
Recognizing Shuffled Languages

Technical Report UMINF 11.01

Martin Berglund, Henrik Björklund, Johanna Högberg

Department of Computing Science
Ume̊a University, Sweden

{mbe,henrikb,johanna}@cs.umu.se

Abstract. Language models that use interleaving, or shuffle, operators
have applications in various areas of computer science, including system
verification, plan recognition, and natural language processing. We study
the complexity of the membership problem for such models, i.e., how
difficult it is to determine if a string belongs to a language or not. In
particular, we investigate how interleaving can be introduced into models
that capture the context-free languages.

1 Introduction

We study the membership problem for various language classes that make use of
the shuffle operator �. When applied to a pair of strings u and v, the operator
returns the set of all possible interleavings of the symbols in u and v. For example,
the shuffle of ab and cd is {abcd, acbd, acdb, cabd, cadb, cdab}. The operator is
lifted to languages by defining L1 �L2 to be the set

⋃{u� v | u ∈ L1, v ∈ L2}.
We also consider the shuffle closure operator, whose relationship to the shuffle
operator resembles that of the Kleene star to concatenation.

Various aspects of shuffling have been studied in the theory of formal lan-
guages, see, e.g., [14, 17, 3, 12, 4, 10]. In this paper, we take the shuffle languages
considered by Gischer [14] and by Jedrzejowicz and Szepietowski [17] as the start-
ing point. These are the languages defined by regular expressions augmented with
the shuffle and the shuffle closure operators.

Shuffling of languages is of interest in a number of different areas:

– In the modelling and verification of systems, shuffling is, as argued by Garg
and Ragunath [11], useful for modelling the interleaving of processes. There
is a close connection between shuffle languages and Petri nets [14, 11, 5].

– The shuffle operator (often called interleaving) is used in XML database
systems for schema definitions, see, e.g., Gelade et al. [12].

– In plan recognition, the objective is to identify an agent’s goal or plan, based
on observations of the agent’s actions [7, 23]. In a generalised version, a num-
ber independent agents that perform their actions in an interleaved fashion.
To model this multi-agent scenario one could combine shuffle operators and
context-free grammars [15]. For this approach to be of practical use, it is

necessary that the membership problem for the resulting languages remains
efficiently solvable.

– In natural language processing, there is a growing interest in linguistic models
for languages with relatively free word ordering. Recent work in this direction
includes parse algorithms for so-called dependency grammars [22, 19].

Mateescu et al. [20] define a controlled form of shuffling where so-called trajecto-
ries of binary strings regulate the shuffling. This model is widely studied, mostly
investigating decidability questions, see, e.g., [18, 8]. The case considered here
corresponds to using the universal language {0, 1}∗ as the trajectory. There has
also been investigations into the sizes of the minimal automata for the shuffle of
regular languages, see, e.g., [6, 2].

A number of fundamental questions regarding the complexity of the member-
ship problem for various models remain unanswered. We answer some of them
in this paper. In particular, we are interested in language classes that capture
the context-free languages. Among the above application areas, such languages
are primarily of interest in plan recognition and natural language processing.

It is important to distinguish the uniform and the non-uniform version of the
membership problem. In the uniform version, both the string and a representa-
tion of the language is given as input. Thus it is important how the language is
represented. In the non-uniform version, only the string to be tested is considered
as input. The language is fixed, and thus its representation is not important.

Contributions. To facilitate the study of languages that combine restricted
forms of recursion and interleaving, we define Concurrent Finite State Automata
(CFSA). We show that emptiness for CFSA is solvable in polynomial time, inves-
tigate their closure properties, and identify the language classes that correspond
to certain syntactic restrictions.

Our results for the complexity of the membership problems for various lan-
guage classes are summarized in Table 1. For the full class of languages recognized
by CFSA, we show that both the uniform and the non-uniform membership prob-
lem are NP-complete. For the shuffle languages (as used in [14, 17]), the uniform
membership problem is NP-complete [1, 21], while the non-uniform membership
problem can be decided in polynomial time [17]. We shed further light on the
complexity of the membership problem by showing that the uniform version,
parameterized by the number of shuffle operations, is hard for the complexity
class W[1]. This indicates a strong dependence on the number of shufflings.

For the interleaving of a regular language and a context-free language, we
show that the uniform (and thus also the non-uniform) membership problem
can be solved in polynomial time. For the shuffling of a shuffle language and
a context-free language, the uniform problem is of NP-hard, since this holds
already for the shuffle languages. The non-uniform problem is, however, solvable
in polynomial time. For the shuffling of two context-free languages, we show that
already the non-uniform version of the membership problem is NP-hard.

It should be noted that we only investigate which broad complexity classes
the problems belong to. In particular, for the problems that belong to P, our
aim has not been to find optimal algorithms.

2

Sh Reg � CF Sh� CF CF� CF CFSA

Non-Uniform P P P NPC NPC

Uniform NPC / W[1]-hard P NPC NPC NPC

Table 1. Summary of results for the membership problem. The shuffle languages are
abbreviated by Sh, the regular by Reg, and the context-free by CF. The results of this
paper appear in bold face.

2 Preliminaries

Sets and numbers. If S is a set, then S∗ is the set of all finite sequences of
elements of S, and precl(S) is the set of all finite prefix-closed subsets of S∗.
The powerset of S is denoted by pow (S). We write N for the natural numbers,
or N+ if we wish to exclude 0 from N. For k ∈ N, we write [k] for {1, . . . , k}.
Note that [0] = ∅. The domain of a mapping f is denoted dom (f).

An alphabet is a finite nonempty set. We denote Σ ∪ {ε} by Σε and the set
of all regular expressions over the alphabet Σ by Reg(Σ). The length of a string
w ∈ Σ∗ is written |w|, and for every α ∈ Σ, |w|α = |{i ∈ [n] | αi = α}|.
Trees. The set TΣ of (unranked) trees over the alphabet Σ consists of all
mappings t : D → Σ, where D ∈ precl(N). The empty tree, denoted tε, is the
unique tree such that dom (t) = ∅. We henceforth refer to dom (t) as the nodes of t
and write nodes(t) rather than dom (t). The size of a tree t ∈ TΣ , denoted size (t),
is |nodes(t)|. The height of t, denoted height (t), is 1 + max(|v| | v ∈ nodes(t)).

For a tree t ∈ TΣ and a node v ∈ nodes(t), the subtree of t rooted at v
is denoted by t/v. It is defined by nodes(t/v) = {v′ ∈ N∗ | vv′ ∈ nodes(t)}
and, for all v′ ∈ nodes(t/v), (t/v)(v′) = t(vv′). The leaves of t is the set
leaves(t) = {v ∈ N∗ | @i ∈ N s.t. vi ∈ nodes(t)}. The substitution of t′ into
t at node v is denoted t[[v ← t′]]. It is defined by

nodes(t[[v ← t′]]) = (nodes(t) \ {vu | u ∈ N∗}) ∪ {vu | u ∈ nodes(t′)} ;

and, for every u ∈ nodes(t[[v ← t′]]), if u = vv′ for some v′ ∈ nodes(t′) then
t[[v ← t′]](u) = t′(v′), otherwise t[[v ← t′]](u) = t(u).

For a tree t ∈ TΣ let v1, . . . , vk ∈ nodes(t) be the immediate child nodes of the
root ordered by numeric value. That is, {v1, . . . , vk} = {v ∈ nodes(t) | |v| = 1},
ordered such that vi < vi+1 for all i ∈ [k−1]. Then we will write t as f [t1, . . . , tk],
where f = t(ε) and tj = t/vj for all j ∈ [k]. In the special case where k = 0 (i.e.,
when nodes(t) = {ε}), the brackets may be omitted, thus denoting t as f .

Shuffle operations and shuffle expressions. We recall the definitions of the
operations shuffle and shuffle closure, and of shuffle expressions, from [14, 17].

The shuffle operation � : Σ∗ × Σ∗ → pow (Σ∗) is inductively defined as
follows: for every u ∈ Σ∗ it is given by �(u, ε) = �(ε, u) = {u}, and by

�(α1u1, α2u2) = {α1w | w ∈ �(u1, α2u2)} ∪ {α2w | w ∈ �(α1u1, u2)} ,

3

for every α1, α2 ∈ Σ, and u1, u2 ∈ Σ∗.
The operation � extends to a mapping �̂ : pow (Σ∗)× pow (Σ∗)→ pow (Σ∗)

with
�̂(L1,L2) =

⋃
u1∈L1,u2∈L2

� (u1, u2) .

For readability, we use infix notation for �. From here on, we write the shuffle
operation for languages as � rather than �̂.

The shuffle closure of a language L ∈ Σ∗, denoted L�, is

L� =
∞∪
i=0
L�i , where L�0 = {ε} and L�i = L � L�i−1 .

Shuffle expressions are regular expressions that can additionally use the shuf-
fle operators. Formally, the set of shuffle expressions over alphabet Σ is formed
as follows. Every α ∈ Σ is a shuffle expression, as well as ε and ∅. If s1 and s2 are
shuffle expressions, then so are (s1 · s2), (s1 + s2), (s1 � s2), s∗1, and s1

�. Shuffle
expressions that do not use the shuffle closure operator are called closure free
shuffle expressions. The language L(s) of a shuffle expression s is defined in the
usual way. Shuffle languages are the languages defined by shuffle expressions.

3 Concurrent finite-state automata

In this section, we introduce concurrent finite-state automata (CFSA). The de-
vice is inspired by recursive Markov models, but differs from these in two aspects:
the global state space is not partitioned into component automata, and, more
importantly, recursive calls can be made in parallel. The latter feature allows for
an unbounded number of invocations to be executed simultaneously, although
each symbol in the input string can only be read by one invocation.

Definition 1 (CFSA). A Concurrent FSA is a tuple M = (Q,Σ, δ, I), where
– Q is a finite set of states;
– Σ is an alphabet of input symbols;
– δ ⊆ Q×Σε × T is a set of transitions, where T is the finite set

{q, q[p], q[p, p′], q[p�] | q, p, p′ ∈ Q} ∪ {tε} .
Here, p� is to be read as single symbol. In the upcoming definition of CFSA
semantics, transitions of the form (q, α, q′[p�]) will be interpreted as rule
schema. A transition (q, α, t) ∈ δ is
• terminal if |nodes(t)| = 0,
• horizontal if |nodes(t)| = 1, and
• vertical if |nodes(t)| > 1.

– I ⊆ Q is a set of initial states. ut

Remark. For simplicity, we henceforth assume that the terminal transitions
form a subset of Q×{ε}×{tε}. It is easy to see that every CFSA can be rewritten
to this normal form in linear time.

4

We now establish the semantics of CFSA. Whereas a FSA is in a single state
at a time, a concurrent FSA maintains a branching call-stack of states, repre-
sented as an unranked tree over an alphabet of states. In each step, exactly one
leaf node of the state tree is rewritten. Vertical transitions model the invoca-
tion of child processes; horizontal transitions the continued execution within a
process; and terminal transitions the completion of a process. A CFSA accepts
a string if, upon reading the string, it can reach a configuration in which every
processes has been completed, i.e., the state tree is empty.

Definition 2 (Concurrent FSA semantics). A configuration of the CFSA
M = (Q,Σ, δ, I) is a tuple (w, t) ∈ Σ∗ × TQ. The set of all configurations of M
is denoted ∆(M). A configuration (w, t) ∈ ∆(M) is initial (with respect to the
string w ∈ Σ∗) if t ∈ I.

Let (w, t), (w′, t′) ∈ ∆(M). There is a transition step from (w, t) to (w′, t′),
written (w, t)→ (w′, t′), if there is a transition (q, α, s) ∈ δ and node v ∈ nodes(t)
such that w = αw′, t/v = q (so v is a leaf), and either

– s ∈ TQ and t′ = t[[v ← s]], or
– s = p′[p�] and t′ = t[[v ← p′[p, . . . , p︸ ︷︷ ︸]

n

]] for some for p, p′ ∈ Q and n ∈ N.

As usual, the reflexive and transitive closure of→ is denoted ∗−→. The language
recognised by M is L(M) = {w ∈ Σ∗ | ∃q ∈ I : (w, q) ∗−→ (ε, tε)}. ut

For the sake of brevity only the state-tree part of a configuration, called a
configuration tree, may be shown in cases where the string is irrelevant.

It is sometimes useful to consider the execution of a CFSA M = (Q,Σ, δ, I)
when starting in a particular state. For q ∈ Q, we denote by Mq the CFSA
(Q,Σ, δ, {q}).
Example 1. Let L1 and L2 be the Dyck languages1 over the symbol pairs b, c
and d, e, respectively. Their shuffle L = L1 �L2 is recognised by the concurrent
FSA M = ({q0, q1, q′1, q2, q′2}, {b, c, d, e}, δ, {q0}), where

δ = { (q0, ε, q′[q1, q2]), (q′0, ε, tε), (q1, b, q′1[q1]), (q′1, c, q1),
(q1, ε, tε), (q2, d, q′2[q2]), (q′2, e, q2), (q2, ε, tε) } .

To illustrate the automaton’s semantics, we step through an accepting run
of M on the string w = bbdcbecc (see Figure 1). Note that since w ∈ w1�w2 for
w1 = bb cb cc ∈ L1 and w1 = d e ∈ L2, it follows that w ∈ L1 � L2. �

It is known that L1 = {anbn | n ∈ N} is a context-free language, but it is
not a shuffle language. Conversely, L2 = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}
is a shuffle language but is not context-free. Both L1 and L2 is recognized by a
CFSA, and so is L1 ∪ L2, which is neither a context-free nor a shuffle language.
Thus the class of languages recognized by CFSA properly extends the union of
the context-free languages and the shuffle languages. As we shall see, the CFSA
have comparatively nice closure properties.
1 A Dyck language consists of all well-balanced strings over a given set of parentheses.

5

In its initial configuration, M is in the
unique initial state q0 and has yet to con-
sume any input symbol.

(bbdcbecc, q0)

To proceed, M must nondeterministically
choose the transition (q0, ε, q

′
0[q1, q2]).

(bbdcbecc, q′
0[q1, q2])

By transition (q1, b, q′
1[q1]), M reaches the

configuration

(bdcbecc, q′
0[q′

1[q1], q2])

and by (q1, b, q′
1[q1]) and (q2, d, q′

2[q2]) the
configuration

(cbecc, q′
0[q′

1[q′
1[q1]], q′

2[q2]])

Now the automaton nondeterministically
guesses that it is time to read the symbol
c. It prepares by deleting the leaf labelled
q1 using transition (q1, ε, tε) to get

(cbecc, q′
0[q′

1[q′
1], q′

2[q2]])

and then (q′
1, c, q1) to get

(becc, q′
0[q′

1[q1], q′
2[q2]])

Again, (q1, b, q′
1[q1]) lets M read b,

(ecc, q′
0[q′

1[q′
1[q1]], q′

2[q2]])

and (q2, ε, tε), (q′
2, e, q2) produces

(cc, q′
0[q′

1[q′
1[q1]], q2]) .

Thereafter, applying transition sequence
(q1, ε, tε), (q′

1, c, q1) twice yields

(ε, q′
0[q1, q2]) .

Although the entire input has been read,
M does not accept until the state tree has
been reduced to the empty tree. This can
be done by applying (q1, ε, tε), (q2, ε, tε)
to get

(ε, q′
0) ,

and finally (q′
0, ε, tε) to reach

(ε, tε) .

Fig. 1. An accepting run of the CFSA M on input bbdcbecc.

Theorem 1. The languages recognised by CFSA are closed under union, con-
catenation, Kleene star, shuffle and shuffle closure. They are not closed under
intersection with a regular language or complementation.

Proof. Let M = (Q,Σ, δ, I) and M ′ = (Q′, Σ, δ′, I ′) be CFSA. We assume with-
out loss of generality that Q ∩ Q′ = ∅, and that the automata have only one
initial state each, i.e., I = {q0} and I ′ = {q′0}. The latter assumption can be
made without loss of recognising power since ε-transitions are allowed.

Union. The classical construction of a nondeterministic automaton for the
union of M and M ′ carries over from the FSA case: a new initial state q is
added, together with ε-transitions from q to each of q0 and q′0.

Concatenation. For concatenation, we add the new states q, q′, and q′′, where
q becomes the initial state of the new automaton. We also add the vertical
transitions (q, ε, q′[q0]) and (q′, ε, q′′[q′0]), and the terminal transition (q′′, ε, tε).
This allows the automaton to first simulate a run of M and then a run of M ′.

Kleene closure. Next, we construct a CFSA for the Kleene closure of M .
All we have to do is add a new, unique, initial state q to Q along with the
terminal transition (q, ε, tε) and the vertical transition (q, ε, q[q0]). This allows
the automaton to simulate any number of runs of M , one after the other.

6

Shuffle. For the shuffle of L(M) and L(M ′) we add states q, q′, where q becomes
the unique initial state of the new automaton. We also add the vertical transition
(q, ε, q′[q0, q′0]) and the terminal transition (q′, ε, tε).

Shuffle closure. To construct the shuffle closure of the language ofM , we again
add states q, q′, where q becomes the unique initial state of the new automaton.
Additionally, we add the vertical transition (q, ε, q′[q0�]) and the terminal transi-
tion (q′, ε, tε). This construction allows the new automaton to spawn any number
of copies of M that can then run in parallel over the input string.

Intersection. Consider the languages L1 = (abc)� and L2 = a∗b∗c∗. The for-
mer is a shuffle language, and the latter a regular language, so both are recognis-
able by CFSA. As we shall see, their intersection L = {anbncn | n ∈ N} is not. To
obtain a contradiction, assume that L(M) = L for some CFSA M = (Q,Σ, δ, I).

Before we proceed, let us introduce some convenient definitions. For every
q ∈ Q, Mq denotes the CFSA (Q,Σ, δ, {q}). The substrings of a language L,
written substring(L), is the set {v | uvw ∈ L for some u,w ∈ Σ∗}.

If a transition r of the form (q, α, q[p, p′]) ∈ δ is applied in an accepting run of
M , then L(Mp)�L(Mp′) ⊆ substrings(L). For this reason, L(Mp)∪L(Mp′) ⊆ α∗
for some α ∈ {a, b, c}. Otherwise, if for example w ∈ L(Mp) and w′ ∈ L(Mp′)
with |w|a > 0 and |w′|b > 0, the string w′w ∈ w�w′ would be in substrings(L),
but this is impossible since a b occurs before an a in w′w. It follows that the
order of p and p′ in r is irrelevant. Hence, r can equivalently be replaced by a
pair of transitions such that (ε, q) ∗−→ (α, q[p[p′]]). The same argument justifies
the replacement of transitions of the form (q, α, q[p�]) with transitions that yield
(ε, q) ∗−→ (α, q[p[p[. . . [p]]]]).

After this language-preserving normalisation, the resulting CFSA only gener-
ates monadic configuration trees, which means that no shuffling is done. However,
without shuffle operations, L(M) is a context-free language (cnf. Theorem 2),
and it is well known that L is not a context-free language. Consequently, L is
not recognisable by a CFSA.

Complementation. Since the CFSA languages are closed under union, but
not under intersection, they are not closed under complementation either, since
(L1 ∩ L2) can be expressed as (L1 ∪ L2). ut

Restrictions and expressive power. We introduce CFSA to provide an
automaton model that can be syntactically restricted to capture the combination
of shuffle operations with some well-known languages classes. The restrictions
considered here are as follows. A CFSA M = (Q,Σ, δ, I) is

– horizontal if δ contains no vertical transitions;
– non-branching if every vertical transition is in Q×Σ × {q′[q] | q, q′ ∈ Q};
– finitely branching if no vertical transition is in Q×Σ × {q′[q�] | q, q′ ∈ Q};
– acyclic if there is no configuration (w, t) ∈ ∆(M) and state q ∈ Q such that
q appears twice on a path from the root to a leaf of t.

Theorem 2. A language is:

7

– regular if and only if it is recognised by a horizontal CFSA;
– context-free if and only if it is recognised by a non-branching CFSA;
– a shuffle language if and only if it is recognised by an acyclic CFSA;
– a closure-free shuffle language if and only if it is recognised by an acyclic and

finitely branching CFSA.

Proof (Sketch). Horizontal CFSA are equivalent to nondeterministic finite au-
tomata in that they recognize the regular languages.

It is easy to turn a context-free grammar G = (N,Σ, γ, S) on Chomsky nor-
mal form into a non-branching CFSA M = (Q,Σ, δ, I). Let Q = N∪{q | q ∈ N},
I = {S}, and define δ as follows.

– For every rule q → α in γ, where α ∈ Σε, there is a horizontal transition
(q, α, q) and a terminal transition (q, ε, tε) in δ.

– For every rule q → pp′ in γ, there is a transition (q, ε, p′[p]) in δ2.

For the opposite direction, it is equally easy to turn a non-branching CFSA into
a language-equivalent push-down automaton.

Next, we show that acyclic CFSA correspond to the shuffle languages. The
only-if direction follows directly from the proof of Theorem 1 since the construc-
tions there preserve acyclicity.

Given a CFSA M = (Q,Σ, δ, I) we show how to construct a shuffle expression
s recognizing L(M). Two states q, q′ ∈ Q to be connected if there is a transition
(q, α, t) ∈ δ, where the label of the root of t is q′, for some α ∈ Σε. With
this notion of connectivity, let C1, . . . , Ck be the connected components of M .
Consider the directed graph GM = (C1, . . . , Ck, E), where (Ci, Cj) ∈ E if there
is a state q ∈ Ci, a vertical transition (q, α, t) ∈ δ, and a state p ∈ Cj such that
p (or p�) labels a leaf of t. Since M is acyclic, it follows that GM is acyclic.

Let δv ⊆ δ be the set of all vertical transitions. We create an alphabet Σv
with one unique new symbol for each vertical transition. Let h : δv → Σv be
the bijection mapping each d ∈ δv to the corresponding alphabet symbol. Also,
for each d ∈ δv, let qd be a new state. Define H to be the CFSA obtained from
M by replacing each vertical transition d = (q, α, q′[...]) with the horizontal
transitions (q, α, qd) and (qd, h(d), q′). Notice that the connected components
of H are the same as the connected components of M and that H is a finite
automaton recognizing a regular language.

For each q ∈ Q, let the regular expression r(q) be such that L(r(q)) = L(Hq),
that is, r(q) describes the language that H recognizes when starting from state q.
Such a regular expression can be computed from H using standard constructions.

We are now ready to describe how to construct the shuffle expression cor-
responding to M . To be precise, for each state q ∈ Q, we will define a shuffle
expression s(q) such that the language of s(q) is the language of Mq, i.e., the
CFSA obtained from M by replacing I by {q}. We do this by induction on the
structure of GM .

If C is a leaf of GM , then there are no vertical transitions in the connected
component C. Hence, for every q ∈ C, we have s(q) = r(q).

8

Suppose that q belongs to a connected component Ci such that for all states
in all components reachable from Ci in GM , we have already computed the
corresponding shuffle expressions. In this case we get the shuffle expression for q
by taking r(q) and replacing symbols in Σv by appropriate shuffle expressions.
In particular, consider symbol h(d) ∈ Σv that corresponds to d = (q′, α, t) ∈ δv.
The shuffle expression for h(d) is obtained from t as follows.
– If t = p[p′], for some p, p′ ∈ Q, then the shuffle expression is s(p′).
– If t = p[p′1, p

′
2] then the shuffle expression is s(p′1)� s(p′2).

– If t = p[p′�], then the shuffle expression is (s(p′))�.
The shuffle expression for M is the union of those for the states in I, i.e.,

s =
⋃
q∈I

s(q).

The equivalence L(M) = L(s) can be shown by a standard induction.
Finally, the fact that acyclic and finitely branching CFSA correspond to the

closure free shuffle languages can bee seen from the constructions in the proof of
Theorem 1. Only the shuffle closure operator induces unbounded branching. ut

Since the closure free shuffle languages are regular [13], we can conclude that
acyclic and finitely branching CFSA also recognize the regular languages.
The next theorem shows that CFSA do not provide us with the full power of
linear bounded Turing machines.

Theorem 3. The languages recognised by CFSA are properly contained in the
context-sensitive languages.

Proof. Let M = (Q,Σ, δ, I) be a CFSA and w an input string. If there is an
accepting run of M on w from some initial state q0, then a nondeterministic
Turing machine can guess and verify this run in linear space by proceeding as
follows. (1) The TM simulates a run of M on w starting in q0, but every time
a vertical transition (q, α, q′[s]) is used on the top level, where s is a sequence
of labels, the TM guesses what part of the subsequent string is to be consumed
by the states trees derived from s, marks this segment off with brackets and a
pointer to s, and continues in state q′ after the closing bracket until it has read
all of w. If it accepts what it has seen so far, it goes on to verify each of the
bracketed segments.

Let w′ be such a segment, annotated with s. If s is a single state p, the
TM recursively verifies that w′ is accepted by M when starting from state p,
i.e., w′ ∈ L(Mp). If s is a pair p, p′ ∈ Q, the TM guesses a way to partition
w′ into subsequences u, u′ so that w′ ∈ u � u′. It then recursively verifies that
u ∈ L(Mp) and u′ ∈ L(Mp′). Finally, if s = p�, the TM guesses an n ≤ |w′|
and a way to partition w′ into n subsequences, and verifies recursively that
each such subsequence belongs to L(Mp). This process continues recursively
until no unprocessed bracketed segment has non-zero length. We note that the
total amount of information that was recorded in the process is linear in |w|, so
the non-uniform membership problem for CFSA languages can be decided by a
linearly bounded nondeterministic TM. As shown in the proof of Theorem 1, no

9

CFSA recognizes the language {anbncn | n ∈ N}, so it follows that the CFSA
languages form a proper subset of the context-sensitive languages. ut
Since not all CFSA-languages are context-free (e.g., there are non-context-free
shuffle languages), we conclude that their expressive powers lies strictly between
that of context-free grammars and that of context-sensitive grammars. Also un-
like linear bounded TMs, CFSA can be efficiently checked for emptiness.

Theorem 4. The emptiness problem for CFSA is decidable in polynomial time.

Proof. Let M = (Q,Σ, δ, I) be a CFSA. A state q of M is live if L(Mq) is
nonempty. Let F ⊆ Q be the smallest set satisfying the following conditions.

1. F0 = {q | (q, ε, tε) ∈ δ}
2. Fi ⊆ Fi+1

3. if (q, α, q′) ∈ δ and q′ ∈ Fi then q ∈ Fi+1

4. if (q, α, q′[s]) ∈ δ for some q′ ∈ Fi and some s such that every state that
appears in s belongs to Fi, then q ∈ Fi+1

5. F = ∪∞i=0Fi

Claim. A state q of M is live if and only if q ∈ F .
For the if-direction, we prove by induction on the smallest i such that q ∈ Fi

that q is live. For i = 0 this is trivially true, since (q, ε, tε) ∈ δ, and thus Mq

accepts the string ε.
Assume that every state in Fi is live, and consider the state q ∈ Fi+1 \ Fi.

If (q, α, q′) ∈ δ, with q′ ∈ Fi, then there is a string w such that Mq′ accepts w.
This means that Mq accepts αw and we conclude that q is live. If there is no
such rule, there must be a rule (q, α, q′[s]) in δ such that q′ and either s = p�

or every state that appears in s belong to Fi. If this is the case, then there is a
word wq′ accepted by Mq′ . If s = p, there is a word wp ∈ L(Mp) and conclude
that Mq accepts α · wp · wq′ . Similarly, if s = p, p there are strings wp ∈ L(Mp),
wp′ ∈ L(Mp′), and wp� p′ ∈ wp � wp′ such that Mq accepts α · wp1�p2 · wq′ .
Finally, if s = p�, we know that Mq accepts α · wq′ . Thus q is live.

For the other direction, assume that q is live as witnessed by some word
w = α1 · · ·αm in L(Mq). Let

(w, q) = (w1, t1)→ · · · → (wm, tm) = (ε, tε)

be an accepting sequence of transition steps of Mq on w. We show by induction
that every state that appears in t1, . . . , tm is in F . In particular, this means
that q belongs to F , since t = q. Since tm = tε, all states in tm belong to F .
Assume that all states appearing in ti belong to F and consider ti−1. One of the
following cases apply (for some leaf node v).

1. ti−1 = t[[v ← q]], ti = t[[v ← q′]], and there is a transition (q, αi, q′) ∈ δ. If
this is the case, q ∈ F and thus all states of ti−1 belong to F .

2. ti−1 = t[[v ← q]], ti = t[[v ← q′[u1, . . . , un]]], and there is a transition
(q, αi, q′[s]) ∈ δ such that

10

– s = p, n = 1, and u1 = p,
– s = p1, p2, n = 2, u1 = p1 and u2 = p2, or
– s = p� and u1 = · · · = un = p.

In either case, q ∈ F and thus all states of ti−1 belong to F .
3. ti−1 = t[[v ← q]], ti = t[[v ← tε]]. In this case, q belongs to F0 and we can

conclude that all states appearing in ti−1 belong to F .

The set F can be computed in polynomial time and L(M) is empty if and only
if F ∩ I = ∅. Thus emptiness for CFSA can be decided in polynomial time. ut

4 Membership problems

4.1 The membership problem for unrestricted CFSA

The membership problem for unrestricted CFSA is intractable, both in the uni-
form and the non-uniform case.

Theorem 5. Both the uniform and the non-uniform membership problem for
CFSA is NP-complete.

NP-hardness for the uniform membership problem for shuffle expressions is al-
ready known; see, e.g., [1, 21]. We postpone the hardness proof for the non-
uniform case until Theorem 9 in Section 4.4, where it is proved for a subclass of
CFSA. Lemma 1 states that the membership problem for CFSA is in NP.

Lemma 1. Given a CFSA M = (Q,Σ, δ, I) and a string w ∈ Σ∗, it can be
decided if w ∈ L(M) in nondeterministic polynomial time.

Proof (Sketch). We show that there is a polynomial P such that for every
w ∈ L(M), there is a state q0 ∈ Q and a sequence of transition steps

(w, q0) = (w1, t1)→ · · · → (wn, tn) = (ε, tε)

such that n ≤ P (|Q|+|w|). This result allows an accepting sequence of transition
steps to be “guessed” as part of a nondeterministic polynomial-time decision
algorithm for the membership problem.

As a starting point, assume that M contains rules fulfilling the following.

1. For every q ∈ Q, if (ε, q) ∗−→ (ε, tε) then (ε, q)→ (ε, tε).
2. For every choice of q, q′ ∈ Q, if (ε, q) ∗−→ (ε, q′) then (ε, q)→ (ε, q′).
3. For every choice of q, q′, p, p′ ∈ Q, if (ε, q) ∗−→ (ε, q′[p, p′]) ∗−→ (ε, q′[p]) then

(ε, q)→ (ε, q′[p]).

This causes no loss of generality since there is a simple procedure to add these
transitions to M in polynomial time using the emptiness test (recall Theorem 4).
For example, construct the automatonM ′ = (Q,Σ, δ′, {q}) where δ′ ⊆ δ contains
only the transitions that do not generate any symbol. Then (ε, q) ∗−→ (ε, tε) if and
only if M ′ is nonempty. Once Condition 1 is satisfied, the transitions needed to
satisfy the remaining two conditions can be added through similar constructions.

11

For every pair of configurations c = (ε, t), c′ = (ε, t′) ∈ ∆(M), if there is
a sequence of transition steps from c to c′, then there is also a sequence of
length at most n ≤ |t| + 2|t′|. Such a short sequence can be found by organ-
ising the transitions as follows: (ε, t) ∗−→ (ε, t̂) ∗−→ (ε, t′) where the t → t̂ part
of the derivation only deletes nodes, and the t̂ → t′ part never deletes nodes.
This is possible thanks to the transitions added above, since all possible node
deletions/relabelings can be performed without generating extraneous nodes. In
turn, this means that no node needs to be generated only to subsequently be
deleted. It follows that at most |nodes(t)| may need to be deleted, and at most
|nodes(t′)| nodes may need to be created and/or relabeled with a new state.

Finally, in a sequence of transition steps that accepts the string w and is of
minimum length, no intermediary configuration tree needs to have more than |w|
leaves or be of height greater than |Q|(|w|+ 1). Only |w| symbols are consumed
by the transitions, so if there are |w| + 1 leaves, then one of them must be
eventually consume tε. The existence of such a leaf violates the assumption that
the sequence is of minimal length (notice that conditions 1–3 above ensure that
useless nodes never have to be added). The height bound holds since a higher tree
would have to have |w|+ 2 or more copies of some state q along some path. By
a standard pumping argument the sequence could have chosen not to recognise
any q-delimited section of the path (that is, loop once less on q). With |w| + 2
instances of q-labeled nodes, there are |w| + 1 such q-delimited sections on the
path. Only |w| symbols are consumed, so one of those sections will be matched
up against the empty string. The redundant section could be omitted without
affecting the accepted string, which violates the assumption that the original
sequence of transition steps was of minimum length.

In conclusion, the size of the configuration trees necessary to accept a string
w is bounded by |w|2|Q|, and any sequence of transitions on polynomially sized
trees can be limited to a polynomial number of steps. There is thus, for every
w ∈ L(M), a sequence of polynomial length, which means that a nondetermin-
istic algorithm can check membership by just guessing the sequence. ut

4.2 The membership problem for acyclic CFSA

We now turn to the membership problem for acyclic CFSA, i.e., the restriction
of CFSA that recognises the shuffle languages.

Corollary 1. For acyclic CFSA
1. the non-uniform membership problem is solvable in polynomial time, and
2. the uniform membership problem is NP-complete.

Proof. The result for non-uniform membership follows directly from Theorem 2
and the fact, proved in [17], that non-uniform parsing for shuffle expressions is
polynomial. For the uniform membership problem, membership in NP is obvious
– just guess and verify a run of the automaton. NP-hardness follows by an easy
adaptation of a result by Barton [1]. ut

12

The uniform membership problem is NP-complete already for acyclic and finitely
branching CFSA, which only recognise regular languages. The explanation is
that for some languages, CFSA offer a more succinct form of representation than
nondeterministic finite automata (and than the shuffle automata from [17]). One
example is the language family {{an} | n ∈ N}, for which the smallest NFAs
(and shuffle automata) have sizes linear in n, while the smallest CFSAs are
logarithmic in n.

Corollary 1 states that the problem is polynomial for a fixed automaton
but NP-hard if the automaton is considered input. The question then remains
whether the size of the automaton merely influences the coefficients of the poly-
nomial or if it affects the degree itself. We give a partial answer by showing that
when parameterized by the maximal size of a configuration tree for the automa-
ton, the uniform membership problem for acyclic and finitely branching CFSAs
is not fixed-parameter tractable, unless FPT = W[1]. This class equivalence is
considered very unlikely and would have far-reaching complexity-theoretic im-
plications. For more on parameterized complexity theory, see, e.g., [9].

We state the result for acyclic and finitely branching CFSA, but it could
be equivalently stated for closure-free shuffle expressions. We first define the
parameterized version of the problem.

Definition 3. An instance of the parameterized uniform membership problem
for acyclic and finitely branching CFSA is a pair (M,w) where M is an acyclic
and finitely branching CFSA over a finite alphabet Σ and w is a string in Σ∗.
The parameter is the maximal size of any configuration tree for M . The question
is whether w ∈ L(M). ut
Notice that given an acyclic and finitely branching CFSA, we can easily compute
the maximal size of its configuration trees. This number depends only on the
automaton, not on the word it is currently reading.

If the problem were fixed-parameter tractable, there would be an algorithm
for it with running time f(k) · nc, where f is a computable function, k is the
parameter (the maximal size of a configuration tree), n is the instance size, and c
is a constant. Theorem 6 gives strong evidence to the contrary.

Theorem 6. The parameterized uniform membership problem for acyclic and
finitely branching CFSA is W[1]-hard.

The proof is by a fixed-parameter reduction from parameterized clique, which is
known to be W [1]-complete [9].

Definition 4. An instance of k-Clique is a pair (G, k), where G = (V,E) is
an undirected graph and k is an integer. The question is whether there is a
set C ⊆ V of size k such that the subgraph of G induced by C is complete. The
parameter is k. ut
Proof. The proof consists in a reduction from k-Clique to the membership prob-
lem at hand. Let (G = (V,E), k) be an instance of k-Clique, and let n = |V |
and m = |E|. We construct an alphabet Σ, a shuffle expression r, and a

13

string w ∈ Σ∗ such that |Σ| = O(n+m), |r| = O(k·n2+k2·m), |w| = O(k·n+m),
the shuffle operator appears O(k2) times in r, and w ∈ L(r) if and only if G
has a clique of size k. To construct Σ, we assume that the vertices in V are
named v1, v2, . . . , vn and that the edges are named ei,j where i < j are the
numbers of the two incident vertices and let Σ = V ∪ E. The word w is
vk1 · vk2 · · · vkn · edges, where edges is any enumeration of the edges in E. We
define the regular languages s, t, u by
– s = (vk1 + vk2 + · · ·+ vkn)n−k;
– t = V ∗ · E∗;
– u = Σei,j∈E(vi · vj · ei,j).

Finally, we define

r = s� t� (
k(k−1)/2⊙
i=1

u).

The intuition behind the reduction is as follows:
– The expression s matches n−k sequences of k copies of a vertex name. This

leaves only k such sequences in w for the rest of r to match against. In other
word, the rest of the expression can only use k distinct vertex names.

– Each instance of expression u matches one sequence vi · vj · ei,j . Thus, the
k(k−1)/2 instances of u match against k(k−1) vertex names and k(k−1)/2
edge names. Due to the matching of s, the k(k − 1) vertex names can only
be chosen from among k vertices. Thus the k(k − 1)/2 edge names, which
are distinct since edges is an enumeration of E, represent edges that have
both their endpoints in a set of vertices of size k.

– The expression t matches any extra vertex and edge names that are left over.
– Any graph that has k(k − 1)/2 distinct edges whose endpoints are all in a

set of vertices of size k has a clique of size k.
Thus w belongs to L(r) if and only if G has a clique of size k. Notice that |r| is
polynomial in |G| and that the number of shuffle operators depends only on k.

Using Theorem 2 it is easy to find an acyclic and finitely branching CFSA Mr

such that L(Mr) = L(r), the size of Mr is polynomial in the size of G, and the
maximum size of a configuration tree for Mr is O(k2). Thus there is a fixed-
parameter reduction from k-Clique to parameterized membership for acyclic
and finitely branching CFSA, so the latter problem is W[1]-hard. ut
The following corollary is immediate.

Corollary 2. The uniform membership problem for closure-free shuffle expres-
sions, parameterized by the number of shuffle operators, is W[1]-hard.

4.3 The membership problem for Reg � CF and Sh � CF

We next show that the shuffle of a context-free language and a regular language
is efficiently recognizable, even if the language descriptions are part of the input.

Theorem 7. The uniform membership problem for the shuffle of two languages,
one represented by context-free grammar and one represented by a nondetermin-
istic finite automaton, is solvable in polynomial time.

14

The above theorem actually has a shorter proof than the one given below, based
on the fact that a shuffle language shuffled with a context-free language is a
context-free language. We give the slightly longer proof because it is a good
preparation for the proof of Theorem 8.

Proof. Let G = (N,Σ, δ, S) and M = (Q,Σ, γ, I, F) be a context-free grammar
on Chomsky normal form and an NFA, respectively.

To test membership in L(G) � L(M), we extend the CYK algorithm for
context-free grammars. ForA ∈ N∪{ε} and q1, q2 ∈ Q letMq1,q2 = (Q,Σ, γ, {q1}, {q2})
and GA = (N,Σ, δ,A) unless A = ε, in which case L(GA) contains only the
empty string. Then (A, q1, q2) is a parse triple for G and M over a string w if
and only if w ∈ L(GA)�L(Mq1,q2). That is, (A, q1, q2) is a parse triple for w if w
can be partitioned into two subsequences, w1 and w2, such that the nonterminal
A can produce w1 (or w1 = ε if A = ε) and M can read w2 by going from state
q1 to q2. There are at most (|N |+ 1) · |Q|2 distinct parse triples.

The idea, like in the CYK algorithm, is to compute the parse triples for each
substring, starting with the substrings of length 1, and then combine triples to
form new triples for successively longer strings. In the end, w ∈ L(G) � L(M)
if and only if there is a parse triple (S, qI , qF) for the whole of w such that S is
the start symbol of G, qI ∈ I, and qF ∈ F . Since w has O(m2) substrings we
will compute at most O(m2 · |N | · |Q|2) parse triples.

For substrings of length one, computing the triples is trivial. Assume that we
have computed all the parse triples for all substrings of length k−1. We show how
to compute the parse triples for a substring of length k. Let v = v1 · · · vk be such
a substring. To find out whether (ε, q1, q2) is a parse triple for v, we proceed as
follows. We check whether there is an i ∈ [k−1] and a state q such that (ε, q1, q)
is a parse triple for v1 · · · vi, and (ε, q, q2) is a parse triple for vi+1 · · · vk. If this
is the case, (ε, q1, q2) is a parse triple for v.

To determine whether (A, q1, q2), A ∈ N , is a parse triple for v, we proceed
in two steps. First, if there is a rule A → a in δ, for some a ∈ Σ, we check
whether there is an i ∈ [k] and a q ∈ Q such that vi = a, (ε, q1, q) is a parse
triple for v1 · · · vi−1, and (ε, q, q2) is a parse triple for vi+1 · · · vk. If this is the
case, (A, q1, q2) is a parse triple for v. Second, we check, for each rule A→ BB′

whether there is an i ∈ [k] and a q ∈ Q such that (B, q1, q) is a parse triple
for v1 · vi and (B′, q, q2) is a parse triple for vi+1 · vk. In this case too, (A, q1, q2)
is a parse triple for v. ut
Since acyclic and finitely branching CFSA only contribute a more compact repre-
sentation of the regular languages, Theorem 7 extends to non-uniform member-
ship for the shuffle of a context-free language and a closure-free shuffle language:

Corollary 3. The non-uniform membership problem for the shuffle of two lan-
guages, one represented by a context-free grammar and one represented by an
acyclic and finitely branching CFSA, is solvable in polynomial time.

Extending Theorem 7 with techniques inspired by [17], we get the following:

Theorem 8. The non-uniform membership problem for the shuffle of a shuffle
language and a context-free language is solvable in polynomial time.

15

Since the languages are not part of the input, we may assume that they are
represented by an acyclic CFSA M , and a context-free grammar G, respectively.
We prove the above theorem in several steps. First, we show that we can assume
that the CFSA for a shuffle language has certain structural properties. Second,
we define simple configuration trees, and show that any computation of a CFSA
in normal form for a shuffle language can be assumed to use only simple config-
uration trees. Third, we show an upper bound on the number of different simple
configuration trees that need to be taken into account during a computation,
and provide a compact representation for these. Finally, we prove the theorem
along the lines of the proof of Theorem 7.

The first structural property of CFSAs that we consider is stratification. A
CFSA is stratified if its state-space is layered in the following sense: for every
state q, if q appears in a configuration tree below a node v, then there is at most
one state p that can label v.

Definition 5. An acyclic CFSA M = (Q,Σ, δ, I) is stratified if, for every q ∈ Q,
there is at most one p ∈ Q such that, in a configuration tree, a node with label
p can be the parent of a node with label q. ut
Observation 1. Let s be a shuffle expression, and let Ms = (Q,Σ, δ, q0) be
the CFSA constructed from s as in the proof of Theorem 1. Then Ms has the
following properties.

– It is stratified.
– It is acyclic.
– For each q ∈ Q, there is at most one vertical transition (p, α, t) in δ with q la-

belling the root of t. We say that Ms is vertically separated. We write scp(Ms)
(for shuffle-closure-parent) for the set of states that can have an unbounded
number of children, i.e., scp(Ms) = {q | ∃p, p′, α : (p′, α, q[p�]) ∈ δ}. ut
Having covered the first step our proof outline, we continue to introduce and

reason about so-called simple configuration trees. For this purpose, we need the
notion of pruned configuration trees and symmetrically equivalent nodes.

Definition 6 (Symmetrical equivalence). Let Ms be a CFSA obtained from
a shuffle expression, let t be a configuration tree of Ms, and let v, v′ be a pair of
nodes of t. The pruning of t with respect to v, v′, written prune(t, v, v′), is the
tree obtained from t as follows. Let P be the set of nodes u of t such that

1. t(u) ∈ scp(Ms),
2. u is a descendant of v or v′, and
3. there is no node with a label in scp(Ms) on the path from v (or v′) to u.

In other words, P is the set of closest shuffle-closure-parent descendants of v
and v′. Now, the partial configuration tree prune(t, v, v′) is derived from t by
removing all subtrees rooted at children of nodes in P .

A pair of nodes v, v′ in t are symmetrically equivalent if there is an automor-
phism f on the nodes of t′ = prune(t, v, v′) such that

16

– f(v) = v′ and f(v′) = v,
– for every u ∈ nodes(t′), t′(f(u)) = t′(u), and
– for every u, u′ ∈ nodes(t′), f(u) is a child of f(u′) if and only if u is a child

of u′. ut
It is easy to check that symmetrical equivalence is an equivalence relation

in the algebraic sense, and thus reflexive, symmetric and transitive. When con-
sidering a configuration tree from a computational point of view, we cannot
distinguish between symmetrically equivalent nodes. For our purposes this is an
advantage, because it means that we do not have to remember where a configu-
ration subtree attaches among symmetrically equivalent nodes.

Observation 2. Let k ∈ N, let t and s1, . . . , sk be configuration trees, and let
v1, . . . , vk be symmetrically equivalent nodes in nodes(t). All configuration trees
in the set

{t[[v1 ← sφ(1), . . . , vk ← sφ(k)]] | φ is a permutation on [k]}

are isomorphic. ut
It is never necessary, for the sake of accepting an input string, to add children

to a descendant u of a node v using shuffle-closure, if there is a node v′ that is
symmetrically equivalent to v, and which has a descendant u′ that has already
been given children using shuffle-closure. This claim, which will be proved later
on, means that the search space can be reduced to simple configuration trees.

Definition 7. A configuration tree t is simple if is it does not contain sym-
metrically equivalent nodes v and v′, such that both v and v′ have descendants
which are labeled by states in scp(Ms) and have children.

A run of a CFSA is simple if all configuration trees of the run are simple. ut

Lemma 2. Let s be a shuffle expression, Ms the corresponding CFSA, and w
a word. Then Ms has a simple accepting run on w, if and only if Ms has any
accepting run on w.

Proof (Sketch). For the “only if” direction we note that every simple accepting
run is an accepting run.

For the opposite direction, we provide a rewrite procedure that rearranges
the configuration trees in an accepting, but not simple, run ρ. As we shall see, it
suffices to apply this procedure a finite number of times to turn any accepting
run into a simple accepting run.

Assume that Ms has an accepting run ρ = t0, t1, . . . , tn on w, and that ρ
is not simple. Let ti be the first non-simple tree. Then the transition from ti−1

to ti must have been a vertical transition of the form (p′, ε, q[p�]) that changed
the label of some leaf node u from p′ to q and gave it a number of children with
label p, say m children. Also, there must be an ancestor v of u (possibly, v = u)

17

vv�

s�

ti

uu�

s

vv�

uu�

t�i
⇒

ss �

Wednesday, July 7, 2010

Fig. 2. Children obtained through shuffle-closure can be moved between descendants
of symmetrically equivalent nodes.

and a node v′ such that v and v′ are symmetrically equivalent in ti. Let φ be the
corresponding automorphism on prune(ti, v, v′). Let u′ = φ(u). If all the children
of u were instead children of u′, the tree ti would be a simple configuration tree.
And, indeed, because of the vertical separation of Ms, the transition that la-
beled u′ by q must have been (p′, ε, q[p�]). Thus, it could as well have created m
extra children of u′ with label p, in addition to the children it originally created.
This would not have affected any transitions up to configuration tree ti−1. Sym-
metrically, the transition from ti−1 to ti might not have created any children at
all under u. Thus, with the same sequence of transitions, we might as well have
ended up with the configuration tree t′i which is identical to ti except that u has
no children in t′i and u′ has m more p-labeled children than in ti.

It remains to argue that any sequence of transitions used in ρ from ti forward
is also possible from t′i. Let j > i be the smallest number such that in tj , either v
has no children or v′ has no children. We show that the partial run ρi,j = ti, . . . , tj
can be mirrored in a partial run ρ′i,j = t′i, . . . , t

′
j , using the same transitions. If

a transition of ρi,j affects a node in tk that doesn’t belong to the subtree of v
or v′, we mirror it directly on t′k. Now consider a transition from tk to tk+1 that
affects a node in a subtree of v or v′. If the same operation is possible on t′k, we
perform it. If not, this can only have two causes.

1. The affected node in tk is a descendant of u, that doesn’t exist in t′k. In this
case, we perform the operation on the corresponding child of u′.

2. The affected node in tk is u′, which, in t′k still has children. In this case, we
perform the operation on u.

In each of ti and tj , we have that exactly one of v and v′ is childless. If this
is the same node in both trees, they are identical and we are done. If not, we

18

still have to argue that the transitions from tj forward can be mirrored from t′j .
If not, we use the fact that in ti and t′i, v and v′ were symmetrically equivalent.
Thus we are free to use the automorphism φ to reinterpret the sequence t′i, . . . , t

′
j .

Under this reinterpretation, tj and t′j are identical.
After performing the above operation, all configuration trees up to and in-

cluding ti are simple. This means that after going through the procedure at most
a linear number of times, all configuration trees will be simple. ut

Lemma 2 concludes the second step in our proof outline. What remains is to
provide a compact representation for simple configuration trees.

Definition 8. Let Ms = (Q,Σ, δ, q0) be the CFSA corresponding to shuffle
expression s and let t be a simple configuration tree of Ms. We define the compact
configuration tree cct(t) corresponding to t by induction on the structure of t.

– If t = q, then cct(t) = q.
– If t = q[t1, . . . , tk] and q ∈ Q \ scp(Ms), then cct(t) = q[cct(t1), . . . , cct(tk)].
– If t = q[t1, . . . , tk] and q ∈ scp(Ms), then

cct(t) = q[(cct(t′1), n1), . . . , (cct(t′m), nm)] ,

where
1. t′1, . . . , t

′
m is an enumeration of the elements in {t1, . . . , tk}, so t′i is not

isomorphic to t′j for any i, j ∈ [m], making m the number of unique trees,
up to isomorphism, in t1, . . . , tk,

2. ni = |{j | j ∈ [k], tj isomorphic to t′i}| for all i.

Intuitively, under q ∈ scp(Ms), we only remember which types of subtrees ap-
pear, and annotate each of them with a “repetition counter”, which encodes the
number of times they appear.

We write CCT(Ms) for the set of all compact configuration trees of Ms. ut
It should be clear that there is a one-to-one correspondence between simple
configuration trees t and their respective compact configuration trees cct(t).

Lemma 3. Let M = (Q,Σ, δ, I) be a CFSA corresponding to a shuffle expres-
sion. Then there exists a constant k ∈ N that depends only on M such that for
any string w ∈ Σ∗ of length n, the number of possible simple configuration trees
of M on w is bounded by O(nk).

Proof. Small configuration trees. First, let us note that any intermediate
configuration tree needs to contain at most n + 1 leaf nodes. Whenever a con-
figuration tree contains n + 1 leaf nodes, by the pigeon hole principle, at least
one of the states must ultimately derive ε, since there are only n symbols in
the string. As such, whenever a configuration contains n+ 1 leafs we can safely
nondeterministically choose a leaf state which can derive ε and replace it by tε
in the next step. We can arrive at n+ 1 leaf node states in total when a shuffle
operation produces its two children, but the above procedure can then remove
one state in the next step.

19

Since an acyclic CFSA will have configuration trees of height at most |Q|, no
configuration tree needs to be of size greater than (n+ 1)|Q|.
Small simple configuration trees. Let t ∈ CCT(M) be an arbitrary in-
termediate compact configuration tree of M running on w. Since M is acyclic
we know that t is in the set S = {t ∈ CCT(M) | height (t) ≤ |Q|}. No tree
in S has more than (|Q| + 1)2

|Q|
nodes which are pairwise not symmetrically

equivalent. This follows directly from Definition 6, since it prunes all descendant
scp(M)-nodes, leaving trees that have a branching factor of at most 2, height at
most |Q|, and labeled by at most |Q| different symbols (plus one to account for
non-existing nodes).

Note that t is (derived from) a simple configuration tree, as in Definition 7,
which means that in any set of symmetrically equivalent nodes there is at most
one whose corresponding subtree contains an scp(M)-labeled node that has chil-
dren. Take a set {v1, . . . , vn} of symmetrically equivalent nodes (n can be ar-
bitrarily large). Then, {t/v1, . . . , t/vn} contains at most two unique trees, the
single one with scp(M)-labeled nodes with children being one, while all other
subtrees are necessarily isomorphic. This immediately implies that t contains at
most 2(|Q|+ 1)2

|Q|
unique, up to isomorphism, subtrees.

All that remains is to note that t is a compact configuration tree, so every
node either has at most two children (non-scp nodes) or it has only unique, up
to isomorphisms, children. Since there are only 2(|Q| + 1)2

|Q|
unique subtrees,

and height (t) ≤ |Q| this means that t has (in a vast overestimate) at most
c = ((|Q|+ 1)2

|Q|
)|Q| nodes. Notice that this number depends only on M .

Conclusion. We have established that for M running on w every compact
configuration tree has at most c nodes. This also means that they contain at most
c repetition counters (the counters that are placed as part of the children in scp-
nodes in the CCT(M) construction). We have also shown that any intermediary
configuration tree of M running on w contains at most (n+ 1)|Q| nodes.

To conclude, we note that during any step of a run of M on w, there are less
than (|Q|+ 1)c possible compact configuration trees when ignoring the values of
the repetition counters. Furthermore, there are less than (n + 1)|Q| “units” to
be divided among the c counters, which can be done in less than ((n + 1)|Q|)c
ways. Consequently, there are less than (|Q|+ 1)c((n+ 1)|Q|)c possible compact
configuration trees for any step of M . Since c depends only on M , and the
simple configuration trees are one-to-one with the compact configuration trees,
this establishes the desired bound of O(nk) with k depending only on M . ut

Finally, we are ready to prove Theorem 8.

Proof (of Theorem 8). As in the proof of Theorem 7, we outline an extension of
the CYK algorithm. The extension maintains triples consisting of a nonterminal
from the grammar G and two configuration trees with respect to M . A triple
(A, t, t′) is assigned to a substring w′ of the input string w if
1. w′ = w′1 � w′2,

20

2. the string w′1 can take M from t to t′, and
3. the string w′2 can be derived from A in the grammar G.

A pair of triples (A, t, t′) and (B, t′, t′′) for the substrings w′ and w′′ can be
combined into a triple (C, t, t′′) for the substring w′w′′ if there is a derivation
rule C → AB in G. To decide whether there is a parse for w, one starts by
deriving all possible triples for every substring of w of length 1, and then uses
the above combination rule to dynamically complete the parse chart.

A string of length n has O
(
n2
)

substrings, which means that O
(
n2
)

sets of
triples have to be computed. From Lemma 3 we know that there is a k ∈ N, that
depends only on the shuffle language involved, such that no more than O

(
nk
)

distinct configuration trees have to be considered. If G has m nonterminals, there
are thus no more than O

(
m · nk) possible triples. Given that we have the sets

of triples for all substrings of w, deciding whether a particular triple belongs to
the set of triples for w can be done in polynomial time. Thus, since m and k are
constants, the problem is polynomial in the length n of the string. ut

4.4 The membership problem for CF � CF

Next, we show that the uniform membership problem for L(A1)�L(A2), where
L(A1) and L(A2) are context-free languages, is NP-complete.

Proof outline. First, Definition 9 and 10 recall the definitions of push-down
automata, which are equivalent to context-free grammars, and two-stack push-
down automata, which are equivalent to Turing machines. These definitions are
well known, but for completeness, and because we will use a slightly specialized
version of the definitions, we include them here. Then, Definition 13 gives a
reduction from an arbitrary two-stack push-down automaton A to a push-down
automaton Asim , such that A accepts a string a if and only if Asim accepts some
string a ·$ ·s where s is a valid sequence of stack operations (shown in Lemma 4).
The idea is that Asim uses its own, single, stack to simulate the first stack in A,
and, whenever A would perform an operation on its second stack, for example
popping “0”, Asim instead reads a string encoding of that operation, for example
“[pop0]”. This means that as long as the suffix s of stack operations behaves as
a stack should (that is, the symbols popped correspond to those pushed) Asim

will behave just like A. To force Asim to always read such a valid stack operation
sequence we start (in Definition 16) by constructing an input string a′ = a·$·$·S
where S is a template repetition of stack operations, and then (in Definition 15)
construct a context-free language L(Acomp) which contains strings $ · ŝ where
ŝ is the complement of a valid stack operation sequence with respect to the
template S. This means that a′ ∈ L(Asim)� L(Acomp) if and only if A accepts
a, since Acomp forces Asim to read only valid stack operations from its part of
a′ (concluded in Theorem 9).

We will mostly represent context-free languages by push-down automata. It is
well known that we can convert any context-free grammar into an equivalent
push-down automaton (and vice versa) in polynomial time [16]. Lets recall a

21

simple definition of push-down automata, here fixed to using only a binary stack
alphabet (without loss of generality).2

Definition 9 (Push-down automata). A push-down automaton (PDA) is a
tuple (Q,Σ, δ, q0, F) where
– Q is a finite set of states,
– Σ is a finite alphabet of input symbols (ε /∈ Σ),
– δ ⊂ Q× ((Σ ∪ {ε})× {ε, 0, 1})× (Q× {ε, 0, 1}) is a finite set of transitions,
– q0 ∈ Q is the initial state,
– F ⊆ Q are the final states.

We write (q, a, s, q′, s′) ∈ δ as q
a,s/s′−−−−→ q′. This means that if the automaton

is in state q and it can read the symbol a from the input (if a = ε nothing is
read) and can pop the binary value s off the top of the stack (if s = ε nothing
is popped) it may choose to go to state q′, pushing s′ onto the top of the stack
(if s′ = ε nothing is pushed).

As usual, the computation starts in state q0 and the machine accepts if and
only if some sequence of transitions leave the automaton in a state in F when
the entire input string has been read. Whenever the stack is empty the bottom
bit 0 will be read, and may be popped without effect. ut

Recall also, that when nondeterministic push-down automata are extended
to have two independent stacks they become computationally equivalent to a
nondeterministic Turing machine, and can simulate each step in a Turing ma-
chine run using only a constant number of transitions.3 Lets recall the definition
of these automata as well.

Definition 10 (2-PDA). A two-stack push-down automata (2-PDA) is a tuple
(Q,Σ, δ, q0, F), where
– Q is a finite set of states,
– Σ is a finite alphabet of input symbols,
– δ ⊂ (Q× (Σ∪{ε})×{ε, 0, 1}×{ε, 0, 1})× (Q×{ε, 0, 1}×{ε, 0, 1}) is a finite

set of transitions,
– q0 ∈ Q is the initial state,
– F ⊆ Q are the final states.

We write (q, a, s1, s2, q′, s′1, s
′
2) ∈ δ as q

a,s1/s
′
1,s2/s

′
2−−−−−−−−→ q′. This automaton operates

just like a PDA, only with two independent stacks. ut
To simplify the reduction, we define some additional properties that the input 2-
PDA A must exhibit. The following definition establishes the property of A being
input-partitioned. This property requires that A always starts by reading its

2 Since ε-transitions are allowed the automata can simulate a richer stack alphabet by
representing each symbol by some fixed-length binary string.

3 The stacks can be used to simulate the work tape by letting the first stack contain
the portion of the tape to the left of the head, in reverse order, while the second
stack contain the portion to the right of the head. The head can then be moved by
popping a symbol from one stack and pushing it onto the other.

22

entire input without using its second stack, and, only when all input is consumed,
switches over to performing arbitrary computations using both stacks.

Definition 11 (Input-partitioning). Given a 2-PDA A = (Q,Σ, δ, q0, F), an
input-partitioning of A is a tuple (Qinput, Qcompute) with Q = Qinput ∪Qcompute,
Qinput ∩ Qcompute = ∅, q0 ∈ Qinput, F ⊆ Qcompute, and for all transitions

q
a,s1/s

′
1,s2/s

′
2−−−−−−−−→ q′ in δ it holds that

– q ∈ Qinput implies that s2 = ε, s′2 = ε,
– q ∈ Qcompute implies that q′ ∈ Qcompute and a = ε,
– q ∈ Qinput and q′ ∈ Qcompute only for one unique transition, which also has
a = ε, s1 = ε and s′1 = ε. ut

This means that an input-partitioned automaton A starts out in a state inQinput,
and no transition from a state in Qinput ever touches the second stack, but may
read input. It must then, sooner or later, take the unique switching transition

q
ε,ε/ε,ε/ε−−−−−−→ q′, with q ∈ Qinput and q′ ∈ Qcompute, after which it will always be in

some state in Qcompute. No transitions from states in Qcompute may read input,
or go to a state in Qinput, but they may use both stacks.
Remark. In the sequel, we will, without loss of generality, assume that we
have an input-partitioning for any 2-PDA used. A general 2-PDA is equivalent
to a Turing machine, and input partitioning simply forces the machine to start
by transferring all the input to its work tape. Clearly, every Turing machine can
be rewritten into an equivalent TM which accepts the same input strings (when
suitably encoded) as the starting content of its work tape. ut

For convenience, we name two alphabets that will be frequently used in the
remainder of this section.

Definition 12 (Γ ,Γ̂). Γ = {push0,push1,pop0,pop1} and Γ̂ = Γ ∪{], [, $}. ut
The next definition contains the key construction of this section. It shows how
to, given a 2-PDA A, construct a PDA Asim such that A accepts input string
w if and only if there exists a special string s such that w · $ · s ∈ L(Asim).
The requirement is that s encodes a valid sequence of stack operations. The
construction works by letting the stack of Asim simulate the first stack of A, and
making Asim read the stack operations for the second stack from s.

Definition 13 (Asim). Given the 2-PDA A = (Q,Σ, δ, q0, F), with input--
partitioning (Qinput, Qcompute), we construct the PDA Asim = (Q′, ∆, δ′, q0, F)
as follows.
– ∆ = Σ ∪ Γ̂ , (we assume Σ ∩ Γ̂ = ∅.)
– To construct Q′ we use the mapping f : {push,pop} × {ε, 0, 1} → (Σ ∪ Γ̂)∗

that is defined by

f(x, v) =
{

ε when v = ε,
[·xv·] otherwise.

Now, Q′ is the union of Q and the set of states

{τ [q′]
S | q a,s1/s

′
1,s2/s

′
2−−−−−−−−→ q′ ∈ δ, S is a suffix of f(pop, s2) · f(push, s′2)} .

23

Lastly, δ′ contains the rules {τ [q]
a1···an

a1,ε/ε−−−−→ τ
[q]
a2···an | τ [q]

a1···an ∈ Q′ \ Q} and

{τ [q]
ε

ε,ε/ε−−−→ q | q ∈ Q}. Additionally, for every transition q
a,s1/s

′
1,s2/s

′
2−−−−−−−−→ q′ in δ

– if q, q′ ∈ Qinput then the transition q
a,s1/s

′
1−−−−−→ q′ is in δ′,

– if q ∈ Qinput and q ∈ Qcompute then the transition q
$,ε/ε−−−→ q′ is in δ′,

– if q, q′ ∈ Qcompute then the transition q
ε,s1/s

′
1−−−−→ τ

[q′]
f(pop,s2)·f(push,s2)

is in δ′.
ut

In the sequel, we will often be using strings of symbols to represent stack opera-
tion sequences. To simplify this, let us define the set VSR (for Valid Stack Runs)
to contain all valid sequences of stack operations for a binary stack alphabet.
Note especially that this includes the possibility of push operations with no cor-
responding pop, corresponding to sequences which end with a non-empty stack.
Additionally, we define two functions to format these strings in convenient ways.

Definition 14 (Valid stack run). Define VSR and SVSR as follows.
– VSR = L(G) where G is the context-free grammar G = (Q,Σ, δ, q0) with

nonterminals Q = {q0, b}, alphabet Σ = Γ and δ containing the following
rules.

q0 → push0 q0 | push1q0 | q0q0 | b
b→ push0 bpop0 | push1 bpop1 | bb | ε

– SVSR : VSR → Γ̂ ∗, such that we have SVSR(r1 · · · rn) = [r1] · · · [rn] for all
r1 · · · rn ∈ VSR. Also, let

S̄VSR(p1 · · · pn) =

ε if n = 0,

[push1 pop0 pop1] · S̄VSR(p2 · · · pn) if p1 = push0,
[push0 pop0 pop1] · S̄VSR(p2 · · · pn) if p1 = push1,
[push0 push1 pop1] · S̄VSR(p2 · · · pn) if p1 = pop0,
[push0 push1 pop0] · S̄VSR(p2 · · · pn) if p1 = pop1.

ut
Observation 3 (Stack runs). Note that for all s ∈ VSR, all prefixes of s are
also in VSR. Also, note that SVSR and S̄VSR complement each other in the sense
that for all p ∈ VSR we have

[[push0 push1 pop0 pop1]] · · · [[push0 push1 pop0 pop1]]︸ ︷︷ ︸
|p| times

∈ SVSR(p)� S̄VSR(p).

ut
Now we have all the tools needed to prove that Asim indeed have all the proper-
ties claimed for it, thereby establishing the link between our Asim -construction
and the 2-PDA A.

Lemma 4. Let A = (Q,Σ, δ, q0, F) be a 2-PDA with input-partitioning and let
w ∈ Σ∗ be any input string. Then the following holds.

24

1. A has an accepting run on w if and only if there exists some p ∈ VSR such
that w · $ · SVSR(p) ∈ L(Asim) where Asim = (Q′, ∆, δ′, q0, F) is constructed
as in Definition 13.

2. If A has an accepting run on w of length n, then there exists a p ∈ VSR that
fulfills the above with |p| ≤ 2n.

Proof. For all strings s ∈ (Σ∪Γ̂)∗ define γ : (Σ∪Γ̂)∗ → Γ ∗ (recall Γ̂ and Γ from
Definition 12) so that γ(s) produces s with all non-push/pop symbols removed
(notably γ(w · $ · SVSR(p)) = p). Then define σ : VSR→ {0, 1}∗ as the function
which for all s ∈ Γ ∗ produces the stack contents resulting from applying the
stack operations in s, in order, to an initially empty stack. Notice that σ(γ(s))
is well-defined for all prefixes of w · $ · SVSR(p).

Let (Qinput, Qcompute) be the input partitioning of A. Write configurations of
A (when in a Qcompute states) as tuples of the form

(q,B1, B2) ∈ Qcompute × {0, 1}∗ × {0, 1}∗

where q is the current state and B1 and B2 the current contents of Stack 1 and
Stack 2, respectively. Write configurations of Asim as tuples of the form

(q,B1, B2) ∈ Qcompute × {0, 1}∗ × {0, 1}∗

where q is the current state, B1 is the current stack contents, and B2 = σ(γ(s))
where s ∈ Σ∗ is the part of the input string already read.
Base case Assume that A has a run on w. Let (q′, B1, ε) be the configuration

of A after the unique transition q
ε,ε/ε,ε/ε−−−−−−→ q′ with q ∈ Qinput and q′ ∈ Qcompute

is taken (this unique transition must be taken at some point and Stack 2 will be
empty by Definition 11). Since Asim by construction contains all the same rules

for the states in Qinput it will be able to, with q
$,ε/ε−−−→ q′ as the last transition,

reach the configuration (q′, B1, ε) reading the string w · $. This establishes the
base case, for all runs of A on the string a we will get to a configuration which
Asim can reach on the string w · $, and trivially γ(w · $) ∈ VSR.
Inductive step Assume that A and Asim are in configuration (q,B1, B2),
let s ∈ ∆∗ be the input already read by Asim , and assume that γ(s) ∈ VSR.
Let s1, s2 ∈ {0, 1} be the top elements of the stack contents B1 and B2 re-

spectively. This means that A can take a transition q
w,s1/s

′
1,s2/s

′
2−−−−−−−−−→ q′. Let

w1 · · ·wm = f(pop, s2) · f(push, s′2) for f as in Definition 13. By construction
there must exist transitions

q
ε,s1/s

′
1−−−−→ τ

[q′]
w1···wn

w1,ε/ε−−−−→ τ
[q′]
w2···wn

w2,ε/ε−−−−→ . . .
wn,ε/ε−−−−→ τ [q′]

ε

ε,ε/ε−−−→ q′

in Asim . The first transition mimics the stack operations on Stack 1 in A, while
the remainder makes the input read so far s′ = s · w1 · · ·wn and γ(w1 · · ·wn)
will be exactly the stack operations performed on Stack 2 by s2/s

′
2 in A. We

already had B2 = σ(γ(s)) so σ(γ(s′)) will match the resulting Stack 2 in A,
making the configurations match again after the transitions. Since we know that

25

the (possible) pop s2 was matched in B2 and we assumed that γ(s) ∈ VSR we
also know that γ(s′) ∈ VSR.
Conclusion The other direction is easily shown in the same way, the string read
by Asim being mimicked by the operations on Stack 2 by A, and it is necessarily
possible by virtue of the stack operation sequence being in VSR. This proves
Part 1.

Part 2 follows trivially, the bound on the length of p follows directly from
the induction, where p turns out to encode the sequence of stack operations
performed on Stack 2 in A during the run. ut
Next, we define the PDA Acomp , which will serve to read the “complement” of
a valid stack run.

Definition 15 (Acomp). The language of the PDA Acomp is

L(Acomp) = {$ · S̄VSR(p) | p ∈ VSR}.
It can be constructed from the context-free grammar G = (Q,Σ, δ, q0) with
nonterminals Q = {q0, s, b}, and rules as follows.

q0 → $s
s→ [push1 pop0 pop1]s | [push0 pop1 pop2]s | ss | b
b→ [push1 pop0 pop1]b[push0 push1 pop1] |

[push0 pop0 pop1]b[push0 push1 pop0] | bb | ε
ut

Next, the last definition of this section shows how an input string for the 2-
PDA A construct a string to serve as input to the membership problem for the
constructed language L(Asim)� L(Acomp).

Definition 16 (Formatted input). For every string w over the alphabet Σ
and every n ∈ N we define the function input : Σ∗×N→ ∆∗, where ∆ = Σ∪ Γ̂
(assume that Σ ∩ Γ̂ = ∅), as

input(w) = w · $ · $ [[push0 push1 pop0 pop1]] · · · [[push0 push1 pop0 pop1]]︸ ︷︷ ︸
n times

.

ut
The next lemma establishes that Acomp will in fact necessarily leave only valid
stack runs as the suffix of strings produced by input when shuffled with Asim .

In the statement of Lemma 5, the PDA Asim is obtained from the TM A
using the construction in Definitions 13, and the PDA Acomp is as defined in
Definition 15.

Lemma 5. Let Σ ∩ Γ = ∅. Then, for every TM A, every string w ∈ Σ∗, and
every n ∈ N it holds that input(w, n) ∈ L(Asim)�L(Acomp) if and only if there
exists some p ∈ VSR with |p| = n such that w · $ · SVSR(p) ∈ L(Asim).

26

Proof. Given w ∈ Σ∗ and n ∈ N, the string produced by input(w, n) is of
the form w · $ · $ · [[push0 push1 pop0 pop1]] · · · [[push0 push1 pop0 pop1]]. Both
Asim and Acomp will, by construction, accept only strings with balanced, non-
nested brackets. Additionally, we know that Acomp reads only strings of the form
$·S̄VSR(p) for some p ∈ VSR. These facts alone forces Asim to read a string of the
form w · $ · [p1] · · · [pn] for some p1, . . . , pn ∈ Γ . As noted in Observation 3 S̄VSR

and SVSR behave as complements, so we will in fact have p1 · · · pn = p ∈ VSR,
so the string will be accepted if and only if w · $ · SVSR(p) ∈ L(Asim) ut
Finally, the following theorem summarizes the main result of the section, bring-
ing together the results of the previous lemmas.

Theorem 9. For an input string w it is an NP-complete problem to decide
whether or not w ∈ L(Asim) � L(Acomp) when L(Asim) and L(Acomp) are
context-free languages, even when L(Asim) and L(Acomp) are fixed. That is, the
non-uniform membership problem for the shuffle of two context-free languages is
NP-complete.

Proof. The problem is trivially in NP. Membership in context-free languages can
be decided in polynomial time, and we can, in polynomial time, guess any w1

and w2 such that w ∈ w1 � w2 and check if w1 ∈ L(Asim) and w2 ∈ L(Acomp).
NP-hardness can now be shown using the tools we have established. Take any

nondeterministic input-partitioned 2-PDA A that solves some NP-hard problem
in polynomial time. Let F : N → N be a polynomial such that running A on
an input string w takes less than F (|w|) steps. These assumptions can be made
since we can convert an arbitrary nondeterministic Turing machine into such a
2-PDA, and a nondeterministic TM can of course solve any problem in NP in
polynomial time. Modify A so that it may loop indefinitely on all final states.

Construct Asim from A using Definition 13, take Acomp as in definition 15. A
string w is accepted by A if and only if input(w, 2F (|w|)) ∈ L(Asim)�L(Acomp),
by applying Lemma 5 to show that the part of the input left to Asim is restricted
to only valid stack runs, and then Lemma 4 to show equivalence with the 2-PDA.
Notice also that since the run of A takes at most F (|w|) steps we need at most
2F (|w|) stack symbol blocks in the input construction, by Lemma 4. ut

5 Conclusions and future work

Concurrent finite-state automata combine the expressive power of context-free
and shuffle languages. The CFSA languages are properly included in the context-
sensitive languages, and minor restrictions of the device suffice to obtain the reg-
ular, context-free, and shuffle languages, respectively. CFSA have comparatively
nice closure properties, and can be sanity-checked in polynomial time.

To be of practical use, at least the non-uniform membership problem for a
language class needs to be efficiently decidable. This is known to be true for
the shuffle languages, but our analysis shows that the efficiency depends heavily
on the number of shuffle operations used. We also obtain that the non-uniform

27

membership problem remains polynomial for the shuffle of a shuffle language and
a context-free language. For the shuffle of two context-free languages, however,
it is NP-complete.

Ideally, the uniform membership problem should be solvable in polynomial
time. The only language class we studied for which this is the case, unless P=NP,
is the shuffle of a regular language and a context-free language.

Future work should strive to determine the complexity of the non-uniform
membership problem for further restrictions of CFSA. If even very sparse use of
shuffling has a large negative impact on the complexity, one could consider re-
placing the shuffle operator with weaker alternatives, such as unordered shuffle.

References

1. G. E. Barton. On the complexity of ID/LP parsing 1. Comput. Linguist., 11(4):205–
218, 1985.

2. F. Biegler, M. Daley, and I. McQuillan. On the shuffle automaton size for words.
In DCFS, pages 79–89, 2009.

3. H. Björklund and M. Bojańczyk. Shuffle expressions and words with nested data.
In Proc. MFCS’07, pages 750–761, 2007.

4. S. B. Bloom and Z. Ésik. Axiomatizing shuffle and concatenation in languages.
Information and Comptuation, 139(1):62–91, 1997.

5. M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In Proc. LICS’06, pages 7–16, 2006.

6. C. Câmpeanu, K. Salomaa, and S. Yu. Tight lower bound for the state complexity
of shuffle of regular languages. J. Autom. Lang. Comb., 7:303–310, January 2002.

7. S. Carberry. Techniques for plan recognition. User Modeling and User-Adapted
Interaction, 11(1-2):31–48, 2001.

8. M. Daley, M. Domaratzki, and K. Salomaa. Orthogonal concatenation: Language
equations and state complexity. J. Universal Comp. Sci., 16(5):653–675, 2010.

9. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
10. Z. Ésik and M. Bertol. Nonfinite axiomatizability of the equational theory of

shuffle. Acta Informatica, 35(6):505–539, 1998.
11. V. Garg and M. Ragunath. Concurrent regular expressions and their relationship

to petri nets. Theor. Comput. Sci., 96(2):285–304, 1992.
12. W. Gelade, W. Martens, and F. Neven. Optimizing schema languages for XML:

Numerical constraints and interleaving. SIAM J. on Comp., 39(4):1486–1530, 2009.
13. S. Ginsburg. The Mathematical Theory of Context Free Languages. McGraw-Hill,

1966.
14. J. Gischer. Shuffle languages, petri nets, and context-sensitive grammars. Comm.

ACM, 24(9):597–605, 1981.
15. J. Högberg and L. Kaati. Weighted unranked tree automata as a framework for

plan recognition. In Proc. Fusion’10, 2010. To appear.
16. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation (2nd Ed.). Pearson Education International, 2003.
17. J. Jedrzejowicz and A. Szepietowski. Shuffle languages are in P. Theor. Comput.

Sci., 250(1-2):31–53, 2001.
18. L. Kari and P. Sośık. Aspects of shuffle and deletion on trajectories. Theor.

Comput. Sci., 332:47–61, February 2005.

28

19. M. Kuhlmann and G. Satta. Treebank grammar techniques for non-projective
dependency parsing. In Proc. EACL, pages 478–486, 2009.

20. A. Mateescu, G. Rozenberg, and A. Salomaa. Shuffle on trajectories: syntactic
constraints. Theor. Comput. Sci., 197:1–56, May 1998.

21. A. Mayer and L. Stockmeyer. Word problems – this time with interleaving. Inform.
and Comput., 115:293–311, 1994.

22. J. Nivre. Non-projective dependency parsing in expected linear time. In Proc.
ACL-IJCNLP ’09, pages 351–359, 2009.

23. C. Schmidt, N. Sridharan, and J. Goodson. The plan recognition problem: An
intersection of psychology and artificial intelligence. A.I., 11(1,2), 1978.

29

