for composing and orchestrating service interactions are re-
quired. Mashups are light-weight applications formed by combinations of Web
Services to provide aggregated content, typically in the form of web interfaces
constructed using specialized web integration APIs [161]. Workflows are for-
malized descriptions of sets of activities, data, and dependencies that model
a flow of tasks through a system [99]. Workflows can be classified as, e.g.,
static or dynamic, abstract or concrete. Workflow techniques coordinating the
use of Web Services are typically represented in text-based workflow descrip-
tions. Workflows are often modeled using constructs such as directed acyclic
graphs, and represented in formalized workflow descriptions. The Web Ser-
vice Business Process Execution Language (WS-BPEL) [11] is an OASIS [143]
standardized XML-based workflow language for coordination of SOAP Web
Services. WS-BPEL defines a data model to represent (typically long-lived)
business processes and their constituted components. In WS-BPEL, workflows
are defined as services themselves and may because of this be recursively com-
bined to form larger workflows.

Typically, in WS-BPEL service coordination workflows, some or all of the
following are modeled to describe system interactions: message flow, data
flow, control flow, process orchestration or choreography, fault and exception
handling. Services coordination using workflows may be subject to Service-
Level Agreements (SLAs) [95] that regulate terms for interactions between

44

services and consequences for breech of contract. Alternatives to WS-BPEL
exist and include, e.g., the Web Service Choreography Description Language
(WS-CDL) [113], the XML Process Definition Language (XPDL) [200], and
the Yet Another Workflow Language (YAWL) [194]. Characterization of ser-
vice coordination mechanisms can be done by, e.g., coordination perspective
(neutral or enacting party), or how the coordination is expressed (e.g., message
level or communication role).

Differentiation of mashups and workflows can be based on, e.g.,

• typing. Mashups are weakly typed and use ad hoc type systems based
on what services and data are available. Workflows define strongly typed
service interfaces designed for interoperability.

• coordination. Mashups use implicit, ad hoc coordination models while
workflows define explicit coordination mechanisms that often detail ser-
vice interactions on message or interface level.

• applicability. Mashups are designed to efficiently produce light-weight
content aggregations. In computational science, this may manifest as
web-based administration or data visualization interfaces. Workflows are
generally applicable and are, in computational science, more often used
to coordinate and model interactions among (sets of) computations.

For computational science, a number of tools for computation enactment
and coordination exist, including workflow languages, e.g., Karajan [195], the
Abstract Grid Workflow Language (AGWL) [66], and SMAWL [179], and en-
actment engines, e.g., Taverna [146], Pegasus [47], Kepler [9], Triana [40], and
Gridflow [34, 2]. Curcin et al. [43] provide a framework for high-level compari-
son of scientific workflow tools detailing differences between data- and control-
driven workflows. For classification of workflow systems used in Grid com-
puting, Yu et al. [207] provide a taxonomy of workflow systems that details
workflow design, scheduling, fault and data management, and coordination
models. Deelman et al. [46] provide a survey of workflow systems for eScience,
classifying workflows by representation, control flow, and application models.

While workflows provide end-users with little programming experience a
meta-level programming construct, the expressive power and complexity of
such constructs do not always scale to practical use [56]. The approach of
this work is to employ workflow languages only as descriptions of automated
sequences of computation enactments and perform computation coordination
using programming language constructs. The line of reasoning supporting this
approach is derived from the categorization of static and dynamic scientific
computation workflows. For static (i.e. non-changing) workflows, specialized
workflow languages are sufficient. For dynamic workflows (that change over
time and may evolve depending on intermediary computation results), pro-
gramming languages are utilized as their expressive power better captures the
complexity of dynamic workflow enactment.

45

Figure 6: Point-to-Point versus End-to-End security contexts. Secure commu-
nication across intermediaries require end-to-end security context models.

5.7 Security

As service-based systems tend to be virtualized and distributed, security struc-
tures in service-oriented systems can rarely make assumptions about underlying
security systems. When service communication is message-oriented and service
interfaces are decoupled from transport protocols, service communication can
be tunneled through secure communication channels. In the case of REST ser-
vices, security is typically designed to be point-to-point and rely on existing
security layers such as HTTPS [167] and SSL/TLS [48]. As SOAP supports
message routing, i.e. delivery of messages through paths of intermediaries, ad-
ditional security constructs are required to create end-to-end security models
(illustrated in Figure 6). To this end, additional SOAP security extensions for
message-level security are defined in the WS-Security specification [199], and
a set of complementary security mechanisms for creation of security contexts
are defined in the XML Key Management Specification (XKMS) [73], Secu-
rity Assertion Markup Language (SAML) [93], and eXtensible Access Control
Markup Language (XACML) [88] specifications.

Security requirements in computational science tend to vary with appli-
cations and the sensitivity of application data. Infrastructure level security
requirements range from very high (HPC deployments) to very low (certain
P2P and HTC infrastructures), and may be based on trust models where com-
putational hosts are trusted (often the case in Grid and Cloud computing envi-
ronments) or require computations to be performed redundantly to ensure cor-
rect results (certain HTC infrastructures). Applications may add application-
level security constructs that are enforced by the applications themselves, e.g.,
adding encryption layers to data storage, but are generally subject to the trust
model of the enacting infrastructure in virtual infrastructure environments.

5.8 An Ecosystem of Infrastructure Components

Currently, a number of open research questions regarding Grid and Cloud com-
puting software design are being addressed by the scientific community. A com-
mon problem in current efforts is that applications tend to be tightly coupled to
specific middlewares or infrastructures, and lack ability to be generally applica-
ble to computational problems [58]. This work addresses virtual infrastructure

46

software design for scientific applications that support the majority of current
computational approaches, and places focus on infrastructure composition and
scalability rather than specific problem sets [57].

The methodology of this work builds on the idea of an ecosystem of in-
frastructure software components [86], which encompasses a view of a software
ecosystem where individual components compete and collaborate for survival
on an evolutionary basis. Fundamental to this idea is the notion of software
niches, areas of functionality defined and populated by software components
that interact and provision use of computational resources to applications and
end-users. Here, standardization of interfaces and software components help
define niche boundaries, and continuous development of virtual infrastructure
components and integration with scientific applications help shape and rede-
fine niches (as well as the ecosystem at large) through competition, innovation,
diversity, and evolution. In this approach, identification and exploration of
component and system traits likely to promote software survival in a compo-
nent ecosystem are central, and generally help in identification and formulation
of research questions. Software designed using this methodology focuses on the
establishment of core functionality, and adapts to, and integrates with, mem-
bers of neighboring niches rather than attempts to replace them.

Currently, advanced scientific applications and computational infrastruc-
tures require software and systems to scale with problems and abstract het-
erogeneity issues introduced by this scalability. For usability, software also
require interoperability and robustness to enable automation of computation
enactment in computational environments, and flexibility in configuration and
deployment to be employed in environments with great variance in usage and
deployment requirements. The approach taken in this work is to build on,
and integrate with, existing middlewares and systems, and create autonomous
components that co-exist and integrate non-intrusively in existing deployment
environments. The overarching goal of this work is to identify and develop
suitable methodologies for construction of virtual infrastructures that decouple
computational applications from (physical) computational infrastructures.

47

48

Chapter 6

Summary of Contributions

This work addresses design and implementation of virtual infrastructures for
distributed scientific computational infrastructures. The main area studied is
virtual infrastructures for computational science intended for use in Grid and
Cloud computing environments. Contribution focus is placed on individual
(sub)problems such as job and resource management, usage allocation enact-
ment, and service-based software development. The software development ap-
proach used is based on the perspective of the Service-Oriented Computing
paradigm, and a design and development methodology aimed at sustainable
service software development is explored. Contributions are made in the forms
of scientific publications and software artifacts addressing construction of, and
application integration with, virtual scientific computational infrastructures.

6.1 Job and Resource Management

Grid job and resource management systems are distributed systems that vir-
tualize and manage resource sets, and can be classified, e.g., by type as com-
putational, data, and service Grids [121]. In Grids, native resource systems
are typically abstracted by middlewares [76] that virtualize resource views and
decouple job submission and control interfaces from resource systems [27]. To
virtualize and decouple job enactment from Grid resource systems and (to some
extent) middlewares, Grid computations are often matched to computational
resources in brokering models [172], where autonomous software components
called brokers bridge the gap between clients and Grid systems.

Brokers may employ benchmarking tools such as GridBench [91] and Grench-
Mark [102] to categorize and quantify Grid resource performance. In addition
to resource categorization information, brokers may utilize resource system in-
formation published in middleware information systems to adapt to resource
states and optimize job to resource placements. A number of approaches to
categorizing Grid resources and utilize benchmarks and historical informa-

49

tion to predict Grid computation performance and runtimes exist and include,
e.g., [6, 193, 176, 110]. Depending on middleware construction, brokers may
employ conceptual push (as in the case of, e.g., environments based on the
Globus Toolkit [75]) or pull (as in the case of, e.g., BOINC [15] systems) mod-
els for job to resource placement.

In Grid environments, brokers typically operate on top of middleware and
enact metascheduling policies defined by end-users [132]. A number of dif-
ferent metascheduling approaches exist and include, e.g., WSRF notification
approaches [137], adaptive frameworks for high-level abstractive job schedul-
ing [100], and approaches utilizing performance metrics to optimize job place-
ments [5]. In addition, a number of approaches addressing interoperability be-
tween Grid middlewares and metaschedulers exist and include, e.g., approaches
to standardize Grid interfaces [78, 79] and approaches proposing metascheduler
interoperation models [28].

Wide variety in approaches to Grid middleware construction and integration
exist, and include, e.g., approaches that provide integration toolkits and modu-
lar middleware services [75], approaches focused on enactment efficiency [163],
and attempts to provide middleware functionality through native operating sys-
tem services [112]. Programming models for computation enactment in Grid
environments include middleware abstraction interfaces such as SAGA [89] and
GridLab GAT [7], as well as a range of middleware-specific interfaces.

The approach taken in this work includes abstraction of middleware depen-
dencies and provisioning of middleware agnostic interfaces for job management
through a hierarchical Grid functionality model proposed in Paper III [54]. A
realization of this model, the Grid Job Management Framework (GJMF) [149]
presented in Paper IV, exposes functionality for resource selection, job broker-
ing, submission, and control, and high level fault tolerant job management in
Grid environments. The agility inherent from construction of the framework
as a loosely coupled network of services that allows dynamic (re)composition
and configuration of the framework is discussed in Paper II [59], and evaluated
in the context of service-oriented software development in Paper VIII [148].
Paper V [150] investigates impact of Web Service overhead on Grid infrastruc-
ture components and quantifies the efficiency of the framework. Paper VI [58]
outlines a model for integration of the framework with applications and Grid
infrastructure components through combination of the framework service in-
terfaces, the framework client API, and a set of integration bridge modules.

6.2 Usage Allocation Enactment

Resource usage capacity allocations are in scientific environments typically dis-
tributed using application and grant models. For example, HPC users may
apply for usage capacity at resource sites from administrative organizations,
and receive capacity allotments for specified grant periods (time windows).
Public Cloud environments typically offer capacity as metered services, and

50

(like HPC and some Grid environments) quantify resource capacity using re-
source specific metrics, e.g., CPU hours. While private Cloud environments in
general utilize similar service models as public Clouds, application and grant
models for resource allocations are expected to be utilized in scientific environ-
ments. For reasons of scalability and flexibility, usage allocations in scientific
environments should be specified using relative capacity metrics and in models
that are capable of meeting changed allocation requirements dynamically [151].
Dynamicity in allocation requirements manifests at multiple levels, e.g., in dy-
namically changing computational capacity requirements for individual users
and projects, or in that Grid users are organized in dynamic Virtual Organi-
zations (VOs) that may gain or lose members at any time.

Capacity allocations are in Grid environments made on VO level and map
to infrastructure capacity at resource site level. For Grids, usage records are
typically assembled and monitored in accounting systems, and statistics for
usage consumption patterns are made available in trace logs. While Cloud
computing environments currently lack generic user-level organization support
mechanisms, existing Grid mechanisms may be extended and mapped to Cloud
infrastructure services to create virtual computational science environments.

While scheduling of jobs in parallel cluster environments is predominantly
addressed as a space-sharing problem, usage allocation within user groups is
essentially a time-sharing resource allocation problem. Operating system fair-
share scheduling [114] is an allocation scheme that allows processes to share a
centralized resource (CPU) via time-sharing and context switching, and aims to
over time ensure that CPU time is shared on per-user basis rather than on per-
process basis. Existing HPC cluster scheduler mechanisms such as Maui [185]
and SLURM [204] contain fairshare mechanisms that extend the fairshare con-
cept to share resource capacity in cluster environments on per-user basis. Fair
resource utilization is here defined as resource capacity utilization over time
converging to policy-defined usage (pre)allocations and is enforced by jobs be-
ing prioritized after comparisons of (user) usage allocations and historical usage
consumption. Schedulers typically view finite time windows of usage records
and influence of fairshare on job prioritization is modulated using mechanisms
such as usage decay functions and scheduling factor weights.

As Grid usage policy enactment exhibits dynamicity in multiple dimen-
sions, mechanisms for enactment of Grid usage allocations need flexibility to
be able to match the dynamicity of Grid environments in, e.g., dynamic VO
structure changes and resource volatility. Cloud environments with migrat-
able virtual machines and elastic resource capacity are expected to introduce
further dynamicity in usage allocation enactment. In addition, Usage allo-
cations are likely to be scheduled, prioritized, or updated dynamically, and
resource sites may switch, customize, schedule, or reprioritize usage policies
at any time. To accommodate such dynamicity, virtual infrastructure policy
definitions and policy enactment mechanisms need to be flexible in structure
and provide mechanisms capable of supporting frequent updates in policy spec-
ifications and usage data, and management of large sets of usage data.

51

The approach of this work emphasizes decoupling of Virtual Organizations
and virtual infrastructure mechanisms used for computation enactment. Paper
VII [151] presents FSGrid, a distributed system for fairshare-based load balanc-
ing in federated Grid environments. The system is based on three contributions:
an intuitive policy model that supports delegation of policy administration,
an efficient algorithm for fairshare job prioritization, and a decentralized ar-
chitecture for realization and integration of the system. While the system is
developed for Grid environments, the generality of the model and the flexibility
of the architecture allows integration of the system in any environment that
performs job prioritization in scheduling, e.g., traditional HPC deployments
and distributed HTC environments.

6.3 Sustainable Service Software Development

Software development for virtual scientific infrastructures such as Grid and
Cloud computing environments is commonly addressed using service-based soft-
ware development techniques. The current methodology of service-oriented
computing renders software components as Web Services, and a number of
software development techniques ranging from methods for formalization [124]
and specification [32] of service-based component models to general purpose
SOA design patterns [65] and full lifecycle service development methods [19]
exist. The more specific problems of construction of scientific applications and
integration of scientific applications with virtual infrastructures are addressed
by software frameworks and middlewares such as the Globus Toolkit [75].

Due to high resource requirements and limitations in academic funding
models, software development for computational science environments tend to
lie on the front edge of technological development and consist mainly of proto-
type and system integration projects. As such projects contain volatility and
dynamicity rarely captured by generic software lifecycle models, the applica-
bility of established software development tools and techniques can be limited.
In general, service-based software development is complex, and the immaturity
of scientific software prototypes and open source tools (as compared to estab-
lished commercial software) results in software stacks that are time consuming
to develop and hard to maintain. Additionally, scientific applications and en-
vironments are typically more dynamic and evolve at a faster pace than most
software environments, resulting in a need for greater flexibility and higher
abstraction levels in scientific software development.

Paper I [57] analyzes virtual infrastructure software development from a
software engineering perspective and formulates a view on software evolution
captured by the notion of an ecosystem of virtual infrastructure components.
The software composition model and architecture patterns of Paper II [59] ad-
dress a need for flexibility in composition and construction of scientific service-
based software. A key aspect of the approach of this work is to support devel-
opment methodologies that allow software components to act as both network-

52

accessible services and local objects in applications, a mechanism intended
to increase system development and deployment flexibility. Paper VIII [148]
extends the work of papers I and II, and proposes a software development
methodology aimed to abstract development complexity and increase system
and component flexibility. Paper VIII also presents a toolset designed to sup-
port the methodology through mechanisms such as simplified service descrip-
tion formats and code generation mechanisms. The overall goal of this work is
reduction of software complexity, and facilitation of development models that
support automation and flexibility in software construction.

6.4 Papers

To limit scope, the publications of this thesis address individual problems
within construction or integration of virtual infrastructures for computational
science. Problems addressed include, e.g., job and resource management, enact-
ment of usage allocations, system integration issues, and software development
methodologies. Three of the papers outline and discuss approaches to virtual
infrastructure software development; Paper I from a software engineering per-
spective, Paper II from a system (re)factorization point of view, and Paper
VIII from a service-oriented software development methodology origin. Four of
the papers (papers III, IV, V, and VI) investigate and outline a generic archi-
tecture for Grid job management capable of adoption in a majority of existing
Grid computing environments. Papers III and IV discuss the architecture and
design of the framework while Paper V studies the impact of Web Service over-
head on framework performance and Paper VI integration of the framework in
a production environment. Paper VII addresses enactment of fairshare-based
usage allocation quotas in virtual scientific infrastructures, and presents an ar-
chitecture and an implementation of a system for fairshare job prioritization.
Paper VIII is placed last in the thesis as it contains a case study of the software
frameworks presented in papers IV and VII.

6.4.1 Paper I

Paper I [57] analyzes Grid software development practices from a software
engineering perspective. An approach to software development for high-level
Grid resource management tools is presented, and the approach is illustrated
by a discussion of software engineering attributes such as design heuristics,
design patterns, and quality attributes for Grid software development.

The notion of an ecosystem of Grid infrastructure components is extended
upon, and Grid component coexistence, composability, adoptability, adapt-
ability, and interoperability are discussed in this context. The approach is
illustrated by five case studies from recent software development efforts within
the GIRD project [184]; the Job Submission Service (JSS) [63], the Grid Job
Management Framework (GJMF) [149], the Grid Workflow Execution Engine

53

(GWEE) [55], the SweGrid Accounting System (SGAS) [85], and the Grid-
Wide Fairshare Scheduling System (FSGrid) [53].

6.4.2 Paper II

Paper II [59] addresses Service-Oriented Architecture methodology for con-
struction of Grid software, and details a set of service composition techniques
for use in Grid infrastructure environments. Transparent service decomposition
and dynamic service recomposition techniques are discussed in a Grid software
(re)factorization setting, and implications of their use are elaborated upon.
A set of architectural design patterns and service development mechanisms
for service refactorization, service invocation optimization, customization of
service mechanics, dynamic service configuration, and service monitoring are
presented in detail, and synergetic effects between the patterns are discussed.
Examples of use of the patterns in actual software development efforts are used
throughout the paper to illustrate the presented approach.

6.4.3 Paper III

Paper III [54] investigates software design issues for Grid job management
tools. Building on experiences from previous work [60, 61, 63], an architectural
model for construction of a middleware-agnostic Grid job management system
is proposed, and the design is detailed from an architectural point of view. In
this work, a layered architecture of composable services that each manage a
separate part of the Grid job management process is outlined, and design and
implementation implications of this architecture are discussed. The architec-
ture separates applications from infrastructure through a customizable set of
services, and abstracts middleware dependencies through use of (possibly third
party developed) middleware adaption plug-ins.

A prototype implementation based on the Globus Toolkit 4 [75] of some
of the services in the architecture is presented, and the services are integrated
with the ARC [52] and Globus [87] middlewares. To demonstrate the feasibility
of the approach, preliminary results from prototype testing are presented along
with a brief evaluation of system performance and system use cases.

6.4.4 Paper IV

Paper IV [149] elaborates on the work of Paper III and proposes a composable
Service-Oriented Architecture-based framework architecture for middleware-
agnostic Grid job management. The proposed architecture is presented in the
context of development and deployment in an ecosystem of Grid components,
and software requirements and framework composition are discussed in detail.
The model of Paper III is extended with additional services for job description
translation, system monitoring and logging, as well as a broader integration
support functionality range. Furthermore, a proof-of-concept implementation

54

of the entire framework is presented, and design and development details from
the work are discussed throughout the paper.

The Grid ecosystem model of Paper I is further developed and discussed
in the context of the proposed job management architecture, and the software
composition techniques of Paper II are built upon and evaluated in the con-
text of this project. Throughout the paper, a number of software design and
implementation findings are presented, and the framework is related to a set
of similar software development, API, and middleware efforts within adjoining
Grid ecosystem niches.

6.4.5 Paper V

Paper V [150] investigates the impact of Web Service-related overhead on the
performance of the framework presented in Paper IV. A model for characteriza-
tion and quantification of Grid overhead and overhead imposed by the GJMF
is formulated. Extensive sets of tests are performed on the proof-of-concept
implementation to quantify the impact of Web Service overhead, and evaluate
the overhead imposed by the framework against the functionality offered by
the framework in realistic computational settings.

The results of the evaluation characterize framework overhead to mainly
consist of Web Service invocation overhead, and the effectiveness of a set of
techniques, e.g., batch invocation modes, asynchronous message processing,
and local call optimizations, designed to mediate the impact of Web Service
overhead is evaluated. The results indicate that overhead imposed by the
framework is limited to less than one second per job in realistic computational
settings, and that Web Services combined with sound architectural designs
and optimization techniques can constitute a viable platform for realization of
service-oriented Grid architectures.

6.4.6 Paper VI

Paper VI [58] approaches Grid software integration issues and discusses prob-
lems inherent to Grid applications being tightly coupled to Gird middlewares.
The paper proposes an architecture for system integration focused on seam-
less integration of applications and Grid middlewares through a cross-platform
mediating layer handling resource brokering and notification delivery. The pro-
posed architecture is illustrated in a case study where the LUNARC application
portal [126] is integrated with the Grid Job Management Framework [149] pre-
sented in papers III and IV. The proposed integration architecture is evaluated
in a performance evaluation and findings from the integration efforts are pre-
sented throughout the paper.

55

6.4.7 Paper VII

Paper VII [151] extends earlier work documented in [53] and addresses usage
allocation enactment in virtual scientific computational infrastructures. The
paper proposes a decentralized architecture built on an intuitive policy specifi-
cation model and an algorithm for distributed resource allocation enforcement.
Enactment of usage allocations is performed through injection of a mechanism
for fairshare job prioritization in Grid and HPC scheduling environments. A
proof-of-concept implementation of the system is presented and evaluated in
a performance evaluation. System behavior is characterized and mechanisms
counteracting system convergence (of resource usage to capacity preallocations)
are identified. Effectiveness of system mechanisms to achieve fair distribution
of resource capacity is evaluated and system scalability demonstrated.

6.4.8 Paper VIII

Paper VIII [148] addresses service-oriented software development methodology
for virtual scientific computational environments. The paper proposes a de-
velopment methodology based on isolation of service software components and
abstraction of the service software development process. The development per-
spective of Paper I and the software refactorization techniques of Paper II are
further extended in the paper. A set of current service-oriented software devel-
opment issues are identified and discussed, and a toolset designed to support
the proposed methodology through abstraction of development complexity is
presented. The impact of the proposed methodology and presented toolset
on recent software development projects (presented in papers IV and VII) is
evaluated in a brief case study.

56

Bibliography

[1] Distributed.net. http://www.distributed.net/, March 2011.

[2] Grid-Flow: A Grid-Enabled Scientific Workflow System with a Petri-Net-
based Interface, author = Z. Guan and F. Hernández and P. Bangalore
and J. Gray and A. Skjellum and V. Velusamy and Y. Liu, journal =
Concurrency and Computation: Practice and Experience, volume = 18,
number = 10, pages = 1115 - 1140, year = 2006.

[3] Universal Description, Discovery, and Integration (UDDI).
http://uddi.xml.org/, March 2011.

[4] C. Adams and S. Farrell. Internet X. 509 Public Key Infrastructure
Certificate Management Protocols, 1999.

[5] L. Adzigogov, J. Soldatos, and L. Polymenakos. EMPEROR: An OGSA
Grid Meta-Scheduler based on Dynamic Resource Predictions. J. Grid
Computing, 3(1–2):19–37, 2005.

[6] A. Ali, A. Anjum, J. Bunn, R. Cavanaugh, F. van Lingen, R. McClatchey,
M. A. Mehmood, H. Newman, C. Steenberg, M. Thomas, and I. Willers.
Predicting Resource Requirements of a Job Submission. In Proceedings
of the Conference on Computing in High Energy and Nuclear Physics
(CHEP 2004), Interlaken, Switzerland, September 2004.

[7] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schott,
E. Seidel, and B. Ullmer. The Grid Application Toolkit: Toward Generic
and Easy Application Programming Interfaces for the Grid. Proceedings
of the IEEE, 93(3):534–550, 2005.

[8] The Globus Alliance. Globus Toolkit Version 4 Grid Security Infrastruc-
ture: A Standards Perspective. http://www.globus.org/toolkit/docs/
4.0/security/GT4-GSI-Overview.pdf, March 2011.

[9] I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C. Amor-
eira, Y. Potier, and B. Ludaescher. A Framework for the Design and
Reuse of Grid Workflows. In P. Herrero et al., editors, International

57

Workshop on Scientific Applications on Grid Computing (SAG’04), Lec-
ture Notes in Computer Science 3458, pages 119–132. Springer-Verlag,
2005.

[10] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J.M. Hellerstein, and
R. Sears. BOOM Analytics: Exploring Data-Centric, Declarative Pro-
gramming for the Cloud. In Proceedings of the 5th European conference
on Computer systems, pages 223–236. ACM, 2010.

[11] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Gúızar, N. Kartha, et al. Web Services Business Process
Execution Language Version 2.0. OASIS Standard, 11, 2007.

[12] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/, March 2011.

[13] Amazon High Performance Computing (Amazon EC2 HPC).
http://aws.amazon.com/ec2/hpc-applications/, March 2011.

[14] Amazon Simple Storage Service (Amazon S3).
http://aws.amazon.com/s3/, March 2011.

[15] D.P. Anderson. BOINC: A System for Public-Resource Computing and
Storage. In 5th IEEE/ACM International Workshop on Grid Computing,
pages 4–10, 2004.

[16] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@ Home: an Experiment in Public-Resource Computing. Commu-
nications of the ACM, 45(11):56–61, 2002.

[17] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
A. S. McGough, D. Pulsipher, and A. Savva. Job Sub-
mission Description Language (JSDL) Specification, Version 1.0.
http://www.ogf.org/documents/GFD.56.pdf, March 2011.

[18] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A View of Cloud
Computing. Communications of the ACM, 53(4):50–58, 2010.

[19] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and
K. Holley. SOMA: A Method for Developing Service-Oriented Solutions.
IBM Systems Journal, 47(3):377–396, 2010.

[20] Z. Balaton and G. Gombas. Resource and Job Monitoring in the Grid.
Lecture notes in computer science, pages 404–411, 2003.

[21] K. Ballinger, D. Ehnebuske, C. Ferris, M. Gudgin, C.K. Liu, M. Not-
tingham, and P. Yendluri. Basic Profile Version 1.1. WS-I Organisation,
2004.

58

[22] G. Banavar, T. D. Chandra, R. E. Strom, and D. C. Sturman. A Case for
Message Oriented Middleware. In Proceedings of the 13th International
Symposium on Distributed Computing, pages 1–18, London, UK, 1999.
Springer-Verlag.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization.
In Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177. ACM, 2003.

[24] A. Bayucan, R.L. Henderson, C. Lesiak, B. Mann, T. Proett, and
D. Tweten. Portable Batch System: External Reference Specification.
Technical report, Technical report, MRJ Technology Solutions, 1999.

[25] H. Benoit-Cattin, G. Collewet, B. Belaroussi, H. Saint-Jalmes, and
C. Odet. The SIMRI Project: a Versatile and Interactive MRI Simu-
lator. Journal of Magnetic Resonance, 173(1):97–115, 2005.

[26] H. Bergsten. JavaServer Pages. O’Reilly & Associates, Inc. Sebastopol,
CA, USA, 2003.

[27] F. Berman, G.C. Fox, and A.J.G Hey (editors). Grid Computing: Making
the Global Infrastructure a Reality. John Wiley and Sons Ltd, 2003.

[28] N. Bobroff, L. Fong, S. Kalayci, Y. Liu, J.C. Martinez, I. Rodero S.M.
Sadjadi, and D. Villegas. Enabling Interoperability Among Meta-
Schedulers. In T. Priol et al., editors, CCGRID 2008 Eighth IEEE Inter-
national Symposium on Cluster Computing and the Grid, pages 306–315,
2008.

[29] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau.
eXtensible Markup Language (XML) 1.0. W3C recommendation, 6, 2000.

[30] J. Broberg, S. Venugopal, and R. Buyya. Market-Oriented Grids and
Utility Computing: The State-of-the-Art and Future Directions. Journal
of Grid Computing, 6(3):255–276, 2008.

[31] A. Brown, M. Fuchs, J. Robie, and P. Wadler. XML Schema: Formal
Description. W3C Working Draft, 25, 2001.

[32] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quema, and
Jean-Bernard Stefani. An Open Component Model and Its Support in
Java. In Ivica Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and
Kurt Wallnau, editors, Component-based Software Engineering, volume
3054 of Lecture Notes in Computer Science, pages 7–22. Springer Berlin
/ Heidelberg, 2004.

59

[33] M. Cai, A. Chervenak, and M. Frank. A Peer-to-Peer Replica Location
Service Based on a Distributed Hash Table. In Proceedings of the 2004
ACM/IEEE conference on Supercomputing, page 56. IEEE Computer
Society, 2004.

[34] J. Cao, S.A. Jarvis, S. Saini, and G.R. Nudd. Gridflow: Workflow Man-
agement for Grid Computing. 2003.

[35] J. Knobloch (Chair) and L. Robertson (Project Leader). LHC Computing
Grid Technical Design Report. http://lcg.web.cern.ch/LCG/tdr/, March
2011.

[36] D. Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 2004.

[37] S. Che, J. Li, J.W. Sheaffer, K. Skadron, and J. Lach. Accelerating
Compute-Intensive Applications with GPUs and FPGAs. In Symposium
on Application Specific Processors, 2008. SASP 2008, pages 101–107.
IEEE, 2008.

[38] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Architecture
and Performance of an Enterprise Desktop Grid System. Journal of Par-
allel and Distributed Computing, 63(5):597–610, 2003.

[39] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl,
March 2011.

[40] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson,
M. Shields, I. Taylor, and I. Wang. Programming Scientific and Dis-
tributed Workflow with Triana Services. Concurrency and Computation:
Practice and Experience, 18(10):1021–1037, 2006.

[41] G.F. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems:
Concepts and Design. Addison-Wesley Longman, 2005.

[42] D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON), 2006.

[43] V. Curcin and M. Ghanem. Scientific Workflow Systems - Can One Size
Fit All? In Biomedical Engineering Conference, 2008. CIBEC 2008.
Cairo International, pages 1–9. IEEE, 2009.

[44] L. Dagum and R. Menon. OpenMP: an Industry Standard API for
Shared-Memory Programming. Computational Science & Engineering,
IEEE, 5(1):46–55, 2002.

[45] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

60

[46] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-
Science: An Overview of Workflow System Features and Capabilities.
Future Generation Computer Systems. The International Journal of Grid
Computing: Theory, Methods and Applications, 25(5):528–540, 2009.

[47] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and D.S. Katz.
Pegasus: a Framework for Mapping Complex Scientific Workflows onto
Distributed Systems. Scientific Programming, 13(3):219–237, 2005.

[48] T. Dierks and C. Allen. The TLS Protocol Version 1.0.
http://www.ietf.org/rfc/rfc2246.txt, March 2011.

[49] K. Dowd. High Performance Computing. O’Reilly & Associates, Inc.
Sebastopol, CA, USA, 1993.

[50] E. Eckerson. Three Tier Client/Server Architecture: Achieving Scala-
bility, Performance, and Efficiency in Client Server Applications. Open
Information Systems, 10(1):3–22, 1995.

[51] W. Allcock (editor). GridFTP: Protocol Extensions to FTP for the Grid.
http://www.ogf.org/documents/GFD.20.pdf, March 2011.

[52] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann,
I. Livenson, J. L. Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen.
Advanced Resource Connector Middleware for Lightweight Computa-
tional Grids. Future Generation Computer Systems. The Interna-
tional Journal of Grid Computing: Theory, Methods and Applications,
27(2):219–240, 2007.

[53] E. Elmroth and P. Gardfjäll. Design and Evaluation of a Decentralized
System for Grid-wide Fairshare Scheduling. In H. Stockinger, R. Buyya,
and R. Perrott, editors, e-Science 2005, First International Conference
on e-Science and Grid Computing, pages 221–229. IEEE CS Press, 2005.

[54] E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg.
Designing General, Composable, and Middleware-Independent Grid In-
frastructure Tools for Multi-Tiered Job Management. In T. Priol and
M. Vaneschi, editors, Towards Next Generation Grids, pages 175–184.
Springer-Verlag, 2007.

[55] E. Elmroth, F. Hernández, and J. Tordsson. A Light-Weight Grid Work-
flow Execution Engine Enabling Client and Middleware Independence.
In R. Wyrzykowski et al., editors, Parallel Processing and Applied Math-
ematics, Lecture Notes in Computer Science, vol. 4967, pages 754–761.
Springer-Verlag, 2008.

61

[56] E. Elmroth, F. Hernández, and J. Tordsson. Three Fundamental Di-
mensions of Scientific Workflow Interoperability: Model of Computation,
Language, and Execution Environment. Future Generation Computer
Systems. The International Journal of Grid Computing: Theory, Meth-
ods and Applications, 26(2):245–256, 2010.

[57] E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing
Service-based Resource Management Tools for a Healthy Grid Ecosys-
tem. In R. Wyrzykowski et al., editors, Parallel Processing and Applied
Mathematics, Lecture Notes in Computer Science, vol. 4967, pages 259–
270. Springer-Verlag, 2008.

[58] E. Elmroth, S. Holmgren, J. Lindemann, S. Toor, and P-O. Östberg.
Empowering a Flexible Application Portal with a SOA-based Grid Job
Management Framework. In Applied Parallel Computing: State of the
Art in Scientific Computing, Lecture Notes in Computer Science, vol.
6127. Springer-Verlag, to appear, 2011.

[59] E. Elmroth and P-O. Östberg. Dynamic and Transparent Service Com-
positions Techniques for Service-Oriented Grid Architectures. In S. Gor-
latch, P. Fragopoulou, and T. Priol, editors, Integrated Research in Grid
Computing, pages 323–334. Crete University Press, 2008.

[60] E. Elmroth and J. Tordsson. An Interoperable, Standards-based Grid
Resource Broker and Job Submission Service. In H. Stockinger, R. Buyya,
and R. Perrott, editors, e-Science 2005, First International Conference
on e-Science and Grid Computing, pages 212–220. IEEE CS Press, 2005.

[61] E. Elmroth and J. Tordsson. A Grid Resource Broker Supporting Ad-
vance Reservations and Benchmark-based Resource Selection. In J. Don-
garra, K. Madsen, and J. Waśniewski, editors, Applied Parallel Comput-
ing - State of the Art in Scientific Computing, Lecture Notes in Computer
Science vol. 3732, pages 1061–1070. Springer-Verlag, 2006.

[62] E. Elmroth and J. Tordsson. Grid Resource Brokering Algorithms En-
abling Advance Reservations and Resource Selection Based on Perfor-
mance Predictions. Future Generation Computer Systems. The Interna-
tional Journal of Grid Computing: Theory, Methods and Applications,
24(6):585–593, 2008.

[63] E. Elmroth and J. Tordsson. A Standards-based Grid Resource Brokering
Service Supporting Advance Reservations, Coallocation and Cross-Grid
Interoperability. Concurrency and Computation: Practice and Experi-
ence, 21(18):2298–2335, 2009.

[64] T. Erl. SOA: Principles of Service Design. 2007.

[65] T. Erl. SOA Design Patterns. The Prentice Hall Service-Oriented Com-
puting Series From Thomas Erl, 2009.

62

[66] T. Fahringer, J. Qin, and S. Hainzer. Specification of Grid Workflow Ap-
plications with AGWL: an Abstract Grid Workflow Language. In Cluster
Computing and the Grid, 2005. CCGrid 2005. IEEE International Sym-
posium on, volume 2, pages 676–685. IEEE, 2005.

[67] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU Cluster for
High Performance Computing. In Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, page 47. IEEE Computer Society, 2004.

[68] D. Feitelson. Parallel Workloads Archive. URL http://www. cs. huji. ac.
il/labs/parallel/workload.

[69] A.J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, C. Zsigri, R. Sirvent,
J. Guitart, R.M. Badia, K. Djemame, W. Ziegler, T. Dimitrakos, S.K.
Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia, A. Kipp,
S. Wesner, M. Corrales, N. Forgó, T. Sharif, and C. Sheridan. OPTIMIS:
a Holistic Approach to Cloud Service Provisioning. Future Generation
Computer Systems, accepted, 2010.

[70] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol–HTTP/1.1, 1999.

[71] R. T. Fielding. REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of Cali-
fornia, Irvine, 2000.

[72] J. Fontán, T. Vázquez, L. Gonzalez, RS Montero, and IM Llorente. Open-
NEbula: The Open Source Virtual Machine Manager for Cluster Com-
puting. In Open Source Grid and Cluster Software Conference, 2008.

[73] W. Ford, P. Hallam-Baker, B. Fox, B. Dillaway, B. LaMacchia, J. Epstein,
and J. Lapp. XML Key Management Specification (XKMS). Retrieved
from: http://www. w3. org/TR/2001/NOTE-xkms-20010330, 2001.

[74] I. Foster. What is the Grid? A Three Point Checklist. GRID today,
1(6):22–25, 2002.

[75] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems. In H. Jin, D. Reed, and W. Jiang, editors, IFIP International
Conference on Network and Parallel Computing, Lecture Notes in Com-
puter Science 3779, pages 2–13. Springer-Verlag, 2005.

[76] I. Foster and C. Kesselman (editors). The GRID: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, Inc., 1999.

[77] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Fer-
guson, F. Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey,
W. Vambenepe, and S. Weerawarana. Modeling Stateful Resources with
Web Services. http://www-106.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.pdf, March 2011.

63

[78] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan,
S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, and
M. Theimer. OGSA c©Basic Execution Service Version 1.0.
http://www.ogf.org/documents/GFD.108.pdf, March 2011.

[79] I. Foster, H.Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and
J. Von Reich. The Open Grid Services Architecture, Version 1.5.
http://www.ogf.org/documents/GFD.80.pdf, March 2011.

[80] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2004.

[81] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. International Journal of High Per-
formance Computing Applications, 15(3):200, 2001.

[82] I. Foster and S. Tuecke. Describing the Elephant: The Different Faces of
IT as Service. ACM Queue, 3(6):26–34, 2005.

[83] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud Computing and Grid Com-
puting 360-degree Compared. In Grid Computing Environments Work-
shop, 2008. GCE’08, pages 1–10. Ieee, 2009.

[84] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrish-
nan, F. Bertrand, K. Chiu, M. Farrellee, M. Govindaraju, S. Krishnan,
L. Ramakrishnan, Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and
N. Rey-Cenvaz. Programming the Grid: Distributed Software Compo-
nents, P2P and Grid Web Services for Scientific Applications. Cluster
Computing, 5(3):325–336, 2002.

[85] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm.
Scalable Grid-wide Capacity Allocation with the SweGrid Accounting
System (SGAS). Concurrency and Computation: Practice and Experi-
ence, 20(18):2089–2122, 2008.

[86] Globus. An “Ecosystem” of Grid Components.
http://www.globus.org/grid software/ecology.php. March 2011.

[87] Globus. http://www.globus.org. March 2011.

[88] S. Godik, A. Anderson, B. Parducci, P. Humenn, and S. Vajjhala. OASIS
eXtensible Access Control Markup Language (XACML). 2002.

[89] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. Von Laszewski,
C. Lee, A. Merzky, H. Rajic, and J. Shalf. SAGA: A Simple API for
Grid Applications. High-Level Application Programming on the Grid.
Computational Methods in Science and Technology, 12(1):7–20, 2006.

64

[90] S. Graham, D. Hull, and B. Murray. Web Services Base Notifica-
tion 1.3 (WS-BaseNotification). http://docs.oasis-open.org/wsn/wsn-
ws base notification-1.3-spec-os.pdf, March 2011.

[91] GridBench: A Tool For Benchmarking Grids. http://grid.ucy.ac.cy/
gridbench/. March 2011.

[92] M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, H. Frystyk Nielsen,
A. Karmarkar, and Y. Lafon. SOAP Version 1.2 Part 1: Messaging
Framework. http://www.w3.org/TR/soap12-part1/, March 2011.

[93] P. Hallam-Baker. Security Assertions Markup Language. May, 14:1–24,
2001.

[94] T. Hansen, S. Tilak, S. Foley, K. Lindquist, F. Vernon, A. Rajasekar,
and J. Orcutt. ROADNet: A Network of SensorNets. In Proceedings of
the 31st IEEE Conference on Local Computer Networks, pages 579–587,
2006.

[95] P. Hasselmeyer, H. Mersch, B. Koller, H.-N. Quyen, L. Schubert, and Ph.
Wieder. Implementing an SLA Negotiation Framework. In Exploiting the
Knowledge Economy: Issues, Applications, Case Studies (eChallenges
2007), 2007.

[96] F. Heine, M. Hovestadt, and O. Kao. Towards Ontology-Driven P2P
Grid Resource Discovery. In Grid Computing, 2004. Proceedings. Fifth
IEEE/ACM International Workshop on, pages 76–83. IEEE, 2005.

[97] M. Herlihy and J.E.B. Moss. Transactional Memory: Architectural Sup-
port for Lock-Free Data Structures. In Proceedings of the 20th annual in-
ternational symposium on Computer architecture, page 300. ACM, 1993.

[98] H.P. Hofstee. Power Efficient Processor Architecture and the Cell proces-
sor. In High-Performance Computer Architecture, 2005. HPCA-11. 11th
International Symposium on, pages 258–262. IEEE, 2005.

[99] D. Hollingsworth. Workflow Management Coalition: The Workflow Ref-
erence Model. Workflow Management Coalition, 1993.

[100] E. Huedo, R.S. Montero, and I.M. Llorente. A Framework for Adaptive
Execution on Grids. Software - Practice and Experience, 34(7):631–651,
2004.

[101] A. Iosup, C. Dumitrescu, D. Epema, H. Li, and L. Wolters. How Are
Real Grids Used? The Analysis of Four Grid Traces And Its Implications.
In Grid Computing, 7th IEEE/ACM International Conference on, pages
262–269. IEEE, 2007.

65

[102] A. Iosup, D. Epema, C. Franke, A. Papaspyrou, L. Schley, B. Song,
and R. Yahyapour. On Grid Performance Evaluation using Synthetic
Workloads. In Job Scheduling Strategies for Parallel Processing, pages
232–255. Springer, 2007.

[103] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D.H.J.
Epema. The Grid Workloads Archive. Future Generation Computer
Systems, 24(7):672–686, 2008.

[104] A. Iosup, O. Sonmez, S. Anoep, and D. Epema. The Performance of
Bags-of-Tasks in Large-Scale Distributed Systems. In Proceedings of the
17th international symposium on High performance distributed comput-
ing, pages 97–108. ACM, 2008.

[105] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Dis-
tributed Data-Parallel Programs from Sequential Building Blocks. ACM
SIGOPS Operating Systems Review, 41(3):59–72, 2007.

[106] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Privacy-
Preserving P2P Data Sharing with OneSwarm. In Proceedings of the
ACM SIGCOMM 2010 conference on SIGCOMM, pages 111–122. ACM,
2010.

[107] K.R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf,
H.J. Wasserman, and N.J. Wright. Performance Analysis of High Per-
formance Computing Applications on the Amazon Web Services Cloud.
In 2nd IEEE International Conference on Cloud Computing Technology
and Science, pages 159–168. IEEE, 2010.

[108] M. Jayawardena, C. Nettelblad, S.Z. Toor, P-O. Östberg, E. Elmroth,
and S. Holmgren. A Grid-Enabled Problem Solving Environment for
QTL Analysis in R. In Proceedings of the 2nd International Conference
on Bioinformatics and Computational Biology (BICoB), pages 202–209,
2010.

[109] S. Jha, A. Merzky, and G. Fox. Using Clouds to Provide Grids with
Higher Levels of Abstraction and Explicit Support for Usage Modes. Con-
currency and Computation: Practice and Experience, 21(8):1087–1108,
2009.

[110] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive Application-
Performance Modeling in a Computational Grid Environment. In Pro-
ceedings of the Eighth IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-8), pages 71–80, 1999.

[111] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos.
File-Sharing in the Internet: A Characterization of P2P Traffic in the
Backbone. University of California, Riverside, USA, Tech. Rep, 2003.

66

[112] H.H. Karlsen and B. Vinter. Minimum Intrusion Grid - The Simple
Model. In 14th IEEE International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprise (WETICE’05), pages
305–310, 2005.

[113] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and
C. Barreto. Web Services Choreography Description Language Version
1.0. W3C Working Draft, 17:10–20041217, 2004.

[114] J. Kay and P. Lauder. A Fair Share Scheduler. Communications of the
ACM, 31(1):44–55, 1988.

[115] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes. Sky Computing.
Internet Computing, IEEE, 13(5):43–51, 2009.

[116] J.O. Kephart and D.M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, 2003.

[117] H. Kishimoto and J. Treadwell. Defining the Grid: A Roadmap for OGSA
Standards. Open Grid Services Architecture Working Group. http://www.
ogf. org/documents/GFD, 53:2007–05, 2005.

[118] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the
Linux Virtual Machine Monitor. In Proceedings of the Linux Symposium,
volume 1, pages 225–230, 2007.

[119] D. Kondo, M. Taufer, C.L. Brooks, H. Casanova, and A.A. Chien. Char-
acterizing and Evaluating Desktop Grids: An Empirical Study. In Par-
allel and Distributed Processing Symposium, 2004. Proceedings. 18th In-
ternational, page 26. IEEE, 2004.

[120] T. Koshida and S. Uemura. Automated Dynamic Invocation System for
Web Service with a User-defined Data Type. In Proceedings of the 2nd
European Workshop on Object Orientation and Web Service (EOOWS
2004), pages 1–7, 2004.

[121] K. Krauter, R. Buyya, and M. Maheswaran. A Taxonomy and Survey of
Grid Resource Management Systems for Distributed Computing. Soft-
ware: Practice and Experience, 32(2):135–164, 2002.

[122] V. Kumar, A. Gupta, Army High Performance Computing Research Cen-
ter, and University of Minnesota. Analyzing Scalability of Parallel Algo-
rithms and Architectures. Journal of parallel and distributed computing,
22(3):379–391, 1994.

[123] S.M. Larson, C.D. Snow, M. Shirts, and V.S. Pande. Folding@ Home
and Genome@ Home: Using Distributed Computing to Tackle Previously
Intractable Problems in Computational Biology. 2009.

67

[124] Kung-Kiu Lau, Mario Ornaghi, and Zheng Wang. A Software Component
Model and Its Preliminary Formalisation. In Frank de Boer, Marcello
Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal
Methods for Components and Objects, volume 4111 of Lecture Notes in
Computer Science, pages 1–21. Springer Berlin / Heidelberg, 2006.

[125] S. Lee, S.J. Min, and R. Eigenmann. OpenMP to GPGPU: A Compiler
Framework for Automatic Translation and Optimization. In Proceedings
of the 14th ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 101–110. ACM, 2009.

[126] J. Lindemann and G. Sandberg. An Extendable GRID Application Por-
tal. In European Grid Conference (EGC). Springer Verlag, 2005.

[127] M. Linesch. Grid - Distributed Computing at Scale.
http://www.ogf.org/documents/GFD.112.pdf, March 2011.

[128] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for
High Throughput Computing. SPEEDUP journal, 11(1):36–40, 1997.

[129] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J. Owens,
M. Segal, M. Papakipos, and I. Buck. GPGPU: General-Purpose Com-
putation on Graphics Hardware. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 208. ACM, 2006.

[130] A. Mackey. Windows Communication Foundation. Introducing. NET
4.0, pages 159–173, 2010.

[131] P. Marshall, K. Keahey, and T. Freeman. Improving Utilization of In-
frastructure Clouds. 2011.

[132] G. Mateescu. Quality of Service on the Grid via Metascheduling with
Resource Co-scheduling and Co-reservation. Int. J. High Perf. Comput.
Appl., 17(3):209–218, Fall 2003.

[133] V. Matena, B. Stearns, and L. Demichiel. Applying Enterprise Java-
Beans: Component-based Development for the J2EE Platform. Pearson
Education, 2003.

[134] U. Maurer. Modelling a Public-Key Infrastructure. Lecture Notes in
Computer Science, 1146:325–350, 1996.

[135] P. Mell and T. Grance. The NIST Definition of Cloud Com-
puting. National Institute of Standards and Technology, 2009.
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf, March 2011.

[136] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu. Peer-to-Peer Computing, 2002.

68

[137] G. Moltó, V. Hernández, and J.M. Alonso. A Service-Oriented WSRF-
based Architecture for Metascheduling on Computational Grids. Future
Generation Computer Systems. The International Journal of Grid Com-
puting: Theory, Methods and Applications, 24(4):317–328, 2008.

[138] K. Moss. Java Servlets. McGraw-Hill, Inc. New York, NY, USA, 1999.

[139] F. Neubauer, A. Hoheisel, and J. Geiler. Workflow-based Grid Applica-
tions. Future Generation Computer Systems. The International Journal
of Grid Computing: Theory, Methods and Applications, 22(1-2):6–15,
2006.

[140] Nimbus. http://www.nimbusproject.org/. March 2011.

[141] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov. The Eucalyptus Open-Source Cloud-Computing
System. In Proceedings of the 2009 9th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, pages 124–131. IEEE Com-
puter Society, 2009.

[142] Nvidia. NVIDIA CUDA Programming Guide. NVIDIA Corporation,
Feb, 2010.

[143] OASIS Open. OASIS: Advancing Open Standards for the Global In-
formation Society. http://www.oasis-open.org/home/index.php, March
2011.

[144] OASIS Open. Reference Model for Service Oriented Architecture
1.0. http://www.oasis-open.org/committees/download.php/19679/soa-
rm-cs.pdf, March 2011.

[145] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M.R. Pocock, A. Wipat, and P. Li. Taverna: A
Tool for the Composition and Enactment of Bioinformatics Workflows.
Bioinformatics, 20(17):3045–3054, 2004.

[146] T. Oinn, M. Greenwood, M. Addis, M. Nedim Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord,
M.R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna:
Lessons in Creating a Workflow Environment for the Life Sciences. Con-
currency and Computation: Practice and Experience, 18(10):1067–1100,
2006.

[147] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
2001.

[148] P-O. Östberg and E. Elmroth. Increasing Flexibility and Abstract-
ing Complexity in Service-based Grid and Cloud Software. In

69

F. Leymann, I. Ivanov, M. van Sinderen, and B. Shishkov, ed-
itors, Proceedings of CLOSER 2011 - International Conference on
Cloud Computing and Services Science. ScitePress. Preprint available at
http://www.cs.umu.se/ds/, accepted, 2011.

[149] P-O. Östberg and E. Elmroth. GJMF - A Composable Service-
Oriented Grid Job Management Framework. Preprint available at
http://www.cs.umu.se/ds/, submitted, 2010.

[150] P-O. Östberg and E. Elmroth. Impact of Service Overhead
on Service-Oriented Grid Architectures. Preprint available at
http://www.cs.umu.se/ds/, submitted, 2011.

[151] P-O. Östberg, D. Henriksson, and E. Elmroth. Decentralized, Scal-
able, Grid Fairshare Scheduling (FSGrid). Preprint available at
http://www.cs.umu.se/ds/, submitted, 2011.

[152] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema. An Early Performance Analysis of Cloud Computing Services
for Scientific Computing. Delft University of Technology, PDS-2008-006,
2008.

[153] H. Overdick. The Resource-Oriented Architecture. In 2007 IEEE
Congress on Services (Services 2007), pages 340–347, 2007.

[154] M.P. Papazoglou. Web Services: Principles and Technology. Pearson
Education Limited, 2008.

[155] C. Pautasso and E. Wilde. Why is the Web Loosely Coupled?: A Multi-
Faceted Metric for Service Design. In Proceedings of the 18th interna-
tional conference on World wide web, pages 911–920. ACM, 2009.

[156] M. Perepletchikov, C. Ryan, and Z. Tari. The Impact of Service Cohesion
on the Analyzability of Service-Oriented Software. Services Computing,
IEEE Transactions on, 3(2):89–103, 2010.

[157] A.L.M. Pope. The CORBA Reference Guide: Understanding the Com-
mon Object Request Broker Architecture. Addison-Wesley Longman Pub-
lishing Co., Inc. Boston, MA, USA, 1998.

[158] J. Postel et al. Transmission Control Protocol, 1981.

[159] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The BitTorrent P2P
File-Sharing System: Measurements and Analysis. Peer-to-Peer Systems
IV, pages 205–216, 2005.

[160] R.S. Pressman. Software Engineering: A Practitioner’s Approach. Mc-
Graw Hill, New York, 2002.

70

[161] ProgrammableWeb - Mashups, APIs, and the Web as Platform.
http://www.programmableweb.com/, March 2011.

[162] I. Raicu, I.T. Foster, and Y. Zhao. Many-Task Computing for Grids and
Supercomputers. In Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS) 2008., pages 1–11, 2008.

[163] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon:
a Fast and Light-weight tasK executiON framework. In Proceedings of
IEEE/ACM Supercomputing 07, 2007.

[164] L. Ramakrishnan, K.R. Jackson, S. Canon, S. Cholia, and J. Shalf. Defin-
ing Future Platform Requirements for e-Science Clouds. In Proceedings
of the 1st ACM symposium on Cloud computing, pages 101–106. ACM,
2010.

[165] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Re-
source Management for High Throughput Computing. In High Perfor-
mance Distributed Computing, 1998. Proceedings. The Seventh Interna-
tional Symposium on, pages 140–146. IEEE, 2002.

[166] B. Randell, P. Lee, and P.C. Treleaven. Reliability Issues in Computing
System Design. ACM Computing Surveys (CSUR), 10(2):123–165, 1978.

[167] E. Rescorla. RFC2818: HTTP over TLS. RFC Editor United States,
2000.

[168] T. Rings, G. Caryer, J. Gallop, J. Grabowski, T. Kovacikova, S. Schulz,
and I. Stokes-Rees. Grid and Cloud Computing: Opportunities for Inte-
gration with the Next Generation Network. Journal of Grid Computing,
7(3):375–393, 2009.

[169] M. Ripeanu and I. Foster. Peer-to-Peer Architecture Case Study:
Gnutella Network. University of Chicago, Chicago, 2001.

[170] M. Russell, G. Allen, G. Daues, I. Foster, E. Seidel, J. Novotny, J. Shalf,
and G. von Laszewski. The Astrophysics Simulation Collaboratory: A
Science Portal Enabling Community Software Development. Cluster
Computing, 5(3):297–304, 2002.

[171] L.F.G. Sarmenta. Volunteer Computing. PhD thesis, Citeseer, 2001.

[172] J.M. Schopf. Ten Actions When Grid Scheduling. In J. Nabrzyski, J.M.
Schopf, and J. Wȩglarz, editors, Grid Resource Management State of the
art and future trends, chapter 2. Kluwer Academic Publishers, 2004.

[173] B. Segal, L. Robertson, F. Gagliardi, and F. Carminati. Grid Comput-
ing: The European Data Grid Project. In Nuclear Science Symposium
Conference Record, 2000 IEEE, volume 1, page 2/1, 2000.

71

[174] R. Sessions. COM and DCOM: Microsoft’s Vision for Distributed Objects.
John Wiley & Sons, Inc. New York, NY, USA, 1997.

[175] M.P. Singh and M.N. Huhns. Service-Oriented Computing: Semantics,
Processes, Agents. John Wiley & Sons Inc, 2005.

[176] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times
Using Historical Information. In D. G. Feitelson and L. Rudolph, edi-
tors, Job Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science 1459, pages 122–142, 1999.

[177] M. Snir, S.W. Otto, D.W. Walker, J. Dongarra, and S. Huss-Lederman.
MPI: The Complete Reference. MIT Press Cambridge, MA, USA, 1995.

[178] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Char-
acterization of Backfilling Strategies for Parallel Job Scheduling. In Par-
allel Processing Workshops, 2002. Proceedings. International Conference
on, pages 514–519. IEEE, 2002.

[179] C. Stefansen. SMAWL: A Small Workflow Language based on CCS. In
CAiSE Short Paper Proceedings, volume 131, page 132. Citeseer, 2005.

[180] H. Stockinger. Defining the Grid: A Snapshot on the Current View. The
Journal of Supercomputing, 42(1):3–17, 2007.

[181] L. Stout, M.A. Murphy, and S. Goasguen. Kestrel: an XMPP-based
Framework for Many Task Computing Applications. In Proceedings of the
2nd Workshop on Many-Task Computing on Grids and Supercomputers,
pages 1–6. ACM, 2009.

[182] A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Ram-
badt, M. Riedel, M. Romberg, B. Schuller, and Ph. Wieder. UNICORE
- From Project Results to Production Grids. In L. Grandinetti, editor,
Grid Computing: The New Frontiers of High Performance Processing,
Advances in Parallel Computing 14, pages 357–376. Elsevier, 2005.

[183] D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in
Practice: The Condor Experience. Concurrency and Computation: Prac-
tice and Experience, 17(2–4):323–356, 2005.

[184] The Grid Infrastructure Research & Development (GIRD) Project. Ume̊a
University, Sweden. http://www.cs.umu.se/ds, March 2011.

[185] The Maui Cluster Scheduler. http://www.clusterresources.com/products/
maui/, March 2011.

[186] The Microsoft Windows Azure Platform. http://www.microsoft.com/
windowsazure/, March 2011.

[187] The RESTlet Framework for Java. http://www.restlet.org/, March 2011.

72

[188] The (United States) National Institute of Standards and Technology
(NIST). http://www.nist.gov. March 2011.

[189] A. Tikotekar, G. Vallée, T. Naughton, H. Ong, C. Engelmann, S.L. Scott,
and A.M. Filippi. Effects of Virtualization on a Scientific Application
Running a Hyperspectral Radiative Transfer Code on Virtual Machines.
In Proceedings of the 2nd workshop on System-level virtualization for high
performance computing, pages 16–23. ACM, 2008.

[190] J. Treadwell. Open Grid Services Architecture Glossary of Terms. In
Global Grid Forum, Lemont, Illinois, USA, GFD-I, volume 44, pages
2–2, 2005.

[191] S. Trimberger. Field-Programmable Gate Array Technology. Springer,
1994.

[192] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini,
M. Pennanen, K. Popov, V. Vlassov, and S. Haridi. Peer-to-Peer Resource
Discovery in Grids: Models and systems. Future Generation Computer
Systems, 23(7):864–878, 2007.

[193] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Modeling User Runtime Es-
timates. The 11th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), Lecture Notes in Computer Science 3834, pages 1–
35, 2005.

[194] W.M.P. Van Der Aalst and A.H.M. Ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, 2005.

[195] G. von Laszewski and M. Hategan. Workflow Concepts of the Java CoG
Kit. J. Grid Computing, 3(3–4):239–258, 2005.

[196] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note on Distributed
Computing. Lecture Notes in Computer Science, pages 49–64, 1997.

[197] E. Walker. Benchmarking Amazon EC2 for High-Performance Scientific
Computing. USENIX Login, 33(5):18–23, 2008.

[198] B. Walters. VMware Virtual Platform. Linux Journal, 1999(63es):6,
1999.

[199] V. Welch. Grid Security Infrastructure Message Specification.
http://www.ogf.org/documents/GFD.78.pdf, March 2011.

[200] W.P.D.I.X.M.L. WfMC. XML Process Definition Language (XPDL),
WfMC Standards. Technical report, WFMC-TC-1025, http://www.
wfmc. org, 2001.

[201] R. Williams. Grids and the Virtual Observatory. Grid Computing: Mak-
ing the Global Infrastructure a Reality, pages 837–858, 2003.

73

[202] S. Williams and C. Kindel. The Component Object Model: A Technical
Overview. Dr. Dobbs Journal, 356:356–375, 1994.

[203] S. Yi, D. Kondo, and A. Andrzejak. Reducing Costs of Spot Instances via
Checkpointing in the Amazon Elastic Compute Cloud. In Cloud Com-
puting (CLOUD), 2010 IEEE 3rd International Conference on, pages
236–243. IEEE, 2010.

[204] Andy Yoo, Morris Jette, and Mark Grondona. SLURM: Simple Linux
Utility for Resource Management. In Dror Feitelson, Larry Rudolph,
and Uwe Schwiegelshohn, editors, Job Scheduling Strategies for Parallel
Processing, volume 2862 of Lecture Notes in Computer Science, pages
44–60. Springer Berlin / Heidelberg, 2003.

[205] L. Youseff, M. Butrico, and D. Da Silva. Toward a Unified Ontology of
Cloud Computing. In Grid Computing Environments Workshop, 2008.
GCE’08, pages 1–10. IEEE, 2009.

[206] L. Youseff, R. Wolski, B. Gorda, and C. Krintz. Paravirtualization
for HPC systems. In Frontiers of High Performance Computing and
Networking–ISPA 2006 Workshops, pages 474–486. Springer, 2006.

[207] J. Yu and R. Buyya. A Taxonomy of Scientific Workflow Systems for
Grid Computing. ACM Sigmod Record, 34(3):44–49, 2005.

[208] O. Zimmermann, J. Grundler, S. Tai, and F. Leymann. Architectural
Decisions and Patterns for Transactional Workflows in SOA. Service-
Oriented Computing–ICSOC 2007, pages 81–93, 2010.

[209] H. Zuse. A Framework of Software Measurement. de Gruyter, 1998.

74

I

Paper I

Designing Service-Based Resource Management Tools
for a Healthy Grid Ecosystem∗

Erik Elmroth, Francisco Hernández, Johan Tordsson, and
Per-Olov Östberg

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, hernandf, tordsson, p-o}@cs.umu.se

http://www.cs.umu.se/ds

Abstract: We present an approach for development of Grid resource management
tools, where we put into practice internationally established high-level views of future
Grid architectures. The approach addresses fundamental Grid challenges and strives
towards a future vision of the Grid where capabilities are made available as indepen-
dent and dynamically assembled utilities, enabling run-time changes in the structure,
behavior, and location of software. The presentation is made in terms of design heuris-
tics, design patterns, and quality attributes, and is centered around the key concepts
of co-existence, composability, adoptability, adaptability, changeability, and interop-
erability. The practical realization of the approach is illustrated by five case studies
(recently developed Grid tools) high-lighting the most distinct aspects of these key
concepts for each tool. The approach contributes to a healthy Grid ecosystem that
promotes a natural selection of ”surviving” components through competition, innova-
tion, evolution, and diversity. In conclusion, this environment facilitates the use and
composition of components on a per-component basis.

∗ By permission of Springer Verlag

77

78

Designing Service-Based Resource Management

Tools for a Healthy Grid Ecosystem⋆

Erik Elmroth, Francisco Hernández, Johan Tordsson, and Per-Olov Östberg

Dept. of Computing Science and HPC2N
Ume̊a University, SE-901 87 Ume̊a, Sweden

{elmroth, hernandf, tordsson, p-o}@cs.umu.se

Abstract. We present an approach for development of Grid resource
management tools, where we put into practice internationally estab-
lished high-level views of future Grid architectures. The approach ad-
dresses fundamental Grid challenges and strives towards a future vision
of the Grid where capabilities are made available as independent and
dynamically assembled utilities, enabling run-time changes in the struc-
ture, behavior, and location of software. The presentation is made in
terms of design heuristics, design patterns, and quality attributes, and is
centered around the key concepts of co-existence, composability, adopt-
ability, adaptability, changeability, and interoperability. The practical
realization of the approach is illustrated by five case studies (recently
developed Grid tools) high-lighting the most distinct aspects of these
key concepts for each tool. The approach contributes to a healthy Grid
ecosystem that promotes a natural selection of “surviving” components
through competition, innovation, evolution, and diversity. In conclusion,
this environment facilitates the use and composition of components on
a per-component basis.

1 Introduction

In recent years, the vision of the Grid as the general-purpose, service-oriented
infrastructure for provisioning of computing, data, and information capabilities
has started to materialize in the convergence of Grid and Web services tech-
nologies. Ultimately, we envision a Grid with open and standardized interfaces
and protocols, where independent Grids can interoperate, virtual organizations
co-exist, and capabilities be made available as independent utilities.

However, there is still a fundamental gap between the technology used in
major production Grids and recent technology developed by the Grid research
community. While current research directions focus on user-centric and service-
oriented infrastructure design for scenarios with millions of self-organizing nodes,
current production Grids are often more monolithic systems with stronger inter-
component dependencies.

⋆ This research was conducted using the resources of the High Performance Comput-
ing Center North (HPC2N). Financial support has been provided by The Swedish
Research Council (VR) under contract 621-2005-3667.

79

2

We present an approach to Grid infrastructure component development,
where internationally established high-level views of future Grid architectures
are put into practice. Our approach addresses the future vision of the Grid,
while enabling easy integration into current production Grids. We illustrate the
feasibility of our approach by presenting five case studies.

The outline of the rest of the paper is as follows. Section 2 gives further
background information, including our vision of the Grid, a characterization
of competitive factors for Grid software, and a brief review of internationally
established conceptual views of future Grid architectures. Section 3 presents
our approach to Grid infrastructure development, which complies with these
views. The realization of this approach for specific components is illustrated
in Section 4, with a brief presentation of five tools recently developed within
the Grid Infrastructure Research & Development (GIRD) project [26]. These
are Grid tools or toolkits for resource brokering [9–11], job management [7],
workflow execution [8], accounting [16, 24], and Grid-wide fairshare scheduling
[6].

2 Background and Motivation

Our approach to Grid infrastructure development is driven by the need and
opportunity for a general-purpose infrastructure. This infrastructure should fa-
cilitate flexible and transparent access to distributed resources, dynamic com-
position of applications, management of complex processes and workflows, and
operation across geographical and organizational boundaries. Our vision is that
of a large evolving system, realized as a Service-Oriented Architecture (SOA)
that enables provisioning of computing, data, and information capabilities as
utility-like services serving business, academia, and individuals. From this point
of departure, we elaborate on fundamental challenges that need to be addressed
to realize this vision.

2.1 Facts of life in Grid environments

The operational context of a Grid environment is harsh, with heterogeneity in
resource hardware, software, ownerships, and policies. The Grid is distributed
and decentralized by nature, and any single point of control is impossible not
only for scalability reasons but also since resources are owned by different orga-
nizations. Furthermore, as resource availability varies, resources may at any time
join or leave the Grid. Information about the set of currently available resources
and their status will always to some extent be incomplete or outdated.

Actors have different incentives to join the Grid, resulting in asymmetric
resource sharing relationships. Trust is also asymmetric, which in scenarios with
cross trust-domain orchestration of multiple resources that interact beyond the
client-server model, gives rise to complex security challenges.

Demand for resources typically exceed supply, with contention for resources
between users as a consequence. The Grid user community at large is disparate

80

3

in requirements and knowledge, necessitating the development of wide ranges of
user interfaces and access mechanisms. All these complicating factors add up to
an environment where errors are rule rather than exception.

2.2 A General-purpose Grid ecosystem

Recently, a number of organizations have expressed views on how to realize a
single and fully open architecture for the future Grid. To a large extent, these
expressions conform to a single view of a highly dynamic service-oriented infras-
tructure for general-purpose use.

One such view proposes the model of a healthy ecosystem of Grid compo-
nents [25], where components occupy niches in the ecosystem and are designed
for component-by-component selection by developers, administrators, and end-
users. Components are developed by the Grid community at large and offer
sensible functionality, available for easy integration in high-level tools or other
software. In the long run, competition, innovation, evolution, and diversity lead
to natural selection of “surviving” components, whereas other components even-
tually fade out or evolve into different niches.

European organizations, such as the Next Generation Grids expert group
[12] and NESSI [23], have focused on a common architectural view for Grid
infrastructure, possibly with a more emphasized business focus compared to
previous efforts. Among their recommendations is a strong focus on SOAs where
services can be dynamically assembled, thus enabling run-time changes in the
structure, behavior, and location of software. The view of services as utilities
includes directly and immediately usable services with established functionality,
performance, and dependability. This vision goes beyond that of a prescribed
layered architecture by proposing a multi-dimensional mesh of concepts, applying
the same mechanisms along each dimension across the traditional layers.

In common for these views are, for example, a focus on composable com-
ponents rather than monolithic Grid-wide systems, as well as a general-purpose
infrastructure rather than application- or community-specific systems. Examples
of usage range from business and academic applications to individual’s use of
the Grid. These visions also address some common issues in current production
Grid infrastructures, such as interoperability and portability problems between
different Grids, as well as limited software reuse. Before detailing our approach
to Grid software design, which complies with the views presented above, we
elaborate on key factors for software success in the Grid ecosystem.

2.3 Competitive factors for software in the Grid ecosystem

In addition to component-specific functional requirements, which obviously differ
for different types of components, we identify a set of general quality attributes
(also known as non-functional requirements) that successful software components
should comply with. The success metrics considered here are the amount of users
and the sustainability of software.

81

4

In order to attract the largest possible user community, usability aspects
such as availability, ease of installation, understandability, and quality of docu-
mentation and support are important. With the dynamic and changing nature
of Grid environments, flexibility and the ability to adapt and evolve is vital for
the survival of a software component. Competitive factors for survival include
changeability, adaptability, portability, interoperability, and integrability. These
factors, along with mechanisms used to improve software quality with respect to
them, are further discussed in Section 3. Other criteria, relating to sustainabil-
ity, include the track record of both components and developers as well as the
general reputation of the latter in the user community.

Quality attributes such as efficiency (with emphasis on scalability), reliability,
and security also affect the software success rate in the Grid ecosystem. These
attributes are however not further discussed herein.

3 Grid Ecosystem Software Development

In this section we present our approach to building software well-adjusted to
the Grid ecosystem. The presentation is structured into five groups of software
design heuristics, design patterns, and quality attributes that are central to our
approach. All definitions are adapted to the Grid ecosystem environment, but
are derived from, and conform to, the ISO/IEC 9126-1 standard [20].

3.1 Co-existence – Grid ecosystem awareness

Co-existence is defined as the ability of software to co-exist with other indepen-
dent softwares in a shared resource environment. The behavior of a component
well adjusted to the Grid ecosystem is characterized by non-intrusiveness, respect
for niche boundaries, replaceability, and avoidance of resource overconsumption.

When developing new Grid components, we identify the purpose and bound-
aries of the corresponding niches in order to ensure the components’ place and
role in the ecosystem. By stressing non-intrusiveness in the design, we strive to
ensure that new components do not alter, hinder, or in any other way affect
the function of other components in the system. While the introduction of new
software into an established ecosystem may, through fair competition, reshape,
create, or eliminate niches, it is still important for the software to be able to
cooperate and interact with neighboring components.

By the principle of decentralization, it is crucial to avoid making assumptions
of omniscient nature and not to rely on global information or control in the Grid.
By designing components for a user-centric view of systems, resources, compo-
nent capabilities, and interfaces, we emphasize decentralization and facilitate
component co-existence and usability.

3.2 Composability – software reuse in the Grid ecosystem

Composability is defined as the capability of software to be used both as in-
dividual components and as building blocks in other systems. As systems may

82

5

themselves be part of larger systems, or make use of other systems’ components,
composability becomes a measure of usefulness at different levels of system de-
sign. Below, we present some design heuristics that we make use of in order to
improve software composability.

By designing components and component interactions in terms of interfaces
rather than functionality, we promote the creation of components with well-
defined responsibilities and provision for module encapsulation and interface
abstraction. We strive to develop simple, single-purpose components achieving a
distinct separation of concerns and a clear view of service architectures. Imple-
mentation of such components is faster and less error-prone than more complex
designs. Autonomous components with minimized external dependencies make
composed systems more fault tolerant as their distributed failure models become
simpler.

Key to designing composable software is to provision for software reuse rather
than reinvention. Our approach, leading to generic and composable tools well
adjusted to the Grid ecosystem, encourages a model of software reuse where
users of components take what they need and leave the rest. Being decentral-
ized and distributed by nature, SOAs have several properties that facilitate the
development of composable software.

3.3 Adoptability – Grid ecosystem component usability

Adoptability is a broad concept enveloping aspects such as end-user usability,
ease of integration, ease of installation and administration, level of portability,
and software maintainability. These are key factors for determining deployment
rate and niche impact of a software.

As high software usability can both reduce end-user training time and in-
crease productivity, it has significant impact on the adoptability of software. We
strive for ease of system installation, administration, and integration (e.g., with
other tools or Grid middlewares), and hence reduce the overhead imposed by
using the software as stand-alone components, end-user tools, or building blocks
in other systems. Key adoptability factors include quality of documentation and
client APIs, as well as the degree of openness, complexity, transparency and
intrusiveness of the system.

Moreover, high portability and ease of migration can be deciding factors for
system adoptability.

3.4 Adaptability and Changeability – surviving evolution

Adaptability, the ability to adapt to new or different environments, can be a key
factor for improving system sustainability. Changeability, the ability for software
to be changed to provide modified behavior and meet new requirements, greatly
affects system adaptability.

By providing mechanisms to modify component behavior via configuration
modules, we strive to simplify component integration and provide flexibility in,

83

6

and ease of, customization and deployment. Furthermore, we find that the use
of policy plug-in modules which can be provided and dynamically updated by
third parties are efficient for making systems adaptable to changes in operational
contexts. By separating policy from mechanism, we facilitate for developers to
use system components in other ways than originally anticipated and software
reuse can thus be increased.

3.5 Interoperability – interaction within the Grid ecosystem

Interoperability is the ability of software to interact with other systems. Our ap-
proach includes three different techniques for making our components available,
making them able to access other Grid resources, and making other resources
able to access our components, respectively. Integration of our components typ-
ically only requires the use of one or two of these techniques.

Whenever feasible, we leverage established and emerging Web and Grid ser-
vices standards for interfaces, data formats, and architectures. Generally, we for-
mulate integration points as interfaces expressing required functionality rather
than reflecting internal component architecture. Our components are normally
made available as Grid services, following these general principles.

For our components to access resources running different middlewares, we
combine the use of customization points and design patterns such as Adapter
and Chain of Responsibility [15]. Whenever possible, we strive to embed the
customization points in our components, simplifying component integration with
one or more middlewares.

In order to make existing Grid softwares able to access our components,
we strive to make external integration points as few, small, and well-defined as
possible, as these modifications need to be applied to external softwares.

4 Case Studies

We illustrate our approach to software development by brief presentations of
five tools or toolkits recently developed in the GIRD project [26]. The presenta-
tions describe the overall tool functionality and high-light the most significant
characteristics related to the topics discussed in Section 3.

All tools are built to operate in a decentralized Grid environment with no
single point of control. They are furthermore designed to be non-intrusive and
can coexist with alternative mechanisms. To enhance adoptability of the tools,
user guides, administrator manuals, developer APIs, and component source code
are made available online [26]. As these adoptability measures are common for
all projects, the adoptability characteristics are left out of the individual project
presentations.

The use of SOAs andWeb services naturally fulfills many of the composability
requirements outlined in Section 3. The Web service toolkit used is the Globus
Toolkit 4 (GT4) Java WS Core, which provides an implementation of the Web
Services Resource Framework (WSRF). Notably, the fact that our tools are made

84

7

available as GT4-based Web services should not be interpreted as been built
primarily for use in GT4-based Grids. On the contrary, their design is focused
on generality and ease of middleware integration.

4.1 Job Submission Service (JSS)

The JSS is a feature-rich, standards-based service for cross-middleware job sub-
mission, providing support, e.g., for advance reservations and co-allocation. The
service implements a decentralized brokering policy, striving to optimize the job
performance for individual users by minimizing the response time for each sub-
mitted job. In order to do this, the broker makes an a priori estimation of the
whole, or parts of, the Total Time to Delivery (TTD) for all resources of interest
before making the resource selection [9–11].

Co-existence: The non-intrusive decentralized resource broker handles each
job isolated from the jobs of other users. It can provide quality of service to
end-users despite the existence of competing job submission tools.

Composability: The JSS is composed of several modules, each performing a
well-defined task in the job submission process, e.g., resource discovery, reserva-
tion negotiation, resource selection, and data transfer.

Changeability and adaptability: Users of the JSS can specify additional infor-
mation in job request messages to customize and fine-tune the resource selection
process. Developers can replace the resource brokering algorithms with alterna-
tive implementations.

Interoperability: The architecture of the JSS is based on (emerging) stan-
dards such as JSDL, WSRF, WS-Agreement, and GLUE. It also includes cus-
tomization points, enabling the use of non-standard job description formats, Grid
information systems, and job submission mechanisms. The latter two can be in-
terfaced despite differences in data formats and protocols. By these mechanisms,
the JSS can transparently submit jobs to and from GT4, NorduGrid/ARC, and
LCG/gLite.

4.2 Grid Job Management Framework (GJMF)

The GJMF [7] is a framework for efficient and reliable processing of Grid jobs.
It offers transparent submission, control, and management of jobs and groups of
jobs on different middlewares.

Co-existence: The user-centric GJMF design provides a view of exclusive
access to each service and enforces a user-level isolation which prohibits access
to other users’ information. All services in the framework assume shared access
to Grid resources. The resource brokering is performed without use of global
information, and includes back-off behaviors for Grid congestion control on all
levels of job submission.

Composability: Orchestration of services with coherent interfaces provides
transparent access to all capabilities offered by the framework. The functionality
for job group management, job management, brokering, Grid information system
access, job control, and log access are separated into autonomous services.

85

8

Changeability and adaptability: Configurable policy plug-ins in multiple loca-
tions allow customization of congestion control, failure handling, progress mon-
itoring, service interaction, and job (group) prioritizing mechanisms. Dynamic
service orchestration and fault tolerance is provided by each service being capable
of using multiple service instances. For example, the job management service is
capable of using several services for brokering and job submission, automatically
switching to alternatives upon failures.

Interoperability: The use of standardized interfaces such as JSDL as job de-
scription format, OGSA BES for job execution, and OGSA RSS for resource
selection improves interoperability and replaceability.

4.3 Grid Workflow Execution Engine (GWEE)

The GWEE [8] is a light-weight and generic workflow execution engine that fa-
cilitates the development of application-oriented end-user workflow tools. The
engine is light-weight in that it focuses only on workflow execution and the cor-
responding state management. This project builds on experiences gained while
developing the Grid Automation and Generative Environment (GAUGE) [19,
17].

Co-existence: The engine operates in the narrow niche of workflow execu-
tion. Instead of attempting to replace other workflow tools, the GWEE provides
a means for accessing advanced capabilities offered by multiple Grid middle-
wares. The engine can process multiple workflows concurrently without them
interfering with each other. Furthermore, the engine can be shared among mul-
tiple users, but only the creator of a workflow instance can monitor and control
that workflow.

Composability: The main responsibilities of the engine, managing task de-
pendencies, processing tasks on Grid resources, and managing workflow state,
are performed by separate modules.

Adaptability and Changeability: Workflow clients can monitor executing work-
flows both by synchronous status requests and by asynchronous notifications.
Different granularities of notifications are provided to support specific client
requirements – from a single message upon workflow completion to detailed up-
dates for each task state change.

Interoperability: The GWEE is made highly interoperable with different mid-
dlewares and workflow clients through the use of two types of plug-ins. Currently,
it provides middleware plug-ins for execution of computational tasks in GT4
and in the GJMF, as well as GridFTP file transfers. It also provides plug-ins
for transforming workflow languages into its native language, as currently has
been done for the Karajan language. The Chain of Responsibility design pattern
allows concurrent usage of multiple implementations of a particular plug-in.

4.4 SweGrid Accounting System (SGAS)

SGAS allocates Grid capacity between user groups by coordinated enforcement
of Grid-wide usage limits [24, 16]. It employs a credit-based allocation model

86

9

where Grid capacity is granted to projects via Grid-wide quota allowances. The
Grid resources collectively enforce these allowances in a soft, real-time man-
ner. The main SGAS components are a Bank, a logging service (LUTS), and
a quota-aware authorization tool (JARM), the latter to be integrated on each
Grid resource.

Co-existence: SGAS is built as stand-alone Grid services with minimal de-
pendencies on other software. Normal usage is not only non-intrusive to other
software but also to usage policies, as resource owners retain ultimate control
over local resource policies, such as strictness of quota enforcement.

Composability: There is a distinct separation of concerns between the Bank
and the LUTS, for managing usage quotas and logging usage data, respectively.
They can each be used independently.

Changeability and adaptability: The Bank can be used to account for any
type of resource consumption and with any price-setting mechanism, as it is
independent of the mapping to the abstract “Grid credit” unit used. The Bank
can also be changed from managing pre-allocations to accumulating costs for
later billing. The JARM provides customization points for calculating usage
costs based on different pricing models. The tuning of the quota enforcement
strictness is facilitated by a dedicated customization point.

Interoperability: The JARM has plug-in points for middleware-specific adapter
code, facilitating integration with different middleware platforms, scheduling sys-
tems, and data formats. The middleware integration is done via a SOAP message
interceptor in GT4 GRAM and via an authorization plug-in script in the Nor-
duGrid/ARC GridManager. The LUTS data is stored in the OGF Usage Record
format.

4.5 Grid-Wide Fairshare Scheduling System (FSGrid)

FSGrid is a Grid-wide fairshare scheduling system that provides three-party
QoS support (user, resource-owner, VO-authority) for enforcement of locally
and globally scoped share policies [6]. The system allows local resource capacity
as well as global Grid capacity to be logically divided among different groups of
users. The policy model is hierarchical and sub-policy definition can be delegated
so that, e.g., a VO can partition its share among its projects, which in turn can
divide their shares among users.

Co-existence: The main objective of FSGrid is to facilitate for distributed
resources to collaboratively schedule jobs for Grid-wide fairness. FSGrid is non-
intrusive in the sense that resource owners retain ultimate control of how to
perform the scheduling on their local resources.

Composability: FSGrid includes two stand-alone components with clearly
separated concerns for maintaining a policy tree and to log usage data, respec-
tively. In fact, the logging component in current use is the LUTS originally
developed for SGAS, illustrating the potential for reuse of that component.

Changeability and adaptability: A customizable policy engine is used to cal-
culate priority factors based on a runtime policy tree with information about

87

10

resource pre-allocations and previous usage. The priority calculation can be cus-
tomized, e.g., in terms of length, granularity, and rate of aging of usage history.
The administration of the policy tree is flexible as sub-policy definition can be
delegated to, e.g., VOs and projects.

Interoperability: Besides the integration of the LUTS (see Section 4.4), FSGrid
includes a single external point of integration, as a fair-share priority factor call-
out to FSGrid has to be integrated in the local scheduler on each resource.

5 Related Work

Despite the large amount of Grid related projects to date, just a few of these have
shared their experiences regarding software design and development approaches.
Some of these projects have focused on software architecture. In a survey by
Filkenstein et al. [13], existing data-Grids are compared in terms of their archi-
tectures, functional requirements, and quality attributes. Cakic et al. [2] describe
a Grid architectural style and a light-weight methodology for constructing Grids.
Their work is based on a set of general functional requirements and quality at-
tributes that derives an architectural style that includes information, control,
and execution. Mattmann et al. [22] analyze software engineering challenges for
large-scale scientific applications, and propose a general reference architecture
that can be instantiated and adapted for specific application domains. We agree
on the benefits obtained with a general architecture for Grid components to be
instantiated for specific projects, however, our focus is on the inner workings of
the components making up the architecture.

The idea of software that evolves due to unforeseen changes in the environ-
ment also appears in the literature. In the work by Smith et al. [3], the way
software is modified over time is compared with Darwinian evolution. In this
work, the authors discuss the best-of-breed approach, where an organization
collects and assembles the most suitable software component from each niche.
The authors also construct a taxonomy of the “species” of enterprise software. A
main difference between this work and our contribution is that our work focuses
on software design criteria.

Other high-level visions of Grid computing include that of interacting au-
tonomous software agents [14]. One of the characteristics of this vision is that
software engineering techniques employed for software agents can be reused with
little or no effort if the agents encompasses the service’s vision [21]. A different
view on agent-based software development for the Grid is that of evolution based
on competition between resource brokering agents [4]. These projects differ from
our contribution as our tools have a stricter focus on functionality (being well-
adjusted to their respective niches).

Finally, it is also important to notice that there are a number of tools that
simplify the development of Grid software. These tools facilitate, for example,
implementation [18], unit testing [5], and automatic integration [1].

88

11

6 Concluding Remarks

We explore the concept of the Grid ecosystem, with well-defined niches of func-
tionality and natural selection (based on competition, innovation, evolution, and
diversity) of software components within the respective niches. The Grid ecosys-
tem facilitates the use and composition of components on a per-component basis.
We discuss fundamental requirements for software to be well-adjusted to this en-
vironment and propose an approach to software development that complies with
these requirements. The feasibility of our approach is demonstrated by five case
studies. Future directions for this work include further exploration of processes
and practices for development of Grid software.

7 Acknowledgements

We acknowledge Magnus Eriksson for valuable feedback on software engineering
standardization matters.

References

1. M-E. Bégin, G. Diez-Andino, A. Di Meglio, E. Ferro, E. Ronchieri, M. Selmi, and
M. Zurek. Build, configuration, integration and testing tools for large software
projects: ETICS. In N. Guelfi and D. Buchs, editors, Rapid Integration of Software
Engineering Techniques, LNCS 4401, pp. 81–97. Springer-Verlag, 2007.

2. J. Cakic and R. F. Paige. Origins of the Grid architectural style. In Engineering
of Complex Computer Systems. 11th IEEE Int. Conference, IECCS 2006, pp. 227–
235. IEEE CS Press, 2006.

3. J. Smith David, W. E. McCarthy, and B. S. Sommer. Agility – the key to survival
of the fittest in the software market. Commun. ACM, 46(5):65–69, 2003.

4. C. Dimou and P. A. Mitkas. An agent-based metacomputing ecosystem.
http://issel.ee.auth.gr/ktree/Documents/Root Folder/ISSEL/Publications/Biogrid
An Agent-based Metacomputing Ecosystem.pdf, visited October 2007.

5. A. Duarte, W. Cirne, F. Brasileiro, and P. Machado. GridUnit: software testing on
the Grid. In K.M. Anderson, editor, Software Engineering. 28th Int. Conference,
ICSE 2006, pp. 779–782. ACM Press, 2006.

6. E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized system for
Grid-wide fairshare scheduling. In H. Stockinger et al., editors, First International
Conference on e-Science and Grid Computing, pp. 221–229. IEEE CS Press, 2005.

7. E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg. Designing
general, composable, and middleware-independent Grid infrastructure tools for
multi-tiered job management. In T. Priol and M. Vaneschi, editors, Towards Next
Generation Grids, pp. 175–184. Springer-Verlag, 2007.

8. E. Elmroth, F. Hernández, and J. Tordsson. A light-weight Grid workflow exe-
cution engine enabling client and middleware independence. In R. Wyrzykowski
et al., editors, Parallel Processing and Applied Mathematics. 7th Int. Conference,
PPAM 2007. Lecture notes in Computer Science, Springer Verlag, 2007 (to appear).

9. E. Elmroth and J. Tordsson. An interoperable, standards-based Grid resource bro-
ker and job submission service. In H. Stockinger et al., editors, First International
Conference on e-Science and Grid Computing, pp. 212–220. IEEE CS Press, 2005.

89

12

10. E. Elmroth and J. Tordsson. A standards-based Grid resource brokering service
supporting advance reservations, coallocation and cross-Grid interoperability. Sub-
mitted to Concurrency and Computation: Practice and Experience, 2006.

11. E. Elmroth and J. Tordsson. A Grid resource brokering algorithms enabling ad-
vance reservations and resource selection based on performance predictions. Fu-
ture Generation Computer Systems. The International Journal of Grid Computing:
Theory, Methods and Applications, 2008, to appear.

12. Expert Group on Next Generation Grids 3 (NGG3). Future for European Grids:
Grids and service oriented knowledge utilities. Vision and research directions 2010
and beyond, 2006. ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3 eg final.pdf, vis-
ited October 2007.

13. A. Finkelstein, C. Gryce, and J. Lewis-Bowen. Relating requirements and archi-
tectures: a study of data-grids. J. Grid Computing, 2(3):207–222, 2004.

14. I. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn: why Grid and
agents need each other. In Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems - Volume 1, pp. 8–15. IEEE CS
Press, 2004.

15. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

16. P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm. Scalable
Grid-wide capacity allocation with the SweGrid Accounting System (SGAS). Con-
currency and Computation: Practice and Experience, (accepted) 2007.

17. Z. Guan, F. Hernández, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, and
Y. Liu. Grid-Flow: a Grid-enabled scientific workflow system with a petri-net-
based interface. Concurrency Computat.: Pract. Exper., 18(10):1115–1140, 2006.

18. S. Hastings, S. Oster, S. Langella, D. Ervin, T. Kurc, and J. Saltz. Introduce: an
open source toolkit for rapid development of strongly typed Grid services. J. Grid
Computing, 5(4):407–427, 2007.

19. F. Hernández, P. Bangalore, J. Gray, Z. Guan, and K. Reilly. GAUGE: Grid
Automation and Generative Environment. Concurrency Computat.: Pract. Exper.,
18(10):1293–1316, 2006.

20. ISO/IEC. Software engineering - Product quality - Part 1: Quality model. Inter-
national standard ISO/IEC 9126-1. 2001.

21. P. Leong, C. Miao, and B-S. Lee. Agent oriented software engineering for Grid com-
puting. In Cluster Computing and the Grid. 6th IEEE Int. Symposium, CCGRID
2006. IEEE CS Press, 2006.

22. C. A. Mattmann, D. J. Crichton, N. Medvidovic, and S. Hughes. A software
architecture-based framework for highly distributed and data intensive scientific
applications. In K.M. Anderson, editor, Software Engineering. 28th Int. Confer-
ence, ICSE 2006, pp. 721–730. ACM Press, 2006.

23. Networked European Software and Services Initiative (NESSI). http://www.nessi-
europe.com, visited October 2007.

24. T. Sandholm, P. Gardfjäll, E. Elmroth, L. Johnsson, and O.Mulmo. A service-
oriented approach to enforce Grid resource allocations. International Journal of
Cooperative Information Systems, 15(3):439–459, 2006.

25. The Globus Project. An “ecosystem” of Grid components.
http://www.globus.org/grid software/ecology.php, visited October 2007.

26. The Grid Infrastructure Research & Development (GIRD) project. Ume̊a Univer-
sity, Sweden. http://www.gird.se, visited October 2007.

90

II

Paper II

Dynamic and Transparent Service Compositions
Techniques for Service-Oriented Grid Architectures∗

Erik Elmroth and Per-Olov Östberg

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, p-o}@cs.umu.se
http://www.cs.umu.se/ds

Abstract: With the introduction of the Service-Oriented Architecture design paradigm,
service composition has become a central methodology for developing Grid software.
We present an approach to Grid software development consisting of architectural de-
sign patterns for service de-composition and service re-composition. The patterns
presented can each be used individually, but provide synergistic effects when com-
bined as described in a unified framework. Software design patterns are employed
to provide structure in design for service-based software development. Service APIs
and immutable data wrappers are used to simplify service client development and iso-
late service clients from details of underlying service engine architectures. The use
of local call structures greatly reduces inter-service communication overhead for co-
located services, and service API factories are used to make local calls transparent to
service client developers. Light-weight and dynamically replaceable plug-ins provide
structure for decision support and integration points. A dynamic configuration scheme
provides coordination of service efforts and synchronization of service interactions in
a user-centric manner. When using local calls and dynamic configuration for creating
networks of cooperating services, the need for generic service monitoring solutions
becomes apparent and is addressed by service monitoring interfaces. We present these
techniques along with their intended use in the context of software development for
service-oriented Grid architectures.

Key words: Grid software development, Service-Oriented Architecture, Web Service
composition, Design patterns, Grid ecosystem.

∗ By permission of Crete University Press

93

94

DYNAMIC AND TRANSPARENT SERVICE
COMPOSITION TECHNIQUES FOR
SERVICE-ORIENTED GRID ARCHITECTURES∗

Erik Elmroth and Per-Olov Östberg
Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, p-o}@cs.umu.se

http://www.gird.se

Abstract With the introduction of the Service-Oriented Architecture design paradigm, ser-
vice composition has become a central methodology for developing Grid soft-
ware. We present an approach to Grid software development consisting of archi-
tectural design patterns for service de-composition and service re-composition.
The patterns presented can each be used individually, but provide synergistic
effects when combined as described in a unified framework. Software design
patterns are employed to provide structure in design for service-based software
development. Service APIs and immutable data wrappers are used to simplify
service client development and isolate service clients from details of underly-
ing service engine architectures. The use of local call structures greatly reduces
inter-service communication overhead for co-located services, and service API
factories are used to make local calls transparent to service client developers.
Light-weight and dynamically replaceable plug-ins provide structure for deci-
sion support and integration points. A dynamic configuration scheme provides
coordination of service efforts and synchronization of service interactions in a
user-centric manner. When using local calls and dynamic configuration for cre-
ating networks of cooperating services, the need for generic service monitoring
solutions becomes apparent and is addressed by service monitoring interfaces.
We present these techniques along with their intended use in the context of soft-
ware development for service-oriented Grid architectures.

Keywords: Grid software development, Service-Oriented Architecture, Web Service com-
position, Design patterns, Grid ecosystem.

∗Financial support has been received from The Swedish Research Council (VR) under contract number 621-
2005-3667. This research was conducted using the resources of the High Performance Computing Center
North (HPC2N).

95

2

1. Introduction
With the introduction of service-oriented computing and the increased pop-

ularity of the Service-Oriented Architecture (SOA) design paradigm, service
composition has become a key methodology for building distributed, service-
based applications. In this work we outline the foundational concepts of our
SOA development methodology, introducing and describing a number of tech-
niques targeting the development of robust, scalable, and flexible Grid software.
We investigate development methodologies such as design patterns, call opti-
mizations, plug-in structures, and techniques for dynamic service configuration.
When combined, these techniques make up the foundation of an approach for
composable Web Services that are to be used in Grid SOA environments. The
techniques are here presented in Grid Web Service development scenarios.

The outline of the paper is the following: A motivation and overview of our
work is presented in Section 2. A more detailed introduction to the concept
and aspects of service composition is given in Section 3, after which we present
architectural design patterns used to address these concepts in Section 4. Finally,
a brief survey of related work is presented in Section 5, followed by conclusions
in Section 6 and acknowledgements.

2. Motivation and Overview
The work presented here has grown out of a need for flexible development

techniques for the creation of efficient and composable Web Services. Current
Grid systems employ more and more SOA-based software where scalability is
a key requirement on all levels of system design, including in the development
process. Service composition techniques, which employ services as building
blocks in applications through the use of service aggregators, often create sys-
tems that impose substantial overhead in terms of memory requirements and
execution time. Although Web Services are distributed by definition, utilizing
them dynamically is often a process with lack of flexibility and transparency.
The complexity of SOAP message processing alone can present impracticalities
to SOA developers, as a single Web Service that exchanges large or frequent
messages may in itself negatively impact the performance of other, co-located,
services.

In our approach, we address these issues in two ways; by providing flex-
ible and transparent structures for dynamic reconfiguration of (networks of)
services, and by outlining development patterns for optimization of interac-
tion between co-located services and service components. More specifically,
we provide a set of architectural software design patterns for service APIs,
local call structures, flexible plug-in and configuration architectures, and ser-
vice monitoring facilities. Combined, these techniques make up a framework
that serves to reduce the temporal and spatial system footprints (time of ex-

96

Service Composition Techniques 3

ecution and memory requirements, respectively) of co-located services, and
provide for a software development model where dynamic service composi-
tion is made transparent to service client developers. The techniques presented
are completely orthogonal to approaches using the Business Process Execution
Language for Web Services (BPEL4WS) [9], Web Service Choreography Inter-
face (WSCI) and similar techniques for service composition, and the resulting
Web Services can be used in a range of service orchestration and choreography
scenarios.

The approach presented here has emerged from work on the Grid Job Man-
agement Framework (GJMF) [3], a software developed in the Grid Infras-
tructure Research & Development (GIRD) [14] project. As a key part of the
GIRD project, we investigate software development methodologies for the Grid
ecosystem [13], an ecosystem of niched software components where compo-
nent survival follows from evolution and natural selection [5], and a Grid built
on such components. We primarily develop software in Java using the Globus
Toolkit 4 (GT4) Java WS Core [7], which contains an implementation of the
Web Services Resource Framework (WSRF).

3. Service Composition Techniques
Two approaches to service composition are service orchestration and service

choreography. As the needs and practices in Grid and Web Service software de-
velopment vary, clear definitions of the terms are yet to be fully agreed upon. In
Peltz [11], service orchestration and choreography are described as approaches
to create business processes from composite Web Services. Furthermore, ser-
vice orchestration is detailed to be concerned with the message-level interac-
tions of (composite and constituent) Web Services, describing business logic
and goals to be realized, and representing the control flow of a single party
in the message exchange. Service choreography is defined in terms of public
message exchanges between multiple parties, to be more collaborative by na-
ture, and taking a system-wide perspective of the interaction, allowing involved
parties to describe their respective service interactions themselves.

Our approach to service composition is primarily concerned with trans-
parency and scalability in dynamic service usage. We investigate techniques
for developing Web Services in a dynamic and efficient manner, Web Services
that can be transparently de-composed and dynamically re-composed.

3.1 Transparent Service De-Composition
At system level, Web Services are defined in terms of their interfaces without

making any assumptions about the internal workings of the service functionality.
In SOA design, focus is on service interactions rather than service design, and
a service set providing required functionality is assumed to exist.

97

4

In the development of individual services, the structured software develop-
ment approach is often hindered by the practical limitations of Web Services.
By recursively subdividing the functionality of a composite Web Service, a pro-
cess here referred to as service de-composition, it is often possible to identify
functionality that can be reused by other services if exposed as Web Services.
However, response times and memory requirements of Web Services often make
it impractical to expose core functionality in this manner.

We address this issue with a framework for call optimizations, which allows
software components to simultaneously and transparently function as both Web
Services and local Java objects in co-located services. Small, single purpose
components are easier to develop and maintain, less error-prone, and often
better matched to standardized functionality [5]. By mediating the technical
limitations imposed by Web Services, the use of these techniques provides a
programming model that offers transparency in the use of services in distributed
object-oriented modelling. As these techniques are optimizations of calls be-
tween co-located services, they are completely orthogonal to, and can be used
in conjunction with, service composition techniques such as BPEL4WS, WS-
AtomicTransaction and WS-Coordination.

A recent example of the application of these techniques is the construction of
a workflow execution engine. A workflow engine typically contains function-
ality for, e.g., workflow state coordination, task submission, job monitoring,
and log maintenance. By de-composing the engine functionality into a set of
cooperating services rather than a large, monolithic structure, reusable soft-
ware components are created and can be exposed as Web Services. The use
of the proposed call optimization framework makes the de-composition pro-
cess transparent to developers, provides improved fault tolerance though the
use of multiple service providers (for, e.g., job submission), and preserves the
performance of a single software component (an example from [3] and [4]).

3.2 Dynamic Service Re-Composition
Given a mechanism for service de-composition, a natural next step is to iden-

tify mechanisms to facilitate dynamic and transparent reconfiguration of Web
Services during runtime, here referred to as service re-composition. In most
service orchestration and choreography scenarios, this can be achieved using
late service binding and dynamic discovery of services. As in the case of ser-
vice de-composition, natural inefficiencies in these techniques may discourage
developers from using them to their full potential.

We employ a scheme for dynamic configuration of services into networks
of smaller, constituent services. Once again, this is a lower-level optimiza-
tion of the service interactions that does not compete with traditional service
orchestration techniques, but can rather co-exist with them. The scheme (out-

98

Service Composition Techniques 5

lined in Section 4.5) consists of services keeping local copies of configuration
modules that may at any time be updated by external means. All services
consult their respective configuration modules when making decisions about
what plug-ins to load, which services to interact with, etc. Once a transac-
tion with another service has been initialized, information about this process
is maintained separately. The benefits of using this scheme include increased
flexibility in development and deployment; access to transparent mechanisms
for redundancy, fault tolerance and load balancing; and ease of administration.

A practical example of the application of this technique is the internal work-
ings of the GJMF [3]. All services in the framework are configured using the
dynamic configuration technique described, allowing services to reshape the
network of services that collectively make up the higher-level functionality of
the framework. Note that this technique is completely transparent to service
orchestration and choreography approaches as it operates on a lower level. In
fact, in a service orchestration scenario it is expected that the configuration data
would be provided the service by the orchestration mechanism itself.

4. Architectural Design Patterns
The techniques presented here are intended to be used as architectural design

patterns to facilitate the development of scalable and composable Web Services.
Though they may be used individually, the techniques have proven to provide
synergistic effects when combined, both in development and deployment.

4.1 Software Design Patterns
In architecture design, we extensively employ the use of established software

design patterns [8] for the creation of efficient and reusable software components
with small system footprints. The Flyweight, Builder, and Immutable patterns
are used to create lean and efficient data structures. Patterns such as the Sin-
gleton, Factory Method, and Observer are deployed in a variety of scenarios to
create dynamic and composable software components. To enable components
to dynamically update and replace functionality, we use the Strategy, Abstract
Factory, Model-View-Controller, and Chain of Responsibility patterns. The
Facade, Mediator, Proxy, Command, Broker, Memento, and Adapter patterns
are used to facilitate, organize, abstract, and virtualize component interaction.

4.2 Immutable Wrappers & Service APIs
In this section, we present patterns used for data representation and service

APIs. The techniques presented combine design patterns and design heuris-
tics, and are aimed to simplify service client development and facilitate the
techniques presented in the following sections.

99

6

Passive data objects such as job and workflow descriptions are rarely modified
once created. A useful pattern for the representation of passive data objects is
to construct immutable data wrapper classes that provide abstraction of the data
interface. Embedding data validation in wrappers also simplifies data handling,
and is considered good practice in defensive programming. Typically, in Web
Service development, data representations are specified in service descriptions
and stub types are generated from WSDL. The use of wrappers around stub
types provides the additional benefit of encapsulating service engine-specific
stub behavior and incompatibility issues between service engines. The practice
of assigning unique identifiers, e.g., in the form of Universally Unique Identi-
fiers (UUID), to data instances facilitates the use of persistence models such as
Java object serialization and GT4 resource persistence, and provides services
and clients with synchronized data identifiers. By creating a service-specific
data translation component, it is possible to help service instances to translate
stubs to wrappers, and vice versa. The use of immutable wrappers and a des-
ignated translation component is illustrated in Figure 1. In the figure, software
components are illustrated as boxes, component interactions as solid arrows,
and dynamically discovered and resolved interactions as arrows with dotted
lines. Note that the service client APIs and back-end make use of immutable
data wrappers and are isolated from the stubs by the stub type translator.

Figure 1. Illustration of local call optimizations for co-located services; dynamic resolution of
service client APIs, back-ends and resources; and the use of immutable data wrappers.

In the interest of software usability for developers, it is recommended to
provide client APIs with each Web Service. This practice allows developers

100

Service Composition Techniques 7

with limited experience of Web Service development to use SOAs transparently,
and offers reference implementations detailing service use. In service APIs, a
programming language interface, rather than a concrete implementation, should
be used to abstract the service interface. The API interface should furthermore
make strict use of wrapped data types in order to isolate it from changes in
underlying architectures, e.g., Web Service engine replacement.

4.3 Local Call Structures
The use of local call structures facilitates the development of components

that can be used both as generic objects and stand-alone Web Services. As illus-
trated in Figure 1, we propose a structure where Web Service implementations
are divided into separate components for service data, interface, and imple-
mentation. Here, the service data are modeled as WSRF resources, which are
dynamically resolved through the resource home using unique resource iden-
tifiers. The service interface contains the actual Web Service interfaces, and
handles call semantics, stub type translation, and parameter validation issues.
The service implementation back-end houses the service logic. It is dynami-
cally resolved using a service back-end factory that instantiates a unique service
implementation for each user, providing complete user-level isolation of service
capabilities and resources.

Separating the service interface from the service implementation makes it
possible for service clients that are co-located with the service (i.e., other ser-
vices running in the same service container) to directly access the service logic.
As illustrated in Figure 1, local calls bypass resource consuming data transla-
tions, credentials delegations, and Web Service invocations. For service noti-
fication invocations, the process is mediated through a notification dispatcher
that dynamically resolves service resources and provides optional notification
filtering and translation. Note that this scheme allows the GT4 resource per-
sistence mechanisms to function unhindered, and remains compatible with the
WSRF and WS-Notification specifications.

The resolution of the service back-end, and the local call logic, are encapsu-
lated and made transparent to developers through the use of service client API
classes. A service API factory provides appropriate service API implementa-
tions based on inspection of the service URLs, e.g., comparing IP address and
port number to the local service containers configuration to determine if a local
call can be made and wrapping the use of multiple (stateless) service instances
into a single, logical service client interface. The service API factory makes
this process transparent to the developer, which provides a set of service URLs
to retrieve a service client interface.

The use of local calls efficiently optimizes communication between co-
located services, but the main benefit of the technique is that it allows for

101

8

transparent de-composition of service functionality into networks of services.
This provides for a more flexible development model for services that can be dy-
namically re-composed with a minimum of overhead, a requirement for service
networks that rely on state update notifications for service coordination.

4.4 Policy Advisor and Mechanism Provider Plug-Ins
For situations where modules are to be dynamically provided and reused

within components, but not between them, we make use of dynamic plug-in
structures. Made up by a combination of programming language interfaces and
designated configuration points, plug-in modules are dynamically located and
loaded, and are considered volatile in the sense that they are intended to be
short-lived and dynamically replaceable.

Functionality provided by plug-ins can be divided into two major categories:
policy advisors and mechanism providers. A policy advisor implementation
is intended to function in a strict advisory capacity for scenarios where policy
logic is too complex to be expressed in direct configuration. The typical role
of a policy advisor is to provide decisions when asked specific questions (for-
mulated by the plug-in interface). This type of plug-in is useful for decision
support in, e.g., failure handling or job prioritization. Mechanism providers are
typically used for interface abstraction and integration point exposure. These
types of modules are used to provide, e.g., vendor-specific database accessors
or alternative brokering algorithms for job submitters.

Plug-in implementations should be light-weight, refrain from causing side-
effects, have short response times, be thread-safe, and use minimal amounts of
memory. Services using plug-ins should acquire the modules dynamically for
each use, and rely strictly on the plug-in interface for functionality. As plug-
ins can be provided by third party developers, and dynamically provided over
networks, the use of code signing techniques to maintain service integrity is
advisable. Grid security solutions that deploy Public-Key Infrastructures (PKI)
for associating X.509 certificates with users can also be used to provide key
pairs for code signing. When services provide user-centric views of service
functionality, per-user configuration of service mechanism is trivial to realize.

4.5 Dynamic Service Configuration
Configuration data for Web Services are typically expressed in XML and

loaded from local configuration files. Semantic Web Services provide con-
figuration metadata to facilitate a higher degree of automation in, primarily,
service composition and choreography. Similar to this approach, we employ
a simplistic architecture for dynamic configuration built on the interchange of
configuration data between services, and customized configuration modules to
be used within services. This approach allows services to be expressed as net-

102

Service Composition Techniques 9

works of services, and to dynamically adapt to changes in executional context
in a way that can be utilized by semantic service aggregators.

Central to our configuration approach is a dynamically replaceable config-
uration module. Each service maintains a configuration module factory that
instantiates configuration modules when needed. The manner in which data
contained in the configuration modules are acquired is encapsulated in the fac-
tory and can alternate between, e.g., polling of configuration files, triggering in
databases, querying of Grid Monitoring and Discovery Services, and notifica-
tions from dedicated configuration services.

Providing configuration data through dedicated configuration services allows
for transparent configuration of multiple services, where each service requests
configuration data based on current user identity and service location. Ded-
icated configuration services can monitor resource availability and perform,
e.g., load balancing through dynamic reconfiguration of networks of cooperat-
ing services. In terms of administrational overhead, this technique can alleviate
the managerial burden of administrating services as it provides a single point
of configuration for multiple service containers. As the local call structures
of Section 4.3 provide an automatic and transparent optimization of calls be-
tween co-located services, the configuration service may attempt to optimize
inter-service usage by favoring cooperation between co-located services.

In this scheme, services should never maintain direct references to configu-
ration modules, but rather rely on them as temporary factories for configuration
data. Interpretation of configuration data, type conversions, and data valida-
tion are examples of tasks to be performed by configuration modules. The
use of caching techniques for configuration modules, and the synchronization
and acquisition of raw configuration data should be encapsulated in configu-
ration module factories. As seen in Section 4.4, configuration data may also
be supplied in the form of plug-ins, in which case the configuration module is
responsible for the location and dynamic construction of these plug-ins. When
providing sensitive data, the personalization techniques of Section 4.3 can be
used to provide user-level isolation of service configuration.

4.6 Service Monitoring
The dynamic configuration solutions of Section 4.5 facilitate the deployment

of composite Web Services as networks of services. For reasons of system trans-
parency, it is equally important to make parts of this configuration available to
service clients, e.g., as WSRF resource properties. Consider a client submit-
ting workflows to a workflow execution service, which schedules and submits
a Grid job for each workflow task. In the interest of system openness, the client
should be provided means to trace job execution, e.g., from workflow down to
computational resource level. By publishing job End-Point References (EPR),

103

10

or log service URLs, the service empowers clients with the ability to monitor
and trace job execution.

As mentioned in Section 4.2, data entities are provided unique identifiers
prior to Web Service submission. Using these identifiers as resource keys for
corresponding WSRF resources in Web Services allow clients with knowledge
of identifiers (and service URL) to create resource EPRs when needed. Stateful
services expose interfaces for listing resources contained in the services. For
efficiency, the information returned by these interfaces are limited to lists of
data identifiers (UUIDs). To improve usability and ease of development for
service clients, boiler-plate solutions for tools to monitor service content are
provided with each service. Although not further explored here, it should be
noted that these monitoring interfaces, as well as the wrappers and service APIs
of Section 4.2, are well suited for use in web portals and directly usable in the
JavaService Pages (JSP) environment.

5. Related Work
There exists numerous valuable contributions on how to design for service

composition and orchestration within both the fields of Grid computing and
service orientation. For reasons of brevity, however, this section only references
a selected number of related publications that directly touch upon the concepts
presented in our software development approach.

The authors of [6] provide a grouping of service composition strategies.
Our approach, containing late service bindings and semi-automatic service in-
teraction planning, falls into the semi-dynamic service composition strategies
category of this model. Brief surveys of service orchestration and choreog-
raphy techniques are given in [10] and [11], and an approach for developing
pattern-based service coordination is presented in [15]. Our work focuses on
design heuristics and patterns for dynamic and transparent service composition
in Grid contexts, and is considered orthogonal to all these techniques. The au-
thors of [2] investigate a framework for service composition using Higher Order
Components. Here, component Web Service interface generation is automated,
and services are dynamically configured and deployed. We consider this a dif-
ferent technique pursuing a similar goal, i.e., dynamic service composition.

The Globus Toolkit [7] and the Apache Axis Web Service engine both contain
utilities for local call optimizations. The Axis engine provides an in-memory
call mechanism, and the Globus Toolkit provides a configurable local invocation
utility that performs dynamically resolved Java calls to methods in co-located
services. These approaches provide a higher level of transparency in service
development, whereas our approach focuses on transparency for service client
developers. In terms of performance, direct Java calls are naturally faster than
in-memory Web Service invocations, and the GT4 approach suffers additional

104

Service Composition Techniques 11

overhead for the dynamic invocation of methods compared to our approach.
Additionally, GT4 does not currently support local invocations for notifications.

Recent approaches to Grid job monitoring are presented in [1] and [12], and
are here included to illustrate service monitoring functionality in dynamically
composable service networks. We strive to provide dynamic monitoring and
traceability mechanisms that are usable in external service monitoring tools,
rather than providing stand-alone service monitoring solutions.

6. Conclusions
We present an approach to Grid software development consisting of a num-

ber of architectural design patterns. These patterns, as presented in Section
4, provide a framework addressing service de- and re-composition. The pat-
terns presented can each be used individually, but provide synergistic effects
when combined into a framework. E.g., the unique identifiers of the immutable
wrappers that are used in service client APIs can also be used as resource keys
for service resources, providing a simple mechanism for client-service data
synchronization. Additional examples of synergistic effects are the coopera-
tive use of local call structures, dynamic configuration, plug-ins, and service
monitoring techniques: Local call structures reduce service footprints to a level
where services are usable for the creation of transparent service networks. As
service APIs and service API factories make the use of local calls transparent,
service client developers are given an automated mechanism for optimization
of service interaction. Employing dynamic configuration techniques to ex-
ploit the transparency of local calls then further increases flexibility in service
interaction and administration of multiple services. Plug-ins can in turn be
used to represent policy decisions, i.e., configuration semantics too complex
to be represented in direct configuration, to provide alternative mechanisms,
and expose integration points in services. Parts of service configuration can be
exposed through monitoring interfaces to provide system transparency and mon-
itorability, and services can employ replaceable plug-ins to utilize customized
monitoring mechanisms.

The patterns described provide individually useful mechanisms for system
architecture, and are orthogonal in design to each other and related technolo-
gies. Combined, they provide a framework for building lean and efficient Web
Services that can be used transparently in cooperative networks of services.

Acknowledgments
We are grateful to Johan Tordsson and the anonymous referees for providing

valuable feedback on, and improving the quality of, this work.

105

12

References
[1] A. N. Duarte, P. Nyczyk, A. Retico, and D. Vicinanza. Global Grid monitoring: the

EGEE/WLCG case. In GMW ’07: Proceedings of the 2007 workshop on Grid monitoring,
pages 9–16, New York, NY, USA, 2007. ACM.

[2] J. Dünnweber, S. Gorlatch, F. Baude, V. Legrand, and N. Parlavantzas. Towards automatic
creation of Web Services for Grid component composition. In V. Getov, editor, Proceed-
ings of the Workshop on Grid Systems, Tools and Environments, 12 October 2005, Sophia
Antipolis, France, December 2006.

[3] E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg. Designing general,
composable, and middleware-independent Grid infrastructure tools for multi-tiered job
management. In T. Priol and M. Vaneschi, editors, Towards Next Generation Grids, pages
175–184. Springer-Verlag, 2007.

[4] E. Elmroth, F. Hernández, and J. Tordsson. A light-weight Grid workflow execution engine
enabling client and middleware independence. In R. Wyrzykowski et.al, editors, Parallel
Processing and Applied Mathematics. 7th Int. Conference, PPAM 2007. Lecture Notes in
Computer Science, Springer Verlag, 2007 (to appear).

[5] E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing service-based re-
source management tools for a healthy Grid ecosystem. In R. Wyrzykowski et al., editors,
Parallel Processing and Applied Mathematics. 7th Int. Conference, PPAM 2007. Lecture
Notes in Computer Science, Springer-Verlag, 2007 (to appear).

[6] M. Fluegge, I. J. G. Santos, N. P. Tizzo, and E. R. M. Madeira. Challenges and techniques
on the road to dynamically compose Web Services. In ICWE ’06: Proceedings of the 6th
international conference on Web engineering, pages 40–47, New York, NY, USA, 2006.
ACM.

[7] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In H. Jin et al.,
editors, IFIP International Conference on Network and Parallel Computing, Lecture Notes
in Computer Science 3779, pages 2–13. Springer-Verlag, 2005.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[9] IBM. Business Process Execution Language for Web Services, version 1.1.
http://www.ibm.com/developerworks/library/specification/ws-bpel/, visited Febru-
ary 2008.

[10] N. Milanovic and M. Malek. Current Solutions for Web Service Composition. IEEE
Internet Computing, 08(6):51–59, 2004.

[11] C. Peltz. Web Services Orchestration and Choreography. Computer, 36(10):46–52, 2003.

[12] M. Ruda, A. Křenek, M. Mulač, J. Pospı́šil, and Z. Šustr. A uniform job monitoring
service in multiple job universes. In GMW ’07: Proceedings of the 2007 workshop on
Grid monitoring, pages 17–22, New York, NY, USA, 2007. ACM.

[13] The Globus Project. An “ecosystem” of Grid components.
http://www.globus.org/grid software/ecology.php, visited February 2008.

[14] The Grid Infrastructure Research & Development (GIRD) project. Umeå University,
Sweden. http://www.gird.se, visited February 2008.

[15] C. Zirpins, W. Lamersdorf, and T. Baier. Flexible coordination of service interaction
patterns. In ICSOC ’04: Proceedings of the 2nd international conference on Service
oriented computing, pages 49–56, New York, NY, USA, 2004. ACM.

106

III

Paper III

Designing General, Composable, and
Middleware-Independent Grid Infrastructure Tools for

Multi-Tiered Job Management∗

Erik Elmroth, Peter Gardfjäll, Arvid Norberg,
Johan Tordsson, and Per-Olov Östberg

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, peterg, arvid, tordsson, p-o}@cs.umu.se

http://www.cs.umu.se/ds

Abstract: We propose a multi-tiered architecture for middleware-independent Grid
job management. The architecture consists of a number of services for well-defined
tasks in the job management process, offering complete user-level isolation of service
capabilities, multiple layers of abstraction, control, and fault tolerance. The middle-
ware abstraction layer comprises components for targeted job submission, job control
and resource discovery. The brokered job submission layer offers a Grid view on
resources, including functionality for resource brokering and submission of jobs to
selected resources. The reliable job submission layer includes components for fault
tolerant execution of individual jobs and groups of independent jobs, respectively. The
architecture is proposed as a composable set of tools rather than a monolithic solution,
allowing users to select the individual components of interest. The prototype presented
is implemented using the Globus Toolkit 4, integrated with the Globus Toolkit 4 and
NorduGrid/ARC middlewares and based on existing and emerging Grid standards. A
performance evaluation reveals that the overhead for resource discovery, brokering,
middleware-specific format conversions, job monitoring, fault tolerance, and manage-
ment of individual and groups of jobs is sufficiently small to motivate the use of the
framework.

Key words: Grid job management infrastructure, standards-based architecture, fault
tolerance, middleware-independence, Grid ecosystem.

∗ By permission of Springer Verlag

109

110

DESIGNING GENERAL, COMPOSABLE,
AND MIDDLEWARE-INDEPENDENT
GRID INFRASTRUCTURE TOOLS FOR
MULTI-TIERED JOB MANAGEMENT ∗

Erik Elmroth, Peter Gardfjäll, Arvid Norberg,
Johan Tordsson, and Per-OlovÖstberg
Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden

{elmroth, peterg, arvid, tordsson, p-o}@cs.umu.se

http://www.gird.se

Abstract We propose a multi-tiered architecture for middleware-independent Grid job man-
agement. The architecture consists of a number of services for well-defined tasks
in the job management process, offering complete user-level isolation of service
capabilities, multiple layers of abstraction, control, and fault tolerance. The mid-
dleware abstraction layer comprises components for targeted job submission, job
control and resource discovery. The brokered job submission layer offers a Grid
view on resources, including functionality for resource brokering and submission
of jobs to selected resources. The reliable job submission layer includes com-
ponents for fault tolerant execution of individual jobs and groups of independent
jobs, respectively. The architecture is proposed as a composable set of tools
rather than a monolithic solution, allowing users to select the individual com-
ponents of interest. The prototype presented is implemented using the Globus
Toolkit 4, integrated with the Globus Toolkit 4 and NorduGrid/ARC middlewares
and based on existing and emerging Grid standards. A performance evaluation
reveals that the overhead for resource discovery, brokering, middleware-specific
format conversions, job monitoring, fault tolerance, and management of individ-
ual and groups of jobs is sufficiently small to motivate the use of the framework.

Keywords: Grid job management infrastructure, standards-based architecture, fault toler-
ance, middleware-independence, Grid ecosystem.

∗Financial support has been received from The Swedish Research Council (VR) under contract number 621-
2005-3667. This research was conducted using the resources of the High Performance Computing Center
North (HPC2N).

111

2

1. Introduction

We investigate designs for a standards-based, multi-tier job management
framework that facilitates application development in heterogeneous Grid en-
vironments. The work is driven by the need for job management tools that:

offer multiple levels of functionality abstraction,

offer multiple levels of job control and fault tolerance,

are independent of, and easily integrated with, Grid middlewares,

can be used on a component-wise basis and at the same time offer a
complete framework for more advanced functionality,

An overall objective of this work is to provide understanding of how to
best develop such tools. Among architectural aspects of interest are, e.g., to
what extent job management functionalities should be separated into individ-
ual components or combined into larger, more feature-rich components, taking
into account both functionality and performance. As an integral part of the
project, we also evaluate and contribute to current Grid standardization efforts
for, e.g., data formats, interfaces and architectures. The evaluation of our ap-
proach will in the long term lead to the establishment of a set of general design
recommendations.

Features of our prototype software include user-level isolation of service
capabilities, a wide range of job management functionalities, such as basic
submission, monitoring, and control of individual jobs; resource brokering; au-
tonomous processing; and atomic management of sets of jobs. All services are
designed to be middleware-independent with middleware integration performed
by plug-ins in lower-level components. This enables both easy integration with
different middlewares and transparent cross-middleware job submission and
control.

The design and implementation of the framework rely on emerging Grid and
Web service standards [3],[9],[2] and build on our own experiences from devel-
oping resource brokers and job submission services [6],[7],[8], Grid scheduling
support systems [5], and the SweGrid Accounting System (SGAS) [10]. The
framework is based on WSRF and implemented using the Globus Toolkit 4.

2. A Model for Multi-Tiered Job Submission Architectures

In order to provide a highly flexible and customizable architecture, a basic
design principle is to develop several small components, each designed to per-
form a single, well-defined task. Moreover, dependencies between components
are kept to a minimum, and are well-defined in order to facilitate the use of al-
ternative components. These principles are adopted with the overall idea that a

112

Grid infrastructure tools for multi-level job management 3

specific middleware, or a specific user, should be able to make use of a subset
of the components without having to adopt an entire, monolithic system [11].

We propose to organize the various components according to the following
layered architecture.

Middleware Abstraction Layer. Similar to the hardware abstraction layer of
an operating system, the middleware abstraction layer provides the functionality
of a set of middlewares while encapsulating the details of these. This construct
allows other layers to access resources running different middlewares without
any knowledge of their actual implementation details.

Brokered Job Submission Layer. The brokered job submission layer offers
fundamental capabilities such as resource discovery, resource selection and job
submission, but without any fault tolerance mechanisms.

Reliable Job Submission Layer. The reliable job submission layer provides
a fault tolerant, reliable job submission. In this layer, individual jobs or groups
of jobs are automatically processed according to a customizable protocol, which
by default includes repeated submission and other failure handling mechanisms.

Advanced Job Submission & Application Layers. Above the three pre-
viously mentioned layers, we foresee both anadvanced job submission layer,
comprising, e.g., workflow engines, and anapplication layer, comprising , e.g.,
Grid applications, portals, problem solving environments and workflow clients.

3. The Grid Job Management Framework (GJMF)

Here follows a brief introduction to the GJMF, where the individual services
and their respective roles in the framework are described.

The GJMF offers a set of services which combined constitute a multi-tiered
job submission, control and management architecture. A mapping of the GJMF
architecture to the proposed layered architecture is provided in Figure 1.

All services in the GJMF offer a user-level isolation of the service capa-
bilities; a separate service component is instantiated for each user and only
the owner of a service component is allowed to access the service capabilities.
This means that the whole architecture supports a decentralized job manage-
ment policy, and strives to optimize the performance for the individual user.

The services in the GJMF also utilize a local call structure, using local Java
calls whenever possible for service-to-service interaction. This optimization is
only possible when the interacting services are hosted in the same container.

The GJMF supports a dynamic one-to-many relationship model, where a
higher-level service can switch between lower-level service instances to im-
prove fault tolerance and performance.

113

4

Figure 1. GJMF components mapped to their respective architectural layers.

As a note on terminology, there are two different types of job specifications
used in the GJMF: abstracttaskspecifications and concretejob specifications.
Both are specified in JSDL [3], but vary in content. A job specification includes a
reference to a computational resource to process the job, and therefore contains
all information required to submit the job. A task specification contains all
information required except a computational resource reference. The act of
brokering, the matching of a job specification to a computational resource, thus
transforms a task to a job.

Job Control Service (JCS). The JCS provides a functionality abstraction of
the underlying middleware(s) and offers a platform- and middleware-indepen-
dent job submission and control interface. The JCS operates on jobs and can
submit, query, stop and remove jobs. The JCS also contains customization
points for adding support for new middlewares and exposes information about
jobs it controls through WSRF resource properties, which either can be explic-
itly queried or monitored for asynchronous notifications. Note that this func-
tionality is offered regardless of underlying middleware, i.e., if a middleware
does not support event callbacks the JCS explicitly retrieves the information
required to provide the notifications. Currently, the JCS supports the GT4 and
the ARC middlewares.

Resource Selection Service (RSS).The RSS is a resource selection service
based on the OGSA Execution Management Services (OGSA EMS) [9]. The
OGSA EMS specify a resource selection architecture consisting of two services,
the Candidate Set Generator (CSG) and the Execution Planning Service (EPS).

114

Grid infrastructure tools for multi-level job management 5

The purpose of the CSG is to generate a candidate set, containing machines
where the jobcanexecute, whereas the EPS determines where the jobshould
execute. Upon invocation, the EPS contacts the CSG for a list of candidate ma-
chines, reorders the list according to a previously known or explicitly provided
set of rules and returns anexecution planto the caller.

The current OGSA EMS specification is incomplete, e.g., the interface of
the CSG is yet to be determined. Due to this, the CSG and the EPS are in
our implementation combined into one service - the RSS. The candidate set
generation is implemented by dynamical discovery of available resources using
a Grid information service, e.g., GT4 WS-MDS, and filtering of the identified
resources against the requirements in the job description. The RSS contains
a caching mechanism for Grid information, which alleviates the frequency of
information service queries.

Brokering & Submission Service (BSS). The BSS provides a functionality
abstraction for brokered task submission. It receives a task (i.e., an abstract job
specification) as input and retrieves an execution plan (a prioritized list of jobs)
from the RSS. Next, the BSS uses a JCS to submit the job to the most suitable
resource found in the execution plan. This process is repeated for each resource
in the execution plan until a job submission has succeeded or the resource list
has been exhausted. A client submitting a task to the BSS receives an EPR to
a job WS-Resource in the JCS as a result. All further interaction with the job,
e.g., status queries and job control is thus performed directly against the JCS.

Task Management Service (TMS). The TMS provides a high-level service
for automated processing of individual tasks, i.e., a user submits a task to the
TMS which repeatedly sends the task to a known BSS until a resulting job
is successfully executed or a maximum number of attempts have been made.
Internally, the TMS contains a per-user job pool from which jobs are selected
for sequential submission. The TMS job pool is of a configurable, limited size
and acts as a task submission throttle. It is designed to limit both the memory
requirements for the TMS and the flow of job submissions to the JCS. The
job submission flow is also regulated via a congestion detection mechanism,
where the TMS implements an incremental back-off behavior to limit BSS load
in situations where the RSS is unable to locate any appropriate computational
resources for the task. The TMS tracks job progress via the JCS and manages a
state machine for each job, allowing it to handle failed jobs in an efficient man-
ner. The TMS also contains customization points where the default behaviors
for task selection, failure handling and state monitoring can be altered via Java
plug-ins.

115

6

Task Group Management Service (TGMS). Like the TMS for individual
tasks, the TGMS provides an automated, reliable submission solution for groups
of tasks. The TGMS relies on the TMS for individual task submission and
offers a convenient way to submit groups of independent tasks. Internally, the
TGMS contains two levels of queues for each user. All task groups that contain
unprocessed tasks are placed in a task group queue. Each task group queue, in
turn, contains its own task queue. Tasks are selected for submission in two steps:
first an active task group is selected, then a task from this task group is selected
for submission. By default, tasks are resubmitted until they have reached a
terminal state (i.e., succeeded or failed). A task group reaches a terminal state
once all its tasks are processed. A task group can also be suspended, either
explicitly by the user or implicitly by the service when it is no longer meaningful
to continue to process the task group, e.g., when associated user credentials have
expired. A suspended task group must be explicitly resumed to become active.
The TGMS contains customization points for changing the default behaviors
for task selection, failure handling and state monitoring.

Client API. The Client API is an integral part of the GJMF; it provides
utility libraries and interfaces for creating tasks and task groups, translating job
descriptions, customizing service behaviors, delegating credentials and contains
service-level APIs for accessing all components in the GJMF. The purpose of
the GJMF Client API is to provide easy-to-use programmable (Java) access to
all parts of the GJMF.

For further information regarding the GJMF, including design documents and
technical documentation of the services, see [12].

4. Performance Evaluation

We evaluate the performance of the TGMS and the TMS by investigating the
total cost imposed by the GJMF services compared to the total cost of using
the native job submission mechanism of a Grid middleware, GT4 WS-GRAM
(without performing resource discovery, brokering, fault recovery etc.).

In the reference tests with WS-GRAM, a client sequentially submits a set
of jobs using the WS-GRAM Java API, delaying the submission of a job un-
til the previous one has been successfully submitted. All jobs run the trivial
/bin/true command and are executed on the Grid resources using the POSIX
Fork mechanism. The jobs in a test are distributed evenly among the Grid re-
sources using a round-robin mechanism. The WS-GRAM tests do not include
any WS-MDS interaction. No job input or output files are transferred and no
credentials are delegated to the submitted jobs. In each test, the total wall clock
time is recorded. Tests are performed with selected numbers of jobs, ranging
from 1 to 750.

116

Grid infrastructure tools for multi-level job management 7

 1

 10

 0 100 200 300 400 500 600 700

A
ve

ra
ge

 jo
b

tim
e

(s
)

Number of jobs

TMS
TGMS
GRAM

Figure 2. GRAM and GJMF job processing performance.

The configuration of the GJMF tests is the same as for the WS-GRAM tests,
with the following additions. For the TGMS tests, user credentials are delegated
from the client to the service for each task group (each test). Delegation is also
performed only once per test in the TMS case, as all jobs in a TMS test reuse
the same delegated credentials. For both the TGMS and the TMS tests, the BSS
performs resource discovery using the GT4 WS-MDS Grid information system
and caches retrieved information for 60 seconds. In the TMS and TGMS tests,
all services are co-located in the same container, to enable the use of local Java
calls between the services, instead of (more costly) Web service invocations.

Test Environment. The test environment includes four identical 2 GHz AMD
Opteron CPU, 2 GB RAM machines, interconnected with a 100 Mbps Ethernet
network, and running Ubuntu Linux 2.6 and Globus Toolkit 4.0.3.

In all tests, one machine runs the GJMF (or the WS-GRAM client) and
the other three act as WS-GRAM/GT4 resources. For the GJMF tests, the
RSS retrieves WS-MDS information from one of the three resources, which
aggregates information about the other two.

Analysis. Figure 2 illustrates the average time required to submit and execute
a job for different number of jobs in the test. As seen in the figure, the TGMS
offers a more efficient way to submit multiple tasks than the TMS. This is due
to the fact that the TMS client performs one Web service invocation per task
whereas the TGMS client only makes a single, albeit large, call to the TGMS.
The TGMS client requires between 13 (1 task) and 16.6 seconds (750 tasks)
to delegate credentials, invoke the Web service and get a reply. For the TMS,

117

8

the initial Web service call takes roughly 13 seconds (as it is associated with
dynamic class-loading, initialization and delegation of credentials), additional
calls average between 0.4 and 0.6 seconds. For the GRAM client, the initial
Web service invocation takes roughly 12 seconds. The additional TMS Web
service calls quickly become the dominating factor as the number of jobs are
increased. When using Web service calls between the TGMS and the TMS
this factor is canceled out. Conversely, when co-located with the TMS and
using local Java calls, the TGMS only suffers a negligible overhead penalty for
using the TMS for task submission. In a test with 750 jobs, the average job
time is roughly 0.35 seconds for WS-GRAM, and approximately 0.51 and 0.57
seconds for the TGMS and TMS, respectively.

As the WS-GRAM client and the JCS use the same GT4 client libraries, the
difference between the WS-GRAM performance and that of the other services
can be used as a direct measure of the GJMF overhead.

In the test cases considered, the time required to submit a job (or a task) can
be divided into three parts.

1 The initialization time for GT4 Java clients. This includes time for class
loading and run-time environment initialization. This time may vary with
the system setup but is considered to be constant for all three test cases.

2 The time required to delegate credentials. This only applies to the GJMF
tests, not the test of WS-GRAM. Even though delegated credentials are
shared between jobs, the TMS is still slightly slower than the TGMS in
terms of credential delegation. The TMS has to retrieve the delegated
credential for each task, whereas the TGMS only retrieves the delegated
credential once per test.

3 The Web service invocation time. This factor grows with the size of
the messages exchanged and affects the TGMS, as a description of each
individual task is included in the TGMS input message. The invocation
time is constant for the TMS and WS-GRAM tests, as these services
exchange fixed size messages.

Summary. When co-hosted in the same container, the GJMF services allots
an overhead of roughly 0.2 seconds per task for large task groups (containing
750 tasks or more). The main part of this overhead is associated with Java class
loading, delegation of credentials and initial Web service invocation. These
factors result in larger average overheads for smaller task groups. For task
groups containing 5 tasks, the average overhead per task is less than 1 second,
and less than 0.5 seconds for 15 tasks. It should also be noted that, as jobs are
submitted sequentially but executed in parallel, the submission time (including
the GJMF overhead), is masked by the job execution time. Therefore, when
using real world applications with longer job durations than those in the tests,
the impact of the GJMF overhead is reduced.

118

Grid infrastructure tools for multi-level job management 9

5. Related Work

We have identified a number of contributions that relate to this project in
different ways. For example, the Gridbus [16] middleware includes a lay-
ered architecture for platform-independent Grid job management; the GridWay
Metascheduler [13] offers reliable and autonomous execution of jobs; the Grid-
Lab Grid Application Toolkit [1] provides a set of services to simplify Grid
application development; GridSAM [15] offers a Web service-based job sub-
mission pipeline which provides middleware abstraction and uses JSDL job
descriptions; P-GRADE [14] provides reliable, fault-tolerant parallel program
execution on the grid; and GEMLCA [4] offers a layered architecture for run-
ning legacy applications through grid services. These contributions all include
features which partially overlap the functionality available in the GJMF. How-
ever, our work distinguishes itself from these contributions by, in the same
software, providing i) a composable service-based solution, ii) multiple lev-
els of abstraction, iii) middleware-interoperability while building on emerging
Grid service standards.

6. Concluding Remarks

We propose a multi-tiered architecture for building general Grid infrastruc-
ture components and demonstrate the feasibility of the concept by implementing
a prototype job management framework. The GJMF provides a standards-
based, fault-tolerant job management environment where users may use parts
of, or the entire framework, depending on their individual requirements. Fur-
thermore, we demonstrate that the overhead incurred by using the framework is
sufficiently small (approaching 0.2 seconds per job for larger groups of jobs) to
motivate the practical use of such an architecture. Initial tests demonstrate that
by proper methods, including reuse of delegated credentials, caching of Grid
information and local Java invocations of co-located services, it is possible to
implement an efficient service-based multi-tier framework for job management.
Considering the extra functionality offered and the small additional overhead
imposed, the GJMF framework is an attractive alternative to a pure WS-GRAM
client for the submission and management of large numbers of jobs.

Acknowledgments

We are grateful to the anonymous referees for constructive comments that
have contributed to the clarity of this paper.

References

[1] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. Merzky,
J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor. Enabling

119

10

applications on the Grid - a GridLab overview.Int. J. High Perf. Comput. Appl., 17(4),
2003.

[2] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Kónya, M. Mambelli, J. M.
Schopf, M. Viljoen, and A. Wilson. Glue schema specification version 1.2 draft 7.
http://glueschema.forge.cnaf.infn.it/uploads/Spec/GLUEInfoModel1 2 final.pdf, March
2007.

[3] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, A. S. McGough, D. Pulsipher,
and A. Savva. Job Submission Description Language (JSDL) specification, version 1.0.
http://www.ogf.org/documents/GFD.56.pdf, March 2007.

[4] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, and P. Kacsuk. GEMLCA:
Running legacy code applications as Grid services.Journal of Grid Computing, 3(1 – 2):75
– 90, June 2005. ISSN: 1570-7873.

[5] E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized system for Grid-
wide fairshare scheduling. In H. Stockinger, R. Buyya, and R. Perrott, editors,e-Science
2005, First International Conference on e-Science and Grid Computing, pages 221–229.
IEEE CS Press, 2005.

[6] E. Elmroth and J. Tordsson. An interoperable, standards-based Grid resource broker and
job submission service. In H. Stockinger, R. Buyya, and R. Perrott, editors,e-Science
2005, First International Conference on e-Science and Grid Computing, pages 212–220.
IEEE CS Press, 2005.

[7] E. Elmroth and J. Tordsson. A standards-based Grid resource brokering service sup-
porting advance reservations, coallocation and cross-Grid interoperability. Submitted to
Concurrency and Computation: Practice and Experience, December 2006.

[8] E. Elmroth and J. Tordsson. Grid resource brokering algorithms enabling advance reser-
vations and resource selection based on performance predictions.Future Generation
Computer Systems. The International Journal of Grid Computing: Theory, Methods and
Applications, 2007, to appear.

[9] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist,
R. Subramaniam, J. Treadwell, and J. Von Reich. The Open Grid Services Architecture,
version 1.5. http://www.ogf.org/documents/GFD.80.pdf, March 2007.

[10] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm. Scalable Grid-wide
capacity allocation with the SweGrid Accounting System (SGAS). Submitted toConcur-
rency and Computation: Practice and Experience, October 2006.

[11] Globus. An “Ecosystem” of Grid Components.
http://www.globus.org/gridsoftware/ecology.php. March 2007.

[12] Grid Infrastructure Research & Development (GIRD). http://www.gird.se. March 2007.

[13] E. Huedo, R.S. Montero, and I.M. Llorente. A framework for adaptive execution on Grids.
Software - Practice and Experience, 34(7):631–651, 2004.

[14] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton, and G. Gombás.
P-GRADE: a Grid programming environment.Journal of Grid Computing, 1(2):171 –
197, 2003.

[15] W. Lee, A. S. McGough, and J. Darlington. Performance evaluation of the GridSAM job
submission and monitoring system. InUK e-Science All Hands Meeting, Nottingham,
UK, 2005.

[16] S. Venugopal, R. Buyya, and L. Winton. A Grid service broker for scheduling e-Science
applications on global data Grids.Concurrency Computat. Pract. Exper., 18(6):685–699,
May 2006.

120

IV

Paper IV

GJMF - A Composable Service-Oriented
Grid Job Management Framework

Per-Olov Östberg and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{p-o, elmroth}@cs.umu.se
http://www.cs.umu.se/ds

Abstract: We investigate best practices for Grid software design and development,
and propose a composable, loosely coupled Service-Oriented Architecture for Grid
job management. The architecture focuses on providing a transparent Grid access
model for concurrent use of multiple Grid middlewares and aims to decouple Grid
applications from Grid middlewares and infrastructure. The notion of an ecosystem
of Grid infrastructure components is extended, and Grid job management software de-
sign is discussed in this context. Non-intrusive integration models and abstraction of
Grid middleware functionality through hierarchical aggregation of autonomous Grid
job management services are emphasized, and service composition techniques facili-
tating this process are explored. A proof-of-concept implementation of the architec-
ture is presented along with a discussion of architecture implementation details and
trade-offs introduced by the service composition techniques used.

Key words: Grid computing, Grid job management, Grid ecosystem.

123

124

GJMF - A Composable Service-Oriented

Grid Job Management Framework

Per-Olov Östberg and Erik Elmroth

Dept. Computing Science and HPC2N, Ume̊a University, SE-901 87 Ume̊a, Sweden

Abstract

We investigate best practices for Grid software design and development, and
propose a composable, loosely coupled Service-Oriented Architecture for Grid
job management. The architecture focuses on providing a transparent Grid
access model for concurrent use of multiple Grid middlewares and aims to
decouple Grid applications from Grid middlewares and infrastructure. The
notion of an ecosystem of Grid infrastructure components is extended, and
Grid job management software design is discussed in this context. Non-
intrusive integration models and abstraction of Grid middleware function-
ality through hierarchical aggregation of autonomous Grid job management
services are emphasized, and service composition techniques facilitating this
process are explored. A proof-of-concept implementation of the architecture
is presented along with a discussion of architecture implementation details
and trade-offs introduced by the service composition techniques used.

Key words: Grid computing, Grid job management, Grid ecosystem

Email address: {p-o, elmroth}@cs.umu.se [http://www.cs.umu.se/ds]

(Per-Olov Östberg and Erik Elmroth)

Preprint submitted to Future Generation Computer Systems April 21, 2010

125

1. Introduction

In this work, we extend the software design methodologies of [17, 19, 21],
and investigate best practices for Grid software design and development in
the context of Grid job management. As a result, we propose a composable
Service-Oriented Architecture (SOA) for Grid job management constituted
by layers of loosely coupled, composable, and replaceable Web Services, and
illustrate the architecture with a prototype implementation called the
Grid Job Management Framework (GJMF).

There are many Grid applications and Grids in production use today, but
as a result of the inherent complexity of Grid job management and the inter-
operability issues of current Grid middlewares, many Grid applications are
tightly coupled to specific Grids and Grid middlewares. As Grid applications
decoupled from Grid middlewares are more likely to be able to migrate to
new Grids, be reused in new projects, and adapted to new problems, Grid
job management tools should ideally virtualize the job management process
to decouple Grid applications from Grid middlewares. The proposed archi-
tecture provides a set of middleware-agnostic job management interfaces that
aim to allow applications to function seamlessly across Grid boundaries.

Grids are highly complex computational environments that exhibit high
degrees of heterogeneity in resources and software, as well as in administra-
tional practices. In these settings, software usability becomes a function of
factors such as flexibility, scalability, and interoperability. To address these
heterogeneity issues, we employ a model of software sustainability based on
evolution of software in an ecosystem of Grid components (as described in
Section 2). Here we identify a set of traits likely to promote survival for job
management tools in a Grid ecosystem, and explore software design patterns
and development methodologies that result in composable software that in-
habit and interoperate between niches of such an ecosystem.

The architectural model used is a framework built on the principle of ab-
straction; functionality is stratified into layers of services that incrementally
provide more advanced functionality through aggregation of underlying ser-
vice capabilities. Designing software in abstractive layers facilitates compo-
nent and system simplicity, robustness, automation, flexibility, and efficiency.
This approach enables developers to build systems where individual compo-
nents can be deployed stand-alone or as part of other architectures, while
serving as part of the framework. Application developers can select parts
of the framework to make use of based on current application needs, and

2

126

administrators are able to reconfigure framework deployments dynamically.
The contributed software prototype provides transparent and concurrent

access to multiple Grid middlewares through a set of job management Web
Services. All services of the prototype provide abstractive views of par-
ticular types of Grid job management functionality that help to decouple
applications from Grid middlewares. Throughout the paper, facets of in-
tended system behavior and implications of system design and architecture
are discussed.

The rest of the paper is organized as follows: Section 2 discusses software
requirements in the context of an ecosystem of Grid components, Section 3
outlines the proposed architectural model, and Section 4 describes technical
details of the software prototype. In Section 5, the proposed architecture
is discussed in more detail, and related and future work are presented in
sections 6 and 7. Finally, the paper is concluded in Section 8.

2. Software Requirements

An ecosystem can be defined as a system formed by the interaction of
a community of organisms with their shared environment. Central to the
ecosystem concept is that organisms interact with all elements in their sur-
roundings, and that ecosystem niches are formed from specialization of inter-
actions within the ecosystem. In an ecosystem of Grid components [19, 57]
niches are defined by functionality required and provided by software com-
ponents, end-users, and other Grid actors; and Grid applications and infras-
tructures are constituted by systems composed of components selected from
the ecosystem. Here, software compete on evolutionary bases for ecosys-
tem niches, where natural selection over time preserves components better
at adapting to altered conditions. Adaptability is hence defined in terms of
interoperability, efficiency, and flexibility. For software to be successful in the
Grid ecosystem, individual software components should be composable, re-
placeable, able to integrate non-intrusively with other components, support
established niche actors, e.g., Grid middlewares and applications, and pro-
mote adoptability through ease of use and minimization of administrational
complexity.

Currently, the majority of Grid resources available are accessible only
through a specific Grid middleware deployed on the site of the resource.
This, combined with the complexity and interoperability issues of today’s
Grid middlewares, leads to the Grid interoperability contradiction [23], and

3

127

tend to result in tight coupling between Grid applications and Grid middle-
wares. To isolate Grid end-users and applications from details of underlying
middlewares and create a more loosely coupled model of Grid resource use,
a Grid job management tool should be designed to operate on top of middle-
wares, abstract middleware functionality and offer a middleware-agnostic in-
terface to Grid job management. From an ecosystem point-of-view, this type
of Grid middleware functionality abstraction helps to define an autonomous
job management niche.

Furthermore, to promote interoperability components should build on
standardization efforts, e.g., support de facto standard approaches for vir-
tual organization-based authentication and accounting solutions, function
independent of platform, language, and middleware requirements, and pro-
vide transparent and easy-to-use Grid resource access models that support
use of federated Grid resources. This reduces application development com-
plexity, mitigates learning requirements for Grid end-users, and promotes
interoperability and adoption of Grid utilization in new user groups.

Like in any evolution-based system, adaptability and efficiency are key
to sustainability in the Grid ecosystem. By creating systems composed of
small, well-defined, and replaceable components, functionality can be aggre-
gated into flexible applications, resulting in increased survivability for both
components and applications [21]. The idea to create composed and loosely
coupled applications from aggregation of components is at the core of Service-
Oriented Architecture (SOA) [49] methodology.

In the proposed architecture, components are realized as Web Services
that contain customization points where third party plug-ins can be used to
alter or augment system and component behavior. To promote deployment
flexibility, architecture composition as well as component customization, can
be dynamically altered via service configurations as described in [21]. Addi-
tionally, individual components of the architecture can be used as stand-alone
services, or in other composed architectures, while concurrently serving as
part of the architecture in the same deployment environment.

3. Framework Architecture

The practice of developing and deploying infrastructure components as
dynamically configured SOAs facilitates development of flexible and robust
applications that aggregate component functionality and are capable of dy-
namic reconfiguration [21]. This approach also provides a model for dis-

4

128

Figure 1: The proposed framework architecture. Services organized in hier-
archical layers of functionality. Within the framework services communicate
hierarchically, service clients are not restricted to this invocation pattern.

tributed software reuse, both on component and code level, and facilitates
integration software development with a minimum of intrusion into existing
systems [20]. Providing small, single-purpose components reduces compo-
nent complexity and facilitates adaptation to standardization efforts [21].

The architectural model used has previously been briefly introduced in
[17], and various aspects of the software development model are discussed in
[19, 20, 21]. The software development model used in this work is a product of
work in the Grid Infrastructure Research & Development (GIRD) multipro-
ject [58] and is documented in [19, 21]. The models favor architectures built
on principles of flexibility, robustness, and adaptability; and aim to produce
software well adjusted for interoperability and use in the Grid ecosystem [57].

3.1. Architecture Layers

As illustrated in Figure 1, the framework architecture is divided into six
layers of functionality, where each layer builds on lower layers and provides
aggregated functionality to service clients. Stratification of the architecture
into hierarchical layers provides several benefits, including

• Simplicity. By hierarchically segmenting the functionality of the frame-
work, components can be kept task-oriented and implemented as small,

5

129

single-purpose modules that delegate functionality requirements to lower
layers. Hierarchical ordering of the architecture also allows simplistic
client-server models of communication between components.

• Robustness. Simplicity in implementation reduces complexity and in-
creases robustness. Division of functionality into layers and definition of
interfaces between components introduce natural failure management
points, simplifies failure detection, and allows reactive failure recovery
through, e.g., resubmission of tasks.

• Automation. Stratification of the architecture into a hierarchy of com-
ponents allows abstraction of functionality in lower layers and facilitates
introduction of automation of framework functionality in higher layers.

• Flexibility. Exposing individual components of the framework as ser-
vices offers clients the choice of what levels of control and automation
to make use of. Segmentation of the system into services also increases
system deployment flexibility.

• Efficiency. Segmentation of system functionality into distributed com-
ponents introduces communication overhead and synchronization is-
sues. Keeping component segmentation hierarchical minimizes syn-
chronization issues and facilitates parallel (pipeline) processing of frame-
work tasks (masks communication overhead).

Stratification of the framework is based on identification of four funda-
mental types of Grid job management functionality: abstractive job con-
trol, job brokering, reliable job submission, and advanced job management.
For each layer a core functionality set is identified and implemented as au-
tonomous services in the proof-of-concept prototype (see Figure 1).

3.1.1. Grid Middleware Layer

In the architecture, the Grid middleware layer houses all software com-
ponents concerned with abstraction of native job management capabilities.
This includes traditional Grid middlewares abstracting batch systems, e.g.,
the Globus middleware (GT4) [33] abstracting the Portable Batch System
(PBS) [40], standardized job dispatchment services, e.g., the OGSA BES [27],
and desktop Grid approaches such as the Berkeley Open Infrastructure for
Network Computing (BOINC) [7] and Condor [56] abstracting use of CPU

6

130

cycle scavenging and volunteer computing resources. Components in the
Grid middleware layer are not part of the framework but are essential in
providing native job submission, control, and monitoring capabilities to the
framework.

3.1.2. Middleware Abstraction Layer

The purpose of the middleware abstraction layer is to abstract details of
Grid middleware components and provide a unified Grid middleware inter-
face. All framework components housed in other layers are insulated from
details of native and Grid job submission, monitoring, and control by the
services in the middleware abstraction layer. Hence, integration of the frame-
work with additional (or new versions of) Grid middlewares should ideally
only concern components in this layer.

Services in the middleware abstraction layer are expected to be utilized by
other softwares, e.g., third party job brokers and low-level job management
tools, rather than end-users. Currently, the middleware abstraction layer
contains services for targeted job submission and control, information system
interfaces, and services concerned with translation of job descriptions. For
middlewares lacking required functionality, e.g., middlewares with limited job
monitoring capabilities, components in the middleware abstraction layer are
expected to implement required system functionality to maintain a unified
job control interface.

3.1.3. Brokered Job Submission Layer

Placed atop of the middleware abstraction layer, the brokered job sub-
mission layer provides aggregated functionality for indirect, or brokered, job
submission. Services in this layer provides automated matching of jobs to
computational resources, and are expected to primarily be used by simple
job submission interfaces, e.g., command-line job submission tools.

Job submission performed by services in the brokered job submission layer
relies on the targeted job submission capabilities and the information system
interfaces of the middleware abstraction layer, and provides a best effort type
of failure handling by identifying a set of suitable computational resources
for a job and (sequentially) submitting the job to each of these until the job
is accepted by a resource. Services in the brokered job submission layer do
not provide job monitoring capabilities, as job submission here is expected
to result in monitorable jobs in middleware abstraction layer services.

7

131

3.1.4. Reliable Job Submission Layer

Intended as the robust job submission abstraction of the architecture,
services of the reliable job submission layer provide fault-tolerant and au-
tonomous job submission and management capabilities, and are intended to
be utilized (through job management tools) by end-users. The term reliable
job submission refers to the ability of these services to handle different types
of errors in the job submission and execution processes through resubmission
of jobs according to predefined failover policies.

Services in the reliable job submission layer rely on services of the bro-
kered job submission layer for brokering and job submission, and services of
the middleware abstraction layer for job monitoring and control. Function-
ality for failure handling, e.g., for Grid congestion and job execution failures,
is aggregated, and management of sets of independent jobs is provided. Ser-
vices of the reliable job submission layer also provide monitoring capabilities
for jobs and sets of jobs through job management contexts created for all
resources submitted here.

3.1.5. Advanced Job Submission Layer

The advanced job submission layer is aimed towards advanced mecha-
nisms for job management, e.g., workflow tools, Grid application compo-
nents, and portal interfaces that by functionality requirements are coupled
to components of the framework. Services of the advanced job submission
layer are intended to aggregate services of the reliable job submission layer,
provide aggregated job management contexts, and function as integration
bridges and customized service interfaces to the framework. A number of
functionality sets for advanced job management are identified and under in-
vestigation (see Section 7) for inclusion in the prototype implementation of
the framework, e.g., management of data and sets of interdependent jobs.

3.1.6. Application Layer

Residing at the top of the hierarchical structure of the framework, the
application layer houses Grid applications, computational portals, and other
types of external service clients. As in the case of the Grid middleware
Layer, software in the application layer are not part of the architecture of the
framework, but are likely to impact the design of software in the architecture
through design, construction, and feature requirements. Typically, service
clients not integrated with the framework services are considered part of the
application layer.

8

132

4. The Grid Job Management Framework

Implemented as a prototype of the proposed architecture of Section 3,
the Grid Job Management Framework (GJMF) is a Java-based toolkit for
submission, monitoring, and control of Grid jobs designed as a hierarchical
SOA of cooperating Web Services. Framework composition can be altered
dynamically and controlled through service configuration and via customiza-
tion points in services. The Grid-enabled Web Services of the GJMF are im-
plemented and typically deployed using the Globus Toolkit [25], compatible
with established Grid security models, and conform to the use of a number of
Web Service and Grid standards, e.g., the Web Service Description Language
(WSDL) [13], the Web Service Resource Framework (WSRF) [26], and the
Job Submission Description Language (JSDL) [9]. The GJMF also conforms
to the design of the Open Grid Service Architecture (OGSA) [28] and builds
on the design of the OGSA Basic Execution Service (OGSA BES) [27], and
the OGSA Resource Selection Services (OGSA RSS) [28].

The services in the framework interact by passing messages using either
request-response (for, e.g., job submissions) or publish-subscribe (for, e.g.,
state update notifications) communication patterns. The information routed
through the framework travels vertically in Figure 1, and typically consists
of job descriptions passed downwards in task and job submissions, and sta-
tus update notifications propagated upwards in service state coordination
messages. All services maintain state representations as WS-Resources [36],
and expose these through service interfaces and WS-ResourceProperties [35],
allowing clients to inspect state both explicitly and through subscription to
WS-BaseNotifications [34].

4.1. Job Definitions

To facilitate abstraction of Gird middleware functionality, the GJMF de-
fines three types of job definitions.

• A job is a concrete job description, containing all information required
to execute a program on a (specified) computational resource. Jobs
are in the GJMF processed by the Job Control Service and correspond
to unique executions of programs on computational resources. Job
descriptions typically consist of a JSDL file specifying an executable
program, program parameters, computational resource references, file
staging information, and optional JSDL annotations containing job pro-
cessing hints.

9

133

• A task is an abstract job description that typically requires additional
information, e.g., computational resource references, to become sub-
mitable. This required information is provided in task to resource
matching (brokering). Note that by this definition, a job is a task
subtype. This allows jobs to be submitted as tasks in the GJMF, in
which case any additional brokering information is utilized in the bro-
kering and job submission process. Tasks are in the GJMF processed
by the Task Management Service.

• A task group is a set of independent tasks (and jobs) that can be exe-
cuted in any order. Task groups are distinguished from jobs and tasks
by having a shared execution context for all tasks in a task group. The
processing result of a task group is determined by the combined pro-
cessing results of the task group’s tasks. Task groups are in the GJMF
processed by the Task Group Management Service.

4.2. Components

As illustrated in Figure 1, the core of the GJMF is made up by five job
management services. Part of the framework but not illustrated in the figure
are also two auxiliary services, a job description translation and a log access
service, as well as two core libraries; a service development utility library
and the GJMF client Application Programming Interface (API). All services
in the GJMF make use of these libraries, and all service interaction within
the framework is routed through the service client APIs, allowing service
communication optimizations to be ubiquitous and completely transparent.
Each service is capable of using multiple instances of other services, and
supports a model of user-level isolation where unique service instances are
created for each service user. Worker threads and contexts within individual
services are shared among service instances and competition for resources
between service instances occur as if services are deployed in separate service
containers.

4.2.1. Log Accessor Service (LAS)

In a distributed architecture managing multiple synchronized states, abil-
ity to track state development is highly desirable. The Log Accessor Service
(LAS) is a service that provides database-like interfaces to job, task, and
task group logs generated by the GJMF. Within the GJMF, the LAS is used
to record state transitions and job submission and processing information.

10

134

The LAS utilizes monodirectional data transfers, e.g., the GJMF services
use the LAS to store data, and service clients use it to inspect details of task
processing.

The LAS maintains internal storage queues and resource serialization
mechanisms to minimize overhead for use of the service and provide an
asynchronous log storage model. Customizable database support is provided
through use of database accessor plug-in modules. Database accessors can
be provided by third parties and boiler-plate solutions for accessor plug-ins
supporting SQL and JDBC are provided. Currently, the LAS provides ac-
cessors for MySQL, PostgreSQL, and Apache Derby. Unlike other services
of the GJMF, use of the LAS is optional and not required for any part of
the GJMF to function. Both the LAS and LAS database accessors can be
configured through the LAS configuration.

4.2.2. JSDL Translation Service (JTS)

In the GJMF, the JSDL Translation Service (JTS) is used to provide job
description translations to service clients and services. Within the frame-
work, the JTS is typically used by the Job Control Service to provide transla-
tions of JSDL to native Grid middleware job description formats. To service
clients, the JTS can provide translations from proprietary job description
formats to JSDL, and translations from JSDL to Grid middleware formats
(where the latter typically would be used to verify that job description se-
mantics are preserved in translation).

The JTS employs a modularized architecture where translation semantics
are provided by plug-ins. Support for new languages can be added by third
parties without modification of the framework. Currently, the JTS supports
translation between JSDL [9] and Globus Toolkit 4 Resource Specification
Language (GT4 RSL) [25], NorduGrid Extended Resource Specification Lan-
guage (XRSL) [16], and a custom dialect of XRSL presented in [20]. Transla-
tions of job descriptions are made based on the context of the job description
representation created. Typically this means that existing job descriptions
are queried for information required to create new representations of corre-
sponding semantics. Type-specific data representations are translated based
on the semantics of the enacting middleware, e.g., Uniform Resource Loca-
tors (URLs) are reformatted and supplied suitable protocol tags to match
middleware transfer mechanism preferences. The JTS can be configured to
use a specific set of translation modules, which can be configured through
the JTS configuration.

11

135

4.2.3. Job Control Service (JCS)

The purpose of the Job Control Service (JCS) is to provide a uniform
and middleware-transparent job submission and control interface. The JCS
defines a set of generic job control functionality, as well as a job state model
(illustrated in Figure 4c), that provide a fundamental view of job manage-
ment that other services in the GJMF build upon. Within the GJMF, the
JCS is used by the Brokering & Submission Service for job submission, and by
the Task Management Service for job monitoring and control. Service clients
can use the JCS directly as a targeted Grid job submission and control tool.

Internally, the JCS maintains a job control component that coordinates
execution and monitoring of native Grid jobs. Job resources are used to
maintain job state and are exposed as inspectable WS-ResourceProperties
to service clients. The job controller abstracts the use of middleware-specific
job dispatcher and dispatcher prioritizer plug-ins, and both the job controller
and the middleware dispatchers utilize LASs for log storage. Middleware sup-
port in the JCS is provided through customizable and configurable plug-in
modules that allow third parties to develop and deploy support for propri-
etary job management solutions. Middleware dispatchers abstract use of Grid
middlewares and employ the JTS and the LAS for job description translation
and log storage respectively. The JCS currently provides middleware sup-
port for the NorduGrid ARC [16], GT4 [33] middlewares, and Condor [56].
For test and service client development purposes, the JCS also provides a
simulation environment where jobs are simulated rather than submitted and
executed. This utility allows JCS clients to encounter exotic job behaviors
on demand via discrete-event simulation of job state transitions.

The JCS can be configured to use a specific set of middleware dispatch-
ers, a middleware dispatcher prioritizer, a state monitor, a set of JTSs, and
an optional set of LASs. The functionality of the JCS can also be altered
by providing processing hints through annotations in the JSDL job descrip-
tion. These annotations can affect, e.g., middleware dispatcher prioritization,
or provide job submission parameters such as queue system information for
ARC submissions (an example from [20]) or GT4 Globus Resource Alloca-
tion Manager (WS-GRAM) parameters for Condor-G [30] submissions. As
these types of processing hints are completely orthogonal to standard service
behavior, i.e. does not affect processing of other jobs or service functional-
ity, they can be used to temporarily alter service behavior for a specific job
without alteration of framework composition or configuration.

12

136

4.2.4. Resource Selection Service (RSS)

Built on the OGSA RSS [28] model, the GJMF Resource Selection Ser-
vice (RSS) provides a service interface for resource brokering in Grid environ-
ments. Within the GJMF, the RSS is used by the Brokering & Submission
Service as an execution planning and brokering tool. Service clients can use
the RSS directly for job to resource matching or to inspect resource avail-
ability.

Internally, the RSS maintains a resource selector component that coor-
dinates brokering of tasks to computational resources. Middleware-specific
information system accessors are used to abstract middleware information
systems and provide translations of middleware-specific record formats to
an internal RSS format. The RSS also maintains mechanisms for resource
information retrieval and caching, information system monitoring, and cus-
tomization mechanisms that allow third parties to develop plug-ins to support
new information sources.

The RSS can be configured to retrieve information from a range of in-
formation systems, currently including the ARC and GT4 Grid middleware
information systems, as well as a simulated information system configurable
through the RSS configuration intended for service development purposes.
The RSS also provides boiler-plate solutions for data access and type con-
version to facilitate implementation of custom information accessors.

4.2.5. Brokering & Submission Service (BSS)

The Brokering & Submission Service (BSS) provides the GJMF and ser-
vice clients with an interface for best-effort brokered job submission. The
definition of best effort job submission used here is that no measures for
correction of, or compensation for, failed job submissions or executions are
taken. Once brokered, the BSS sequentially submits jobs to each suitable
computational resource identified (as ranked by the RSS) until a resource
accepts the job or the list of resources is exhausted. Beyond this behavior,
BSS failures are considered permanent.

Within the GJMF, the BSS is used by the Task Management Service for
task submissions. Service clients can use the BSS directly as a job submission
tool for brokered submission of abstract (incomplete) job descriptions. The
BSS does not maintain a context for submitted jobs, service clients that
wish to inspect job state are referred to a JCS instance hosting the job
upon successful job submission. Note that while job submission failures are
reported directly to service clients, errors in job executions are by the BSS

13

137

Figure 2: TMS architecture. The TMS architecture is typical for all GJMF
services; interaction with other services are wrapped in access modules, and
customization points are exposed through configurable plug-in structures.
Customization points are illustrated using dotted lines.

assumed to be reported by the enacting JCS or detected and handled by
service clients.

Internally, the BSS maintains components for job brokering and job sub-
mission. The job broker component interacts with RSSs to retrieve job exe-
cution plans. The job submission component is used by the job broker and
interfaces with JCSs to submit jobs. Both components make use of LASs
for log storage and are capable of using multiple instances of each service to
provide redundancy in job brokering and submission. Note that jobs, i.e.,
tasks with a concrete job description including a resource specification, are
not relayed to the RSS for resource brokering but directly submitted to re-
sources via the JCS. The BSS can be configured to use a set of RSSs, a set
of JCSs, and an optional set of LASs.

4.2.6. Task Management Service (TMS)

The Task Management Service (TMS) provides an interface for auto-
mated and fault-tolerant task management, and defines a task state model
(illustrated in Figure 4b). The TMS maintains inspectable state contexts
for tasks and employs a model of event-driven state management powered

14

138

by the JCS state mechanisms. To provide failover capabilities, tasks submit-
ted through the TMS are repeatedly submitted and monitored by the TMS
until resulting in a successful job execution, or a configurable amount of at-
tempts are made. Within the GJMF, the TMS is used by the Task Group
Management Service for management of individual tasks.

Internally, the TMS maintains components for task management, task
submission, and job monitoring, as illustrated in Figure 2. Task state is
maintained and exposed through WS-ResourceProperties by task resources.
The internal mechanisms of the TMS can be customized via configuration and
a set of plug-in modules that control task prioritization, congestion handling,
failure handling, and state monitoring. To enforce user-level isolation and
fair competition in multi-user scenarios, the TMS maintains separate task
queues for each user. The TMS relies on the BSS for submission of tasks
to Grid resources, and can be configured to use customized congestion and
failure handlers to control task resubmission behaviors, and a customized
task prioritizer to influence task processing order. The TMS can also be
configured to use a state transition monitor for event-driven state monitoring,
a set of BSSs, and an optional set of LASs.

4.2.7. Task Group Management Service (TGMS)

The Task Group Management Service (TGMS) provides an interface for
automated management of groups of (mutually independent) jobs and tasks,
and defines a task group state model (illustrated in Figure 4a). The TGMS
is intended to be used by service clients and more complex task management
systems, e.g., workflow and parameter sweep applications. The TGMS is
currently not used by other services in the GJMF.

Internally, the TGMS maintains components for task group management,
coordination of task and task group processing, and task monitoring. Task
group state is maintained and exposed as WS-ResourceProperties by task
group resources. The TGMS maintains state contexts for task groups, em-
ploys user-exclusive submission queues for both task groups and tasks, and
provides customizable plug-in modules for task group and task prioritiza-
tion, state management, and congestion handling. As the TGMS relies on
the TMS for task management, the TGMS does not contain a task execution
failure handler. Task execution failures are by the TGMS assumed perma-
nent, no error recovery or failover actions are taken by the TGMS. Task
submission failures are considered temporary and result in task submission
rescheduling.

15

139

Figure 3: The GJMF service structure. The GJMF common library provides
boiler-plate solutions for service instantiation, service back-end implementa-
tion, resource management, and client APIs. The GJMF client API abstracts
use of the service invocation optimizations through use of service client fac-
tories and service back-ends. Dynamic invocation patterns illustrated using
dotted lines.

The TGMS also provides a mechanism for suspension of (processing of)
task groups, a mechanism designed to adapt to scenarios where user cre-
dentials expire or large task groups need to be paused. Once suspended,
task groups are not further processed until explicitly resumed. Tasks in a
suspended task group that are submitted to a TMS will be processed if pos-
sible, but no new task submissions are made until the task group is resumed.
The TGMS can be configured to use a congestion handler to customize back-
off behaviors in Grid congestion scenarios; task group and task prioritizers to
customize processing order of task groups, tasks, and jobs; a state transition
monitor for event-driven state monitoring; a set of TMSs; and an optional
set of LASs.

4.2.8. Common Library

The GJMF common library is a service development utility library that
provides a common type set and boiler-plate solutions for, e.g., local call op-
timizations, service stubs, notification subscriptions, credentials delegation,
security contexts, worker threads, state management, service client APIs,
dynamic configuration, and resource serialization.

The GJMF common library provides a simple framework for service de-
velopment that defines a service structure used by all services in the GJMF.
The service structure is illustrated in Figure 3, and details separation of ser-
vice interface implementation from service back-end implementations, and
service clients from service client factories. Service client factories are ex-

16

140

posed to applications and dynamically instantiate service client implementa-
tions based on type of service invocation to be used. Service clients marshal
data and perform service invocations, in the case of regular service clients
through Web Service SOAP messages and through direct service back-end in-
vocations using immutable wrapper types for local call optimization clients.
Service interface implementations marshal SOAP data through stubs into
immutable wrapper types and invoke corresponding methods in service back-
ends. Service back-end implementations are responsible for maintaining state
in service resources, which are accessed through service resource homes. The
service structure of the GJMF common library has previously been discussed
in [21].

The service development framework, in concert with the GJMF client
API, handles all service invocation mechanics, including data type mar-
shalling, service instantiation, and notification management. The framework
encapsulates a local call optimization mechanism that allows service com-
ponents to be exposed as local objects to other services codeployed in the
same service container, i.e. allowing co-hosted services to make marshalled
in-process Java calls directly between service clients and service back-ends.
This optimization mechanism, which is discussed in Section 5.1, and also
addressed in [21], is made fully transparent to service clients by the service
structure of the common library and the client API. As also described in [21],
the common library provides a set of basic and immutable types for use in
the GJMF client API as well as a type marshalling mechanism that abstracts
the use of stub types in the GJMF.

4.2.9. Client Application Programming Interface

The GJMF client Application Programming Interface (API) is a set of
Java classes abstracting the use of the GJMF Web Services for Java pro-
grammers. Mimicking the interface of the GJMF services, the client API is
designed to provide intuitive use of the framework to developers with limited
experience of Web Service development. All GJMF functionality is accessible
through both the GJMF services and the GJMF client API.

5. Architecture Discussion

The hierarchical architecture of the GJMF is intended to provide clients a
versatile and flexible set of job management interfaces that offer an increasing
range of automation of the job management process without sacrificing user

17

141

control. Services in lower layers offer fine-grained job management interfaces
with explicit control, while services in higher layers attempt to automate the
job management process and offer control through configuration of behavior
and optional customization point modules.

To meet the flexibility and adaptability requirements discussed in Section
2, we extend the software development model previously presented in [21].
Key approaches in this model include use of Service-Oriented Architectures
(SOAs) [49], design patterns, refactorization methods, and techniques to im-
prove software adaptability such as dynamic configuration and customization
points. Software is developed in Java and the Globus Toolkit [25] is employed
to produce Grid-enabled Web Services compatible with established Grid se-
curity models.

5.1. Invocation Patterns

Services of the GJMF support two basic modes of method invocation;
sequential and batch. In sequential invocations, service requests are trans-
mitted in dedicated messages. In batch invocations, sets of service requests
are bundled and transmitted in compound messages. Batch invocations allow
service clients to, e.g., submit sets of tasks in single requests, significantly
reducing service invocation makespan, network bandwidth requirements, and
service invocation memory footprints. To simplify service invocation seman-
tics, sets of requests sent using batch invocations are processed as transac-
tions. If, e.g., a job submission in a batch request fails, other job submissions
in the batch are canceled and rolled back.

When service clients are codeployed with GJMF services, i.e. deployed in
the same service container as the GJMF, service invocations are by default
routed through the GJMF local call optimizations. These mechanisms exploit
that services hosted in the same container share the same process space, i.e.
operate in the same Java Virtual Machine (JVM), and allow service clients to
directly invoke methods in service implementation back-ends. By bypassing
message serializations, this greatly reduces service invocation makespans and
memory footprints, allow more fine-grained service communication models,
and promotes a model of service aggregation where constituent services can
function as local objects in aggregated services [21]. In the GJMF this results,
e.g., in a reduced need for polling to maintain distributed state coordination
as state update notifications are less likely to be lost. All services of the
GJMF are designed to be distributed in separate service deployments, but
are for performance reasons recommended to be codeployed.

18

142

As GJMF services can at any time be invoked directly by service clients,
service invocation patterns are hard to predict and likely to vary over time.
For this, as well as for performance reasons, all interservice communication
is routed through the GJMF client API, which allows invocation modes and
service communication optimizations to be ubiquitous and completely trans-
parent.

5.2. Deployment Scenarios

The construction of the framework as a loosely coupled SOA with in-
vocation optimizations allows the framework great freedom in deployment.
Envisioned usage scenarios for the framework include

• Running the framework on Grid gateways to act as middleware-agnostic
job submission interfaces.

• Running the framework on client computers to act as convenient per-
sonal Grid job management tools.

• Running multiple instances of the framework to provide partitioning
and load balancing of large job submission queues and multiple Grids.

• Running multiple instances of the framework with different configura-
tions to provide alternative job submission behaviors.

As natural overlaps between these usage scenarios exist, each of these are
expected to be seen in hierarchical or other types of federated Grid envi-
ronments, as well as in federated Cloud computing systems. Typical usage
scenarios for the GJMF are expected to include combinations of multiple
deployments of the framework, on top of multiple Grid middlewares and re-
source managers. To meet advanced application requirements, e.g., workflow
enactment or parameter sweeps, the GJMF is expected to be utilized in com-
bination with high-level tools such as the Grid Workflow Execution Engine
(GWEE) [18].

The GJMF deployment flexibility allows the framework to be employed in
a number of computational settings, including high-performance computing
(HPC) (requiring support from underlying middlewares for some functional-
ity, e.g., MPI job execution), high-throughput computing (HTC), as well as
the more recently defined many-task computing (MTC) [53] paradigm. In
MTC, focus is placed on enactment of loosely coupled applications consti-
tuted by large numbers of short-lived, data intensive, heterogeneous tasks

19

143

(a) GJMF task group state model.

(b) GJMF task state model. (c) GJMF job state model.

Figure 4: GJMF state models. Task group states are used in the TGMS,
task states in the TGMS and the TMS, job states in the JCS. The JCS job
state model is based on the state model of the OGSA BES [27]. Recurring
states in the GJMF job state model abstract state information from more
fine-grained Grid middleware job state models.

with high (non-message passing) communication requirements, a setting en-
visioned in the design of the GJMF.

5.3. State Models

As the GJMF is composed of (possibly distributed) interoperating ser-
vices, state management and coordination are inherently complex. The
GJMF employs a hierarchical event-driven model for distributed state up-
dates where services hosting job description resources are responsible for
propagating state updates to clients. The use of a hierarchical event-driven
service state model allows service failure detection and recovery to be reac-
tive and adaptive rather than predictive. Keeping individual service contexts
simple (through delegation of functionality to lower layers) and reactive fa-
cilitates service implementation robustness.

The GJMF state update mechanisms are built on WS-BaseNotifications
messages. To compensate for state notifications being dropped due to net-
work failures or service container loads, all services implement a state moni-
toring mechanism that regularly polls for missing notifications. As both state

20

144

State Interpretation
Transient states
Idle Work unit successfully submitted
Active Work unit currently being processed
Suspended Work unit temporarily suspended (TGMS)
Terminal states
Successful Work unit successfully processed
Canceled Work unit processing canceled
Failed Work unit processing failed
Processed Work unit processed with partial success (TGMS)

Table 1: GJMF state interpretations.

coordination and monitoring mechanisms are encapsulated in the framework
service structures and client APIs, service implementations consider state
delivery transparent and reliable.

As illustrated in Figure 4, each type of GJMF job definition has a corre-
sponding state model that drives processing of jobs, tasks, and task groups in
the GJMF. In this model, jobs, tasks, and task groups are referred to as work
units, and assigned individual work unit contexts that are exposed to clients
through service interfaces and WS-ResourceProperties. A brief summary of
state interpretations for GJMF work units is given in Table 1.

5.4. Data Management

To maintain middleware transparency, the GJMF does not actively par-
ticipate in data transfers. The GJMF assumes that data files are available
and can be transfered to and from computational resources by enacting Grid
middlewares via file transfer mechanisms chosen by the middlewares. File
staging information is conveyed as part of job descriptions, typically in the
form of GridFTP [15] URLs, and JSDL annotations can be used to provide
job brokering hints related to storage requirements for computational ele-
ments. Data files are expected to be available prior to job submission (i.e.
the GJMF does not verify the existence of data files during brokering), and
computational resources and clients are responsible for maintaining file sys-
tem allocations capable of accommodating incoming and outgoing data files
respectively.

Data transfer URLs are translated by the JTS to formats recognized by
the underlying middleware as part of the job description translation process.

21

145

If the underlying middleware does not support file staging, the JCS cus-
tomization points can be used to provide data transfer capabilities as part
of the middleware job submission process without coupling GJMF clients or
services to underlying middlewares. Plans to extend the GJMF with utility
mechanisms and services for data management are under investigation, see
Section 7.

5.5. Resource Brokering

To decouple the GJMF services from Grid middlewares and each other,
all job to computational resource brokering activities are in the GJMF ab-
stracted by the RSS, which in turn relies on Grid middleware information
systems for monitoring of computational resource availability, characteris-
tics, and load. As middleware information systems typically contain large
volumes of cached information, and Grid environments are likely to contain
multiple concurrent job submission and management systems, such broker-
ing components will always operate on information that is to some extent
deprecated [23].

The RSS is limited to provide computational resource recommendations
(execution plans) without feedback from service clients. This abstraction
implies that the RSS is agnostic of whether a particular execution plan is
enacted or not. To compensate for middleware information system update
latencies, it would be possible to maintain an internal cache of prior execution
plans and update resource load weights through speculation. As the RSS
enforces user-level isolation of service capabilities, a unique cache would be
created for each user and restricted to contain recommendations for that
user.

To improve quality of resource brokering, it would be possible to interface
the RSS with Grid accounting and load balancing systems, e.g., the SweGrid
Accounting System (SGAS) [32], as well as provide the RSS with feedback
from the JCS or job submission systems such as the Job Submission Service
(JSS) [23]. To reduce system complexity and maintain a clean separation of
concerns, the RSS does not implement speculative resource load prediction,
but it does offer customization points for third party implementation of ad-
vanced brokering algorithms where such feedback loops can be implemented
without affecting the design of the framework.

The current implementation of the RSS is to be regarded a prototype,
we foresee development of additional RSS versions with resource selection
capabilities of particular interest for certain users [22]. Evaluation of RSS

22

146

brokering performance and quality of execution plans is considered out of
scope for this work.

5.6. Security

The GJMF employs the Grid Security Infrastructure (GSI) [29] security
model provided by the Globus Toolkit [25], and can be configured to use
Secure Message, Secure Conversation, or Credentials Delegation (i.e. use
of the Globus Delegation Service) communication mechanisms. Client and
service security modes are individually configured using security descriptors,
and service client identities are verified for all service invocations from ex-
ternal clients. For service invocations using GJMF local call optimizations,
i.e. from codeployed service clients, credential proxies are accepted without
verification of caller identity. This relaxation of authentication is done for
performance reasons and is deemed acceptable for situations where mutual
trust is established between services and deployment environments. GJMF
local call optimizations can be disabled or replaced with Apache Axis lo-
cal call optimizations for situations where verification of caller identity is
required to be enforced.

All types of job definitions, including task groups, are upon submission
associated with a set of user credentials used for, e.g., user authentication,
resource ownership, and job execution privileges. User credentials are inher-
ited in subsequent submissions within the GJMF, i.e. task group credentials
are assigned to tasks upon submission to a TMS, and jobs are assigned task
credentials when submitted to a JCS. Task groups distinguish themselves
from jobs and tasks by the ability to be suspended in execution, e.g., upon
expiration of task group credentials.

For each user invoking a GJMF service, a separate service implementa-
tion (back-end) is instantiated. This enforces user-level isolation of service
capabilities and provides sandboxing of service resources between users. Ser-
vice caller identity is also used to enforce a similar restriction of access to
service WS-Resources.

To facilitate construction of job submission proxies, a requirement in,
e.g., Grid portal construction [20], clients may specify separate execution
credentials for tasks. GJMF resources (including LAS logs) resulting from
such submissions are owned by the the execution credentials identity. Au-
thentication of caller credentials is performed in GJMF service invocations,
but authentication of execution credentials may be deferred (by use of local
call optimizations) until Grid middleware job submissions.

23

147

5.7. Performance Characteristics
While a detailed performance analysis is out of scope for this contribu-

tion, brief remarks regarding performance characteristics of the framework
are included to motivate use of the framework. Implementation of the frame-
work as a network of Web Services introduces overhead for service invoca-
tion, which can be mediated using invocation optimization mechanisms and
masked by parallel processing of framework tasks.

Web Service invocation throughput is typically limited by two factors;
service computational complexity and service invocation overhead. In the
GJMF, services are designed to have low computational complexity, and
framework invocation overhead is addressed by use of service invocation opti-
mization mechanisms. The BSS and JCS are designed to make synchronous
invocations to underlying systems, and are limited by the job submission
performance of Grid middlewares. Other services of the GJMF employ asyn-
chronous invocation processing models and do not suffer this limitation. To
address invocation overhead issues, the GJMF employs two invocation opti-
mization mechanisms; local calls and batch invocations.

To analyze performance of the framework prototype and evaluate impact
of architecture design on system overhead, extensive job submission and pro-
cessing performance tests have been undertaken. In tests, framework perfor-
mance regarding service invocation capability (with and without invocation
optimizations), job submission throughput, and job processing throughput
(under ideal and realistic settings) have been quantified against baseline per-
formance measurements of underlying Grid middlewares. All tests have been
performed under realistic operational settings, using WS-Security Secure-
Conversation and production use deployments of GT4, Torque, and Maui.

Results indicate that total system overhead can be subdivided into three
components: submission overhead, processing overhead, and job execution
overhead. Submission overhead is incurred during submission of tasks to
the framework, and typically ranges from 1 to 30 seconds per invocation
depending on factors such as class loading overhead (for Java-based service
clients), encryption overhead (varies with security model), and transmission
overhead (mainly consisting of network latency and XML message serializa-
tion overhead). Impact of submission overhead can be mediated by use of
batch invocation modes (that reduce the number of invocations) and use
of asynchronous processing mechanisms (that reduce service response time).
In tests (using large task groups and full WS-Security), effective submission
overhead contributions are reduced to fractions of seconds per job.

24

148

Processing overhead consists of service computation and invocation over-
head. When framework services are co-deployed, invocation overhead can
be reduced to the order of milliseconds by use of local call optimizations.
Services using synchronous processing models (BSS and JCS) are limited
by performance of underlying systems and produce the largest contributions
to total system overhead. Concurrent use of local call optimizations and
asynchronous invocation processing models reduce total service invocation
overhead contributions to the order of milliseconds.

Job execution overhead is here defined to include factors such as mid-
dleware submission overhead, scheduling overhead, staging and execution
makespan, i.e. external factors outside of framework control. For realistic
scenarios, job execution overhead is typically several orders of magnitude
larger than GJMF contributions to system overhead. Performance of GJMF
local call optimizations are tested and found competitive when compared to
similar mechanisms in GT4 and Apache Axis.

In summary, total overhead introduced by use of the GJMF for, e.g., job
submission, brokering, and monitoring, can be limited to less than one second
per job for realistic usage scenarios. Impact of framework overhead on system
performance is mitigated by mechanisms such as asynchronous and parallel
processing of tasks, batch invocation modes, and local call optimizations.
For further and detailed performance evaluation information, see [51].

6. Related Work

A number of contributions that in various ways relate to the job manage-
ment architecture proposed in this work have been identified. Standardiza-
tion efforts such as JSDL [9], GLUE [8], OGSA BES [27], and OGSA RSS
[28] have helped shape boundaries between niches in the Grid infrastruc-
ture component ecosystem, and directly impacted the design of the proposed
architecture. Standardized Web Service and security technologies such as
WSRF [26], WSDL [13], SOAP [38], and GSI [5] have outlined the archi-
tecture communication models, and Grid middleware and resource manager
systems such as the Globus middleware [33], NorduGrid ARC [16], Con-
dor [56], and BOINC [7] have all contributed to the design of the archi-
tecture’s middleware abstraction layer. Standardization and interoperability
efforts such as The Open Grid Services Architecture (OGSA) [28], the Open
Middleware Infrastructure Institute (OMII Europe) [50], and Grid Interop-
eration/Interoperability Now (GIN) [37], as well as contributions such as

25

149

[10, 44, 52, 60] have provided perspective, insight, and inspiration to archi-
tecture interoperability design.

The Grid resource management system survey presented in [45] provides
a taxonomy of Grid job management systems. In this model, the GJMF is
classified as a job management system providing soft quality of service for
computational Grids. Resource organization, namespace, information sys-
tem, discovery, and dissemination as defined in this model are all determined
by the underlying middleware. Type of scheduler organization is determined
by how the framework is employed, but is typically expected to be decen-
tralized for multi-user use of the framework. Non-predictive state estimation
models are currently provided by the RSS, along with event-driven and ex-
tensible (re)scheduling policies.

Job management systems exhibiting similarities in design or intended use
have been identified, and include

The GridWay Metascheduler [39], a framework for adaptive scheduling
and execution of Grid jobs. Like the GJMF, GridWay builds on the Globus
Toolkit and offers an abstractive type of Grid job submission focused on
reliable and autonomous execution of jobs. Both systems provide failover
capabilities through resubmission of jobs, where GridWay offers job migra-
tion capabilities through checkpointing and migration interfaces, whereas
the GJMF focuses on abstraction of Grid middleware capabilities and sys-
tem composability, and offers coarse-grained resubmission policies in higher
services. GridWay also offers a performance degradation mechanism which
may be used to detect and trigger job migration mechanisms. The GJMF as-
sumes computational hosts maintain consistent performance levels and relies
on Grid applications and middlewares to handle checkpointing and applica-
tion preemption issues.

The Falkon [54] framework provides a fast and lightweight task execution
framework focused on task throughput and efficiency. Falkon is by design
not a fully featured local resource manager, and achieves high job submis-
sion throughput rates through, e.g., elimination of features such as multiple
submission queues and accounting, and the use of custom protocols for state
updates. Both Falkon and the GJMF are service-based frameworks and make
use of notifications for distributed state notifications, but are in essence de-
signed for different use cases. Falkon is, e.g., designed for efficient job sub-
missions and achieve much higher submission throughput that the GJMF,
whereas the GJMF, e.g., provides middleware-transparency to service clients.

The Minimum intrusion Grid (MIG) [42] is a framework aimed at pro-

26

150

viding Grid middleware functionality while placing as little requirements as
possible on Grid users and resources. Building on existing operating system
and Grid tools such as SSH and X.509 certificates, the MIG provides a non-
intrusive integration model and abstracts the use of Grid resources through
service-based interfaces. The approaches differ on a number of points, e.g.,
where the MIG uses a centralized and monolithic job scheduler the GJMF
provides a framework of composable services and abstracts use of Grid mid-
dlewares.

The Imperial College e-Science Networked Infrastructure (ICENI) [31] is
a composable OGSA Grid middleware implementation based on Jini. ICENI
provides a semantic approach to build autonomously composable Grid infras-
tructure components where services are annotated with capability informa-
tion and new services are instantiated through SLA negotiations with exist-
ing services. The ICENI composability approach differs from the GJMF one,
whereas the GJMF only provides mechanisms for framework (re)composition
and service customization. ICENI also exposes service implementations lo-
cally through the Jini registry, a mechanism similar to the GJMF local call
optimizations, and provisions for plug-in implementations of schedulers and
launchers [63] in a way similar to the GJMF RSS customization points. Com-
pared to ICENI, the GJMF provides additional functionality in terms of
higher-level abstractions of job management, client APIs, more flexible de-
ployment options, and greater standardization support.

The Job Submission Service (JSS) [23] is a resource brokering and job
submission service developed in the GIRD [58] project. The JSS supports ad-
vanced brokering capabilities, e.g., advance reservation of resources and coal-
location of jobs, customization of algorithms through plug-ins, and standards-
based middleware-agnostic job submission. Compared to the JSS, the GJMF
provides additional functionality in, e.g., management and monitoring of jobs
and groups of jobs, client APIs, logging capabilities, translation of job de-
scriptions, and incorporation of more recent standardization efforts. Work
on the GJMF builds on experiences from the JSS project.

All of these approaches are considered to operate in, or close to, the Grid
middleware layer in the GJMF architectural model, and could be integrated
with the GJMF as Grid middleware providers.

eNANOS [55] is a resource broker that abstracts Grid resource use and
provides an API-based model of Grid access. Internally, uniform resource
and job descriptions combined with XML-based user multi-criteria descrip-
tions provide dynamic policy management mechanisms facilitating use of

27

151

advanced brokering mechanisms. Job and resource monitoring mechanisms
are provided, and failure handling through resubmission of jobs is supported.
The primary differences between eNANOS and the GJMF lie in the flexibility
of the GJMF architecture, which provides dynamic composition of the frame-
work and additional levels of abstraction of job management functionality.
The GJMF also builds on standardization efforts such as JSDL, WSRF, and
the OGSA BES.

The Community Scheduler Framework (CSF4) [62] is an OGSA-based
open source Grid meta-scheduler. Like the GJMF, CSF4 is constructed as
a framework of Web Services, builds on GT4, provides WSRF compliance,
and exposes abstractions for job submission and control. In addition, CSF4
also provides user-selectable job submission queues and a mechanism for
advance reservation of resources (via local resource managers). Compared
to the CSF4, the GJMF provides support for concurrent use of multiple
middlewares, framework composability, standards compliance, and a Java-
based client API.

The GridLab Grid Application Toolkit (GAT) [4] is a high-level toolkit
for Grid application development. The fundamental ideas behind the GAT
and the GJMF are similar, both aim to decouple Grid applications from
middlewares by providing middleware-agnostic Grid access through client
APIs aimed at simplifying Grid application development. The GAT builds
on the GridLab [3] architecture which aims to be a complete Grid utilization
platform, providing, e.g., data management services (including data transfer
and replica management capabilities), monitoring services, and services for
visualization of data, while the GJMF provides a composable and lean archi-
tecture for Grid utilization focusing on job management functionality, and
relying on underlying middlewares for job control and file staging capabilities.

GridSAM [46] is a standards-based job submission system that builds on
standardization efforts such as JSDL, and aims to provide transparent job
submission capabilities independent of underlying resource managers through
a Web Service interface. Similar to the asynchronous job processing of the
GJMF, GridSAM employs a job submission pipeline inspired by the staged
event-driven architecture (SEDA) [61] that allows for short response times in
job submission. Fault recovery capabilities are in GridSAM built by persist-
ing event queues and job instance information, similar to the failure handling
mechanisms of the GJMF that provide redundancy and resubmission capa-
bilities. Compared to GridSAM, the GJMF provides additional functionality
for composition of the framework, job description translation functionality,

28

152

job monitoring capabilities, and multiple job submission and control mecha-
nisms.

Nimrod-G [12] provides a layered architecture for resource management
and scheduling for computational Grids. Nimrod-G provides an economy-
driven broker that supports user-defined deadline and budget constraints for
schedule optimizations [1], and manages supply and demand of resources
through the Grid Architecture for Computational Economy (GRACE) [11].
Like the GJMF architecture, the Nimrod-G provides layered abstractions of
middleware access components and facilitates use of parameter-sweep style
applications. While the GJMF lacks capabilities for economy-based schedul-
ing decisions, it offers customization points for these types of mechanisms
in the RSS, and provides a flexible architecture that can incorporate usage
pattern-specific adaptations with only local modifications.

The Gridbus [59] broker is a Grid broker that mediates access to dis-
tributed data and computational resources, and brokers jobs to resources
based on data transfer optimality criteria. Gridbus extends the resource
broker model of Nimrod-G, defining a hierarchical model for job brokering
containing separate resource discovery, Grid scheduling, and monitoring com-
ponents. Like in the GJMF, tasks are defined as sequences of commands that
describe user requirements, including, e.g., file staging and job execution in-
formation, located within the task description itself. Task requirements drive
resource discovery and tasks are resolved into jobs, here defined as units of
work sent to Grid nodes, i.e. instantiations of tasks with unique combina-
tions of parameter values. The Gridbus broker also abstracts use of multiple
middlewares through a service-based interface. Differences between the two
platforms include, e.g., Gridbus heuristics-based scheduling strategies, and
the GJMF’s ability to reconfigure framework deployments.

GMarte [6] is a Grid metascheduler framework exposing a high-level Java
API for Grid application development. Like the GJMF, the GMarte archi-
tecture is built in layers and employs a middleware abstraction layer that ab-
stracts use of multiple middlewares. GMarte also provides failure handling
through resubmission of jobs, and extends upon this through provisioning
for application-level checkpointing of job executions. GMarte exposes a Java
client API, plug-in points for information system access, and a service-based
interface through GMarteGS [48], which supports WS-BaseNotification based
state updates. The GJMF differs from the GMarte on a number of points,
e.g., through the use of standardization efforts like JSDL and the OGSA
BES, and by providing a dynamically composable architecture.

29

153

The Grid Meta-Broker Service (GMBS) [43] addresses Grid job manage-
ment in a way similar to the GJMF. The goals of both projects include to pro-
vide interoperability between Grids through automation and virtualization of
job management without modification of Grid middleware deployments. The
GMBS defines an architecture for interoperability on a meta-broker level,
defines languages for meta-broker scheduling and broker description, and
performs brokering of jobs to resource brokers in a way similar to how the
GJMF performs brokering of jobs to resources. Both architectures expose
functionality through WSDL-based Web Service interfaces, build on stan-
dardization efforts, define translation components for JSDL documents, and
provide broker- / resource-specific invocation components. While the GJMF
and GMBS are similar in design, concept, and goals, they operate on dif-
ferent levels in the Grid job management stack. The GMBS provides Grid
interoperability through high-level meta-brokering, whereas the GJMF de-
fines a flexible architecture that provides interfaces to multiple types of job
management functionality. With modification, the GMBS could make use of
the lower layers of the GJMF for resource brokering, and the higher layers of
the GJMF could be adapted to make use of the GMBS for job management.

All of these contributions are considered to operate on a layer higher
than the Grid middleware layer in the GJMF architecture, and are as job
management solutions considered alternative approaches to the GJMF. Each
system could naturally be incorporated with the GJMF as Grid middleware
accessors, or could with modifications utilize the GJMF in a similar manner.
Furthermore, there exists a number of workflow-based approaches to Grid
job management, e.g., ASKALON [24], Pegasus [14], and GWEE [18]. These
have been omitted here as the scope of this work is restricted to generic
job management architectures. Naturally, with modifications, most of these
could make use of the GJMF for middleware-transparent Grid access.

Finally, a few slightly different approaches have been identified, e.g., P-
GRADE [41], which is a high-level environment for transparent enactment of
parallel and Grid execution of applications. P-GRADE abstracts use of Grid
resources through Condor and Globus interfaces, and provides enactment of
individual jobs, MPI jobs, and workflows through generation of job wrapper
scripts that stage, checkpoint, and execute jobs on computational resources.
P-GRADE also supports monitoring of jobs and resources through tools pro-
vided by the environment, and job migration through checkpointing. Com-
pared to P-GRADE, the GJMF provides a different approach, focusing on
infrastructure for autonomic job management rather than facilitation of Grid

30

154

execution of applications. The GJMF assumes the existence of Grid appli-
cations and provides functionality to automate the job management process,
e.g., high-level abstractions for execution of groups of tasks and client APIs.

EMPEROR [2] is an OGSA-based Grid meta-scheduler framework for
dynamic job scheduling. EMPEROR provides a framework for performance-
based scheduling optimization algorithms based on time-series analysis of job
history, as well as support for advance reservations (through local resource
managers). The GJMF does not perform speculative scheduling or advance
reservations, but offers customization points for such mechanisms. Compared
to EMPEROR, the GJMF provides a more flexible architecture, greater stan-
dardization support, and multiple levels of job management abstractions.

7. Future Work

A number of possible future extensions to the framework have been iden-
tified and are under investigation.

• Data management. The GJMF is envisioned to be complemented with
a service-based, middleware- and transport-agnostic data management
abstraction that builds on top of mechanisms such as GridFTP and
Grid Storage Brokers, and integrates seamlessly with the GJMF ser-
vices and service clients. Support for data management would need to
be provided by implementations of GJMF middleware customization
points in the JCS, as well as by GJMF service clients. Interesting re-
search questions regarding this extension include, e.g., investigation of
transport-agnostic mechanisms for integration with advanced job man-
agement mechanisms.

• Workflow management. While the GJMF currently integrates well with
workflow management systems by offering transparent Grid access, the
framework itself lacks support for execution of interdependent tasks. A
middleware-agnostic tool for execution of static workflows would pro-
vide a management solution similar in functionality to the higher-order
services of the GJMF for tasks and task groups.

• Adaptation of the framework to other environments. Currently, the
GJMF builds and relies on GT4 for deployment and is therefor depen-
dent on the Apache Axis SOAP engine. The GJMF service structure is
designed to keep service core functionality independent of underlying

31

155

service engine, which should facilitate adaptations to alternative service
environments, e.g., Apache Axis2 and Apache CXF. Preliminary inves-
tigation reveals that modification of the GJMF service security model
and exposure of service state as WSRF resource properties are likely
to be required for future adaptations. Adaptation of the framework to
new Globus Toolkit versions is also of interest.

8. Conclusion

We have proposed a flexible and loosely coupled architecture for middleware-
agnostic Grid job management. The architecture is designed as a composable
framework of Web Services that abstracts resource and system heterogene-
ity on multiple levels. The framework is intended for use in Grid environ-
ments and makes no assumptions of centralized control of resources or om-
niscience in scheduling. Focus is placed on interoperability and maintaining
non-intrusive coexistence and integration models. The architecture builds on
standardization efforts such as JSDL, WSRF, OGSA BES, and OGSA RSS.

The architecture is organized in hierarchical layers of functionality, where
services abstract and aggregate functionality from services in underlying lay-
ers. Services in lower layers provide explicit job submission capabilities and a
fine-grained control model for the job management process while services in
higher layers attempt to automate the job management process and provide
a more coarse-grained control model through preconfigured job control and
failure handling mechanisms. The architecture is designed to decouple Grid
applications from Grid middlewares and infrastructure components, and ab-
stract Grid functionality through generic Grid job management interfaces.
Applications built on the framework are loosely coupled to underlying Grids,
gain portability and flexibility in deployment, and utilize heterogeneous Grid
resources transparently.

In this work we have also presented a proof-of-concept implementation of
the architecture that builds on Grid and Web Service standardization efforts
and supports a range of Grid middlewares. Middleware transparency is pro-
vided through a set of middleware abstraction services and aggregated Grid
job management functionality is built on top of these. Services of the frame-
work are individually configurable, and can be customized through configura-
tion and the use of plug-ins without affecting other framework components.
Framework composition can be dynamically altered and adapt to failures
occurring in job submission or execution.

32

156

All services in the framework provide user-level isolation of service capa-
bilities that function as if each user has exclusive access to the framework.
Any service can at any time be used by service clients as an autonomous
job management component while concurrently serving as a component in
the framework. The use of local call optimizations allow service composition
techniques to be used to construct software that simultaneously function as
networks of services and monolithic architectures.

9. Acknowledgements

We extend gratitude to Peter Gardfjäll, Arvid Norberg, and Johan Tords-
son who’s prior work and feedback provides a foundation for this work. We
acknowledge the Swedish Research Council (VR) who supports the project
under contract 621-2005-3667, and the High Performance Computer Center
North (HPC2N) on who’s resources the research is performed.

References

[1] D. Abramson, R. Buyya, and J. Giddy. A computational economy for
grid computing and its implementation in the Nimrod-G resource broker.
Future Generation Computer Systems, 18(8):1061–1074, 2002.

[2] L. Adzigogov, J. Soldatos, and L. Polymenakos. EMPEROR: An OGSA
Grid meta-scheduler based on dynamic resource predictions. J. Grid
Computing, 3(1–2):19–37, 2005.

[3] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kiel-
mann, A. Merzky, J. Nabrzyski, J. Pukacki, T. Radke, M. Russell,
E. Seidel, J. Shalf, and I. Taylor. Enabling applications on the Grid
- a GridLab overview. Int. J. High Perf. Comput. Appl., 17(4), 2003.

[4] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schott,
E. Seidel, and B. Ullmer. The Grid Application Toolkit: Toward generic
and easy application programming interfaces for the Grid. Proceedings
of the IEEE, 93(3):534–550, 2005.

[5] The Globus Alliance. Globus Toolkit Version 4
Grid Security Infrastructure: A Standards Perspective.

33

157

http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-
Overview.pdf, March 2010.

[6] J.M. Alonso, V. Hernández, and G. Moltó. Gmarte: Grid middleware to
abstract remote task execution. Concurrency and Computation: Prac-
tice and Experience, 18(15):2021–2036, 2006.

[7] D.P. Anderson. BOINC: A system for public-resource computing and
storage. In 5th IEEE/ACM International Workshop on Grid Computing,
pages 4–10, 2004.

[8] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya,
M. Litmaath, P. Millar, and J.P. Navarro. GLUE specification
v. 2.0. http://www.ogf.org/Public Comment Docs/Documents/2008-
06/ogfglue2rendering.pdf, March 2010.

[9] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
A. S. McGough, D. Pulsipher, and A. Savva. Job Sub-
mission Description Language (JSDL) specification, version 1.0.
http://www.ogf.org/documents/GFD.56.pdf, March 2010.

[10] N. Bobroff, L. Fong, S. Kalayci, Y. Liu, J.C. Martinez, I. Rodero S.M.
Sadjadi, and D. Villegas. Enabling interoperability among meta-
schedulers. In T. Priol et al., editors, CCGRID 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid, pages
306–315, 2008.

[11] R. Buyya, D. Abramson, and J. Giddy. An economy driven resource
management architecture for global computational power grids, 2000.

[12] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An architecture of a
resource management and scheduling system in a global computational
grid. CoRR, cs.DC/0009021, 2000.

[13] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl,
March 2010.

[14] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and D.S. Katz.

34

158

Pegasus: a framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13(3):219–237, 2005.

[15] W. Allcock (editor). GridFTP: Protocol extensions to FTP for the Grid.
http://www.ogf.org/documents/GFD.20.pdf, March 2010.

[16] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann,
I. Livenson, J. L. Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen.
Advanced resource connector middleware for lightweight computational
Grids. Future Generation Computer Systems, 27(2):219–240, 2007.

[17] E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg.
Designing general, composable, and middleware-independent Grid in-
frastructure tools for multi-tiered job management. In T. Priol and
M. Vaneschi, editors, Towards Next Generation Grids, pages 175–184.
Springer-Verlag, 2007.

[18] E. Elmroth, F. Hernández, and J. Tordsson. A light-weight Grid work-
flow execution engine enabling client and middleware independence. In
R. Wyrzykowski et al., editors, Parallel Processing and Applied Mathe-
matics, Lecture Notes in Computer Science, vol. 4967, pages 754–761.
Springer-Verlag, 2008.

[19] E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing
service-based resource management tools for a healthy Grid ecosystem.
In R. Wyrzykowski et al., editors, Parallel Processing and Applied Math-
ematics, Lecture Notes in Computer Science, vol. 4967, pages 259–270.
Springer-Verlag, 2008.

[20] E. Elmroth, S. Holmgren, J. Lindemann, S. Toor, and P-O. Östberg.
Empowering a flexible application portal with a soa-based grid job man-
agement framework. In The 9th International Workshop on State-of-the-
Art in Scientific and Parallel Computing, to appear, 2009.

[21] E. Elmroth and P-O. Östberg. Dynamic and Transparent Service Com-
positions Techniques for Service-Oriented Grid Architectures. In S. Gor-
latch, P. Fragopoulou, and T. Priol, editors, Integrated Research in Grid
Computing, pages 323–334. Crete University Press, 2008.

35

159

[22] E. Elmroth and J. Tordsson. Grid resource brokering algorithms en-
abling advance reservations and resource selection based on perfor-
mance predictions. Future Generation Computer Systems. The Interna-
tional Journal of Grid Computing: Theory, Methods and Applications,
24(6):585–593, 2008.

[23] E. Elmroth and J. Tordsson. A standards-based Grid resource brokering
service supporting advance reservations, coallocation and cross-Grid in-
teroperability. Concurrency and Computation: Practice and Experience,
Vol. 25, No. 18, pp. 2298 - 2335, 2009.

[24] T. Fahringer, R. Prodan, R.Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and
M. Wieczorek. ASKALON: A development and Grid computing en-
vironment for scientific workflows. In I. Taylor et al., editors, Workflows
for e-Science, pages 450–471. Springer-Verlag, 2007.

[25] I. Foster. Globus toolkit version 4: Software for service-oriented systems.
In H. Jin, D. Reed, andW. Jiang, editors, IFIP International Conference
on Network and Parallel Computing, LNCS 3779, pages 2–13. Springer-
Verlag, 2005.

[26] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Fer-
guson, F. Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey,
W. Vambenepe, and S. Weerawarana. Modeling stateful resources with
Web services. http://www-106.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.pdf, March 2010.

[27] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan,
S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, and
M. Theimer. OGSA c© basic execution service version 1.0.
http://www.ogf.org/documents/GFD.108.pdf, March 2010.

[28] I. Foster, H.Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and
J. Von Reich. The Open Grid Services Architecture, Version 1.5.
http://www.ogf.org/documents/GFD.80.pdf, March 2010.

[29] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architec-
ture for computational Grids. In Proc. 5th ACM Conference on Com-
puter and Communications Security Conference, pages 83–92, 1998.

36

160

[30] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-g:
A computation management agent for multi-institutional grids. Cluster
Computing, 5(3):237–246, 2002.

[31] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington.
ICENI: an open grid service architecture implemented with Jini. In Pro-
ceedings of the 2002 ACM/IEEE conference on Supercomputing, pages
1–10. IEEE Computer Society Press Los Alamitos, CA, USA, 2002.

[32] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm.
Scalable Grid-wide capacity allocation with the SweGrid Accounting
System (SGAS). Concurrency Computat.: Pract. Exper., 20(18):2089–
2122, 2008.

[33] Globus. http://www.globus.org. March 2010.

[34] S. Graham and B. Murray (editors). Web Services Base Notification 1.2
(WS-BaseNotification). http://docs.oasis-open.org/wsn/2004/06/wsn-
WS-BaseNotification-1.2-draft-03.pdf, March 2010.

[35] S. Graham and J. Treadwell (editors). Web Services Resource Properties
1.2 (WS-ResourceProperties). http://docs.oasis-open.org/wsrf/wsrf-
ws resource properties-1.2-spec-os.pdf, March 2010.

[36] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, and I. Sedukhin
(editors). Web Services Resource 1.2 (WS-Resource). http://docs.oasis-
open.org/wsrf/wsrf-ws resource-1.2-spec-os.pdf, March 2010.

[37] Grid Interoperability Now. http://wiki.nesc.ac.uk/gin-jobs/. March
2010.

[38] M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, H. Frystyk Nielsen,
A. Karmarkar, and Y. Lafon. SOAP version 1.2 part 1: Messaging
framework. http://www.w3.org/TR/soap12-part1/, March 2010.

[39] E. Huedo, R.S. Montero, and I.M. Llorente. A framework for adaptive
execution on Grids. Software - Practice and Experience, 34(7):631–651,
2004.

[40] Cluster Resources inc. Torque resource manager.
http://www.clusterresources.com/pages/products/torque-resource-
manager.php, March 2010.

37

161

[41] P. Kacsuk, G. Dozsa, J. Kovacs, R. Lovas, N. Podhorszki, Z. Balaton,
and G. Gombas. P-GRADE: a Grid programming environment. Journal
of Grid Computing, 1(2):171 – 197, 2003.

[42] H.H. Karlsen and B. Vinter. Minimum intrusion Grid - The Simple
Model. In 14th IEEE International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprise (WETICE’05), pages
305–310, 2005.

[43] A. Kertesz and P. Kacsuk. GMBS: A new middleware service for making
grids interoperable. Future Generation Computer Systems, 26(4), pages
542–553, 2010.

[44] A. Kertesz and P. Kacsuk. Meta-Broker for Future Generation Grids:
A new approach for a high-level interoperable resource management.
In CoreGRID Workshop on Grid Middleware in conjunction with ISC,
volume 7, pages 25–26. Springer, 2007.

[45] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of
Grid resource management systems for distributed computing. Softw.
Pract. Exper., 32(2):135–164, 2002.

[46] W. Lee, A. S. McGough, and J. Darlington. Performance evaluation of
the GridSAM job submission and monitoring system. In UK e-Science
All Hands Meeting, pages 915–922, 2005.

[47] H. Li, D. Groep, L. Wolters, and J. Templon. Job Failure Analysis and
Its Implications in a Large-Scale Production Grid. In Proceedings of the
2nd IEEE International Conference on e-Science and Grid Computing,
2006.

[48] G. Moltó, V. Hernández, and J.M. Alonso. A service-oriented WSRF-
based architecture for metascheduling on computational grids. Future
Generation Computer Systems, 24(4):317–328, 2008.

[49] OASIS Open. Reference Model for Service Oriented Architecture
1.0. http://www.oasis-open.org/committees/download.php/19679/soa-
rm-cs.pdf, March 2010.

[50] OMII Europe. OMII Europe - open middleware infrastructure institute.
http://omii-europe.org, March 2010.

38

162

[51] P-O. Östberg and E. Elmroth. Impact of Service Overhead on Service-
Oriented Grid Architectures. Submitted, 2010. Preprint available at
http://www.cs.umu.se/ds.

[52] G. Pierantoni, B. Coghlan, E. Kenny, O. Lyttleton, D. O’Callaghan, and
G. Quigley. Interoperability using a Metagrid Architecture. In ExpGrid
workshop at HPDC2006 The 15th IEEE International Symposium on
High Performance Distributed Computing, Paris, France, February 2006.

[53] I. Raicu, I.T. Foster, and Y. Zhao. Many-task computing for grids and
supercomputers. In Many-Task Computing on Grids and Supercomput-
ers, 2008. MTAGS 2008. Workshop on, pages 1–11, 2008.

[54] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: a
Fast and Light-weight tasK executiON framework. In Proceedings of
IEEE/ACM Supercomputing 07, 2007.

[55] I. Rodero, J. Corbalán, R. M. Badia, and J. Labarta. eNANOS Grid
Resource Broker. In P. M. A. Sloot, A. G. Hoekstra, T. Priol, A. Reine-
feld, and M. Bubak, editors, Advances in Grid Computing - EGC 2005,
LNCS 3470, pages 111–121, 2005.

[56] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in
practice: The Condor experience. Concurrency Computat. Pract. Ex-
per., 17(2–4):323–356, 2005.

[57] The Globus Project. An “ecosystem” of Grid components.
http://www.globus.org/grid software/ecology.php, December 2009.

[58] The Grid Infrastructure Research & Development (GIRD) project.
Ume̊a University, Sweden. http://www.cs.umu.se/ds, March 2010.

[59] S. Venugopal, R. Buyya, and L. Winton. A Grid service broker for
scheduling e-Science applications on global data Grids. Concurrency
Computat. Pract. Exper., 18(6):685–699, May 2006.

[60] S. Venugopal, K. Nadiminti, H. Gibbins, and R. Buyya. Designing a
resource broker for heterogeneous grids. Softw. Pract. Exper., 38(8):793–
825, 2008.

39

163

[61] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-connected scalable internet services. Operating System Review,
35(5):230–243, 2001.

[62] W. Xiaohui, D. Zhaohui, Y. Shutao, H. Chang, and L. Huizhen. CSF4:
A WSRF Compliant Meta-Scheduler. In The 2006 World Congress
in Computer Science, Computer Engineering, and Applied Computing,
pages 61–67. GCA’06, 2006.

[63] L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling ar-
chitecture and algorithms within the ICENI Grid middleware. In Simon
Cox, editor, Proceedings of the UK e-Science All Hands Meeting, pages
5 – 12, 2003.

40

164

V

Paper V

Impact of Service Overhead on Service-Oriented Grid
Architectures

Per-Olov Östberg and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{p-o, elmroth}@cs.umu.se
http://www.cs.umu.se/ds

Abstract: Grid computing applications and infrastructures build heavily on Service-
Oriented Computing development methodology and are often realized as Service-
Oriented Architectures. Current Service-Oriented Architecture methodology renders
service components as Web Services, and suffers performance limitations from Web
Service overhead. The Grid Job Management Framework (GJMF) is a flexible Grid
infrastructure and application support component realized as a loosely coupled net-
work of Web Services that offers a range of abstractive and platform independent
interfaces for middleware-agnostic Grid job submission, monitoring, and control. In
this paper we a present a performance evaluation aimed to characterize the impact of
service overhead on Grid Service-Oriented Architectures and evaluate the efficiency
of the GJMF architecture and optimization mechanisms designed to mediate impact
of Web Service overhead on architecture performance.

Key words: Grid computing, Grid job management, Grid ecosystem, Performance
Analysis, Service-Oriented Architecture.

167

168

Impact of Service Overhead on
Service-Oriented Grid Architectures

Per-Olov Östberg
Umeå University

SE-901 87
Umeå, Sweden
p-o@cs.umu.se

Erik Elmroth
Umeå University

SE-901 87
Umeå, Sweden

elmroth@cs.umu.se

Abstract—Grid computing applications and infrastructures
build heavily on Service-Oriented Computing development
methodology and are often realized as Service-Oriented Ar-
chitectures. Current Service-Oriented Architecture methodology
renders service components as Web Services, and suffers per-
formance limitations from Web Service overhead. The Grid
Job Management Framework (GJMF) is a flexible Grid in-
frastructure and application support component realized as a
loosely coupled network of Web Services that offers a range of
abstractive and platform independent interfaces for middleware-
agnostic Grid job submission, monitoring, and control. In
this paper we a present a performance evaluation aimed to
characterize the impact of service overhead on Grid Service-
Oriented Architectures and evaluate the efficiency of the GJMF
architecture and optimization mechanisms designed to mediate
impact of Web Service overhead on architecture performance.

Keywords-Grid computing; Grid job management; Grid
ecosystem; Performance Analysis; Service-Oriented Architecture

I. INTRODUCTION

This paper presents a performance evaluation aimed to
characterize and quantify impact of Web Service overhead on
Grid Service-Oriented Architectures. The Grid Job Manage-
ment Framework (GJMF) [13], an infrastructure component
for computational Grid environments realized as a loosely
coupled network of layered Web Services, is used as a testbed
for experimentation and the efficiency of GJMF mechanisms
designed to mediate impact of Web Service overhead are
evaluated against the functionality offered by the framework.

Grid computing is an approach to distributed computing
designed to provide scalable computational infrastructures
through federation and aggregation of existing resources into
virtual systems. Resources are typically aggregated through
middlewares that abstract underlying resource systems and
organize Grid user bases in Virtual Organizations. To facilitate
application integration and provide desirable middleware fea-
tures such as platform and language independence, many Grid
middlewares utilize Service-Oriented Computing methodology
and expose interfaces in the form of Web Services.

A number of Grid middlewares have evolved and are in
production use. Despite being designed to alleviate the inter-
operability issues that exist between native resource systems,
Grid middlewares exhibit interoperability issues due to hetero-

geneity in, e.g., security models, job description formats, and
job control interfaces. The GJMF is designed to abstract Grid
middleware heterogeneity and provide middleware-agnostic,
flexible, and intuitive job management interfaces [13].

To provide platform independence and interoperability, the
GJMF exposes functionality through SOAP WSRF Web Ser-
vices and is subject to well-known Web Service invocation
overhead issues. In this paper we investigate the impact of
service invocation overhead on framework performance, and
evaluate effectiveness of mechanisms, e.g., asynchronous mes-
sage processing, batch invocations, and local call invocation
optimizations, designed to mediate service overhead impact.

The rest of this paper is organized as follows. Section II pro-
vides an overview of the GJMF architecture and components.
Section III presents a performance evaluation categorizing and
quantifying framework overhead and the efficiency of a set of
overhead mediation mechanisms. Section IV presents a brief
sampling of related work, and Section V concludes the paper.

II. THE GRID JOB MANAGEMENT FRAMEWORK

The Grid Job Management Framework (GJMF) [13], is a
hierarchical network of services designed to provide intuitive
and middleware-agnostic interfaces to Grid job management.
The framework offers concurrent and transparent access to
multiple middlewares, is designed to be flexible in deploy-
ment, and can be tailored through dynamic reconfiguration
and customization points to alter component and framework
behavior. The framework design is based on a software devel-
opment methodology inspired by the notion of an ecosystem
of Grid infrastructure components [4], [17], and supports a
model for distributed software reuse where components can
be discovered, replaced, or updated dynamically.

Implemented as a Globus Toolkit [5] Java SOA, the GJMF
is platform and language independent, and provides a Grid
access model that abstracts Web Service development com-
plexity. Framework design is based on a number of Grid
and Web Service standards, e.g., the Job Submission De-
scription Language (JSDL) [2], the Web Service Description
Language (WSDL) [3], the Web Service Resource Framework
(WSRF) [6], and the OGSA Basic Execution Service (OGSA
BES) [7] and Resource Selection Services (OGSA RSS) [8].

169

Fig. 1: The GJMF framework architecture. Services organized in hierarchical layers of functionality. Within the framework
services communicate hierarchically, service clients are not restricted to this invocation pattern. Illustration from [13].

A. Architecture

As illustrated in Figure 1, the GJMF architecture stratifies
a set of typical Grid job management mechanisms into six
layers. Framework layers are populated by Web Services that
implement well-defined interfaces to common types of Grid
job management. Detailed information about the design and
implementation of the GJMF is available in [13], here we give
a brief overview of the architecture and components of interest
to the performance evaluation. The bottom layers of the
architecture abstract Grid-specific interfaces and technology,
and isolate the rest of the framework from middleware-specific
dependencies. Services in higher layers aggregate functionality
from services in lower layers and provide increasing levels of
(customizable) automation. The GJMF architecture is designed
to provide deployment flexibility and abstract Grid infrastruc-
ture development and administration complexity.

B. Components

The core of the GJMF architecture consists of five services.
The middleware abstraction layer is populated by the Job
Control Service (JCS), which provides a middleware agnostic
interface for job submission, control, and monitoring based on
the OGSA BES, and the Resource Selection Service (RSS), a
middleware information system monitoring and job execution
plan formulation service based on the OGSA RSS.

For brokered job submission, the GJMF defines the Bro-
kering and Submission Service (BSS), which employs the
RSS and the JCS for job to resource matching and job
submission respectively. Atop the BSS, the Task Management
Service (TMS) defines a high-level ”fire and forget” type of
job management interface for Grid application integration.
Internally, the TMS makes use of the BSS for job brokering
and submission, and the JCS for job monitoring and con-
trol. The TMS defines job submission and execution failure
handler policies and provides a high-level interface for job
management. Similar in structure to the TMS, the Task Group

Management Service (TGMS) provides a high-level interface
for managing groups of tasks in a single context.

In addition to the core functionality set, the GJMF provides
services for job description translation and log management.
The JSDL Translation Service (JTS) defines an interface for
translation of job description documents between JSDL and
Grid middleware job description formats, and is in GJMF
employed to decouple the JCS from middleware dependencies.
Service clients may employ the JTS to facilitate migration of
Grid applications by translating middleware-specific job de-
scriptions to standardized JSDL documents. The Log Accessor
Service (LAS) provides a log database service interface that
stateful (i.e. task processing) GJMF services can use to store
task and job processing information. The LAS can be utilized
by service clients to track task progress and state.

All high-level GJMF services employ asynchronous com-
munication patterns and support batch invocation modes.
Services expose plug-in customization points and employ
dynamic reconfiguration mechanisms to allow third parties to
tailor component and architecture functionality to deployment
environments. Services can be deployed in distributed patterns
and employ local call optimizations for increased invocation
performance when co-deployed.

III. PERFORMANCE EVALUATION

To measure framework efficiency, and characterize Web
Service overhead impact on performance, we define GJMF
overhead as the time penalty imposed by use of the frame-
work and use it as a cost function for efficiency. To gain
a generalized model for Grid overhead and correlate GJMF
overhead to it, we define Grid overhead as time spent per-
forming any job enactment task other than execution of a job
binary. This model defines Grid tasks such as brokering, job
submission, and file staging as Grid overhead. To isolate GJMF
contributions to Grid overhead, we model Grid overhead as a

170

(a) Sequential invocations to an infinite resource set. Total
makespan is limited by the submission overhead component.

(b) Sequential invocations to a single resource. Total makespan is limited by the execution
overhead component (execution overhead masks submission and processing overhead).

(c) Batch invocation to an infinite resource set. Total makespan
is limited by the processing overhead component.

(d) Batch invocation to a single resource. Total makespan is limited by the execution
overhead component (execution overhead masks submission and processing overhead).

Fig. 2: A model for Grid job enactment overhead. Submission overhead, processing (GJMF) overhead, and execution overhead
(illustrated in gray, red, and black, respectively) are sequential components of the makespan of a job. When jobs outnumber
computational resources, the execution overhead component dominates the total makespan of a set of jobs.

process divided into three sequential components; submission
overhead, processing overhead, and execution overhead.

Submission overhead is defined as overhead incurred prior
to a job being present in a GJMF service and consists of
factors such as Java class loading and Web Service invocation
time. Processing overhead is the GJMF overhead contribution
and consists of factors such as internal GJMF communication
latencies and time spent performing job management tasks,
e.g., job brokering and failure handling. Execution overhead
is defined as time spent performing actions related to execution
of a job on a computational resource, e.g., Grid middleware
submission, file staging, job execution, execution environment
clean-up, and status update delivery. In this model, submission
and execution overhead are external to the GJMF, and imposed
by service clients, middlewares, and native resource systems.

As illustrated in Figure 2, total overhead for enactment of a
group of jobs depends on the saturation level of the resource
set used for job enactment. As the GJMF is constructed in
hierarchical layers, the GJMF services can process jobs in
pipelines, facilitating parallel processing of tasks that allows
the GJMF to mask overhead contributions through temporal
overlaps between task processing and job executions. Total
system overhead imposed by the GJMF is constituted by the
sum of GJMF overhead contributions subtracted by overhead
the GJMF is able to mask by parallel processing of tasks.

When the number of available computational hosts exceeds
the number of jobs, the GJMF ability to mask overhead is
limited and system overhead is bound by the submission and
processing overhead components, as illustrated in Figure 2a
and Figure 2c. When the number of jobs exceeds the number
of available computational hosts, total system overhead is
bound by the job execution overhead component. The GJMF
ability to mask overhead contributions from individual jobs in
these situations is illustrated in figures 2b and 2d.

To quantify overhead incurred by the GJMF, we configure a
GJMF deployment to operate on top of a Grid middleware and
compare job submission and processing performance to using
the middleware directly. Total overhead imposed by the GJMF
is calculated as the makespan of processing a group of jobs
subtracted by a known theoretical minimum time required to

execute all jobs in the group on an ideal system, i.e. a system
that does not impose job execution overhead.

To isolate individual contributions to total system overhead
we employ deployment options designed to minimize the
contribution and impact of external, i.e. non-GJMF, overhead
components, and measure job submission time and makespan
for all GJMF job management components. To quantify the
GJMF contributions to total system overhead, measurements of
Grid middleware overhead are used as a comparative baseline
for the minimum time required to process groups of jobs.

A. Test Environment

As the tests of the performance evaluation focus on in-
vestigating overhead imposed by the GJMF, a limited test
environment is sufficient as these performance limitations are
independent of the number of computational resources used.

The test environment used in the evaluation is comprised
of four identical 2 GHz AMD Opteron CPU, 2 GB RAM
machines, interconnected with a 100 Mbps Ethernet network,
and running Ubuntu Linux and Globus Toolkit 4.0.5. Another
set of four identical 1.8 GHz quad core AMD Opteron CPU, 4
GB RAM machines, interconnected using a Gigabit Ethernet
network, and running Ubuntu Linux, Torque 2.3, and Maui
3.2.6 are employed as computational nodes in job throughput
tests. The Java version used in tests is 1.6.0, and memory
allocation pools range in size from 512 MB to 1 GB. As
GJMF overhead is independent of middleware overhead, and
the purpose of the performance evaluation is to investigate
GJMF overhead contributions to total system overhead, a test
setup using an older middleware version is acceptable.

We employ GT4 WS-GRAM as a Grid middleware and run
/bin/true executions for ideal jobs (zero execution time) and
/bin/sleep executions for jobs with known, non-zero execution
times. To maximize impact of GJMF overhead when testing
ideal jobs, we utilize the GT4 Fork job dispatch mechanism.
For tests of realistic deployment scenarios we use the GT4
PBS job dispatch module, and submit jobs to a local cluster
using Torque. To minimize the impact of stochastic network
behaviors in our overhead measurements we do not use jobs
that involve file transfers. Not using file transfers constitutes
a worst case scenario for GJMF overhead as it reduces GJMF

171

ability to mask overhead (GJMF relies on middlewares for
file staging). The known length of the test jobs are used as a
theoretical minimum time for executing a job. A single middle-
ware is used in tests as the evaluation aims to quantify GJMF
overhead rather than illustrate middleware independence. More
information about the Globus Toolkit can be found in [5].

In the tests, we use the GT4 WS-SecureConversation [1] se-
curity mechanism with client and service security descriptors
in all Web Service invocations, including communication with
the underlying Grid middleware. This mechanism performs
authentication and encryption of communication channels,
increases communication overhead and reduces invocation
throughput for Web Service invocations. The selected security
setup is used in some high security production Grid deploy-
ments, and is used for these tests as it represents a worst case
scenario for invocation throughput.

B. Performance Tests

The purpose of the evaluation experiments is to investigate
individual overhead contributions to total system overhead,
relate overhead imposed by the GJMF to the functionality
offered by the framework, and characterize service overhead
contributions to GJMF overhead. In the evaluation, we perform
a set of tests of service invocation capabilities, job submission
performance, and job throughput to quantify and evaluate
impact of the GJMF overhead on total system overhead. The
tests performed are based on the overhead model illustrated
in Figure 2 and designed to illustrate individual aspects of the
framework overhead. The five types of tests performed are:

a) Job submission tests (Section III-B1): Investigate
GJMF service client overhead associated with job submission
and illustrate the impact of, and the trade-offs between,
different service deployment and invocation methods.

b) Job throughput tests for ideal computational settings
(Section III-B2): Investigate service overhead for scenarios
illustrated in figures 2a and 2c, where computational resources
outnumber jobs. This constitutes a worst-case scenario for
GJMF overhead and quantifies an upper bound for overhead
imposed by use of the framework.

c) Job throughput tests for realistic computational set-
tings (Section III-B3): Investigate service overhead for sce-
narios illustrated in figures 2b and 2d, where jobs outnumber
computational resources. These tests illustrate GJMF ability
to mask overhead through task parallelization.

d) Service invocation capability tests (Section III-B4):
Investigate invocation throughput for the GJMF auxiliary
services to quantify their contributions to total system over-
head and illustrate trade-offs between service communication
overhead and service complexity.

e) Service invocation optimization tests (Section III-B5):
Investigate performance trade-offs for different types of invo-
cation optimization mechanisms and illustrate the impact of
local call optimizations on service communication overhead.

1) Job Submission: To evaluate GJMF job submission over-
head we measure the framework’s submission throughput and
quantify it against a baseline measurement of GT4 WS-GRAM

job submission performance. To illustrate trade-offs involved
when using the GJMF from service clients, we perform tests
using sequential and batch invocation modes for Web Service
invocations and local call optimization invocations.

For all tests, job, task, and task group submission perfor-
mance is measured as turn-around time for submission in
service clients using realistic job descriptions. Average job
submission makespan is used as a direct measurement of the
overhead incurred by the GJMF for job submission.

As can be seen in Figure 3, JCS and BSS job submission
throughput is slightly lower than that of GT4 WS-GRAM.
This is expected as both these services perform synchronized
invocations to the underlying middleware for job submission,
and thus add their overhead contributions to the middleware’s
overhead contribution. The JCS also performs a job description
translation from JSDL to GT4 RSL (via a JTS) and in addition
to this, the BSS also performs a task to resource matching
(via a RSS). TGMS and TMS throughput is higher than GT4
WS-GRAM throughput as they contain submission buffers that
allow them to perform asynchronous message processing. The
TGMS exhibits the highest throughput as it submits multiple
tasks in single service invocations. As can be seen in Figure 3b,
use of batch invocation modes enables the TMS to submit
multiple tasks in a single WS invocation, and thus increase
submission throughput. Compared to the TGMS however,
TMS throughput is slightly lower. This is due to the TMS
incurring overhead from multiple synchronized calls to the
TMS service back-end during the submission phase.

When using local call optimizations, as illustrated in Fig-
ure 3c and 3d, submission overhead can be reduced for all
GJMF services. The TGMS and TMS achieve very high
submission throughput due to their ability to perform asyn-
chronous job submissions. Use of local call optimizations
reduce invocation overhead to a range where impact of this
overhead component becomes almost negligible.

2) Job Throughput for Ideal Computational Settings: To
evaluate and get an upper bound for the processing overhead
component of total system overhead, we measure framework
job processing throughput when the GJMF’s ability to mask
overhead is minimized, and quantify it against a baseline
measurement of GT4 WS-GRAM job processing performance.
As indicated in Figure 2, this occurs when the number of
available computational resources exceeds the number of jobs.
To simulate this, and isolate and maximize impact of the
GJMF overhead, we submit jobs with zero execution time,
i.e. /bin/true executions, to the GT4 middleware using the
Fork dispatcher, which starts all jobs in parallel on the same
machine without delay. As this setting minimizes GJMF ability
to mask processing overhead through task parallelization, it
constitutes a worst-case scenario for GJMF overhead and is
used to quantify an upper bound for GJMF overhead (for non-
failing jobs). Job, task, and task group throughput are mea-
sured using sequential and batch invocation modes for Web
Service invocations and local call optimization invocations.

As can be seen in Figure 4, the GJMF incurs an average
performance penalty of less than one second per job for ideal

172

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

Jo
b

 s
u

b
m

is
si

o
n

 t
h

ro
u

g
h

p
u

t
(j

o
b

s
/

s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(a) GRAM and GJMF job submission throughput. Sequential job submis-
sions using Web Service invocations.

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

Jo
b

 s
u

b
m

is
si

o
n

 t
h

ro
u

g
h

p
u

t
(j

o
b

s
/

s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(b) GRAM and GJMF job submission throughput. Batch job submissions
using Web Service invocations.

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

Jo
b

 s
u

b
m

is
si

o
n

 t
h

ro
u

g
h

p
u

t
(j

o
b

s
/

s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(c) GRAM and GJMF job submission throughput. Sequential job submis-
sions using local call optimization invocations.

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

Jo
b

 s
u

b
m

is
si

o
n

 t
h

ro
u

g
h

p
u

t
(j

o
b

s
/

s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(d) GRAM and GJMF job submission throughput. Batch job submissions
using local call optimization invocations.

Fig. 3: GJMF job submission performance. Job submission throughput as a function of number of jobs. Vertical axis logarithmic.

(zero execution time) jobs. This overhead includes factors such
as job submission, interservice communication, job broker-
ing, and distributed state management. Batch invocation Web
Service invocation job submissions (Figure 4b) mediate the
incurred overhead somewhat. Particularly, JCS overhead is
reduced to a level close to that of using GT4 WS-GRAM
directly. As the BSS performs task to resource matching,
the BSS and services using the BSS, i.e. TGMS and TMS,
suffer overhead from the brokering process that, as illustrated
in figures 2a and 2b, is partially masked by the submission
overhead when using sequential invocation modes (Figure 4a).

When using service clients co-deployed with the GJMF, as
illustrated in figures 4c and 4d, GJMF local call optimizations
allow JCS overhead to be reduced to close to GT4 WS-
GRAM performance regardless of invocation mode. Local call
optimizations do not greatly affect the throughput of the other
GJMF services as these are still bound by brokering overhead.
It is worth noting that while local call optimizations do not
increase throughput in these tests, they do reduce memory load
for clients and services involved, promoting system scalability.
BSS brokering overhead can also be masked by external
overhead and job execution times, allowing higher order GJMF
services to approach WS-GRAM throughput.

Use of the GT4 Fork mechanism for job dispatchment
results in all jobs executing as spawned processes on the

local machine. Despite the use of a computationally cheap
process, this still causes increased load on the machine that
in the measurements show as a slight decrease in average
job throughput for all services (including the WS-GRAM) as
the number of jobs increase. In tests using large numbers of
jobs, use of full Web Service invocations results in memory
starvation effects in the service container, negatively affecting
service processing throughput. This effect can be observed
for the TMS, BSS, and JCS in figures 4a and 4b. Note that
the TGMS does not suffer from this effect as it performs
single service invocations for task group submissions, and
uses delays between subsequent TMS task submissions. Use
of batch invocation modes alleviates this effect for all services,
but does not eliminate it as back-end invocations still marshal
requests and create job and task resources.

3) Job Throughput for Realistic Computational Settings:
To evaluate the processing overhead component of total system
overhead under more realistic circumstances, we measure
framework job processing throughput and quantify overhead
incurred by the GJMF when deployed with a production
environment system (GT4 and PBS Torque) against a baseline
measurement of GT4 WS-GRAM job processing performance.
In these tests, the number of jobs exceeds the number of
available computational resources, allowing the GJMF to mask
overhead through parallel task processing. To establish a

173

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(a) GRAM and GJMF job makespan. Sequential job submissions using Web
Service invocations.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(b) GRAM and GJMF job makespan. Batch job submissions using Web
Service invocations.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(c) GRAM and GJMF job makespan. Sequential job submissions using local
call optimization invocations.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(d) GRAM and GJMF job makespan. Batch job submissions using local call
optimization invocations.

Fig. 4: GJMF job processing performance, ideal computational settings. Job makespan as a function of number of jobs.

theoretical minimum time required to execute a set of jobs, we
employ /bin/sleep jobs of a known, non-zero execution length
in the tests. Job, task, and task group throughput are measured
using sequential and batch invocation modes for Web Service
invocations and local call optimization invocations.

In Figure 5, a theoretical minimum time for execution of a
set of jobs (based on number of jobs, job execution length, and
number of available computational hosts) is subtracted from
each measurement to better illustrate overhead components. As
illustrated, a stochastic element is introduced to the overhead
model for the system. This is a result of using the PBS
scheduler, which has two polling intervals for job submission
and job status inspection (in the tests 60 and 120 seconds).
PBS Torque also implements a behavior where jobs arriving to
an empty PBS queue are scheduled faster than the scheduling
interval may suggest. In the tests job execution lengths are
set to 60 seconds, which combined with the PBS scheduling
intervals result in each set of jobs receiving an overhead contri-
bution from PBS of between 0 and 180 seconds depending on
when in the scheduling cycle a job arrives and terminates. PBS
overhead contribution appears stochastic as the GJMF and the
PBS scheduling mechanisms are not synchronized. The GJMF
overhead is in the tests partially masked by job execution times
and is, independently of invocation mode and mechanism,
small enough to be masked by the PBS component.

The term realistic computational settings is here used to
denote job management components operating in a setting
where non-zero job execution overhead and duration allow the
GJMF to mask individual service overhead contributions. In
realistic scenarios, job execution durations are typically orders
of magnitude larger, and mask GJMF overhead more. Job
execution durations used here are selected to be sufficiently
small to allow for greater numbers of tests.

4) GJMF Auxiliary Services: To evaluate performance of
the GJMF auxiliary services, quantify RSS overhead contribu-
tions in job throughput tests, and illustrate impact of invocation
modes and mechanisms on interservice communication within
the framework, we measure invocation throughput of the LAS,
JTS, and RSS using sequential and batch invocation modes for
Web Service and local call optimization invocations. For all
tests, typical GJMF tasks containing full JSDL documents are
used as service invocation parameters. In the LAS tests tasks
are stored in logs, for the JTS tests task JSDLs are translated to
GT4 RSL, and in the RSS tests tasks are matched to resources.

As can be seen in Figure 6, local call optimizations allow
greater invocation throughput than Web Service invocations
and batch invocations increase invocation throughput for the
auxiliary services. The LAS implements an asynchronous
communication model that allows service client invocation
throughput to be bound by communication overhead (Fig-

174

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(a) GRAM and GJMF job makespan. Sequential job submissions using Web
Service invocations.

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(b) GRAM and GJMF job makespan. Batch job submissions using Web
Service invocations.

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(c) GRAM and GJMF job makespan. Sequential job submissions using local
call optimization invocations.

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(d) GRAM and GJMF job makespan. Batch job submissions using local call
optimization invocations.

Fig. 5: GJMF job processing performance, realistic computational settings. Job makespan as a function of number of jobs. A
stochastic element is introduced to the execution overhead component by the batch system. Vertical axis logarithmic.

ure 6a). The JTS and RSS provide synchronous request
processing models, and are performance bound by the pro-
cessing capacity of the service implementation as well as the
communication overhead (figures 6b and 6c, respectively).

The JTS is able to process requests efficiently enough to in-
crease invocation throughput by use of local call optimizations
as it implements context-dependent job description translations
through customization points. While the RSS implements
background information retrieval for brokering information,
the brokering process itself is complex enough to be the
limiting factor for invocation throughput. In this case, use of
local call optimizations does not affect invocation throughput.
As these measurements are made using the same setup as the
job submission and throughput tests of sections III-B1, III-B2,
and III-B3, the values for local call optimization tests can be
used as rough estimates of the individual overhead contribu-
tions of these services to GJMF processing overhead.

5) Local Call Optimizations: As framework services are
likely to be co-deployed, local call optimizations are expected
to heavily affect framework performance. To evaluate per-
formance and impact of the GJMF local call optimization
mechanisms, we measure invocation throughput for a reference
service using the GJMF local call optimizations and compare
it to invocation throughput for the same service using Axis

Local Calls, Globus Local Invocations, Axis Web Service
invocations, and direct Java method invocations to the service
implementation. As the GJMF services are implemented in
Java, measurements of Java method invocations will constitute
a measurement of the maximal possible invocation throughput
in the test environment, and serve as a baseline for comparison.
To minimize impact of memory starvation effects in the tests,
invocations are made sequentially and in parallel (with a
multithreaded service client) using small messages.

The different types of service invocation mechanisms used
in the tests are illustrated in Figure 7. GJMF local call
optimizations identify service implementation back-ends based
on class name and perform marshaling of service invocation
data using immutable wrapper types. Globus Local Invoca-
tions perform service implementation lookup through a Java
Naming and Directory Interface (JNDI) [16] based container
service registry and utilize generated stub types for service
invocation data representations. Axis Local Calls locate service
implementations through the same container service registry
and perform full SOAP serializations of service messages.

As illustrated in Figure 8, local call optimizations greatly
improve service invocation throughput. GJMF local call mech-
anisms provide invocation performance comparable to existing
Axis and Globus optimizations. All invocation optimizations

175

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Batch Local Call
Sequential Local Call
Batch Invocation Call

Sequential Invocation Call

(a) The Log Accessor Service.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Batch Local Call
Sequential Local Call
Batch Invocation Call

Sequential Invocation Call

(b) The JSDL Translation Service.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Batch Local Call
Sequential Local Call
Batch Invocation Call

Sequential Invocation Call

(c) The Resource Selection Service.

Fig. 6: Auxiliary service performance. Invocation throughput as a function of number of invocations. Vertical axis logarithmic.

Fig. 7: Local call optimization types. Illustrates actors and overhead involved.

scale well for large numbers of parallel invocations, while
Axis Web Service invocation throughput drops due to service
container memory and thread pool exhaustion issues. GJMF
local call optimizations provide local call capabilities for state
notification delivery with comparable performance. This is not
evaluated in the tests as Globus Local Invocations and Axis
Local Calls do not support this functionality.

GJMF local call optimizations require less memory than
Axis and Globus invocation optimizations as the GJMF mech-
anisms do not perform message serialization, maintain mes-
sage contexts, or invoke message handlers for local service
invocations. While this does not directly affect service invo-

cation performance, it reduces service container memory load
when using WS-BaseNotification based notification schemes.
As can be seen in Figure 8a, the Globus local invocation
mechanism outperforms the GJMF local calls for sequential
service invocations due to two factors. First, the Globus local
invocation mechanism performs a caching of Web Service
objects between invocations, and second, the GJMF performs
context-based type validation of job description data in im-
mutable wrapper types. For the parallel invocation case illus-
trated in Figure 8b, GJMF local call optimizations outperforms
the Globus local invocations mechanism, which is attributed to
the lower memory usage of the GJMF local call optimizations.

176

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Java Method Invocation
GJMF Local Call

Globus Local Invocation
Axis Local Call

Axis Web Service Invocation

(a) Sequential invocations.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Java Method Invocation
GJMF Local Call

Globus Local Invocation
Axis Local Call

Axis Web Service Invocation

(b) Parallel invocations.

Fig. 8: Web Service invocation throughput using different types of invocation optimization mechanisms. Service invocation
throughput as a function of number of invocations. Vertical axis logarithmic.

C. Discussion

In the GJMF, task processing is parallelized and, as illus-
trated in Figure 2, overhead masked by job submission and job
execution overhead. As also illustrated, parallelization of job
execution is independent of GJMF overhead and a function
of the number of computational resources available. When the
number of jobs exceeds the number of nodes available for
immediate job submission (as illustrated in 2b and 2d), GJMF
job processing is performed in parallel with job executions,
and job durations mask impact of overhead incurred by the
GJMF. For realistic scenarios, e.g. use of co-deployed GJMF
services in computational Grids, job durations are typically
several orders of magnitude larger than overhead incurred by
the GJMF and help mask GJMF overhead even when large
numbers of computational resources are available. Combined
with the typically high utilization rates of Grids, this effect is
expected to effectively mediate impact of GJMF overhead.

As the greater bulk of the GJMF job processing overhead
is constituted of service invocation, co-hosting GJMF services
allows local call optimizations to reduce the overhead con-
tribution of the GJMF job processing mechanisms to a level
where the initial job submission overhead component becomes
dominant. For distributed clients, job submission overhead for
groups of jobs can be mediated to a one-time cost by use
of batch invocation modes (illustrated in 2c and 2d). In most
cases, submission overhead impacts total overhead regardless
of whether the GJMF is used or not, but the various invocation
and deployment modes of the GJMF can be used to mediate
this effect. GJMF processing overhead can be mediated by
GJMF deployment and configuration options, e.g., by use of
co-deployment of services and local call optimizations. Use
of batch invocation modes for service invocations conserve
network bandwidth and reduce memory footprints of GJMF
services and clients. Use of local call optimizations eliminates
network bandwidth requirements and reduces memory and
CPU used for service invocations to a minimum.

The overhead model used here (illustrated in Figure 2) is
somewhat simplified as the GJMF incurs additional overhead

associated with failure handling and resubmission in situations
where jobs fail. As common causes for Grid job submission
failures include, e.g., submission of erroneous job descriptions,
Grid congestion scenarios (lack of available computational
resources), and resource overload situations [12], the GJMF
is designed to approach these situations using incremental
back-off behaviors modeled after network failure handling
protocols. As a result, the overhead component associated with
failure handling is expected to quickly become dominant in
total system overhead for individual jobs, but should not affect
other Grid jobs, resources, or end-users. As rational failure
handling depends on the failure context, i.e. why and how a
job fails, this behavior is hard to objectively quantify in general
settings and not evaluated in tests.

IV. RELATED WORK

Alternative approaches to Grid job management include,
e.g., The GridWay Metascheduler [10] and the Community
Scheduler Framework (CSF4) [19]. Both of these contributions
are Grid meta-schedulers built using the Globus Toolkit and
designed to abstract complexity in job management. GridWay
provides a metascheduler framework for adaptive scheduling
and execution of Grid jobs focused on reliable and autonomous
execution of jobs. CSF4 is constructed as a framework of
WSRF Web Services and based on OGSA.

Falkon [15] is a lightweight task execution framework
designed for Many Task Computing [14]. Falkon and GJMF
are both service-based frameworks, but designed for different
use cases using different technologies. Falkon achieves high
job submission throughput rates through optimizations such
as custom state update protocols, while GJMF provides, e.g.,
multiple middleware-agnostic job management interfaces.

GridSAM [11] is a standards-based job submission system
that abstracts underlying resource managers through a Web
Service interface. GridSAM employs a staged event-driven
architecture (SEDA) [18] job submission pipeline designed
to reduce job submission response times very similar to the
asynchronous job processing of the GJMF.

177

The Simple API for Grid Applications (SAGA) [9] is an API
standardization initiative that like the GJMF aims to provide a
unified interface to Grid integration. SAGA features separation
of functionality in layers, but the design philosophy of the
SAGA API differs from the GJMF in, e.g., that asynchronicity
is handled via polling rather than publish/subscribe notification
schemes. Performance evaluations comparing the GJMF to
implementations of the SAGA API are subject for future work.

Compared to these approaches GJMF provides, e.g., concur-
rent access to multiple Grid middlewares, dynamic reconfigu-
ration and recomposition of the framework, and job description
translation functionality. More exhaustive treatment of Grid
job management mechanisms is available in [13].

V. CONCLUSION

In this paper we evaluate the architecture of the Grid Job
Management Framework, and investigate the impact of service
invocation overhead on framework performance. Investigation
indicates that framework overhead is mainly constituted by
Web Service invocation latencies, and a number of tests
are undertaken to evaluate the effectiveness of mechanisms
designed to mediate overhead, e.g., asynchronous message
processing, batch invocations, and local call optimizations.

Service components are likely to be co-hosted, and the
GJMF is equipped with local call invocation optimization
mechanisms that reduce invocation overhead and mediate con-
tainer load. For distributed deployments, the GJMF is equipped
with batch invocation mechanisms that reduce invocation and
message processing overhead. Asynchronous message pro-
cessing mechanisms and message buffers reduce invocation
latencies and facilitate task parallelism in the framework.

As the GJMF utilizes Web Services as a distributed com-
ponent platform the framework suffers non-neglibile overhead
from service communication. Construction of the framework
as layers of loosely coupled services affords the GJMF de-
ployment flexibility and the ability to partially mask overhead
imposed by service communication through task paralleliza-
tion. Use of techniques such as local call optimizations (co-
deployed services), asynchronous message processing, and
batch invocation modes (distributed services) allow services to
effectively minimize service invocation overhead. Combined
with sound architecture design and coarse-grained commu-
nication patterns, these techniques effectively mitigate the
impact of Web Service overhead on architecture performance.
The effective overhead imposed by use of the GJMF for Grid
job management is less than one second per job, demonstrating
that Web Services are a viable realization platform for Service-
Oriented Grid Architectures.

VI. ACKNOWLEDGEMENTS

The authors extend their gratitude to Keith Jackson for
valuable feedback and interesting discussions. This work is
done in collaboration with the High Performance Computing
Center North (HPC2N) and is funded by the Swedish Re-
search Council (VR) under Contract 621-2005-3667 and the
Swedish Government’s strategic research project eSSENCE.

The authors acknowledge the Lawrence Berkeley National
Laboratory (LBNL) for supporting the project under U.S.
Department of Energy Contract DE-AC02-05CH11231.

REFERENCES

[1] The Globus Alliance. Globus Toolkit Version 4
Grid Security Infrastructure: A Standards Perspective.
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf,
February 2011.

[2] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
A. S. McGough, D. Pulsipher, and A. Savva. Job Sub-
mission Description Language (JSDL) specification, version 1.0.
http://www.ogf.org/documents/GFD.56.pdf, February 2011.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl,
February 2011.

[4] E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing
service-based resource management tools for a healthy Grid ecosystem.
In R. Wyrzykowski et al., editors, Parallel Processing and Applied
Mathematics, Lecture Notes in Computer Science, vol. 4967, pages 259–
270. Springer-Verlag, 2008.

[5] I. Foster. Globus toolkit version 4: Software for service-oriented systems.
In H. Jin, D. Reed, and W. Jiang, editors, IFIP International Conference
on Network and Parallel Computing, LNCS 3779, pages 2–13. Springer-
Verlag, 2005.

[6] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson,
F. Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vam-
benepe, and S. Weerawarana. Modeling stateful resources with Web ser-
vices. http://www-106.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf, February 2011.

[7] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse,
S. Pickles, D. Pulsipher, C. Smith, and M. Theimer. OGSA c© basic exe-
cution service version 1.0. http://www.ogf.org/documents/GFD.108.pdf,
February 2011.

[8] I. Foster, H.Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and
J. Von Reich. The Open Grid Services Architecture, Version 1.5.
http://www.ogf.org/documents/GFD.80.pdf, February 2011.

[9] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. Von Laszewski,
C. Lee, A. Merzky, H. Rajic, and J. Shalf. SAGA: A Simple API
for Grid Applications. High-level application programming on the Grid.
Computational Methods in Science and Technology, 12(1):7–20, 2006.

[10] E. Huedo, R.S. Montero, and I.M. Llorente. A framework for adaptive
execution on Grids. Software - Practice and Experience, 34(7):631–651,
2004.

[11] W. Lee, A. S. McGough, and J. Darlington. Performance evaluation of
the GridSAM job submission and monitoring system. In UK e-Science
All Hands Meeting, pages 915–922, 2005.

[12] H. Li, D. Groep, L. Wolters, and J. Templon. Job Failure Analysis and
Its Implications in a Large-Scale Production Grid. In Proceedings of the
2nd IEEE International Conference on e-Science and Grid Computing,
2006.

[13] P-O. Östberg and E. Elmroth. GJMF - A Composable Service-
Oriented Grid Job Management Framework. Preprint available at
http://www.cs.umu.se/ds, submitted, 2010.

[14] I. Raicu, I.T. Foster, and Y. Zhao. Many-task computing for grids and
supercomputers. In Many-Task Computing on Grids and Supercomput-
ers, 2008. MTAGS 2008. Workshop on, pages 1–11, 2008.

[15] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: a
Fast and Light-weight tasK executiON framework. In Proceedings of
IEEE/ACM Supercomputing 07, 2007.

[16] Sun Microsystems. Java Naming and Directory Interface (JNDI).
http://java.sun.com/products/jndi/, February 2011.

[17] The Globus Project. An “ecosystem” of Grid components.
http://www.globus.org/grid software/ecology.php, February 2011.

[18] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-connected scalable internet services. Operating System Review,
35(5):230–243, 2001.

[19] W. Xiaohui, D. Zhaohui, Y. Shutao, H. Chang, and L. Huizhen. CSF4:
A WSRF Compliant Meta-Scheduler. In The 2006 World Congress
in Computer Science, Computer Engineering, and Applied Computing,
pages 61–67. GCA’06, 2006.

178

VI

Paper VI

Empowering a Flexible Application Portal with a
SOA-based Grid Job Management Framework∗

Erik Elmroth1, Sverker Holmgren2, Jonas Lindemann3,
Salman Toor2, and Per-Olov Östberg1

1 Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, p-o}@cs.umu.se http://www.cs.umu.se/ds
2 Dept. Information Technology, Uppsala University,

Box 256, SE-751 05 Uppsala, Sweden
{sverker.holmgren, salman.toor}@it.uu.se http://www.uu.se
3 LUNARC, Lund University, Box 117, SE-221 00, Sweden

jonas.lindemann@lunarc.lu.se http://www.lu.se

Abstract: The complexity of simultaneously providing customized user interfaces
and transparent Grid access has led to a situation where current Grid portals tend to ei-
ther be tightly coupled to specific middlewares or only provide generic user interfaces.
In this work, we build upon the methodology of the Grid Job Management Framework
and propose a flexible and robust 3-tier integration architecture that decouples appli-
cation interface customization from Grid job management. Furthermore, we illustrate
the approach with a proof of concept integration of the Lunarc Application Portal,
which here serves as both a framework for the creation of application-oriented user
interfaces and a Grid portal, and the Grid Job Management Framework, a framework
for transparent access to multiple Grid middlewares. The loosely coupled architecture
facilitates creation of sophisticated user interfaces customized to enduser applications
while preserving the middleware-independence of the job management framework.
The integration architecture is presented together with brief introductions to the inte-
grated systems, and a system evaluation is provided to demonstrate the flexibility of
the architecture.

∗ By permission of Springer Verlag

181

182

Empowering a Flexible Application Portal with
a SOA-based Grid Job Management Framework

Erik Elmroth1, Sverker Holmgren2, Jonas Lindemann3, Salman Toor2, and
Per-Olov Östberg1

1 Dept. Computing Science and HPC2N, Ume̊a University, SE-901 87 Ume̊a, Sweden,
{elmroth, p-o}@cs.umu.se http://www.gird.se

2 Dept. Information Technology, Uppsala University,
Box 256, SE-751 05 Uppsala, Sweden

{sverker.holmgren, salman.toor}@it.uu.se http://www.uu.se
3 LUNARC, Lund University, Box 117, SE-221 00, Sweden

jonas.lindemann@lunarc.lu.se http://www.lu.se

Abstract. The complexity of simultaneously providing customized user
interfaces and transparent Grid access has led to a situation where cur-
rent Grid portals tend to either be tightly coupled to specific middlewares
or only provide generic user interfaces. In this work, we build upon the
methodology of the Grid Job Management Framework and propose a
flexible and robust 3-tier integration architecture that decouples appli-
cation interface customization from Grid job management. Furthermore,
we illustrate the approach with a proof of concept integration of the
Lunarc Application Portal, which here serves as both a framework for
the creation of application-oriented user interfaces and a Grid portal,
and the Grid Job Management Framework, a framework for transparent
access to multiple Grid middlewares. The loosely coupled architecture
facilitates creation of sophisticated user interfaces customized to end-
user applications while preserving the middleware-independence of the
job management framework. The integration architecture is presented to-
gether with brief introductions to the integrated systems, and a system
evaluation is provided to demonstrate the flexibility of the architecture.

1 Introduction

The task of constructing complete, robust, and high-performing systems that
simultaneously provide sophisticated user interfaces and transparent access to
computational resources is inherently complex. The range of Grid middlewares
available today combined with the amount of applications (potentially) running
on Grids introduces additional complexity. Thus, current portal-oriented efforts
towards this goal [8, 11, 13] typically yield solutions that provide application-
oriented interfaces tightly coupled to specific Grid middlewares, or Grid middle-
ware solutions accessible only through generic user interfaces.

In this work we explore an architectural design pattern for development of
advanced end-user applications capable of middleware-agnostic Grid use. We ex-
tend the methodology of [6] to development of flexible Grid portals that combine

183

2 Erik Elmroth et al.

application-oriented user interfaces with transparent Grid access. A 3-tier inte-
gration architecture that abstracts Grid functionality and isolates user interfaces
from job management is proposed, and the approach is illustrated by an inte-
gration of the Lunarc Application Portal, an application-oriented Grid portal,
and the Grid Job Management Framework, a middleware-independent Grid job
management system designed for this purpose. The integration of these systems
provides a flexible architecture where user interfaces can be adapted to specific
applications and abstracted beyond the details of the underlying middleware.

1.1 The Lunarc Application Portal

The Lunarc Application Portal (LAP) is a web-based portal for submitting jobs
to Grid resources [16–18]. The portal is implemented in Python using the Web-
ware for Python [21] application server, and utilizes (in the original design)
ARC/arcLib [5] for submitting and controlling jobs. Webware is a lightweight
application server providing multi-user session handling, servlets, and page ren-
dering. Although Webware provides a built-in web server, most applications use
the Apache web server and a special extension module, mod webkit2, to forward
HTTP requests to the Webware application server. The recommended way of
running LAP is through an SSL-enabled Apache web server.

The LAP can be viewed both as a web portal and as a Python-based frame-
work for implementation of customized user interfaces for Grid-enabled appli-
cations. The core implementation includes a set of modules that provide man-
agement of users and job definitions, security, middleware integration, and user
interface rendering. The portal also provides a set of servlets for non-application
oriented tasks such as job definition creation, job monitoring, and job control.

Support for new applications in LAP is offered through use of customization
points and plug-ins. An LAP plug-in is comprised of a user interface genera-
tion servlet, a task class that defines job attributes, methods for generating job
descriptions, and a set of bootstrap files required for Grid job submission.

In order to simplify the process of implementing user interfaces, LAP provides
an object-oriented user interface module, Web.Ui, that renders HTML for web
user interfaces and handles form submissions. LAP also provides functionality
for automatic generation of xRSL [5] job descriptions.

1.2 The Grid Job Management Framework

Developed in the Grid Infrastructure Research & Development (GIRD) [19]
project, the Grid Job Management Framework (GJMF) [6] is a toolkit for job
management in Grid environments. The design of the framework is a product of
research on service composition techniques [9] and exploration of software design
principles for a healthy Grid ecosystem [7]. The framework is implemented as a
Service-Oriented Architecture (SOA), using Java and the Globus Toolkit [10].

The GJMF is comprised of a hierarchical set of replaceable Web Services
that combined provide an infrastructure for virtualization of Grid middleware
functionality and automatization of the repetitive tasks of job management.

184

LAP-GJMF Integration 3

The granularity of job management in the GJMF ranges from management
of individual jobs to automatic and fault-tolerant processing of sets of abstract
task groups. The GJMF provides middleware virtualization by principle of ab-
straction, and presents a common interface to Grid middleware functionality to
developers and end-users without regard to details of the underlying middleware.
Functionality in the framework not supported by the underlying middleware,
e.g., job state notifications in ARC, is emulated by the framework and presented
to applications and end-users as native resources of the middleware. The GJMF
also provides numerous structures for customization of the job management pro-
cess. This customization ranges from individual configuration of the framework
services to plug-in structures where, e.g., brokering algorithms, monitoring in-
terfaces, failure handling, and job prioritization modules can be provided and
installed by third party developers. See [6] for details.

A full Java client API for the framework is provided and allows developers
with limited experience of Web Service development to utilize the framework.
This API, as demonstrated in this work, facilitates integration of the GJMF
with other systems, e.g., application portals and Grid applications. All features
of the framework are accessible through both the Web Service interfaces and the
Java client API. The GJMF utilizes JSDL [2] for job descriptions, and provides
a translation service for transformations to other job description formats.

2 Integration Architecture

In the proposed architecture, we employ a loosely coupled model where cus-
tomized modules in portals (the LAP) dynamically discover and access compu-
tational resources via a Grid access layer (the GJMF services). The LAP and
GJMF are assigned the following responsibilities in the integration architecture.

– Application management: It is the responsibility of the LAP to provide appli-
cation configuration parameters, gather job submission parameters, create
application file repositories, acquire user credentials, authenticate users in
the Grid environment, and to render user interfaces. For example, the LAP
provides application requirement metadata in job descriptions to indicate
and detail the use of Matlab in applications.

– Grid job management: The GJMF is responsible for all matters pertaining
to Grid job management. This includes functionality for resource brokering,
job submission, job monitoring, job control, and to provide robust handling
of failures in job submission and execution. For example, the GJMF uses the
previously mentioned application requirement metadata to broker Matlab
jobs to Matlab-equipped hosts.

As illustrated in Figure 1, the original 2-tier architecture of the LAP has been
extended into a classical 3-tier architecture [4] where the GJMF services are
accessed through bridge modules and the GJMF client API. As can be seen in
the illustration, the GJMF job management coexists non-intrusively with the
legacy ARC/arcLib-based job management modules of the original LAP.

185

4 Erik Elmroth et al.

Fig. 1. Overview of the LAP-GJMF integration architecture. Integration components
are presented without detailing the internal workings of the LAP or the GJMF.

The integration of the LAP and the GJMF has resulted in the development
of the GJMF Portal Integration Extensions (PIE), a customization of the xRSL
translation capabilities of the GJMF JSDL Translation Service (JTS), as well as
the inclusion of a number of Java-Python bridge components in the LAP.

In the GJMF, it is the purview of the JTS to provide translations between
job description formats and to ensure that job semantics are preserved in the
process. In the case of the LAP-GJMF integration, there are two types of transla-
tions performed: an xRSL to JSDL translation is performed in the LAP upon job
creation, and a translation from JSDL to the actual job description format used
by the middleware (xRSL for ARC, and RSL [10] for GT4) is performed inter-
nally in the GJMF during the final stages of job submission. In the LAP-GJMF
integration, the JTS uses job description annotations to provide semantically
correct translations of application support parameters (e.g., preserving process
environment information) for LAP applications. Naturally, the JTS also contains
customization points for extending the translation capabilities to support other
formats or alternative translation semantics.

The PIE is a Java-based software component consisting of an integration
bridge, a task (group) registry, a submission queue, and a state monitor. These
components provide an LAP interface, manage tasks and task groups, handle
background GJMF submissions, and monitor GJMF state updates respectively.
The PIE effectively wraps use of the GJMF client API and provides functional-
ity for job submission, job control, notification-based state monitoring, and job
brokering to the portal. PIE objects are deployed in authenticated sessions in
the LAP, run inside the LAP process space, and help enforce user-level isolation

186

LAP-GJMF Integration 5

of job information in the portal (each user session is provided a unique PIE in-
stance). In the LAP, bridge modules for job submission, job control, portal status
updates, and job monitoring that interface with the PIE have been added. As
the bridge modules are native to the LAP (i.e., developed in Python), JPype
(version 0.5.3) has been employed to bridge the Java-Python barrier. JPype is a
library that allows Python applications to access Java class libraries within the
Python process space, connecting the virtual machines on native code level.

As also illustrated in Figure 1, the flexibility of the integration architecture
allows existing legacy applications supported by the LAP to continue to function
unaltered, including applications who have not yet been adapted to the new
environment. This is achieved by the portal maintaining a concurrent legacy job
management setup, which utilizes the ARC/arcLib [5] for job management.

When investigating the scalability and flexibility of the architecture, it should
be noted that just as a single LAP can make use of multiple GJMFs, multi-
ple LAPs can make use of the same GJMF. Similarly, just as a single GJMF
can make use of multiple middleware installations concurrently, so can multi-
ple GJMFs utilize the same middleware installation. Furthermore, as demon-
strated by the test configurations of Section 3, the LAP, the GJMF, and the
middleware(s) can all be hosted locally or distributed to dedicated servers over
networks. The components of the architecture are designed to function non-
intrusively [7] for seamless integration in production Grid environments.

3 System Evaluation

To evaluate and demonstrate the flexibility of the proposed architecture, a num-
ber of tests have been performed using a range of test configurations and a set
of Grid applications that are in current production use.

Software Installations.
The test suites in the system evaluation have been run on nodes deploying dif-
ferent configurations of (at least) three software installations.

– LAP node: A front-end deploying an installation of the upgraded LAP. This
node houses the PIE and the bridge components of the integration archi-
tecture as well as a fully functional legacy installation of the original LAP
architecture. For file staging, the LAP node also deploys a GridFTP server.

– GJMF node: A node deploying a full installation of the GJMF. All GJMF
services are run in the same GT4 ws-core 4.0.5 service container to enable
inter-service local call optimizations [6, 9], and all communication is pro-
tected using GT4 Secure Conversation encryption.

– Middleware node(s): A (set of) middleware back-ends, running either the
GT4 or the ARCmiddleware. The middleware node(s) also deploy middleware-
specific GridFTP file staging solutions.

187

6 Erik Elmroth et al.

Fig. 2. The LAP and the production environment deployment configuration.

Deployment Configurations.
To illustrate the robustness and flexibility of the proposed architecture, the sys-
tem is demonstrated in three deployment configurations. NorduGrid certificates
are used for authentication of actors and security contexts in all tests.

– Local environment: All three software components are installed on the same
machine, and each software component executes in a dedicated process.

– Distributed environment: Each software component is installed on a dedi-
cated machine. All machines are located on the same network.

– Generic production environment: As illustrated in Figure 2, each software
component is installed on geographically distributed production machines.
The LAP node is located at LUNARC (Lund, Sweden), the GJMF node at
HPC2N (Ume̊a, Sweden), GT4 middleware node(s) at UPPMAX (Uppsala,
Sweden), and ARC middleware node(s) at NSC (Linköping, Sweden).

Test Applications.
Two applications for which the LAP is in production use today have been used
to gauge the usability of the portal in a production environment.

– Matlab application: The LAP contains a bootstrapping module for initializ-
ing and executing Matlab code on Grid resources without use of the Matlab
Compiler. This type of application requires a Matlab installation on the
computational resource, executes a single job, and performs bidirectional
file staging. The Matlab application module is here tested using an imple-
mentation of finite element code simulating stresses in straddling beams.

– Bioinformatics application (QTL mapping): This application searches for
locations in the genome of an organism affecting a quantitative trait like
body weight, crop yield, etc. The search is performed by solving a demanding

188

LAP-GJMF Integration 7

multidimensional global optimization problem, which is parallelized into a
set of independent jobs. This type of application performs bidirectional file
staging but does not require specific execution environment support libraries.

Usage Scenarios.
In the LAP, the main usage scenarios involve two user roles: the application
expert and the end-user. Support for new applications is added to the LAP
through the creation of application-specific plug-in modules that perform auto-
matic creation of job environments, configuration of application workflows, and
generation of application user interfaces. Creation and configuration of applica-
tions is the responsibility of the application expert (or system administrator).
The process of creating, submitting, and managing jobs is in the LAP performed
by the portal end-user, and includes four conceptual stages.

1. The portal end-user creates a job by instantiating a pre-configured applica-
tion workflow, and supplies the job with required application parameters in
the LAP. This results in the generation of an xRSL job description, which
is later translated to a JSDL job description using the GJMF JTS.

2. The end-user submits the job from the LAP, an action resulting in the sub-
mission of a GJMF task (for single jobs) or a GJMF task group (for multiple
jobs) to the PIE. The PIE places the task or task group in a background
submission queue, and eventually submits it to the GJMF.

3. The GJMF processes the task or task group, submitting and resubmitting it
to middlewares until the process has resulted in a successful job completion.
Portal end-users can monitor task or task group progress in the LAP.

4. Once a task or task group has been processed by the GJMF, the end-user
accesses resulting data files in the LAP, and removes the job from the LAP.
All file stagings are performed by middlewares as GridFTP transfers between
the LAP server and the computational resource used for job execution. The
GJMF conveys file staging information, but is not actively involved in any
file staging scenarios. The file staging semantics of the proposed architecture
differ from the original architecture of the LAP, where end-users manually
fetched job results from computational resources using HTTP requests. File
transfer status is considered part of job execution status and a failed file
staging attempt (in either direction) will result in a failed job. A multi-job
task failure will not affect the status of other multi-job tasks.

4 Performance Observations

We briefly discuss the proposed architecture’s impact on interface response times,
job management overhead, and job execution makespans.

– Interface response times. Compared to the original 2-tier architecture of the
LAP, the proposed integration architecture improves upon the system’s user
interface responsiveness, providing instantaneous response to user actions.
This is due to the background submission queues of the PIE and the new

189

8 Erik Elmroth et al.

architecture’s use of the GJMF notification-based state monitoring, which
improves scalability through a reduced need for middleware state polling.

– Job management overhead. The overhead associated with job management
tasks performed by the GJMF (e.g., resource discovery, task brokering) sum
to an average of less than one second per job and has previously been doc-
umented in [6]. As the GJMF job management overhead is masked by job
execution times, the system-wide impact of this overhead is negligible.

– Job execution makespan. The job execution makespan is made up by fac-
tors such as batch system queue times, middleware overhead, job execution
time, and file staging times. These factors are independent of the proposed
integration architecture and therefor out of the scope of this discussion.

The integration architecture has proven stable and provides enhanced function-
ality and middleware independence with comparable or improved performance.

5 Related Work

There exist a number of projects that implements web interfaces for Grid re-
sources, such as Gridsphere [13], GridBlocks [11], and the P-GRADE portal [15].
The user interfaces of these portals are often designed as workflow editors and
applications are viewed as building blocks in larger contexts. This differs from
our work as the LAP focuses on creation of customized user interfaces for specific
applications, and provides pre-configured workflows for target applications.

There also exist a number of projects related to the GJMF approach to job
management, e.g., the Gridbus [20] middleware that employs a layered architec-
ture and platform-independent approach to Grid job management; the GridWay
Metascheduler [14] that provides reliable and autonomous execution of Grid jobs;
the GridLab Grid Application Toolkit [1] that provides a service-oriented toolkit
for Grid application development; GridSAM [12] that uses JSDL job descriptions
and offers middleware-abstracted job submission through Web Services; and P-
GRADE [15], which provides fault-tolerant Grid execution of parallel programs.

Related to the integration architecture, a kin project is the GEMLCA [3]
integration with P-GRADE [15], where the layered architecture of GEMLCA is
employed to run legacy applications as Grid services and P-GRADE provides
interfaces for building execution environment, application monitoring, and re-
sults management. In comparison with other projects, the aim of the proposed
architecture is to illustrate how to exploit the already available components of
the LAP and the GJMF using the simplest possible integration model.

6 Conclusions

We have investigated integration techniques for user-friendly, robust, scalable,
and flexible Grid portal architectures, proposed a layered approach to system
integration, and demonstrated this in the integration of two existing systems; the
LAP and the GJMF. The proposed integration architecture improves upon the

190

LAP-GJMF Integration 9

original LAP architecture in terms of scalability, support for multiple middle-
wares, performance, response times, and deployment flexibility. The user-friendly
interfaces of the LAP abstract the use of the GJMF, allowing existing portal in-
stallations to be transparently upgraded to use the new integration architecture.

Use of the GJMF’s automated brokering and job (re)submission capabilities
improves the system’s fault-tolerance and robustness, and introduces transpar-
ent middleware independence. As the multiple job submission mode of the LAP
makes use of the GJMF Task Group Management Service (TGMS), the need
for manual synchronization of jobs is eliminated and allows end-users to treat
multiple jobs as a single management unit. Similarly, use of customized JTS job
description translations facilitates middleware independence and automated job
result retrieval. The middleware independence introduced by the GJMF allows
for integration of new middlewares, facilitates transitions to new environments,
and increases the expected lifetime of the LAP and LAP applications. Con-
versely, use of the LAP’s ability to easily create customized application user
interfaces empowers the GJMF with application support and usability features.

The proposed integration architecture is lightweight and non-intrusive, sup-
ports a representative range of Grid applications, and does not impede use of the
original architecture’s functionality in any way. In fact, the two versions are com-
pletely orthogonal in implementation and can co-exist in the same deployment
environment. Use of the GJMF for job management in the portal contributes
additional functionality in terms of resource brokering, failure handling, loose
coupling of resources, and middleware independence. The PIE improves portal
response times and scalability in state monitoring and job submission.

The GJMF-empowered LAP is currently available in a prototype version for
SweGrid, supporting bioinformatics, computational chemistry, and astronomy
applications. The Matlab extensions of the original architecture have been pre-
served and Matlab-based applications function unaltered in the new architecture.

7 Acknowledgments

This work has in part been supported by the Swedish Research Council (VR) un-
der contract 621-2005-3667. For use of their resources, we acknowledge HPC2N,
Ume̊a University, LUNARC, Lund University, NSC, Linköping University, and
UPPMAX, Uppsala University. We also thank Daniel Henriksson, Johan Tords-
son, and the anonymous referees for valuable feedback.

References

1. G. Allen, K. Davis, K. Dolkas, N. Doulamis, T. Goodale, T. Kielmann, A. Merzky,
J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor.
Enabling Applications on the Grid - A GridLab Overview. International Journal
of High Performance Computing Applications, 2003.

2. A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, A. S. McGough, D. Pul-
sipher, and A. Savva. Job Submission Description Language (JSDL) specification,
version 1.0. http://www.ogf.org/documents/GFD.56.pdf, March 2007.

191

10 Erik Elmroth et al.

3. T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Winter, and P. Kacsuk.
GEMLCA: Running legacy code applications as Grid services. Journal of Grid
Computing, 3(1 - 2):75 – 90, June 2005. ISSN: 1570-7873.

4. E. Eckerson. Three Tier Client/Server Architecture: Achieving Scalability, Perfor-
mance, and Efficiency in Client Server Applications. Open Information Systems,
10(1):3–22, 1995.

5. M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson,
J. L. Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen. Advanced Resource
Connector middleware for lightweight computational Grids. Future Generation
Computer Systems, 27:219–240, 2007.

6. E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg. Designing
general, composable, and middleware-independent Grid infrastructure tools for
multi-tiered job management. In T. Priol and M. Vaneschi, editors, Towards Next
Generation Grids, pages 175–184. Springer-Verlag, 2007.

7. E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing service-based
resource management tools for a healthy Grid ecosystem. In R. Wyrzykowski et al.,
editors, Parallel Processing and Applied Mathematics. 7th Int. Conference, PPAM
2007, volume 4967, pages 259–270. Lecture Notes in Computer Science, Springer-
Verlag, 2008.

8. E. Elmroth, M. Nylén, and R. Oscarsson. A User-Centric Cluster and Grid Com-
puting Portal. International Journal of Computational Science and Engineering,
3(5), 2007 (to appear).

9. E. Elmroth and P-O. Östberg. Dynamic and Transparent Service Compo-
sitions Techniques for Service-Oriented Grid Architectures. In S. Gorlatch,
P. Fragopoulou, and T. Priol, editors, Integrated Research in Grid Computing,
pages 323–334. Crete University Press, 2008.

10. I. Foster. Globus toolkit version 4: Software for service-oriented systems. In H. Jin
et al., editors, IFIP International Conference on Network and Parallel Computing,
LNCS 3779, pages 2–13. Springer-Verlag, 2005.

11. GridBlocks. http://gridblocks.hip.fi, visited December 2008.
12. GridSAM. http://gridsam.sourceforge.net, visited December 2008.
13. Gridsphere Portal Framework. http://www.gridsphere.org/gridsphere/gridsphere,

visited December 2008.
14. E. Huedo, R. S. Montero, and I. M. Llorente. A framework for adaptive execution

on Grids. Software - Practice and Experience, 34(7):631–651, 2004.
15. P. Kacsuk and G. Sipos. Multi-grid and multi-user workflows in the P-GRADE

Grid portal. Journal of Grid Computing, 3(3-4):221–238, 2006.
16. P. Linde and J. Lindemann. ELT Science Case Evaluation Using An HPC Portal.

In Astronomical Data Analysis Software and Systems XVII, 2007.
17. J. Lindemann and G. Sandberg. An extendable GRID application portal. In

European Grid Conference (EGC). Springer Verlag, 2005.
18. J. Lindemann and G. Sandberg. A Lightweight Application Portal for the Grid.

In Nordic Seminar on Computational Mechanics NSCM 19, 2006.
19. The Grid Infrastructure Research & Development (GIRD) project. Ume̊a Univer-

sity, Sweden. http://www.gird.se, visited December 2008.
20. S. Venugopal, R. Buyya, and L. Winton. A Grid service broker for scheduling e-

science applications on global data Grids. Concurrency and Computation: Practice
& Experience, 18(6):685–699, May 2006.

21. Webware, Python Web Application Toolkit. http://www.webwareforpython.org,
visited December 2008.

192

VII

Paper VII

Decentralized, Scalable, Grid Fairshare Scheduling
(FSGrid)

Per-Olov Östberg, Daniel Henriksson, and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{p-o, danielh, elmroth}@cs.umu.se

http://www.cs.umu.se/ds

Abstract: This work addresses Grid fairshare allocation policy enforcement and
presents FSGrid, a decentralized system for Grid-wide fairshare job prioritization.
The presented system builds on three contributions; a flexible tree-based policy model
that allows delegation of policy definition, a job prioritization algorithm based on lo-
cal enforcement of distributed fairshare policies, and a decentralized architecture for
non-intrusive integration with existing scheduling systems. The system supports or-
ganization of users in virtual organizations and divides usage policies into local and
global policy components that are defined by resource owners and virtual organiza-
tions. The architecture realization is presented in detail along with an evaluation of
system behavior in an emulated environment. The system is shown to meet schedul-
ing objectives and convergence noise (mechanisms counteracting policy allocation
convergence) are characterized and quantified. System mechanisms are shown to be
scalable in tests using realistic policy allocations.

Key words: Grid scheduling, Fairshare scheduling, Fair share scheduling, Grid allo-
cation policy enforcement.

195

196

Decentralized, Scalable, Grid Fairshare Scheduling (FSGrid)

Per-Olov Östberg and Daniel Henriksson and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden

Abstract

This work addresses Grid fairshare allocation policy enforcement and presents FSGrid, a decentralized system for
Grid-wide fairshare job prioritization. The presented system builds on three contributions; a flexible tree-based pol-
icy model that allows delegation of policy definition, a job prioritization algorithm based on local enforcement of
distributed fairshare policies, and a decentralized architecture for non-intrusive integration with existing scheduling
systems. The system supports organization of users in virtual organizations and divides usage policies into local and
global policy components that are defined by resource owners and virtual organizations. The architecture realization
is presented in detail along with an evaluation of system behavior in an emulated environment. The system is shown
to meet scheduling objectives and convergence noise (mechanisms counteracting policy allocation convergence) are
characterized and quantified. System mechanisms are shown to be scalable in tests using realistic policy allocations.

Keywords: Grid scheduling, Fairshare scheduling, Fair share scheduling, Grid allocation policy enforcement

Email address: {p-o, danielh, elmroth}@cs.umu.se

[http://www.cs.umu.se/ds] (Per-Olov Östberg and Daniel
Henriksson and Erik Elmroth)

Preprint submitted to Future Generation Computer Systems March 14, 2011

197

1. Introduction

The core idea of fairshare scheduling is to sched-
ule jobs with respect to what fraction of preallocated
resource capacity job owners have consumed within a
finite time window [12]. Existing schedulers such as
Maui [11] and Simple Linux Utility for Resource Man-
agement (SLURM) [19] have built-in mechanisms for
fairshare, but are not designed to support Grid environ-
ments that span multiple administrative domains, utilize
heterogeneous schedulers, and require support for site
autonomy in allocation policies. This work addresses a
need for a global mechanism for Grid allocation policy
enactment and presents FSGrid, a system for decentral-
ized fairshare job prioritization that operates on global
(Grid-wide) usage data and provides fairshare support
to resource site schedulers.

Much work on Grid infrastructure have been directed
towards virtualization of job and resource management,
but many state of the art Grids still lack adaptability and
flexibility in usage policy enactment. Rigidity in allo-
cation mechanisms can effectively restrict many of the
main use cases for Grids and, e.g., force end-users to
perform manual resource selection to meet usage allo-
cation criteria not supported by automated brokers. To
facilitate the Grid vision of transparency in end-user re-
source utilization, policy enactment mechanisms that
virtualize Grid-level usage allocation are required. To
facilitate scalability in system deployment and admin-
istration, Grid fairshare enactment systems should also
allow delegation of policy administration, use scalable
fairshare calculation algorithms, and support manage-
ment of Grid-scale volumes of usage data.

The proposed system provides a flexible capacity al-
location policy model that maps organizational struc-
tures directly to policy specifications. The policy model
separates policy specifications into local and global
components, and delegates policy component admin-
istration to policy actors, e.g., Virtual Organizations
(VOs) [10] and projects. Resource sites mount global
policy components onto local policies to form policy
trees, which allows global policy allocation updates
(performed by policy actors) to be transparently prop-
agated to resource sites.

The fairshare algorithm operates on usage data and
compares consumed resource capacity to policy-defined
capacity allocations. Fairshare is calculated for each
level in the tree-based policy model and enforced top-
down, ensuring fairshare balance between policy sub-
groups to take precedence over balance within sub-
groups. As local policy components are defined by site
administrators and form top levels of policy trees, site

owners retain full control over site resources.
FSGrid employs an architecture for distributed stor-

age of usage data, and maintains periodic summaries
at resource sites. With minimal demands on the con-
tent of usage data, the system integrates seamlessly with
accounting systems, facilitating automated tracking of
Grid-level usage data. FSGrid places a component close
to resource site schedulers that local scheduling mech-
anisms invoke to replace existing fairshare calculations,
imposing minimal changes to existing deployment en-
vironments. The main building blocks of FSGrid are:

• A Grid usage policy allocation model that supports
recursive delegation of policy administration.

• An algorithm for efficient calculation of job priori-
tization from usage data and allocation policies.

• A decentralized and distributed architecture for
dynamic fairshare policy enactment that imple-
ments the proposed fairshare algorithm and inte-
grates with minimum intrusion into existing high-
performance computing resource environments.

The evaluation presented in this work assumes a
general model of Grid environments built on High-
Performance Computing (HPC) resource sites, where
jobs are fed from a batch system into a (cluster) sched-
uler. While this model is representative for many cur-
rent Grid environments, the proposed system is not lim-
ited to HPC deployment Grids. The proposed system
can be utilized by any system that performs execution
order prioritization of jobs. The proposed system con-
tains no functionality for advanced scheduling mecha-
nisms, e.g., job preemption, and is to be viewed as an
independent job prioritization component rather than a
full policy enforcement or job scheduling mechanism.

Ordering of jobs with respect to differences be-
tween usage allocation and resource consumption al-
lows schedulers to achieve a fairshare job prioritization
semantic of “least favored first”. This creates a global
self-adjusting policy enactment mechanism that helps
users receive resource capacity as defined by policy al-
locations. By definition of an allocation policy model
for VOs, a fairshare algorithm operating on the policy
model, and an architecture for distribution and decen-
tralization of policy enforcement, we extend an existing
fairshare mechanism to Grid level.

In FSGrid, we define fairness in terms of convergence
of resource consumption to policy-defined prealloca-
tions over time. As a point of departure, this work builds
on earlier efforts [9] where preliminary versions of the

2

198

policy model and algorithm are presented. A compre-
hensive differentiation and discussion of new and prior
results is given in Section 6.2.

The rest of the paper is structured as follows. In
the first sections we present the building blocks of the
FSGrid system; a tree-based policy model (Section 2),
an algorithm for efficient calculation of fairshare vec-
tors (Section 3), and a decentralized architecture for
scheduler-based Grid allocation policy enactment (Sec-
tion 4). These are followed by a performance evaluation
and a discussion of the proposed system in sections 5
and 6, and a survey of related work in Section 7. Fi-
nally, Section 8 outlines possible directions for future
work, and the paper is concluded in Section 9.

2. A Tree-Based Usage Policy Model

Grids are typically formed through joint collabora-
tions of autonomous resource sites. The amount of re-
sources contributed to a specific collaboration normally
differs between sites, and may vary over time. Grid pol-
icy models, i.e. mechanisms for mapping user identities
to resource allocations, must allow site administrators
to specify resource allocations on multiple levels, e.g.,
between local and Grid jobs, or different Grid collabora-
tions (e.g., VOs). As Grid user bases are usually formed
as VOs, Grid policy mechanisms are required to adapt
to dynamic changes in VO structure.

As illustrated in Figure 1, FSGrid employs a model
for specification of usage allocations in policy trees.
Policy tree nodes contain tuples of VO identity strings,
i.e. strings uniquely identifying a VO entity (e.g., a
user or a project), and usage share values. A usage
share value expresses a relative usage preallocation of
resource capacity within a policy group (a set of VO
identities that are policy tree siblings). The user U4 al-
location of 0.2 in Figure 1 is interpreted as U4 being al-
located 20 percent of whatever resource capacity (e.g.,
monthly CPU hours) is allocated to project P1.

This model allows VOs to map internal structure di-
rectly onto policy trees, and express both organizational
hierarchy (tree structure) and relationships between and
within policy groups (node share values) in a single
structure. There are no limitations on policy organiza-
tion other than VO identities being unique within tree
levels, i.e. within policy groups or projects.

Expression of allocation quotas in relative usage met-
rics (e.g., share percentages) rather than absolute capac-
ity metrics (e.g., CPU hours) virtualizes both the cur-
rency used in the system and allocation of resource site
capacity. Separation of allocation quotas from resource
capacity metrics allows policy quota allocations to be

mapped to custom metrics, provides a semantic for re-
allocation of unused policy allocations, and insulates al-
location enforcement mechanisms from volatility in re-
source site capacity.

As FSGrid policy trees express relative share ratios
and make no assumptions of tree structure, policy trees
can be constructed from multiple sources by mounting
subtrees onto leaf nodes in a policy tree (see Figure 1).
FSGrid makes a semantic distinction between local and
global share policies. Local share policies are root poli-
cies defined by resource site administrators for individ-
ual resource clusters. Global share policies are inde-
pendent policy trees defined by VOs, and are mounted
onto local policy trees by resource site administrators
(also illustrated in Figure 1). Local policies express
what global policies to enact and relative resource al-
locations between them. Local share policies may have
local queue components that allow site administrators
to reserve resource capacity for local (non-Grid) jobs.
Global policy trees express structure and allocations for
VO components, e.g., groups, projects, and users.

As policy tree construction can be distributed and per-
formed recursively, FSGrid delegates policy component
(subtree) administration to policy actors. Delegation of
policy specification allows policy actors, e.g., individ-
ual projects in a VO, to define policy components (sub-
trees) and mount these onto (leaf) nodes in parent policy
trees, i.e. updating usage policy allocations without in-
volving resource site administrators. Mounting global
policy components to local policy trees allows resource
site owners to subdivide and allocate resource site ca-
pacity shares to virtual organizations, which can further
subdivide and allocate resource site capacity shares re-
cursively within their organization.

Mounting of policy components onto policy trees
does not violate the node peer uniqueness criteria of the
policy model as subtree root nodes are overwritten by
policy tree nodes in the mounting process. Paths in pol-
icy trees uniquely qualify both VO identities (the bot-
tom path node) and chains of relationships between VO
identities and policy ancestors.

3. A Grid Fairshare Algorithm

Fairshare scheduling relies on prioritization of jobs
with respect to consumption of resource capacity pre-
allocations. In FSGrid, job prioritization is performed
through comparison of fairshare vectors, vectors of fair-
share balance values calculated from paths in fairshare
trees. Fairshare trees inherit structure from policy trees
and are calculated from comparisons of policy trees and

3

199

Figure 1: Delegation of policy specification to policy actors. Resource capacity allocations are subdivided recursively
in usage shares. Resource site RS local share policy contains preallocated usage shares for virtual organizations (VO1
and VO2) and local job queue (LQ). Administration of policy components is delegated to organization and project
administrators.

historical usage data. As paths in policy trees define an-
cestries of VO identities, comparison of fairshare vec-
tors offer a computationally efficient way to simultane-
ously perform scheduling prioritization on multiple lev-
els in policy trees.

The FSGrid fairshare algorithm performs calculation
of fairshare vectors in two steps. First, a fairshare tree
is calculated (once per resource site, illustrated in Fig-
ure 3) from an FSGrid policy tree and historical usage
data. Second, fairshare vectors representing each VO
identity in the system are calculated from the fairshare
tree (once per VO identity, illustrated in Figure 4), and
associated to jobs.

3.1. Fairshare Tree Calculation

Calculation of fairshare trees is done in two steps.
First, a usage tree is constructed by recursively (bottom-
up) replacing all node values in a policy tree with a cu-
mulative usage sum. This value is calculated as the sum
of all usage data found in the usage time window for
the node VO identity and the sum of all child node val-
ues. To facilitate comparison of usage and policy data,
node values are normalized to [0, 1]. Normalization is
performed by replacing each node value with the node’s
relative share of the sum of all node values on the tree
level. If no usage data is found (i.e. all sibling nodes
have value zero), all sibling nodes in the tree level re-
ceive equal shares. Like in policy trees, all tree level
node values sum to 1 after normalization.

Second, a fairshare tree is calculated by node-wise
application of a fairshare operator on the policy and
usage trees (illustrated in Figure 3). Fairshare operators
compare share values from policy and usage trees and
quantify a distance from the current to the ideal system
fairshare balance state (where all users utilize resource
capacity according to policy capacity preallocations).
The policy and usage trees are identical in structure, and
have node values in [0, 1]. Node values in the resulting

fairshare tree are in [−1, 1], and quantify a difference
between policy usage preallocation and actual resource
consumption (as defined by the fairshare operator used).
Node value sign indicates direction (positive values un-
deruse, negative overuse), and magnitude quantifies dis-
tance to policy-usage balance. All tree level node values
in fairshare trees sum to 0. Like a policy tree contains
all information required for policy enactment for a VO
or a resource site, a fairshare tree contains all informa-
tion required to perform fairshare prioritization of jobs
on a resource site.

3.2. Fairshare Vector Calculation

Once a fairshare tree has been calculated, individual
VO identity fairshare vectors are calculated (illustrated
in Figure 4). As paths in fairshare trees uniquely define
ancestries of VO identities, combining fairshare tree
node values (top-down) along a tree path creates vec-
tors that contain fairshare information for hierarchies of
VO identities. After vector calculation, node values (x)
are transformed to integer elements (y) as

y = f loor((
x + 1

2
) ∗ 9999) (1)

where
x ∈ [−1, 1]

y ∈ [0, 9999]

This results in integer vectors that can be serialized
to strings and compared lexicographically. The value
9999 is an upper limit constant determining the numeri-
cal resolution of vector element integer representations.

For arithmetic comparison of vectors, where vectors
are projected to one-dimensional value spaces, vectors
are required to be of uniform length. Therefore, vectors
are appended zero value elements until they reach max-
imum vector length (defined by fairshare tree depth).
Zero is chosen as pad value as it expresses policy-usage

4

200

Figure 2: Construction of usage trees from (distributed) usage data is done in two steps: 1. Raw usage trees inherit
structure from policy trees and node values are defined by cumulative summation of usage data for all usage identities
at or below the current node. In the illustration, project P2 consumes 10 usage credits. 2. Usage trees are normalized
to enable policy comparison through recalculation of node values as relative shares of node tree level usage data.

Figure 3: The FSGrid fairshare calculation algorithm. Fairshare trees are calculated by node-wise application of a
fairshare distance measure operator on the policy tree and the usage tree, in the illustration the absolute fairshare
operator p − u. Done once per Grid site and scheduling step.

balance in fairshare trees. As illustrated in Figure 4,
padding is performed prior to transformation to integer
vectors in the vector extraction algorithm.

Prioritization of jobs based on fairshare vector com-
parison results in hierarchical ranking of VO identi-
ties. Vector comparisons express differences in policy-
defined preallocations and actual resource capacity con-
sumption on multiple policy levels. As comparison is
done on job ownership VO identity level, all jobs owned
by the same VO identity receive the same priority.

In this framework, fairshare scheduling can be
viewed as an optimization problem where the distance
from each VO identity’s usage state and the system bal-
ance axis are sought to be minimized simultaneously.
By prioritizing jobs by fairshare distances, a schedul-
ing policy of “least favored first” is enacted. The term
convergence is in this context defined to refer to VO
identities’ resource capacity consumptions approaching
policy-defined usage preallocations over time. Con-
versely, any mechanism counteracting system conver-
gence in this context is defined to be convergence noise.

3.3. Fairshare Distance Measure Operators

For fairshare job prioritization, a mechanism to quan-
tify differences between usage share preallocations and
resource usage is required. To construct a metric for
comparison, FSGrid defines a two-dimensional value

space spanned by unit basis vectors for policy share pre-
allocations (p) and resource capacity consumption (u).
The system balance state, where resource consumptions
equal policy allocations, forms an axis (u = p) transect-
ing the value space diametrically.

By ordering VO identities by the distance from their
current usage state (a function of p and u) to the system
balance axis (u = p), a fairshare job prioritization order
is established. For distance measurement, FSGrid de-
fines a fairshare operator (d) constituted by an absolute
(da) and a relative (dr) component. To increase system
configurability, relative operator component influences
are regulated by a weight (k).

d = kda + (1 − k)dr (2)

where
da = p − u (3)

dr =

(
p − u

p

)2

for u < p

0 for u = p

−
(p − u

u

)2
for u > p

(4)

k, p, u ∈ [0, 1]

d, da, dr ∈ [−1, 1]

While any arbitrary operator (with arbitrary value

5

201

Figure 4: VO identity fairshare vectors are calculated and padded to uniform length. Node values ([−1, 1]) are
converted to integer values ([0, 9999]). Fairshare vectors are calculated once per VO identity in fairshare trees.

space) may be chosen for fairshare distance measure-
ment, operator selection impacts complexity and design
of the system. For example, uniform and symmetric
value spaces make distance interpretation intuitive, zero
distance balance points facilitates padding of fairshare
vectors, and unit distance magnitude facilitates scaling
of fairshare balance values. Conceptually the absolute
fairshare operator can be seen as a geometrical measure-
ment of the distance between resource consumption and
policy allocations in usage credits. The relative fair-
share operator expresses a ratio between resource ca-
pacity consumption and policy preallocations.

The requirement for a combined operator stems from
the behavior of the individual operator components. In
situations where a VO identity does not utilize allocated
capacity, the absolute operator degenerates and divides
unused allocations evenly among VO identity peers. In
situations where no usage data is available (e.g., at start-
up) the absolute operator favors users with large usage
shares. In situations where zero policy allocations are
assigned VO identities with reported usage, the relative
operator yields a maximum distance regardless of dif-
ferences in usage consumptions. By design, the relative
operator has a higher resolution far from balance, and a
lower resolution near balance. Combining the two op-
erator components allows FSGrid to operate more ro-
bustly, and provides administrators the ability to cus-
tomize the fairshare operator.

3.4. Combining Job Prioritization Mechanisms
As defined here, fairshare scheduling implies only a

prioritization order for jobs. Jobs with low fairshare
values may be scheduled if there are resources avail-
able and no jobs with higher fairshare prioritization
value in queue. Jobs are by this mechanism not pre-
empted or stalled, and fairshare scheduling is to be con-
sidered a soft scheduling mechanism. If policy fair-
ness is more important than resource utilization, sched-
ulers may combine fairshare prioritization with external
mechanisms that, e.g., reject jobs with fairshare values
below a certain threshold.

Some schedulers, such as Maui and SLURM, calcu-
late a linear combination of multiple scheduling factors
to determine job prioritization order. In these cases, a
scalar fairshare rank value computed by the FSGrid al-
gorithm can be used as a fairshare component in the lin-
ear combination. If so, the fairshare vector must be pro-
jected onto a limited value range to restrict the final pri-
oritization value’s range, which may affect the numer-
ical stability of fairshare prioritization. To avoid this,
projection of the fairshare balance values (fairshare vec-
tor elements) to a more restricted value range may be
replaced with an algorithm that assigns values to vec-
tor elements according to group-wise sort order. This
will project the fairshare vector to a truncated value
range, preserving vector sort order while truncating dis-
tances between vectors uniformly. Typically, schedulers
that use linear combinations of scheduling factors allow
site administrators to configure weights to determine to
what extent fairshare factors influence job prioritization.

4. A Decentralized Grid Fairshare Architecture

The policy model and algorithm of sections 2 and 3
provide a mechanism for fairshare prioritization of jobs
based on usage allocation and resource consumption.
As usage allocation policies are constructed from dis-
tributed policy components, and the algorithm operates
on usage data from multiple distributed resource sites,
an architecture managing distribution of data and com-
putations is required.

As illustrated in Figure 5, the architecture of FSGrid
is designed as a distributable Service-Oriented Archi-
tecture (SOA) where blocks of functionality in the FS-
Grid fairshare algorithm are identified and exposed as
services. The FSGrid architecture contains three ma-
jor blocks of functionality; policy administration, usage
data monitoring, and fairshare vector calculation; which
also constitute integration points between FSGrid and
the deployment environment.

To facilitate computational efficiency and reduce
communication overhead of the system, a number of ob-

6

202

Figure 5: The FSGrid architecture. System functionality is segmented into distributable services. The system inte-
grates with cluster schedulers, requires policy definitions from organizations, usage data from Grid accounting sys-
tems, and (optionally) identity mappings from batch systems. Deployment patterns are expected to be site-dependent.

servations about the interaction patterns of the function-
ality blocks can be made. Fairshare vectors are required
for job prioritization and should be recalculated when-
ever updated policy allocations or usage data are avail-
able. As schedulers require access to fairshare vectors
whenever scheduling decisions are made, e.g., when job
queues change or periodic scheduling cycle events oc-
cur, the fairshare vector calculation block should be lo-
cated close to the scheduler. The policy administra-
tion and usage data monitoring blocks are by nature
distributed, but should for reduction of communication
overhead have a cache component close to the fairshare
vector calculation block.

The computational complexities of computing fair-
share trees and vectors are low, and both operations can
be precomputed and results cached, making them well
suited for implementation in Web Services. Calculation
of the fairshare tree is performed once per resource site
and scheduling step, and calculation of fairshare vectors
is performed once per VO identity owning a job in the
scheduling queue.

Note that the design of the system does not assume
coordination of component actions, or synchronization
of distributed state, but rather realizes a set of au-
tonomous components that combined form a decentral-
ized fairshare architecture. Global fairshare resource
allocation is enacted through concurrent, asynchronous
local computations on distributed data.

To minimize the system deployment footprint, all ser-
vices are designed to integrate non-intrusively with ex-
isting infrastructure and minimize network traffic re-
quired by the system. Service deployment patterns are
expected to vary from site to site, but are recommended
to be based on the pattern illustrated in Figure 5 to min-
imize communication overhead.

4.1. Architecture Components

As illustrated in Figure 5, FSGrid is constituted by
five services and a set of plug-ins for scheduler pri-
oritization, usage data submission, and identity reso-
lution. To facilitate seamless integration into existing
HPC deployments, the architecture is implemented in
Java and exposes service functionality through WSDL
SOAP Web Services deployed in Apache Axis2 ser-
vice containers. Integration with HPC cluster sched-
ulers (currently Maui and SLURM) is done through in-
jection of FSGrid clients into scheduler exposed priori-
tization customization points.

4.1.1. Policy Distribution Service (PDS)
The Policy Distribution Service (PDS) provides a ser-

vice interface to FSGrid usage policy allocations. Inter-
nally, the PDS collates policy components from multi-
ple sources, e.g., XML files, HTTP web resources, other
PDSs; assembles a policy tree; and publishes policies
through the service interface. As multiple PDS may
be chained, and data read remotely, the PDS provides
a flexible mechanism for delegating policy definition
to VO and site administrators. To FSGrid and FSGrid
clients, the PDS provides an easy to use interface for
policy retrieval, and can be to, e.g., monitor updates in
policy allocations.

4.1.2. Usage Statistics Service (USS)
The Usage Statistics Service (USS) is designed to

provide time-resolved histograms of usage data on a
per-user basis. To reduce the amount of data, the ser-
vice interface accepts updates in a format semantically
equivalent to summaries of Open Grid Forum (OGF)
Usage Records [17], and exposes usage summaries for
requested time windows. Internally, the USS stores

7

203

usage histograms for known users in a database, and
maintains a usage summary cache to minimize invoca-
tion response time. The USS is the only required part
of FSGrid that receives input data from the surround-
ing system environment. As usage data constitutes the
currency that drives FSGrid fairshare, it is vital to FS-
Grid system coherency that each job usage record is
only reported to a single USS. As the USS provides a
histogram-based view of historical usage data, it can
be used by FSGrid services and clients to assess usage
statistics for individual VO identities on individual re-
source sites.

4.1.3. Usage Monitoring Service (UMS)
The main task of the Usage Monitoring Service

(UMS) is to provide a service interface for computa-
tion of (normalized) usage trees from policy trees. In-
ternally the UMS compiles data from a set of known
USSs, maintains a database of USS usage summaries,
a time-resolved per-user usage cache, a cache of previ-
ously known policy trees, and agents to monitor USSs
and precompute usage trees. The UMS also maintains a
customization point for moderation of usage data influ-
ence through a time window and usage decay function
plug-in. The UMS provides an interface for summariz-
ing usage records from multiple (USS) data sources and
mapping these to (provided) usage policies, and can be
used by FSGrid services and clients to get normalized
usage data views.

4.1.4. Identity Resolution Service (IRS)
Key to enabling fairshare scheduling of jobs in FS-

Grid is to be able to access historical usage records for
VO identities. As VO identities may be translated to
local cluster or site users when jobs are dispatched to
batch queues, schedulers may lack access to VO iden-
tities. The IRS exposes an interface for storing and ac-
cessing VO identity to job associations, and is primarily
used to resolve job ownerships. Use of the IRS in FS-
Grid is optional. If a scheduler has access to VO identity
job ownership data, these may be used directly when re-
questing scheduling prioritization information.

4.1.5. Fairshare Calculation Service (FCS)
The Fairshare Calculation Service (FCS) offers a flex-

ible service interface that provides access to the FSGrid
policy-based fairshare tree, fairshare vectors for speci-
fied VO identities (or jobs), and preformatted fairshare
tuples that contain VO identities, fairshare vectors, and
scalar fairshare prioritization values. The rich interface
of the FCS is designed to facilitate flexibility in imple-
mentation of scheduler integration plug-ins. Internally,

the FCS maintains caches for job identifier to VO iden-
tity maps, policy, usage, and fairshare trees, as well as
agents for monitoring services (PDSs and UMSs) and
precomputing fairshare trees. The FCS allows configu-
ration of UMS and PDS connections, PDS deployments,
and monitoring scheduling intervals.

4.1.6. Integration Plug-Ins
In addition to the services of FSGrid, a set of inte-

gration plug-ins is also considered part of the FSGrid
architecture. Depending on the FSGrid deployment en-
vironment, integration plug-ins for scheduler job priori-
tization, usage data submission, and VO identity resolu-
tion may be required. Design of scheduler plug-ins de-
pend on scheduler architecture, but typically consist of
an FCS client implemented in the same language as the
scheduler and possibly routines for calculation, trans-
formation, and caching of fairshare prioritization data.
Design of plug-ins for usage data submission and VO
identity resolution depend on accounting system and
scheduler architecture, and will typically consist of USS
and IRS clients.

As many Grid computing environments build on ex-
isting HPC deployments, which typically are required
to maintain HPC interfaces (e.g., batch systems) in co-
existence with Grid interfaces, it is vital to design Grid
systems to impose a minimum intrusion level when in-
tegrating Grid components with existing HPC deploy-
ments. The FSGrid architecture is designed to have
as few and simple integration points as possible while
still maintaining compatibility with a general model for
HPC deployment based Grid environments.

Typical Grid FSGrid integrations include

• Replacement of a local scheduler (fairshare) job
prioritization mechanism with an FCS invocation
client.

• Injection of a mechanism for submission of usage
data to the USS. This can be done in multiple ways,
e.g., through a scheduler job monitoring plug-in, or
a resource site or Grid accounting system.

• Optional injection of a job ownership resolution
component. If VO identity job ownership data
is not available to the scheduler, a job ownership
mapping between job and original VO identity can
be stored in the IRS. This data can be submitted at
any point prior to invocation of the FCS. Submis-
sion is typically expected to be done by the system
responsible for translation of VO identities to local
resource site users, e.g., a batch system.

8

204

4.2. (Concurrency in) Data and Control Flow

Data and control flows of an FSGrid deployment con-
sist of five autonomous and concurrent processes:

1. A set of PDSs monitors a set of data sources and
periodically compiles policy trees.

2. A set of USSs receives (summarized) usage re-
ports for jobs and builds time-resolved usage his-
tograms.

3. A UMS monitors a set of (local or remote) USSs,
periodically retrieves updates, and assembles us-
age summaries. The UMS precomputes usage
trees for known policy trees, and on demand for
unknown policy trees (which are added to the
cache structure).

4. An IRS receives VO identity job ownership data
and maintains a directory for ownership resolution.

5. An FCS monitors a PDS and periodically retrieves
policy trees and calculates usage (via a UMS) and
fairshare trees. The FCS maintains a cache of pre-
computed fairshare vectors (based on precomputed
fairshare trees), and does not compute fairshare
vectors for unknown VO identities.

The data required to drive the system, usage data and
usage policy allocations, are provided by accounting
systems and VO, project, and resource site administra-
tors respectively. FSGrid assumes that jobs are sched-
uled in an order influenced by fairshare prioritization
and that usage costs for all jobs are reported to the sys-
tem. Should resource sites utilize FSGrid to prioritize
jobs without reporting usage data, resource consump-
tion costs for jobs running on such sites do not con-
tribute to fairshare calculation results and imbalances in
global resource consumption may occur. Conversely,
should resource sites report usage data without utilizing
FSGrid as a job prioritization mechanism, global fair-
share convergence will suffer oscillations correlated in
size to resource site capacity. As the core balancing
mechanism of FSGrid is self-adjusting, global fairshare
balance will converge over time.

Specification of usage policies can be seen to be a
largely manual process, while usage data submissions
are expected to be fully automated. Through these five
processes, the FSGrid system provides an automated,
decentralized, and self-adjusting mechanism for Grid-
wide fairshare enactment of usage policy allocations.

4.3. Time Window and Decay Function

As illustrated in Figure 6, FSGrid defines a finite us-
age data time window (typically a configurable amount

Figure 6: Usage data histogram time window. Usage
decay functions modulate influence of usage data.

of days into the past) to restrict the influence of histor-
ical usage data on the fairshare mechanism. As also il-
lustrated, FSGrid employs a customizable usage decay
function to modulate how usage statistics influence the
fairshare mechanism. The time window width limits the
scope of usage statistics influence (data outside the time
window does not affect FSGrid behavior). The granu-
larity of the time window histogram slots affect the res-
olution of the fairshare mechanism. The usage decay
function modulates usage statistics by, e.g., increasing
or decreasing influence of more recent usage statistics
on system behavior. In the FSGrid architecture, both
time window parameters are configurable, and the us-
age decay function is exposed as a customization point
in the UMS. Further study of the impact of usage decay
functions in this context is subject for future work.

5. Evaluation

To evaluate core system functionality and isolate
noise sources (i.e. mechanisms counteracting system
convergence), a number of tests designed to quantify as-
pects of FSGrid’s technical performance are employed.
These tests are run in an emulated system environment
and are designed to introduce and illustrate system me-
chanics. As the purpose of this evaluation is to evaluate
system ability to enact policy allocations in a distributed
environment rather than demonstrate system integration
in a production deployment, use of an emulated system
environment is sufficient. In the evaluation, the follow
tests are performed:

• Noise characterization tests (Section 5.1). Investi-
gate and characterize FSGrid noise mechanisms.

• Noise interaction tests (Section 5.2). Investigate
interaction between different noise types and illus-
trate impact of system deployment patterns on sys-
tem performance.

• Policy enactment tests (Section 5.3). Investigate
FSGrid ability to enact policy allocations in decen-

9

205

tralized multi-site deployments employing multi-
ple asynchronized concurrent schedulers. Quantify
and evaluate FSGrid ability to adapt to dynamic
changes in policy allocations and distributed sys-
tem failures.

• Scalability tests (Section 5.4). Investigate FSGrid
ability to cope with realistically sized policy allo-
cations and quantify system scalability in the pres-
ence of large amounts of usage data and updates.

All evaluation tests are performed on a set of four
identical 1.8 GHz quad core AMD Opteron CPU, 4 GB
RAM machines, interconnected using a Gigabit Ether-
net network. For functionality tests, an additional set of
four identical 2 GHz AMD Opteron CPU, 2 GB RAM
machines, interconnected with a 100 Mbps Ethernet net-
work are used. All machines are running Ubuntu Linux
and Axis2 1.5. The Java version used in tests is 1.6, and
Java memory allocation pools range from 512 MB to 1
GB in size. For system integration tests SLURM 2.1.2
is employed as batch system and cluster scheduler.

Functionality tests are performed using a discrete-
event simulator emulating an execution environment
consisting of a batch system, a cluster scheduler, a clus-
ter, and an accounting system. The batch system reg-
isters (in the IRS) and feeds the scheduler sets of jobs.
The scheduler invokes the FCS to prioritize jobs and al-
locates them to cluster hosts. The accounting system
submits usage reports to the USS upon job completions.
Job start and end timestamps are used to evaluate FS-
Grid ability to enact resource capacity allocations.

Simulation job arrival models saturate scheduling
queues in the sense that schedulers have access to at
least one job for each usage policy VO identity at all
times. Single-site system emulations are run on a sin-
gle host, multi-site system emulations as a set of non-
communicating systems run concurrently on multiple
hosts. Cross-site synchronization is performed exclu-
sively by UMSs, which have access to USSs for all sites,
emulating a distributed Grid configuration.

All tests are, unless stated otherwise, run using iden-
tical parameter sets and the policy tree illustrated in Fig-
ure 1. USS and UMS update intervals are set to 1 sec-
ond, usage time windows are 10 slots wide and set to a
granularity of 1 hour (system wall clock time), all clus-
ters have a single host, and job lengths are either fixed to
1 or stochastic and uniformly distributed between 1 and
5000 time units long. To eliminate them as parameters
in measurements, absolute and relative fairshare oper-
ators are equally weighted (k = 0.5). Usage decay is
disabled (i.e. usage decay function is constant y = 1),
and the usage cost metric used is job length (CPU time).

Job failures do not affect FSGrid convergence rates as
failed jobs do not get reported to the accounting system
and appear as diminished resource capacity.

5.1. Noise Characterization
As we refer to system ability to over time enact

policy-defined resource capacity allocations as system
convergence (to policies), we define any mechanism
counteracting this process as convergence noise. To il-
lustrate system convergence to policy allocations, we
isolate policy (sub)groups, i.e. groups of nodes with
a common parent, and render cumulative resource con-
sumption for individual VO identities as a function of
number of jobs run in the group. To maximize the in-
fluence of noise in measurements, we isolate the policy
subgroup containing the VO identity with the lowest to-
tal usage share (P1 in Figure 1).

In FSGrid, there are two primary mechanisms coun-
teracting system convergence, variance in job usage
costs and usage data update latencies. To isolate im-
pact of variance in job usage cost, we emulate a single-
site FSGrid deployment with stochastic job usage costs
drawn from a uniform [1,5000] probability distribution.
To eliminate impact of usage data update latencies on
system convergence, each scheduling step is delayed to
allow usage data updates from prior jobs to propagate
to the FCS between scheduling steps. As illustrated in
Figure 7a, usage cost variance amplifies oscillations in
system convergence. When compared to ideal conver-
gence, differences in usage costs manifest as additive
noise in convergence adjustments. In Figure 7a, job us-
age cost variance noise is illustrated as vertical offsets
in convergence oscillations.

To isolate impact of usage data update latencies, we
emulate a single-site deployment with uniform job us-
age cost (cost = 1) and UMS and FCS update delays
designed to allow approximately 10 jobs to be sched-
uled between FCS usage data updates. As the FSGrid
job prioritization mechanism operates on usage data for
completed jobs, i.e. has no memory for recent schedul-
ing decisions or prediction mechanism for costs of run-
ning jobs, usage data update latencies result in multi-
ple subsequent scheduling decisions being taken on the
same usage data. As illustrated in Figure 7b, this results
in amplifying convergence oscillations and significantly
lowering system convergence rate. When compared to
ideal convergence, usage data update latencies manifest
as multiplicative noise in convergence adjustments and
a divisible reduction in convergence rate.

Prior work [9] suggests that including cost for sched-
uled and running jobs in prioritization calculations re-
duce impact of usage data update latency noise on sys-

10

206

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

R
el

at
iv

e
U

sa
g

e
(%

)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(a) Job usage cost variance noise. Variations in job usage costs cause
convergence adjustments to overshoot and amplify convergence os-
cillations.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

R
el

at
iv

e
U

sa
g

e
(%

)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(b) Usage data update latency noise. Update latencies reduce granu-
larity of convergence adjustments and delay system convergence.

Figure 7: Noise characterization. Cumulative resource consumption as function of scheduled and run jobs. Conver-
gence to usage policy allocations for VO identities designated in legend. Illustration capped to region of interest.

tem performance. Future work includes evaluation of
different strategies for inclusion of this approach in
multi-site FSGrid deployments.

5.2. Noise Interaction

Under realistic FSGrid operational settings both job
usage cost variance and usage data update latencies are
likely to be present. To investigate noise interaction, we
emulate a single-site FSGrid deployment with stochas-
tic job lengths and usage update latencies. As illustrated
in Figure 8a, usage data update latencies add a multi-
plicative component to usage cost variance noise. Im-
pact of noise is amplified by lowered convergence rate.

To evaluate noise interaction in decentralized Grid
environments, we emulate a four-site FSGrid deploy-
ment with stochastic job lengths and usage data update
latencies. As illustrated in Figure 8b, parallelism of
concurrent scheduling amplifies update latency noise,
in this experiment delaying system convergence by a
factor of 10. As the number of jobs scheduled be-
tween usage data updates determine impact of update
latency noise, large numbers of computational resources
per scheduler skew system convergence at startup. As
job lengths constitute lower bounds for usage data up-
date latencies, excessive job lengths amplify update la-
tency noise. For multi-site settings, concurrent schedul-
ing with synchronized update schedules amplify update
latency noise. Conversely, asynchronicity in multi-site
update schedules allow parallel processing of usage up-
dates to increase update frequencies and mediate impact
of usage data update latency noise.

These experiments are run in an artificial environ-
ment, but outline a few interactions between mecha-
nisms in the FSGrid fairshare job prioritization system.

Scheduling jobs after the principle of “least favored
first” creates a self-adjusting system that over time dis-
tributes resource capacity after policy allocations. Noise
from job usage cost variance and update latencies lower
system rate of convergence by affecting the convergence
adjustments (i.e. order in which jobs are run). Number
of hosts, sites, job lengths, as well as frequency and syn-
chronicity of usage data update schedules may serve to
amplify convergence noise. Over time, relative impact
of each noise source and type lessen, as more usage data
affect scheduling prioritization. As long as usage data
time windows are large enough to contain enough data
for the system to converge, the system remains stable.

5.3. Policy Enactment

To evaluate system ability to respond to external
events such as dynamic changes in site availability or
policy allocations, we emulate an eight-site FSGrid de-
ployment with stochastic job lengths and usage data up-
date latencies over an extended period of time. To study
impact of site volatility, four sites are removed after ap-
proximately 25000 jobs are scheduled. After approx-
imately 50000 jobs are scheduled, the local allocation
policy RS is altered to transfer 10 percent from each of
the allocations for VO1 and LQ to VO2.

As illustrated in Figure 9a, eight concurrent sched-
ulers cause significant initial convergence noise. At ap-
proximately 25000 jobs four schedulers are removed,
and convergence noise is reduced (also visible at ap-
proximately 10000 jobs in Figure 9b). At approximately
50000 jobs the usage policies are updated and all sched-
ulers adapt to new scheduling priorities. It takes ap-
proximately the same amount of jobs currently in the
time window to reach the level of convergence achieved

11

207

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

R
el

at
iv

e
U

sa
g

e
(%

)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(a) Interaction of usage cost variance and update latency noise. Im-
pact of usage cost variance noise amplified by delayed convergence.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

R
el

at
iv

e
U

sa
g

e
(%

)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(b) Concurrent scheduler noise augmentation. Impact of usage data
update latency noise amplified by parallelism in scheduling.

Figure 8: Noise interaction. Cumulative resource consumption as function of scheduled and run jobs. Convergence
to usage policy allocations for VO identities designated in legend. Illustration capped to region of interest.

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000

R
el

at
iv

e
U

sa
g

e
(%

)

Jobs

/VO1
/LQ

/VO2

(a) Adaptation to site failures and updated usage policy allocations.

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000

R
el

at
iv

e
U

sa
g

e
(%

)

Jobs

/VO1/P1/U2
/VO1/P1/U3
/VO1/P1/U4

(b) Adaptation to site failures and subgroup isolation.

Figure 9: Policy enactment. Cumulative resource consumption as function of scheduled and run jobs. Convergence
to usage policy allocations for VO identities designated in legend. Illustration capped to region of interest.

12

208

before the policy shift. As also illustrated in Figure 9a,
convergence rate is a function of the relative share ratio,
the VO identity with the lowest policy allocation (LQ)
converges slowest.

As illustrated in Figure 9b, which illustrates policy
group P1 of Figure 9a, altering the policy allocation of
an individual policy group does not affect other groups
in the same policy tree. Note that this simulation con-
tains multiple shifts of the usage data time window,
which do not visibly affect system convergence.

5.4. Scalability Tests
To evaluate FSGrid ability to function in production

environments, we run large scale tests over longer pe-
riods of time using realistically sized policy allocations
and system configurations. System convergence is val-
idated for tests using policy allocations with thousands
of users running millions of jobs.

For tests using a balanced policy tree (symmetrically
distributed users with equal allocation shares) contain-
ing 1000 users, 100 projects, and 10 VOs, the system
is shown to converge and exhibit stable performance
consistent with the behavior illustrated in tests using
smaller policy trees. System behavior is shown to be
deterministic and stable in tests using more than 4 mil-
lion jobs. First 5000 jobs of such a test are shown
in Figure 10. Tests using symmetric policy trees with
1000 users and equal allocation shares show faster con-
vergence rates than tests using small asymmetrical pol-
icy trees. Exact system convergence rate depends on a
number of factors including, e.g., policy tree shape, us-
age allocation share variance, job length variance, up-
date delays, and site synchronicity, and is considered
out of scope for this work. Further scalability and in-
tegration tests in production environments, as well as
analysis of convergence factors and formulation of con-
vergence rate formulas are subject for future work.

6. Discussion

The system evaluation of Section 5 demonstrates
technical aspects of FSGrid and shows how Grid-wide
fairshare job prioritization can be realized. While this
evaluation is performed in an emulated environment,
the evaluation demonstrates key aspects of system func-
tionality, scalability of system mechanisms, and system
ability to enact policy usage allocations. Full-scale test-
ing and evaluation of the system in production environ-
ments is subject for future work.

The remained of this section discusses fairness in
scheduling, differences between global and local fair-
share scheduling, and relates this work to earlier efforts.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

R
el

at
iv

e
U

sa
g
e

(%
)

Jobs

/VO0
/VO1
/VO2
/VO3
/VO4
/VO5
/VO6
/VO7
/VO8
/VO9

Figure 10: Convergence of total resource consumption
for 10 different VOs. The system comprises a total of
1000 users symmetrically distributed with equal alloca-
tion shares over 100 projects and 10 VOs. Over 4 mil-
lion jobs are run with stable convergence behavior. Il-
lustration capped to region of interest (first 5000 jobs).

6.1. Global and Local Fairshare

FSGrid provides a framework for global (Grid-
wide) fairshare scheduling. Existing schedulers (such
as SLURM and Maui) contain fairshare prioritization
mechanisms, but are designed for local (resource site)
fairshare scheduling, using a single share policy, a com-
mon scheduler technology, and consider only local us-
age data. FSGrid offers a model for global fairshare
where sites may have different share policies, use dif-
ferent schedulers, and operate on global usage data.

Local fairshare is often sufficient to manage job pri-
oritization for HPC, as user identities are normally as-
sociated with a single site. In Grids, computational re-
sources from several sites are aggregated into a com-
mon pool of resources available to all users of that Grid.
The jobs of Grid users should be given the same pri-
oritization regardless of which site in the Grid the job
is submitted to, and the combined use across the Grid
should be used for fairshare. For this, a global fairshare
mechanism is required.

Although FSGrid is designed for global fairshare, the
system can also be used for local fairshare job prioriti-
zation. Compared to local fairshare, global fairshare has
additional challenges that include:

• Operation across administrative domains.

• Heterogeneity in technology, performance, avail-
ability, scheduling models, and allocation models.

• Greater usage data volumes.

13

209

• Usage and policy data updates has to be propagated
to all participating sites, and each update may trig-
ger a fairshare recalculation.

• Many different actors (site schedulers) depend on
the same fairshare values simultaneously.

FSGrid may be deployed and configured in many
different ways to suit individual environments. Any
scheduler capable of calling Web Services can be in-
tegrated with FSGrid, and the policy model is based
on site-specific local policies under full control of lo-
cal administrators. To cope with Grid data volumes,
fairshare values for known users are precomputed and
cached. Similarly, as summaries of all usage for each
slot in the time window are maintained at user level, us-
age updates only trigger recalculation of summaries for
affected slots. Updated summaries are used in compu-
tation of fairshare values in following iterations.

Summaries and precomputed fairshare values are
maintained at each FSGrid installation (normally one
per site), and each scheduler can be served by a local
FSGrid instance. As summaries are stored at each FS-
Grid instance, each site can have differently sized time
windows (see Section 4.3) and purge usage data outside
of the time window without affecting other sites.

6.2. Prior Work

This work builds on earlier efforts presented in [9],
where preliminary versions of the policy model and
simulations of the algorithm are presented. The main
contributions of this work are a proposed architecture
for realization of a decentralized system based on this
algorithmic model, adaptations of the policy model and
algorithm to facilitate distribution of the system, and a
technical evaluation and analysis of the system. The
architecture is designed for use in large scale environ-
ments, and focused on scalability through distribution
and parallelization of data management and computa-
tions. Modifications of preliminary results presented in
[9] include:

• Realization of the system. Prior work presented a
simulation of the algorithm. This work presents a
realization of a distributed system that is evaluated
in an emulated environment.

• Extension of the fairshare algorithm with a frame-
work for more fine-grained differentiation of re-
source consumption (fairshare operators).

• Increased precision of vector elements to allow a
greater resolution in fairshare vectors.

• Reformulation of policy formats and interpreta-
tions to allow for dynamic updates of allocation
policies.

7. Related Work

The fair Share scheduler [12] introduces the concept
of user-level fair resource allocation in uni-processor
sharing environments. The work introduces concepts
such as fairness over time, support for different entitle-
ments for different users, hierarchical policy structures,
and sub-group isolation.

An evaluation of fair share in clusters or HPC systems
is presented in [15]. Applicability of previous work on
uni-processor sharing [12] to Grids or HPC systems is
analyzed and simulated using logged data for thousands
of real jobs. Effects of fair share on job prioritization are
found to be small, partly because average system utiliza-
tion is not high enough to cause enqueueing of jobs and
partly because other factors (e.g. CPU requirements)
are more deciding than differences in job priority.

Buyya et al. present a variation of the original FSGrid
resource allocation strategy of [13]. Sub-groups (such
as a sub-VO) may have dedicated resource allocations
that can be used in conjunction with allocation of an-
cestor nodes. Consumption cost is used to select which
allocation to use if several suitable alternatives are avail-
able. The aim is to maximize resource utilization, and
fair allocation of resources between siblings in a hierar-
chy is not taken into consideration. An extension that
also provides fair resource sharing is presented in [14].
Node job arrival rates are assumed to be known for all
nodes in the system and the problem is formulated as a
waiting time minimization problem. Jobs that cannot be
immediately scheduled are rejected, and as jobs arrive
with an assumed Poisson distribution, minimizing wait-
ing time affects job acceptance rate. In [14] fairness is
measured by job acceptance rate for different users.

Fair Execution Time Estimation (FETE) schedul-
ing [2] is another take at Grid fair scheduling, where
jobs are scheduled according to expected completion
time as if running on a time-sharing system instead of a
space-sharing system. Focus of this approach is to min-
imize risk of missing deadlines for submitted jobs.

Another hierarchical model presented in [8, 6], is
used to allot resources from different sites to VOs and
from VOs to users. Each sub-allocation includes both
a burst allocation and an epoch allocation to control
resource consumption in short- and long-term, respec-
tively. GRUBER [7], is an architecture of this model
that acts as a broker for resource usage Service Level
Agreements (SLAs).

14

210

DI-GRUBER [5] extends GRUBER and adds support
for distributed VO policy decision points. In these sys-
tems, VO polices are analogous to global policies in
FSGrid and manage suballocation of resources within a
VO. In contrast to FSGrid (where each site loads and en-
forces global policies), DI-GRUBER calls external de-
cision points for VO policy decisions.

An evaluation of Grid resource allocation mecha-
nisms is presented in [16]. Three different mechanisms
considered are volunteer, agreement-based, and eco-
nomic resource allocation. The agreement-based allo-
cation mechanism used in the evaluation is based on
earlier FSGrid work ([9]). The agreement based method
was shown to have better overall resource utilization and
suffer less degradation from high numbers of users com-
pared to alternative approaches.

A comprehensive study on share scheduling mecha-
nisms is presented in [3]. The study includes a thor-
ough mathematical analysis of different strategies for
share scheduling in uniprocessor, multiprocessor, and
distributed systems.

More algorithms for fair scheduling in Grids are pre-
sented in [4]. The primary objective is to adhere to
task deadlines. All tasks receive an equal share of re-
sources regardless of number of jobs submitted. Ex-
cess resources not required by a task are divided equally
among tasks that require more resources. Tasks may
also be weighted to receive more than their equal share
of available capacity.

A game-theoretic approach to fair Grid resource man-
agement is presented in [18]. This work considers the
case where local scheduling decisions may be taken to
optimize the system from the local schedulers point of
view, and evaluates consequences of different levels of
local scheduler autonomy in terms of (fair) scheduling.

Fair decentralized scheduling for Desktop Grids is
presented in [1]. Fairness in this case is defined as min-
imizing the overhead of running each task on a shared
infrastructure compared to a dedicated one. FSGrid de-
fines fairness differently, and measures fairness as the
difference between the expected and actual share of to-
tal resource consumption.

8. Future Work

A number of possible directions for future work are
identified. Further investigation of trade-offs between
FSGrid convergence parameters is expected to increase
understanding of system behavior. Evaluation of im-
pact of update latencies, usage decay functions, and job
scheduling patterns are likely to influence parameteriza-
tion and further development of the system. Evaluation

of experiences from integration of the system in produc-
tion use Grid deployments are expected to be of interest
for further development of the system. Incorporation of
scheduled and running jobs in fairshare job prioritiza-
tion is likely to reduce impact of usage data update la-
tency noise. Integration of the FSGrid job prioritization
mechanism with additional cluster scheduling systems
is expected to be of interest for system adoption.

9. Conclusion

In this work we present FSGrid, a decentralized sys-
tem for fairshare-based Grid usage policy enactment
built on three main contributions; a flexible policy
model, a scalable fairshare calculation algorithm, and a
decentralized architecture for parallelized fairshare pri-
oritization of jobs. The system design is presented in
detail, along with a performance evaluation and a dis-
cussion of the system.

The policy model supports mapping of VO structures
onto policies, delegation of policy specification, and vir-
tualization of usage credits. The fairshare calculation al-
gorithm is self-adjusting and noise-stable, virtualizes re-
source site capacity, provides subgroup isolation within
policy allocations, and adapts to changes in usage data
and policy allocations. The architecture of the system is
designed to facilitate decentralization of system deploy-
ments, precomputation and caching of scheduling data,
and integrates non-intrusively with existing scheduling
systems. The presented system can be utilized for job
prioritization and scheduler-based policy enactment in
Grid and HPC environments.

The performance evaluation illustrates the FSGrid
policy allocation mechanism, demonstrates the feasibil-
ity of the approach, and identifies factors that manifest
as noise in system convergence. The evaluation investi-
gates trade-offs between convergence noise factors, and
suggests how impact of these factors may be reduced.
The discussion relates the proposed system to similar
work and systems, and outlines the role of the system in
Grid environments.

Acknowledgments

The authors extend their gratitude to Peter Gardfjäll
for prior work, Lars Karlsson and Lars Larsson for feed-
back and discussions, and Raphaela Bieber-Bardt for
work related to the project. The authors also acknowl-
edge Tomas Ögren and Åke Sandgren for technical as-
sistance to the project.

This work has been done in collaboration with the
High Performance Computing Center North (HPC2N)

15

211

and has been funded in part by the Swedish Re-
search Council (VR) under Contract 621-2005-3667,
the Swedish National Infrastructure for Computing
(SNIC), and the Swedish Government’s strategic re-
search project eSSENCE. The authors also acknowl-
edge the Lawrence Berkeley National Laboratory
(LBNL) for supporting the project under U.S. Depart-
ment of Energy Contract DE-AC02-05CH11231.

References

[1] J. Celaya and L. Marchal. A Fair Decentralized Scheduler for
Bag-of-Tasks Applications on Desktop Grids. In CCGRID ’10:
Proceedings of the 2010 10th IEEE/ACM International Confer-
ence on Cluster, Cloud and Grid Computing, pages 538–541,
Washington, DC, USA, 2010. IEEE Computer Society.

[2] E. Dafouli, P. Kokkinos, and E. A. Varvarigos. Fair Execution
Time Estimation Scheduling in Computational Grids. In P. Kac-
suk, R. Lovas, and Z. Nmeth, editors, Distributed and Parallel
Systems, pages 93–104. Springer US, 2008.

[3] J. De Jongh. Share scheduling in distributed systems. PhD the-
sis, Delft Technical University, 2002.

[4] N. Doulamis, E. Varvarigos, and T. Varvarigou. Fair Schedul-
ing Algorithms in Grids. IEEE Transactions on Parallel and
Distributed Systems, 18:1630–1648, 2007.

[5] C. Dumitrescu, I. Raicu, and I. Foster. DI-GRUBER: A Dis-
tributed Approach to Grid Resource Brokering. In SC ’05: Pro-
ceedings of the 2005 ACM/IEEE conference on Supercomputing,
page 38, Washington, DC, USA, 2005. IEEE Computer Society.

[6] C. L. Dumitrescu and I. Foster. Usage Policy-Based CPU Shar-
ing in Virtual Organizations. In GRID ’04: Proceedings of
the 5th IEEE/ACM International Workshop on Grid Computing,
pages 53–60, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[7] C. L. Dumitrescu and I. Foster. GRUBER: A Grid Resource
Usage SLA Broker. In J. C. Cunha and P. D. Medeiros, edi-
tors, Euro-Par 2005 Parallel Processing, volume 3648 of Lec-
ture Notes in Computer Science, pages 465–474. Springer Berlin
/ Heidelberg, 2005.

[8] C. L. Dumitrescu, M. Wilde, and I. Foster. A model for us-
age policy-based resource allocation in grids. Policies for Dis-
tributed Systems and Networks, 2005. Sixth IEEE International
Workshop on, pages 191 – 200, jun. 2005.

[9] E. Elmroth and P. Gardfjäll. Design and evaluation of a
decentralized system for Grid-wide fairshare scheduling. In
H. Stockinger et al., editors, First International Conference on
e-Science and Grid Computing, pages 221–229. IEEE CS Press,
2005.

[10] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid:
Enabling scalable virtual organizations. International Journal
of High Performance Computing Applications, 15(3):200–222,
2001.

[11] D. Jackson, Q. Snell, and M. Clement. Core Algorithms of
the Maui Scheduler. In D. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, volume 2221
of Lecture Notes in Computer Science, pages 87–102. Springer
Berlin / Heidelberg, 2001.

[12] J. Kay and P. Lauder. A fair Share scheduler. Commun. ACM,
31(1):44–55, 1988.

[13] K. H. Kim and R. Buyya. Policy-based Resource Allocation in
Hierarchical Virtual Organizations for Global Grids. In SBAC-
PAD ’06: Proceedings of the 18th International Symposium

on Computer Architecture and High Performance Computing,
pages 36–46, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[14] K. H. Kim and R. Buyya. Fair resource sharing in hierarchical
virtual organizations for global grids. In GRID ’07: Proceed-
ings of the 8th IEEE/ACM International Conference on Grid
Computing, pages 50–57, Washington, DC, USA, 2007. IEEE
Computer Society.

[15] S. D. Kleban and S. H. Clearwater. Fair Share on High Perfor-
mance Computing Systems: What Does Fair Really Mean? In
CCGRID ’03: Proceedings of the 3st International Symposium
on Cluster Computing and the Grid, page 146, Washington, DC,
USA, 2003. IEEE Computer Society.

[16] S. Krawczyk and K. Bubendorfer. Grid resource allocation: al-
location mechanisms and utilisation patterns. In AusGrid ’08:
Proceedings of the sixth Australasian workshop on Grid com-
puting and e-research, pages 73–81, Darlinghurst, Australia,
Australia, 2008. Australian Computer Society, Inc.

[17] R. Mach, R. Lepro-Metz, S. Jackson, and L. McGinnis. Usage
Record - Format Recommendation, 2007.

[18] K. Rzadca, D. Trystram, and A. Wierzbicki. Fair Game-
Theoretic Resource Management in Dedicated Grids. In CC-
GRID ’07: Proceedings of the Seventh IEEE International Sym-
posium on Cluster Computing and the Grid, pages 343–350,
Washington, DC, USA, 2007. IEEE Computer Society.

[19] A. Yoo, M. Jette, and M. Grondona. SLURM: Simple Linux
Utility for Resource Management. In D. Feitelson, L. Rudolph,
and U. Schwiegelshohn, editors, Job Scheduling Strategies for
Parallel Processing, volume 2862 of Lecture Notes in Computer
Science, pages 44–60. Springer Berlin / Heidelberg, 2003.

16

212

VIII

Paper VIII

Increasing Flexibility and Abstracting Complexity in
Service-Based Grid and Cloud Software

Per-Olov Östberg and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{p-o, elmroth}@cs.umu.se
http://www.cs.umu.se/ds

Abstract: This work addresses service-based software development in Grid and
Cloud computing environments, and proposes a methodology for Service-Oriented
Architecture design. The approach consists of an architecture design methodology
focused on facilitating system flexibility, a service model emphasizing component
modularity and customization, and a development tool designed to abstract service
development complexity. The approach is intended for use in computational eScience
environments and is designed to increase flexibility in system design, development,
and deployment, and reduce complexity in system development and administration.
To illustrate the approach we present case studies from two recent Grid infrastructure
software development projects, and evaluate impact of the development approach and
the toolset on the projects.

Key words: Service-Oriented Architecture, Grid Computing, Cloud Computing,
Service-Oriented Component Model.

215

216

INCREASING FLEXIBILITY AND ABSTRACTING COMPLEXITY
IN SERVICE-BASED GRID AND CLOUD SOFTWARE

Per-Olov Östberg, Erik Elmroth
Department of Computing Science, Umeå University, SE-901 87, Umeå, Sweden

p-o@cs.umu.se, elmroth@cs.umu.se

Keywords: Service-Oriented Architecture, Grid Computing, Cloud Computing, Service-Oriented Component Model.

Abstract: This work addresses service-based software development in Grid and Cloud computing environments, and
proposes a methodology for Service-Oriented Architecture design. The approach consists of an architecture
design methodology focused on facilitating system flexibility, a service model emphasizing component mod-
ularity and customization, and a development tool designed to abstract service development complexity. The
approach is intended for use in computational eScience environments and is designed to increase flexibility
in system design, development, and deployment, and reduce complexity in system development and admin-
istration. To illustrate the approach we present case studies from two recent Grid infrastructure software
development projects, and evaluate impact of the development approach and the toolset on the projects.

1 INTRODUCTION

In this paper we discuss service-based software
development, propose a methodology for Service-
Oriented Architecture (SOA) design, and present a
toolset designed to abstract service development com-
plexity. To illustrate the approach we present case
studies from two recent Grid infrastructure software
development projects, and evaluate impact of the de-
velopment approach and the toolset on the projects.

Grid and Cloud computing alter and intro-
duce new software requirements for computational
eScience applications. Increasingly, eScience soft-
ware now require the ability to be flexible in de-
ployment, dynamically reconfigured, updated through
modules, customized, and have the ability to integrate
non-intrusively in heterogeneous deployment envi-
ronments. At the same time, software size and com-
plexity is growing in multiple dimensions (Kephart
and Chess, 2003), and limitations and complexity in
current service development tools increase develop-
ment overhead. Software development projects in-
clude more developers, require more coordination,
and result in more complex systems. Software ad-
ministration is growing in complexity and new mech-
anisms for software administration are required.

This work addresses an identified need for scala-
bility in more dimensions than just performance, and
builds on prior efforts in service composition-based
software design (Elmroth and Östberg, 2008) and a
model of software sustainability based on the notion
of an ecosystem of software components (Elmroth
et al., 2008). We explore an approach to service-based
software development based on separation of service
functionality blocks, reduction of software complex-
ity, and formulation of architectures as dynamically
reconfigurable, loosely coupled networks of services.
To support the approach, we present a toolset de-
signed to abstract complexity in service description
and development. The approach is illustrated in two
case studies from recent development projects.

The rest of this paper is structured as follows:
Section 2 overviews related and prior work. Section 3
discusses software development in Grid and Cloud
computing environments, and illustrates the need for
flexibility in design, development, and deployment of
eScience software. Section 4 proposes a methodol-
ogy for service-based software design, and Section 5
presents a toolset for service development. To illus-
trate the methodology and use of the toolset, Section 6
presents case studies of two recent software develop-
ment projects, and the paper is concluded in Section 7.

217

2 RELATED AND PRIOR WORK

This work builds on a service composition model
and a set of architectural design patterns presented
in (Elmroth and Östberg, 2008), and further refines a
software design and development model based on the
notion of an ecosystem of software components (Elm-
roth et al., 2008). The approach is designed to facili-
tate software flexibility and adaptability, and promote
software survival in natural selection settings. While
the approach does not define explicit self-* mecha-
nisms, it does adhere to the line of reasoning used
in Autonomic Computing (Kephart and Chess, 2003),
and defines a component model well suited for con-
struction of self-management mechanisms, e.g., self-
healing architectures and self-configuration compo-
nents. Contributions of this paper include refinement
of a software development model for flexible compo-
nents and architectures, and presentation of a toolset
designed to abstract service development complexity.

(Lau and Wang, 2007) provides a taxonomy for
software component models that identifies a set of key
characteristics, e.g., encapsulation and composition-
ality, for service-based component models. In (Lau
et al., 2005), the authors also propose a component
model based on exogenous connectors designed to fa-
cilitate loose coupling in aggregation control flow.

(Curbera et al., 2005) outlines a component-based
programming model for service-oriented computing.
This model focuses on goals similar to our approach
and, e.g., identifies a need for flexibility and cus-
tomization in SOA systems, and employs a view of
Service-Oriented Architectures (SOAs) as distributed,
abstractive architectures built on service-oriented
components. While (Curbera et al., 2005) outlines
requirements and structures for service-oriented com-
ponent models and classifies component composition
models, we propose a development methodology con-
sisting of best practice recommendations for architec-
ture design and component development.

Similar to the Spring Java application de-
velopment framework (Spring Framework, 2011),
iPOJO (Escoffier et al., 2007) provides a service-
oriented component model where logic is imple-
mented as POJOs and service handlers are injected
through byte code modification. iPOJO emphasizes
separation of service logic and interface implemen-
tations and provides a component model built on
OSGi (OSGi, 2011) that provides both component-
and application-level containers. The approach of this
work aims to facilitate service-based application de-
velopment, and presents a toolset to abstract service
development complexity, while iPOJO provides a full
and extensible software component model.

In addition to these component models, a number
of service integration models exist (Peltz, 2003), and
be categorized as, e.g., service composition, service
orchestration, and service interaction models. In this
work, we build architectures based on a model where
we focus on component abstraction, and define com-
ponent interactions in programming language terms
rather than system-level orchestrations. Note that
components developed using our development model
are still compatible with service discovery and or-
chestration techniques, while we aggregate compo-
nents in configuration and programming languages.

The Service-Oriented Modeling and Architecture
(SOMA) (Arsanjani et al., 2010) approach outlines a
development methodology for identification, design,
development, and management of service-oriented
software solutions. SOMA constitutes a complete ser-
vice lifecycle development model that addresses mod-
eling and management of business processes in ad-
dition to software development tasks. Compared to
our approach, SOMA is a mature development model
that provides guidelines for modeling and develop-
ment tasks in large software projects. Our approach
targets smaller development projects and aims to sim-
plify service and component development by abstract-
ing development complexity.

In addition to these efforts, a number of commer-
cial service-based software development tools and en-
vironments, e.g., Microsoft .NET (Lowy, 2005), exist.
In comparison to open source and scientific projects,
commercial development tools are in general mature,
well documented, and more continuously maintained.
Commercial enterprises do however have business in-
centives for restricting development and integration
flexibility in products, and commercial products are
often associated with license cost models that discour-
age use in eScience application environments.

3 GRID AND CLOUD SOFTWARE
DEVELOPMENT

Grid and Cloud eScience systems are distributed
and designed for asynchronicity, parallelism, and de-
centralization. Grid environments organize users in
Virtual Organizations (VOs) mapped onto virtual in-
frastructures built through resource site federations.
As Grids build and provide abstract interfaces to ex-
isting resources through middlewares, Grid infras-
tructures focus heavily on integration of existing re-
sources and systems, and have adapted a number of
tools well suited for system integration. For these rea-
sons, many Grid architectures are designed as SOAs
and implemented using Web Services.

218

Cloud computing evolved from a number of dis-
tributed system efforts and inherits technology and
methodology from Grid computing. To applications,
Clouds provide the illusion of endless resource ca-
pacity through interface abstraction, and run virtual
machines on resources employing hardware-enabled
virtualization technologies. As the notion of a ser-
vice (an always-on, network-accessible software) fits
well in the Cloud computing model, many Cloud en-
vironments build on, or provide, service-oriented in-
terfaces. In effect, Grids provide scalability through
federation of resources, while Clouds provide compu-
tational elasticity through abstraction of resources.

In service-based software development, a number
of trade-offs and development issues exist.

Software reuse. Development of Grid and Cloud
computing infrastructure components and applica-
tions consists, at least in part, of integration of ex-
isting systems. Integration projects tend to produce
software specific to integration environments, and
limit software reuse to component level. To enable
software reuse, components should be kept flexible
and customizable (Elmroth and Östberg, 2008; Elm-
roth et al., 2008), and SOA programming models
should emphasize construction of modules that devel-
opers can customize without source code modifica-
tion (Curbera et al., 2005).

Software flexibility. In SOA environments, com-
ponent interactions are specified in terms of service
interfaces, orchestrations, and compositions. Ser-
vices define interfaces in terms of service descriptions
(SOAP style Web Services), or via exposure of re-
sources through HTTP mechanisms (REST services).
As SOAs are typically designed to abstract underly-
ing execution environments and dynamically provi-
sion functionality, services may be deployed in dy-
namic and heterogeneous environments. To facili-
tate integration between components, SOAP Web Ser-
vice platforms provide Application Programming In-
terfaces (APIs) and employ code generation tools to
provide boilerplate solutions for component interac-
tion. REST architectures define resource representa-
tions in documentation and often encapsulate compo-
nent invocation in APIs. By providing mechanisms
for dynamic recomposition of architectures and re-
configuration of components, SOAs facilitate system
deployment and administration flexibility.

Multi-dimensional scalability. There are many
types of scalability in Grid and Cloud Computing.
Within performance, scalability can be categorized
in dimensions such as horizontal or vertical scala-
bility, i.e. ability to efficiently utilize many or large
resources, or in time, e.g., in terms of computation
throughput, makespan, and response time. In Clouds,

hardware virtualization enabled resource elasticity
describes system ability to vary number and size of
hardware resources contributing to Cloud resource
and infrastructure capacity.

While achieving performance scalability is cen-
tral to computational systems (and the explicit focus
of many Grid and Cloud Computing efforts), there
are also other types of scalability likely to impact
software sustainability in Grid and Cloud Comput-
ing environments. Scalability in, e.g., development,
deployment, and administration, are becoming limit-
ing factors as software projects scale up. In devel-
opment, scalability is often limited by system com-
plexity and problem topology. Deployment flexibility
can be measured in terms of adaptability and integra-
bility, and is typically limited by restrictions imposed
by architecture design or implementation choices. In-
creasingly, as software projects grow in size and com-
plexity, configuration and administration scalability is
becoming a factor. Administration scalability can be
measured in terms of automation, configuration com-
plexity, and monitoring transparency. Computational
and storage scalability are often limited by problem
topology, while development and deployment scala-
bility tend to be limited by solution complexity.

Development complexity. Limitations in cur-
rent service engines, frameworks, and development
tools often result in increased component implemen-
tation complexity and reduced developer productiv-
ity (when compared to non-service-based software
development). Service development APIs expose
low level functionality and service engine integration
logic leaving, e.g., parts of message serialization tasks
to service and client developers. For services defined
with explicit service interface descriptions, e.g., Web
Service Description Language (WSDL) documents, a
number of code generation tools exist. These typi-
cally extract type systems and service interface infor-
mation from service interface descriptions, and gener-
ate code to integrate and communicate with services.

Current service APIs and code generators tend to
be service platform specific and tie service and ser-
vice client implementations to specific service en-
gines. Tool complexity often leads to complex in-
teractions with and within service implementations,
resulting in service interface implementations being
mixed with service functionality logic. In addition,
service description and type validation languages are
often complex. WSDL and XML Schema are exam-
ples of widely used languages with great expressive
power and steep learning curves that lower developer
productivity and obstruct component reuse.

Complexity and ambiguity in service description
formats lead to steep learning curves, high develop-

219

ment overhead, and incompatibilities in service in-
terface and message validation implementations. As
generated code is intended for machine interpreta-
tion, it is typically left undocumented, unindented,
and hard to read, reducing toolset transparency. Tool
complexity results in vendor lock-in, reduced devel-
opment productivity, and decreased software stability.

4 DESIGN METHODOLOGY

To address service software reuse, flexibility, and
scalability issues, we propose a SOA development
methodology consisting of two parts: an architec-
ture design methodology and a service component
model. The methodology emphasizes modularity and
customization on both architecture and component
level. Architectures isolate functionality blocks in
services and define architectures as loosely coupled
networks of services that can be customized through
recomposition mechanisms. Services separate com-
ponent modules and offer customization through ex-
posure of plug-in customization points. To support
this methodology we provide a service development
toolset (presented in Section 5) designed to abstract
service development complexity. The overall goal of
this methodology is to raise service development ab-
straction levels and produce systems that are flexible
in development, deployment, and administration.

4.1 Design Perspective

To design modular and reusable software, we employ
a model of software evolution based on the notion of
an ecosystem of infrastructure and application com-
ponents (Elmroth et al., 2008). Here systems form
niches of functionality and components are selected
for use based on current client or application needs.
Over time, software are subject to evolution based
on natural selection. In conjunction with this model,
we observe the line of reasoning used in autonomic
computing (Kephart and Chess, 2003), and address
scalability through modularity and reduction of soft-
ware complexity. The proposed methodology pro-
vides component and architecture models well suited
for construction of software self-* mechanisms.

In architecture design, we combine the top-down
perspective of structured system design with the mod-
eling of objects and relationships between objects of
object-oriented programming. Similar to the reason-
ing of (Lau and Wang, 2007), we design compo-
nents that expose functionality through well-defined
Web Service interfaces and compose architectures as
SOAs. System composition takes place in the compo-

nent design (through interface, dependency, and com-
munication design) and deployment (through run-
time configuration) phases, and is determined through
a system de- and recomposition approach (Elmroth
and Östberg, 2008). As encapsulation (modular-
ity) counters software complexity (Lau and Wang,
2007), we utilize interface abstraction and late bind-
ing techniques to construct loosely coupled and loca-
tion transparent components.

The design approach defines architectures as flex-
ible, dynamically reconfigurable, and loosely coupled
networks of services. Autonomous blocks of func-
tionality are identified and isolated, and components
are modeled to keep component interactions coarse-
grained and infrequent. Functionality likely to be of
interest to other components or clients is exposed as
services or customization points.

For applications, this approach provides flexibility
in utilization and customization of system functional-
ity, and increases system task parallelization poten-
tial. Construction of software as SOAs emphasizes
composition of new systems from existing compo-
nents, allows a model of software reuse where appli-
cations dynamically select components based on cur-
rent needs, and facilitates replacement and updates of
individual components. On component level, this ap-
proach results in increased modularity and a greater
focus on interface abstraction, benefiting component
and system flexibility, adaptability, and longevity.

While architectures designed as networks of ser-
vices may be distributed, components are likely to
(at least partially) be co-hosted for reasons of perfor-
mance and ease of administration. Co-hosted com-
ponents are able to make use of local call optimiza-
tions, which greatly reduce service container mem-
ory and CPU load, as well as system network band-
width requirements. Use of local call optimizations
results in less network congestion issues, fewer net-
work stack package drops, fewer container message
queue drops, and reduced impact of component com-
munication overhead and errors. Local call opti-
mization mechanisms allows design of systems that
combine the component communication efficiency of
monolithic systems with the deployment flexibility of
distributed service-based systems.

4.2 Architecture Design

Our design approach is summarized in three steps.
Identification of autonomous functionality

blocks. Similar to how objects and object relation-
ships are modeled in object-oriented programming,
autonomous functionality blocks are identified and
block interactions are modeled using coarse-grained

220

service communication patterns. Key to this approach
is to strike a balance between architecture fragmenta-
tion and the need to keep components small, single-
purpose, and intuitive. Component dependency pat-
terns are identified to illuminate opportunities for par-
allelization of system tasks.

Identification of exposure mechanisms for
functionality blocks. Functionality of interest to
components in neighboring ecosystem niches, with
clear levels of abstraction, and where well-defined
interfaces can be defined is exposed as services.
Functionality not of interest to other systems, but
where component customization would increase sys-
tem flexibility is exposed as customization points,
e.g., through configuration and plug-ins. Service-
exposed functionality is generally identified at archi-
tecture level, while customization points are typically
identified at component level.

Design of service interactions and interfaces.
Formulation of interfaces and service communica-
tion patterns are essential to performance efficiency
in SOAs. Key to our approach is to design architec-
tures that allow services to function efficiently as both
local objects and distributed services. As exposure of
components as services may lead to unexpected in-
vocation patterns, defensive programming techniques
and design patterns are employed to keep service in-
terfaces unambiguous, simple, and lean.

4.3 Component Design

In component design, we adhere to the general prin-
ciples for a service-oriented component model pre-
sented in (Cervantes and Hall, 2004) and organize
service components in a way similar to classic three-
tier architectures. To enable a software development
model facilitating loose coupling of service compo-
nents, we emphasize separation of modules in compo-
nent design (Yang and Papazoglou, 2004). Separation
of service client, interface, logic, and storage compo-
nents facilitates flexibility in distributed system devel-
opment and integration. Separation of service clients
and interface implementations is a key mechanism
in Service-Oriented Computing (SOC) that facilitates
loose coupling in systems, and is here extended to
provide (optional) flexibility in logic implementation.

Use of language and platform independent tech-
niques for data marshaling and transportation allows
service clients to be implemented using application-
specific languages and tools, facilitating system in-
tegrability and adoptability. Development of service
components using this pattern can be used to, e.g.,
create lightweight Web Service integration interfaces
for existing components running in component envi-

ronments such as the Common Object Model (COM)
or Enterprise Java Beans (EJB).

Separation of service interface and logic imple-
mentation enables use of alternative wire protocols
and communication paradigms, and facilitates imple-
mentation and deployment of service logic in compo-
nent model environments. Encapsulation of platform-
specific code, i.e. service client and interface imple-
mentations, facilitates migration and porting of ser-
vice logic to alternative service platforms.

Implementation of local call optimizations allow
logic components to function as local Java objects in
service clients (Elmroth and Östberg, 2008), reduc-
ing component communication overhead to the lev-
els of monolithic architectures (Östberg and Elmroth,
2011). Embedding local call optimizations in com-
ponent APIs allows optimizations to be transparent to
developers and ubiquitous in service implementations
(see Section 5), combining the deployment flexibility
of distributed SOAs with the communication perfor-
mance of monolithic architectures.

Implementation of service logic in component
models introduce additional requirements for soft-
ware development. Best practices for Web Service
and component-based software development overlap
partially. Web Service components should, e.g., be
implemented to be thread safe, communicate asyn-
chronously, consume minimal system resources, and
minimize service response times. Separation of ser-
vice logic from storage layers enables loose cou-
pling between component models and storage mech-
anisms, and facilitates migration of service logic be-
tween component environments.

To provide component-level flexibility, we define
structures for customization points as plug-ins. Com-
ponent interfaces are defined for advisory and func-
tionality provider interfaces, and customization point
implementations are dynamically loaded at runtime.
Through this mechanism, third parties can replace,
update, and provide plug-in components for internal
structures inside services without impacting design of
application architectures.

5 DEVELOPMENT TOOLSET

Software reuse in highly specialized, complex,
and low maturity environments such as emerging Grid
and Cloud computing eScience platforms is limited
and inefficient. Code generation tools target automa-
tion of software development and can facilitate soft-
ware reuse by providing boiler-plate solutions for ser-
vice communication and isolate service logic. To
address software reuse and abstraction of develop-

221

Figure 1: SDAT service structure. Manually developed components (application and service logic) decoupled from gener-
ated components (service invocation, configuration management, and state persistence). Transparent local call optimizations
reduce service invocation overhead and container load.

ment complexity, we present a service development
toolset called the Service Development Abstraction
Toolset (SDAT). SDAT builds on the component de-
sign model of Section 4.3 and is designed to raise ser-
vice development abstraction levels through a simpli-
fied service description language and a code genera-
tion tool that separates service components and pro-
vides boiler-plate solutions for, e.g., data representa-
tion, validation, and communication.

5.1 Simplified Service Description

To promote loose coupling of service clients and im-
plementations, enable service code generation, and
facilitate service discovery, we define a simplis-
tic XML-based service interface description format
called the Abstractive Service Description Language
(ASDL). The format specifies service interfaces in
terms of tree-based data types and call by value op-
erations on defined types. Data types are defined
in a schema language defined as a subset of XML
Schema. Conceptually, ASDL can be seen as a min-
imalistic subset of the Web Service Description Lan-
guage (WSDL), where the expressive power of XML
Schema and WSDL are reduced in favor of simplicity
in interface interpretation and data representation.

The ASDL type schema language consists of a re-
stricted set of XML and XML Schema tags. Data
field types are defined using simpleType tags, and
organized in hierarchical records using complexType
tags. For message validation schema completeness
element tags are inserted, and service interfaces are
defined using service and operation tags. All
schemas define a target namespace, use explicitly
referenced namespaces, and all tags are qualified.
XML Schema mechanisms for include and import
tags are supported to facilitate type definition reuse.
ASDL is designed to provide a service interface de-
sign model semantically equivalent to Java interfaces
using immutable Java classes.

Through ASDL, SDAT exploits XML Schema
document validation without encumbering interface
designers with the full complexity of XML Schema
and WSDL. For translation to WSDL interface de-
scriptions and generation of SOAP Web Service im-
plementations, the following assumptions are made.
All service communication is kept document-oriented
and use literal encoding of messages. Interfaces are
designed to have single-part messages and define a
single service per service description. Services define
a single type set per service description and all data
fields are encoded in XML elements. Exceptions are
exposed as SOAP faults and serialized as messages
defined in the service type schema.

5.2 Code Generation

To facilitate design of architectures as loosely cou-
pled networks of services, SDAT defines a service
structure (illustrated in Figure 1) that isolates service
functionality blocks and employs a local call opti-
mization mechanism for co-hosted services. Local
call optimizations transparently bypass network se-
rialization and reduce invocation overhead and con-
tainer load (Elmroth and Östberg, 2008). Immutable
data types are exposed in service interfaces and used
for service invocation. Optional message validation is
performed in service client and interface components.
The service structure defines modules for:
• Data type representations. Flat record structures

are extracted from service description schemas
and data type representation components are de-
fined as immutable and serializable Java classes.

• Service interfaces. A service invocation frame-
work abstracting call optimizations is built into
service implementations and client APIs, making
optimizations transparent to service clients.

• Message data validation. XML Schemas are ex-
tracted from service interface descriptions and
used to generate message validation components.

222

• Service configuration management. A configu-
ration accessor and monitor API is defined for
service components. Configuration modules are
available to service client and logic components.

• Persistent state storage. A framework for persis-
tent service state storage is defined and accessible
to service logic components. Persistence modules
are customizable and can be extended to support,
e.g., additional databases or serialization formats.

Separation of service interface and logic implementa-
tion allows compartmentalization of service platform
specific code and facilitates abstraction of service in-
terface and invocation implementation.

As illustrated in Figure 1, the SDAT service struc-
ture isolates manually coded components (applica-
tion and service logic) from generated service compo-
nents. Typical service development using SDAT con-
sists of specification of a ASDL interface, generation
of service components and interfaces, and implemen-
tation of a service logic interface. The goal of the tool
is to abstract service development complexity to the
level of implementation of a Java interface while pro-
viding optional customization of service components.

In addition to service components, SDAT gener-
ates deployment information (WSDL service descrip-
tions, deployment descriptors, etc.), security code
(WS-Security implementations, policy files, etc.), and
a (Apache Ant) build environment. By default, SDAT
generates compiled and deployable service packages
where developers only need to add service logic im-
plementations to services. To facilitate transparency,
all source code generated is designed to be well for-
matted, easy to read, and documented.

Configuration of SDAT services is segmented into
separate container and service configuration. As
SDAT services expose customization points in the
form of plug-ins for, e.g., service logic implemen-
tation, some configuration of the generated SDAT
framework must be done on container level. A typ-
ical example of this is service plug-ins, which are
specified in container Java runtime property settings.
Configuration of service logic components is typ-
ically done through service configuration files ac-
cessed through the SDAT configuration API.

To enforce user-level isolation of service capa-
bilities, service interface implementations instantiate
unique service logic components for each invoking
user. User-level isolation is implemented through a
singleton factory that caches service instances based
on invocation credentials, i.e. user certificates. This
mechanism is designed to coexist with native mecha-
nisms for component-level isolation of services.

For platform independence, clear representations
of service interfaces, strong Web Service support, and

in-memory compilation, SDAT is built and produces
services in Java. For separation of service interface
specification and service development, SDAT primar-
ily supports SOAP style Web Services. Currently,
SDAT integrates with the Apache Axis2 SOAP en-
gine, but as service interface components are decou-
pled from service logic components, support for ad-
ditional service engines, client languages, or commu-
nication patterns can be extended without affecting
other service mechanisms. In extension, this model is
expected to be of interest for creating components that
can be hosted in different service engines, or even (si-
multaneously) support multiple types of service com-
munication (e.g., REST, TCP/IP, and SOAP).

The aim of SDAT is to provide a development tool
that abstracts complex and error-prone service com-
munication development and allows service develop-
ers to focus on service logic. The tool is designed
to provide a simplistic service model where service
interfaces are kept simple, but still have expressive
power enough to create efficiently communicating
services. SDAT is designed as a prototype develop-
ment tool that aims to integrate with existing service
containers and development environments. While
current code generators are tied to particular service
environments or languages, SDAT is designed to sup-
port a development methodology rather than a spe-
cific platform or toolset.

6 CASE STUDIES

To illustrate our design approach, we present
case studies from two recent software development
projects. In these projects, which target develop-
ment of Grid infrastructure components, emphasis is
placed on development of flexible architectures ca-
pable of seamless integration into existing Grid and
High-Performance Computing (HPC) environments.

6.1 GJMF

The Grid Job Management Framework
(GJMF) (Östberg and Elmroth, 2010) illustrated
in Figure 2 is a Grid infrastructure component built
as a loosely coupled network of services. Designed
to provide middleware-agnostic and abstractive job
management interfaces, the GJMF offers concurrent
access to multiple Grid middlewares through com-
ponents organized in hierarchical layers. Services
in higher layers aggregate functionality of lower
layers, and form a rich middleware-agnostic Grid job
management interface. Through a set of integration
plug-ins, the framework can be customized to, e.g.,

223

Figure 2: The Grid Job Management Framework (GJMF). A hierarchical framework of services offering abstractive Grid job
management. Illustration from (Östberg and Elmroth, 2010).

support additional Grid middlewares, replace job bro-
kering algorithms, and define job failure management
policies. Framework composition, plug-in selec-
tion, and component configuration are configurable
through dynamic configuration modules.

The GJMF predates the service development
toolset of Section 5 and has served as a testbed for the
development methodology. The framework is devel-
oped using the Globus Toolkit v4 (Foster, 2005) and
employs WSRF notifications for service monitoring
and coordination. Due to the flexibility of the frame-
work architecture, the GJMF is deployable in multi-
ple concurrent settings as, e.g., a gateway job man-
agement interface, an alternative job brokering mech-
anism, or a personal client-side job monitoring tool.

6.2 FSGrid

FSGrid (Östberg et al., 2011) is a job prioritization
mechanisms for scheduler-based Grid fairshare pol-
icy enforcement. Designed as a distributed architec-
ture consisting of a network of services, FSGrid is
segmentable and can be tailored to resource site de-
ployments. The system virtualizes usage metrics and
resource site capacity, and is capable of collaboration
between different types of FSGrid configurations.

As illustrated in Figure 3, FSGrid deploys com-
ponents to be close to data and computation, and en-
forces VO and resource site allocation policies simul-
taneously. The system mounts VO allocation policies
onto resource site policies, assembles and operates on
global usage data, and injects a fairshare job prioriti-
zation mechanism into local scheduling decisions.

The flexibility of the architecture allows FSGrid
to be deployed in different configurations on differ-
ent sites, to be dynamically reconfigured, and adapt

to dynamic changes in usage data and allocation poli-
cies. FSGrid exposes customization points through
dynamic service configuration modules, and plug-ins
for usage decay functions and fairshare metrics.

In FSGrid, all service interfaces are describe us-
ing ASDL and all service components developed us-
ing SDAT. The code generation tools of SDAT help
to isolate service implementations from service ser-
vice container and communication dependencies. The
system is deployed using Apache Axis2 (Apache Web
Services Project - Axis2, 2011) service containers and
integrates into cluster schedulers using custom ser-
vice clients. As GJMF and FSGrid are designed us-
ing the same methodology but different tools and plat-
forms, they make a suitable platform for evaluation.

6.3 Evaluation

The GJMF and FSGrid are developed using the same
approach to SOA design, and designed with the same
goal: to provide flexible architectures for Grid in-
frastructure. Both systems are designed as loosely
coupled and reconfigurable networks of services, ex-
pose customization points for tailoring of component
functionality, and provide APIs to facilitate integra-
tion into deployment environments.

Experiences from integration of GJMF with the
LUNARC application portal (Lindemann and Sand-
berg, 2005) and a problem-solving environment
in R are documented in (Elmroth et al., 2011)
and (Jayawardena et al., 2010) respectively. These
projects illustrate benefits of construction of infras-
tructure components as flexible networks of service
SOAs. The GJMF exposes a range of job submis-
sion, monitoring, and control interfaces that can be
utilized to integrate in heterogeneous deployment en-

224

Figure 3: FSGrid, a scheduler-based fairshare job prioritization framework for Grid environments built as a distributable set
of services. Illustration from (Östberg et al., 2011).

vironments. The deployment flexibility of the frame-
work allows parts of the framework to fulfill different
job management roles and be hosted separately.

A recent performance analysis (Östberg and Elm-
roth, 2011) illustrates that organization of services
in hierarchical layers allows the GJMF to mask ser-
vice communication overhead through parallel task
processing. Local call optimizations significantly re-
duce communication overhead and container load for
inter-service communication. The service structure
abstracts use of local call optimizations and allows
optimizations to be ubiquitous and transparent.

Compared to GJMF development, the FSGrid
project benefits from use of SDAT in reduction of
service interface implementation complexity. FSGrid
development cycles are shorter, and use of ASDL and
SDAT facilitates experimentation in architecture de-
sign. FSGrid benefits from use of SDAT in com-
partmentalization and reduction of complexity in ser-
vice logic implementation. The proposed develop-
ment methodology provides GJMF and FSGrid archi-
tecture and component level reconfigurability, adap-
tivity, and flexibility. The SDAT abstracts service de-
velopment and facilitates porting of core system func-
tionality to alternative service platforms.

Impact of the proposed methodology on the in-
ternal quality of produced software can be evaluated
through, e.g., evaluation of the maintainability and
cohesion of service interfaces (Perepletchikov et al.,
2010). Study of the impact of SDAT on the quality of
GJMF and FSGrid is subject for future work.

7 CONCLUSION

In this paper we address software development
practices for eScience applications and infrastructure.
We discuss service-based software development in
Grid and Cloud computing environments and iden-

tify a set of current software development issues, e.g.,
complexity and lack of flexibility in service develop-
ment tools. To address these issues, we propose a
SOA-based software design methodology constituted
by a set of architecture design guidelines, a compo-
nent design model, and a toolset designed to abstract
service development complexity. The approach is il-
lustrated and evaluated in a case study of experiences
from two recent software development projects.

Our design approach aims to produce software
architectures that are flexible in deployment, reduce
need for complex distributed state synchronization,
and facilitate distribution and parallelization of sys-
tem tasks. The component model isolates service
components in standalone modules, exposes function-
ality as services and customizable plug-ins, and com-
partmentalizes platform-specific service interface and
invocation code. The toolset is designed to support
the design methodology through abstraction of de-
velopment complexity and facilitation of flexibility in
service development, deployment, and utilization. A
simplified service description language abstracts ser-
vice interface and type description complexity.

Experiences from recent software development
projects illustrate the need for structured development
models for Service-Oriented Architectures. The hier-
archical structure of the GJMF allows the framework
to dynamically function as several types of job man-
agement interfaces simultaneously as well as mask
service invocation overhead. Building the system as
a network of services allows FSGrid to deploy com-
ponents close to data and computations as well as
provide more flexible interfaces for scheduler integra-
tion. The design approach provides both systems with
increased flexibility in development and deployment.
Use of the SDAT toolset abstracts service develop-
ment complexity and provides FSGrid a component
model that supports dynamic reconfiguration and en-
capsulation of platform-specific service functionality.

225

ACKNOWLEDGMENTS

The authors extend their gratitude to the anony-
mous reviewers, Deb Agarwal, and Vladimir Vlassov
for valuable feedback that has contributed to the qual-
ity of this paper. This work is funded in part by
the Swedish Research Council (VR) under Contract
621-2005-3667, the Swedish Government’s strategic
research project eSSENCE, and the European Com-
munity’s Seventh Framework Programme (FP7/2001-
2013) under grant agreement 257115 (OPTIMIS).
The authors acknowledge the Lawrence Berkeley Na-
tional Laboratory (LBNL) for supporting the project
under U.S. Department of Energy Contract DE-
AC02-05CH11231.

REFERENCES

Apache Web Services Project - Axis2 (2011).
http://ws.apache.org/axis2, February 2011.

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapa-
thy, S., and Holley, K. (2010). SOMA: A method for
developing service-oriented solutions. IBM Systems
Journal, 47(3):377–396.

Cervantes, H. and Hall, R. (2004). Autonomous adaptation
to dynamic availability using a service-oriented com-
ponent model. In Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on,
pages 614 – 623.

Curbera, F., Ferguson, D., Nally, M., and Stockton, M.
(2005). Toward a programming model for service-
oriented computing. In Benatallah, B., Casati, F., and
Traverso, P., editors, Service-Oriented Computing -
ICSOC 2005, volume 3826 of Lecture Notes in Com-
puter Science, pages 33–47. Springer Berlin / Heidel-
berg.

Elmroth, E., Hernández, F., Tordsson, J., and Östberg, P.-
O. (2008). Designing Service-Based Resource Man-
agement Tools for a Healthy Grid Ecosystem. In
Wyrzykowski, R. et al., editors, Parallel Processing
and Applied Mathematics, Lecture Notes in Computer
Science, vol. 4967, pages 259–270. Springer-Verlag.

Elmroth, E., Holmgren, S., Lindemann, J., Toor, S., and
Östberg, P.-O. (to appear, 2011). Empowering a Flex-
ible Application Portal with a SOA-based Grid Job
Management Framework. In The 9th International
Workshop on State-of-the-Art in Scientific and Paral-
lel Computing.

Elmroth, E. and Östberg, P.-O. (2008). Dynamic and
Transparent Service Compositions Techniques for
Service-Oriented Grid Architectures. In Gorlatch, S.,
Fragopoulou, P., and Priol, T., editors, Integrated Re-
search in Grid Computing, pages 323–334. Crete Uni-
versity Press.

Escoffier, C., Hall, R. S., and Lalanda, P. (2007). iPOJO: an
Extensible Service-Oriented Component Framework.

Services Computing, IEEE International Conference
on, 0:474–481.

Foster, I. (2005). Globus toolkit version 4: Software for
service-oriented systems. In Jin, H., Reed, D., and
Jiang, W., editors, IFIP International Conference on
Network and Parallel Computing, LNCS 3779, pages
2–13. Springer-Verlag.

Jayawardena, M., Nettelblad, C., Toor, S., Östberg, P.-
O., Elmroth, E., and Holmgren, S. (2010). A Grid-
Enabled Problem Solving Environment for QTL Anal-
ysis in R. In In Proceedings of the 2nd International
Conference on Bioinformatics and Computational Bi-
ology (BICoB), pages 202–209. ISCA.

Kephart, J. O. and Chess, D. M. (2003). The Vision of Au-
tonomic Computing. Computer, 36:41–50.

Lau, K.-K., Velasco Elizondo, P., and Wang, Z. (2005).
Exogenous connectors for software components. In
Heineman, G. T., Crnkovic, I., Schmidt, H. W.,
Stafford, J. A., Szyperski, C., and Wallnau, K., ed-
itors, Component-Based Software Engineering, vol-
ume 3489 of Lecture Notes in Computer Science,
pages 90–106. Springer Berlin / Heidelberg.

Lau, K.-K. and Wang, Z. (2007). Software component
models. Software Engineering, IEEE Transactions on,
33(10):709 –724.

Lindemann, J. and Sandberg, G. (2005). An extendable
GRID application portal. In European Grid Confer-
ence (EGC). Springer Verlag.

Lowy, J. (2005). Programming .NET Components, 2nd Edi-
tion. O’Reilly Media, Inc.

OSGi (2011). http://www.osgi.org, February 2011.

Östberg, P.-O. and Elmroth, E. (submitted, 2010).
GJMF - A Composable Service-Oriented Grid Job
Management Framework. Preprint available at
http://www.cs.umu.se/ds.

Östberg, P.-O. and Elmroth, E. (submitted, 2011). Impact of
Service Overhead on Service-Oriented Grid Architec-
tures. Preprint available at http://www.cs.umu.se/ds.

Östberg, P.-O., Henriksson, D., and Elmroth, E. (sub-
mitted, 2011). Decentralized, Scalable, Grid Fair-
share Scheduling (FSGrid). Preprint available at
http://www.cs.umu.se/ds.

Peltz, C. (2003). Web Services Orchestration and Choreog-
raphy. Computer, 36(10):46–52.

Perepletchikov, M., Ryan, C., and Tari, Z. (2010). The
impact of service cohesion on the analyzability of
service-oriented software. IEEE Transactions on Ser-
vices Computing, 3:89–103.

Spring Framework (2011). http://www.springsource.org,
February 2011.

Yang, J. and Papazoglou, M. P. (2004). Service compo-
nents for managing the life-cycle of service compo-
sitions. Information Systems, 29(2):97 – 125. The
14th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE*02).

226

