
Abstract

Examples are important when we attempt to learn something new. To learn prob-
lem solving and programming is an acknowledged difficulty. Teaching and learning
introductory object oriented problem solving and programming has been discussed
extensively since the late 1990’ies, when a major shift to object orientation as first
programming paradigm took place. Initially, this switch was not considered to
cause any major problems, because of the accumulated knowledge for how pro-
gramming should be taught. This turned out to be naive. Knowledge gained for
the imperative paradigm did not apply well to the object oriented paradigm.

Because of its importance for the field of computer science, introductory pro-
gramming education has drawn a lot of attention. Most of the research done in
connection to object oriented problem solving and programming has been focused
on students learning and the difficulty to acquire skills in programming.

Less investigated is the foundation of the educational mission, the characteris-
tics of object orientation and how this is best supported by the educator. There is
no obvious agreement of what the basics of object orientation are, especially not
from an educational point of view.

In this thesis, two major aspects concerning the teaching of object orientation
have been investigated: the definition of object oriented quality, specifically in
examples for novices, and educators’ views on aspects of object orientation. Based
on research of how object orientation is characterised in literature and in software
design principles, a set of concepts and principles are presented as a description
of basic characteristics of object orientation. These are applied to the educational
context, and a number of heuristics, called Eduristics, for the design of object
oriented examples for novices are defined. The Eduristics are then used to discuss
the flaws and shortcomings of common textbook examples, but also how the object
oriented quality of examples can be improved.

To be able to evaluate the quality of examples, we initiated and participated
in the development of an evaluation tool. This tool has been used to evaluate a
number of examples from popular textbooks. The results show that the object
oriented quality of examples is low.

To explore the ways educators view a number of aspects of object orientation
and the teaching of it, ten interviews have been conducted. The results of this
study show that the conceptual model of object orientation among educators is
low, and the study also shows that novices are not given any introduction to object
oriented problem solving.

iii

iv

Sammanfattning

Exempel är viktiga när man ska lära sig något nytt och det gäller även när man ska
lära sig programmera. Att lära sig problemslösning och programmering är erkänt
svårt och det har föranlett många förslag på vad som är ett bra sätt.

Under 1990-talet skedde en större omläggning i programmeringsundervisnin-
gen världen över. Från att ha introducerat programmering i det imperativa/pro-
cedurella paradigmet övergick man till att använda objektorientering som första
paradigm. Inledningsvis trodde man inte att det skulle skilja sig på något avgörande
sätt från tidigare erfarenheter om hur programmering skulle undervisas. Detta
visade sig vara en naiv föreställning. Mycket av den kunskap som ackumulerats
kring den imperativa programmeringsundervisningen visade sig svår att överföra
till objekt orientering. Omställningen har varit mödosam och är fortfarande inte
genomförd fullt ut.

Programmering är centralt i datavetenskap, eftersom olika aspekter av program-
varukonstruktion genomsyrar det mesta av verksamheten kring datorer. Utbild-
ningsmässigt är en inledande kurs i problemlösning och programmering förutsät-
tningen för vidare studier i ämnet. Detta gör att en hel del uppmärksamhet har
riktats mot problemlösning och programmering.

Det mesta av den forskning som finns gjord i anslutning till objekt orienterad
problemlösning och programmering har varit fokuserad på nybörjares lärande och
problem att komma in i programmerandet.

Mycket lite finns gjort när det gäller själva utgångspunkten för undervisningen
om objektorientering, nämligen vad som är centralt i objektorientering och på vilket
sätt det ska manifestera sig i undervisningen.

I det här arbetet har två huvudaspekter av objektorientering i undervisningssam-
manhang undersökts: definitionen av objektorienterad kvalité, specifikt i exempel
för nybörjare, samt vilken syn lärare har på olika aspekter av objektorientering.

För att möjliggöra detta har vi undersökt hur objektorientering beskrivs i lit-
teraturen och i vedertagna design-principer som används i programvaruutveck-
lingssammanhang. Baserat på resultatet av den undersökningen har vi använt en
uppsättning koncept och designprinciper för att definiera vad som är karakteristiskt
för objektorientering. Med detta som utgångspunkt har vi applicerat definitionen
av objektorientering till undervisningssammanget och definierat ett antal heuris-
tiker specifikt för konstruktion av objektorienterade exempel för nybörjare.

Parallellt med detta arbete deltog vi i utvecklingen av ett utvärderingsverk-
tyg för att värdera objektorienterade exempel för nybörjare. Detta verktyg har
använts för en större utvärdering av exempel hämtade från populära läroböcker.
Resultaten från denna studie visar att exempel generellt sett håller låg objektori-

v

enterad kvalitet. Vi har också visat att exempel som värderas högt, uppfyller våra
heuristiker och att exempel som värderas lågt strider mot desamma.

För att utforska hur lärare ser på objektorientering och hur de resonerar kring
strategier för att lära ut objektorientering, har vi gjort tio intervjuer med lärare
i gymnasieskolan och på universitetsnivå. Resultaten visar att den konceptuella
modellen för objektorientering är mycket enkel i förhållande till den komplexitet
som ofta anses känneteckna paradigmet. Dessutom, ges i stort sett inget stöd för
nybörjaren vad gäller att förstå och lära sig problemlösningsansatsen, som ofta
upplevs som väsensskild från hur man i normala fall löser problem.

vi

List of Papers

This thesis consists of an introduction to the research area and the following papers:

Paper I: Börstler J., Nordström M., Kallin Westin L., Moström J-E., and Eliasson
J., "Transitioning to OOP/Java – A Never Ending Story", In Reflections on
the Teaching of Programming, M. Kölling, J. Bennedsen, and M. Caspersen,
Eds. Lecture Notes in Computer Science, vol. LNCS 4821. Springer, 86-106.

Paper II: Nordström M., and Börstler J. (2010) Heuristics for Designing Object-
Oriented Examples for Novices. Submitted to ACM Transactions on Com-
puting Education (TOCE)

Paper III Börstler, J., Christensen, H. B., Bennedsen, J., Nordström, M., Kallin
Westin, L., Moström, J.-E., and Caspersen, M. E. Evaluating OO example
programs for CS1. In ITiCSE ’08: Proceedings of the 13th annual conference
on Innovation and technology in computer science education, pages 47–52,
New York, NY, USA. ACM.

Paper IV: Börstler, J., Nordström, M., and Paterson, J. H. (2010). On the qual-
ity of examples in introductory java textbooks. The ACM Transactions on
Computing Education (TOCE), Accepted for publication.

Paper V: Nordström M. Educators’ views on object orientation. Submitted to
Computer Science Education.

Paper VI: Nordström M. Educators’ strategies for OOA&D. Submitted to ACM
Inroads.

Paper VII: Nordström M., and Börstler, J. Improving OO Example Programs.
Submitted to IEEE Transactions on Education.

Reprints were made with permission from the publishers.

vii

Author’s Contributions

Paper I: This is the story of ten years of experience of switching from impera-
tive/procedural programming to object oriented programming in our intro-
ductory courses. All co-authors collected data, contributed with their experi-
ence, and took part in the formulation of a number of educational principles
for teaching object orientation to novices. Most of the writing was done by
Börstler, Kallin and Nordström.

Paper II: Summarising the major findings and results of my Licenciate Thesis,
and further discussions in connection to the evaluation of examples. The
major part of the work was done by me.

Paper III: This paper is the result of the initial work to design an evaluation
tool for object oriented examples. Seven danes and swedes, all experienced
in teaching introductory programming in several paradigms took part in the
development a pilot-tool. All co-authors participated in the development of
the assessment tool, and analysis was done collectively. Statistics was done
by Lena Kallin Westin. Writing was mainly by Börstler and Nordström.

Paper IV: Based on data collected for an ITiCSE workshop (Börstler et al., 2009),
an extended analysis and investigation of different categories of examples
was carried out. Co-authors contributed in different areas. My focus in this
work was the object oriented qualities, mainly on First User Defined Classes
(FUDCs).

Paper V: Based on ten interviews, this paper categorises educators’ personal
views of Object Orientation. I developed the structure for the research area,
planned and performed the interviews. The analysis of the textual data is all
my work.

Paper VI: Teaching Object Oriented Analysis and Design seem to be a problem
to educators. Whether explicit or not, how we exemplify different aspects of
object orientation will affect students notion of how to design their solutions.
In this paper a categorisation of used strategies for OOA&D is presented.
The structuring of the research area, the planning and the carrying out of
the interviews, was entirely my work, as well as the analysis of the textual
data.

Paper VII: The use of Eduristics to show how it is possible to discuss object
oriented quality and to improve examples for novices. All work has been
done jointly by the co-authors.

viii

Other Publications by the Author
The work presented in this thesis is partly based on ideas and work presented
previously:

• Börstler, J., Hall, M. S., Nordström, M., Paterson, J. H., Sanders, K., Schulte,
C., and Thomas, L. (2009). “An evaluation of object oriented example pro-
grams in introductory programming textbooks”. SIGCSE Bull. Inroads,
41:126–143.

• Börstler, J., Christensen, H. B., Bennedsen, J. Nordström, M., Kallin Westin,
L., Moström, J.-E., and Caspersen, M. E., Evaluating OO example programs
for CS1, Proceedings of the 13th annual conference on Innovation and tech-
nology in computer science education, 2008, Madrid, Spain June 30 - July 02,
2008 Pages 47-52

• Börstler, J., Nordström, M., Kallin Westin, L., Moström, J.-E., Christensen,
H. B., and Bennedsen, J. (2008) An Evaluation Instrument for Object-Oriented
Example Programs for Novices, Technical Report UMINF-08.09, Dept. of
Computing Science, Umeå University, Umeå, Sweden

• Börstler, J., Caspersen, M. E., and Nordström, M. Beauty and the beast—
toward a measurement framework for example program quality. Technical
Report UMINF-07.23, Dept. of Computing Science, Umeå University, Umeå,
Sweden, 2007.

• Börstler J., Caspersen M.E., and Nordström M. Beauty and the Beast -
openspace on Educators symposium, At the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and applications, OOP-
SLA’07, Montreal, Quebec, Canada October 21 - 25, 2007

• Nordström, M. PigLatinJava - troubleshooting examples. Technical Report
UMINF-07.26, Dept. of Computing Science, Umeå University, Umeå, Swe-
den, 2007.

• Eliasson, J. , Kallin Westin, L. and Nordström, M. Investigating students’
confidence in programming and problem solving, Proceedings of the 36th
ASEE/IEEE Frontiers in Education Conference (FIE2006), San Diego, Cal-
ifornia, USA, October 28-31, 2006 pages M4E-22-M4E-27

• Eliasson, J. , Kallin Westin, L. and Nordström, M. Investigating students’
change of confidence during CS1 - four case studies. Technical Report UMINF-
106.13, Dept. of Computing Science, Umeå University, Umeå, Sweden, 2006.

ix

x

Acknowledgements

It is a privilege and a great pleasure to thank the many people who made this work
possible.

First and foremost, my colleague and for the last three years my supervisor,
Jürgen Börstler. Your enthusiasm, humor, creativity, and very strong mind to get
things finished, has pushed me through this adventure. Augen zu und durch! has
become my motto... Thanks to You.

Numerous people have contributed to my research. Jens Bennedsen, Jürgen
Börstler, Michael Caspersen, Henrik Bærbak Christensen, Johan Eliasson, Jim
Hall, Thomas Johansson, Lena Kallin Westin, Jan-Erik Moström, Jim Paterson,
Kate Sanders, Carsten Schulte, and Lynda Thomas are co-authors of one or more
of my publications. I have really enjoyed, and benefited, from these collaborations.
I do hope to get the privilege to work with You again!

Of course I am deeply indebted to the generous fellow educators who were will-
ing and able to find time to share their thoughts and experiences and to participate
in my interviews. I really enjoyed listening to You.

On a more personal level:
To my colleagues at the department, thank you for making the department such

a nice place. Solving crossword puzzles helps relaxing, and I think we have gotten
really good at it :-) Since I have been with the department for many years, I go a
long way back with many of you, and I want you all to know how much I appreciate
knowing you.

LenaP, to me you are a hero and a shoulder to lean on. You have offered help
and advice on so many occasions, and supported me all these years. Thank You!

LenaKW, optimistic, ready to take on any challenge, and extremely generous!
Thank You for being close!

Kristina, You have carried me those times I needed it the most... God bless
You!

I would not cope without friends that support comfort and encouragement when
needed: Bönorna Kristina, Gun-Britt and Britta. I can rest in your company, thank
You for caring!

My large network consisting of my mother Karin, my mother- and father-in-law,
Birgit and Karl-Anders, my sister Kina and her family, My brothers- and sister-
in-law, and their families, you provide me with a large caring family, and a lot of
birthdays.

xi

To my closest family who keeps me down to earth, and provides me with real
life: I owe you for putting up with me the last year, months, weeks, and days of
this work. Torbjörn, Emilie, Johanna, Jakob, Ellen and Frida, I love You!

Finally:
Looking back on this last year, finishing this work, I have realised some simi-

larities with something else I have experienced.
Being pregnant (a condition I am slightly familiar with), resembles finishing a

PhD. In the beginning everything is fantastic. You enjoy every minute, and you are
privileged with the opportunity to be introvert and dwell upon the circumstances of
your condition. You know what is waiting at the finish, but it is still very distant,
and almost unreal. Easy to ignore.

Time passes, and suddenly that particular event waiting, seems much more
likely to eventually take place. Not soon, but getting slightly worrying. You know
that there is some sort of effort involved.

Some more time passes, and now it is approaching fast. Too fast. You realise
that it is inevitable. It IS going to happen! Anguish! Increasing anguish...

And then suddenly, you can not stand this anguish anymore, and you start to
wish for it to take place, to get it over with. The sooner the better!

It is impossible to envision what life might be afterwards. You don’t even care...

Soon I will know what life after THIS experience will be...

BTW, I do not expect it to be even close to meeting my newborn children,
THAT was nothing short of a miracle!

Umeå, December 2010
Marie Nordström

xii

Contents

1 Introduction 1

1.1 Learning to Program . 2
1.2 The Problem . 3
1.3 Outline of this Thesis . 7

2 Learning from Examples 9

3 Teaching and Learning Object Orientation 13

3.1 Teaching object orientation . 13
3.2 Learning object orientation . 17
3.3 Summary . 18

4 Object Oriented Quality 19

4.1 Core Concepts and Design Principles 19
4.2 The Object Oriented Quality of Examples 21

5 Designing Object Oriented Examples 23

5.1 Eduristics for the Design of Object Oriented Examples 24
5.2 Evaluating the Object Oriented Quality of Examples 27

6 Listening to Educators 29

6.1 Educators’ Personal Views on Object Orientation 29
6.2 Respondents . 30
6.3 Interviews . 32
6.4 Analysis . 32
6.5 Results . 35
6.6 Discussion . 37
6.7 Trustworthiness . 38

7 Conclusions and Further Work 43

8 Summary of Papers 47

8.1 Paper I - Transitioning to OOP/Java – A Never Ending Story 47
8.2 Paper II - Heuristics for designing OO examples for novices 48
8.3 Paper III - Evaluating OO example programs for CS1 48
8.4 Paper IV - On the Quality of Examples in Introductory Java Textbooks 49
8.5 Paper V - Educators’ Views on OO, Objects and Examples 49
8.6 Paper VI - Educators’ Strategies for OOA&D 50

xiii

Contents

8.7 Paper VII - Improving OO Example Programs 50

Bibliography 51

Paper I 61

Paper II 81

Paper III 103

Paper IV 109

Paper V 133

Paper VI 151

Paper VII 169

A Programming within the Educational System in Sweden 175

xiv

Chapter 1

Introduction

In the late 1990’s my department, like many others, decided to switch language
for the introductory programming courses. Switching from a traditional imperative
language (Pascal) to an object oriented (Java), did not seem like a big deal initially.
In the beginning it was merely a change of language. We added objects to a well
established line of presentation, starting out with the usual elements introducing
programming to novices. Variables, data types, statements, expressions, selection,
loops, conditions, “procedures”, and parameters, were thoroughly discussed before
the introduction of objects. Soon we discovered that the solutions and programs
students produced mostly resembled Pascal code in Java-syntax. No wonder, since
that was basically what we taught! Now a long journey of stepwise improvements
of the course started, and eventually we arrived at an object-first approach. The
line of presentation was developed in close connection to assessment and examina-
tion, to form a coherent approach to provide conceptual understanding as well as
the development of skills. An important component of the educational design for
teaching object oriented problem solving and programing, has been the use and
development of an explicit method for object oriented analysis and design.

As the reasons for choosing this teaching approach, with an explicit emphasis
on objects from the very beginning, became articulated, the demand for certain
features in examples, exercise and assignments became obvious. Textbooks intro-
ducing object orientation to novices stated that they were “Object first”, “Truly
object oriented”, “Focusing on objects”, and similar claims, but still showed exam-
ples that were contradictory to characteristics of object orientation, despite the
advertised goals. Good examples to support the introduction of object orientation
through objects is hard to find, and to design. Part of this problem is the par-
ticulars of the educational context. Examples have to be simple, plausible, and
exemplary to show the essence of the paradigm, and to serve as role-models for the
novice.

The search for suitable object oriented examples, and the search for research
to support the design of object oriented examples has been tedious and close to
fruitless. This frustration is the reason, and starting point, for my interest in the
object oriented quality, and design, of object oriented examples for novices.

1

Chapter 1. Introduction

1.1 Learning to Program

Programming is not a trivial task to learn (McCracken et al., 2001; Robins et al.,
2003). Novices are struggling, and the drop-out rate is high (Bergin and Reilly,
2005). Though largely debated, object orientation is commonly used for introduc-
ing problem solving and programming to novices (de Raadt et al., 2004; Schulte
and Bennedsen, 2006). How to do this is not straightforward. In addition to the
general difficulties, the introduction to programming seem to be more complicated
when using the object oriented paradigm, compared to the imperative/procedural
paradigm (Sajaniemi and Kuittinen, 2008). There are many suggestions to what
might be the cause of this. One reason could be that the decentralised flow of
control is more difficult to grasp (Du Bois et al., 2006). Following the execution
of statements in object oriented code is more cognitively demanding than a lin-
ear sequence of instructions. Another possible explanation is that object oriented
languages are more complex than procedural ones (e.g. (Caspersen, 2007)). The
paradigm is relatively new, and this might mean that the pedagogy is not mature
enough yet, and that this will improve with time. There seem to be no simple
explanation for the difficulties of learning to program, and no simple solution!

Computer science education research (CSER) is a young discipline. Setting the
grounds for the development of CSER Fincher and Petre (2004) points out that
the area is still struggling to find the shape of our literature. They claim that
the major part of research papers are “practice” papers. These are descriptive,
practice-based, experience papers, and weak on argumentation. An analysis of an
objects-early debate on the SIGCSE mailing list1 shows that the arguments among
CS educators are not based on research on novice programmers (Lister et al.,
2006). The investigation of claims from the debate, shows that there is no evidence
to support them. Commonly believed myths dominate the discussion rather than
informed research results.

Introductory programming courses, commonly called CS1, are important for
many reasons. They may be considered providers of a basic tool-of-the-trade for
most areas within computer science. Research on the teaching and learning of
programming is thoroughly reviewed by Caspersen (2007) and Bennedsen (2008).
General theories of teaching and learning are surveyed, and applied to the area of
teaching and learning introductory programming. The results are unambiguous:
students have a hard time learning to program, and the major problem is com-
position, not learning syntax (Caspersen, 2007). Years of experience and a large
amount of research have laid the ground for the theory of a model-based approach,
strongly supporting the idea of teaching with an explicit focus on the programming
process rather than exclusively working with the introduction of different language
constructs (Bennedsen, 2008).

The meta-analysis by Valentine (2004), is of some interest for the present work.
The analysis is restricted to all articles regarding CS1/CS22, published in the
SIGCSE Technical Symposium. The contributions are categorised in a six-fold
taxonomy:

1The ACM Special Interest Group on Computer Science Education (SIGCSE) maintains two
moderated mailing lists for announcements and discussion of topics of general interest to SIGCSE
members. Subscription is limited to SIGCSE members, and posting is restricted to subscribers.

2CS2 is usually the course introducing Data structures and Algorithms.

2

1.2. The Problem

• Marco Polo: “We tried this and we think it is good”. (27%)

• Tools: software, a paradigm or an organizing rubric for an entire course, etc.
(22%)

• Experimental: articles that made any attempt at assessing the “treatment”
with some scientific analysis. (21%)

• Nifty: assignments, projects, puzzles, games and paradigms. Attempts to
find innovative, interesting ways to teach students abstract concepts. (18%)

• Philosophy: discussions along philosophical and educational lines.(10%)

• John Henry: attempting almost impossible, and often unbelievable, approaches
in teaching. (2%)

The analysis spans 20 years (1984-2003), and in all, 444 papers were analysed.
The contribution of questions treated scientifically is rather limited, “Exper-

imental” is 21%. The category is regrettably not divided into qualitative and
quantitative research respectively. This category is also heavily criticised by Ran-
dolph (2007), since it “is so broad that it is not useful as a basis for recommending
improvements in practice”.

However, being interested in precisely educational research for CS1/CS2, we
find the results indicative and the distribution of papers disturbing. Without hav-
ing quantitative data to state it, a strong impression is however that qualitative
research is scarce, at least within this field. A simple test searching the ACM
Digital Library for the word “qualitative” within the proceedings of SIGCSE Tech-
nical Symposium Proceeding (1984–2003), yields 15 hits (out of 1663). This means
that less than 1% of the publications in SIGCSE Technical Symposium Proceeding
even mentions the word qualitative. This indicates that most computer science
education research, at least the research analysed in (Valentine, 2004), is at best
quantitative.

Regardless of methodology and line of presentation, it is well known that ex-
amples are important for learning. In the educational context, examples are small
and often restricted by the the novice’s limited frame of reference. This makes
the design of examples difficult, since they must be easy to understand, but still
exemplary to act as role-models for the paradigm. The quality of examples and
their impact on learning are areas not researched. Before evaluating the impact
of different teaching approaches, we must make sure that examples are properly
designed to expose the characteristics of object orientation.

1.2 The Problem
There are somewhat conflicting requirements for object oriented principles and
examples, when it comes to the specific needs of the educational situation. It is
common for educators to have to compromise with respect to ideals and preferred
qualities when teaching. Examples should preferably be clear-cut, and isolate a
certain feature to be demonstrated. To keep the cognitive load down, it is common
to try to keep the number of lines of code down. By keeping the code to a minimum,
often with a one-class or one-page limit, some of the important characteristics may
be difficult to demonstrate. If we want examples to show novices a realistic need

3

Chapter 1. Introduction

for object oriented software development, reasonable contexts are hard to find . We
must make problem solving plausible, both in terms of problems as well as in the
design of solutions. Novices often struggle with the mapping of domain knowledge
to implementation, and this must addressed. Furthermore, novices initially have a
limited set of general programming concepts, which restricts the amount of concepts
and constructs available for the educator. All of this makes the design of examples
difficult.

The object-orientedness of examples has been discussed (Westfall, 2001; CACM,
2002; Dodani, 2003; CACM, 2005), and particularly the very first examples shown
can be problematic. It is hard to find suitable first examples that are simple enough,
but still object oriented. Just putting code into a class does not make it object
oriented. A common template for the first example appearing in popular textbooks
is shown in Listing 1.1.

public class HelloWorld
{
public static void main (string[] args)
{
System.out.println("Hello, world");

}
}//class HelloWorld

Listing 1.1: First example.

This class is non-typical of object orientation for several reasons. There are, in
fact, a number of severe contradictions to the ideas of object orientation:

• the class is not an abstraction
• the class does not model an entity in a problem domain

• there are no objects instantiated

• the class contains only one method, main, that is not called explicitly by any
client

• the method, main, does not represent any service provided, it is not repre-
senting a behaviour of an object

• the method main is static which means that it does not belong to an
object, but is common to all the objects of this class

• the only method explicitly called, System.out.println(), is static and
is not the service of an object, i.e. no collaborating object is instantiated

All in all, this example does not exemplify many characteristics of object orienta-
tion.

Besides the problem of finding suitable problem domains and contexts for the
introductory examples, it is difficult to illustrate the execution of a program. Cre-
ating a lot of objects within a client-program will not necessary show the pro-
gramming novice what happens when the program is executed. A common first
example of a class is BankAccount, but for objects of this type of class it is hard
to demonstrate the effect of method-calls or state-changes in any natural way.

Because of this, it could be tempting to choose something that might be il-
lustrated graphically on the screen, to see some effect, or trace, of the execution.

4

1.2. The Problem

There are many, many versions of the HelloWorld-example, and it is not uncom-
mon to use graphical elements to make things a little bit more attractive to the
novice.

Executing such a program could result in the output shown in Figure 1.1.

Figure 1.1: Execution of the Greeting class

This output was generated by the HelloWorld-example shown in Listing 1.2.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Greeting extends JFrame
{
private JTextField textField;
public static void main (String[] args)
{
Greeting frame = new Greeting();
frame.setSize(300, 200);
frame.createGUI();
frame.setVisible(true);

}
private void createGUI()
{
setDefaultCloseOperation(EXIT_ON_CLOSE);
Container window = getContentPane();
window.setLayout(new FlowLayout());
textField = new JTextField("Hello!");
window.add(textField);

}
}//Greeting

Listing 1.2: Second example.(Bell and Parr, 2010)

In this example there are some further confusing issues:

• the class is extending another class. No explanation of what this means is
given in the accompanying text.

5

Chapter 1. Introduction

• the class is creating an instance of itself. If we claim that everything is about
objects, it does not seem reasonable that something that do not exist can
create an instance of itself.

• the class has only one method, and it is private!, to create a simple graphical
window (which is rather complex in Java)

• there are many unfamiliar things: libraries imported, classes used, methods
for advanced features of frames, constants not defined within this class etc.

• to a novice it must seem complicated to generate a simple output on the
screen, requiring all those window-handling operations

It is hard to see the purpose of the abstraction Greeting. The name (which
is really important to convey the essence of the object), indicates that greetings
can be created and used. This raises several questions. Why would anyone need
greetings-object, what is the context in which these objects would appear? What
kind of behaviour would clients assume of objects of this class? One reason for
classes is to be able to instantiate many objects of a certain kind, but in this
case it is hard to see the need for several objects. They would all look the same,
generate the same static output, and clients can not interact with them. Showing
the methods of these objects, reveals that there are no public accessible methods,
so anyone creating a Greeting-object, can not interact with it, and it does not
generate any output. Inspecting the class itself, the novice is offered many methods
that are difficult to associate with a greeting, since Greeting is inheriting from
JFrame, see Figure 1.2.

Figure 1.2: Available methods in Greeting class (screenshots from BlueJ).

These examples may seem trivial, with obvious and non-obvious deficiencies,
and/or non-object oriented. Superficially they might be placed in another context,
or look slightly different, but the approach and functionality resembles HelloWorld.

6

1.3. Outline of this Thesis

1.3 Outline of this Thesis
The research presented here is addressing the subject of object oriented quality
in introductory object oriented programming education. The thesis consist of an
introductory part and seven papers. The content of the thesis is organised as
follows: Chapter 2 gives an introduction to the general research on learning from
examples. In Chapter 3 some of the research on teaching and learning object
orientation is reviewed.

In Chapter 4, we discuss the definition of object oriented quality, both in general
and in the specific context of teaching novices. Based on this work, heuristics to
be used in the design of examples for novices are then discussed in Chapter 5.

Since educators are the ones presenting examples to novices, and their personal
views on different aspects of object orientation will affect their presentation, it is
important to listen to them. The analysis of their stories is presented in Chapter
6. Chapter 7 contains conclusions and directions for further research. Finally a
summary of the papers is given in Chapter 8.

The seven papers included in the thesis (I-VII) address the question of object
oriented quality from different perspectives. These perspectives and their treatment
in the papers respectively are illustrated in Figure 1.3 and shortly described below.

Figure 1.3: Different aspects of examples, and related papers in Roman numerals.

The Essence of OO

To be able to discuss object oriented quality of examples, it is necessary to state
what the essence of object orientation is. The characteristics was established based
on an investigation of how object orientation is defined literature, in terms of
concepts and design principles used by the software developing community. This

7

Chapter 1. Introduction

is discussed in Paper II - Heuristics for designing OO examples for novices.

Design

Based on the investigation of object oriented characteristic, the results were then
applied to the educational situation. The particular needs of a novice being in-
troduced to object orientation was taken into account and a number of heuristics
for the design of object oriented examples for novices were developed. The discus-
sion on a proper mindset for teaching object orientation and the consequences for
examples is initiated in Paper I - Transitioning to OOP/Java – A Never Ending
Story, and the design of examples is specifically discussed in Paper II - Heuristics
for designing OO examples for novices and Paper VII - Improving OO Example
Programs.

Textbooks

Textbooks are a major source, for educators when searching for examples to use in
introductory courses, and for students to find solutions to common programming
problems. This makes the object oriented quality of textbook examples critical. A
number of textbook examples have been evaluated through a large-scale study, us-
ing an evaluation tool designed to capture technical, didactical and object oriented
qualities Paper III - Evaluating OO example programs for CS1 and Paper IV - On
the Quality of Examples in Introductory Java Textbooks.

Educators

Another aspect of object oriented quality is how educators themselves view object
orientation. What are the characteristics considered important to convey? The
research question How educators view OO, was thematically operationalised ac-
cording to four themes; the paradigm itself, the concept of an object, examples
and object oriented analysis and design. Each theme was investigated from three
different perspectives, the teacher’s personal view, the teacher’s view of students’
difficulties and the teacher’s choice of methodology to address those difficulties.
Data has been collected through ten interviews and qualitative content analysis
has been conducted. The results from these interviews are presented in Paper
V - Educators’ Views on OO, Objects and Examples and Paper VI - Educators’
Strategies for OOA&D.

8

Chapter 2

Learning from Examples

Research on examples is mainly focused on cognitive and learning aspects.
Several studies conclude that people rely heavily on examples for learning (e.g.

Pirolli and Anderson, 1985; Lahtinen et al., 2005), but that the level of generality
to be transferred depends on the generality of the example solution. The use of
examples is manifold: the explanation of a certain phenomenon, the gaining of
some skill to solve similar problems, the generic understanding of how this fits into
a bigger whole, and is related to other concepts within the framework.

Based on theory and research findings from instructional systems, cognitive sci-
ence, and developmental psychology, concept-learning can be viewed as consisting
of two cognitive processes: forming conceptual knowledge and developing procedu-
ral knowledge (Tennyson and Cocchiarella, 1986). Conceptual knowledge entails
understanding the operational structure of the concept itself, as well as the rela-
tionship to associated concepts, and can be said to be the storage and integration
of information. This knowledge is used to develop procedural knowledge, by re-
trieving knowledge for solving problems. The two processes are interacting in the
formation of concepts.

Learning to program is a complex process, and as in many other learning sit-
uations novices combine many cognitive activities (VanLehn, 1996). They have to
develop mental representations related to program design, program understanding,
modification, debugging and documentation. The processes of using examples to
learn are: retrieval, mapping, application, and generalisation.

Applying a principle or example consists of retrieving it, placing its
parts into correspondence with parts of the problem [...], and drawing
inferences about the problem and its solution on the basis of the prob-
lem’s correspondence with the principle or example. After applying the
principle or example, subjects may generalize it. (VanLehn, 1996, p518)

When learning and acquiring skills in programming, reading and tracing code is
important. The formation of a more complex understanding of concepts, and pieces
of code, is made through the development of successively more abstract schemas or
plans (Rist, 1989). There are two cognitive processes involved when we are trying
to comprehend program code in examples, chunking and tracing (Cant et al., 1995).
Chunking means recognising groups of statements and labelling them with sym-

bols or single abstractions. This recognition can be performed in levels and

9

Chapter 2. Learning from Examples

produce a multi-levelled, aggregated structure over several layers of abstrac-
tion (Cant et al., 1995). Comprehending the chunks is important in this
process.

Tracing involves quickly scanning through code in order to identify chunks. Often
information about a certain entity is scattered and tracing is needed to collect
it. In itself, the process has no connection to comprehension of the traced
code.

Cant et al. (1995) use chunking as a model for recognising “program plans”, which
consists of both an idea of control flow and of variable use. It is therefore crucial to
be careful in the design of examples, to avoid adding to the cognitive complexity of
reading code. In this respect, choice of identifiers, consistency in the use of syntac-
tical elements, proper and adequate commenting, and decomposition are examples
of things that are likely to affect the readability of the example (Börstler et al.,
2007). The forming of concepts is an integral part of how we structure knowledge.
The ability to abstract common characteristics from instances to classify entities is
vital for the cognitive work in building conceptual models, classification provides
“maximum information with the least cognitive effort.” (Parsons and Wand, 1997).
Being able to read code is important for several reasons. Reading examples to
learn new concepts or features of object orientation, learning standard solutions to
standard problems on several levels of abstraction, and bug fixing are some of the
every-day activities of a novice, but reading code is problematic to many novices
(Lister et al., 2004).

Learning from examples seem to be most efficient when the knowledge gained
by studying the example is immediately used to solving a new problem. The effect
of different combinations of studying and solving problems has been investigated
by Trafton and Reiser (1993). Studying an example and then solving a similar
problem, with access to the studied example, seems to be the most favourable way.
A suggested reason is that the number of rules formed are fewer, than when the
example is blocked from access.

Research also shows that students who use the examples/exercises to elaborate
on the conditions and consequences of each step in the example, to explain how
and why things function the way they do, perform better. To investigate the role
of examples through self-explanations, Chi et al. (1989) compared and contrasted
how examples were used by good and poor students. The classification of students
was based on the overall results in a given exam. The students’ self-explanations
were used to reveal their understanding, by measuring whether or not they knew

1. the conditions of application of the actions

2. the consequences of actions

3. the relationship of actions to goals

4. the relationships of goals and actions to natural laws and other principles

The results show that good students met all the above forms of understanding.
They used the examples as a reference, usually rereading only a few lines of an
example. Poor students seldom explained the example to themselves, and if they
did, the explanations were restricted to details and not concerning concepts or

10

general principles. Furthermore the poor students reread larger portions of an
example, than did the good students, in search of solutions. A closer examination
of self-explanations shows that they are no guarantee for better learning (Renkl,
1997). Most of the students tend to use passive or superficial explanations. The
successful students were characterised as either anticipative reasoners or principle-
based explainers.

Worked-out examples is a way of providing the learner with an expert’s process
of problem solving. They usually include a problem statement and a procedure
that shows the approach of solving the problem. The problem solving procedure is
typically shown in a step-by-step fashion. The use of worked-out examples is dis-
cussed in several papers, and is argued to be more favourable, in terms of cognitive
load, than the use of regular examples when acquiring cognitive skills (Sweller and
Cooper, 1985; Sweller, 1988; Sweller et al., 1998). Important is also the sequencing
of examples and practice problems (Pirolli and Anderson, 1985).

The process of acquiring a cognitive skill through worked examples involves four
stages (Atkinson et al., 2000). Initially the learner solves problems by analogy,
trying to match known examples to the problem at hand. Then the learner starts
to develop abstract declarative rules to be used in problem solving. After much
practice, the problem solving becomes more automated and the rules are no longer
used, since the verbal memory evolves into a procedural form of memory. Finally
the collection of examples and the accumulated practice makes it possible to retrieve
solutions directly from memory.

The further development of worked examples introduces fading (Renkl et al.,
2002). Fading means successively removing more and more worked-out solution
steps as learners transition from relying on examples to independent problem solv-
ing. Backwards fading means successively excluding explanations from the end of
the worked-out example, which is more effective than removing explanations from
the front, and has proved to have an effect, at least for near-transfer problems.
The lack of effect on far-transfer problems raised the question whether the fading
could be combined with other instructional approaches, to foster far-transfer in
particular. To investigate this, fading worked-out examples was combined with
prompting for explanations. Although no interaction between the use of fading
and self-explanation prompts could be established, both instructional approaches
proved to produce an effect that is statistically significant even for far-transfer prob-
lems (Atkinson et al., 2003). Neither backwards fading nor prompting induced any
significant increase in learning time, and are both simple and easy-to-implement
procedures through computer-based learning environments. Theoretically, prompt-
ing and self-explanations can be connected to Vygotsky’s Zone of Proximal Devel-
opment (Vygotsky, 1978). The use of prompting is however, as can be expected,
highly sensitive to implementation. Some studies show negative results, partly
explained by the cognitively inadequate implementation supplied by computer en-
vironments (Atkinson et al., 2003).

Similar ideas are seen in research on general instructional design. In this line
of research the notion of best examples are considered an instructional design vari-
able for teaching and learning concepts. The best example should represent an
average, central, or prototypical form of a concept, and contribute to the initial
encoding of conceptual knowledge . This example should then be accompanied by
expository and interrogatory examples, to form procedural knowledge (Tennyson

11

Chapter 2. Learning from Examples

and Cocchiarella, 1986). Expository instances of the concept, are examples and
nonexamples that systematically organize and present the dimensionality of the
concept. Interrogatory instances are examples and nonexamples that use questions
to present the concept. The development of procedural knowledge is facilitated if
the learner is comparing and contrasting expository examples, since they should
provide richness to the conceptual knowledge.

An interesting collection of harmful examples has been collected by Malan and
Halland (2004). They identify four common pitfalls to avoid when designing exam-
ples: examples that are too abstract, or too complex, examples applying concepts
inconsistently, and examples undermining the concept introduced.

Examples can also contribute to students adapting several types of poor learning
behaviour, as investigated in (Carbone et al., 2000, 2001). Poor learning tenden-
cies was initiated by tasks that initiated superficial attention (copy and paste), or
impulsive attention (too unfocused, too much). The third learning behaviour was
students getting stuck due to inadequate strategies for initial design, coding, and
debugging.

Summary
There is research that provides results and theories for the general discussion on
the use of examples. But, when it comes to the specific area of learning problem
solving and programming in general, and within the object orientated paradigm
in particular, the application of these theories has not been researched. We all
know that we should present the novices with “good” examples, but the notion of
what constitutes a good example has not been discussed. If the examples used, in
some aspect, are inconsistent with the general idea of what we are teaching, it does
not matter how much work we put into the instructional design. It is therefore
necessary to base the design of our examples on explicitly formulated qualities that
are in line with the characteristics of object orientation.

Designing examples to illustrate object oriented concepts or features is defi-
nitely a craft that demands caution and awareness. Unless carefully designed, the
examples may very well be counterproductive. Research makes it clear that the
very first examples are critical in providing the first cognitive encoding for the
conceptual model.

12

Chapter 3

Teaching and Learning Object

Orientation

Programming is of great importance to the computer science community. There-
fore, specific attention is given the particular field of teaching and learning pro-
gramming. In this chapter some results are presented, for extensive surveys of this
field see the thesis work by Caspersen (2007) and Bennedsen (2008).

3.1 Teaching object orientation
Changing paradigm from imperative/procedural to object orientation for the in-
troduction of programming to novices, was initially an underestimated teaching
challenge, and classic results on on programming education, e.g. mental represen-
tation of programs, the understanding of the notational machine and the overall
approach to program design, were assumed to apply equally well to object oriented
programming. Sajaniemi and Kuittinen (2008) discuss this lack of research-based
approaches to teaching object oriented programming, and conclude that there is
no evidence that favours using object orientation as first paradigm. On the other
hand, Lister et al. (2006) found no support for the claim that object orientation
would be more difficult to learn than imperative/procedural programming.

Educators themselves are an integral component i programming education. It
is therefore important to investigate educators’ experiences if teaching object ori-
entation and how they perceive the difficulties of it. In an on-line survey among
educators, Dale (2006) used an open ended question to ask educators: “In your
experience, what is the most difficult topic to teach in CS1?”. Out of the 351
responses, four categories of answers were found through content analysis. The
categories were:

Problem Solving and Design This category comprised comments describing higher-
level thinking, such as: problem solving, algorithm design, abstraction, object
oriented problem solving and design concepts.

General Programming Topics Comments in this category focused on specific
programming constructs. Arrays, parameters and parameter passing, selec-
tion, looping and I/O were topics mentioned.

13

Chapter 3. Teaching and Learning Object Orientation

Object Oriented Constructs The most common concepts in this category were
inheritance and polymorphism, but almost all basic constructs were men-
tioned, e.g. user defined classes and variables.

Student Maturity Educators considered students to be ill prepared. Many men-
tioned that problem solving was a skill lacking in the student population. One
respondent summed it up this way: "Not a single topic, but the general issue
of being precise, being explicit, being ordered, being thorough."

The most frequent phrase in the first category, Problem Solving and Design, was
just problem solving, and the phrases design and abstraction were explicitly related
to object oriented design concepts. However, in the very same group of respon-
dents, 68% reported using no tools or techniques for teaching design (Dale, 2005).
However, it is difficult to know what the interpretations of the word design was
among the respondents, since 78% considered it very important to teach teach
problem solving and design explicitly and that it should be demonstrated whenever
possible. One explanation might be a conflation with algorithm development, be-
cause regardless of the design methodology used, this was clearly a focus for most
of these CS1 instructors: 80.3% described it as a thread spread throughout multi-
ple lectures. In the category object oriented constructs, it is difficult to spot any
obvious common difficulties, other than the rather general issues of “class”, “object”,
“polymorphism”, “inheritance” and so on. There is a need for a more qualitative
research into these matters.

Thompson (2008) performed a phenomenographic study on practitioners’ ways
of describing the design characteristics of an object oriented program, or how a
program is implemented. The interviewees expressed design characteristics of an
object oriented program, and the results were categorised in five categories: is
language dependent (e.g. the use of specific language features makes the program
object oriented), uses paradigm constructs (e.g. objects, object identity, state,
behaviour, interface, message passing), uses generic constructs (e.g. abstraction,
composition, delegation, encapsulation), applies generic design objectives (e.g. co-
hesion, coupling, maintainability, robustness,) and expression of thought process
(e.g. emphasis on the thought processes and the ways of thinking that are behind
the programming paradigm). The higher level categories do not ignore technology
aspects but see them as taking a subordinate role. Only the two highest levels
concerns abstractions, while the lower ones models real world objects. The critical
aspects found were then used as a guide to the analysis of a number of textbooks
introducing object oriented programming. The objective was to determine whether
textbooks utilise similar aspects to those found in the empirical work with prac-
titioners. The conclusion is that most textbooks do a better job in discussing the
nature of an object oriented program, what is called the “what” aspect, then they
do in addressing the “how” aspect.

Educators that include object oriented topics in their introductory course see
less learning difficulties regarding abstract concepts, than those who excludes object
oriented topics. Schulte and Bennedsen (2006) showed that the presence of object
oriented elements in a course, forces a more conceptual approach than elements
of an imperative nature do. This makes it important to discuss teaching object
orientation from an abstract and conceptual perspective. Teaching the paradigm
must be emphasised, but is often seen as competing with elementary programming

14

3.1. Teaching object orientation

constructs. McConnell and Burhans (2002) examined how the coverage of basic
concepts in programming textbooks has changed. They noted a shift in the amount
of coverage of various topics with each new programming paradigm, and with object
orientation a decrease in subprograms, but also a decrease in basic programming
constructs.

Another area of research is how to design courses. Different approaches have
been suggested, and this is summarised by the initiative taken by IEEE and ACM
to describe the body of knowledge in computer science and to formulate a com-
mon curriculum for computer science education, CC2001 (ACM, 2001, 2008b). In
CC2001 three different ways to teach introductory programming are suggested:
imperative-first, objects-first and functional-first.

The subject of teaching approaches, with a survey of relevant research, is thor-
oughly treated by Bennedsen (2008). The result of this work is the suggestion for
a model-based line of presentation, based on four principles: object from day one,
a balanced view of the three perspectives on the role of a programming language,
a systematic way to implement a solution, and explicit focus on the programming
process. To achieve this, they show many examples, they explicitly use UML and
they emphasise the programming process. Role-play is used to illustrate the con-
cepts, using everyday life situations. UML is used to describe concepts and their
properties, and supplies a vocabulary for communicating classes. The model-based
approach uses a read-modify-write approach to introduce a certain concept.

Some more detailed guidelines for the design of introductory courses can also
be found in literature. Kölling and Rosenberg (2001) suggest eight guidelines: 1:
Objects first, 2: Don’t start with a blank screen, 3: Read code, 4: Use "large"
projects, 5: Don’t start with "main", 6: Don’t use "Hello world", 7: Show pro-
gram structure, and 8: Be careful with the user interface. In close relation to these
guidelines, and based on our experiences, we developed eleven principles for course
development: No magic (P1), Objects from the very beginning (P2), General con-
cepts favoured over language specific realisations (P3), No exceptions to general
rules (P4), OOA&D early (P5), Exemplary examples (P6), Easy-to-use tools (P7),
Hands-on (P8), Less “from scratch” development (P9), Alternative forms of exam-
ination (P10), and Emphasise the limitations of computers (P11). See Paper I for
a thorough description, and a discussion on the outcomes of these principles.

Advice for the introduction of object oriented design and analysis is harder to
find. The design of small classes is discussed by Fowler (2003). He argues to make
a type (class) when objects with some special behaviour in their operations that a
primitive type does not have, are needed. The favorite example is money. Money
does not behave as floats, and should not be represented by floats. The advice
given is when in doubt, make a new type.

Providing means to break down the design of methods into smaller steps,
Caspersen and Kölling (2006) recommend The Mañana Principle. This is to intro-
duce novices to the idea of separating concerns and to use many small methods.
When – during implementation of a method – you wish you had a certain support
method, write your code as if you had it. Implement it later.

One way to introduce object oriented analysis and design in introductory pro-
gramming, is the use of CRC-cards (Bellin and Simone, 1997; Biddle et al., 2002;
Börstler et al., 2002; Gray et al., 2002; Börstler, 2005). This is an informal way
to investigate design ideas, and to try out solutions, but more important, it can

15

Chapter 3. Teaching and Learning Object Orientation

provide an experience of the object oriented way of designing without having to
be skilled, or even experienced in programming. Informal roleplay supported by
a method for documentation, has the potential of supplying opportunities for the
first steps into object thinking (Börstler, 2005; West, 2004).

A very specific concern of teaching object orientation, has been the discussion
on whether to teach objects first or not. This has on several occasions been the
topic on the SIGCSE mailing list (Bruce, 2004; Lister et al., 2006; Kölling, 2006;
Bennedsen and Schulte, 2007). Some argue that teaching objects early has failed,
while others pose the question whether this depends on the approach or the teach-
ers. Kölling (2006) argues that teaching object orientation is complex due to two
factors; intrinsic complexity, inherent in the paradigm, and accidental complexity,
caused by external factors such as inadequate languages, tools, teaching strategies,
teachers lack of experience with the paradigm etc. This argumentation is supported
by the cognitive load theory (Paas et al., 2003). According to this theory, instruc-
tional procedures contribute to the cognitive load of the learner, in both positive
and negative ways. Increases in effort or motivation can increase the cognitive re-
sources devoted to a task which is positive for the acquisition of schemas, but badly
designed instructional procedures impose a negative cognitive load on the learner.
That might be practical details such as having to search for information in several
places, or using inconsistent vocabulary in different instructional resources.

In an analysis of one of the SIGCSE discussions, it is shown that many of the
arguments used are based on myths, rather than scientific evidence (Lister et al.,
2006). This study claims that “many computer science academics lead double lives,
leading their research lives and their teaching lives according to different mindsets”.
When it comes to research we demand strong evidence, preferably quantitative,
but in our teaching profession we are reluctant to build on the works of others.
This means developing materials, tools and teaching approaches individually, often
based on intelligent guesses about what “works”.

From identified characteristics of tasks that lead to poor learning behaviour,
Carbone et al. (2000, 2001) make recommendations for how to address the identified
problems. To improve tasks given to students, it is recommended to supply the
students with “a method of attack”, because one of the major reasons for getting
stuck, was that the students did not know how to design a solution in manageable
components. This also affects the possibilities for bug fixing and the handling
of logical errors, often originating from compositional mistakes. A more explicit
and thorough introduction to, and use of, object oriented analysis and design would
empower novices in approaching problems, as well as in working with their solutions
subsequently. It would furthermore draw focus away from coding which tends to
dominate in CS1.

Even though student-centric approaches are often discussed in research, edu-
cators do not always teach in that way. Results show that teacher attitudes to
teaching often put a focus on content and organisation (Pears et al., 2007). As ed-
ucators, we need to ask ourselves what perspective we should have for our teaching.
We have to decide what “success” in an introductory programming course should
mean (Lister et al., 2007). If we are aiming for “development in student thinking”,
then we need to find ways to convey the idea of object orientation as a problem
solving approach, as well as the practicalities of implementing the solution.

Focus on the process of program development and the associated

16

3.2. Learning object orientation

strategies, principles, patterns, and techniques is the missing link that
we must provide in order to accomplish our mission of educating novices
in the skills of programming.(Caspersen, 2007, pp. 165)

3.2 Learning object orientation
In a survey of research modeling the cognitive aspects of learning to program,
Robins et al. (2003) reports on different approaches: programming plans, schemes,
programming strategies, and the difference between experts and novices.

The idea that object orientation is about active objects that are able to perform
computations and manipulate data that constitute their state, and that commu-
nicate with each other, leads to a problem solving approach that focuses on the
problem, not the solution (Rosson and Alpert, 1990). This has been taken as a sign
of naturalness; that object oriented analysis and design would be closer to the way
we think. This seems to be supported by research, at least when studying expert
programmers, but it has also been shown that expert object oriented programmers
use both object oriented and procedural views of the programming domain when
solving problems (Détienne, 1997). Novice programmers do not exhibit the same
understanding of the problem domain(Wiedenbeck et al., 1999).

But identifying entities of the problem domain does not necessarily result in
the design of autonomous, active objects, since many entities in the real world
are passive, dead things that hold some static information. To be able to design
suitable objects must therefore be considered an important part of learning object
orientation.

One way of improving programming education is to investigate what students
do “wrong”. Research has shown that students learning how to program with an
object oriented approach have difficulties “putting the pieces together”(Spohrer
and Soloway, 1986; Lahtinen et al., 2005). Spohrer and Soloway (1986) use the
term construct-based to illustrate the view of programming that many courses and
textbooks convey. Their results show that the majority of bugs in syntactically
correct programs are related to plan composition, rather than misconceptions of
syntactical elements.

Other results indicate that data flow (transformations which occur to variables
as the program executes), and function knowledge (goals that the program ac-
complishes), are difficult to understand because of the delocalised nature of object
orientation (Ramalingam and Wiedenbeck, 1997).

Research shows that one of the major problems for novices is to design a solution
for a problem and to express the solution in program code (Rist, 1995; Robins et al.,
2003; Lahtinen et al., 2005). This must be regarded highly relevant for object
orientation, a paradigm that should foster designs and implementations with a
delocalised nature.

There are several investigations on common misconceptions among novices.
Among these are object/variable conflation due to single attribute classes leading
the novice to view objects as mere wrappers for variables (Holland et al., 1997).
Another difficulty is the notion of object state, to understand how the invocation
of methods influences the object state (Ragonis and Ben-Ari, 2005).

From psychological research it is known that misconceptions can originate from
a lack of control. If unable to make sense of a situation, or an experience, individu-

17

Chapter 3. Teaching and Learning Object Orientation

als identify a coherent and meaningful interrelationship among a set of random or
unrelated stimuli to regain control (Whitson and Galinsky, 2008). To internalise
new knowledge, we tend to look for patterns and/or relationships among the con-
cepts we already know and the new concept. Novices tend to extrapolate known
phenomena, sometimes leading to erroneous conclusions. One example of this is
that numbers or numeric constants are the only appropriate arguments to pass for
a corresponding integer parameter. Passing explicit values is easier to comprehend,
than passing the value of a parameter that does not seem to have any value (Fleury,
2000). This tendency could unintentionally be due to the simplified types of ex-
amples we often encounter. The focus might be to show the principle of parameter
passing in a method call, and the ambition is to make it obvious what is passed,
so explicit values are used. Then when the novice needs to call a method, the use
of explicit values seem to be the way to make sure that the right value is passed.

The lack of student maturity identified by educators, is alarming. In a large
scale study, problem solving was identified as the most difficult topic to teach (Dale,
2005). Students seem unprepared for their first programming course. Not a single
topic, but the general issue of being precise, being explicit, being ordered, being
thorough. This research is supplemented by the research on student strategies for
programming by Eckerdal et al. (2005); Eckerdal (2009). Their results show 35
different strategies grouped into four super-categories: getting help from elsewhere,
learning through practising, resolving a problematic situation on a more abstract,
general level, and working their way around. This further stresses the need to give
novices strategies to approach both the design of solutions, as well as to resolve
problems that occur during implementation and code development.

3.3 Summary
Computer science education research is maturing, and it is certainly acknowledged
that the introduction to problem solving and programming is an educational chal-
lenge. Research focusing on CS1/CS2 is building up, and we think that many
indications can be found proving that object oriented analysis and design is to a
large extent lacking in CS1. Teaching and learning object orientation means more
than teaching and learning the syntax of a language with object oriented features.
It is also true that the educators are an important part of the outcomes of an
introduction to object orientation, no matter what the approach is. The impact
of vocabulary, the quality of examples and the support for problem solving in the
object oriented paradigm must be discussed, along with the formulation of charac-
teristics and the establishment of proper presentations of different aspects of object
orientation.

None of the above mentioned studies has made any attempts to analyse or ques-
tion the object oriented quality of the examples or exercises used. Neither has the
educators’ personal views on object orientation been investigated. The perception
of object orientation is varying among professionals, and it seems reasonable to
assume that this is true for educators as well. It is not unlikely that some of the
observed problems and difficulties are due to the way object orientation is pre-
sented, in terms of adherence to object oriented characteristics and principles. It
is vital to decide on what to teach, before analysing how to best teach it.

18

Chapter 4

Object Oriented Quality

If we are to discuss the object oriented quality of examples, we must start with
the basic properties of object orientation. However, there is no canonical defini-
tion of object oriented problem solving and programming. Because of this lack of
commonly agreed upon characteristics, we explore how object orientation is por-
trayed in literature, and in software developing practices. The basis for the present
work has been an investigation, and examination, of concepts and design guidelines
commonly promoted and used in the field.

4.1 Core Concepts and Design Principles
In the early years of object orientation, Nygaard and Dahl used ideas from ALGOL
to name entities objects and to establish characteristics for a new language, Simula
(Nygaard, 1986). They stated that the basic concept should be classes of objects
and that the subclass concept, should be a part of the language, Simula 67. The term
object-oriented programming is derived from the object concept in this language.
Stroustrup (1995) stated that The fundamental idea is simply to improve design
and programming through abstraction. The concept of objects in Simula 67 was the
basis for the term object oriented programming, coined by Alan Kay, the designer of
Smalltalk, coined the term object oriented programming, and considered it [..]a new
design paradigm [...] for attacking large problems of the professional programmer,
and making small ones possible for the novice user (Kay, 1996).

Among other sources that discusses characteristics of object orientation, are
ACM’s basic requirements for a computer science degree (ACM, 2001),(ACM,
2008a). Based on cognitive research, the notion of critical concepts in object
oriented programming has been developed by (Mead et al., 2006; Meyer, 2006).
Further indications of the characteristics of object orientation can be found in
studies of frequent object oriented concepts in literature (Henderson-Sellers and
Edwards, 1994; Armstrong, 2006).

To find out what concepts that could be considered central to the paradigm,
we investigated the literature which resulted in a set of concepts characterising
object orientation: Abstraction, Responsibility, Encapsulation, Information hiding,
Inheritance, Polymorphism, Protocol/Interface, Communication, Class and Object.

Abstraction is often mentioned as a central concept. Abstractions are said to

19

Chapter 4. Object Oriented Quality

be the driving force of object oriented design and the key to defining the objects,
as the building blocks of an object oriented solution to a given problem (Devlin,
2003; Kramer, 2007; Meyer, 2001; Parnas, 2007).

But concepts in themselves are not enough to provide an good understanding of
object orientation. We also need to know how to use the features captured by the
concepts, to develop well designed software. The practices proposed and used by
the software developing community reveal what is considered good object oriented
design, and they would therefore provide insights into the characteristics of object
orientation.

Design-advice is given by different researchers/practitioners, and they come in
many different forms; heuristics (Johnson and Foote, 1988; Riel, 1996; Gibbon and
Higgins, 1996; Grotehen, 2001; West, 2004), rules and guidelines (Bloch, 2001; Wick
et al., 2004; Garzás and Piattini, 2007), code smells and refactorings (Opdyke, 1992;
Fowler et al., 1999; Mäntylä, 2003; Mäntylä), patterns (Gamma et al., 1995), object
oriented software metrics (Chidamber and Kemerer, 1991; Purao and Vaishnavi,
2003; Lanza et al., 2005) etc. Some are general principles and some are very detailed
do’s and don’ts.

Searching the literature we have found that most object oriented design “advice”
are captured by the principles collected and/or formulated by Martin (2003). They
are grouped into three categories: Class design, Package cohesion and Package
coupling. When teaching novices, the major focus is on class design, packages are
rarely introduced in an introductory course. The class design principles are:

SRP – The Single Responsibility Principle Each responsibility should be mod-
elled by a separate class. A class should have one, and only one, reason to
change.

OCP – The Open Closed Principle A module should be open for extension
but closed for modification.

LSP – The Liskov Substitution Principle Subclasses should be substitutable
for their base classes.

DIP – The Dependency Inversion Principle Depend upon abstractions. Do
not depend upon concretions.

ISP – The Interface Segregation Principle Many client specific interfaces are
better than one general-purpose interface.

Since these principles are dedicated to class design, there is no principle focusing
on the collaboration among classes. Collaboration is an important component of
object orientation and to incorporate this aspect we found it necessary to include
two more principles:

LoD – Law of Demeter Do not talk to strangers. Only talk to your immediate
friends.

Favour object composition over class inheritance. One of the basic ideas of
the Gang-of-Four design patterns.

We believe that these principles describe what can be considered the general idea
of object orientation, at least the parts that can be related to the introduction of
object orientation to novices.

20

4.2. The Object Oriented Quality of Examples

The set of concepts and the principles are related, and complement each other,
Table 4.1.

Table 4.1: The relationships among object oriented Principles and Concepts.

 Concept

Principle A
bs

tr
ac

ti
on

R
es

po
ns

ib
ili

ty

E
nc

ap
su

la
ti

on

In
fo

rm
at

io
n

hi
di

ng

In
he

ri
ta

nc
e

P
ol

ym
or

ph
is

m

P
ro

to
co

l/
In

te
rf

ac
e

C
om

m
un

ic
at

io
n

C
la

ss

O
bj

ec
t

SRP – The Single Responsibility Principle X X X X X

OCP – The Open Closed Principle X X X X?

LSP – The Liskov Substitution Principle X X

DIP – The Dependency Inversion Principle X X

ISP – The Interface Segregation Principle X

LoD – Law of Demeter X

Program to an interface, not an implementation X X X X X

Favour object composition over class inheritance X X

For a thorough discussion on this research, see (Nordström, 2009) or Paper II.

4.2 The Object Oriented Quality of Examples
With the characteristics of object orientation as starting point, it becomes possi-
ble to discuss object oriented quality of examples for novices. To investigate the
possibility to measure the quality of examples for novices, we developed an evalu-
ation tool (Börstler et al., 2008a). The instrument was piloted by six experienced
educators on five examples (Börstler et al., 2008a,b). Based on this pilot study,
the instrument was redesigned, and in the resulting tool, the factors evaluating the
object oriented quality of an example are:

Reasonable Abstractions (O1): Abstractions are plausible from an object ori-
ented modelling perspective as well as from a the perspective of a novice.

Reasonable State and Behaviour (O2): State and behaviour make sense in
the presented software world context.

Reasonable Class Relationships (O3): Class relationships are modelled prop-
erly (the “right” class relationships are applied for the “right” reasons).

Exemplary OO code (O4): The example is free of “code smells”.

Promotes “Object Thinking” (O5): The example supports the notion of an
object oriented program as a collection of collaborating objects.

For each quality factor in the evaluation tool a list of typical problems is provided
to exemplify the quality addressed. This list is distilled from the literature on
student problems or misconceptions, and common violations of the acknowledged
general principles of object orientation.

With this tool, a large-scale study was performed (Börstler et al., 2009). The
examples for this study were chosen to be representative of a wide range of examples
from introductory programming textbooks. Each example was to be the first one
in a text, exemplifying certain high level concepts or ideas. Three major categories

21

Chapter 4. Object Oriented Quality

were used: First user defined class (FUDC), Multiple user defined classes (OOD)
and Control structures (CS). The aim was to have a broad and representative
coverage of textbooks, with respect to popularity, coverage, presentation style and
pedagogic approach. In this study we received in total 215 valid reviews by 25
reviewers. An extended analysis was made on the 21 examples that received ≥3
reviews each (191 reviews in total) (Börstler et al., 2010).

One interesting results of the evaluation of the quality of object oriented ex-
amples, is that the general impression of an example tends to degrade after the
evaluation of the example. The fact that there are specific items to evaluate, seems
to draw attention to details not initially spotted, and thereby develop the way we
view certain features, or the lack thereof, of the example.

In general, the results show that the object oriented quality of examples is
low. One reason for this might be that the focus in many textbooks is more
on basic programming constructs and syntax-related matters, than conveying the
mindset of the paradigm. Dealing with both introduction to programming as well
as introduction to object orientation, sets high demands on the design of examples.

Quality is a problematic thing to discuss. On one hand, it might be individual
what is regarded as “good” quality. On the other hand, it is often easy to agree on
really “bad” quality. Programming is often highly individual in terms of method
and style. Most programmers have firm opinions on the topic, and often extended
arguments to support their beliefs. This is reflected in introductory programming
text-books, and again, it seems to be a question of belief, both of what object
orientation means and how to best teach it. Criteria for object oriented quality is
lacking.

We have suggested and tested criteria for the evaluation of the object oriented
quality of examples for novices. The agreement among reviewers regarding the
different quality factors for a large number of examples, shows that it is possible
to use such a tool.

22

Chapter 5

Designing Object Oriented

Examples

The importance of good examples is well known. However, it is surprisingly difficult
to find examples that are truly object oriented, in the sense that they are faithful to
general guidelines and principles formulated to support for object oriented design.
One aim of this work has been to investigate the issue of object oriented quality
in examples for novices. The goal is to be able to support the design of examples,
with focus on the object oriented quality.

The lack of examples can partly be explained by the somewhat different condi-
tions for the actual development of software using the object oriented paradigm on
one hand, and teaching/learning object orientation on the other. Object orientation
is a problem solving approach designed to handle complex problems. For software
development, there are high demands on maintenance, efficiency and reusability.
But in the educational setting, there are some more concerns to take into consid-
eration. Novices have a very limited frame of reference in terms of concepts and
language elements, and often have no experience of programming in general. This
means that the mere idea of execution of statements could be problematic. Because
of this, it is necessary to simplify and reduce the examples to make it possible for
novices to see the essence of the feature or concept exemplified. When the exam-
ples are small, it becomes difficult to illustrate some of the general features of the
object oriented approach. Nevertheless, it is particularly important in examples
for novices, to emphasise exemplary objects and promote object thinking.

Computer science education research has shown that much of the lack of success
in the outcomes of introductory programming courses, lies within the problem-
solving abilities. It is therefore necessary to provide novices with a conceptual
model that has the ability to sustain throughout the progression to more advanced
elements. This can be achieved by thinking of examples as illustrating the process
of software development, and objects as being autonomous, collaborative service
providers to clients, probably other objects. As part of a problem solving approach,
the context supports in making the example plausible as showing at least a fairly
realistic need for software development.

To support the design of introductory object oriented examples, we propose 5
Eduristics as described in the following subsections. They are based on a thorough

23

Chapter 5. Designing Object Oriented Examples

review of the literature on various aspects affecting object oriented quality as sum-
marized in Figure 5.1. For a detailed description see (Nordström, 2009) or Paper
II.

!"#$"%&'
()*+,-$-'!!"#$%&'(")*&(+&),$%.'

"/0/'12","3'4556.'
2*37)'899:;'

!!"#$%&'("-$.*&%/+%.'
"/0/'1!$"+'455<;'

01#$"%2$,,%"3(#"
$43+51&('%.'"/0/'
1=>%+"3'4555;'

63%&+"!!"+1(+$)5%.'"/0/'
1(?2'8994.'(3@-A3>)0'

899<;'

7(%5*.+/1(3,"#$%&'(.'
"/0/'1?+*3B'"A'*+/'899<.'

2>-+",'899C;'
8$3+-&('"$9)$*&$(+$'

!:;$+5"2&%+1(+$)/1(%.'
"/0/'1D>++*)E'4556.'
!*0>)$-'*)E'F")G(3$'

899C;'

01#&('"'.&#$,&($%.'"/0/'
1F+>HI'8994.'2*37)'

899J;'

<1=>3*$"2$3%.*$?
2$(5.'"/0/'1K*)L*'"A'*+/'
899C.'?I$E*@M"3'*)E'

N"@"3"3'4554;'

@$%&'("A3B$*(%.'"/0/'
1O*@@*'455C;'

PEQ3$-7H-'

Figure 5.1: Investigating the characteristics of object orientation

5.1 Eduristics for the Design of Object Oriented
Examples

The Eduristics aim at supporting a clear focus on abstractions, and objects as au-
tonomous, encapsulated, collaborating objects supplying services to clients. Please
note that the Eduristics, as described below, have been slightly revised compared
to the first version published, to make them more focused and consistent.

1. Model Reasonable Abstractions

Since abstractions play a major role in object orientation, this is maybe the heuris-
tics that is most basic, and to some extent would be sufficient on its own. A
reasonable abstraction means that there must be a problem presented that, to a
novice, is likely to appear in software. It is often the case that we have to make
simplifications for a small-scale problem, to make the problem appropriate in size
and complexity. However, it is necessary to strive for non-artificial classes and
objects. It must be possible to imagine a client using objects of this kind, and
the objects must model some entity in the problem domain. Encapsulation and
information hiding must be emphasized.

• Abstractions must be meaningful from a software perspective, but also plau-
sible from a novice’s point of view.

• Do not put the entire application into main, and isolate it from other appli-
cation classes.

• No God classes.

24

5.1. Eduristics for the Design of Object Oriented Examples

2. Model Reasonable Behaviour

One risk in the small-scale situation, is to oversimplify the behaviour of objects.
We have to design examples with objects simple enough, in terms of syntactical el-
ements and programming concepts, for a novice to understand with her/his limited
“vocabulary”. Nonetheless is it crucial to avoid trivial or artificial behaviour, be-
cause it may distract the novice from understanding the basic concept of behaviour
in an object. Modifying the attributes with set- and get-methods is not an example
of behaviour, but rather of external manipulation of the object. Preferably the be-
haviour is separated from the internal representation of the state of the object, and
clearly connected to the problem domain. Artificial behaviour is often the result
of choosing real world objects, without a context supporting that the abstraction
is justified to solve a certain programming problem. A car has the ability to for
example move forward, move backwards, start, stop and turn left and right, but in
isolation these abilities are artificial. It is difficult to discuss what start means in
terms of behaviour.

• Show objects changing state and behaviour depending on state.

• Do not confuse the model with the modelled.
• No classes with just setters/getters (“containers”).

• No code snippets.

• No printing for tracing, use toString to communicate any textual repre-
sentation.

3. Emphasize Client View

When we design small-scale examples, we have to think about how to support the
novice in object-thinking. Taking a clients’ view when designing a class gives im-
portant indications for designing classes. This also makes it necessary to supply a
context, to be able to think about clients. It is also crucial to define the respon-
sibilities and services of an object separately from the internal representation and
implementation of the responsibilities. Leaving the implementational details out
from the design thinking will promote object thinking and make problem solving
easier for the the novice. Discussing what a client would/should expect in terms
of consistency and logic will most likely extend an example, but will empower the
novice in terms of analysis and design.

• Promote thinking in terms of services that are required from explicit clients.

• Separate the internal representation from the external functionality.

4. Promote Composition

Extensive use of primitive types, or String, for attributes, makes the idea of
collaborating objects hard to illustrate. Often, it creates problems to use simple
types to represent a complex responsibility. Using, for example a String-object
to represent a date, or an int to be responsible for the age of a person, does not
emphasise that objects have the responsibility to provide services, instead they
become closer to being containers for values. Furthermore, making an effort to

25

Chapter 5. Designing Object Oriented Examples

design examples where objects collaborate, and delegate responsibilities to other
objects is beneficiary for the novice to acquire a proper conception of object oriented
problem solving.

Inheritance is an important feature of the paradigm, but it is considered difficult
to learn and is therefore given a lot of attention. Since novices have a very limited
repertoire of concepts and syntactical constructs, it is difficult to show the nature
and strength of inheritance. Inheritance is often used to exemplify reuse, but this
feature of object orientation can also be demonstrated by composition. To show
the strength and usefulness of inheritance, behaviour must guide the design of
hierarchies and specialisation must be clear and restricted. Subclasses should be
structurally related, but separated by behaviour. An example of this could be balls
in a small game-context. Maybe green balls explode, while red balls multiply when
hit. This could be a case for inheritance. Instead of having one class Ball, that
has to check the state (colour) and decide upon different actions due to the state,
this could be implemented through inheritance. For a proper use of inheritance,
it is important to respect the The Liskov Substitution Principle. This principle
promotes polymorphism, but restricts the relationship between the base class and
the derived class. What can be expected of an object of the base class, must always
be true for objects of the derived class.

• Emphasize the idea of collaborating objects, use object for attributes to
demonstrate the distribution of responsibilities.

• Do not use inheritance to model roles.

• Inheritance should separate behaviour and demonstrate polymorphism.

5. Use Exemplary Objects Only

We have found it common that practicalities of examples threaten to violate the
basic characteristics of objects. Even if the abstraction is well chosen, based on
the clients view and the context makes the proposed design plausible, we may
unintentionally contradict the general intention of an example. To show the idea of
objects, we should strive for “many” objects present in the small-scale example. It is
also important to be explicit, i.e. using explicit objects whenever possible. Static
attributes and static methods can confuse novices. Including the main-method
in an abstraction means breaking the concept of abstraction and encapsulation.
Having a main-method that creates an object of the class itself is confusing. It
must be confusing, that something that does not exist can create an instance of
itself. The method main is an exception to object orientation for many reasons.
The invocation is done without any object being instantiated (static), it is not
called by any explicit object, the invocation is not visible in code (system defined
invocation) and it is not the implementation of any behaviour that the class is
responsible for.

• Promote “object thinking”, i.e. objects are autonomous entities with clearly
defined responsibilities.

• Instantiate multiple objects of at least one class.

• Do not model “one-of-a-kind” objects.

26

5.2. Evaluating the Object Oriented Quality of Examples

• Make all objects/classes explicit, e.g. no anonymous classes and explain
where objects that are not instantiated explicitly come from.

• Make all relationships explicit: avoid message chains. Objects should only
communicate with objects they know explicitly (Law of Demeter (Lieberherr
and Holland, 1989)).

• Avoid shortcuts.

5.2 Evaluating the Object Oriented Quality of Ex-
amples

Even if we were to agree precisely on what the characteristics of object orienta-
tion are, it is still a matter of personal style and preferences how we implement
them. In collaboration with other experienced educators, we set out to investigate
whether the quality of object oriented examples could be defined and subsequently
measured in some way. Thorough discussions, based on teaching experience, the
view of object orientation, and the conditions for teaching, resulted in a first sug-
gestion for evaluation criteria, formulated as quality factors in three categories
(Paper II, Börstler et al. 2008b). Based on the results of this pilot-study, and fur-
ther literature-studies (Nordström, 2009), the definition of example qualities was
further developed. Besides the object oriented qualities described in Section 4.2,
the checklist/tool did also consider technical and didactical quality factors. Two
technical qualities were considered. T1: Correctness and Completeness, this means
that the code is bug free and the example is sufficiently complete. The second
technical quality was T2: Readability and Style, and concerns the readability of
the code in terms of consistent formatting and style. The didactical qualities were
evaluated by three quality factors. D1: Sense of Purpose, students must be able to
relate to the example’s domain and computer programming must seem a reason-
able way to solve the problem. D2: Process, an appropriate programming process
is followed/described. D3: Well Balanced Cognitive Load, explanations and sup-
porting materials should promote comprehension; they are neither simplistic, nor
do they impose extraneous cognitive load. The object oriented quality factors are
described in Section 4.2.

To investigate the object oriented qualities of common textbook examples, a
large-scale evaluation of textbook examples was conducted in an ITiCSE working
group (Paper III, Paper IV and Börstler et al. 2009). In this study textbooks were
classified object oriented and traditional. The classification was based on a careful
evaluation of the texts’ sequence of presentation and focus and style of presentation.
Texts in category OO had a clear and early focus on object orientation, and texts
in category Trad had a more traditional imperative first approach. Examples with
comparable properties were chosen, and of special interest was the first example
exemplifying a certain high level concept or idea. Three groups of examples were
evaluated. The First user defined class (FUDC), are examples that reflect the first
occurrence of a user defined class in a text. The second group was examples showing
Multiple user defined classes (OOD). Examples in this group exemplify some kind of
design decision/strategy involving several classes. They show how existing classes
can be “used” for defining new classes (inheritance, composition) or how designs

27

Chapter 5. Designing Object Oriented Examples

can be made flexible (interfaces, polymorphism, ...). Examples in this group can
be considered role models for determining relationships between classes. Finally
we evaluated examples introducing Control structures (CS). The introduction of
control structures might be considered contradictory to the purpose of introducing
of object orientation. Nonetheless, even in object oriented programs there are
elements of imperative flow of control, and novices must have some knowledge of
the general elements of programming to be able to read, use and maintain available
code. We consider these three categories of examples particularly important, since
they “set the stage” for how students are expected to think about object oriented
class design.

According to the results of this evaluation, based on 191 data points by 24 re-
viewers, the evaluation instrument shows high inter-rater agreement, and therefore
must be considered as quite reliable (for details, see Paper IV).

In Table 5.1 the relationships between the quality factors and the heuristics are
shown.

Table 5.1: The relationships among object oriented Quality factors in the evalu-
ation tool and the educational heuristics.

 Eduristic

Object Oriented Quality 1.
 M

od
el

 R
ea

so
na

bl
e

A
bs

tr
ac

tio
ns

2.
 M

od
el

 R
ea

so
na

bl
e

B
eh

av
io

ur

3.
 E

m
ph

as
iz

e
C

lie
nt

 V
ie

w

4.
 P

ro
m

ot
e

C
om

po
si

tio
n

5.
 U

se
 E

xe
m

pl
ar

y
O

bj
ec

ts
 o

nl
y

O1—Reasonable Abstractions X X

O2—Reasonable State and Behaviour X X X

O3—Reasonable Class Relationships X

O4—Exemplary OO X X X

O5—Promotes “Object Thinking” X X X X X

Examples clearly appreciated by the reviewers in the study described in Paper
III, Paper IV and Börstler et al. (2009)) are also in accordance with the heuristics.
Examples score high when the issues of the heuristics are upheld, and low when
the heuristics are violated. We argue that this confirms that designing examples
according to the Eduristics described in Section 5.1 supports object oriented quality
in examples for novices. However, this has to be further (Chapter 7).

28

Chapter 6

Listening to Educators

The research in the teaching and learning of programming focuses mainly on stu-
dents’ learning, for example misconceptions, patterns of behaviour in compiling
and correcting errors. However, little is known of the educators and their reasons
and choices for approach when teaching object orientation. They are the users
and designers of examples, so it is of importance how they personally view the
paradigm, and how they present it to novices. Very little is known about the dif-
ficulties educators’ experience in teaching object orientation. There are, to our
knowledge, no studies on the educators’ perspectives on object orientation. In this
chapter we describe an exploratory study. Its aim is to identify ways educators
think about, and deal with issues of object orientation.

We decided to use a qualitative approach with semi-structured interviews to
be able to listen to educators talking about the teaching of object orientation
in their own words. The main strength of qualitative research is its ability to
study phenomena which are unknown, and otherwise unavailable (Silverman, 2006).
Surveys and questionnaires with closed-end questions do not reveal the respondents
personal preferences for wording, and the reason for giving a certain answer can not
be elaborated on. Even open-ended survey-questions are limited in terms of the
ability to pursue a certain line of questioning. Since there was no theory available
and no way of knowing what kind of information we could expect from educators,
we found it difficult to define questions and phrase suitable and answers, to make
questionnaires useful.

6.1 Educators’ Personal Views on Object Orienta-
tion

The lack of previous work in educators’ views on object orientation makes this
study exploratory and unique. We wanted to listen to the educators and try to
identify their basic understanding of the paradigm. It was also interesting to learn
something about the conditions of their work in teaching object orientation to
novices. This would make it possible to discuss the quality of object orientation,
as implemented in teaching.

This particular research is thematized according to four themes; the paradigm
itself, the concept of an object, examples, and the problem solving process (Object

29

Chapter 6. Listening to Educators

Oriented Analysis and Design, OOA&D). Each theme is viewed from three different
aspects, the educators personal view, the educators view of student difficulties and
the educators choice of methodology to address the specific issue.

The reason for choosing this structure was an attempt to separate the different
components concerning the design of examples. The way examples are chosen or
designed is probably affected by the preferences of the educator. Therefore it was
interesting to explore how the respondents were describing their personal view of
object orientation, as a starting point. We were also curious to collect information
on what the educators had perceived as difficult for the students. These two aspects
should be important for the educators’ choice of strategy or method to teach the
themes respectively. At the same time their choice of teaching approach should
contribute to the understanding of their personal views.

The structuring of the area, used as interview guide, is illustrated by the matrix
in Figure 6.1.

KoliCalling'09 2010-11-04

Marie Nordström

Teacher's personal view on
concept

Teacher's view of students
difficulties

Teacher's choice of
methodology

Characteristical Problematic Teaching-practice

Paradigm
(OO)

What are the
characteristics of OO?

What is most important to
stress?

What about OO is most
difficult to internalise?

How is OO presented, as
paradigm?

Concept
(Object)

Ideal objects, how are they
defined?

What is perceived as
difficult about objects?

How does a displayed
object typically look?

Examples What is characterstic of a
good example?

What makes an example
difficult for students?

How are examples chosen
and/or designed? What

characteristics are
prioritised?

Process
(OOA&D)

What is characteristic for
the problem-solving

approach?

What do students find
difficult in OOA&D?

How is OOA&D introduced
and practised?

Figure 6.1: Interview guide

This interview guide was not shown to the interviewees, and the questions are
only illustrations to the interviewer of what to listen for. The primary use of the
guide was to secure that all interviews touched upon the same aspects. This was
accomplished by gentle prompting by the interviewer, if necessary.

6.2 Respondents
In all 10 interviews have been conducted, 6 with teachers from upper secondary
school (teaching students at the age 16-19) and 4 with educators at the university

30

6.2. Respondents

level. The reason for having participants from two levels of education is that
educators at the university would most likely be the teachers of teachers working
in upper secondary school, and therefore highly influential on the teaching in upper
secondary school. See Appendix A for a description of the Swedish school system.

In this study, the sampling of interviewees is convenience-based, and not based
on any statistical grounds. Teachers from upper secondary schools have a busy
schedule, and in retrospective we are thankful to and appreciate the teachers who
were interested in devoting some of their time to be interviewed.

When sample size for qualitative studies is discussed, it is often stated that the
quality of information obtained per unit is the most critical measure. Sample size is
difficult to determine and a general recommendation is to proceed until analytical
saturation is received. Another recommendation for this semi-structured interviews
is to include about six to ten participants (Sandelowski, 1995; Morse, 2000).

The demographics of the respondents are shown in Figure 6.2.

ID Degree OO School Size Exp
R1 T Self USS M 18
R2 T* Academic USS S 2
R3 Bach CS+T Academic USS S 11
R4 T Academic USS L 11
R5 T Academic USS L 13
R6 T Self USS M 13
R7 PhD IS Academic U M 11
R8 Master CS Academic U S 11
R9 Bach. IS Academic U S 16
R10 PhD CS Academic U L 5

Figure 6.2: Demographics of respondents.

ID All interviewees are identified by an simple code, R1-R10.

Degree Knowing that the recruitment of CS-teachers for upper secondary school
is difficult, it was interesting to collect information on the formal degree of
the respondents. Degree-abbreviations: T=trained teacher, CS=Computer
Science, and IS=Information Systems. T* is on his/her way to a teachers
degree, but not graduated at the time of the interview.

OO Furthermore, we collected information on how the interviewees had gained
their competence and skills in object oriented problem solving and program-
ming, whether they had formal academic training or were autodidacts.

School The first six respondents work in upper secondary schools (USS), and the
last four lecture at university-level (U).

Size It is always a risk that small institutions have more restrictions on their
courses, e.g. having students from very different programs in the same class,
which may affect the teachers working conditions. Therefore, we made an

31

Chapter 6. Listening to Educators

effort to have Small (S), Medium (M) and Large (L) size schools/universities
represented in the population, which was successful.

Exp The last column of Figure 6.2 shows the respondents’ experience, in years, in
teaching programming (Exp).

It was hard to find any women teaching object orientation, so we are grateful to
have one woman among the respondents.

All, except one, of the upper secondary school teachers (id R1-R6) are trained
teachers in math and/or physics. Another common background is to have a bach-
elors degree in some major subject and then to add courses for the fulfillment of a
teachers degree. Interviewee R3 is typical in this sense, but at the same time non-
typical, since a CS-degree is uncommon among upper secondary school teachers
in Sweden. This variety in the background of teachers in upper secondary school
is probably due to the fact that Computer Science is not recognised as a subject
within the teacher educational system.

Even though eight out of ten respondents have received academic training in
computer science, none them have any pedagogical training specifically for com-
puter science. The academic training is completely within the traditional subject
of computer science. One of the university lecturers in this study earned a PhD in
Chemistry before switching to CS.

The lack of professional CS-teachers in Sweden, makes it common for schools to
assign science teachers, without formal CS training, to teach programming courses.
They are often autodidacts, and on many schools the only teacher in this subject.

6.3 Interviews
All interviews were conducted at a place chosen by the interviewee. The interviews
were recorded using a digital voice recorder, and the length of the interviews ranges
from 45 minutes to 1 hour and 16 minutes. All the interviews were conducted by
the author and they were all done in Swedish.

Every interview started with the interviewer asking the interviewee to describe
his/her background and how he/she came to be teaching object orientation to
novices.

The transcription was done verbatim using the program Transcriva. Some of
the interviews were transcribed by the author, and for the remaining interviews,
the transcription was directly supervised by the author. The transcripts were all
proofread by the author, and any discrepancies, unsolved obscurities or misinter-
pretations, corrected by the author. Finally, all quotes used (e.g. in Paper V and
Paper VI) have been translated by the author.

For every interview, all 12 aspects shown in Figure 6.1 are touched upon, thus
generating very rich data.

6.4 Analysis
The analysis has been done using qualitative content analysis (Hsieh and Shannon,
2005; Forman and Damschroder, 2007). Content analysis is a widely used qualita-
tive research technique, particularly in health studies (Graneheim and Lundman,

32

6.4. Analysis

2004; Hsieh and Shannon, 2005; Forman and Damschroder, 2007; Elo and Kyngas,
2008). Current applications of content analysis show three distinct approaches:
conventional, directed, or summative. They are all used to interpret meaning from
the content of text data. The major differences among the approaches are coding
schemes, origins of codes, and threats to trustworthiness. In conventional content
analysis, coding categories are derived directly from the text data. With a directed
approach, analysis starts with a theory or relevant research findings as guidance
for initial codes. A summative content analysis involves counting and comparisons,
usually of keywords or content, followed by the interpretation of the underlying
context (Hsieh and Shannon, 2005).

In this study the conventional approach has been used, because of the lack of
previous studies on educators’ views on object orientation. The primary objective
is the manifest view of object orientation investigated through the different aspects
presented in Figure 6.1.

Once the transcripts were done and proof read, each was transferred from a
word-document to a spreadsheet-document. Reading through the text, statements
were condensed/concentrated, in a separate column. To be able to return to the
original record for any statement, at any time during the analysis, they were all
given an identification tag [id_row], where id is the respondents identification (see
Figure 6.2), and row is the row number of that particular transcript, see Figure
6.3.

Figure 6.3: Condensing and providing unique identification tags.

This way the time-stamps of the statements in the transcripts provided easy
access to the audio-files. This allowed for the context of a certain statement to
be easily recovered, in case there were any uncertainties of how to interpret the
statement.

All condensed statements, without identification tags, were collected in a single
document, and then they were analysed, and each concentrated statement was
labeled as contributing to one or more of the 12 aspects, and/or “other.

Statements were left unlabelled if they were addressing important, but unrelated
issues, not concerning the themes and aspects of the interview guide in 6.1.

Next, 13 columns were added to the spreadsheets containing each interview
respectively, the first twelve for marking any of the 12 aspects in Figure 6.1, and
the last column to mark other interesting comments in the text.

This way it was possible to filter out all statements marked as contributing to
the information on a particular aspect, see Figure 6.4. After filtering out all tags
belonging to a certain aspect, e.g. Educators personal view on object orientation as
paradigm, in all the interviews, the next step was to start looking for any patterns
or themes among them, Figure 6.5.

33

Chapter 6. Listening to Educators

Figure 6.4: Using filter to collect statements for a certain aspect.

Figure 6.5: Looking for themes.

According to Forman and Damschroder (2007), the coding allows the data to
be rearranged in analytically meaningful categories. The concentrated statements
were organised into thematic categories, sometimes in several passes and levels, to
achieve a suitable level of abstraction. Working with the statements, some appeared
not to fit in with the aspect analysed, then the interview and the corresponding
transcript were closely studied again, to see if the classification should be altered.
This work was done for all aspects discussed in this chapter.

During the analysis both the audio files and the transcripts have been processed
many times.

34

6.5. Results

6.5 Results

The specific research questions investigated are:

• How can educators’ views on OO be characterised? (Paper V)

• How can educators’ views and strategies for teaching OOA&D be charac-
terised? (Paper VI)

The aspects investigated and the related paper is shown in Figure 6.6.KoliCalling'09 2010-11-09

Marie Nordström

Teacher's personal view on
concept

Teacher's view of students
difficulties

Teacher's choice of
methodology

Characteristical Problematic Teaching-practice

Paradigm
(OO)

What are the
characteristics of OO?

What is most important to
stress?

What about OO is most
difficult to internalise?

How is OO presented, as
paradigm?

Concept
(Object)

Ideal objects, how are they
defined?

What is perceived as
difficult about objects?

How does a displayed
object typically look?

Examples What is characterstic of a
good example?

What makes an example
difficult for students?

How are examples chosen
and/or designed? What

characteristics are
prioritised?

Process
(OOA&D)

What is characteristic for
the problem-solving

approach?

What do students find
difficult in OOA&D?

How is OOA&D introduced
and practised?

!" !#"

!#"

Figure 6.6: Aspects investigated.

Personal views

Based on the process described in Section 6.4, the following three aspects were
analysed: Educators’ personal view on the characteristics of object orientation,
Educators’ personal view on the concept of objects, and Educators’ personal view
on examples, see Figure 6.6.

The resulting categories are organised from a conceptual perspective, moving
from abstract to simple, as shown in Figure 6.7.

With some exceptions, the interviewees consistently expressed views that were
based in programming rather than conceptual, for the themes Object orientation
and Object. In the case of Example, the majority of interviewees expressed an urge
to use situated examples. Object were often chosen to model things from every-day
life. Viewing examples as illustration for problem solving, or being determined by
data to be handled, were exceptions.

35

Chapter 6. Listening to Educators

Abstract Object orientation Object Example

A conceptual model for
problem solving

Active, autonomous
components in a solution

Problem solving

 A lot of Objects Model with limited and
expected behaviour

Context based

Modularisation of code Single task entity Data driven

Simple Encapsulated data types Containers

Figure 6.7: Categories of views on Object orientation, Objects, and Examples.

Strategies for Teaching
In this part of the study, we were looking at the aspects Educators choice of
methodology for introducing OO and Educators choice of methodology for teach-
ing OOA&D.

Introducing Object Orientation

One of the research questions was to find out how educators addressed the problem
of introducing the general idea of object orientation. This is addressed by the
aspect Educators choice of methodology for introducing OO in Figure 6.1.

Three categories of strategies for the introduction of object orientation as paradigm
has been identified from the interviews. They can be characterised as: Building a
world of objects, Induced by contexts, Databases and concepts, and Not addressed.

Introducing Object Oriented Analysis and Design

Introducing students to object oriented analysis and design can be done explicitly
or implicitly, or not at all. The emerging categories for the methodological approach
are: Explicit, Implicit and Not at all. The Explicit and Implicit categories were
further divided into sub-categories, see Figure 6.8.

Explicit Implicit

Lexical analysis Scenariobased

Design Patterns Metaphors

Design reasoning Fomal notation (UML)

Object-rich contexts

Figure 6.8: Strategies employed for OOA&D.

Only two of the educators, both university lecturers, explicitly addressed the
issue of a structured approach to object oriented analysis and design. However,
they discussed it mainly from an ideological point of view, and did not to any
extent implement it in their teaching. The reason for not emphasising analysis and

36

6.6. Discussion

design was partly blamed on lack of time, and that there were “ more central issues
to be addressed”.

The majority of educators who exhibited some kind of support for object ori-
ented analysis and design, only demonstrated the problem solving approach indi-
rectly, through their own practices.

The practices without support for how to chose and design classes, can be
termed: Data driven, Objects supplied, Physical objects and Design supplied. In
these cases the students get to decide on very few, if any, classes of their own.
The design is given by the lecturer, either through libraries, in some some kind
of class description, or in words. In these cases the focus was entirely on getting
the structure of a class right, using methods as a way to modularise the problem.
Several of the interviewees, mentions that they are accepting solutions that works,
rather than trying to get the novices to formulate a solution that is object oriented.
Some of them expressed concerns about discouraging the novices if they would
pursue the object oriented qualities of suggested solutions.

6.6 Discussion
It turned out that many of the interviewees were reluctant to discuss object ori-
entation in abstract or conceptual terms. It was, for example, almost impossible
to discuss, in any explicit way, what kind of characteristics they appreciated in
examples. Most of them seemingly had preferences and things they avoided, but
had never formulated a more explicit point of view. Some of the respondents men-
tioned lack of time, and available fora for discussing issues concerning teaching
object orientation.

There is a correspondence to be found among the three themes in Figure 6.7.
Indications of a conceptual view can be found in all aspects, and those who did
express a more abstract view, also used it for all three aspects. Most of the inter-
viewees did not comment on the practice of a conceptual approach, not even when
discretely prompted.

Research shows that object oriented analysis and design have a hard time mak-
ing its way into the curricula of introductory programming courses. Novices strug-
gle with finding a way to compose a solution out of smaller pieces of sub tasks,
“putting it all together”, see for example(Lahtinen et al., 2005). This is confirmed by
the results of these interviews. There is very little evidence of a practical, explicit
support from the educators, to aid the students in gaining such an understanding
of object orientation.

In the study discussed in this chapter, the level of abstraction in teaching object
oriented programming seem to be related to whether the teaching starts with gen-
eral programming components of imperative nature or not. The presence of object
oriented elements in a course forces a more conceptual approach, than courses that
are purely imperative (Schulte and Bennedsen, 2006).

One interpretation of the data is that educators do not seem to have formulated
explicit criteria for how to present and address different concepts in object orien-
tation. Implicitly, some of the interviewees do seem to have guidelines that rules
their choice of examples for the introduction of object orientation as a paradigm,
but none of them had any conscious and articulated criteria for this.

Returning to the two questions posed:

37

Chapter 6. Listening to Educators

• How can educators’ views on OO be characterised?

• How can educators’ views and strategies for teaching OOA&D be charac-
terised?

There is a large variety in how these educators talk about object orientation, and
their approach to teaching it. They are all very dedicated to their task of teaching
novices, show a lot of enthusiasm and take on the responsibilities of teaching with
the utmost care. They all put in a lot of work to assist their students to acquire
skills in programming, but some express frustration over the seemingly weak results
in terms of students’ capabilities at the end of the course. However, the teaching
is in general more focused on syntactical issues, and to solve imperative algorith-
mic problems, than on the understanding of the basics of object orientation. To
some extent, this could be explained by the educators’ weak understanding of the
paradigm, and lack of explicit approach to teach the fundamentals of it. Strategies
for teaching object oriented analysis and design are, in general, absent. This seem
to drive a more procedural approach to solving problems, where objects become
containers, or records of data, in combination with methods for the access to and
manipulation of attributes.

6.7 Trustworthiness

What is trustworthiness in qualitative research? This question is not unprob-
lematic. In the tension between qualitative and quantitative research, qualitative
methods are often accused of failing to achieve the common criteria of adequacy or
rigor in scientific research; reliability, validity and objectivity.

In one of the basic texts on inquiry based research, Lincoln and Guba (1985)
rephrases the issue as: How can an inquirer persuade his or her audiences (in-
cluding self) that the findings of an inquiry are worth paying attention to, worth
taking account of? They discuss four factors for the trustworthiness of qualitative
research, relating to the traditional criteria of rigor in quantitative research (shown
in parenthesis below).

1. Truth value (internal validity) : Credibility is used as criterion for truth value.
A qualitative study is credible when it presents descriptions or interpretations
such that people can recognise the experience after having only read about
it in the study (Sandelowski, 1986).

2. Applicability (external validity) : Qualitative researchers argue that every
research situation is restricted to a particular researcher in interaction with
a particular subject in a particular context, and that generalisability is an
illusion (Sandelowski, 1986). Sample sizes are typically small and subjects
are often selected because they can illuminate the phenomenon studied. This
makes the question of generalising less appropriate. Lincoln and Guba sug-
gests the criterion fittingness, which means that the findings can “fit” into
contexts outside the study situation and that the audience regards its results
as meaningful and applicable in terms of their own experiences (Sandelowski,
1986).

38

6.7. Trustworthiness

3. Consistency (reliability) : Reliability is considered a necessary precondition
for validity in quantitative research. For this factor Lincoln and Guba sug-
gests the criterion auditability to be the criterion relating to the consistency
of qualitative findings. Auditable means that the “decision trail” used by the
investigator can be clearly followed by another researcher. Given the data,
perspective and situation, it should be possible to arrive at comparable, but
not contradictory results.

4. Neutrality (objectivity) : For this factor Lincoln and Guba suggest confirma-
bility as the criterion of neutrality. This is achieved when truth value, appli-
cability, and auditability are established. Contrary to quantitative criteria, it
is important to reduce the distance between investigator and subject, and to
eliminate artificial lines between subjective and objective reality, to enhance
the meaningfulness of findings (Sandelowski, 1986). Engagement rather than
detachment is viewed as beneficiary in the search of the meanings individuals
give, or derive from their experiences.

Validity
In a more contemporary synthesis of validity criteria in qualitative research Whit-
temore et al. (2001) propose a repertoire of validity criteria in qualitative research.

The proposed criteria for validity are based on a synthesis of the work of many
scholars, and it is stated that the concept of validity is illustrated through the expli-
cation and differentiation of primary criteria, secondary criteria, and techniques.
Primary criteria are necessary but insufficient in and of themselves. Secondary
criteria provide further benchmarks of quality, being more flexible as applied to
particular investigations. Techniques are the methods employed to diminish iden-
tified validity threats. The criteria should be used within the context of a particular
investigation.

Because qualitative research is often defined by uncertainty, fluidity,
and emergent ideas, so too must be the validity criteria that give cre-
dence to these efforts. Therefore, it is logical to extend this flexibility
to the determination of the most appropriate validity criteria for each
investigation. (Whittemore et al., 2001, p. 528)

Reliability
The concept of reliability is often considered a precursor for validity. With a mani-
fest content analysis, reliability is considered necessary but not sufficient condition
for validity (Potter and Levine-Donnerstein, 1999). Coding is for capturing sur-
face features of the data, and the agreement among coders should be high due to
low requirement of judgement. Tests for reliability in coding are Stability, Repro-
ducibility and Accuracy. Stability is the degree to which a process is unchanging
over time. This requires a test-retest procedure, to see if coding is stable when
performed at different occasions. This test is the weakest due to the risk of coders
remembering their coding. Reproducibility is the degree to which a process can be
recreated in different settings. This test requires a test-test procedure where the
same content is analysed by different coders. If coders produce the same coding

39

Chapter 6. Listening to Educators

pattern, the data is regarded as reliable. Accuracy is the degree to to which a
process yields what it is supposed to yield and in this procedure coders’ judgement
are compared to a standard. Accuracy is the strongest reliability test available, but
not always attainable because in a manifest analysis a standard can not always be
established. The major threat to reliability in manifest analysis is fatigue (Potter
and Levine-Donnerstein, 1999).

Trustworthiness of this Work

The researcher is always present in qualitative research, and it is inevitable that
he/she influences the respondents, the procedures and the findings. Interview-
ing is a social relationship, and each relationship reflects the personalities of the
researcher and the participant, and the ways they interact (Seidman, 1998). Es-
tablishing a good relationship must be balanced with the awareness of the unsym-
metrical relationship between the interviewer and the interviewee. Interviews are
always a dialogue between the two persons involved. There are many things that
might influence this dialogue, and this can not be controlled. A conscious choice
was to try to use a neutral language during the interviews, to avoid intimidat-
ing the respondents with a language more formal than the one they would choose
themselves to discuss object orientation. However, this might also have been coun-
terproductive and influenced them to use the same wording, instead of their own
vocabulary. The object oriented vocabulary has not been a major part of the anal-
ysis, and great effort has been made to listen to descriptions rather than exact
wording.

My point of departure is not unbiased regarding the subject, since object ori-
ented quality in examples for novices has been an interest of mine for more than ten
years, and the focus of my research for the last three. This research has revealed
that the quality of examples in textbooks must be considered low, and our expe-
rience is that students who have taken classes on object oriented programming in
upper secondary school have been surprisingly unaware of the basics of object ori-
entation. This has raised questions regarding the view of object orientation among
educators in general. My personal engagement in, and experience of teaching ob-
ject oriented programming for many years is both an asset, as well as a threat to
objectivity with respect to this study. The conditions for establishing a friendly,
trustful relationship with the respondents have been good. So have the possibilities
to understand the interviewees, because of the familiarity with the subject. How-
ever, this familiarity may also be considered an obstacle, when it comes to viewing
the data with an open mind, and without preconceptions. The results of this study
is therefore my interpretations of my respondents interpretations, of their views on
object orientation, in that particular situation, and at that particular moment.

One limitation of the study is the relatively low number of interviews, which
means that the requirement for saturation of data can not be guaranteed. The
results have not been triangulated by any complementary study of other sources,
neither have they been verified by the respondents through member check, which
according to Lincoln and Guba (1985) is one important way of contributing to
trustworthiness.

The method of manifest content analysis is less formal than e.g. grounded
theory and phenomenography, and lacks the theoretical base necessary to form

40

6.7. Trustworthiness

any theory describing the findings. The reason for choosing qualitative content
analysis in this study, is to perform an initial and exploratory investigation, on
which it might be possible to continue the research. The research questions does
not deal with any interpretations of experiences, or processes in human life, which
would suggest the use of a more theory-based method, e.g. grounded theory.

Since the study presented here is not based on an existing theory, the cate-
gories have not been decided on in advance. The aim has been to explore the way
educators think about object orientation as open minded as possible.

It is my belief that his work should be considered reliable since the process is
stable over time, which has been established by several coding runs by the single
coder involved in this work. The process can be recreated in a different setting,
which has been validated by a test-test procedure with a second researchers coding
the same data with only minor, and insignificant, differences. About 17% of all
statements were randomly selected and classified. The classifications were then
compared to the ones made by the author, and any differences resolved. The
major part of differences in classifications, was due to the interpretation of the
aspects of the theme Examples. For some instances the validating researcher had
misinterpreted the aspects. The theme Examples was concerning the educator’s
view on examples in general, any observed student difficulties with problems, and
strategies for choosing examples, and not the specific examples chosen. A few labels
were changed, and a few statements had additional labels compared to the original
classification. None of these changes made any difference for the thematical results.
No standards have been available in this work, so the matter of accuracy is not
applicable.

The question of validity in qualitative research is a matter of standards to be
upheld as ideals (Whittemore et al., 2001). In Table 6.1 criteria for these standards,
as well as techniques for upholding them, are shown. Criteria and techniques ad-
dressed in this study are marked. By supplying a rich amount of quotations the
results are transparent and allow for evaluation on credibility and authenticity.
The research process has been tested and the author’s long experience and train-
ing in counseling skills, working for many years as a student counselor, makes it
plausible that the author is concerned of giving voice to all participants, and is
sensitive to differences among participants. Therefore the criteria for credibility
and authenticity can be regarded as fulfilled.

The design of the study is conscious and articulated. Furthermore, the op-
erationalisation of the research area is structured, data collection decisions are
presented, and verbatim transcriptions are provided, which implies thoroughness.

The analysis decisions have been clearly stated, and the categorisation is vali-
dated by another researcher. The presentations provides an audit trail, and quota-
tions are supplied to illustrate findings. The researchers perspective is stated, and
thick descriptions are provided.

41

Chapter 6. Listening to Educators

Table 6.1: Primary criteria, Secondary criteria and Techniques for demonstrating
validity (Whittemore et al., 2001). Criteria and techniques addressed in this study
are marked.

 Assessment Addressed

Credibility Do the results of the research reflect the experience of participants
or the context in a believable way? X

Authenticity Does a representation of the emic perspective exhibit awareness to
the subtle differences in the voices of all participants? X

 Criticality Does the research process demonstrate evidence of critical
appraisal? P

ri
m

ar
y

C
ri

te
ri

a

 Integrity Does the research reflect recursive and repetitive checks of validity
as well as a humble presentation of findings? X

 Explicitness Have methodological decisions, interpretations, and investigator
biases been addressed? X

 Vividness Have thick and faithful descriptions been portrayed with artfulness
and clarity? X

 Creativity Have imaginative ways of organizing, presenting, and analyzing data
been incorporated? X

 Thoroughness Do the findings convincingly address the questions posed through
completeness and saturation? ?

 Congruence Are the process and the findings congruent? Do all the themes fit
together? Do findings fit into a context outside the study situation? X

Se
co

nd
ar

y
C

ri
te

ri
a

 Sensitivity Has the investigation been implemented in ways that are sensitive to
the nature of human, cultural, and social contexts? X

Developing a self-conscious research design X
Sampling decisions (i.e., sampling adequacy) X
Employing triangulation
Giving voice X
Sharing perquisites of privilege

Design
consideration

Expressing issues of oppressed group

Articulating data collection decisions X
Demonstrating prolonged engagement
Demonstrating persistent observation
Providing verbatim transcription X

Data generating

Demonstrating saturation

Articulating data analysis decisions X
Member checking
Expert checking X
Performing quasistatistics
Testing hypotheses in data analysis
Using computer programs X
Drawing data reduction tables X
Exploring rival explanations
Performing a literature review X
Analyzing negative case analysis
Memoing
Reflexive journaling
Writing an interim report

Analytic

Bracketing

Providing an audit trail X
Providing evidence that support interpretations X
Acknowledging the researcher perspective X

T
ec

hn
iq

ue
s

fo
r

de
m

on
st

ra
ti

ng
 v

al
id

it
y

Presentation

Providing thick descriptions X

42

Chapter 7

Conclusions and Further Work

In this work we have investigated two major aspects of object orientation in the
educational context: the definition of object oriented quality, primarily focused on
examples, and the nature of educators views of object orientation. To be able to
address the issue of object oriented quality, the characteristics of object orientation
have been investigated, and a set of Eduristics (educational heuristics) for the de-
sign of object oriented examples for novices has been defined. Using the evaluation
tool described in Paper III, it has been possible to examine the state-of-the-art
of common text book examples. The result of this investigation is discouraging,
showing low scores, particularly for first user defined classes. Based on the results
of this investigation, we have shown that the examples that score high on object
oriented qualities, are upholding the Eduristics.

The learning outcomes of education are to a large extent dependent on the
educators. They are the ones designing the introduction of object orientation, and
the examples, exercises and assignments supporting the presentation. This is the
reason for taking an interest in educators views on different aspects concerning
object orientation, and the strategies for teaching it. The results of this part of
the work, is that the educators in general, have a rather simple conceptual view
of object orientation. Object oriented analysis and design is not introduced, or
practiced, and the novices are not supported on how to choose and design objects
in a problem domain by any systematic approach.

The level of abstraction in object orientation adds to the effort of both the
mediator of knowledge, whether in the form of a teacher, a text book or any other
supporting material, and the novice, compared to learning problem solving and
programming through the imperative paradigm. It is therefore important that
we as educators consider the object oriented quality of our mission. In this work
we have shown that it is possible to discuss object oriented quality in examples
for novices. It is also demonstrated that the object oriented quality of examples in
popular object oriented introductory programming textbooks can be improved. We
have also illustrated how details can make all the difference in quality, and that some
examples can be improved by small changes. Educators from both upper secondary
schools and universities show that there is a need for a conceptual approach to
teaching object orientation. If the teaching and learning of object orientation is to
be successful, in the sense that the novices will achieve a suitable, and sustainable,
conceptual model of object orientation, emphasis must be on conveying a proper

43

Chapter 7. Conclusions and Further Work

view of the paradigm, in all aspects of teaching.

Moving on with this research...

The very first examples in an introduction to object orientation must be regarded
as critical, and at the same time, they seem to be the most difficult ones to design.
This research has shown that these examples have a particular difficulty in uphold-
ing object oriented principles. If we are aiming at teaching object orientation, and
not just syntax of a language that supports object oriented features, the first user
defined classes (FUDC’s) must be further investigated and developed.

We know that examples of good quality, does not contradict the Eduristics. The
next step would be to use the Eduristics to design a number of exemplary examples,
for educators to evaluate. This way we could supplement the results of this work, in
that design according to the Eduristics generates commonly appreciated qualities
in examples.

Since we discovered that educators’ overall impression of an example changed,
sometimes drastically, due to the evaluation process, it would be interesting to have
educators use the Eduristics in designing their own examples, or analysing and
eventually redesigning favourite examples already used. Through this, it would be
possible to investigate if, and in that case how, their perception of object orientation
changes due to the use of the heuristics would be useful for educational purposes.

It would also be interesting to investigate if the awareness of the concept of
object oriented quality would support novices in learning.

Working with composition early to emphasise the collaborating characteristic
of object orientation is important, and further investigations of textbook treatment
of collaboration would give valuable insights on the treatment of the subject.

Another important point, is reaching out to practitioners. The practical con-
sequences of the results in this work, have to be disseminated to educators in
several ways. Initiating a debate on object orientation and a conceptual approach
to teaching it, is absolutely necessary. Furthermore, suggestions of practical ways
of implementing object thinking in different educational settings must be devel-
oped. Educators, particularly in upper secondary school, work on a tight schedule,
and have little time to spend on structural issues, and if suggestions are practical
enough this would most likely be appreciated and used. This work would by neces-
sity be conducted in collaboration with educational developers working with upper
secondary school.

The purpose of empirical research is not only to observe behaviour,
but to think about behaviour. Empirical science in young domains such
as CS education is not so much a process of getting answers as one of
finding even better questions. (Fincher and Petre, 2004, p.23)

Finally

It is my firm belief that the way we teach is formed by the way we think about
a certain subject, and the experiences we gather. In my mind object orientation,
and the teaching of it, matures with growing experience, and successes and failures
in teaching. Developing the way we think about object orientation, and objects,

44

should contribute to the way we teach, not least in improving the quality of ex-
amples and exercises, which are basic tools in teaching. It is hard to imagine that
it would be possible in other scientific subjects, for each and everyone to define
what the essence of the subject is. Therefore it is important to move away from a
trial-and-error way of developing teaching, and instead deploy a more structured,
and scientifically based approach.

This is an important issue, and the community of computer science education
researchers need to start working on a common framework for teaching object
orientation, if we are to change this situation and better support both educators
and novices.

45

46

Chapter 8

Summary of Papers

8.1 Paper I - Transitioning to OOP/Java – A Never
Ending Story

To support the design of an objects-first course we developed a list of principles,
to guide course development. These principles were either based on our teaching
experience, or the collected advice and experience from the literature in computer
science education. The outcome of this approach is evaluated.

Eleven principles to guide the design of introductory programming courses are
suggested. They are grouped into three categories: High-level goals (P1-P4), Tools
(P5-P7) and Pragmatics (P8-P11).

P1: No magic! Nothing should have to be “explained later”, and everything
introduced should be transparent. The novice’s frame of reference should be re-
spected and new material should

P2: Objects from the very beginning. It is important to promote objects con-
sistently to reinforce the building blocks of object oriented problem solving and
programming.

P3: General concepts favoured over language specific realisations. This means
that the course should be organised around concepts of object orientation rather
than language constructs.

P4: No exceptions to general rules. We must always “do as we say,” only use
sound and meaningful objects, only show well-designed classes, and certainly not
do unnecessary main-programming.

P5: OOA&D early. We have to provide students with simple tools to approach
a problem systematically and to evaluate alternative solutions before starting to
code. Early OOA&D conveys to the students that responsibilities are distributed
amongst the objects that solve a problem.

P6: Exemplary examples. All examples used in classes and exercises should
comprise well-designed classes that fill a purpose (besides exemplifying a certain
concept or language specific detail).

P7: Easy-to-use tools. To promote thinking in objects, we decided to use an
IDE that enforced the work with objects as separate entities, in our case it is
BlueJ(BlueJ). Furthermore, we decided to use CRC-cards and role-play to intro-
duce object oriented analysis and design.

47

Chapter 8. Summary of Papers

P8: Hands-on. Topics should be reinforced by means of practical exercises.
Lectures should be followed by supervised in-lab sessions., and for each session,
step-by-step instructions and exemplary examples should be provided.

P9: Less “from scratch” development. “Reading before modifying before cod-
ing.”

P10: Alternative forms of examination. Assessment should support learning,
so we use peer-reviewing among students, and a combination of theoretical and
practical programming exams was developed.

P11: Emphasise the limitations of computers. Students should learn that com-
putations can produce erroneous or unexpected results due to limitations in data
representation, even in logically correct programs.

8.2 Paper II - Heuristics for designing OO exam-
ples for novices

Describes the establishment of characteristics of object oriented, based on how they
are manifested in concepts and design principles in literature. Defines a number of
heuristics for the design of object oriented examples for novices, called Eduristics.
These heuristics are validated against the set of concepts and design principles
previously established. They are also discussed in relation to the quality factors
used for the evaluation of examples, described in Paper IV. Finally it discusses the
object oriented quality in two examples, using the Eduristics to show the sometimes
small, but significant, details that contradicts the general idea of the paradigm.

8.3 Paper III - Evaluating OO example programs
for CS1

This paper contains the results of the first attempt to design an evaluation check-
list/tool for introductory object oriented examples. A pilot study of the tool was
made with five representative examples covering the following aspects; the very first
example of a textbook, the first exemplification of developing a user-defined class,
the first application involving at least two interacting classes and a non-trivial (but
still simple) example of using inheritance. The concept of quality factor was defined
and it was decided to structure the checklist according to three categories; technical
quality, object-oriented quality and didactical quality. The results showed that such
an instrument is a useful tool for indicating particular strengths and weaknesses
of examples, it was evident that the instrument distinguished between examples.
However, the analysis also showed that the evaluation instrument presented was
not reliable enough for evaluations on a larger scale; inter-rater agreement was
too low. Some of the shortcomings were due to semantical issues concerning the
criteria, and the lack of instruction on how to grade non-existing features.

Further details of this work can be found in Börstler et al. (2008b).
The development of the tool continued and the resulting tool, and its evaluation

and use, is described in (Börstler et al., 2009).

48

8.4. Paper IV - On the Quality of Examples in Introductory Java Textbooks

8.4 Paper IV - On the Quality of Examples in In-
troductory Java Textbooks

In this paper we perform a more detailed analysis of the large data material col-
lected for the ITiCS’09 working group (Börstler et al., 2009). The data analysed in
this paper consists of 191 evaluations of 21 examples by 24 raters. The examples
were collected from 11 popular textbooks. On average the participating raters had
more than 10 years of experience with teaching object orientation specifically.

Reviewers ranked examples in very similar ways, although their absolute ratings
could be quite different. The majority of reviewers show a very strong and highly
significant correlation with the total average ranking of all reviews. This strongly
indicates that our evaluation instrument is reliable.

The participating textbooks were thoroughly classified as being either object
oriented (OO), or following a traditional approach (Trad), with a clear focus on
elementary programming concepts as loops, primitive data types, expressions, con-
ditions etc., presented before object oriented concepts and components. One result
from this study is that although most texts claim to focus on object orientation and
follow some kind of object-early or -centric approach, a closer inspection revealed
that the texts in the OO category were actually in a minority.

Three different types of examples were evaluated; FUDC: First User-Defined
Class, OOD: Multiple User Defined Classes, and CS: Control Structures. Since we
only considered examples from popular textbooks, we expected most of the scores
to be in the upper positive range. However, as many as 10 out of the 21 examples
scored below 10 in a range of [-30, 30] and received an overall final impression ≤0.
The raters were asked to give an overall impression before and after the evaluation.
The overall impression seems to degrade during the review, in particular for the
examples that already have a low overall first impression. This indicates that the
checklist might help to spot problems that might be easily overlooked.

The FUDC examples are crucial to give a correct first impression of object
orientation. One result of the analysis is that the variation in object oriented
quality factors for FUDC examples is much greater than the variation for CS and
OOD examples. FUDC’s are difficult to design because of the restrictions, but
it appears that examples illustrating meaningful behaviour display higher object
oriented quality than examples which include no or trivial behaviour. This gives
an indication of what to focus on in the design.

Interesting to note, is that making a systematic evaluation of examples often
changes the standpoint on the quality of the example. There are details of an
example, overlooked on a superficial examination, that are revealed when using
the instrument. Text book examples should be designed to give a more consistent
presentation of object orientation, particular care must be taken to design the first
user defined classes (FUDCs).

8.5 Paper V - Educators’ Views on OO, Objects
and Examples

Reports on an exploration and classification of educators’ personal views on ob-
ject orientation, objects and examples for object orientation. Qualitative content

49

Chapter 8. Summary of Papers

analysis is used to analyse the textual data, collected as interviews.
The views differentiate substantially in terms of complexity. They are often

conceptually simple in relation to the educational aim to convey the idea of object
orientation. The categories reflecting the educators views of object orientation, ob-
ject and examples are related on a conceptual level and are ranging from elementary
syntax-based views to abstract, problem solving paradigmatic views in the three
aspects investigated. Every-day-life contexts are used more as an introduction to
object orientation, while the choices of context for the practical work is slightly
different.

8.6 Paper VI - Educators’ Strategies for OOA&D
Reports on a classification of educators’ strategies for introducing object orientation
and for teaching object oriented analysis and design (OOA&D). Qualitative content
analysis is used to analyse the textual data, collected as interviews.

The methods for introducing OOA&D are mostly implicit, if present at all.
Some educators does not seem to form a view of OOA&D of their own. The overall
impression is that students do not get support to understand and practice any
object oriented problem solving approach.

8.7 Paper VII - Improving OO Example Programs
Being careful about certain aspects of examples can significantly improve the object
oriented quality and avoid unintentional non-object oriented characteristics. Every
example has to contribute to the overall mission to support the development of a
conceptually correct base for object orientation.

With the use of heuristics for object oriented quality in examples for novices,
we examine a typical example of a first user defined class (FUDC). Critical details
are illustrated and discussed. This is followed by a more general discussion on
common deficiencies in textbook FUDC’s. Alternative designs are proposed and
finally we suggest a number of suitable abstractions to use in examples along with
appropriate contexts.

50

Bibliography

ACM (2001). Computing curricula 2001. http://www.acm.org/education/
curric_vols/cc2001.pdf Webpage last visited: 2008-12-15.

ACM (2008a). Curricula recommendations. http://www.acm.org/
education/curricula-recommendations Last visited: 2008-12-15.

ACM (2008b). Java Task Force. http://www-cs-faculty.stanford.edu/
~eroberts//jtf/, Last visited: 2008-12-15.

Armstrong, D. J. (2006). The quarks of object-oriented development. Communi-
cations of the ACM, 49(2):123–128.

Atkinson, R. K., Derry, S. J., Renkl, A., and Wortham, D. (2000). Learning from
examples: Instructional principles from the worked examples research. Review
of Educational Research, 70(2):181–214.

Atkinson, R. K., Renkl, A., and Merrill, M. M. (2003). Transitioning from studying
examples to solving problems: Effects of self-explanation prompts and fading
worked-out steps. Journal of Educational Psychology, 95(4):774 – 783.

Bell, D. and Parr, M. (2010). Java For Students, 6/E. Pearson International.

Bellin, D. and Simone, S. S. (1997). The CRC Card Book. Addison-Wesley.

Bennedsen, J. (2008). Teaching and learning introductory programming: a model-
based approach. PhD thesis, Oslo.

Bennedsen, J. and Schulte, C. (2007). What does ’objects-first’ mean? an inter-
national study of teachers’ perceptions of objects-first. In Lister, R. and Simon,
editors, Seventh Baltic Sea Conference on Computing Education Research (Koli
Calling 2007), volume 88 of CRPIT, pages 21–29, Koli National Park, Finland.
ACS.

Bergin, S. and Reilly, R. (2005). Programming: factors that influence success.
SIGCSE Bull., 37(1):411–415.

Biddle, R., Noble, J., and Tempero, E. (2002). Reflections on crc cards and oo
design. In Noble, J. and Potter, J., editors, Fortieth International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS Pacific 2002),
volume 10, pages 201–205, Sydney, Australia. ACS.

51

http://www.acm.org/education/curric_vols/cc2001.pdf
http://www.acm.org/education/curric_vols/cc2001.pdf
http://www.acm.org/education/curricula-recommendations
http://www.acm.org/education/curricula-recommendations
http://www-cs-faculty.stanford.edu/~eroberts//jtf/
http://www-cs-faculty.stanford.edu/~eroberts//jtf/

Bibliography

Bloch, J. (2001). Effective Java Programming Language Guide. Addison-Wesley,
1st edition.

BlueJ. Bluej homepage. http://www.bluej.org, Webpage last visited 2010-
11-05.

Börstler, J. (2005). Improving crc-card role-play with role-play diagrams. In Con-
ference Companion 20th Annual Conference on Object Oriented Programming
Systems Languages and Applications, pages 356–364. ACM.

Börstler, J., Caspersen, M. E., and Nordström, M. (2007). Beauty and the beast—
toward a measurement framework for example program quality. Technical Report
UMINF-07.23, Dept. of Computing Science, Umeå University, Umeå, Sweden.

Börstler, J., Christensen, H. B., Bennedsen, J., Nordström, M., Kallin Westin,
L., Jan-ErikMoström, and Caspersen, M. E. (2008a). Evaluating oo example
programs for CS1. In ITiCSE ’08: Proceedings of the 13th annual conference
on Innovation and technology in computer science education, pages 47–52, New
York, NY, USA. ACM.

Börstler, J., Hall, M. S., Nordström, M., Paterson, J. H., Sanders, K., Schulte, C.,
and Thomas, L. (2009). An evaluation of object oriented example programs in
introductory programming textbooks. Inroads, 41:126–143.

Börstler, J., Johansson, T., and Nordström, M. (2002). Introducing oo concepts
with crc cards and bluej—a case study. In Proceedings Frontiers in Education
Conference, FIE’02, pages T2G–1–T2G–6.

Börstler, J., Nordström, M., Kallin Westin, L., Jan-ErikMoström, Christensen,
H. B., and Bennedsen, J. (2008b). An evaluation instrument for object-oriented
example programs for novices. Technical Report UMINF-08.09, Dept. of Com-
puting Science, Umeå University, Umeå, Sweden.

Börstler, J., Nordström, M., and Paterson, J. H. (2010). On the quality of examples
in introductory java textbooks. The ACM Transactions on Computing Education
(TOCE), Accepted for publication.

Bruce, K. (2004). Controversy on how to teach CS1: A discussion on the sigcse-
members mailing list. ACM SIGCSE Bulletin, 36(4):29–35.

CACM (2002). Hello, world gets mixed greetings. Communications of the ACM,
45(2):11–15.

CACM (2005). For programmers, objects are not the only tools. Communications
of the ACM, 48(4):11–12.

Cant, S., Jeffery, D. R., and Henderson-Sellers, B. (1995). A conceptual model of
cognitive complexity of elements of the programming process. Information and
Software Technology, 37(7):351–362.

Carbone, A., Hurst, J., Mitchell, I., and Gunstone, D. (2000). Principles for de-
signing programming exercises to minimise poor learning behaviours in students.
In Proceedings ACE’00, pages 197–201.

52

http://www.bluej.org

Bibliography

Carbone, A., Hurst, J., Mitchell, I., and Gunstone, D. (2001). Characteristics of
programming exercises that lead to poor learning tendencies: Part ii. In ITiCSE
’01: Proceedings of the 6th annual conference on Innovation and technology in
computer science education, pages 93–96, New York, NY, USA. ACM.

Caspersen, M. E. (2007). Educating Novices in The Skills of Programming. PhD
thesis, University of Aarhus, Denmark.

Caspersen, M. E. and Kölling, M. (2006). A novice’s process of object-oriented
programming. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN sym-
posium on Object-oriented programming systems, languages, and applications,
pages 892–900, New York, NY, USA. ACM.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and Glaser, R. (1989).
Self-explanations: How students study and use examples in learning to solve
problems. Cognitive Science, 13(2):145–182.

Chidamber, S. R. and Kemerer, C. F. (1991). Towards a metrics suite for object
oriented design. In ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, Phoenix, Arizona, United States.

Dale, N. (2005). Content and emphasis in CS1. ACM SIGCSE Bulletin, 37(4):69–
73.

Dale, N. B. (2006). Most difficult topics in CS1: results of an online survey of
educators. SIGCSE Bull., 38(2):49–53.

de Raadt, M., Watson, R., and Toleman, M. (2004). Introductory Programming:
What’s Happening Today and Will There Be Any Students to Teach Tomorrow?,
volume 30, pages 277–282. Australian Computer Society.

Détienne, F. (1997). Assessing the cognitive consequences of the object-oriented
approach: A survey of empirical research on object-oriented design by individuals
and teams. Interacting with Computers, 9(1):47–72.

Devlin, K. (2003). Why universities require computer science students to take math
: Introduction. Commun. ACM, 46(9):36–39.

Dodani, M. H. (2003). Hello world! goodbye skills! Journal of Object Technology,
2(1):23–28.

Du Bois, B., Demeyer, S., Verelst, J., and Temmerman, T. M. M. (2006). Does god
class decomposition affect comprehensibility? In Kokol, P., editor, SE 2006 In-
ternational Multi-Conference on Software Engineering, pages 346–355. IASTED.

Eckerdal, A. (2009). Novice Programming Students’ Learning of Concepts and
Practise. PhD thesis, Uppsala UniversityUppsala University, Division of Scien-
tific Computing, Numerical Analysis.

Eckerdal, A., Thuné, M., and Berglund, A. (2005). What does it take to learn
’programming thinking’? In ICER ’05: Proceedings of the first international
workshop on Computing education research, pages 135–142, New York, NY, USA.
ACM.

53

Bibliography

Elo, S. and Kyngas, H. (2008). The qualitative content analysis process. Journal
of Advanced Nursing, 62(1):107–115.

Fincher, S. and Petre, M. (2004). Computer science education research. Taylor &
Francis, London.

Fleury, A. E. (2000). Programming in java: Student-constructed rules. In Pro-
ceedings of the thirty-first SIGCSE technical symposium on Computer science
education, pages 197–201.

Forman, J. and Damschroder, L. (2007). Qualitative content analysis. Advances
in Bioethics, 11:39–62.

Fowler, M. (2003). When to make a type. IEEE Software, 20(1):12–13.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring:
improving the design of existing code. Addison-Wesley Longman Publishing Co.,
Inc.

Gamma, E., Helm, R., Ralph, E. J., and Vlissides, J. M. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Longman.

Garzás, J. and Piattini, M. (2007). Object-oriented Design Knowledge: Principles,
Heuristics, and Best Practices. Idea Group Publishing, USA.

Gibbon, C. A. and Higgins, C. A. (1996). Towards a learner-centred approach to
teaching object-oriented design. In Proceedings of the Third Asia-Pacific Soft-
ware Engineering Conference. IEEE Computer Society.

Graneheim, U. H. and Lundman, B. (2004). Qualitative content analysis in nursing
research: concepts, procedures and measures to achieve trustworthiness. Nurse
Education Today, 24(2):105 – 112.

Gray, K. A., Guzdial, M., and Rugaber, S. (2002). Extending crc cards into a com-
plete design process. Technical report, College of Computing, Georgia Institute
of Technology, Atlanta, GA.

Grotehen, T. (2001). Objectbase Design: A Heuristic Approach. PhD thesis, Uni-
versity of Zurich, Switzerland.

Henderson-Sellers, B. and Edwards, J. (1994). BOOK TWO of object-oriented
knowledge: the working object: object-oriented software engineering: methods
and management. Prentice-Hall, Inc.

Holland, S., Griffiths, R., and Woodman, M. (1997). Avoiding object misconcep-
tions. In Proceedings of the 28th Technical Symposium on Computer Science
Education, pages 131–134.

Hsieh, H.-F. and Shannon, S. E. (2005). Three Approaches to Qualitative Content
Analysis. Qualitative Health Research, 15(9):1277–1288.

Johnson, R. and Foote, B. (1988). Designing reusable classes. Journal of Object-
Oriented Programming, 1(2).

54

Bibliography

Kay, A. C. (1996). The early history of smalltalk. pages 511–598. ACM, New York,
NY, USA.

Kölling, M. (2006). I object – posting on SIGCSE-MEMBERS mailinglist 2006-11-
13. http://www.bluej.org/mrt/docs/objection.html Webpage last
visited 2010-11-05.

Kölling, M. and Rosenberg, J. (2001). Guidelines for teaching object orientation
with java. In Proceedings of the 5th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, pages 33–36.

Kramer, J. (2007). Is abstraction the key to computing? Communications of the
ACM, 50(4):36–42.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H. (2005). A study of the difficulties
of novice programmers. In Proceedings of the 10th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education, pages 14–18.

Lanza, M., Marinescu, R., and Ducasse, S. (2005). Object-Oriented Metrics in
Practice. Springer-Verlag New York, Inc. Secaucus, NJ, USA.

Lieberherr, K. and Holland, I. (1989). Assuring good style for object-oriented
programs. IEEE Software, 6(5):38–48.

Lincoln, Y. S. and Guba, E. G. (1985). Naturalistic inquiry. Sage, Beverly Hills,
Calif.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hame, J., Lindholm, M., Mc-
Cartney, R., Moström, J.-E., Sanders, K., Seppälä, O., Simon, B., and Thomas,
L. (2004). A multi-national study of reading and tracing skills in novice pro-
grammers. SIGCSE Bull., 36(4):119–150.

Lister, R., Berglund, A., Box, I., Cope, C., Pears, A., Avram, C., Bower, M.,
Carbone, A., Davey, B., de Raadt, M., Doyle, B., Fitzgerald, S., Mannila, L.,
Kutay, C., Peltomäki, M., Sheard, J., Simon, Sutton, K., Traynor, D., Tutty,
J., and Venables, A. (2007). Differing ways that computing academics under-
stand teaching. In ACE ’07: Proceedings of the ninth Australasian conference
on Computing education, pages 97–106, Darlinghurst, Australia, Australia. Aus-
tralian Computer Society, Inc.

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B., Hitch-
ner, L., Luxton-Reilly, A., Sanders, K., Schulte, C., and Whalley, J. L. (2006).
Research perspectives on the objects-early debate. SIGCSE Bull., 38(4):146–165.

Malan, K. and Halland, K. (2004). Examples that can do harm in learning pro-
gramming. In Companion to the 19th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 83–87.

Mäntylä, M. A taxonomy for "bad code smells”. http://www.soberit.hut.
fi/mmantyla/BadCodeSmellsTaxonomy.htm, Webpage last visited 2008-
10-17.

Mäntylä, M. (2003). Bad smells in software – a taxonomy and an empirical study.
Master’s thesis, Helsiniki University of Technology.

55

http://www.bluej.org/mrt/docs/objection.html
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm

Bibliography

Martin, R. C. (2003). Agile Software Development, Principles, Patterns, and Prac-
tices. Addison-Wesley.

McConnell, J. J. and Burhans, D. T. (2002). The evolution of CS1 textbooks. In
Proceedings FIE’02, pages T4G–1–T4G–6.

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D.,
Kolikant, Y., Laxer, C., Thomas, L., and Utting, I. (2001). A multi-national,
multi-institutional study of assessment of programming skills of first-year cs stu-
dents. ACM SIGCSE Bulletin, 33(4):125–180.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S., and Thomas, L.
(2006). A cognitive approach to identifying measurable milestones for program-
ming skill acquisition. In Working group reports on ITiCSE on Innovation and
technology in computer science education, Bologna, Italy. ACM.

Meyer, B. (2001). Software engineering in the academy. IEEE Computer, 34(5):28–
35.

Meyer, B. (2006). Testable, reusable units of cognition. IEEE Computer, 39(4):20–
24.

Morse, J. M. (2000). Determining sample size. Qualitative Health Research, 10(1):2–
3.

Nordström, M. (2009). He[d]uristics – heuristics for designing object oriented ex-
amples for novices. Licenciate Thesis, Umeå University, Sweden.

Nygaard, K. (1986). Basic concepts in object oriented programming. SIGPLAN
Not., 21(10):128–132.

Opdyke, W. F. (1992). Refactoring object-oriented frameworks. Master’s thesis,
University of Illinois at Urbana-Champaign, USA.

Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive Load Theory and Instruc-
tional Design: Recent Developments. Educational Psychologist, 38(1):1–4.

Parnas, D. L. (2007). Use the simplest model, but not too simple. Communications
of the ACM - Forum, 50(6):7–9.

Parsons, J. and Wand, Y. (1997). Choosing classes in conceptual modeling. Com-
munications of the ACM, 40(6):63–69.

Pears, A., East, P., Mccartney, R., Ratcliffe, M. B., Stamouli, I., Kinnunen, P.,
Moström, J.-E., Schulte, C., Eckerdal, A., Malmi, L., Murphy, L., Simon, B.,
and Thomas, L. (2007). What’s the problem? teachers’ experience of student
learning successes and failures. Seventh Baltic Sea Conference on Computing
Education Research (Koli Calling 2007), Koli National Park, Finland, November
15-18, 2007.

Pirolli, P. L. and Anderson, J. R. (1985). The role of learning from examples in
the acquisition of recursive programming skills. Canadian journal of psychology,
39(2):240–272.

56

Bibliography

Potter, W. J. and Levine-Donnerstein, D. (1999). Rethinking validity and reliability
in content analysis. Journal of Applied Communication Research, 27(3):258.

Purao, S. and Vaishnavi, V. (2003). Product metrics for object-oriented systems.
ACM Comput. Surv., 35(2):191–221.

Ragonis, N. and Ben-Ari, M. (2005). On understanding the statics and dynam-
ics of object-oriented programs. In Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, pages 226–230.

Ramalingam, V. and Wiedenbeck, S. (1997). An empirical study of novice program
comprehension in the imperative and object-oriented styles. In ESP ’97: Papers
presented at the seventh workshop on Empirical studies of programmers, pages
124–139, New York, NY, USA. ACM.

Randolph, J. J. (2007). Computer science education research at the crossroads: a
methodological review of computer science education research, 2000–2005. PhD
thesis, Logan, UT, USA. Adviser-Julnes, George.

Renkl, A. (1997). Learning from worked-out examples: A study on individual
differences. Cognitive Science, 21(1):1 – 29.

Renkl, A., Atkinson, R. K., Maier, U. H., and Staley, R. (2002). From example
study to problem solving: Smooth transitions help learning. The Journal of
Experimental Education, 70(4):293 – 315.

Riel, A. J. (1996). Object-Oriented Design Heuristics. Addison-Wesley.

Rist, R. (1995). Program structure and design. Cognitive Science, 19(4):507–561.

Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13(3):389
– 414.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching program-
ming: A review and discussion. Computer Science Education, 13(2):137–172.

Rosson, M. B. and Alpert, S. R. (1990). The cognitive consequences of object-
oriented design. Human-Computer Interaction, 5(4):345.

Sajaniemi, J. and Kuittinen, M. (2008). From procedures to objects: A research
agenda for the psychology of object-oriented programming education. Human
Technology, 4(1):75—91.

Sandelowski, M. (1986). The problem of rigor in qualitative research. Advances in
Nursing Science, 8(3):27– 37.

Sandelowski, M. (1995). Sample size in qualitative research. Research in Nursing
& Health, 18(2):179–183.

Schulte, C. and Bennedsen, J. (2006). What do teachers teach in introductory
programming? In ICER ’06: Proceedings of the second international workshop
on Computing education research, pages 17–28, New York, NY, USA. ACM.

57

Bibliography

Seidman, I. (1998). Interviewing as qualitative research : a guide for researchers
in education and the social sciences. Teachers College Press, New York, 2. ed.
edition.

Silverman, D. (2006). Interpreting qualitative data : methods for analyzing talk,
text and interaction. SAGE, London, 3., [updat.] ed. edition.

Skolverket (2010a). The swedish national agency for education—-homepage. http:
//www.skolverket.se/sb/d/353 Last visited: 2010-09-30.

Skolverket (2010b). The swedish national agency for education: Syllabuses.
http://www3.skolverket.se/ki03/front.aspx?sprak=EN Last vis-
ited: 2010-09-30.

Spohrer, J. C. and Soloway, E. (1986). Novice mistakes: are the folk wisdoms
correct? Communications of the ACM, 29(7):624–632.

Stroustrup, B. (1995). Why c++ is not just an object-oriented programming
language. In OOPSLA ’95: Addendum to the proceedings of the 10th annual
conference on Object-oriented programming systems, languages, and applications
(Addendum), pages 1–13, New York, NY, USA. ACM.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.
Cognitive Science, 12(2):257–285.

Sweller, J. and Cooper, G. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2:59–89.

Sweller, J., van Merrienboer, J., and Paas, F. (1998). Cognitive architecture and
instructional design. Educational Psychology Review, 10(3):251–296.

Tennyson, R. D. and Cocchiarella, M. J. (Spring 1986). An empirically based in-
structional design theory for teaching concepts. Review of Educational Research,
56(1):40–71.

Thompson, E. (2008). How do they understand? Practitioner perceptions of an
object-oriented program. PhD thesis, Massey University, Palmerston North, New
Zealand.

Trafton, J. G. and Reiser, B. J. (1993). The contributions of studying examples
and solving problems to skill acquisition y. In The proceedings of the 15th annual
conference of the Cognitive Science society, pages 1017–1022.

Transcriva. Transcriva homepage. http://www.bartastechnologies.com/
products/transcriva/.

Valentine, D. W. (2004). Cs educational research: a meta-analysis of sigcse tech-
nical symposium proceedings. In SIGCSE ’04: Proceedings of the 35th SIGCSE
technical symposium on Computer science education, pages 255–259, New York,
NY, USA. ACM.

VanLehn, K. (1996). Cognitive skill acquisition. Annual Review of Psychology,
47:513–539.

58

http://www.skolverket.se/sb/d/353
http://www.skolverket.se/sb/d/353
http://www3.skolverket.se/ki03/front.aspx?sprak=EN
http://www.bartastechnologies.com/products/transcriva/
http://www.bartastechnologies.com/products/transcriva/

Bibliography

Vygotsky, L. S. (1978). Mind in society: the development of higher psychological
processes. Cambridge, MA: Harvard University Press.

West, D. (2004). Object Thinking. Microsoft Press.

Westfall, R. (2001). ’hello, world’ considered harmful. Communications of the
ACM, 44(10):129–130.

Whitson, J. A. and Galinsky, A. D. (2008). Lacking Control Increases Illusory
Pattern Perception. Science, 322(5898):115–117.

Whittemore, R., Chase, S. K., and Mandle, C. L. (2001). Validity in Qualitative
Research. Qualitative Health Research, 11(4):522–537.

Wick, M. R., Stevenson, D. E., and Phillips, A. T. (2004). Seven design rules
for teaching students sound encapsulation and abstraction of object properties
and member data. In Proceedings of the 35th SIGCSE technical symposium on
Computer science education, Norfolk, Virginia, USA. ACM.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., and Corritore, C. L. (1999). A
comparison of the comprehension of object-oriented and procedural programs by
novice programmers. Interacting with Computers, 11(3):255–282.

59

60

Paper I

Transitioning to OOP/Java – A Never Ending Story

61

Transitioning to OOP/Java — A Never

Ending Story

Jürgen Börstler, Marie Nordström, Lena Kallin Westin, Jan-Erik Moström,
and Johan Eliasson

Department of Computing Science, Ume̊a University, Sweden

{jubo,marie,kallin,jem,johane}@cs.umu.se

Abstract. Changing the introductory programming course from a tra-

ditional imperative model to an object-oriented model is not simply a

matter of changing compilers and syntax. It requires a profound change

in course materials and teaching approach to be successful. We have

been working with this transition for almost ten years and have realized

that teaching object-oriented programming is not as simple or “natural”

as some proponents claim. In fact, it has proven difficult to convey to

the students the advantages and methodologies associated with object-

oriented programming. To help ourselves and others in a transition like

this we have developed a number of “course design principles” as well

as teaching methods and examples that have proven to have positive

influence on student learning outcome.

1 Introduction

The object-oriented paradigm has become the most common programming par-
adigm for introductory programming courses1[de Raadt et al., 2004; Stephenson
and West, 1998; Chen et al., 2005]. The transition to this paradigm has proven to
be more difficult than expected. Traditionally, programming concepts have been
systematically introduced one after one, each building nicely on the concepts
already learned. Abstract and advanced concepts (e.g., modules and abstract
data types) were deferred to later courses. In the object-oriented paradigm, on
the other hand, the basic concepts are tightly interrelated and cannot easily be
taught and learned in isolation [Roberts et al., 2006], as illustrated in Figure 1.
Furthermore, the basic object-oriented concepts are on a higher level of abstrac-
tion2. Together, this results in a higher threshold and steeper learning curve for
the learner.

It is generally accepted that transitioning to the object-oriented paradigm is
not just a programming language issue. Object-oriented development requires a
new way of thinking [Bacvanski and Börstler, 1997]. This is particularly impor-
tant in education. A syntax-driven approach can take the students’ attention

1
Even in upper secondary school (high school).

2
Whether this is an advantage or disadvantage for teaching or learning is unclear.

J. Bennedsen et al. (Eds.): Teaching of Programming, LNCS 4821, pp. 80–97, 2008.

c� Springer-Verlag Berlin Heidelberg 2008

Transitioning to OOP/Java — A Never Ending Story 81

Fig. 1. Dependencies between basic concepts to be introduced in imperative - (a) and

object-first approaches (b), respectively

away from the underlying concepts and principles (see also Model-Driven Pro-

gramming by Bennedsen and Caspersen and CS1: Getting Started by Caspersen
and Christensen). Studies show that there is a mismatch between the program-
ming language used and the paradigm that is actually taught. In Australia for
example, about 82% of the introductory programming instructors used an object-
oriented language, but only about 37% taught their courses by using an object-
oriented approach [de Raadt et al., 2004]. Approaches for teaching introductory
programming courses are still heavily discussed [Bruce, 2005].

In this chapter, we describe our experience transitioning from a traditional
approach using (Turbo) Pascal to a true objects-first approach in Java. The
advantages of using object-orientation for teaching are many. It provides pow-
erful mechanisms for the structuring and organisation of models (in particular
designs and code) and decreases the conceptual distance between problem and
solution models. This makes it much easier to communicate models and keep
them consistent [West, 2004].

However, these advantages come at a price. The basic object-oriented con-
cepts are highly interrelated and cannot easily be taught or learned in isolation
(as illustrated in figure 1(b)). There also is no commonly accepted pedagogical
approach to overcome this problem [Bruce, 2005]. It is furthermore very diffi-
cult, if not impossible, to develop “simple” examples. A proper and meaningful
object-oriented example requires quite some overhead [Westfall, 2001]. Many
textbook examples are, therefore, unnecessarily complex, not meaningful, or not
even “truly” object-oriented [ACM-Forum, 2002; Hu, 2005]. During our “journey
from Pascal to Java” we stumbled across these and other problems and made a
few detours before realising that the object-oriented approach not only requires
a new way of thinking, but also, a new way of teaching.

There are more factors contributing to a student’s success or failure than the
course material and how a course is taught. We have observed that our students
as a group are less motivated and not as well prepared3 compared to a few

3
This problem has been observed by most math, science and engineering programs.

82 J. Börstler et al.

years ago. Attendance rates at exams, lectures and other scheduled events have
decreased. Reading assignments are neglected to a high degree and mandatory
assignments are submitted late. We introduced Supplemental Instruction (SI)
[Arendale, 1997] to increase student activity and thereby improve course out-
come. SI is a non-mandatory part of the course. In some course offerings, only
half of the students participated in the SI programme while in other the majority
of students participated. In all course offerings, students participating in SI have
a higher attendance rate at exams and also get higher grades on average than
the group of students not attending SI [Nordström and Kallin Westin, 2006].

The remainder of this chapter is organised as follows. First, we briefly explain
the motives behind the principles we used for designing our new course, and
how these were actually implemented. In section 4, we evaluate how well this
new course worked with respect to our original principles. Section 5 summarises
the lessons we have learned since we made the transition to the object-oriented
paradigm in 1998. In sections 6 and 7, we discuss external factors affecting
student performance and related work, respectively. The chapter concludes with
a summary of our experience.

2 Principles for Course Design

Prior to our transition, we introduced object-oriented concepts in our data types
and algorithms4 course, following the introductory programming course. How-
ever, this was not sufficient to enable students to effectively use the object-
oriented paradigm. Most students perceived object-orientation as a simple
extension to imperative programming. They did not realise that object-oriented
programs are conceptually different from strictly imperative ones and that us-
ing object-oriented syntax does not automatically lead to object-oriented
programs.

When switching to the object-oriented paradigm in our introductory pro-
gramming course in 1998, we only made minor changes to our traditional course
design. Initially, our students did very well on this course, but we soon realised
that their ability to develop code true to the object-oriented paradigm was not
satisfactory. After several course offerings with unsatisfactory learning outcomes,
we decided to develop a “truly” objects-early approach. When proficiency in a
certain paradigm is the major learning goal of a course, it seemed sensible to
start with that paradigm as early as possible [Bruce, 2005; Bergin, 2000b].

To support the design of such a course we developed a list of principles, to
guide course development. These principles were either based on our teaching ex-
perience [Bacvanski and Börstler, 1997; Börstler et al., 2002; Börstler and Sharp,
2003; Kallin Westin and Nordström, 2003, 2004] or the collected advice and ex-
perience from the literature in computer science education (see e.g., [Bruce, 2005;
Westfall, 2001; ACM-Forum, 2002; Guzdial, 1995; Holland et al., 1997; Kölling
and Rosenberg, 2001; Kölling, 2003; Turk, 1997; and Using BlueJ to Introduce

Programming by Kölling]).
4

More or less similar to a CS2 course.

Transitioning to OOP/Java — A Never Ending Story 83

2.1 High-Level Goals

No magic (P1). We must provide a correct and consistent frame of reference,
so that the students always can make sense of new material. The students must
be able to associate the new material with something familiar or wellknown. The
succession of learning units and topics must be carefully worked out. The frame
of reference must be refined or extended accordingly. The current frame of refer-
ence should always be sufficient to understand new material and validly explain
what is going on [Zull, 2002]. Everything requiring a comment like “don’t worry
now, you’ll understand later,” must be revised or delayed. Language specific com-
plexities should be hidden until students are sufficiently mature to understand
the underlying language design issues.

Students will always try to make sense of new material. If we cannot pro-
vide them with a correct and consistent frame of reference, they might construct
invalid explanations by themselves. This can easily lead to persistent misconcep-
tions about object technology and programming [Holland et al., 1997; Börstler,
2005; Clancey, 2004; Ragonis and Ben-Ari, 2005].
Objects from the very beginning (P2). Everything should build on the no-
tion of objects, since they are at the very heart of object-orientation. Therefore,
objects should be introduced in the very first lecture. The earlier we start with
the most important concept, the more often we can reinforce it and the more
time we give students to fully understand it.
General concepts favoured over language specific realisations (P3).
Learning units should be based on the teaching and learning of general object-
oriented concepts. Although the mastery of a particular programming language
is an important learning goal, it is secondary to the understanding of the under-
lying concepts. Focusing on concepts does not necessarily mean to move strictly
from concept to syntax for each new topic. It is, however, important to stress
fundamental principles and techniques and not the elements of a particular lan-
guage. This can, for example, be achieved by means of moving from concrete to
abstract as proposed in CS1: Getting Started by Caspersen and Christensen.
No exceptions to general rules (P4). By general rules, we not only mean
the definitions that constitute the object-oriented paradigm5, but also design
and programming guidelines and all the other pieces of advice we provide to
our students. We must always “do as we say,” only use sound and meaningful
objects, only show well-designed classes, and certainly not do unnecessary main-
programming. Concepts must never be introduced or be reinforced by using
flawed examples (see also P6).

2.2 Tools

OOA&D early (P5). It is necessary to provide students with simple tools to
approach a problem systematically and to evaluate alternative solutions before
5

Like for example “objects are instances of classes with state, behaviour and identity,”

or “in object-oriented programs, problems are solved by objects sending messages

to each other.”

84 J. Börstler et al.

starting to code. Early OOA&D conveys to the students that responsibilities are
distributed amongst the objects that solve a problem [Börstler, 2005; Andrianoff
and Levine, 2002.]
Exemplary examples (P6). All examples used in classes and exercises should
comprise well-designed classes that fill a purpose (besides exemplifying a certain
concept or language specific detail) [Holland et al., 1997; Nordström, 2007].
Consequently, examples should be non-trivial and involve multiple classes. All
examples should be made available for experimentation, e.g., by making the
source code available for download from the course web page.
Easy-to-use tools (P7). Students should be provided with tools that support
object-oriented thinking. The tools must be easy to learn and easy to use. Tool
usage must add as little cognitive load as possible to the students’ tasks. Usability
should be favoured over any “bells and whistles.”

2.3 Pragmatics

Hands-on (P8). Programming is a skill that must be “trained.” Topics should
be reinforced by means of practical exercises. Lectures should be followed by
supervised in-lab sessions. For each session, step-by-step instructions and exem-
plary examples should be provided.
Less “from scratch” development (P9). “Reading before modifying before
coding.” All software development takes place in context (see also Using BlueJ

to Introduce Programming by Kölling). Reuse is an important aspect of the
object-oriented paradigm and should be emphasised early. To be able to read, to
understand, and to modify existing code is, therefore, as important as developing
understandable code.
Alternative forms of examination (P10). Assessment should support learn-
ing. It is very important to evaluate actual programming skills as well as con-
ceptual understanding. Furthermore, assessment should not be separated from
teaching. For example, peer evaluation or peer marking can call the students’ at-
tention to alternative ways of solving certain problems. It is important to realise
that there rarely is a single, correct solution to a problem.
Emphasise the limitations of computers (P11). Students should learn that
computations can produce erroneous or unexpected results due to limitations in
data representation, even in logically correct programs.

To summarise, our main goal was to follow an object-oriented approach in a
true and consequent way. In addition, we wanted to provide our students with
easy-to-use tools supporting “object thinking” and the systematic development
of proper object-oriented code (see also Model-Driven Progamming by Benned-
sen and Caspersen).

3 Implementation

The first course, based on these principles, was offered in spring 2001. After a
case study in summer 2001 [Börstler et al., 2002], we have refined our teaching

Transitioning to OOP/Java — A Never Ending Story 85

approach and successively implemented it in all our introductory programming
courses6. Some of the principles are very difficult to implement, or even in conflict
with each other. In particular the principles No magic (P1) and Exemplary

examples (P6) still cause a lot of work.
From an organisational point of view, we made four major changes to our

original course as follows:

1. We introduced BlueJ [BlueJ, 2007], a programming environment particularly
designed for the teaching and learning of object-oriented programming to
novices (P7) [Kölling and Rosenberg, 2001; Kölling et al., 2003]

2. We introduced CRC-cards, a simple informal tool for collaborative object-
oriented modelling (P5, P7) [Beck and Cunningham, 1989]. The strength of
the CRC-card approach lies in its associated scenario role-play activities
[Börstler, 2005; Andrianoff and Levine, 2002]. During the role-plays the stu-
dents explore hypothetical, but concrete situations of system usage (scenar-
ios). They enact the objects in the model, much like actors following a script
when playing the characters in play. This supports “object thinking” and
helps the students to develop a mental model of the workings of an object-
oriented program (P1-P4) [Börstler and Schulte, 2005].

3. To accommodate for more practical training (P8), we substituted our tradi-
tional lecture room exercises by guided, hands-on exercises in computer-labs.

4. The traditional pen and paper exam was split into a shorter one, half way
through the course, and a computer-based exam was used at the end to test
actual programming skills (P10).

In addition to these changes, we started to offer Supplemental Instruction (SI)
[Kallin Westin and Nordström, 2003] to improve students’ study skills and to
make them more active participants in the course. SI is targeted towards his-
torically difficult classes to help students master content while developing and
integrating strategies for learning and studying [Arendale, 1997]. This is done
through sessions guided by a model-student, the SI leader.

A major difference between SI and other forms of collaborative learning is
the role of the SI leader. Rather than forming study cluster groups and then
releasing them in an unsupervised environment, the SI leader is present to keep
the group on task with the content material and to model appropriate learning
strategies that the other students can adopt and use in the present course, as
well as other ones in future academic work.

Since the “roll out” of our teaching approach, we have made several changes
to our introductory programming courses (see Figure 2 for an overview). For
example, we have postponed graphics and event handling to a newly developed
advanced programming course. We have also slightly adapted our course for
non-CS majors. However, we are still faithful to all our principles.

6
We offer introductory courses in object-oriented programming for three different

technical degree programs.

86 J. Börstler et al.

Fig. 2. Major steps in the evolution of the introductory programming course

4 Evaluation

In this section, we restrict our discussion to an evaluation of our principles as
defined in section 2. Overall, we conclude that changing to a “truly” object-
oriented approach according to our principles worked well. However, there are
many factors not directly related to the teaching and learning of object-oriented
programming itself that affect course design and outcome. Many important fac-
tors are difficult to control like prerequisites and attitudes of the students enter-
ing our programs, for example. This will be discussed in section 6.

4.1 High-Level Goals

In common for all high-level goals (P1-P4) is the urge to be “truly faithful”
to the object-oriented approach. This means to avoid concepts or examples that
seem to question or even contradict the idea of object-orientation, such as objects
without meaningful state or behaviour, excessive use of static methods and public
attributes, Singletons7, etc. [Westfall, 2001; Hu, 2005]. To be “truly faithful” also
means to strive for meaningful objects in realistic contexts.

No magic (P1). Our ambition has always been to use examples and contexts
not only simple enough for the students to understand, but that also emphasises
the object-oriented paradigm. BlueJ is an excellent tool for this since it allows
teachers and students to concentrate on the object-oriented aspects instead of
dealing with editors, configuration files, compilers, etc. BlueJ achieves this by
visually representing classes and objects and manipulating them directly using
its graphical user interface (see figure 3). Unfortunately, this approach has some
limitations that can generate misconceptions that can be harmful and great care
has to be taken to avoid them. A short example will illustrate the problem.

Since the very beginning we have used an example with geometrical shapes sup-
plied with the BlueJ environment [Barnes and Kölling, 2003; and Using BlueJ

to Introduce Programming by Kölling]. In BlueJ, objects are represented by red
7

A Singleton is a class with one single instance only.

Transitioning to OOP/Java — A Never Ending Story 87

blocks in the object bench (see for example c: Circle in figure 3). Actually, to
be more precise, these red blocks represent object references and not the objects
themselves. This is a small, but important difference as explained below.

One can send messages to objects in the object bench by right clicking them.
This will display a menu with the methods defined for this object. When selecting
makeVisible(), a graphical surface is created (“automagically”) and a repre-
sentation of c is drawn on it (see Window BlueJ Shapes Demo in Figure 3).
Whenever the state of an object is changed, its representation is changed or
animated accordingly. This gives immediate feedback and helps students to un-
derstand the difference between classes and objects. On the other hand, it blurs
the difference between the objects themselves and their references. Furthermore,
the details of the graphics are quite involved and too complicated to understand
(“magic”) for a novice.

Fig. 3. Screenshot of the Shapes example

Another problem with the Shapes example is the cognitive difficulty to dif-
fer between the visual representation of an object (the circle in window BlueJ
Shapes Demo) and the object itself, which actually cannot be seen. If, for in-
stance, the reference to the object (the red block in the object bench) is removed,
nothing happens in the drawing. This is puzzling for the inexperienced because
the coloured dots on the canvas are mistaken for the object itself! Misconceptions
like this are very hard to deal with. Other examples of difficulties are discussed
in [Ragonis and Ben-Ari, 2005].

This example shows how difficult it is to create assignments early in the course,
without (unintentionally) introducing magic or material not taught yet.

Objects from the very beginning (P2). To make the students immediately
acquainted with the idea of objects, we use a kind of interactive exercise the first

88 J. Börstler et al.

lecture [Andrianoff and Levine, 2002; Bergin, 2000a]. Without previous explana-
tion, the students are asked to discuss in general terms, something that needs to
be modelled like, for example, a ticket machine or an employee. During the dis-
cussion the lecturer collects specific and general characteristics and behaviours
on the whiteboard. At the end of the lecture, these things are pointed out as
“properties” belonging to a single object or a class, respectively.

Nevertheless, it is difficult to convey to the students that they are working
with an isolated “component” in a larger program, instead of a whole program.
Many students, particularly those with previous programming experience, find
it quite frustrating that there is no “program” to execute like they are used to.
They seem to have difficulties focusing on the properties and responsibilities of
objects without controlling its context at the same time [Guzdial, 1995].

General concepts favoured over language specific realisations (P3).
The learned programming and problem solving should be transferable to other
programming languages. It is important, therefore, to focus on general concepts.
We try to highlight general concepts, knowledge and skills and to avoid language
specific details and idiosyncrasies.

This has resulted in using elementary UML-notation throughout the course,
instead of some kind of simplified temporary notation. However, we do not ex-
plicitly introduce UML. We just use its most intuitive parts consistently.

Furthermore, semi-formal syntax-diagrams are used. This makes it much eas-
ier to talk about the syntax, semantics and pragmatics of programming lan-
guages. Information hiding is also stressed as a general (design) concept and the
usefulness of Boolean variables to formulate easy to read expressions.

On the other hand, topics like anonymous objects and classes are not dis-
cussed. These concepts require a thorough understanding of object-orientation
and are saved for later courses. We try to avoid language idiosyncrasies as long
as possible in particular shortcuts like ++, +=, ?:, etc. and forced returns out
of for-loops and methods. They just make code harder to read and, therefore,
their use is actually discouraged.

No exceptions to general rules (P4). It is important to be consistent with
the frame of reference we provide to our students (see P1 in section 2.1). Students
will hopefully adopt what the teachers present to them eventually. It is impor-
tant, therefore, not to misguide them (see also P6). We must never present any
material, explanation or example that we might reject as an answer or solution
from a student.

Unfortunately, Java courseware in particular is littered with examples that
contradict the “rules” or “styles” we want our students to adopt. The concept of
objects, for example, should not be exemplified by using Java strings. In Java,
String objects cannot be modified and do not posses all the characteristics
we require from proper objects [Thimbleby, 1999]. Since Math has only static
methods and there are no objects of this class type, its use should be postponed
until the students have a firm understanding of the concepts class and object.
The main method is an atypical method since there is no object it belongs to.

Transitioning to OOP/Java — A Never Ending Story 89

Thus, the method is never invoked explicitly and its parameters seem to be
supplied by magic forces (see also P1).

4.2 Tools

OOA&D early (P5). The purpose of this principle is twofold: showing the
students a systematic way to develop a solution for a given problem, and pro-
viding them with a tool to reason about object-oriented solutions without the
need of actual code.

By using CRC-cards [Beck and Cunningham, 1989], we can do both. The
object-as-person metaphor helps students with “object thinking” and to develop
a conceptual model of the inner workings of an object-oriented program [West,
2004; Börstler and Schulte, 2005]. Another advantage of this approach is that it
does not require any prerequisite knowledge.

A problem noted in [Bellin and Simone, 1997] and described in detail in
[Börstler, 2005] is that CRC-cards are used as surrogates for classes (in the mod-
elling activities) as well as for objects (in the role-play activities). This conflicts
with the No exception principle (P4) and can easily confuse novices.

To address these problems, we enact a live CRC session in front of the class
to give the students a feeling for the dynamics of such a session. In addition to
that, we have developed so-called Role-Play Diagrams (RPDs) to support and
document the role-play activities [Börstler, 2004]. RPDs combine elements from
UML object and collaboration diagrams [OMG, 2003]. However, the notation
is informaland much less extensive. In RPDs, we use specific object cards to
denote objects and thereby, avoid the double role of the CRC-cards. Although
the enhanced “method” is more complicated than the original one, the students
have fewer problems using it. The RPDs also provide an excellent documentation
of the role-play. To give the students some practical experience in CRC-card role-
playing, we schedule two CRC exercises where the students develop designs for
small problems. One of these designs is later implemented as an assignment.

Exemplary examples (P6). As discussed in No magic (P1), it has turned
out to be difficult to find or to develop suitable problems and examples for the
initial introduction of objects. The range of concepts and syntactical elements
known to the students is still very limited. Examples should also be small and
to the point, so that students do not lose sight of the concept exemplified. This
limits the degree of freedom for defining “realistic” objects. For example, what
would constitute a reasonable context illustrating the concepts of loops? What
kind of object would have such behaviour? Immediately the example grows to
justify the use of a simple construct and tends to conceal the small component
it was intended to show.

Another problematic example is the usage of Singleton classes, like the popular
Pig-Latin translator [Nordström, 2007]. One might ask whether it is reasonable
to have a class PigLatinTranslator? How many objects of this class would
anyone need? Singleton classes do probably not qualify as good examples. The
main idea behind classes is instantiating as many objects as necessary. Singletons

90 J. Börstler et al.

are special cases, i.e. an exception to the general rules (c.f. P4). Their treatment
should, therefore, be delayed to more advanced courses.

Many examples use print statements to present some result. This is not a
representative way to illustrate objects and classes. Usually, results are returned
and used by other objects. In an object-oriented program, objects communicate
to fulfil a task. Objects that use printing to present results are rarely useful in
other contexts. Students are not able to reuse such examples as prototypes or
templates to solve more general problems.

Exploiting the “naturalness” of the object-oriented approach can also be dif-
ficult. Object-oriented models of real-life objects might have behaviours and
responsibilities their real life counterparts never would or could have. Therefore,
it is very important to make a distinction between the model and the entity
being modelled. A typical example of this could be the model of an employee
in an economy system for a company. The model of the employee could have
the responsibility to know its salary, the number of remaining days of vacation
and so on. This is conflicting to how things are in real life. No company would
rely on their employees to be the only source of information for the payment of
salaries. So, how could it be possible for the inexperienced designer to foresee
this responsibility in the model?

Easy-to-use tools (P7). Some of the advantages of BlueJ turned out to be
disadvantages for the students (initially). The interaction with entities is done
by right-clicking a class or an object. The problem for the student is to un-
derstand the equivalence of right-clicking and generating the same action in
code. Another problem is to realise the difference between classes and objects
[Ragonis and Ben-Ari, 2005]. However, as the students continue to practise their
skills using BlueJ they realise the strengths of this simple, but powerful, inter-
action with objects.

The ability to write code must not depend on the tools we provide to our stu-
dents. Students must not be “locked” into BlueJ for example. This is also high-
lighted by the BlueJ developers (see also Using BlueJ to Introduce Programming

by Kölling). They should develop and run at least one complete application out-
side BlueJ. Although experienced students tend to dislike BlueJ, we think they
should be encouraged to at least try it. They might very well get some new
insights into the object-oriented paradigm.

4.3 Pragmatics

Hands-on (P8). The initial idea of guided in-lab sessions directly following
the lectures did not work as expected. The students complained about lack of
time to think about the new material before using it. Most students actually had
difficulties applying the ideas presented. They merely consumed the presentation
at the lecture.

In later years, we have thus rescheduled the lab sessions. We still have the
same number of hands-on sessions, but they are no longer scheduled on the
same day as the corresponding lectures. We also developed very detailed guides

Transitioning to OOP/Java — A Never Ending Story 91

to make sure students succeed with initial tasks and so they can gain some
confidence in working with the environment. Too detailed guidelines or fill-in-the
blanks exercises, however, can be counter-effective. Students might be enabled to
perform successfully without actually understanding their answers and activities.
Students and teachers as well might get a faulty feeling of mastery of the subject.

Less “from scratch” development (P9). The practise of reading and manip-
ulating existing code before actually writing own code turned out to be a major
problem for our students. Inexperienced students acquired a passive practice and
had difficulties writing complete programs on their own. It is important then to
train some programming from scratch. Experienced students, on the other hand,
often want to have full control over their programs and might reject “foreign”
code [Guzdial, 1995]. However, code reuse is a crucial practice that requires code
reading and understanding and needs to be trained as well.

Alternative forms of examination (P10). The content of the course is
initially focused on object-oriented concepts, while the second half is heavier on
actual problem solving and programming. To reinforce the need to work with
and to understand basic concepts early on, we divided the examination into two
parts. Halfway through the course a written (theoretical), closed-book test is
given and at the very end, a practical problem solving and programming test is
given. The results of the two tests are added and graded as one. In addition to
this, the students have mandatory assignments and some of them orally assessed.
The idea of splitting the examination into two tests with rather different focus
was appreciated by the students. Furthermore, the exam results better reflect
student skills than a single pen-and-paper test.

Emphasise the limitations of computers (P11). This principle had its
origin in the numerical tradition of our department. We make students aware
of problems and limitations in data representation and how these can lead to
erroneous computations. We emphasise this by discussing examples leading to
unexpected results in logically correct programs.

5 Lessons Learned

In this section, we briefly summarise the practices that worked particularly well
for us. We have grouped them together into recommendations to make them
easily accessible to the reader.

Teach “object thinking” and modelling explicitly.

– Start the first lecture with a modelling or role-play activity (no syntax in-
volved). Students can be asked then to describe (model) an employee or a
ticket-machine to illustrate the basic object properties (state, behaviour and
identity).

– Introduce CRC-cards and scenario role-plays. This provides students with
a framework to think in terms of (active) objects and their responsibilities.
Furthermore, it teaches them basic modelling/ problem solving skills.

92 J. Börstler et al.

– Introduce role-play diagrams so that students easily can track and document
scenario role-plays. This also helps to prevent some problems inherent in the
original CRC approach [Börstler, 2005; Börstler and Schulte, 2005].

Schedule guided and supervised lab activities. Programming is a skill
that needs to be trained extensively. Students should visit the labs as frequently
as possible and receive immediate help when getting “stuck.”

– Reduce the number of traditional lectures and introduce supervised lab ses-
sions instead. Guide students through practical exercises in the labs. We
provide for example step-by-step guides, including reflective questions, which
the students have to work through. Lecturers and teaching assistants should
always be present to discuss and resolve problems.

– As much as possible, move supervising time from office rooms to the com-
puter labs to force students to visit the labs to ask questions.

Use and utilise a suitable programming environment. The environment
must be easy to use and to support the object-oriented paradigm. However, it is
also important to show how programs are developed and executed outside such
an environment. We have used BlueJ [BlueJ, 2007] successfully since 2001.

Examine the “right” things. It is important to assess actual and individual
programming skills in addition to conceptual and syntactical knowledge. This
can be done, for example, by practical computer based tests (problem-solving and
programming) and individual oral demonstrations of mandatory assignments.

There is no course design that fits all target groups. Different groups
of students need different types or flavours of courses. It is important to be
sensitive to changes in the field as well as the context and the environment of
a course [Forte and Guzdial, 2005; Jenkins and Davy, 2000; and Using On-line

Tutorials in Introductory IT Courses by Thomsen]. Our principles have been
a useful guideline to us when adopting the course to different student groups.
The principles make sure that the core of the course is the same and taught in
roughly the same way, regardless of lecturer and student group.

Do not lull students and teachers into false security. Fill-in-the-blanks
guides and exercises can give a faulty feeling of students’ subject mastery. Too
much help or undemanding tasks can lead to mechanical answering. If no re-
flection or second thought is necessary, then students can successfully complete
such exercises without learning anything. Also, teacher expectations about what
the students really have learnt might be too high.
Good examples are crucial, but very hard to develop. Truly object-
oriented examples are very difficult to find or to develop. Educators should resist
constructing examples “on-the-fly” (for example to exemplify a specific feature),
since they rarely will follow principles P1, P4 and P6.

Transitioning to OOP/Java — A Never Ending Story 93

– Programming in a true object-oriented style often leads to overly (unneces-
sary) complex examples, due to the additional layers of abstraction imposed
by the paradigm. This can be frustrating to students since they cannot under-
stand why the different abstraction layers are necessary (e.g., “Why should I
do it like that, it’s easier and faster to read the information directly from the
database”). It is a challenge for the teacher to explain that optimization is
secondary to a good object-oriented design. Our main goal is to devise a good
solution that fulfils certain quality criteria and not to simply make it work
somehow. Students are not mature enough to differ between optimizations
and proper design.

– Although often claimed, there is no 1:1 relationship between real-world ob-
jects and their corresponding software abstractions. A physical book for ex-
ample is removed from the library, when it is checked out. A book object
in a (software) model, however, stays in the library and is only marked as
“on loan.” Furthermore, in a “real world” library, we would never make the
borrowers responsible for keeping track of their unpaid overdue fines. In a
(software) model however, this might be a good design choice since trust is
no issue there.

Keep students active. Data collected during the SI-projects shows without a
doubt that student attendance and activity correlate with course results [Aren-
dale, 1997; Kallin Westin and Nordström, 2003, 2004.] Mandatory in-lab exer-
cises and a two-stage examination keep the students alert and active from the
start. SI gives the students opportunities to work with the course material in a
structured way and helps them to recognise the strength of collaboration. After
introducing SI, the attendance rate on the examination rose from 80 percent to
above 95 percent (see Section 6, in particular Figure 4).

6 Discussion

When analysing student performance over the years (see Figures 4 - 6) our case
for a “truly-objects-first” approach does not look convincing. However, there are
also external factors affecting student performance. These factors have lead to
considerable changes in the student population in recent years.

Assessment consists of mandatory assignments, a pen-and-paper test and a
computer-based test (see P10 in Section 4.3). In Figure 4, the passing rate after
the first opportunity to finish the course is shown as a solid line. Java was
introduced in 1998 and our “truly” object-first approach was introduced in 2002
(see Figure 2). The dashed line in Figure 4 shows the attendance rate on the exam
(i.e. the proportion of students submitting at least one mandatory assignment or
attempting at least one test). SI was introduced in 2002 to raise attendance rates
and it seems to have an effect8. Participation in SI correlates with overall student
8

In 2001, the seemingly high attendance rate was due to an examination system where

handing in assignments (not necessary correct ones) gave credit points on the final

exam. The numbers for 2001 in figures 4 - 6 must be seen, therefore, as statistical

outliers.

94 J. Börstler et al.

Fig. 4. Performance data for CS majors on our introductory programming course. The

solid line represents the passing rate after the first opportunity to finish the course. The

dashed line represents the proportion of students submitting at least one mandatory

assignment or attempting at least one test.

Fig. 5. Performance data for CS majors on the discrete mathematics course, compared

to our introductory programming course (cf. figure 4)

Transitioning to OOP/Java — A Never Ending Story 95

Fig. 6. The number of students per seat on our programme is shown as a dotted line

added to Figure 5

performance. Unfortunately, the weakest students seem not to be motivated
to participate in SI. An investigation of the students with severe problems in
keeping up with the pace of the curricula of the programme showed that a vast
majority had not attended SI at all, or only tried it a few times.

Another factor is that knowledge and skills in mathematics have been de-
creasing in general [Högskoleverket, 1999; Helenius and Tengstrand, 2005]. It is
believed that mathematical ability is strongly connected to performance in intro-
ductory programming [Denning, 2004]. Skills, like (array) indexing and creating
series of numbers seem to be more of a problem nowadays. Students also have
a weak understanding of functions, in particular, their parameters and return
(computed) values. This lack of understanding might result in the assumption
that the only possible way to get something out of a method is by printing a
string to the screen. We strongly believe this contributes to the lower passing
rates, especially for mandatory assignments.

Our CS majors take a course in discrete mathematics in the same term as their
introductory programming course. In Figure 5, we can see that the students also
have problems in the discrete mathematics course. Attendance rates are even
lower in discrete mathematics where students only have a single traditional exam
at the end of the course. However, in the introductory programming course, a
student needs to attend only one of the three exam parts to be counted as
“active”. This might falsely indicate high attendance rates.

The dotted line in Figure 6 represents the number of students per seat. In
Sweden, each programme has a fixed number of student seats available. The
applications to IT-related programmes have severely suffered from the turbulent
situation within the IT business. Practically, this means that all students apply-
ing are admitted as long as they fulfil the basic prerequisites. Historically, we

96 J. Börstler et al.

have had 2 to 3 applications for each seat available, resulting in a higher grade
average for the students admitted.

A further factor is a shift in motivation among novices. In a study we per-
formed in 1994, the main reason for students applying for our programme was
an interest in the subject itself (or in mathematics). In a later study, the motiva-
tion had shifted to “want high salary,” “want to be a civil engineer,” and other
reasons not connected to the subject or the programme itself. Thus, students’
interest in computing science is far from obvious [Kallin Westin and Nordström,
2001, 2003; Eliasson et al., 2006a,b]. Similar trends are reported internationally
[Forte and Guzdial, 2005; Jenkins and Davy, 2000].

7 Related Work

There have been several attempts to explain why students are having difficulties
in their first Java course. Three common explanations are the following:

– The students can program, they are just having problems with the design
part [McCracken et al., 2001].

– We are not teaching object-orientation the correct way, we need to teach the
subject in a pure, object-oriented way [Bergin, 2000a; Kölling and Rosenberg,
2001.]

– Java has so many special cases, like public static void main and string
handling so that it becomes difficult for the students to remember and to
understand all the special cases [Bruce et al., 2005].

In a multi-national cross-university study, [McCracken et al., 2001] investigated
how well students actually could program. They proposed a list of five steps that
students should be able to follow successfully after passing CS1.

– Abstract the problem from its description.
– Generate sub-problems.
– Transform sub-problems into sub-solutions.
– Recompose the sub-solutions into a working program.
– Evaluate and iterate.

The results from this study were disappointing. The students’ programming
skills were at a much lower level than expected. Somewhat surprising, the most
difficult part seemed to be the first step (e.g., to abstract the problem).

[Lister, 2004] followed up on these results and investigated students’ ability
to read, to understand and to modify existing code. Here, the results were dis-
appointing also. A surprisingly large proportion of the students had difficulties
completing even the most basic tasks. It seems that students not only have prob-
lems with the abstraction step, they also have problems with the more basic task
of reading and understanding code.

[Lister, 2004] also investigated the annotations students made while solving
the problems. In general, it turns out that students who carefully trace executions
are more likely to provide correct answers than those who do not. However,

Transitioning to OOP/Java — A Never Ending Story 97

there are considerable differences between universities [McCartney et al., 2005].
Students from some universities used annotations (traces) to a very high degree
while others did not.

Considering the scope of this book it is interesting to note that the two uni-
versities with the least annotations are in Sweden and Denmark. Despite the low
annotation level, these students performed on average compared to the students
from other universities. Whether this is a coincidence or due to differences in
object-oriented programming education needs to be further investigated.

8 Summary and Conclusions

The transition to object-orientation is not easy. It is not sufficient to simply
change the language of instruction in an otherwise traditional introductory pro-
gramming course. The strong relationships between basic, objected-oriented con-
cepts constitute a high threshold to the learning and teaching of programming.
Considerable changes to the course design are necessary to convey to the students
the real power of the object-oriented approach.

We have presented and evaluated a set of eleven principles for course design
that have helped us to stay on track in our efforts continuously to improve our
introductory programming course. We have seen several factors that influence
the results of an introductory programming course apart from the course itself.
Attendance rates drop on all parts of the course and many students seem to
think that knowledge can be acquired passively.

It is our firm believe that it is necessary to be faithful to the object-oriented
approach. Tools that help students to “think in objects” are very important
for successfully teaching basic object-oriented concepts. We must provide our
students with a consistent frame of reference. This frame of reference will change
with the knowledge and skills the students acquire. However, its core (i.e., the
basic rules) should not be constantly contradicted by our own exercises and
examples.

80

Paper II

Heuristics for Designing Object-Oriented Examples for Novices

81

Heuristics for Designing Object-Oriented
Examples for Novices
MARIE NORDSTRÖM and JÜRGEN BÖRSTLER
Umeå University

Research shows that examples play an important role for cognitive skill acquisition, and students
as well as teachers rank examples as important resources for learning to program. Students use
examples as templates for their work. Examples must therefore be consistent with the principles
and rules of the topics we are teaching.

Despite many generally accepted object oriented principles, guidelines and rules, textbook
examples are not always consistent with those characteristics. How can we convey the idea of
object orientation, using examples showing "‘anti"’-object oriented properties?

Based on key concepts and design principles, we present a number of heuristics for the design
of object oriented examples for novices. We argue that examples adhering to these heuristics are
of higher object oriented quality than examples that contradict them.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; K.3.2 [Computers and Education]: Computer and Information Science Educa-
tion—Computer science education

General Terms: Principles, Guidelines, Examples

Additional Key Words and Phrases: Example programs, object-orientation, design, quality

1. INTRODUCTION
Examples play an important role in learning, both teachers and learners consider
them to be the main learning tool [Lahtinen et al. 2005]. Research also shows that
the majority of learning takes place in situations where students engage in problem
solving tasks [Carbone et al. 2001]. In a recent survey of pedagogical aspects of
programming, Caspersen concludes that examples are crucial:

Studies of students in a variety of instructional situations have shown

that students prefer learning from examples rather than learning from

other forms of instruction Students learn more from studying ex-

amples than from solving the same problems themselves [Caspersen
2007, p. 27]

To be useful, examples must help a learner to draw conclusions and to make in-
ferences and generalisations from the presented information [Chi et al. 1989; Pirolli
and Anderson 1985]. Since examples do not distinguish incidental from essen-

Author’s address: Marie Nordström, Department of Computing Science, Umeå University, SE-
90187 Umeå, Sweden; email: marie@cs.umu.se.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c� 2010 ACM 0000-0000/2010/0000-0001 $5.00

ACM Journal Name, Vol. 1, No. 2, 04 2010, Pages 1–21.

2 · Marie Nordström and Jürgen Börstler

tial, or even intended, properties, we argue that examples developed according to
established practices and experience are a necessity for the example to promote
(accurate) generalisation. Novices should be able to use examples to recognize pat-
terns and distinguish an example’s accidental surface properties from those that
are structurally or conceptually important. By continuously exposing students to
well-designed examples, important properties are reinforced. Students will even-
tually gain enough experience to recognize general patterns that help them telling
apart “good” and “bad” designs.

Though largely debated, object orientation is commonly used for introducing
problem solving and programming to novices. The strength of object orientation
lies in the handling of complexity in the design of large-scale system, with high
demands on maintenance, flexibility and reusability. The educational situation,
however, is rather different and does not fit these strengths well. Introductory
examples are often small. Furthermore, the design space for examples is restrained
since many concepts and syntactical elements might not have been introduced yet.

In the following, we will use the term small-scale for the specific situation of intro-
ducing object orientation to novices. A small-scale example is a program, example,
or exercise intended for novices in order to present or illustrate a certain concept
or feature of object oriented problem solving and programming. Small-scale signif-
icantly limits the design space of examples. The size of examples, the repertoire
of concepts and syntactical components, and the need to present concepts in isola-
tion are limiting conditions. Furthermore, we have to support object-thinking, and
we have to be careful with the context or problem domain we choose. Neverthe-
less, we argue that one has to be truthful to the paradigm chosen for introductory
programming, otherwise novices might not recognize any patterns.

Based on commonly agreed upon object oriented principles, guidelines and rules,
we propose a number of heuristics for the design of example programs. We argue
that examples developed according to established practices and experience will lead
to suitable role-models. The proposed heuristics address object oriented quality in
example programs independent of any particular choice of instructional design or
sequence of concept-introduction.

2. RELATED WORK

Various aspects of teaching object orientation to novices have been addressed by
many excellent professionals and educators, but the quality of examples has not
been discussed in a systematic way. Specific common example programs, like
“HelloWorld”, have been critically discussed for a long time [Westfall 2001] and
there have been ongoing debates on the object-orientedness of this and similar ex-
amples [CACM 2002; Dodani 2003; CACM Forum 2005]. However, all of these
discussions have focused on technicalities, rather than conceptual object oriented
qualities of the examples. A recent study of the quality of example programs in
common introductory programming textbooks shows that there is much room for
improvements [Börstler et al. 2009; Börstler et al. 2010].

McConnell and Burhans [2002] examined how the coverage of basic concepts in
programming textbooks has changed over time. They conclude that “there has been
a trend of decreasing coverage for basic programming and subprogram concepts as
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 3

other more current material has been added”. In general, it seems as we are focusing
more on syntactical issues than on problem solving. This view is also supported
by De Raadt et al. [2005], who examined 49 textbooks used in Australia and New
Zealand according their compliance with the ACM/IEEE curriculum recommenda-
tions.

It has been argued that object orientation is a “natural” way for problem solv-
ing, but several studies question this claim [Guzdial 2008]. In particular, it seems
that novices have more problems understanding a delegated control style than a
centralised one [Du Bois et al. 2006], which is critical for understanding object
oriented programs. Such difficulties in understanding program execution have also
been studied by Ragonis and Ben-Ari [Ragonis and Ben-Ari 2005b]. They conclude
that “[i]t is futile to expect that a teaching approach (like objects-first) or a peda-
gogical tool (like BlueJ) will be able to solve all problems that students have when
learning a subject”.

A common result in many studies is that novices have a hard time understanding
the difference between class and object/instance (see for example [Eckerdal and
Thuné 2005; Ragonis and Ben-Ari 2005a; Sanders et al. 2008]). Holland et al.
[1997] discuss a number of misconceptions concerning the concept of an object and
suggest examples and exercises to avoid them. Fleury [2000] shows examples of
erroneous student-constructed rules that could be avoided by more carefully defined
examples.

A coarse categorization of “harmful examples” is provided by Malan and Halland
[2004]: Examples that are too abstract, Examples that are too complex, Concepts

applied inconsistently, and Examples undermining the concept introduced. However,
they do not discuss instructional guidelines to address these problems.

3. ESSENTIAL CONCEPTS AND PRINCIPLES OF OBJECT ORIENTATION

In [Nordström 2009], we have reviewed the literature to identify a small set of
commonly accepted basic object oriented concepts (e.g. [ACM 2008; Armstrong
2006; Henderson-Sellers and Edwards 1994; Kramer 2007]). We have furthermore
reviewed design principles, guidelines, rules, and metrics for object oriented design
(e.g. [Bloch 2001; Fowler et al. 1999; Gamma et al. 1995; Gibbon 1997; Grotehen
2001; Martin 2003; Riel 1996]). These sources, together with the literature on
student problems and misconceptions (see Section 2), as well as our own and other
educators’ teaching experiences have formed the input for defining a small set of
heuristics for defining small-scale example programs.

Figure 1 gives an overview over the types of sources we have considered in this
work.

Within the small-scale context it is often difficult to follow all “good advise”.
In a perfect world, we should for example always put the main-method into a
separate class (to emphasize proper encapsulation) and feature multiple instances
of at least one class (to emphasize the difference between classes and objects). In
an educational context, however, we prefer small and concise examples, very often
for purely pragmatical reasons (to make them fit on a page for example). If we
want it or not, our examples will be used as role-models by our students. If we
do not give them example programs of high quality, we cannot expect high quality

ACM Journal Name, Vol. 1, No. 2, 04 2010.

4 · Marie Nordström and Jürgen Börstler

!"#$%&'$()"*+ ,-#(."

/*#(' 00 ')"'-1$#! "#$#
%&'()**+ &,-./,01$

!"#$%&'$()"*+ ,-#(."!
"#$# %'23,4 "/ 32#)**5!

(0.2"6)**78
2-*'3(". -41-%(-"'-

056-'$
7(#')"'-1$()"#! "#$#

8),- #7-++# *",
%-9*'$)%(".#! "#$#
%90:2", +;;;8

%&'()**+! &,-./,01$
)**58 %<02231= +;;>! ?3$01@.

31= A"1 &,@)**78

8),(". .&(,-+("-#! "#$#
%A20BC)**+! (3,/@1

)**D8

?"E@":F

00 ,-#(." 3-&%(#$('#!
"#$# %?@"2 +;;58

% 0 " ;;;8 **D8

:)9$;*%- 7-*#&%-
7-"$! "#$# %G31H3 "/ 32#
)**7! 'C@=3-I", 31=

J"-",", +;;+8
?"E@":F
&1326.@.00 ,-#(." 1%("'(1+-#!

"#$# %("6", +;;>!
(3,/@1)**K8

<-#(." =*$$-%"#! "#$#
%L3--3 +;;78

<"%=8M,@./@B.<"%=8M,@./@B.

Fig. 1. Types of sources used as input for defining educational design heuristics.

code in return.

4. HE[D]URISTICS
The intention of our He[d]uristics is to support the design of exemplary examples.
The He[d]uristics are targeted towards more general design characteristics. Specific
detailed guidelines, like keeping all attributes private, are not stated explicitly.
However, they are implicitly included in the more general guidelines. This made it
possible to define a small, but powerful set of “rules” that can be easily handled:

(1) Model Reasonable Abstractions
(2) Model Reasonable Behaviour
(3) Emphasize Client View
(4) Favour Composition over Inheritance
(5) Use Exemplary Objects Only
(6) Make Inheritance Reflect Structural Relationships

We want to stress that the He[d]uristics are independent of a particular pedagogy
(objects first/late, order of concepts, ...), language, or environment.

4.1 Model Reasonable Abstractions
Abstractions are at the heart of object orientation. An abstraction focuses on the
essential properties of objects from the perspective of a particular viewer or “user”
and suppresses accidental, internal details [Booch 1994]. A good abstraction makes
the objects of interest easier to handle, mentally, since we do not need to constantly
think of all the details that might complicate their handling.

An abstraction should also be plausible, both from a software perspective as
well as from an educational perspective. In particular, it must be plausible seen
through the eyes of a novice. Concept formation is driven by cognitive economy
and inference [Rosch 1999]. A good classification provides a maximum amount of
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 5

information about (the properties of) a particular instance with the least cognitive
effort. Concept formation is also influenced by the knowledge of and experience
with the things that are categorized. A novice’s concept formation will therefore
be very different from an experienced software developer or domain expert. Which
properties are perceived as meaningful or not can therefore be very different [Rosch
1999].

In an educational context, we often make simplifications to decrease a problem’s
size and complexity. These simplifications should, however, never lead to non-
intuitive or artificial classes and objects. It must be possible to imagine a client1
using the objects we are modelling and the objects must model some meaningful
entity in the problem domain.

To promote the understanding of objects, it is important to emphasize the basic
characteristics of objects: identity, state and behaviour. Among other things, this
implies that classes modelling mere data containers are not exemplary. To develop
real software systems, one would, of course, need such non-exemplary classes. Gil
and Maman [2005], for example, showed that a significant portion of the classes
in common Java software are “degenerate”. However, we argue that novices should
internalize the basics rules, before turning to the exceptions.

For the small-scale context, the Single Responsibility Principle (SRP) [Martin
2003] implies few attributes and few methods. Furthermore, the educational con-
ditions of a small-scale example will preferably result in few lines of code. Keeping
the abstraction focused with few collaborators means less passing of parameters.
Encapsulation and information hiding should also be emphasized.

Another important implication of Model Reasonable Abstractions is that context
is critical to the abstraction. It is close at hand to use objects from real life as
examples. But, with every day life examples it is important to explicitly discuss
the differences between the model and the modelled. It is difficult for a novice to
accept that a model has behaviour and responsibilities that its real-life counterpart
never would have [Börstler 2005].

What differs good from bad often depends on small details. For example, for
illustrating smaller syntactical components it is not uncommon to use a single
application class and place the example in the main-method, see Listing 1. This
example is not contributing to a novice’s understanding of object orientation. If
we want to promote the ideas that (1) an object oriented program is a system
of communicating objects and that (2) each object represents an individual real
or abstract entity with a well-defined role in the problem domain, such examples
might do more harm than good. There are no obvious objects in this example.
Furthermore, main does neither represent any behaviour of an object, nor is it
explicitly called. To avoid potential confusion, we should avoid to turn a single
main into the entire program.

Listing 1. Application illustrating a for-loop.
public class Ex

{

1We use the term client to refer to classes/objects that make use of the resources provided by the
class/object under development.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

6 · Marie Nordström and Jürgen Börstler

public stat ic void main(string [] args)

{

int i = 0;

for (int j=0; j<10; j++)

{

i = i+j;

}

System.out.println("Sum = " + i);

}

} //class Ex

To make abstractions reasonable, they should be taken from a domain that is
easy to explain and/or familiar to the novices. A typical domain are simple games.
The following class a familiar or easy to explain domain. A class modelling a
playing card might be a suitable candidate (see Listing 2) [Wick et al. 2004]. But
what are the essential properties of playing cards this abstraction is focussing on?
A card has a rank and a suit, but these are fixed and cannot be set randomly
from the outset. Furthermore, exposing the “accidental” realization of essential
properties actually works against the main goal of abstraction. Mentally handling
Card objects becomes actually more complex instead of easier.

Listing 2. Non-reasonable abstraction for playing card objects (see [Wick et al.
2004].)
public class Card

{

private int rank; // 2 .. 14

private char suit; // ’D’, ’H’, ’S’, ’C’

public int getRank ()

{

return rank;

}

public void setRank(int r)

{

rank = r;

}

public char getSuit ()

{

return suit;

}

public void setSuit(char s)

{

suit = s;

}

...

} //class Card

ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 7

4.2 Model Reasonable Behaviour
A real problem in defining examples for novices is that educators have only a
limited set of concepts and syntactical elements to play with. Not everything can be
introduced in the first lecture. Examples must be simple enough to not overwhelm
a novice with new concepts or syntax, but still feature meaningful object behaviour.
Discussing what a client might expect in terms of consistency and logic will most
likely extend an example, but will also empower novices in terms of analysis and
design thinking. What is reasonable is highly dependent on the context of an
example. Without explicit context (like a “cover story” or client classes), the actual
meaning of the concept of behaviour is difficult to understand.

When reviewing the playing card example from Listing 2, we should ask ourselves
which behaviour would be appropriate for a class Card. Changing rank or suit would
not be reasonable. The cards in a deck never change suit or value. It might be
much more reasonable to have some comparison behaviour between Card-objects.
Depending on the context for the cards, one suggestion could be Listing 3.

Listing 3. Improved Card class (see [Wick et al. 2004]).
public class Card

{

private int rank; // 2 .. 14

private char suit; // ’D’, ’H’, ’S’, ’C’

public Card(int r, char s)

{

// Validating rank (r) and suit (s) to construct

// valid cards only!

...

this .rank = r;

this .suit = s;

}

public boolean isDiamond ()

{

return suit == ’D’;

}

public boolean isHigherThan(Card c)

{

return this .rank > c.rank;

}

...

} // class Card

Reasonable behaviour also means emphasizing the difference between a model
and the modelled. A software object does not necessarily have exactly the same
behaviour and characteristics as its real world counterpart. In a library system
it would, for example, be reasonable for a borrower object to be responsible for
keeping track of its outstanding fees. In real life, however, this would be a bad
idea. It is important to convey that we do not model the real world, we model
systems that solve problems that originate from the real world. This is a subtle,
but quite significant difference. Therefore, we have to make an effort to aid novices

ACM Journal Name, Vol. 1, No. 2, 04 2010.

8 · Marie Nordström and Jürgen Börstler

in separating the model from the modelled.
Using code snippets without context leaves it up to the learners to imagine the

means and ends of an object’s behaviour, where this particular code snippet makes
sense. We argue that code snippets do not support “object-thinking”, but direct fo-
cus from the underlying concepts to syntactical details. They actually work against
the ideas of abstraction and behaviour, which are central to object orientation.

The for-loop in Listing 1, for example, does not aid the understanding of why,
when, and how objects would or should have this kind of behaviour. The problem
seems highly artificial and it is hard to imagine where summing up 0–10 could be
used “for real”.

Like code snippets, printing for tracing is also often used in example programs
for novices. We argue that printing for tracing not only is a bad habit, but contra-
dicts the very idea of abstraction and communicating objects. Novices are misled
to believe that results can only be returned by printing. In teaching practice, it is
tempting to use printing to, for example, show the values of (instance) variables
as the execution progresses. However, seeing “printing” in too many example pro-
grams, novices might conclude that it actually is necessary to do the printing to
“get things done”.

4.3 Emphasize Client View
Martin [2003] emphasizes that a model must be validated in connection to its clients.
This means there must be some context where such clients can “live”. From an
educational point of view a meaningful context plays an important role for dis-
cussing and contrasting the strength and weaknesses of different solutions. Taking
a clients’ view when discussing the design of a class, promotes the idea of objects as
autonomous, collaborating entities. With a meaningful context a particular design
gets a purpose. An educator can explain why a certain model is the way it is. Again
this helps focusing on concepts instead of syntactical details.

It is crucial to discuss the responsibilities and services of an object as indepen-
dently as possible from their internal representation and implementation in terms
of methods and attributes. We argue that this promotes “object thinking” [West
2004] and makes object oriented problem solving easier for novices. Meyers [2004]
gives the following practical advice for defining the protocol/interface of a class:
“anticipate what clients might want to do and what clients might do incorrectly”.
On the other hand, each object should only have a single well-defined responsibility
and only contain necessary “features” (see Single Responsibility Principle and In-

terface Segregation Principle [Martin 2003]). For examples without context these
important issues cannot be discussed in a meaningful way.

The methods provided by a class must make immediate sense to a novice or a
good “cover story” must be provided that motivates object behaviour.

4.4 Favour Composition over Inheritance
Inheritance is the concept that distinguishes object orientation from other paradigms.
It is therefore given significant coverage in introductory object oriented program-
ming. Introducing inheritance early typically leads to very simple examples, since
novices only have mastered a very limited repertoire of concepts and syntactical
constructs. Early examples are therefore usually too simple to show the real power
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 9

of inheritance. Furthermore, inheritance is often used to exemplify code reuse,
which generally is considered a problematic motivation for inheritance [Armstrong
and Mitchell 1994] and may lead to typing problems [Liskov and Wing 1994], for
example when implementing a stack by inheriting from a vector or a queue.

Since inheritance is so powerful, it might easily be overused [Armstrong and
Mitchell 1994; Johnson and Foote 1988]. We argue that inheritance also might be
overeducated. There is so much focus on inheritance in introductory programming
that example programs often use inheritance where other solutions might actu-
ally be more suited. The usage of inheritance should be carefully considered and
discussed. Being careful with inheritance is important to guide novices toward a
proper use of inheritance. Novices must not be led to believe that inheritance has
to be used as the only relationship between classes.

A common pitfall is to model roles as classes [Fowler 1997; Reenskaug et al. 1996;
Skrien 2009; Steimann 2000] as in the common person/student/teacher example,
see Figure 2. Teacher and Student seem good examples of subclasses of Person,
since a teacher or a student “is-a” person. However, this model is neither flexible
nor extensible. Even in very simple contexts, like a course administration system,
students might act as teachers or teachers might take some courses. In model 2(a),
we would get the Person-attributes of persons with double roles twice. This will
lead to problems as soon as some of these attributes have to be changed. On might
argue that this could be a good example to motivate multiple inheritance. However,
this would not solve the problem, since roles will likely change dynamically during
the lifetime of a person.

!"#$
"%%&$''

!"#$%&

(&"%$'

'()*"&(

'")"&*

+",-."#

(a) Teacher and Student mod-
elled as subclasses of Person.

!"#$
"%%&$''

!"#$%&
(&"%$'

'()*"&(

'")"&*

+",-."#

(b) Teacher and Student modelled as
roles of Person.

Fig. 2. Inheritance versus composition (and delegation) [Skrien 2009].

The design patterns by Gamma et al. [1995] explicitly build on the principle of
favouring composition over inheritance. Skrien [2009] shows many examples of how
composition can lead to better designs.

4.5 Use Exemplary Objects Only
Learners use examples as role-models or templates for their own work [Lahtinen
et al. 2005]. All example properties, even incidental ones, will therefore affect
what students learn from the examples. The literature discusses many examples of
student-constructed rules or misconceptions that could be avoided by more careful
example design [Holland et al. 1997; Ragonis and Ben-Ari 2005b; Fleury 2000;
Malan and Halland 2004].

ACM Journal Name, Vol. 1, No. 2, 04 2010.

10 · Marie Nordström and Jürgen Börstler

To emphasize the notion of communicating objects, examples should actually
feature communicating objects, i.e. at least one explicit instance that sends a
message to another explicit instance. To emphasize the differences between ob-
jects and classes, examples should feature at least two instances of at least one
class. Otherwise students might infer that we need a new class for each new
object. However, many textbooks use one-of-a-kind examples heavily, like the
RobberLanguageCryptographer in Listing 42.

Listing 4. Example of a class modelling a one-of-a-kind object.
public class RobberLanguageCryptographer

{

public boolean isConsonant (char c) { ... }

public String encrypt(String s)

{

StringBuffer result = new StringBuffer ();

for (int i = 0; i<s.length (); i++)

{

char c = s.charAt(i);

result.append(c);

i f (isConsonant(c))

{

result.append(’o’);

result.append(c);

}

}

return result.toString ();

}

public String decrypt(String s) { ... }

}

In this example, multiple instances make no sense, unless it is explicitly shown
that different instances can produce different results given the same input. One
reason could be that the encoding-algorithm can vary among the the objects, de-
pending on some information submitted to the constructor. The constructor of
this example is missing, could be empty, and there are no attributes. This is trou-
blesome for novices, and it is not a good role-model for the definition of objects.
This class defines no state, only behaviour, sometimes even static, which is non-
exemplary for objects [Booch 1994]. In this case it is no more than two methods
(with a small helper, isConsonant) that easily could be the responsibility of some
other object. A small change can make this example more suitable as a role-model
for object orientation. One reason for more than one object of this kind is to let
the object take responsibility for knowing its substitution-character, then it will be
plausible to have many different cryptographers.

It is also important to be explicit, i.e. using explicit objects whenever possible.
Following the Law of Demeter is one way to make a design more explicit. Calling
methods of explicit objects instead of calling the nameless object resulting from a

2This example is actually taken from the exam solutions provided for an introductory programming
at a Swedish university.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 11

method call, makes the behaviour of objects less obscure. Anonymous classes is
way of making the example shorter which often is desired, but contradictory to the
needs of a novice. Since tracing is an important part of learning to program, avoid-
ing anonymous objects and classes, will decrease the cognitive load for a novice.
Avoiding anonymity and using explicit objects mean that the use of static elements
becomes an issue. Static attributes and static methods can confuse novice of the
concepts class, object and behaviour and should preferably be avoided, or deferred.

Another example of non-exemplary objects is when illustrating the instantiation
and use of objects within the class itself. To save space (examples should preferably
be short in terms of lines-of code!), a main method is added to the class, an object is
instantiated in main and the class’ own methods can be called, often to demonstrate
how to use objects of the class. In this case, an unnecessary strain is put on a novice.
It is artificial to instantiate an object inside a static method of the class. How can
something that does not exist create itself? Still one might argue for using the main-
method. One reason for insecurity among novices is the lack of control. A common
question is -How is this run? or -Where is the program? Dealing with objects, there
is no simple answer to these questions. One of the difficulties with object oriented is
the delocalised nature of activities. The flow of control is not obvious, and working
with complete applications is one way of gaining a sense of control for the novice
programmer. “This is a complete program - and I wrote it myself” is a comforting
feeling that should not be underestimated. This can be achieved by adding a class
with the single purpose of acting as a client in need of these objects. Through the
isolation of main, the boundaries of the abstractions/objects stay clear.

4.6 Make Inheritance Reflect Structural Relationships

Inheritance is often over-emphasized and misused when introducing hierarchical
structures early. To show the strength and usefulness of inheritance it is necessary
to design examples carefully. Behaviour must guide the design of hierarchies and
specialisation must be clear and restricted. The Liskov Substitution Principle (LSP)
promotes polymorphism, but restricts the relationship between the base class and
the derived class. This must be taken into account when designing examples. What
can be expected of an object of the base class must always be true for objects of
the derived class.

A common small-scale example for inheritance is the design of the geometrical
shapes rectangles and squares as shown in Listing 5.

Listing 5. A Rectangle class.
public class Rectangle

{

private double height , width;

public Rectangle(double h, double w)

{

setHeight(h);

setWidth(w);

}

public void setHeight(double h)

ACM Journal Name, Vol. 1, No. 2, 04 2010.

12 · Marie Nordström and Jürgen Börstler

{

height=h;

}

public void setWidth(double w)

{

width=w;

}

...

} //class Rectangle

From a mathematical point of view it might be possible to say that a square is
a specialised form of a rectangle (a rectangle with height = length). This could be
regarded a reasonable specialisation hierarchy, demanding only a small adjustment
in Square to make sure that its height and width are the same, see Listing 6.

Listing 6. Square derived from Rectangle.
public class Square extends Rectangle

{

public Square(double s)

{

super(s, s);

}

public void setHeight(double h)

{

super.setHeight(h); super.setWidth(h);
}

public void setWidth(double w)

{

super.setHeight(w); super.setWidth(w);
}

} //class Square

It is reasonable to believe that the designer of the method setWidth, assumed
that setting the width of a rectangle leaves the height unaltered. One could therefore
argue that Square violates the Liskov Substitution Principle which demands that
an object of a subclass can replace an object of its superclasses in any context.

Adhering to the design heuristic “only derive a class from an abstract class” [Riel
1996] would prevent some of the most common problems concerning both exem-
plifying and understanding inheritance. In our opinion, examples of inheritance,
should demonstrate that the base class is an unfinished description shared by struc-
turally related things. Even though geometrically a square might be regarded as a
rectangle, it is not true when talking about objects. The behaviour of the derived
class, Square, is not consistent with the expected behaviour of a Rectangle object.
From a structural point of view one could instead argue that Rectangle should
be a subclass of Square as shown in Figure 3. The inherited method changeSize

would be redefined to change width and height by the same factor.
An extensive discussion of this particular example is given in [Skrien 2009].

ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 13

changeSize(factor)

width

Square

changeSize(factor)
changeWidth(factor)
changeHeight(factor)

height

Rectangle

Fig. 3. Rectangle inheriting from Square.

Table I. Correspondence between accepted OO principles (rows) and He[d]uristics
(columns).

H
1:

R
ea

so
na

bl
e

A
bs

tr
ac

ti
on

s

H
2:

R
ea

so
na

bl
e

B
eh

av
io

ur
H

3:
E
m

ph
as

iz
e

C
lie

nt
V

ie
w

H
4:

Fa
vo

ur
C

om
po

si
ti
on

H
5:

E
xe

m
pl

ar
y

O
b
je

ct
s

H
6:

St
ru

ct
ur

al
R

el
at

io
ns

hi
ps

Single Responsibility Principle X X X X
Open− Closed Principle X

Liskov Substitution Principle X X
Dependency Inversion Principle X X
Interface Segregation Principle X X X

Law of Demeter X X
Favour Object Composition Over Class Inheritance X X

5. DISCUSSION
In [Nordström 2009], we have evaluated how well our He[d]uristics cover basic object
oriented concepts and commonly accepted object oriented design principles. The
results of this evaluation, summarized in Table I and Table II, show that all impor-
tant concepts and principles are covered well. This indicates that the He[d]uristics
actually address all properties of object orientation that are generally considered
relevant for novices. However, this does not show whether an example designed
according to these heuristics actually holds high object oriented quality or not.

In [Börstler et al. 2008], we present a checklist for evaluating the quality of
examples according to their technical, object oriented, and didactical quality. This
checklist was later refined and used in a large-scale study reviewing 38 example
programs from 13 common introductory programming textbooks [Börstler et al.
2009; Börstler et al. 2010]. Regarding object oriented quality, the checklist covered
the following quality factors:

—Reasonable Abstractions: Abstractions are plausible from an OO modelling per-
spective as well as from a novice perspective.

—Reasonable State and Behaviour : State and behaviour make sense in the pre-
sented software world context.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

14 · Marie Nordström and Jürgen Börstler

Table II. Correspondence between basic OO concepts (rows) and He[d]uristics (columns).

H
1:

R
ea

so
na

bl
e

A
bs

tr
ac

ti
on

s

H
2:

R
ea

so
na

bl
e

B
eh

av
io

ur
H

3:
E
m

ph
as

iz
e

C
lie

nt
V

ie
w

H
4:

Fa
vo

ur
C

om
po

si
ti
on

H
5:

E
xe

m
pl

ar
y

O
b
je

ct
s

H
6:

St
ru

ct
ur

al
R

el
at

io
ns

hi
ps

Responsibility X X X X
Abstraction X X X X

Encapsulation X X X X X
Information Hiding X X

Inheritance X X X
Polymorphism X X

Protocol/ Interface X X X X
Communication X X X X X X

Class X X X X
Object X X X X X X

Table III. Correspondence between OO quality factors (rows) and He[d]uristics
(columns).

H
1:

R
ea

so
na

bl
e

A
bs

tr
ac

ti
on

s

H
2:

R
ea

so
na

bl
e

B
eh

av
io

ur
H

3:
E
m

ph
as

iz
e

C
lie

nt
V

ie
w

H
4:

Fa
vo

ur
C

om
po

si
ti
on

H
5:

E
xe

m
pl

ar
y

O
b
je

ct
s

H
6:

St
ru

ct
ur

al
R

el
at

io
ns

hi
ps

Reasonable Abstractions X X X
Reasonable State and Behaviour X X X X
Reasonable Class Relationships X X

Exemplary OO X X X X
Promotes ��Object Thinking�� X X X X X

—Reasonable Class Relationships: Class relationships are modelled properly (the
“right” class relationships are applied for the “right” reasons).

—Exemplary OO code: The example is free of “code smells”.
—Promotes “Object Thinking”: The example supports the notion of an OO program

as a collection of collaborating objects.

The results of this study showed that the checklist captured the strengths and
weaknesses of examples well. There was also very high reviewer agreement, indicat-
ing that the checklist is a reliable evaluation instrument. Correspondencies between
the heuristics presented in the present paper and the checklist are summarized in
Table III. The table shows that the heuristics cover object oriented qualities well.

In the following, we will discuss our He[d]uristics with respect to the checklist re-
sults. Examples that scored low according to the checklist should indicate violation
of at least some He[d]uristics and examples that scored high should not violate any
He[d]uristic. We will furthermore discuss in which way the He[d]uristics can help
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 15

to improve an example.
An important type of example is the first user defined class (FUDC) novices

are confronted with. These examples are the initial frame of reference for novices’
perception of object orientation, and are therefore crucial. FUDC-examples must
therefore be exemplary and follow high standards. In [Börstler et al. 2010], we
examined 9 FUDC-examples that shifted significantly in their rating on object
oriented quality factors.

!

"

!

#

$

"

!

%&'()*'+,& -+(./'0.1)*(

%&'()*'+,& 2.'.& '*3 4&5'61)7/

%&'()*'+,& 8,'((%&,'.1)*(519(

$

#

$

"

!

$ " ! : ; < = > ? $# $$ $" $! $: $; $< $= $> $? "# "$

%&'()*'+,& -+(./'0.1)*(

%&'()*'+,& 2.'.& '*3 4&5'61)7/

%&'()*'+,& 8,'((%&,'.1)*(519(

@A&B9,'/C DD 8)3&

E/)B).&(FD+G&0. H51*I1*JF

!

"

$

#

$

"

!

$ " ! : ; < = > ? $# $$ $" $! $: $; $< $= $> $? "# "$

%&'()*'+,& -+(./'0.1)*(

%&'()*'+,& 2.'.& '*3 4&5'61)7/

%&'()*'+,& 8,'((%&,'.1)*(519(

@A&B9,'/C DD 8)3&

E/)B).&(FD+G&0. H51*I1*JF

!

"

$

#

$

"

!

$ " ! : ; < = > ? $# $$ $" $! $: $; $< $= $> $? "# "$

%&'()*'+,& -+(./'0.1)*(

%&'()*'+,& 2.'.& '*3 4&5'61)7/

%&'()*'+,& 8,'((%&,'.1)*(519(

@A&B9,'/C DD 8)3&

E/)B).&(FD+G&0. H51*I1*JF

!

"

$

#

$

"

!

$ " ! : ; < = > ? $# $$ $" $! $: $; $< $= $> $? "# "$

%&'()*'+,& -+(./'0.1)*(

%&'()*'+,& 2.'.& '*3 4&5'61)7/

%&'()*'+,& 8,'((%&,'.1)*(519(

@A&B9,'/C DD 8)3&

E/)B).&(FD+G&0. H51*I1*JF

!

"

$

#

$

"

!

$ " ! : ; < = > ? $# $$ $" $! $: $; $< $= $> $? "# "$

%&'()*'+,& -+(./'0.1)*(

%&'()*'+,& 2.'.& '*3 4&5'61)7/

%&'()*'+,& 8,'((%&,'.1)*(519(

@A&B9,'/C DD 8)3&

E/)B).&(FD+G&0. H51*I1*JF

Fig. 4. Average object oriented quality scores for the 21 examples in [Börstler et al. 2010] (range:
+3(extremely poor) .. -3(excellent)).

To illustrate the influence He[d]uristics might have on the design of examples we
examine two example from the study discussed above: one that scored low and one
that scored high.

The lowest-scoring FUDC-example models a GradeBook. In this example dif-
ferent components of the final class are introduced gradually and with each new
version a class GradeBookTest is shown that illustrates the instantiation and use of
GradeBook objects. Initially the class contains only a single method (displayMessage)
that prints a fixed string as a welcome message. For the second version a parameter
is added to the method to vary the welcome message. Next, an instance variable
for the course name and methods to get and set the course name are added. At this
stage the parameter in displayMessage is removed again. Finally a constructor is
added, see Listing 7 for the final (full) version of GradeBook.

Listing 7. First User Defined Class: GradeBook
// GradeBook class with a constructor to initialize the course name.

public class GradeBook

{

private String courseName; // course name

// constructor initializes courseName

public GradeBook(String name)

{

courseName = name; // initialize courseName

}

ACM Journal Name, Vol. 1, No. 2, 04 2010.

16 · Marie Nordström and Jürgen Börstler

// method to set the course name

public void setCourseName(String name)

{

courseName = name; // store the course name

}

// method to retrieve the course name

public String getCourseName ()

{

return courseName;

}

// display a welcome message to the GradeBook user

public void displayMessage ()

{

// this statement calls getCourseName to get the

// name of the course this GradeBook represents

System.out.printf("Welcome to the grade book for\n%s!\n",

getCourseName ());

}

} //class GradeBook

Using our He[d]uristics, we would evaluate the object oriented qualities of this
example in the following way:

(1) Model Reasonable Abstractions: What entity in the problem domain is this
class modelling? How can it be argued that this is a well chosen abstraction
representing a component in the problem domain? It would be reasonable for a
grade book to keep track of student records, but this is not mentioned explicitly,
and not supported in the details of the implementation.

(2) Model Reasonable Behaviour : This class does not have any behaviour at all,
and it is not indicated in the accompanying text what objects of this kind would
be needed for. It states: Class GradeBook will be used to display a message on

the screen welcoming the instructor to the grade-book application.
(3) Emphasize Client View : No discussion of whom the client might be is supplied

by the example. The object does not have state and behaviour, not even in its
final version.

(4) Favour Composition over Inheritance: There are no relationships introduced
in this problem, but if discussed what a GradeBook-object should be respon-
sible for (student records), it would have been possible to indicate this as a
composition of objects.

(5) Use Exemplary Objects Only : The example does not support the idea of many
objects. It starts with just a print method, and does not support the idea of
objects having state and behaviour.

(6) Make Inheritance Reflect Structural Relationships: Not applicable, since no
inheritance is used or needed in this example.

In comparison, we also want to take a look at a high-scoring example, modelling
a class Die, see Listing 8.
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 17

Listing 8. First User Defined Class: Die
public class Die

{

private f ina l int MAX = 6; // maximum face value

private int faceValue; // current value showing on the die

public Die()

{

faceValue = 1;

}

public int roll()

{

faceValue = (int)(Math.random () * MAX) + 1;

return faceValue;

}

public int getFaceValue ()

{

return faceValue;

}

public String toString ()

{

String result = Integer.toString(faceValue);

return result;

}

} //class Die

From the perspective of our He[d]uristics, we would argue as follows:

(1) Model Reasonable Abstractions: The abstraction is crisp and easy to under-
stand. It is also reasonable from a software perspective. It is easy to find
possible applications where such a class could make sense.

(2) Model Reasonable Behaviour : One would expect that a die can be rolled and
rolling should potentially change the die’s face value. That corresponds closely
to a die’s “behaviour” in reality. What seems less reasonable is that all dice
initially have a face value of 1. Also less reasonable is setFaceValue-method,
unless its existence is motivated by the context the example is set in. Further-
more, the Die interface is not minimal; the methods are not orthogonal. The
roll-method returns a new face value, although there is a method for accessing
the face value.

(3) Emphasize Client View : In its original context, the Die-example starts with a
test class exemplifying the instantiation and use of two Die-objects. However,
the usage scenario is not very convincing, since, for example, the face value of
a die is set manually.

(4) Favour Composition over Inheritance: Not applicable. There are no class rela-
tionships in this problem, nor does it seem sensible to extend the example.

(5) Use Exemplary Objects Only : It is easy to imagine applications with many
Die-objects. Die-objects have state, behaviour and a clear, well-defined (single)
responsibility. There are no superfluous printing methods and the toString-

ACM Journal Name, Vol. 1, No. 2, 04 2010.

18 · Marie Nordström and Jürgen Börstler

method just returns a die’s face value, leaving decisions about textual repre-
sentations up to the client.

(6) Make Inheritance Reflect Structural Relationships: Not applicable, since no
inheritance is used or needed in this example.

The issues raised above can be easily fixed, since the underlying abstraction is
reasonable. Small adjustments would turn the Die-class into an exemplary FUDC
example, see Listing 9.

Listing 9. First User Defined Class: Die – slighly adjusted
public class Die

{

private f ina l int FACES = 6; // a standard die has 6 faces

private int faceValue; // current value showing on the die

public Die()

{

roll (); // sets a random initial face value

}

public void roll()

{

faceValue = (int)(Math.random () * FACES) + 1;

}

public int getFaceValue ()

{

return faceValue;

}

public String toString ()

{

return Integer.toString(faceValue);

}

} //class Die

In this example it could be argued that the constant FACES should be declared
static, since it is supposed to be the same for all dice, and that it is better from
a design point of view to have the constant shared by all objects. It could also be
argued that it would be slightly more general to allow for the client to choose the
number of faces for a particular die.

Both of these objections are justifiable, but both have consequences. Declaring
the constant FACES static would require the novice to know the concept of static
elements of classes. Allowing for variable number of faces, means that the example
must have two constructors, the input value must be validated in some way, and
one constructor should call the other using this. All contributing in making the
example more complex.

So, it is really important to adjust an example to the actual situation where it is
being used. The knowledge of the learner could require compromises with software
quality demands, and the challenge is to find a balance to uphold the basic principles
of object orientation, and at the same time acknowledge the educational conditions.
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 19

6. CONCLUSIONS

In this paper, we have described a number of heuristics for the design of object
oriented examples for novices. The foundation for these heuristics are concepts and
principles constituting object orientation. We have also shown how these heuristics
can help in designing or improving examples.

In the He[d]uristics, the word reasonable is rather imprecise. What is reasonable
is context-dependent, and it is therefore vital to design examples carefully and to
discuss the differences in solutions depending on the contexts. Furthermore, reason-
able also indicates that the responsibility lies heavily on the designer of examples to
scrutinize what object orientation really means. As we all have experienced, this is
not a trivial task. There are many limiting conditions to take into account in teach-
ing, and in small-scale examples we always have to compromise. It is important
to take into consideration that examples always fulfill several purposes. One is the
very immediate one; exemplifying a certain concept or construction, syntactical or
semantical, but there is also a more generic exemplification of the paradigm itself
and what could be called object thinking.

However, surprisingly often, being particular about details can make all the dif-
ference when it comes to upholding object oriented quality.

REFERENCES

ACM. 2008. Computing curricula update 2008. http://www.acm.org/education/curricula/

ComputerScienceCurriculumUpdate2008.pdf. Last visited: 2008-12-15.
Armstrong, D. J. 2006. The quarks of object-oriented development. Communications of the

ACM 49, 2, 123–128.
Armstrong, J. and Mitchell, R. 1994. Uses and abuses of inheritance. Software Engineering

Journal 9, 1, 19–26.
Bloch, J. 2001. Effective Java Programming Language Guide, 1st ed. Addison-Wesley.
Booch, G. 1994. Object-Oriented Analysis and Design with Applications, 2nd edition. Addison-

Wesley.
Börstler, J. 2005. Improving crc-card role-play with role-play diagrams. In Conference Com-

panion 20th Annual Conference on Object Oriented Programming Systems Languages and
Applications. ACM, 356–364.

Börstler, J., Christensen, H. B., Bennedsen, J., Nordström, M., Kallin Westin, L.,
Jan-ErikMoström, and Caspersen, M. E. 2008. Evaluating oo example programs for cs1.
In ITiCSE ’08: Proceedings of the 13th annual conference on Innovation and technology in
computer science education. ACM, New York, NY, USA, 47–52.

Börstler, J., Hall, M. S., Nordström, M., Paterson, J. H., Sanders, K., Schulte, C.,
and Thomas, L. 2009. An evaluation of object oriented example programs in introductory
programming textbooks. Inroads 41, 126–143.

Börstler, J., Nordström, M., and Paterson, J. H. 2010. On the quality of examples in intro-
ductory java textbooks. The ACM Transactions on Computing Education (TOCE) Accepted
for publication.

CACM. 2002. Hello, world gets mixed greetings. Communications of the ACM 45, 2, 11–15.
CACM Forum. 2005. For programmers, objects are not the only tools. Communications of the

ACM 48, 4, 11–12.
Carbone, A., Hurst, J., Mitchell, I., and Gunstone, D. 2001. Characteristics of program-

ming exercises that lead to poor learning tendencies: Part ii. In ITiCSE ’01: Proceedings of
the 6th annual conference on Innovation and technology in computer science education. ACM,
New York, NY, USA, 93–96.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

20 · Marie Nordström and Jürgen Börstler

Caspersen, M. E. 2007. Educating novices in the skills of programming. Ph.D. thesis, University
of Aarhus, Denmark.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and Glaser, R. 1989. Self-
explanations: How students study and use examples in learning to solve problems. Cognitive
Science 13, 2, 145–182.

De Raadt, M., Watson, R., and Toleman, M. 2005. Textbooks: Under inspection. Tech.
rep., University of Southern Queensland, Department of Maths and Computing, Toowoomba,
Australia.

Dodani, M. H. 2003. Hello world! goodbye skills! Journal of Object Technology 2, 1, 23–28.
Du Bois, B., Demeyer, S., Verelst, J., and Temmerman, T. M. M. 2006. Does god class de-

composition affect comprehensibility? In SE 2006 International Multi-Conference on Software
Engineering, P. Kokol, Ed. IASTED, 346–355.

Eckerdal, A. and Thuné, M. 2005. Novice java programmers’ conceptions of "object" and
"class", and variation theory. In ITiCSE ’05: Proceedings of the 10th annual SIGCSE confer-
ence on Innovation and technology in computer science education. ACM, New York, NY, USA,
89–93.

Fleury, A. E. 2000. Programming in java: Student-constructed rules. In Proceedings of the
thirty-first SIGCSE technical symposium on Computer science education. 197–201.

Fowler, M. 1997. Dealing with roles. In Proceedings of the 4th Pattern Languages of Program-
ming Conference (PLoP).

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. 1999. Refactoring: im-
proving the design of existing code. Addison-Wesley Longman Publishing Co., Inc.

Gamma, E., Helm, R., Ralph, E. J., and Vlissides, J. M. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman.

Gibbon, C. 1997. Heuristics for object-oriented design. Ph.D. thesis, University of Nottingham.
Gil, J. Y. and Maman, I. 2005. Micro patterns in Java code. In Proceedings of the 20th

Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages,
and Applications. San Diego, CA, USA, 97–116.

Grotehen, T. 2001. Objectbase design: A heuristic approach. Ph.D. thesis, University of Zurich,
Switzerland.

Guzdial, M. 2008. Paving the way for computational thinking. Commun. ACM 51, 8, 25–27.
Henderson-Sellers, B. and Edwards, J. 1994. BOOK TWO of object-oriented knowledge: the

working object: object-oriented software engineering: methods and management. Prentice-Hall,
Inc.

Holland, S., Griffiths, R., and Woodman, M. 1997. Avoiding object misconceptions. In
Proceedings of the 28th Technical Symposium on Computer Science Education. 131–134.

Johnson, R. and Foote, B. 1988. Designing reusable classes. Journal of Object-Oriented
Programming 1, 2 (June/July).

Kramer, J. 2007. Is abstraction the key to computing? Communications of the ACM 50, 4,
36–42.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H. 2005. A study of the difficulties of novice
programmers. In Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. 14–18.

Liskov, B. H. and Wing, J. M. 1994. A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16, 6, 1811–1841.

Malan, K. and Halland, K. 2004. Examples that can do harm in learning programming. In
Companion to the 19th Annual Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. 83–87.

Martin, R. C. 2003. Agile Software Development, Principles, Patterns, and Practices. Addison-
Wesley.

McConnell, J. J. and Burhans, D. T. 2002. The evolution of CS1 textbooks. In Proceedings
FIE’02. T4G–1–T4G–6.

Meyers, S. 2004. The most important design guideline? IEEE Softw. 21, 4, 14–16.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 21

Nordström, M. 2009. He[d]uristics – heuristics for designing object oriented examples for
novices. Licenciate Thesis, Umeå University, Sweden.

Pirolli, P. L. and Anderson, J. R. 1985. The role of learning from examples in the acquisition
of recursive programming skills. Canadian journal of psychology 39, 2, 240–272.

Ragonis, N. and Ben-Ari, M. 2005a. A long-term investigation of the comprehension of OOP
concepts by novices. Computer Science Education 15, 3, 203–221.

Ragonis, N. and Ben-Ari, M. 2005b. On understanding the statics and dynamics of object-
oriented programs. In Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education. 226–230.

Reenskaug, T., Wold, P., and Lehne, O. A. 1996. Working With Objects: The OOram
Software Engineering Method. Manning/Prentice Hall.

Riel, A. J. 1996. Object-Oriented Design Heuristics. Addison-Wesley.
Rosch, E. 1999. Principles of categorization. In Concepts: Core Readings, E. Margolis and

S. Laurence, Eds. MIT Press, 189–206.
Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Thomas, L.,

and Zander, C. 2008. Student understanding of object-oriented programming as expressed
in concept maps. In SIGCSE ’08: Proceedings of the 39th SIGCSE technical symposium on
Computer science education. ACM, New York, NY, USA, 332–336.

Skrien, D. 2009. Object-Oriented Design Using Java. McGraw Hill.
Steimann, F. 2000. On the representation of roles in object-oriented and conceptual modelling.

Data & Knowledge Engineering 35, 1, 83–106.
West, D. 2004. Object Thinking. Microsoft Press.
Westfall, R. 2001. ’hello, world’ considered harmful. Communications of the ACM 44, 10,

129–130.
Wick, M. R., Stevenson, D. E., and Phillips, A. T. 2004. Seven design rules for teach-

ing students sound encapsulation and abstraction of object properties and member data. In
Proceedings of the 35th SIGCSE technical symposium on Computer science education. ACM,
Norfolk, Virginia, USA.

Received October 2010; ...

ACM Journal Name, Vol. 1, No. 2, 04 2010.

Paper III

Evaluating OO Example Programs for CS1

103

Evaluating OO Example Programs for CS1

Jürgen Börstler
Dept. of Computing Science

University of Umeå, Sweden

jubo@cs.umu.se

Henrik B. Christensen
Dept. of Computer Science

University of Aarhus, Denmark

hbc@daimi.au.dk

Jens Bennedsen
IT University West

Aarhus, Denmark

jbb@it-vest.dk

Marie Nordström
Dept. of Computing Science

University of Umeå, Sweden

marie@cs.umu.se

Lena Kallin Westin
Dept. of Computing Science

University of Umeå, Sweden

kallin@cs.umu.se

Jan Erik Moström
Dept. of Computing Science

University of Umeå, Sweden

jem@cs.umu.se

Michael E. Caspersen
Dept. of Computer Science

University of Aarhus, Denmark

mec@daimi.au.dk

ABSTRACT
Example programs play an important role in learning to
program. They work as templates, guidelines, and inspira-
tion for learners when developing their own programs. It
is therefore important to provide learners with high quality
examples. In this paper, we discuss properties of exam-
ple programs that might affect the teaching and learning of
object-oriented programming. Furthermore, we present an
evaluation instrument for example programs and report on
initial experiences of its application to a selection of exam-
ples from popular introductory programming textbooks.

Categories and Subject Descriptors
K3.2 [Computers & Education]: Computer and Informa-
tion Science Education—computer science education

General Terms
Experimentation, Human Factors, Measurement

Keywords
CS1, example programs, object-orientation, quality

1. INTRODUCTION
Examples are important tools for teaching and learning.

Both students and teachers cite example programs as the
most helpful materials for learning to program [10]. Also
research in cognitive science confirms that “examples appear
to play a central role in the early phases of cognitive skill
acquisition” [18, p 515]. Moreover, research in cognitive load

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’08, June 30–July 2, 2008, Madrid, Spain.
Copyright 2008 ACM 978-1-60558-115-6/08/06 ...$5.00.

theory has shown that carefully worked-out examples (so
called worked examples) play an important role in order to
increase learning outcome [5].

In mathematics education exemplification is a well re-
searched topic [11] and “the choice of examples that learners
are exposed to plays a crucial role in developing their ability
to generalize” [21, p 131]. Examples must therefore always
be consistent with all learning goals and follow the princi-
ples, guidelines, and rules we want to convey. Otherwise,
students will have a difficult time recognizing patterns and
telling an example’s non-essential properties (noise) from
those that are structurally or conceptually important.

Learner’s will learn from examples, but we cannot guaran-
tee that they abstract the properties and rules we want them
to learn. They might not see the generality and just mimic
irrelevant example properties and features [13]. The rules
they construct might be erroneous, since there are many
ways to interpret and generalize example features [7, 9, 18].
It is therefore also important to present examples in a way
that conveys their “message”, but at the same time be aware
of what learners might actually see in an example [13].

Carefully developed and presented examples, can help pre-
venting misconceptions [4, 8].

In this paper, we discuss quality properties of example
programs and formulate criteria which are used to develop
an evaluation instrument. We then present the results of
using this instrument on a selection of program examples
from popular textbooks. Finally, we discuss the issues con-
cerning the design and usage of the evaluation instrument
and outline how our work can be taken further.

2. RELATED WORK
Although examples are perceived as one of the most im-

portant tools for the teaching and learning of programming,
there is very little research in this area. Most often ex-
ample issues are only discussed in the narrow context of a
single simple and concrete example, like the recurring “Hello
World”-type discussions [6, 19], or they are regarded as a lan-
guage issue [2, 15]. Only few authors have taken a broader
view by investigating features of example programs and their
(potential) effects on learning.

47

Wu et al. studied programming examples in 16 high school
computer textbooks and concluded that most of them“lacked
detailed explanation of some of the problem-solving steps,
especially problem analysis and testing/debugging”[20, p 225].
Almost half of the examples fell into either the math-problem
(27%) or syntax-problem (21%) category.

Holland et al. [9] provide guidelines for designing example
programs to prevent object-oriented misconceptions, which
are successfully used by Sanders and Thomas [16] for assess-
ing student programs.

Malan and Halland [12] describe four common pitfalls
that should be avoided when developing example programs.
They argue that examples that are too abstract or too con-
crete, that do not apply the taught concepts consistently,
or that undermine the concept they are introducing, might
hinder learning.

Furthermore, there are many studies of software develop-
ment in general showing that adherence to common software
design principles, guidelines, and rules [3], as well as certain
coding, commenting, naming guidelines, and rules [14, 17]
support program understanding.

There is also a large body of research on worked examples
providing general guidelines regarding the form and presen-
tation of examples [5].

However, to our knowledge, neither of the above princi-
ples, guidelines, and rules have been used to evaluate exam-
ple programs from programming textbooks.

3. RESEARCH APPROACH
This project is carried out by two research groups from

two countries. During an initial two-day workshop, a large
number of example programs from different textbooks were
discussed to identify common strengths and weaknesses. The
goal was to define a set of criteria to effectively discriminate
between different levels of “quality”, based on accepted prin-
ciples, guidelines, and rules from the literature (see Sec-
tion 2) and our own teaching experience. The outcome of
this workshop was an initial evaluation instrument and a
test set of textbook examples.

The instrument was tested on two examples by four re-
viewers, which lead to several revisions of the instrument.
After testing further examples, the instrument was finally
refined to the one described in Section 4. The instrument
was then used by six reviewers (two female, four male; age
37–48) to evaluate five example programs. All reviewers are
experienced computer science lecturers in object-oriented
programming, most of them at the introductory level. A
summary of the evaluation results are presented in Section 5.
Finally, validity and reliability of detailed results were dis-
cussed between reviewers and researchers (the groups over-
lapped considerably) in small groups and by e-mail. A sum-
mary of these discussions is presented in Section 6.

Table 1: Categorization of example programs.

First First user- Several
example defined class classes Inheritance

E1 — — X —
E2 X — — partly
E3 — X — —
E4 — X partly —
E5 — — X X

To cover a wide range of aspects, we chose representa-
tive examples of different levels of quality and complexity

covering the following aspects; the very first example of a
textbook, the first exemplification of developing/writing a
(user-defined) class, the first application involving at least
two interacting classes and a non-trivial (but still simple) ex-
ample of using inheritance. Table 1 summarizes the features
of our five examples E1–E5.

4. EVALUATION INSTRUMENT
Inspiration for the evaluation instrument was drawn from

the checklist-based evaluation by the Benchmarks for Sci-
ence Literacy project [1] by defining a set of specific, well-
defined criteria that can be evaluated on a uniform scale.
All criteria should be based on accepted programming prin-
ciples, guidelines, and rules; educational research; and the
groups’ collective teaching experience. The resulting set of
11 criteria was grouped into three independent categories of
quality; technical quality (three items), object-oriented qual-

ity (two items) and didactic quality (six items).

Technical quality (T1–T3). The criteria in this category
focus on technical aspects of example programs that are in-
dependent of the programming paradigm. Examples should
be syntactically and semantically correct, written in a con-
sistent style, and follow accepted programming principles,
guidelines, and rules (see Table 2).

Table 2: Checklist items for technical quality.

T1 Problem versus implementation. The code is appropri-

ate for the purpose/problem (note that the solution need

not be OO, if the purpose/problem does not suggest it).

T2 Content. The code is bug-free and follows general coding

guidelines and rules. All semantic information is explicit.

E.g., if preconditions and/or invariants are used, they must

be stated explicitly; dependencies to other classes must be

stated explicitly; objects are constructed in valid states; the

code is flexible and without duplication.

T3 Style. The code is easy to read and written in a consistent

style. E.g., well-defined intuitive identifiers; useful (strate-

gic) comments only; consistent naming and indentation.

Object-oriented quality (O1–O2). The criteria in this
category address technical aspects that are specific for the
object-oriented paradigm, i.e., how well an example can
be considered a role model of an object-oriented program.
In contrast to technical quality, the principles, guidelines,
and rules covered here are specific for the object-oriented
paradigm (see Table 3).

Table 3: Checklist items for object-oriented quality.

O1 Modeling. The example emphasizes OO modeling.

E.g., emphasizes the notion of OO programs as collec-

tions of communicating objects (i.e., objects sending mes-

sages to each other); models suitable units of abstrac-

tion/decomposition with well-defined responsibilities on all

levels (package, class, method).

O2 Style. The code adheres to accepted OO design principles.

E.g., applies proper encapsulation and information hiding;

adheres to the Law of Demeter (no inappropriate intimacy);

avoids subclassing for parameterization; etc.

Didactical quality (D1–D6). The criteria in this cate-
gory deal with instructional design, i.e., comprehensibility
and alignment with learning goals for introductory (object-
oriented) programming (see Table 4).

In order to evaluate an example the expected previous
knowledge of a student and supporting explanations must
be taken into account. In textbooks the placement of an ex-
ample naturally defines the expected previous knowledge of

48

Table 4: Checklist items for didactic quality.

D1 Sense of purpose. Students can relate to the example’s

domain and computer programming seems a relevant ap-

proach to solve the problem. In contrast to, e.g., flat wash-

ers which are only relevant to engineers, if the concept or

word is at all known to students outside the domain (or

English-speaking countries).

D2 Process. An appropriate programming process is fol-

lowed/described. I.e., the problem is stated explicitly, an-

alyzed, a solution is designed, implemented and tested.

D3 Breadth. The example is focused on a small coherent set

of new concepts/issues/topics. It is not overloaded with

new “stuff” or things introduced “by the way”. Students’

attention must not be distracted by irrelevant details or

auxiliary concepts/ideas; they must be able to get the point

of the example and not miss “the forest for the trees”. In

contrast to, e.g., explaining JavaDoc in detail when the

actual topic is introducing classes.

D4 Detail. The example is at a suitable level of abstraction for

a student at the expected level and likely understandable

by such a student (avoid irrelevant detail). In contrast to,

e.g., when an example sets out to describe the concept of

state of objects, but winds up detailing memory layout in

the JVM).

D5 Visuals. The explanation is clear and supported by mean-

ingful visuals. E.g., uses visuals to explain the differences

between variables of primitive (built-in) types and object

types. In contrast to, e.g., showing a generic UML diagram

as an after-thought without relating to the actual example.

D6 Prevent misconceptions. The example illustrates (rein-

forces) fundamental OO concepts/issues. Precautions are

taken to prevent students from overgeneralizing or drawing

inappropriate conclusions. E.g., multiple instances of at

least one class (to highlight the difference between classes

and objects); not just “dumb” data-objects (with only set-

ters and getters); show both primitive attributes and class-

based attributes; methods with non-trivial behavior; dy-

namic object creation; etc.

a student. In the context of this work an example is consid-
ered as a complete application or applet plus all supporting
explanations related to this particular program.

To summarize, one could say that T1–T3 and O1–O2 as-
sess the actual code of an example program and D1–D6 as-
sess how it is presented to and conceived by a student. The
categories complement each other; an example of high tech-
nical and object-oriented quality will not be very effective,
if it cannot be understood by the average student. However,
such an example might still be a very valuable teaching re-
source, in case the educator using it finds better ways to
explain it.

All ratings in the resulting checklist are on a Likert-type
scale from 1 (strongly disagree) to 5 (strongly agree). Since
all checklist items are formulated positively, 5 is always best.
Beyond the criteria described in Tables 2–4, the actual check-
list also contains additional fields for commenting each rat-
ing and a field for overall comments that might not fit any of
the available criteria. An example of a filled-in checklist can
be found at http://www.cs.umu.se/research/education/
checklist_iticse08.pdf.

5. RESULTS
The results presented here are based on the evaluation

that was made in order to answer two questions:
• Can the instrument distinguish between “good” and

“bad” examples?
• Do reviewers interpret the items of the instrument in

the same way?
Figure 1 summarizes the results of six reviewers’ evalua-

tion of the five examples, E1–E5 (see also Table 1). As can

be seen, only one example (E1) is consistently rated very
high across all three quality categories. Low average ratings
have almost always a relatively high standard deviation (i.e.,
disagreement between reviewers).

Figure 1: Average grade (bars) and standard de-

viation (line) for evaluation of five examples. Re-

sults are shown by item category (technical, object-

oriented, and didactic quality).

Besides the overall high rating of E1, there are several
other noteworthy observations. The overall technical qual-
ity of the reviewed example programs is very high, except
for E5 which did not correctly implement its stated require-
ments. The section on object-oriented quality has the largest
variation. It should, however, be noted that E2 is a “Hello
World”-type example which cannot be expected to achieve
high ratings in this category. Given that we used examples
from quite popular textbooks, the overall ratings for didactic
quality and the ratings of E3–E5 on object-oriented quality
were surprisingly low.

Figure 2 shows the overall distribution of ratings for each
of the six reviewers, R1–R6. It can be noted that the re-
viewers utilize the rating scale differently. Reviewer R5, for
example, used the best grade (5) only half as much as the
average (21.8% compared to 43% for all reviewers together).
Reviewer R6, on the other hand, did not use a single 1. How-
ever, except for reviewer R5, the distributions of ratings are
quite similar (in total the usage of rating 1 was only 7.3%).

It seems that teaching experience somewhat influences the
grading. One reviewer, R5, has exclusively taught advanced

Didactic quality (D1-D6)

1

2

3

4

5

E1 E2 E3 E4 E5

A
ve

ra
ge

 g
ra

de

0.00

0.40

0.80

1.20

1.60

St
an

da
rd

 d
ev

ia
tio

n

Object-oriented quality (O1-O2)

1

2

3

4

5

E1 E2 E3 E4 E5

A
ve

ra
ge

 g
ra

de

0.00

0.40

0.80

1.20

1.60

St
an

da
rd

 d
ev

ia
tio

n

Technical quality (T1-T3)

1

2

3

4

5

E1 E2 E3 E4 E5

A
ve

ra
ge

 g
ra

de

0.00

0.40

0.80

1.20

1.60

St
an

da
rd

 d
ev

ia
tio

n

49

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R1

R2

R3

R4

R5

R6

Tot

Fives Fours Threes Twos Ones

Figure 2: Distribution of ratings between reviewers.

programming courses for the last couple of years, and grades
given by R5 tend to be slightly lower on average.

To summarize, it is evident that the instrument distin-
guishes between examples. Furthermore, the example with
the overall highest ratings, E1, is also considered to be a
“good” example by the reviewers. However, when looking at
Figure 2, it is evident that there are differences in ratings
among the reviewers.

6. DISCUSSION
The purpose of the presented instrument has been to re-

place intuitive “I know it, when I see it” assessments of ex-
ample programs with a more objective and reliable measure-
ment. So what conclusions can we draw from the results?
Are the criteria meaningful? How well do assessment results
using the instrument reflect an experienced teacher’s overall
“gut feeling” of example quality?

This section summarizes the discussions among researchers
and reviewers regarding validity and reliability of the eval-
uation instrument.

6.1 Quality Categories
Overall, we find that the instrument ranked examples as

we might have done based on “gut feeling” alone. The in-
strument was quite useful to point out particular strengths
and weaknesses. The reviewers found the three categories
natural and covering all important issues of examples.

Technical quality (T1–T3). Assuming that textbook au-
thors have developed and tested their examples carefully,
one would generally expect the technical grades to be very
high. This is also reflected in consistent and high ratings.
The only exception is E5, that contains a defect and the re-
sulting program does not fulfill its stated requirements. This
issue was well captured by criteria T2. The standard devi-
ation is generally low, indicating objectivity of the criteria.

Object-oriented quality (O1–O2). In general, the object-
oriented characteristics of examples seem to be captured
well. E1 received the highest rating and was also agreed to
be an exemplary example. E2 is the first example in a text-
book (see Table 1) and not really focusing on object-oriented
techniques, which is reflected by its low rating in this cat-
egory. In three of the examples, the standard deviation is
high. One reason for this seems to be a lack of common

agreement on the importance of explicit object interaction.
Another reason seems to be the dependency between O1 and
O2 (see Section 6.2).

Didactic quality (D1–D6). When comparing the average
grades in this category, one example is rated high; the others
are rated lower but at approximately the same level. This is
also in concordance with the comments from the discussion
after the evaluation. Three of the examples exhibit a high
standard deviation indicating a high degree of disagreement
among the reviewers. It seems that the reviewers do not
share a common understanding of the meaning of the criteria
and how they should be rated.

6.2 Criteria
Although all criteria were discussed thoroughly and the

instrument was tested twice, we underestimated the seman-
tical issues concerning the criteria. It was implicitly assumed
that all reviewers shared the same interpretation of each sin-
gle criterion. However, careful inspection of all evaluations
revealed that the rating still was difficult in some cases.

O1 vs. O2. Since criteria are supposed to be independent,
several reviewers gave high ratings for O2 and low ratings
for O1 for the same example. They argued that accepted
object-oriented principles and guidelines (like encapsulation
and information hiding) could very well be followed even
by examples that are not considered object-oriented and we
should not “penalize” an example twice for the same rea-
son. However, this is in conflict with the overall intention
of the category, namely rating object-oriented quality. Lack
of object-orientedness should result in low ratings. There-
fore, it is necessary to agree on and carefully describe the
intended use of O1 and O2.

A solution could be to replace O1 and O2 by a single item
for overall object-orientedness and conditional items for a
more detailed assessment of object-oriented characteristics.
The detailed assessment would then only be carried for ex-
amples above a certain threshold value for overall object-
orientedness.

D3 vs. D4. Breadth and detail are two views on extrane-
ous or superfluous material. It can therefore be difficult to
decide how to balance ratings on these and there might be
cases where an example has been penalized twice. A solu-
tion could be to use only one criterion assessing the amount
of extraneous or superfluous material.

D5. Some reviewers gave high ratings for visuals, although
the example lacked visuals, arguing that the explanation
was perfectly clear and understandable even without visu-
als. Discussing this aspect revealed that there might be a
more general problem of rating criteria that are simply not
addressed properly by an example, e.g., O1, O2, and D2.

D6. When the instrument was constructed it was debated
whether D6 should be regarded as “object-oriented quality”
rather than “didactic quality”. Moving the ratings for D6
to this category resulted, however, only in minor changes of
the results as compared to Figure 1.

Granularity and impact. It might be tempting to com-
pute a single value for the rating of an example. However,
granularity and impact of criteria can never be perfectly
equal. Even within a category, criteria will be valued differ-
ently by different people. Moreover, categories with many
criteria might be overemphasized.

50

We have tried to balance criteria within a category. How-
ever, an overall total (over all categories) seems not very
meaningful.

6.3 Rating Instructions
Already when developing the instrument, a recurring topic

of discussion was when to rate a criterion for an example as 1
and when to rate it as 5, i.e., to get a common understanding
of the extremes for each criterion. During these discussions,
examples were often used to illustrate these extremes. De-
spite these discussions, reviewers utilized the rating scale
quite differently (see Figure 2). If this or a similar instru-
ment is to be used in a community, we strongly recommend
supplying a written instruction, containing prototypical ex-
amples, with the instrument.

7. SUMMARY AND CONCLUSIONS
In this paper, we have described the design and test of an

instrument for evaluating object-oriented examples for edu-
cational purposes. The instrument was tested by six expe-
rienced educators on five examples, which we consider quite
representative for a wide range of examples from introduc-
tory programming textbooks.

Our results show that such an instrument is a useful tool
for indicating particular strengths and weaknesses of exam-
ples. Although only five examples from introductory pro-
gramming textbooks were formally evaluated, the results in-
dicate that there might be large variations regarding object-
oriented and didactic quality of textbook examples. Since
examples play an important role in learning to program, it
would be valuable to formally evaluate textbook examples
at a larger scale.

However, we consider the evaluation instrument presented
here not reliable enough for evaluations on a larger scale;
inter-rater agreement is too low. As discussed in Section 6,
this problem can be reduced by revising the criteria to avoid
misunderstandings and, most importantly, developing de-
tailed rating instructions.

8. REFERENCES
[1] AAAS. Benchmarks for science literacy, a tool for

curriculum reform, 1989. http://www.project2061.
org/publications/bsl/default.htm, last visited
2007-12-07.

[2] L. Böszörményi. Why Java is not my favorite
first-course language. Software-Concepts & Tools,
19(3):141–145, 1998.

[3] L. Briand, C. Bunse, and J. Daly. A controlled
experiment for evaluating quality guidelines on the
maintainability of object-oriented designs. IEEE

Transactions on Software Engineering, 27(6):513–530,
2001.

[4] M. Clancey. Misconceptions and attitudes that infere
with learning to program. In S. Fincher and M. Petre,
editors, Computer Science Education Research, pages
85–100. Taylor & Francis, Lisse, The Netherlands,
2004.

[5] R. Clark, F. Nguyen, and J. Sweller. Efficiency in

Learning, Evidence-Based Guidelines to Manage

Cognitive Load. Wiley & Sons, San Francisco, CA,
USA, 2006.

[6] M. H. Dodani. Hello World! goodbye skills! Journal of

Object Technology, 2(1):23–28, 2003.
[7] A. E. Fleury. Programming in Java:

Student-constructed rules. In Proceedings of the

thirty-first SIGCSE technical symposium on Computer

science education, pages 197–201, 2000.
[8] M. Guzdial. Centralized mindset: A student problem

with object-oriented programming. In Proceedings of

the 26th Technical Symposium on Computer Science

Education, pages 182–185, 1995.
[9] S. Holland, R. Griffiths, and M. Woodman. Avoiding

object misconceptions. In Proceedings of the 28th

Technical Symposium on Computer Science Education,
pages 131–134, 1997.

[10] E. Lahtinen, K. Ala-Mutka, and H. Järvinen. A study
of the difficulties of novice programmers. In
Proceedings of the 10th Annual SIGCSE Conference

on Innovation and Technology in Computer Science

Education, pages 14–18, 2005.
[11] Liz, Bills, T. Dreyfus, J. Mason, P. Tsamir,

A. Watson, and O. Zaslavsky. Exemplification in
mathematics education. In Proceedings of the 30th

Conference of the International Group for the

Psychology of Mathematics Education, Vol. 1, pages
126–154, 2006.

[12] K. Malan and K. Halland. Examples that can do harm
in learning programming. In Companion to the 19th

Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 83–87,
2004.

[13] J. Mason and D. Pimm. Generic Examples: Seeing the
General in the Particular. Educational Studies in

Mathematics, 15(3):277–289, 1984.
[14] P. Oman and C. Cook. Typographic style is more than

cosmetic. Communications of the ACM,
33(5):506–520, 1990.

[15] N. Ourosoff. Primitive types in Java considered
harmful. Communications of the ACM, 45(8):105–106,
2002.

[16] K. Sanders and L. Thomas. Checklists for grading
object-oriented cs1 programs: Concepts and
misconceptions. In Proceedings of the 12th annual

SIGCSE conference on Innovation and technology in

computer science education, pages 166–170, 2007.
[17] A. Takang, P. Grubb, and R. Macredie. The effects of

comments and identifier names on program
comprehensibility: an experimental investigation.
Journal of Programming Languages, 4(143):167, 1996.

[18] K. VanLehn. Cognitive skill acquisition. Annual

Review of Psychology, 47:513–539, 1996.
[19] R. Westfall. ‘Hello, World’ considered harmful.

Communications of the ACM, 44(10):129–130, 2001.
[20] C.-C. Wu, J. M.-C. Lin, and K.-Y. Lin. A content

analysis of programming examples in high school
computer textbooks in taiwan. Journal of Computers

in Mathematics and Science Teaching, 18(3):225–244,
1999.

[21] R. Zazkis, P. Liljedahl, and E. J. Chernoff. The role of
examples in forming and refuting generalizations.
ZDM Mathematics Education, 40:131–141, 2008.

51

Paper IV

On the Quality of Examples in Introductory Java Textbooks

109

On the Quality of Examples in Introductory Java

Textbooks

JÜRGEN BÖRSTLER and MARIE NORDSTRÖM
Umeå University
and
JAMES H PATERSON
Glasgow Caledonian University

Example programs play an important role in the teaching and learning of programming. Students
as well as teachers rank examples as the most important resources for learning to program. Ex-
ample programs work as role models and must therefore always be consistent with the principles
and rules we are teaching.

However, it is difficult to find or develop examples that are fully faithful to all principles and
guidelines of the object-oriented paradigm and also follow general pedagogical principles and
practices. Unless students are able to engage with good examples, they will not be able to tell
desirable from undesirable properties in their own and others’ programs.

In this paper we report on a study in which experienced educators evaluated the quality of
object-oriented example programs for novices from popular Java textbooks. The evaluation was
accomplished using an on-line checklist that elicited responses on the technical, object-oriented,
and didactic quality of examples.

In total 25 reviewers contributed 215 reviews to our data set, based on 38 example programs
from 13 common introductory programming textbooks. Results show that the evaluation instru-
ment is reliable in terms of inter-rater agreement. Overall, example quality was not as good as one
might expect from common textbooks, in particular regarding certain object-oriented properties.

We conclude that educators should be careful when taking examples straight out of a textbook.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; K.3.2 [Computers and Education]: Computer and Information Science Educa-
tion—Computer science education

General Terms: Principles, Guidelines, Examples
Additional Key Words and Phrases: Example programs, check list, courseware, textbooks, assess-
ment

1. INTRODUCTION

Although example programs are perceived as one of the most important tools for
the teaching and learning of programming [Lahtinen et al. 2005], there is very little
research regarding their properties and usage. There is a large body of knowledge on

Author’s address: Jürgen Börstler, Department of Computing Science, Umeå University, SE-90187
Umeå, Sweden; email: jubo@acm.org.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c� 2003 ACM 0000-0000/2003/0000-0001 $5.00

ACM Journal Name, Vol. 1, No. 2, 04 2003, Pages 1–22.

2 · Jürgen Börstler et al.

program comprehension (e.g., [Brooks 1983; Burkhardt et al. 2002]) and software
quality and measurement (e.g., [Purao and Vaishnavi 2003]), but this is rarely
applied in an educational setting [Börstler et al. 2007; Magel 1982].

In this paper, we describe a checklist-based approach for assessing object-oriented
example programs for novices. The checklist covers technical, object-oriented and
didactic qualities of example programs. The checklist has been used to evaluate
common textbook examples. Our results show that the checklist is reliable and
helps to indicate strengths and weaknesses of example programs.

Although checklist-based assessment is a common approach for quality assurance
in industry [Brykczynski 1999], it has rarely been used in educational contexts.
Sanders and Thomas [2007], for example, have reviewed typical novice misconcep-
tions to develop checklists that educators can use when designing or grading student
programs.

The work presented in the present paper is based on the author’s earlier work on
checklist-based evaluation of example programs [Börstler et al. 2009; Börstler et al.
2008]. In the present work we have extended our detailed analysis to further review-
ers and examples. Furthermore, we also also provide analyses which are different
from those in our previous work. We have identified a set of characteristics and
examined the examples and reviews in detail with reference to these to determine
which characteristics may be influential in defining “good” examples, and we relate
our results to traditional software measures.

2. IMPORTANCE OF EXAMPLES
Examples play an important role in teaching and learning programming. Students
and teachers alike cite examples as the most helpful resource for learning to pro-
gram [Lahtinen et al. 2005]. With respect to LISP programming, for example,
Anderson et al. [1984] showed that all novices needed example programs to com-
plete their first recursive example program. When given a choice, students generally
prefer examples over written instructions for solving problems [Reed and Bolstad
1991]. Even when the example conflicts with written problem solving instructions,
students typically use the example information and disregard the written instruc-
tions [LeFevre and Dixon 1986].

Examples are powerful role models; novices use examples as templates for their
own work.

What novices often do, however, is employ a knowledge-lean style of
analogical reasoning, analogical transfer within a domain, not across
domains. For instance, and most important, students use worked-out
examples provided in textbooks, by the teacher, or by their peers when
solving new problems. [Reimann and Schult 1996, p. 123]

Examples must therefore be consistent with the principles and rules being taught
and should not exhibit any undesirable properties or behaviour. In other words, all
examples should follow exactly the same principles, guidelines, and rules we expect
our students to eventually learn. If our examples do not do so consistently, students
will have difficulty in recognizing patterns and distinguishing an example’s surface
properties from those that are structurally or conceptually important. In other
words, it is important to present examples in a way that conveys their “message”, but
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 3

at the same time be aware of what learners might actually see in an example [Mason
and Pimm 1984].

Trafton and Reiser [1993] note that in complex problem spaces (like program-
ming), “[l]earners may learn more by solving problems with the guidance of some
examples than solving more problems without the guidance of examples”. By con-
tinuously exposing students to “exemplary” examples, important properties are
reinforced. Students will eventually gain enough experience to recognize general
patterns which helps them to distinguish between good and bad designs.

Simply learning to perform procedures, and learning in only a single
context, does not promote flexible transfer. The transfer literature sug-
gests that the most effective transfer may come from a balance of specific
examples and general principles, not from either one alone. [Bransford
et al. 2004, p.77]

With carefully developed examples, we can reduce misinterpretations, premature
generalizations or otherwise unintended conclusions. This helps to prevent mis-
conceptions, which might hinder students in their further learning [Clancy 2004;
Guzdial 1995; Malan and Halland 2004].

3. RELATED WORK
Textbooks are an important component of teaching introductory programming.
They are a major source for example programs and also function as a reference for
how to solve specific problems. Although examples play an important role in the
teaching and learning of programming, there are very few systematic evaluations
of textbook examples.

De Raadt et al. [2005] compared 40 introductory programming textbooks by mea-
suring their amount of content particularly relevant for the textbook’s usefulness as
a learning tool, such as the number of pages covering examples, exercises, bibliogra-
phies, appendices, language reference, index, glossary, and other chapter content.
In the 22 texts covering object-oriented programming (in C++, Java, Eiffel, and
Delphi), examples covered from 0% to 43% of the total page counts (about 17% on
average). About examples, the authors conclude that:

Examples should concisely illustrate a technique. They should include
line numbers for reference, though should preferably be as self-contained
as possible, not requiring the reader to keep referring back to the accom-
panying text discussion. Better examples will often include the author’s
comments maybe accompanied with some lines and arrows like the typ-
ical classroom blackboard example.

Wu et al. [1999] analysed the examples of 16 Taiwanese high school computer
textbooks (using BASIC as a programming language), covering 967 examples. Each
example was categorized according to its problem type and coverage of problem
solving as a process. Their analysis revealed that only 2% of the examples dis-
played a thorough analysis of the problem statement. Testing and debugging was
discussed for only 0.2% of the examples. Only 25% of the examples dealt with real-
life problems, the remaining examples were categorized as Math (27%), Graphics

ACM Journal Name, Vol. 1, No. 2, 04 2003.

4 · Jürgen Börstler et al.

(25%), Syntax (21%) and Miscellaneous (2%). The authors conclude that the mate-
rial should be made “potentially meaningful to the students in order for meaningful
learning to occur”. Furthermore they advise a more thorough coverage of the prob-
lem solving process.

A subsequent analysis of 32 Taiwanese high school computer textbooks found
that most of these problem still persisted [Lin and Wu 2007]. In particular the
authors also criticize “inadequate analogies” and “dry examples”.

Malan and Halland [2004] discussed the potential harm “bad” example programs
might do when learning object-oriented programming. They identified four main
problem areas, based on their own experiences as teachers: examples which are ei-
ther too abstract or too complex and examples which apply concepts inconsistently
or even undermine the concept(s) being introduced.

An important aspect of examples is misconceptions and how to avoid them.
Holland et al. [1997] outlined a number of student problems and how they might
relate to properties in example programs, such as object/class conflation, objects
as simple records, and reference vs. object. Along with each problem they provide
a pedagogical suggestion for avoiding potential misconceptions by choosing suitable
examples.

A similar problem is noted by Fleury [2000], who discussed how students con-
structed their own rules by misapplying correct rules. She described certain cases in
which these student-constructed rules can systematically lead students to incorrect
solutions.

In 2001, a discussion on ‘HelloWorld’-type examples was initiated in Commu-
nications of the ACM [Westfall 2001] which created a series of follow-ups on the
object-orientedness of common introductory programming examples [CACM Fo-
rum 2002; Ourosoff 2002; Dodani 2003; CACM Forum 2005]. Surprisingly, the
main discussion has been centered on how to adjust the ‘HelloWorld’-example to
better fulfil the characteristics of object-orientation, not on whether this is a good
example at all.

Hu [2005] discusses the related problem of data-less objects (of which ‘HelloWorld’
is an instance). Using data-less objects is contradictory to the basic notion of ob-
jects when introducing them to novices. He calls them merely containers holding
(static) methods and simulating a procedural way of programming.

4. METHOD

Data collection and initial analysis started out as an ITiCSE working group [Börstler
et al. 2009] and was based on earlier work by some of the co-authors [Börstler et al.
2008]. In the present work we have extended the pool of analysed reviews by 57%
and also provide different analyses from the previous work.

An electronic checklist (described in Section 4.4) was administered for evaluating
object-oriented example programs from common CS1 textbooks.

In total, we selected 38 examples from 13 introductory programming textbooks
(mainly Java). Examples were nominated by working group participants, who
were given the guidance that examples were preferred from textbooks which were
published in 2007 or later and in the second (or later) edition, the latter being
taken as an indicator of common usage. The examples were grouped into two sets:
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 5

mandatory and optional. All working group participants were required to review
mandatory examples (16) and to review optional examples (22) if time permitted.
A number of additional reviewers were invited to review as many examples as they
were able to do. In the present paper, we further discuss only those 21 examples
that received ≥3 reviews (191 reviews in total) covering 11 of the 13 textbooks. For
detailed information about the full set of examples and textbooks the interested
reader is referred to [Börstler et al. 2009].

4.1 Textbooks
When selecting source for examples, we aimed at a broad and representative cover-
age with respect to popularity, coverage, presentation style and pedagogic approach.

In order to get comparable examples, we looked for the first example in a source
that exemplified a certain topic or concept. Examples were furthermore required
to be complete and clearly identifiable, where complete means that the full code is
shown together with a discussion or explanation.

Following these requirements, we had to exclude a wide range of sources. For ex-
ample we excluded all sources working mainly with code snippets (incomplete code)
as well as sources introducing examples gradually through successive versions (no
clearly identifiable example). We also had to exclude all online tutorials we looked
at, since they either had no clearly identifiable first example or lacked a discussion
or explanation. Our selection of sources is therefore not fully representative.

This left us with textbooks as the only sources for examples, We classified these
into two main categories: those with a clear and early focus on object-orientation
(category OO) and those with a more traditional imperative first approach (cate-
gory Trad). A first classification was made based on the texts’ titles, back cover
texts, prefaces or web pages. For a second classification, we followed VanDrunen’s
approach [VanDrunen 2006] and looked at each text’s detailed table of contents to
determine when various key concepts were introduced. In addition to that, we also
looked into each text to get a feeling for actual focus and depth of a section and
the style of concept presentation.

The 11 textbooks, from which the examples in the present paper are taken, are
listed in Table I. One can observe a clear discrepancy between the “self-declared”
approach of a text and our classification. Although most texts claim to focus on
object-orientation and follow some kind of object-early or -centric approach, a closer
inspection reveals that the texts in the OO category are actually in a minority. More
information about the textbooks can be found in [Börstler et al. 2009].

4.2 Example Programs
To get down to a manageable but still representative set, we focused on examples
with comparable properties. We considered only complete examples in the sense
that the full source code should be present together with an explanation. Each
example should furthermore be the first one in a text exemplifying certain high
level concepts or ideas. To reach a good balance of varying types of examples, we
categorized all examples according to the concepts they illustrate. Table II gives
an overview of the number of examples per category.

FUDC: First user defined class. These examples reflect the first occurrence of a
ACM Journal Name, Vol. 1, No. 2, 04 2003.

6 · Jürgen Börstler et al.

Table I. Summary of textbooks. Column Ex. pp. refers to the page numbers of the examples re-
viewed. Entries in column Self declared as are quotes from the texts’ back cover texts, prefaces
or web pages.

Category

Text Pages Edition Ex. pp. Self declared as Self Our

[Barnes and Kölling 2009] 516 4th 18–22,
56–71

Objects first OO OO

[Bravaco and Simonson 2010] 1210 1st 404–408 Fundamentals first Trad Trad

[Deitel and Deitel 2007] 1596 7th 86–103 Early classes and objects

pedagogy

OO Trad

[Farrell 2010] 870 5th 370–375 — — Trad

[Horstmann 2008] 1204 3rd 85–90,
236–241,
438–442

Objects gradual ? OO

[Lewis and Loftus 2009] 832 6th 190–194,
241–243,
515–527

True object-orientation OO Trad

[Malik and Burton 2009] 1018 1st 185–192 Objects early but gently OO Trad

[Niño and Hosch 2008] 1040 3rd 85–92,
123–135

Objects first OO OO

[Riley 2006] 769 2nd 263–265,
386–395

Object centric OO OO

[Roberts 2008] 587 2nd 190–198,
332–338

Modern objects first ap-

proach; class hierarchies

from the beginning

OO Trad

[Wu 2008] 987 5th 156–162,
309–310

Objects first OO Trad

user defined class in a text. We consider these examples particularly important,
since they “set the stage” for how students are expected to think about object-
oriented class design.

OOD: Multiple user defined classes. Examples in this group exemplify some kind
of design decision/strategy. They show how existing classes can be “used” for defin-
ing new classes (inheritance, composition) or how designs can be made flexible
(interfaces, polymorphism). Examples in this group can be considered role models
for determining relationships between classes.

CS: Control structures. The main purpose of the examples in this group is to ex-
emplify the usage of control structure (selection and repetition). One could argue
that object-orientedness does not matter in this category, since this is not the pur-
pose of the example. However, these examples are interesting as they demonstrate
the authors’ approach to teaching language syntax within the context of OOP.

Note that for the OOD and CS categories examples generally reflected the first
occurrence of a particular topic, for example loops, and not necessarily the first
example within the category, to avoid skewing the selection towards particular
topics within each category.

4.3 Reviewer Demographics
The reviews were performed by experienced educators from a diverse range of insti-
tutions in five countries (Denmark, Germany, Sweden, UK, and USA). On average
reviewers have more than 10 years of experience with teaching object-orientation
specifically. In addition to that, several reviewers also have considerable profes-
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 7

Table II. Number of Examples chosen per book category.
Text category

Example Category OO Trad
�

First user defined class (FUDC) 4 5 9
Multiple user defined classes (OOD) 4 4 8

Control structures (CS) 2 2 4�
10 11 21

Table III. Characterization of reviewers. Years of Practical OO experience refers to work
experience such as “professional trainer”, “researcher”, “professional programmer” or “sys-
tems/software engineer”. Novice courses are the number of OOP classes for novices taught in
the last 10 years.

Y ears of OO experience Novice

Reviewer Practical Teaching courses Comments
R1 0 5 1− 3 Works in teacher education

R2 3 9 7− 9
R23 11 10 7− 9
R4 4 15 4− 6 Dealt with OOD in PhD

R41 17 15 ≥ 10
R5 0 8 ≥ 10 Textbook author (OOP/Java)

R6 5 20 7− 9 Dealt with OO notation in PhD

R7 0 11 ≥ 10
R71 0 2 1− 3
R72 4 12 7− 9 Background as professional programmer

R8 > 0 9 ≥ 10 20+ years of professional programming

sional experience with object-orientation, for example as a researcher or a pro-
fessional programmer. Most reviewers teach or have taught object-orientation to
novices many times, some of them are doing so more than once a year. This work
is focussed on the quality of examples for teaching object-oriented programming to
novices and among other things reviewers were asked specifically to rate examples
for object-oriented quality. A summary of the background data of the 11 reviewers
contributing ≥ 4 reviews can be found in Table III.

4.4 The Checklist

Our checklist comprises 10 quality factors that we grouped into three quality cate-
gories; technical quality, object-oriented quality, and didactic quality.
Technical qualities (T1–T2) capture properties that are independent of a particular
programming paradigm, such as correctness and readability:

—Correctness and Completeness (T1): The code is bug free and the example is
sufficiently complete.

—Readability and Style (T2): The code is easy to read and follows a consistent
formatting and style.

Object-oriented qualities (O1–O5) capture commonly accepted principles, guidelines
and heuristics of object-oriented design and programming:

—Reasonable Abstractions (O1): Abstractions are plausible from an OO modelling
perspective as well as from a novice perspective.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

8 · Jürgen Börstler et al.

!!"#$%&'()"*++)++&),-"./01"23456#789

!"#"$%&'(")*#+)%&',-%&+(.'/0'(*"')/1"'/0'2xample E3 4536578

9'://1'";%<=&">?')/1"'<-?('@"'(")*#+)%&&.'?/-#1'%#1'"%?.'(/'$"%1A

B3:;"5<==)>-,)++"%,?"5<&'()-),)++;'5*"')/1"'+?'@-:'0$""'%#1'(*"'";%<=&"'+?
?-00+)+"#(&.')/<=&"("A

!"#$%&'()*+)%,*-&'$()./#.)$01/.)#++'2.)34#&0.5)6'1#.07'&58!"#$%&'!()*$&#$+#&'!,--.-(/!&#$%&'!.-!0.$,*$+&'!-%*1$+2,
,--.-(/!#.3,!$4&$!3.,(!*.$!&34,-,!$.!$4,!0-.5',2!($&$,2,*$!.-!-,6%+-,2,*$(/!,$#7

'
";($"<"&.
=//$C'6D 67 63 E F3 F7

";)"&&"#(C
FD

G/$$")(#"??'%#1
)/<=&"("#"??

B31;"@)%?%A4(4-B"%,?"6-B();'5*"')/1"'+?'"%?.'(/'$"%1'%#1'0/&&/H?'%')/#?+?("#('0/$<%((+#:
%#1'?(.&"A

!"#$%&'()*+)%,*-&'$()./#.)$01/.)#++'2.)34#&0.5)6'1#.07'&58!8.*1+*$%+$+9,!+3,*$+:+,-(/!+*#.*(+($,*$!*&2+*;
(#4,2,(/!+*#.*(+($,*$!.-!+*(%::+#+,*$!+*3,*$&$+.*/!$-+9+&'!#.22,*$(!<*.$!&33+*;!+*:.-2&$+.*=/!,>#,((+9,!#.22,*$(

<2&?+*;!+$!3+::+#%'$!$.!3+(#,-*!#.3,=/!,$#7

'
";($"<"&.
=//$C'6D 67 63 E F3 F7

";)"&&"#(C
FD

I"%1%@+&+(.'%#1
?(.&"

EJ 3EEJ KK'L$"M+/-? ' N";('OO

!!"#$%&'()"*++)++&),-"./01"23456#789 :--';<<===>?+>@&@>+)<'ABC<(4&)+@AD)E<4,F)$>':'

G"BH"G 78<GG<7I"G7;78

Fig. 1. Example survey screen (Technical quality).

—Reasonable State and Behaviour (O2): State and behaviour make sense in the
presented software world context.

—Reasonable Class Relationships (O3): Class relationships are modelled properly
(the “right” class relationships are applied for the “right” reasons).

—Exemplary OO code (O4): The example is free of “code smells”.
—Promotes “Object Thinking” (O5): The example supports the notion of an OO

program as a collection of collaborating objects.

Didactic qualities (D1–D3) capture properties related to the understandability of
the example, its discussion and development:

—Sense of Purpose (D1): Students can relate to the example’s domain and com-
puter programming seems a reasonable way to solve the problem.

—Process (D2): An appropriate programming process is followed/described.
—Well Balanced Cognitive Load (D3): Explanations and supporting materials pro-

mote comprehension; they are neither simplistic, nor do they impose extraneous
cognitive load.

For each quality factor we also provided a list of typical problems, which were dis-
tilled from the literature on student problems or misconceptions and object-oriented
design principles, guidelines and rules (see for example [Fowler 1999; Nordström
2009; Riel 1996]).

Each quality factor was assessed on a 7-point Likert-type scale from −3 (ex-
tremely poor) to +3 (excellent) using the electronic survey instrument LimeSur-
vey [LimeSurvey]. Figure 1 shows an example screen for the questions in the cat-
egory Technical Quality. The interested reader is invited to test the instrument at
http://www.cs.umu.se/proj/limesurvey/.

In addition to the 10 quality factors described above, we also asked reviewers for
their overall impression of example quality before and after the actual assessment.
In two final open questions, reviewers could provide additional comments regarding
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 9

Table IV. Number of reviews per reviewer.
Reviewer Reviews in%

R1 16 7.44
R2 38 17.67

R23 5 2.33
R4 22 10.23

R41 4 1.86
R5 18 8.37
R6 18 8.37
R7 21 9.77

R71 11 5.12
R72 10 4.65
R8 16 7.44

All other 14 reviewers 36 16.74�
215 100

Table V. Number of reviews per example.
Reviews Examples

12 E1, E2, E13
11 E11, E12, E16
10 E3, E4, E6, E9, E10, E14, E15
9 E5, E7, E8
8 E21, E26
3 E19, E20, E25

1–2 E17, E18, E22–E24, E27–E38

example quality and the questionnaire itself. The instrument is discussed in more
detail in [Börstler et al. 2009].

5. RESULTS

In total, we received 215 valid reviews by 25 individuals performing between 1 and
38 reviews each. Of the 25 reviewers, 9 reviewers submitted ≥10 reviews and 11
reviewers submitted ≥4 reviews. Of the 38 examples, 21 received ≥3 reviews each
(191 reviews in total). Of those 191 reviews, 47 (roughly 25%) were contributed by
people involved in checklist design. Details of reviews per reviewer and reviews per
example can be found in Table IV and Table V, respectively.

Table VI summarizes the main results for all examples with ≥8 reviews (ex-
amples in parentheses have 3 reviews). Considering our Likert-type scale from
−3 (extremely poor) to +3 (excellent), we get total average scores in the range
[−30, 30]. Since we only considered examples from popular textbooks, we would
expect most of the scores in the upper positive range. However, as many as 10
out of the 21 examples in Table VI scored below 10 and received an overall final
impression (I2) ≤0.

The average ratings for overall impression before and after the actual review
(I1 and I2, respectively) further corroborate this impression. Only 8 examples
received an overall final impression ≥1 and as many as 10 examples were rated
≤0. Interestingly, the overall impression seems to degrade during the review, in
particular for the examples that already have a low overall first impression (I1) (see
also Table VII). This indicates that the checklist might help to spot problems that
might be easily overlooked.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

10 · Jürgen Börstler et al.

Table VI. Summary of the main results for all examples with ≥ 3 reviews (191 reviews
in total). Ranking is top down according to average total score for the 10 quality factors
T1–D3 (column Score ∈ [−30, 30]). Columns EC and BC list example (as defined in
Section 4.2) and book category (as defined in Table I), respectively. Columns I1 and
I2 list the average score for the overall impression (∈ [−3, 3]) of example quality before
review start and after finishing the review, respectively.

EC BC Score I1 I2 I2− I1
E26 OOD OO 23.88 2.00 2.13 0.13
E9 OOD OO 21.50 1.90 1.80 −0.10
E21 FUDC Trad 19.63 1.75 1.75 0.00
E7 OOD OO 18.00 1.11 0.78 −0.33
E3 FUDC OO 17.00 1.00 1.10 0.10
(E20) FUDC Trad 16.67 1.00 1.33 0.33
E2 FUDC OO 16.42 0.92 0.83 −0.09
E12 OOD Trad 16.00 1.55 1.36 −0.19
E16 CS OO 15.00 1.46 1.09 −0.37
E1 FUDC OO 14.17 1.00 1.00 0.00
E5 FUDC Trad 13.33 0.56 0.56 0.00
E6 FUDC Trad 9.90 0.20 −0.20 −0.40
E4 FUDC Trad 9.90 0.10 −0.60 −0.70
(E19) FUDC Trad 7.00 0.00 −0.67 −0.67
E10 OOD Trad 6.80 0.40 0.00 −0.40
E8 OOD Trad 6.22 0.11 −0.33 −0.44
E11 OOD OO 4.55 0.27 −0.18 −0.45
E14 CS Trad 0.70 0.20 −0.60 −0.80
E13 CS OO −1.08 −1.17 −1.17 0.00
(E25) OOD Trad −2.33 −1.33 −1.67 −0.34
E15 CS Trad −2.60 −1.50 −1.80 −0.30

Table VII. Changes in overall impression of quality from
initial impression I1 (before starting the review) to final
impression I2 (after finishing the review).

Steps Count %
≤ −3 4 1.87
−2 12 5.58
−1 48 22.33

0 117 54.42
1 29 13.49
2 5 2.33

≥ 3 0 0.00�
215 100

Total negative 64 29.77
Total unchanged 117 54.42

Total positive 34 15.81

The examples in Table VI can be grouped into 4 groups, where the differences in
final overall impression (I2) are smaller between the items in a group than between
groups (the groups are set apart by horizontal lines in the table).

Note that these groups did not change compared to our previous analysis1 [Börstler
et al. 2009], although we now have 191 data points compared to 122 before. This
indicates that our evaluation instrument is quite reliable. This is also corroborated
by the high inter-rater agreement (see Table VIII in Section 6).

1Except for E10, which moved from the second group (where it was last) to the third group.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 11

!"#

!"$

!"%

!"&

#
!"

#$
%&

'()*"&)+*"#$%&,+-.*+"//+01+)2"34/),

'

'"#

'"$

'"%

'"&

!

!"#

!"$

!"%

!"&

#

(! (#)!)#)*)$)+ ,! ,# ,*

!"
#$
%&

'()*"&)+*"#$%&,+-.*+"//+01+)2"34/),

)*-./010234

)*-5463267-89

'

'"#

'"$

'"%

'"&

!

!"#

!"$

!"%

!"&

#

(! (#)!)#)*)$)+ ,! ,# ,*

!"
#$
%&

'()*"&)+*"#$%&,+-.*+"//+01+)2"34/),

)*-./010234

)*-5463267-89

Fig. 2. Average ratings of all quality factors for the 191 reviews.

Figure 2 shows the average ratings for all quality factors. The peak for O3
(Reasonable Class Relationships) might be attributed to our rating instructions to
consider this factor as excellent (i.e. +3) “when no relationships are present and
the example doesn’t call for any”. When deleting all examples consisting of a single
class only, O3 still has the third largest average (1.38) after the technical quality
factors T1 (1.80) and T2 (1.48).

6. DISCUSSION
6.1 Agreement between raters
Reviewers ranked examples in very similar ways, although their absolute ratings
could be quite different. The majority of reviewers show a very strong and highly
significant correlation with the total average ranking of all reviews (see Table VIII).
This strongly indicates that our evaluation instrument is reliable.

The only outliers are reviewers R1 and R23. For R1 the deviation could be a
result of this reviewer’s different background (see Table III). R1 is the only reviewer
with a background in teacher education, whereas all others have a computer science
background. Furthermore, R1 is less experienced than most other reviewers. For
reviewers R23 and R41, the data includes only 5 and 4 data points, respectively.
Their rho-values can therefore be at best be interpreted as indications.

6.2 Differences between Textbook Categories
In our previous work ([Börstler et al. 2009]), we noticed that the examples from
textbooks categorized as OO on average scored somewhat higher than the ones from
textbooks categorised as Trad. With the extended data in the present analysis this
is still true, and the overall difference is still at the same level. Based on their
average total score (see Table VI), OO-type book examples have an average rank
of 8.2, examples from Trad-type books an average rank of 13. However, one should
note that there are examples from both book categories among the examples in the
top group as well as among the examples in the bottom group.

Since OO-type books have a clear and early focus on object-orientation (see our
definition in Section 4.1) it is not surprising that their examples score higher on a
scale that is partly based on object-oriented properties. For Trad-type texts it could
be argued that object-oriented qualities are not equally important for all types of

ACM Journal Name, Vol. 1, No. 2, 04 2003.

12 · Jürgen Börstler et al.

Table VIII. Spearman rank correlation (rho) for
reviewer’s scores and the total average score for
all reviews. R23 and R41 had too few reviews to
compute meaningful p-values.

Reviewer Rho P -value

R1 0.298 0.263
R2 0.922 2.80E-8

R23 −0.290 −
R4 0.895 9.68E-8

R41 0.892 −
R5 0.633 0.005
R6 0.582 0.011
R7 0.899 4.04E-7

R71 0.904 1.31E-4
R72 0.876 < 0.01
R8 0.883 5.85E-6

examples. The three different types of examples (FUDC: First User-Defined Class,
OOD: Multiple User Defined Classes, CS: Control Structures) are included in the
books to illustrate significantly different concepts. FUDC examples may illustrate
classes, objects, attributes, methods and encapsulation, while OOD examples may
exemplify any of association, collaboration, message passing, inheritance and poly-
morphism. The programming concepts in CS examples, on the other hand, are not
explicitly object-oriented. We will discuss this issue in more detail in the following
sections.

6.3 Dependencies between Quality Factors

Our previous results ([Börstler et al. 2009]) indicated that the different quality
factors seem to capture different aspects of quality. There were examples that
consistently scored high or low on all quality factors and also examples without
consistent scoring patterns.

Our current data shows only weak correlations between quality factors over all
examples. The Spearman rank correlation for all quality factors lies in the range
[−0.28, 0.35], except for two slightly higher values of 0.48 (O1 vs. O2) and 0.76 (O4
vs. O5) (p-values in the range [0.01, 0.025]).

When looking at the quality factors O1–O5, in particular, we can see interesting
differences between the example categories (Figure 3). For CS and OOD examples,
example rankings are almost the same for all five quality factors. For the category
CS, the only deviation is for O3 which is concerning class relationships. Those
small examples of control structures rarely include any relationships and that is
most likely to considered reasonable. Furthermore, all ratings are close to the
average rating for O1–O52.

The variation for FUDC examples is much greater than the variation for CS and
OOD examples. We can find a similar pattern of variation between ratings for
the different example categories for technical quality (T1–T2) and didactic quality
(D1–D3), but much less pronounced.

2The differing behaviour on O3 is an artefact of our rating instructions as explained at the end
of Section 5.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 13

!"#

!$#

!%#

&#

%#

$#

"#

'#

(%
)!
*
*
#

(%
"!
*
*
#

(%
'!
+#

(%
,!
+#

($
%!
+#

("
!*
*
#

($
!*
*
#

(%
!*
*
#

($
&!
+#

('
!+
#

(,
!+
#

()
!+
#

(%
-!
+#

($
)!
*
*
#

(-
!*
*
#

(.
!*
*
#

(%
$!
+#

(%
%!
*
*
#

(%
&!
+#

(/
!+
#

($
,!
+#

!
"#
$%
&

'(%$)*%&+,-+./&0#$1%2&34&+-'(*5&

*%#

*$#

*"#

*'#

*,#

*0123#

Fig. 3. Average ratings on O1–O5 for all examples, grouped by example category; CS, FUDC,
and OOD (from left to right).

!"#

!$#

%#

$#

"#

&#

'$# '"# ($# ("# (&# ()# (*# +$# +"# +&#

!
"
#
$
%
&

'()*"%)&*"#$%+&,-*&./012345)&)6"758)+&

,$#-((.#

,"#-((.#

,&#-((.#

,)#-'/01.#

,*#-'/01.#

,2#-'/01.#

,$3#-'/01.#

,"%#-'/01.#

,"$#-'/01.#

Fig. 4. Average ratings of all examples exemplifying the first user-defined class (FUDC).

We conclude from this analysis that good FUDC examples are more difficult to
find or develop than the other types of examples we have looked at. This is hardly
surprising, since the demands on a FUDC example seem more difficult to satisfy.
It should be a role model for a “good” object-oriented class, i.e. score well on the
characteristics captured by O1–O5. However, it should also be small and use as
few concepts as possible, since most concepts have not been introduced yet.

Quality factors O1–O5 have been more closely examined by example category in
Section 6.4–6.6.

6.4 Object-oriented quality of FUDC-examples

An example of a user-defined class should make it clear why it is necessary to create
that class and why it needs to have particular state and behavior. Figure 4 shows
the average ratings for O1–O5 for FUDC examples. Here we consider which quality
factors indicate how successfully the examples achieve this and what characteristics
of the examples may influence ratings for these quality factors. O1 (Reasonable
Abstractions) and O2 (Reasonable State and Behaviour) relate closely to these
requirements. O1 is likely to be influenced as much by the “cover story” (the text
which introduces the context of the example) as by the code and is not considered in

ACM Journal Name, Vol. 1, No. 2, 04 2003.

14 · Jürgen Börstler et al.

Table IX. Book category , number of fields, default constructor (Def.), number
of constructors (Cnstr.), number of methods (Meth.), way(s) in which class is
exercised (Ex.) and number of objects instantiated (Obj.), average scores for
quality factors O2 and O5, and average total score (TOD) for FUDC examples.
Possible values for Ex. are IDE (interactive instantiation in IDE), TC (test class)
and TM (test method).

Book F ields Def. Cnstr. Meth. Ex./Obj. O2 O5 TOD

E2 OO 1 y 1 1 IDE/1 1.64 0.09 16.42
E3 OO 1 n 1 2 IDE&TC/1 1.40 0.80 17.00
E1 OO 3 n 1 2 IDE/2 1.33 0.00 14.17
E21 Trad 1 y 1 1 TC/2 1.25 1.88 19.63
E6 Trad 2 y 2 1 TC/2 0.56 0.20 9.90
E5 Trad 4 n 1 0 TM/1 0.22 −0.44 13.33
E4 Trad 1 y 2 0 TC/2 −0.50 0.00 9.90
E20 Trad 1 y 1 0 TC/2 −0.67 1.33 16.67
E19 Trad 1 n 1 0 TC/2 −1.33 −0.33 7.00

this discussion. O5 (Promotes “Object Thinking”) presents an interesting problem
for authors—how can single-class examples promote object thinking? The way
in which instances of the class are created and exercised is important here. The
data for O3 (Reasonable Class Relationships) has clearly been influenced by the
instruction that examples with no relationships should be given score of 3, and this
data is not considered here.

Neither is O4 (Exemplary OO code)—this quality factor does not appear to
discriminate strongly between the examples and suggests that these are generally
free from “code smells”.

The following characteristics of each example were identified by examining the
code listings:

—number of fields/attributes – in all examples the fields are appropriately imple-
mented as private with accessors and mutators as required depending on whether
the field is read-only or read-write

—provision of a default constructor
—total number of constructors, including the default constructor if provided
—number of methods – this number excludes accessors/mutators and toString

implementations, and also excludes methods which play one of these roles (for
example, a method which simply prints out a message containing the value of a
field)

—the way in which the class is exercised – all the examples provide an example
of creating and using instances, either in the form of a separate test class or by
interactive instantiation in an IDE such as BlueJ or Dr Java. The only exception
provides a test method which acts upon an instance of the UDC, but does not
provide a full working example to show how the method could be implemented.

Table IX shows the above information for each of the examples together with:
book category; average score for O2; average score for O5; average total score. The
results are shown in order of average O2 score.

It is strikingly clear from Table IX that the books which we have categorized as
OO attain higher scores for O2 than books in the Trad category. This is not the
case for O5, however. Interestingly, the books in our OO category all choose to
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 15

exercise classes interactively in an IDE while the Trad books simply provide test
classes.

The ‘size’ of the class in terms of the number of fields does not appear to influ-
ence “Reasonable state and behavior”—the examples with the highest and lowest
O2 scores each have a single field. Constructors also have little influence—some
reviewers have made negative comments where examples do not include a default
constructor, but this is not particularly reflected in the scores. The most signifi-
cant code feature for O2 appears to be the methods provided. Examples with only
accessors/mutators and print operations score poorly, not surprisingly as this issue
is clearly identified in the examples of problems given in the checklist. What is per-
haps surprising is that four out of the nine examples presented a first user defined
class with no meaningful behavior. This may promote misconceptions about the
purpose of classes. It is interesting to note that the ranking by O2 score is quite
different from the ranking by total score. E20 in particular has a good total score
but a very poor O2 score. The comments for that example explicitly identify the
limited behavior but excuse this—for example “perhaps this example does not lend

itself to behaviour which can be modeled”.
The ranking by O5 score is quite different from the ranking by O2, and again

class size and constructors do not have any clear influence. The only common
factor which can be observed is that examples with only accessors/mutators and
print operations score poorly. Scores for “Promoting object thinking” do not appear
to be strongly influenced by the way in which classes are exercised. Test classes
and interactive instantion in an IDE appear to be equally acceptable, although the
lowest score is attained by the example which shows an incomplete test class. There
is, though, a wide range in the scores for this quality factor. This suggests that
factors other than the code itself are influential here.

It is difficult to draw firm conclusions on what makes an “exemplary” FUDC
example. It does appear, perhaps not surprisingly, that examples which illustrate
meaningful behavior display greater object-oriented quality than examples which
include no or trivial behavior.

6.5 Object-oriented quality of OOD examples
It might be expected that examples in the OOD category should score highly for
object-oriented quality. An object-oriented program is in essence a group of collab-
orating classes, and a well designed example should illustrate collaborations and the
programming structures which allow these collaborations to occur. The examples
reviewed were generally among the first multiple class examples in each book.

These examples have been examined further to ascertain any clear influence on
scores for object-oriented quality of following factors:

—number of classes in the example
—type(s) of relationship represented in the example

The number of classes in these examples ranges from 2 to 6. Some examples
exercise the classes using a client class, while others either do not provide a way
to exercise the classes, or do so using the capability of the IDE to instantiate and
interact with objects. Client classes are not included here in the number of classes
listed here.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

16 · Jürgen Börstler et al.

!"

!#

!$

%

$

#

"

&$ &# '$ '# '" '(') *$ *# *"!"
#$
%&

'()*"&)+*"#$%&,+-.*+//01#23)+)4"536),

+,-.''/

+0-.&123/

+4-.''/

+$%-.&123/

+$$-.''/

+$#-.&123/

+#)-.&123/

+#5-.''/

Fig. 5. Average ratings of all examples exemplifying object-oriented design involving several classes
(OOD).

A class relationship is a binary association between classes in the example. Each
example may include one or more binary associations. The types of relationships
represented have been grouped into three categories which we define as:

IN: Inheritance. This relationship indicates specialization, and is realised by the
implementation of one class as a subclass of another.

CO: Composition. This relationship indicates containment, and is realized by
the presence of a field in one class having a field which holds a reference to one or
more instances of another class. This includes relationships commonly described as
composition or aggregation, or as a “has-a” relationship.

AS: Association. This indicates a transient relationship, where one class has a
reference to one or more instances of another class as a method parameter, method
return value or local variable. This includes relationships commonly described as
association or dependency, or as a “uses-a” relationship.

Note that under these definitions, a composition and association relationships
provides means for objects to collaborate, while inheritance represents a static
structural relationship.

Table X shows the following information for each of the examples: number of
classes; average score for O3 (Reasonable Class Relationships); average score for
O5 (Promotes “Object Thinking”); average total score. Of all the quality factors,
O3 and O5 are likely to have been most strongly influenced by the representation of
class relationships. O3 is likely to have been considered in the way it was intended
to be for these particular examples by reviewers as there clearly are relationships
present. The results are shown in order of average O3 score. It is apparent that
the examples which score well for object-oriented quality factors also score well
overall—it is not only their representation of relationships which makes them good
examples.

The number of classes does not appear to have any influence on the results.
The highest and lowest rated examples both contain only two classes. It is clearly
possible to create examples which provide a useful illustration of the relationship
between a pair of classes. Examples with more classes can illustrate a more complex
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 17

Table X. Book category, Number of classes
(Cl.), class relationship types represented (Rel.),
average scores for quality factors related to rela-
tionships and average total score (TOD) for OOD
examples. *In E10 two additional subclasses are
discussed but the code for these is not listed.

Book Cl. Rel. O3 O5 TOD

E26 OO 2 CO 2.63 2.63 23.88
E9 OO 2 AS 2.44 2.22 22.44
E7 OO 2 IN 1.88 1.25 18.38
E12 Trad 6 IN, CO 1.50 1.50 16.50
E11 OO 3 IN 1.30 0.20 4.90
E8 Trad 2 IN 1.00 −0.38 6.63
E10 Trad 3∗ IN, CO 1.00 0.67 6.33
E25 OO 2 IN 0.00 −1.67 −2.33

system of collaborations, but need to be designed carefully so that the details and
significance of each collaboration are not lost.

The types of relationships represented does appear to be significant. The two
best examples illustrate composition and association respectively, while the lowest
rated example illustrates a simple two-class inheritance hierarchy. Examples of
composition and association are able to exemplify collaboration between objects
at runtime, which is helpful in promoting object-thinking. While inheritance is
an important concept, it does not by itself reflect object collaboration. Two of
the examples combine inheritance with composition to illustrate polymorphism. It
might be expected that showing inheritance in a typical collaborative context would
lead to better examples than demonstrating it in isolation, but this is not clearly
reflected in the reviewers’ scores. The best example of inheritance focuses clearly
on the issues of additional state and behavior, in contrast to another example which
only considers additional data members in a subclass. The lowest rated example also
deals with state and behavior, but comments suggest that it is a rather confusing
example. Some reviewers commented that examples of inheritance were based on
scenarios which would be better modelled as roles and were therefore not exemplary
illustrations. This issue would be reflected in the O5 score and may be significant
for E8 in particular.

It is clearly possible to create exemplary examples of multiple collaborating
classes, and such examples illustrate fundamental concepts in object-oriented pro-
gramming. The results suggest that early examples in this category should adopt
a clear focus on illustrating a specific type of relationship. Examples which de-
velop more complex structures can then build on the simple examples or can be
constructed from smaller clearly focused examples of collaborations.

6.6 Object-oriented quality of CS examples

Figure 6 shows that, with one exception, the control structure examples scored
poorly on object-oriented quality. As was the case for FUDC examples, the data
for O3 (Reasonable class relationships) has probably been artificially influenced by
the instructions given in the checklist and is disregarded.

Control structures are fundamental programming concepts and are not a fea-
ture of any particular paradigm. The authors of these books follow quite different

ACM Journal Name, Vol. 1, No. 2, 04 2003.

18 · Jürgen Börstler et al.

!"

!#

!$

%

$

#

"

&$ &# '$ '# '" '(') *$ *# *"!"
#$
%&

'()*"&)+*"#$%&,+-.*+/01#23)+)4"536),

+$",-''.

+$(,-&/01.

+$),-&/01.

+$2,-''.

!"

!#

!$

%

$

#

"

&$ &# '$ '# '" '(') *$ *# *"!"
#$
%&

'()*"&)+*"#$%&,+-.*+/01#23)+)4"536),

+$",-''.

+$(,-&/01.

+$),-&/01.

+$2,-''.

!"

!#

!$

%

$

#

"

&$ &# '$ '# '" '(') *$ *# *"!"
#$
%&

'()*"&)+*"#$%&,+-.*+789/1#23)+)4"536),

+$,-''.

+#,-''.

+",-''.

+(,-&/01.

+),-&/01.

+2,-&/01.

+$3,-&/01.

+#%,-&/01.

+#$,-''.

Fig. 6. Average ratings of all examples exemplifying control structures (CS).

approaches to introducing control structures:

—E14 (Trad book category) – shows a single class which consists entirely of a main
method. This is an example of the data-less object described by Hu [2005]. It
scores poorly, particularly for O5 (Promotes object-thinking).

—E15 (Trad) – a single class which contains a main method which instantiates an
instance of the class and calls a “start“ method. One other method is included
which is used by the start method. This example also scores poorly—scores are
very similar to E14 except for a slightly higher O5 score. The inclusion of the
main method in the single class is noted by one reviewer as bad practice, and
contrasts with the way in which main methods are used appropriately in test
classes in many of the FUDC examples.

—E13 (OO) – presents an if-else structure within a method to handle a mouse
button click. It scores poorly, but marginally better for object-oriented quality
than E14 and E15. Reviewers comments note the dependence of the example on
code presented elsewhere in the book and the complexity of this code.

—E16 (OO) – structured in a similar way to most FUDC examples. It shows a class
which represents a clear abstraction and includes relevant state and behavior,
and includes a separate test class. The methods provide motivations for the use
of control structures. This example received the highest scores among the CS
examples for object-oriented quality. The score for O5 is low, although it was
noted in section 6.4 that O5 scores may depend strongly on factors other than
the example code.

These results suggest that reviewers regard the use of control structures as a way
of implementing behavior within meaningful class methods as exemplary in this
category.

6.7 Relation to traditional software measures
We also investigated the relationship of total average scores with traditional mea-
sures of software quality. In Table XI we have summarized the results from com-
paring the total average score of our instrument with the measures described be-
low. Most of these measures have been obtained using the measurement tool
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 19

Table XI. Spearman rank correlation (Rho) for
common software measures and the total average
score of our 21 examples.

Measure Rho P -value

Size −0.080 0.729
Maintainability Index 0.494 0.023

Complexity −0.138 0.550
Code density 0.557 0.009

Comment density 0.498 0.022

JHawk [JHawk]. Since most of our examples consisted of only a single class, we did
not collect any object-oriented measures.

—Size: The total lines of code, counting code, comments and empty lines. Although
size is a very simple measure it tends to correlate with many software attributes.

—Maintainability Index (MI): The Maintainability Index is a measure for predict-
ing the relative effort for software maintainability [Welker et al. 1997]. Since
maintainability requires easy to read and to understand code, MI intends to
capture these properties.

—Complexity: McCabe’s cyclomatic complexity measures the number of (stati-
cally) distinct paths through a method [McCabe 1976].

—Code density: The number of statements divided by Size (see above).
—Comment density: The number of comments divided by Size (see above).

Our checklist captures different aspects of quality from traditional measures of
software quality. However, since MI, code density and comment density all capture
different aspects of readability and understandability, we would expect some kind
of relationship to our ratings. Looking at the scatterplots in Figure 7, we can see
some indications for such relationships:

—Examples with dense code tend to have worse overall average ratings. The best
rated examples tend to have a code density between 0.2 and 0.3. If we look at
examples in the two top and two bottom “quartiles” (see Table VI), we can see
that 10 of the 11 better examples have a code density below 0.3, whereas 7 of 10
of the worse examples have a code density above 0.3.

—The picture for comment density is somewhat similar. The better examples tend
to have more comments, but this relationship is much less pronounced than for
code density.

—Although all examples have MI-values above 85, indicating “high maintainabil-
ity” [Welker et al. 1997], there is a clear difference between the two top and two
bottom “quartiles”. Nine of the 11 better examples have MI ≥ 130, whereas 7 of
10 of the worse examples are beyond this level.

The actual correlations are, however, only moderate. This indicates that our
measure does indeed capture different aspects of quality from traditional software
measures.

7. CONCLUSIONS
In this paper we analysed 191 reviews of 21 object-oriented example programs
from 11 introductory object-oriented programming texts. The reviews were done

ACM Journal Name, Vol. 1, No. 2, 04 2003.

20 · Jürgen Börstler et al.

!

!"#

!"$

!"%

!"&

!"'

!"(

)' ! ' #! #' $! $'

!"#$%&'$()*+$*+,&-./

!

!"#

!"$

!"%

!"&

!"'

!"(

)' ! ' #! #' $! $'

!"#$%&'$()00+,.$*+,&-./

#!!

##!

#$!

#%!

#&!

#'!

#(!

)' ! ' #! #' $! $'

!"#$%&'$12

Fig. 7. Scatterplots for the 21 examples’ average total scores (TOD) against Maintainability Index
(MI), Code density, and Comment density, respectively.

by 11 reviewers from Denmark, Germany, Sweden, the UK, and the USA. The re-
view instrument comprised 10 quality factors, grouped into three quality categories:
technical quality (T1–T2), object-oriented quality (O1–O5), and didactic quality
(D1–D3).

Our results show that the examples in the analysed sample varied markedly in
quality. The object-oriented quality of many examples is not as high as one would
expect to find in an introductory programming text. In particular, many examples
received low ratings for “object thinking” (O5) and Reasonable state and behaviour
(O2). Since examples are the most important tools for learning, these results are
alarming. High quality examples are a prerequisite for successfully learning a new
skill.

We looked at three different categories of examples (FUDC, OOD, and CS3) and
two different categories of texts (OO-type and Trad-type4).

Our analysis revealed different rating patterns for FUDC examples compared to
CS and OOD examples indicating that it is specifically difficult to develop FUDC
examples with consistent high ratings for all object-oriented quality factors. Of
the 4 CS examples we analysed, 3 are among the bottom 4 examples. This was
not surprising, since such examples are said to be impossible to do in an “object-
oriented way”. However, one of these examples was rated above average, indicating
that it actually is possible.

Although examples from OO-type texts receive somewhat higher ratings on av-
erage than examples from Trad-type texts, taking an example from an OO-type
text is no guarantee for high ratings in object oriented-quality. Examples with high
ratings in object-oriented quality can be found in Trad-type textbooks as well as
examples with low ratings in OO-type texts.

Our review instrument is highly reliable and measures aspects of quality that are
not captured by common size or complexity measures. It can be a useful tool for
identifying problems in example programs that might otherwise go unnoticed.

3The first example of a user defined class in the text (FUDC), the first example of an object-
oriented design featuring multiple classes (OOD), and the first example of control structures
(CS).
4Texts with a clear and early focus on object-orientation (OO-type) and others (Trad-type).

ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 21

REFERENCES

Anderson, J., Farrell, R., and Sauers, R. 1984. Learning to program in LISP. Cognitive
Science 8, 2, 87–129.

Barnes, D. J. and Kölling, M. 2009. Objects First with Java, 4th ed. Prentice Hall.
Börstler, J., Caspersen, M., and Nordström, M. 2007. Beauty and the beast—toward

a measurement framework for example program quality. Tech. Rep. UMINF-07.23, Dept. of
Computing Science, Umeå University, Umeå, Sweden.

Börstler, J., Christensen, H. B., Bennedsen, J., Nordström, M., Westin, L. K.,
Moström, J. E., and Caspersen, M. E. 2008. Evaluating oo example programs for cs1.
In ITiCSE’08: Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education. 47–52.

Börstler, J., Hall, M. S., Nordström, M., Paterson, J. H., Sanders, K., Schulte, C.,
and Thomas, L. 2009. An evaluation of object oriented example programs in introductory
programming textbooks. inroads 41, 4, 126–143.

Bransford, J. D., Brown, A. L., and Cocking, R. R. 2004. How People Learn, Expanded
Edition. National Academy Press, Washington, D.C., USA.

Bravaco, R. and Simonson, S. 2010. Java Programming – From the Ground Up, 1st ed.
McGraw-Hill.

Brooks, R. 1983. Towards a theory of the comprehension of computer programs. Intl. Journal
of Man-Machine Studies 18, 6, 543–554.

Brykczynski, B. 1999. A survey of software inspection checklists. ACM SIGSOFT Software
Engineering Notes 24, 1, 82–89.

Burkhardt, J., Détienne, F., and Wiedenbeck, S. 2002. Object-oriented program compre-
hension: Effect of expertise, task and phase. Empirical Software Engineering 7, 2, 115–156.

CACM Forum. 2002. ‘Hello, World’ gets mixed greetings. Communications of the ACM 45, 2,
11–15.

CACM Forum. 2005. For programmers, objects are not the only tools. Communications of the
ACM 48, 4, 11–12.

Clancy, M. 2004. Misconceptions and attitudes that infere with learning to program. In Com-
puter Science Education Research, S. Fincher and M. Petre, Eds. Taylor & Francis, Lisse, The
Netherlands, 85–100.

de Raadt, M., Watson, R., and Toleman, M. 2005. Textbooks: Under inspection. Tech.
rep., University of Southern Queensland, Department of Maths and Computing, Toowoomba,
Australia.

Deitel, H. M. and Deitel, P. J. 2007. Java – How to Program, 7th ed. Prentice Hall.
Dodani, M. H. 2003. Hello World! goodbye skills! Journal of Object Technology 2, 1, 23–28.
Farrell, J. 2010. Java Programming, 5th ed. Thomson.
Fleury, A. E. 2000. Programming in Java: Student-constructed rules. In Proceedings of the

thirty-first SIGCSE technical symposium on Computer science education. 197–201.
Fowler, M. 1999. Refactoring: improving the design of existing code. Addison-Wesley Longman

Publishing Co., Inc.
Guzdial, M. 1995. Centralized mindset: A student problem with object-oriented programming.

In Proceedings of the 26th Technical Symposium on Computer Science Education. 182–185.
Holland, S., Griffiths, R., and Woodman, M. 1997. Avoiding object misconceptions. In

Proceedings of the 28th Technical Symposium on Computer Science Education. 131–134.
Horstmann, C. S. 2008. Big Java, 3rd ed. Wiley.
Hu, C. 2005. Dataless objects considered harmful. Communications of the ACM 48, 2, 99–101.
JHawk. Product homepage. http://www.virtualmachinery.com/jhawkprod.htm, last visited

2009-11-03.
Lahtinen, E., Ala-Mutka, K., and Järvinen, H. 2005. A study of the difficulties of novice

programmers. In Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. 14–18.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

22 · Jürgen Börstler et al.

LeFevre, J. and Dixon, P. 1986. Do written instructions need examples? Cognition and
Instruction 3, 1, 1–30.

Lewis, J. and Loftus, W. 2009. Java – Software Solutions, 6th ed. Addison-Wesley.
LimeSurvey. Project homepage. http://www.limesurvey.org/, last visited 2009-10-20.
Lin, J. M.-C. and Wu, C.-C. 2007. Suggestions for content selection and presentation in high

school computer textbooks. Computers & Education 48, 3, 508–521.
Magel, K. 1982. A Theory of Small Program Complexity. ACM SIGPLAN Notices 17, 3, 37–45.
Malan, K. and Halland, K. 2004. Examples that can do harm in learning programming. In

Companion to the 19th Annual Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. 83–87.

Malik, D. and Burton, R. P. 2009. Java Programming – Guided Learning with Early Objects,
1st ed. Course Technology.

Mason, J. and Pimm, D. 1984. Generic Examples: Seeing the General in the Particular. Edu-
cational Studies in Mathematics 15, 3, 277–289.

McCabe, T. 1976. A complexity measure. IEEE Transactions on Software Engineering 2, 4,
308–320.

Niño, J. and Hosch, F. A. 2008. Introduction to Programming and Object Oriented Design
Using Java, 3rd ed. Wiley.

Nordström, M. 2009. He[d]uristics—heuristics for designing object oriented examples for
novices. Ph.D. thesis, Umeå University, Umeå, Sweden.

Ourosoff, N. 2002. Primitive types in Java considered harmful. Communications of the
ACM 45, 8, 105–106.

Purao, S. and Vaishnavi, V. 2003. Product metrics for object-oriented systems. ACM Com-
puting Surveys 35, 2, 191–221.

Reed, S. and Bolstad, C. 1991. Use of examples and procedures in problem solving. Journal
of Experimental Psychology: Learning, Memory, and Cognition 17, 4, 753–766.

Reimann, P. and Schult, T. J. 1996. Turning examples into cases: Acquiring knowledge
structures for analogical problem solving. Educational Psychologist 31, 2, 123–132.

Riel, A. J. 1996. Object-Oriented Design Heuristics. Addison-Wesley, Reading, MA.
Riley, D. D. 2006. The Object of Java, 2nd ed. Addison-Wesley.
Roberts, E. 2008. Java – An Introduction to Computer Science, 2nd ed. Addison-Wesley.
Sanders, K. and Thomas, L. 2007. Checklists for grading object-oriented cs1 programs: Con-

cepts and misconceptions. In Proceedings of the 12th annual SIGCSE conference on Innovation
and technology in computer science education. 166–170.

Trafton, J. G. and Reiser, B. J. 1993. Studying examples and solving problems: Contributions
to skill acquisition. Tech. rep., Naval HCI Research Lab, Washington, DC, USA.

VanDrunen, T. 2006. Java interfaces in CS 1 textbooks. In OOPSLA Conference Companion –
21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and
Applications. 875–880.

Welker, K. D., Oman, P. W., and Atkinson, G. G. 1997. Development and application of
an automated source code maintainability index. Journal of Software Maintenance: Research
and Practice 9, 3, 127–159.

Westfall, R. 2001. ‘Hello, World’ considered harmful. Communications of the ACM 44, 10,
129–130.

Wu, C.-C., Lin, J. M.-C., and Lin, K.-Y. 1999. A content analysis of programming examples in
high school computer textbooks in taiwan. Journal of Computers in Mathematics and Science
Teaching 18, 3, 225–244.

Wu, C. T. 2008. A Comprehensive Introduction to Object-Oriented Programming with Java,
International ed. McGraw-Hill.

Received February 2010; accepted June 2010.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

132

Paper V

Educators’ views on object orientation

133

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

Computer Science Education
Vol. 00, No. 00, ?? 2010, 1–16

RESEARCH ARTICLE

Educators’ views on Object orientation

Marie Nordström∗

Department of Computing Science, Ume̊a University, S-091 87 Ume̊a, Sweden

(v1.0 released november 2010)

Much of the research on the teaching of object orientation has been focused on the students and their learning.

Less is known of how the educators themselves think about different issues of the paradigm. The personal

view of the educator is an important aspect that will affect how object orientation is taught. To investigate

this, a qualitative study on educators’ views on object orientation has been conducted and categories of views

concerning object orientation, objects, and examples for object orientation defined. In all, ten educators have

been interviewed, six teaching in upper secondary school and four teaching at university-level. The results

indicate that educators have a simple conceptual model of object orientation, which is likely to affect the

presentation of the paradigm.

Keywords: Educators, Novices, Object orientation

1 Introduction

An important aspect of teaching introductory object oriented programming to novices, is to
convey the general ideas of the paradigm. Since the presentation of the paradigm is likely to
be based upon the personal views of the educator, it is important to know how educators
think about the paradigm. What do we know about the way educators themselves think about
object orientation? What conceptual models are the basis for their teaching? There are, to our
knowledge, no studies on this perspective of teaching object orientation to novices. This lack of
previous work in teachers’ views on object orientation makes this study exploratory in nature.
If we want to discuss the teaching and learning of object orientation, we need to listen to the
teachers to try to identify the basis for their approach to teaching object orientation to novices.

Discerning the views of educators teaching object orientation to novices seems critically im-
portant due to the implications for student retention, the quality of higher education as well as
the quality of the professional training of teachers for upper secondary schools.

To be able to listen to educators talking about the teaching of object orientation in their own
words, we decided to use a qualitative approach with semi-structured interviews.

There are no prerequisites in programming for entering a CS-majors program at university-
level in Sweden. Still it is often the case that students taking the introductory programming
course, have previous formal training from upper secondary school. This makes it interesting
to investigate the views of both upper secondary school teachers, as well as lecturers at the
university-level. Due to the swedish educational system the learning outcomes of upper secondary
school courses is well known, see Appendix A for details.

The research question investigated in this paper is How can educators’ views on OO be char-
acterised?

∗Email: marie@cs.umu.se

ISSN: 0899-3408 print/ISSN 1744-5175 online

c� 2010 Taylor & Francis

DOI: 10.1080/0899340YYxxxxxxxx

http://www.informaworld.com

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

2 Marie Nordström

2 Related Work

It has been argued that object orientation is a natural way for problem solving. However, sev-
eral studies question this claim,see a survey of studies in (Guzdial, 2008). For example, when
asked to describe a given (algorithmic) situation, e.g., situations and processes that occur in a
Pacman game, non-programmers did not indicate any use of categories of entities, inheritance
or polymorphism. It has also been shown that novices have more problems understanding a
delegated control style than a centralised one (Du Bois et al., 2006). Dale (2005) presents the
result of a survey asking educators about the most difficult thing to teach in CS1. In the cat-
egory object-oriented constructs, polymorphism and inheritance are major topics mentioned.
Seemingly minor topics reported was: Instance methods, instance variables and static variables.
Even such basic ideas as user defined classes and objects were considered difficult to teach by
some of the respondents. The respondents frequently mentioned a struggle to find a balance
between object orientation and more general programming constructs. Object oriented analysis
and design was considered hard to exemplify because of the, by necessity, small examples.

Most of the focus on educators has been to investigate what they think of their students’
difficulties and different to teach object orientation (Clancey, 2004; Holland et al., 1997; Kacz-
marczyk et al., 2010; Eckerdal & Thuné, 2005). Thompson (2008) has been exploring educators’
perceptions of object orientated programs, as a result formulated a number of critical aspects
and then evaluated to what extent common text books address these critical aspects. Educators,
at different educational level, have been asked about what topics should be taught in introduc-
tory programing courses (Schulte & Bennedsen, 2006). A thorough analysis of the educators’
ranking of topic-relevance in relation to how they ranked the teaching-level of topics according to
Bloom’s taxonomy, supports the conclusion that focus is mainly on coding (syntactical issues).
This matches research findings that students do not gain a general conceptual understanding of
programming during CS1 (Guzdial, 1995; Milne & Rowe, 2002; Lahtinen et al., 2005). Teachers’
experiences of their students’ successes and failures, show that there is a disempowering view
among some educators that their teaching has little, if any, impact on the learning outcome
of the students (Pears et al., 2007). This is contradicted by Winslow (1996), who argues that
educators must supply models to the students. Models of control, data structures and data
representation, program design, and problem domain are all important. Models are crucial to
building understanding, and if the instructor omits them, the students will make up their own
models of dubious quality.

3 Method

The research question was thematically operationalised according to four themes; the paradigm
itself, the concept of an object, examples, and object orientation analysis and design. Each theme
was viewed from three different aspects, the educator’s personal view, the educator’s view of
student difficulties and the educator’s choice of methodology to meet those issues, illustrated
by the matrix in Figure 1. The reason for choosing this structure was an attempt to separate
the different components concerning the design of examples. The way examples are chosen or
designed is probably affected by the preferences of the educator.

The goal of all qualitative research is to understand a phenomenon. According to the definition
by Esaiasson et al. (2007) there are two types of studies when talking to people; respondent
studies and informant studies, see Figure 2(a).

In this classification informants are witnesses and it is the different stories of a certain event
that aids the researcher in putting the picture together. In these cases there is no need to ask
the same questions of all the informants. In a respondent study it is the individuals themselves
and their thoughts that are the object of study. In this case it is the aim of the research to find
common patterns and themes in the stories told by the respondents and it is therefore important
to ask or discuss the same questions.

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

Educators’ views on Object orientation 3

[C]
Characteristical

[P]
Problematic

[M]
Teaching-practice

Paradigm
(OO)

What are the characteristics of OO?
What is most important to stress?

What about OO is most difficult to
internalise? How is OO presented, as paradigm?

Concept
(Object) Ideal objects, how are they defined? What is perceived as difficult about objects? How does a displayed object typically look?

Examples What is characterstic of a good example? What makes an example difficult for
students?

How are examples chosen and/or designed?
What characteristics are prioritised?

Process
(OOA&D)

What is characteristic for the problem-
solving approach? What do students find difficult in OOA&D? How is OOA&D introduced and practised?

Figure 1. Interview guide.

(a) Types of studies

Systematize

Order
logically

Reveal
structure of

thought

Classify

Critical examination

Ideological
critique

Critique of
idea

Analysis of
discourse

(b) Reseach Questions for Qualitative Studies

Figure 2. Types of studies and research questions in qualitative research.

Qualitative research can answer different kinds of questions. Figure 2(b) shows an overview of
the aims of content analysis. The reason for choosing this structure was an attempt to separate
the different components concerning the design of examples. The way examples are chosen or
designed is probably affected by the preferences of the educator.

The purpose of the study presented in this paper, was to explore and investigate ways of
thinking about object orientation. Shank & Villella (2004) use the metaphor of a lantern to
describe qualitative research. This kind of research sheds light on areas previously obscured.

3.1 Sample

In all, 10 interviews were conducted, 6 with educators from upper secondary school (students at
the age 16-19) and 4 with lecturers at the university level. The group of interviewees consists of
nine men and one woman, all, except one, with many years experience of teaching and experience
with object orientation. The group of interviewees has been recruited through mail-contact based
on either web-based searches or recommendations from university colleagues, some through a
net-work for programming educators in upper secondary school. Many potential schools did not
teach object orientation at all. Contact was made with responsible director of studies or similar,
and if the school did teach object orientation, the request was either forwarded directly by them
or a name was given to me. The final set of respondents is therefore a convenience sample.
Nonetheless, the population shows a diverse background, see the demographics in Figure 3.

The columns in Figure 3 describe:

Degree: Knowing that the recruitment of CS-teachers for upper secondary school is
difficult, it was interesting to collect information on the formal degree of the respondents.
Degree-abbreviations: T=trained teacher, CS=Computer Science, and IS=Information
Systems. T* is on his/her way to a teachers degree, but not graduated at the time of the
interview.
ID: All interviewees are identified by an simple code, R1-R10.

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

4 Marie Nordström

ID Degree OO School Size Exp
R1 T Self USS M 18
R2 T* Academic USS S 2
R3 Bach CS+T Academic USS S 11
R4 T Academic USS L 11
R5 T Academic USS L 13
R6 T Self USS M 13
R7 PhD IS Academic U M 11
R8 Master CS Academic U S 11
R9 Bach. IS Academic U S 16
R10 PhD CS Academic U L 5

Figure 3. Demographics of Interviewees.

OO: Furthermore, we collected information on how the interviewees had gained their
competence and skills in object oriented problem solving and programming, whether they
had formal academic training or were autodidacts.
School: The first six respondents work in upper secondary schools (USS), and the last
four lecture at university-level (U).
Size: It is always a risk that small institutions have more restrictions on their courses,
e.g. having students from very different programs in the same class, which may affect the
teachers working conditions. Therefore, we made an effort to have Small (S), Medium
(M) and Large (L) size schools/universities represented in the population, which was
successful.
Exp: The last column of Figure [fig:IPdata] shows the respondents’ experience, in years,
in teaching programming (Exp).

It was not easy to find any women teaching object orientation, so we are grateful to have one
woman among the respondents.

Sample size for qualitative studies is often discussed, and Sandelowski (1995) concludes that
the quality of information obtained per unit is the most critical measure. Sample size is difficult to
determine and one recommendation is to proceed until analytical saturation is received. Another
recommendation for this particular kind of study is to include about six to ten participants
(Sandelowski, 1995), based on work by Morse (2000).

All of the upper secondary school educators (id R1-R6) are trained teachers in maths and/or
physics. Another common background is to have a bachelors degree in some major subject and
then to add courses for the fulfillment of a teachers degree (e.g. R3). This variety in teachers
background in upper secondary school is probably due to the fact that Computer Science is not
recognised as a subject within the teacher education system. The lack of trained CS-teachers
makes it common for schools to assign science teachers, without formal CS training, to teach
programming courses. Teachers in upper secondary schools are often autodidacts and on many
schools they are also the only teacher teaching this subject. In is not uncommon in computer
science departments for university educators to teach before and during their PhD-studies. An
interesting note is that one of the university lecturers in this study earned a PhD in Chemistry
before switching to CS.

3.2 Interviews

All interviews were conducted at a place chosen by the interviewee. The interviews were recorded
using a digital voice recorder, and the length of the interviews ranges from 45 minutes to 1
hour and 16 minutes. All the interviews were conducted by the author and in Swedish. Every
interview started with the interviewer asking the interviewee to describe his/her background and
how he/she came to be teaching object orientation to novices.

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

Educators’ views on Object orientation 5

The transcription was done verbatim using the program Transcriva (????). Some of the inter-
views were transcribed by the author, and for the remaining interviews, the transcription was
directly supervised by the author. The transcripts were all proofread by the author, and any
discrepancies, unsolved obscurities or misinterpretations, corrected by the author. Finally, all
quotes shown in this paper have been translated by the author.

In an effort to limit the effect the interviewer might have on the interviewee, the vocabulary
was kept at a non-formal level, not to influence or intimidate the interviewee unnecessarily.

3.3 Analysis

The analysis has been done using qualitative content analysis (Hsieh & Shannon, 2005; Forman
& Damschroder, 2007). Content analysis is a widely used qualitative research technique, par-
ticularly in health studies (Graneheim & Lundman, 2004; Hsieh & Shannon, 2005; Forman &
Damschroder, 2007; Elo & Kyngas, 2008). Current applications of content analysis show three
distinct approaches: conventional, directed, or summative. They are all used to interpret mean-
ing from the content of text data and, hence, adhere to the naturalistic paradigm. The major
differences among the approaches are coding schemes, origins of codes, and threats to trustwor-
thiness. In conventional content analysis, coding categories are derived directly from the text
data. With a directed approach, analysis starts with a theory or relevant research findings as
guidance for initial codes. A summative content analysis involves counting and comparisons,
usually of keywords or content, followed by the interpretation of the underlying context (Hsieh
& Shannon, 2005).

In this study the conventional approach has been used, because of the lack of previous studies
on educators’ views on object orientation. The primary objective of the study, is the manifest
view of object orientation. This is investigated through the different aspects presented in Figure
1.

Once the transcripts were done and proof read, each was transferred from a word-document
to a spreadsheet-document. All statements in the transcripts have been given an identification
code [id row]where id is the respondents identification, seen in Figure 3, and row is the row
number of that particular transcript. Reading through the text, interesting statements were
condensed/concentrated, in a separate column. Next, 13 columns were added, the first twelve
for marking any of the 12 aspects in Figure 1, and the last column to mark other interesting
comments in the text. Then the interviews were processed over again and each concentrate was
labeled as belonging to one or more of the 13 aspects. After filtering out all tags belonging to a
certain aspect, e.g. Educators personal view on object orientation as paradigm, in all the inter-
views, the next step was to observe any patterns or themes among them. According to Forman
& Damschroder (2007) the coding allows the data to be rearranged in analytically meaning-
ful categories. The selected concentrates were organised into thematic categories, sometimes in
several passes, to achieve a suitable level of abstraction.

During the analysis both the audio files and the transcripts have been processed many times,
and, if necessary, corrections of the transcripts have been made throughout the work.

4 Results

Based on the process described in Section 3.3, three aspects from Figure 1 were analysed: Edu-
cators personal view on the characteristics of object orientation, Educators personal view on the
concept of objects, and Educators personal view on examples, se Figure 4.

The resulting categories are shown i Figure 5.

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

6 Marie Nordström
KoliCalling'09 2010-11-10

Marie Nordström

Teacher's personal view on
concept

Teacher's view of students
difficulties

Teacher's choice of
methodology

Characteristical Problematic Teaching-practice

Paradigm
(OO)

What are the
characteristics of OO?

What is most important to
stress?

What about OO is most
difficult to internalise?

How is OO presented, as
paradigm?

Concept
(Object)

Ideal objects, how are they
defined?

What is perceived as
difficult about objects?

How does a displayed
object typically look?

Examples What is characterstic of a
good example?

What makes an example
difficult for students?

How are examples chosen
and/or designed? What

characteristics are
prioritised?

Process
(OOA&D)

What is characteristic for
the problem-solving

approach?

What do students find
difficult in OOA&D?

How is OOA&D introduced
and practised?

Figure 4. Aspects analysed.

Abstract Object orientation Object Example

A conceptual model for
problem solving

Active, autonomous
components in a solution

Problem solving

 A lot of Objects Model with limited and
expected behaviour

Context based

Modularisation of code Single task entity Data driven

Simple Encapsulated data types Containers

Figure 5. Categories.

4.1 Object orientation

Asking the educators for their personal view on object orientation was more complicated than
expected. Some of the respondents tended to give examples rather than to formulate some
theoretical or conceptual point of view. Often their personal view had to be collected from
statements discussing more practical issues of their teaching.

Four categories emerged from the analysis. Object orientation is characterised as: A conceptual
model for problem solving, A lot of Objects, Modularisation of code, or Encapsulated data types.

A conceptual model for problem solving

On the most abstract level of description R7 phrases it like this:

I : Thinking more generally about OO, what is your personal view, how do you think of OO, what
is kind of the central. . .

R7 143: [. . .] I like. . . or what I find appealing about it is on one hand that it is a way of viewing not
only computer programs but also activities and. . . phenomenon that you would like to describe. So
you have a, foc.. some kind of spectacles or raster that you could apply when regarding something.

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

Educators’ views on Object orientation 7

R7 146: Then using the same raster when making a program that in a way is related to this
activity, so that this is a support to address two different types. . . of understanding of activities and
the implementation and the design of computer programs. I find it a real strength to have a common
language [for these two aspects of work, authors note]

Collaboration is rarely mentioned, but is often implicitly present. R8 is one of the few stating
it explicitly:

R8 197: [. . .] the main idea is that I want to present classes and objects and try to make small
examples where objects collaborate to solve a certain task.

However the way to do it is a problem to him/her:

R8 197: [. . .] Eh .. and . . . I do not think that I succeed so well with this in this course, because it
is a very small part of the course, eh. . .

A lot of Objects

The idea that object orientation is characterised by a many objects, is expressed explicitly by
many of the interviewees. The concept of an object is however not clear from this expression. See
Section4.2 for further discussion on this topic. R4 uses the metaphor of a smrgsbord to explain
object orientation:

R4 158: I think that. . . ,you have to understand that object orientation is lots of objects that you
use, or lots of classes that you put on a smrgsbord and make a program out of it. And they work
together.

The nature of the collaboration is not entirely clear, R4 continues:

R4 158: [. . .] you kind of pick, here is this object and I pick this method from this object and use
it in my program, then I pick this object from here and use it in my program And then they work
together. [. . .] Object orientation is that you have a method her that you call that does a lot of
things for you, you don’t really need to know what it really does, but all you have to know is what
comes out of it.

Several of the respondents emphasises the need to be familiar with the API of Java (or similar
libraries connected to other languages). R4 continues and elaborates on this:

R4 172: If you master that [using classes from a library] it does not matter if it is Java, Pearl or
whatever. Eh, you, you kind of see that, here are these classes, which ones do I need to make a
program that does this, well then there is this method in this class and there is this method in this
class and then I pick them and put them here.

R3 75: if it feels familiar [when trying out a new language] and you know how a language works with
API’s and object orientation with classes and then it is not difficult to switch to another. . . instead
of switching between lots of.. on one hand it is good to have tested a lot of languages, but then I
think it becomes. . . . then they only get to try then they never get the possibility to get deeper into
it I think, that is my personal view. It becomes to jumpy. . .

Modularisation of code

The use of object orientation as a way to structure code is often mentioned by the interviewees.
Asked for a personal opinion on on the characteristics of object orientation R1 replies:

R1 188: Ehmmm. . . Oh, that was a difficult question. Yes well, or an extensive question. . . . Well
really it is, in a way, this thing about. . . . to separate. . . no, to split the problem in. . . in smaller
pieces . . . that you should. . . you can view this in different ways. One way that you create your own
variable types, that is. . . I usually have an exercise in the beginning, which I don’t have now, but
used to have where they should make one for complex numbers. A, A class for complex numbers.
Ehm, which you then can use, that is one view of object orientation that you reuse code and that

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

8 Marie Nordström

you. . . . package. . . all that belongs to. . . it. And then when you have the final package then it is
done, like it is. . . . well. . . .

Among others, respondent R8 has to deal with the problem of a very inhomogeneous group
of students. Some of the students are not taking any more programming classes, and because of
them R8 builds on the procedural way of modularising a problem:

R8 188: [. . .] Okay, let’s take this thing with functions one step further, and then we create classes,
that contain function and data then.

R8 does not consider this suitable for the CS-majors, that take the same class. When further
probed for the essence of object orientation R8 continues to state that he/she wants to show
collaborating objects that solve a certain task (Section 4.1 quote R8 197). This educator would
like to use different views depending on the audience, and is in fully aware that the CS-majors
suffer from being forced into the same class a a group of students taking only this particular
course.

Encapsulated data types

Several of the respondents have difficulties discussing object orientation from a conceptual point
of view. Encapsulation is mentioned when asked about central concepts.

I: I am just going to recapitulate [. . .] You mentioned that what you think is central in object
orientation is encapsulation. This thing about not fiddling with private data and. . . that, that one
takes an outside view of the object.

R5 418: Yes. And that, eh. . . . that they [students] have great trouble in understanding the need
for this.

To try to identify R2’s view, he/she was asked if there was anything he/she considered con-
tradictory to object orientation, the answer was:

R2 411: [. . . (thinking) . . .] well, but if you look at this thing of encapsulation, which I find, that
is a rather central part, how you treat data internally with an interface, when you sort of depart
from that you have, you ignore that thing with encapsulation and just move on. Eh. . .

Probed for if this could mean, for instance, public attributes, R2 continued:

R2 417: [. . .] for instance, I read in one of the books that if something is set to public you don’t
have any problems, and that is kind of, that is true, but then, then you loose something as well. . . I
think, because it, it is a huge point in protecting them so that they kind of. . . only can be modified
in a, in a predefined way.

On the lower scale of abstraction, R9 is thinking about his/her way into object orientation:

R9 972: [. . .] I found it very difficult to understand the reason for object orientation compared to
procedural programming, but I have not arrived at the answer yet (laughing)

I: So how do you describe this [difference] to the students?

R9 978: (laughing) Luckily, they do not ask me that kind of strange questions. . . (laughing)

R9, a bit further into the interview, argues that platform independence is the main argument
to make students accept to learn Java, and that object orientation in itself could not be used to
motivate students.

4.2 Objects

The different categories describing the view of the object as a concept are: Active, autonomous
components in a solution, Model with limited and expected behaviour, Single task entity, and
Containers.

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

Educators’ views on Object orientation 9

Active, autonomous components in a solution

Discussing the essence of object orientation, R10 comments on the difficulty moving on from an
imperative approach to an object oriented one with active, participating modules:

R10 95: [. . .] moving on to active modules, modules that can take on the responsibility for its
neighbourhood, that is such a new and different way of thinking. Ehhh. . . and that is where I think
the students get stuck and makes. . . tries to make passive modules instead, and then I don’t think
that you have taken this step [to object orientation].

R7 expresses similar ideas, he/she wants the students to see programming as a way of solving
problems and states his/her view of objects:

R7 338: well you know I. . . and this relates back to my aversion towards the usual examples that you
find in Java-books or programming books and on the web and, that. . . I have a difficulty seeing. . . .
I find Customer as a realistic example of something that many of them could be working on in a
future profession.

R7 then reflects on the success of their efforts:

R7 380: [. . .] I do think that we have managed to convey this way of viewing the world as consisting
of objects that originates from some kind of abstract model or how to put it and yes. . .

But further into the interview, R7 has to admit that the students have a difficulty moving
from the conceptual view to actually gaining skills in implementing their designs.

Model with limited and expected behaviour

In a slightly more limited view, some of the respondents discuss natural models. Object should
be properly instantiated and behave naturally. R1 is looking at an example with a Die, and is
surprised that there is no constructor that takes the number of faces as parameter:

R1 779: [. . .] I would choose to have one more constructor

This particular Die-class has set- and get- methods for accessing the faceValue of the die. R1
finds this strange:

R1 779: You can not set. . . . No, it ahh. That depends on what you want it for, but I don’t see
how you. . . . why you should set the value of a die-roll.

R1 791: [. . .] well, you think about a die really, and the only thing you can do with it is to roll it
and to read the face value. An that is kind of. . . .

R4 is also discussing the limited behaviour of ideal objects:

R4 320: an ideal object. . . an ideal object, if you consider having a very particular, if I may return
to the gambling-context, an ideal object is an object that does a very specific thing that makes very
specific, that can perform specific tasks. I think that you must not do too complex objects, how
shall I put it? [. . .]

R4 then moves on to comment on the fact that the same entity can be a good candidate for
a class in one context but too complex in another. This long elaboration ends with a summary
of ideal objects:

R4 320: [. . .] So to me, the objects must not be ehh, may not be too complex because then I would
kind of split them into smaller pieces, because if they get too complex then it will be too many
methods. It is like 586 different methods and 373 different attributes and that, no one will ever have
the energy to learn that.

R9 indicates the possibility to take an outside view of objects, to think of objects the way a
potential client would:

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

10 Marie Nordström

R9 423: Methods, often I compare this to consulting. I usually explain it that way. The, it’s kind
of a. . . you order a service from a consultant. Ok. And then I move on to what the consultant needs,
the parameters. What the consultant needs to do my work.

This is the only occasion in all the data that anyone expresses the use of an outside view of
objects.

Single task entity

Conceptually slightly less complex is the idea of small units. R3 was asked what kind of objects
he/she would never show to students, and expressed his/her view like this:

R3 231: [thinking for some time] well, objects. . . . the classes should be properly built. The classes
must be properly built, a class should do one thing, You can not mix a lot of things, I warn them
about that. A class should be clean, it should perform one thing, the methods in that class should
only do one thing. I am very particular about that, [. . .] I tell the students that, on class should be
one thing, you build objects from it. Method should be. . . do one thing, you should not mix things
in this. In that case you make a new class, in hat case with that object. Try to separate the code so
that. . .

R4 also expresses the reasons for and consequences of simplicity:

R4 329: [. . .] and that is why we in Java and all these I mean, is it anyone who cares to count all
the classes and objects that there is in Java, it is thousands of millions of objects in Java, and I
think that this is due to the fact that you don’t want objects to be too complex, but that objects
in themselves should be fairly simple and that there might be other objects that inherits from this
object, and altogether it becomes a huge amount of methods maybe if you think about all the
methods they inherit and themselves.

Containers

Several of the respondents expresses the view of objects being mere containers.

R3 303: Well, because it is data, we look more at the data kind of that.., what will you collect
data for? You look at it [the data], well then this should be an object of this data and then. . . well
you can’t mix this into this object but now this becomes another object. Now we have to build this
to make it. So finally when you collect the data together you can see what you should have, the
demands around that I think.

R5 has made a choice to base all his/her application around databases. Everything has to
stored in some way, and the natural solution to this is a database.

R5 25: Well, we. . . we do have something that I think is really good when you’re dealing with
object orientation, that is that you have a database beneath, in some way. . . because they. . . the
model-view-control thinking. Model is almost always. . . ehhh, a table in the database. That is not
particularly.. it’s almost always that way. Then we get into, what is it- then we get into something
like instead of talking about objects we talk about, what is it that we need to store, what is there,
are they related etc. And that is really the same as object orientation .

R5 continues to comment on the fact that this enables him/her to discuss the importance of
storing information only in one spot and relationships among data.

R5 25: I feel much more comfortable with. . . with discussing how to normalise a database and how
to design a database than discussing how you. . . which.. cl. . . objects we should have. And they are
rather close, I think. . . in the end once you are starting to implement it.

R5 also finds graphics useful and driving object orientation:

R5 25: Those that. . . [for their project] make a game, that becomes o- that becomes rather object
oriented. Because they have so- some character walking.. meeting a lot of zombies and then you

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

Educators’ views on Object orientation 11

make a zombie-class and then it is generated. . . . a lot of zombies that you. . . fire at and then every
bullet is. . . an object too and so on, so it becomes very. . . but they are. . . that it became so object
oriented depends on the fact that they write their code in Flash which is- , and there’s nothing else
there but objects that in addition are graphical .. eh.. objects.

No other respondent takes such an explicit stand on how to define, and how to work with
objects.

4.3 Examples

Discussing object orientation and how to exemplify it is easier than discussing the more generic
characteristics of object oriented examples. Listening to the respondents, there are however bits
and pieces here and there that gives a description of their view of examples. The emerging
categories are: Problem solving, Context based, and Data driven.

Problem solving

R7 has previously stated his/her view of object orientation as a problem solving tool, and this
is also reflected in his view of examples:

R7 344: [moving on from the example of Customer R1 338] but, Car and Bike and things like
that, ok it might work from a pure programming point of view, but I think that our students, if you
generalize, I am not going to do that, but many of our students don’t view programming as. . . as
this, this pleasurable, self-sufficient activity. But they see it as a means for something else. And if I
don’t offer examples that. . . makes it credible that programming is a tool that they might actually
need to do this, then I won’t get through to them. They just don’t see the use of being able to
represent Cars in a computer program.

R2 is also expressing a view of of object orientation being so much more than the technical
part of programming, and that this has to show in examples:

R2 246: Ehh, I try to find examples that are as pedagogical and close to reality as possible, I think
that, a shortage in some of the course literature is that it gets too technical, that is, they just show
the technical details of programming and not kind of, connects to the problem, because I think that
object orientation is much more about problem solving than programming. In. . . that job is, later
when you’re done, then it becomes pure programming and that is something. . . something slightly
different, that is another skill.

Most of the respondent are at several occasions commenting on the lack, or shortage of, really
good examples. Despite this complaint it was almost impossible to have them characterize a
good example.

Context based

The need for examples to be contextually situated is mentioned by many of the respondents
explicitly:

R7 287: so what I’m looking for and try to design myself, that’s classes that, if I try to make
a connection to the course they have taken before programming, when they have been looking at
activities, then I try to use classes of the kind Customer, . . . and . . . well, things that are relevant or
how to put it. Something that you, that seem reasonable to.. [disrupted by a person entering the
office]

R9 is very concerned of making the example connect to something in the every-day life of
his/her students:

R9 204: It is . . . now I only have students from X [exchange students] , then it is kind of easier
to explain to them. Ok, you have arrived here to study and your parents want to transfer money

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

12 Marie Nordström

to you. Do you want them to transfer the money to my account or yours? Then they want them
to transfer the money to them because. . . Then you have to go to the bank an get an account. And
then I explain to them that when you go to the bank if you. . . well, creates an account what does
that mean? It means you have to have a social security number. You want to have an address and
name and so forth. Then you create an object, each person that you create an account for becomes
an object of the class BankAccount. Or something like that. . .

The context of bank and bank accounts is a common theme in textbooks, and is mentioned
by R3 as well

R3 171: Where you deposit and withdraw money. Because I got that from.. I think I got that
from U [mentions the university where he/she received his/her degree]. That it is. . . BankAccout
is the name of the class, and there you have only name and you have a balance. Two variables.
String name, and int balance. And you have getBalance and setBalance and a constructor where
you can supply values, the name and the lance that you have to begin with. So I think it is. . . they
understand this sufficiently, a bank, because they understand this, deposit money, withdraw money
from an account it’s only two variables which isn’t much, that is what I start out with.

In upper secondary school, all the teachers have to take the students from procedural to object
oriented programming. R4 tries to exemplify this difference, and describes how he/she chooses
his examples:

R4 182-266: Eh, that, that I take, I take an example close to them [students], [. . .] Ehm, and
that in object orientation you explain, with the help of objects, a world. That, for instance, that we
would like to describe a forest in procedural programming them you see things that might happen in
the forest, functions, the sounds of birds plants leafs falling etc. In object oriented programming you
see the objects that the forest is made up of, trees, rocks, birds, and so on, that, I try to, something
like that, that was the forest before and this is the forest now.

Data driven

For many of the respondents, typical examples are focused on data to be stored. R5 can not
think of any other origin for his/her presentation of a problem:

R5 25: Then we get into, what is it- then we get into something like instead of talking about objects
we talk about, what is it that we need to store, what is there, are they related etc.

Some of the respondents use the term data type in connection to classes, generally meaning
something like a record in Pascal:

R2 309: Well then, then it’s more of a, a, well you, you have a need for a certain data type, a
composed data type, eh, it might be a . . . what later on would be a post in a database or something
like that, or . . . eh. . . . a country with, with certain data that belongs or, a document med certain
characteristics. Eh. . . . where you collect, eh attributes and methods in a class and by this showing
that it kind of belongs together.

5 Discussion and Conclusions

The purpose of this study has been to look for different ways of viewing object orientation, not
to categorise individual educators. Several of the respondents discuss object orientation using
several views, and some only express a single view.

An interesting observation is that, even though 8 of the 10 educators have received formal uni-
versity training in object orientation, the level of abstraction in their views of object orientation
is low.

Although many of the upper secondary school educators have formal training in terms of
university courses, this is usually not included in their teachers training program. Only one
of them has moved on from CS-major degree to complement with a teaching degree. But as

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

Educators’ views on Object orientation 13

seen in the quotations, a university degree does not in itself guarantee that the view of object
orientation is in line with generally accepted concept definitions. One interesting observation is
the choices of application areas. Only two of the respondents explicitly want their examples and
contexts to be realistic, in terms of software. Other respondents, who take on a more data driven
design approach, settle for applications where it is obvious that a large amount of data should
be handled. The storage of data then becomes the driving force for object definition.

Students’ conception of object orientation after attending a CS1 course has been investigated
through concept maps, by Sanders et al. (2008). CS1 is by necessity focusing on both introduc-
tion to programming as well as introduction to the object oriented paradigm, which shows in
the students’ concept maps. Few maps indicate any relationships other than among the syn-
tactical components of programming. This corroborates the resulting categories of our study.
For the majority of the respondents, the views of object orientation were displaying a focus on
programming/syntax skills, rather than emphasising a conceptual view.

In the present study there is no single mentioning of abstractions, and behaviour is only
discussed in terms of methods, or even functions. A majority of the educators view classes as
primarily data types, consisting of primitive values to be manipulated. This does not promote an
outside, problem-oriented perspective with collaborating objects as autonomous service providers
for clients. Only one of the respondents indicates this view, using the metaphor of consultants
to describe methods to students.

The way educators view object orientation and objects will have a large impact on students
being introduced to the paradigm. Who teaches the teacher? In Sweden currently, there is no
prerequisite for a teacher in upper secondary school to have a formal training in computer science.
Even university lecturers give little evidence of a paradigmatic discussion.

The categories reflecting the educators views of object orientation, object and examples are
related on a conceptual level and are ranging from elementary syntax-based views to abstract,
problem solving views in the three aspects investigated.

There is no doubt, that in teaching we always have to compromise with principles for practical
reasons. Audience, time, and space will restrict the possibilities to show object orientation at its
best. There is a lot of work to be done in terms of practical suggestions for line of presentation
and good examples to support the struggling educators. Nevertheless, it must be the ambition
of educators to convey the essence of the object oriented paradigm even in details.

Threats to validity

There is always a possibility that the mere fact that a certain research area is discussed influences
the statements of the respondents. Some might have a nagging feeling of being evaluated and
might be tactical in their description of certain subjects. We seldom reveal what we consider to
be unfavourable about ourselves.

A conscious choice was to try to use a neutral language during the interviews, to avoid intimi-
dating the respondents with a language more formal than the one they would choose themselves
to discuss object orientation. However, this might also have been counterproductive and influ-
enced them to use the same wording, instead of their own vocabulary . The object oriented
vocabulary has not been a major part of the analysis, and great effort has been made to listen
to descriptions rather than exact wording.

My point of departure is not unbiased regarding the subject, since object oriented examples for
novices has been the main focus of my research for the last three years. The quality of examples
in text books must be considered low, as evaluated in previous work (Börstler et al., 2008, 2009,
2010), and this raises questions regarding the view of object orientation among educators in
general. Being aware of this, I have made an effort to set aside my preconceptions of object
oriented quality.

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

14 REFERENCES

6 Conclusions

Acknowledgement

The author is greatly indebted to the participating educators. Without their willingness to share
their thoughts and experiences, and to devote time and effort to this project, this research would
not have been possible.

References

Börstler, J., Christensen, H.B., Bennedsen, J., Nordström, M., Kallin Westin, L., Jan-
ErikMoström, et al. (2008). Evaluating OO example programs for CS1. In ITiCSE ’08: Pro-
ceedings of the 13th annual conference on Innovation and technology in computer science
education, Madrid, Spain (pp. 47–52). New York, NY, USA: ACM.

Börstler, J., & Hadar, I. (2008). Eleventh Workshop on Pedagogies and Tools for the Teaching
and Learning of Object Oriented Concepts. In ECOOP 2007 Workshop Reader, Vol. LNCS
4906 of Lecture Notes in Computer Science (pp. 182–192). Springer.

Börstler, J., Hall, M.S., Nordström, M., Paterson, J.H., Sanders, K., Schulte, C., et al. (2009). An
Evaluation of Object Oriented Example Programs in Introductory Programming Textbooks.
Inroads, 41, 126–143.

Börstler, J., Nordström, M., & Paterson, J.H. (2010). On the Quality of Examples in Introduc-
tory Java Textbooks. The ACM Transactions on Computing Education (TOCE), Accepted for
publication.

Clancey, M. (2004). In S. Fincher & M. Petre (Eds.), Misconceptions and Attitudes that Infere
with Learning to Program. (pp. 85–100). Taylor & Francis.

Dale, N. (2005). Content and emphasis in CS1. ACM SIGCSE Bulletin, 37(4), 69–73.
Du Bois, B., Demeyer, S., Verelst, J., & Temmerman, T.M.M. (2006). Does God Class Decompo-

sition Affect Comprehensibility?. In P. Kokol (Ed.), SE 2006 International Multi-Conference
on Software Engineering (pp. 346–355).

Eckerdal, A., & Thuné, M. (2005). Novice Java programmers’ conceptions of ”object” and
”class”, and variation theory. In ITiCSE ’05: Proceedings of the 10th annual SIGCSE confer-
ence on Innovation and technology in computer science education, Caparica, Portugal, July
(pp. 89–93). New York, NY, USA: ACM.

Elo, S., & Kyngas, H. (2008). The qualitative content analysis process. Journal of Advanced
Nursing, 62(1), 107–115.

Esaiasson, P., Gilljam, M., Oscarsson, H., & Wängnerud, L. (2007). Metodpraktikan–Konsten
att studera samhälle, individ och marknad (In Swedish). Norstedts Juridik.

Forman, J., & Damschroder, L. (2007). Qualitative Content Analysis. Advances in Bioethics, 11,
39–62.

Graneheim, U.H., & Lundman, B. (2004). Qualitative content analysis in nursing research: con-
cepts, procedures and measures to achieve trustworthiness. Nurse Education Today, 24(2), 105
– 112.

Guzdial, M. (1995). Centralized Mindset: A Student Problem with Object-Oriented Program-
ming. In Proceedings of the 26th Technical Symposium on Computer Science Education (pp.
182–185).

Guzdial, M. (2008). Paving the way for computational thinking. Commun. ACM, 51(8), 25–27.
Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding Object Misconceptions. In Proceed-

ings of the 28th Technical Symposium on Computer Science Education (pp. 131–134).
Hsieh, H.F., & Shannon, S.E. (2005). Three Approaches to Qualitative Content Analysis. Qual-

itative Health Research, 15(9), 1277–1288.
Kaczmarczyk, L.C., Petrick, E.R., East, J.P., & Herman, G.L. (2010). Identifying student miscon-

ceptions of programming. In SIGCSE ’10: Proceedings of the 41st ACM technical symposium

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

REFERENCES 15

on Computer science education, Milwaukee, Wisconsin, USA (pp. 107–111). New York, NY,
USA: ACM.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. (2005). A Study of the Difficulties of Novice Pro-
grammers. In Proceedings of the 10th Annual SIGCSE Conference on Innovation and Tech-
nology in Computer Science Education (pp. 14–18).

Milne, I., & Rowe, G. (2002). Difficulties in Learning and Teaching Programming—Views of
Students and Tutors. Education and Information Technologies, 7(1), 55–66.

Morse, J.M. (2000). Determining Sample Size. Qualitative Health Research, 10(1), 2–3.
Nordström, M. (2009). , He[d]uristics – Heuristics for designing object oriented examples for

novices. Licenciate Thesis, Ume̊a University, Sweden.
Pears, A., Berglund, A., Eckerdal, A., East, P., Kinnunen, P., Malmi, L., et al. (2007). What’s

the problem? Teachers’ experience of student learning successes and failures. In R. Lister &
Simon (Eds.), Seventh Baltic Sea Conference on Computing Education Research (Koli Calling
2007), Vol. 88 of CRPIT (pp. 207–211). Koli National Park, Finland: ACS.

Sandelowski, M. (1995). Sample size in qualitative research. Research in Nursing & Health, 18(2),
179–183.

Schulte, C., & Bennedsen, J. (2006). What do teachers teach in introductory programming?. In
ICER ’06: Proceedings of the second international workshop on Computing education research,
Canterbury, United Kingdom (pp. 17–28). New York, NY, USA: ACM.

Shank, G., & Villella, O. (2004). Building on New Foundations: Core Principles and New Direc-
tions for Qualitative Research. The Journal of Educational Research, 98(1), 46–55.

Skolverket (2010a). , The Swedish National Agency for Education—-Homepage. http://www.
skolverket.se/sb/d/353 Last visited: 2010-09-30.

Skolverket (2010b). , The Swedish National Agency for Education: Syllabuses. http://www3.
skolverket.se/ki03/front.aspx?sprak=EN Last visited: 2010-09-30.

Thompson, E. (2008). How do they understand? Practitioner perceptions of an object-oriented
program. Massey University, Palmerston North, New Zealand.

Transcriva (????). , Transcriva Homepage. http://www.bartastechnologies.com/products/
transcriva/.

Winslow, L.E. (1996). Programming pedagogy—a psychological overview. ACM SIGCSE Bul-
letin, 28(3), 17–22.

Appendix A: Programing Education in Sweden

The Swedish National Agency for Education (Skolverket) (Skolverket, 2010a) is the central ad-
ministrative authority for the Swedish public school system for children, young people and adults,
as well as for preschool activities and child care for school children. Government and Parliament
specify goals and guidelines for preschool and school. Because of this it is well known what the
syllabi and requirements for programming courses in upper secondary school are ((Skolverket,
2010b). The Swedish upper secondary school is entered at the age of 16, and consists of three
year programs. Based on interest the students make a choice among a number of programs with
different focus, yielding different eligibility for moving on to the university level. All courses con-
cerning computers and programming are organized in a subject called Computer technology. In
Figure A1 the structure and relationships among the programming courses in upper secondary
school is shown.

Computing is a course common to most of the programs. It provides knowledge of PCs and
skills in using software. Programming A provides a basic theoretical and practical knowledge
of programming. Programming B is aiming at theoretical and practical knowledge in a struc-
tured programming language and skills in designing algorithms. Programming C should provide
theoretical and practical knowledge in an object-oriented programming language, as well as a
knowledge of analysis and design methods. It also provides knowledge of graphical user inter-

November 11, 2010 1:58 Computer Science Education TV˙I˙JCSE

16 REFERENCES

Figure A1. Computing courses in upper secondary school.

faces. According to the syllabi, Programming A and Programming C together roughly contains
the amount of stuff and time allocated to a university-level CS1 course. See Skolverket (2010b)
for more details.

In Sweden, the Government has the overriding responsibility for higher education and research.
It enacts the legislation and establishes the targets, guidelines and funding for the sector. At
the university level the Swedish educational system is now adjusted to the Bologna system
with 3-year bachelor degrees (Kandidatexamen) and 2-year Master degrees. In addition to this,
the Master of Science in Engineering (Civilingenjörsexamen) is a 5-year Masters degree. These
degrees are given for a number of different majors, including Computer Science. In general, the
computing curricula of these programs contains traditional CS1 and CS2 courses, for both CS
majors and minors.

150

Paper VI

Educators’ strategies for OOA&D

151

Educators’ Strategies for Object

Oriented Analysis and Design

Marie Nordström
marie@cs.umu.se
Department of Computing Science
Umeå University, Sweden

Abstract

Almost all research on the teaching of object orientation has been focused on the stu-

dents and their learning. One important aspects that will affect how object orientation

is taught, is the educators personal views on different issues of the paradigm. In this

paper we present some results of a qualitative study on educators views on the teaching

of object orientation. We specifically focus on how teachers address object oriented

design and analysis. Data was collected through interviews with ten educators.

1 Introduction

An important aspect of teaching object orientation to novices is to introduce
the students to a problem solving approach. Without knowing how to approach
a problem and how to look for suitable objects in the problem domain, it is
difficult to acquire skills in object oriented problem solving and programming.

We know very little about the way educators themselves think about object
oriented analysis and design. We do not know of the methods used by experi-
enced educators to enhance the introduction to object oriented problem solving
and programming. There are, to our knowledge, no studies on these perspec-
tives of teaching object orientation to novices. The lack of previous work in
teachers views on object orientation has made this study exploratory in nature.

Discerning different views of educators teaching object orientation to novices,
seems critically important due to the implications for student retention, the
quality of higher education as well as the quality of the professional training of
teachers for upper secondary schools.

The method used to investigate the area is a qualitative approach using
qualitative content analysis of semi-structured interviews.

The research question investigated in this paper is How can educators’ views
on OOA&D be characterised?

1

3 Programming Education

2 Related Work

It has been argued that object orientation is a “natural” way for problem solving.
However, several studies question this claim (Guzdial, 2008), when asked to
describe a given (algorithmic) situation, e.g., situations and processes that occur
in a Pacman game, non-programmers did not indicate any use of categories of
entities, inheritance or polymorphism. It has also been shown that novices have
more problems understanding a delegated control style than a centralised one
(Du Bois et al., 2006).

Dale (2005) presents the result of a survey asking educators about the most
difficult thing to teach in CS1. In the category object-oriented constructs, poly-
morphism and inheritance were major topics mentioned. Seemingly minor topics
reported were: instance methods, instance variables and static variables. Even
such basic ideas as user defined classes and objects were considered difficult to
teach by some of the respondents. The struggle to find a balance between object
orientation and more general programming constructs was also frequently men-
tioned. Object oriented analysis and design was considered hard to exemplify
because of the, by necessity, small examples.

Most of the research involving teachers has been to investigate what they
think of their students’ difficulties, and on different approaches to teach ob-
ject orientation (Clancey, 2004; Holland et al., 1997; Kaczmarczyk et al., 2010;
Eckerdal et al., 2005). Thompson (2008) has been exploring practitioners per-
ceptions of design characteristics in object oriented programs. The results show
a span of five perspectives, from the lowest with a focus on language, to the
highest category where the cognitive process is the primary focus. The higher
level categories do not ignore technology aspects but see them as taking a sub-
ordinate role. Only the two highest levels concerns abstractions, while the lower
ones models real world objects.

3 Programming Education

To investigate educators’ views on object oriented analysis and design we have
chosen to focus on both lecturers at the university level and upper secondary
school teachers.

In Sweden, in general, the computing curricula of university programmes
with CS majors or minors, contain traditional CS1 and CS2 courses.

The Swedish upper secondary school is entered at the age of 16, and is
regulated by the Swedish National Agency for Education (Skolverket (2010a)).
Because of this, the syllabi of programming courses in upper secondary school
is known, which makes it meaningful to include teachers at this level.

All courses concerning computers and programming are organised in a sub-
ject called Computer technology. In Figure 1 the structure and relationships
among the programming courses in upper secondary school is shown.

2

Computing

Programming A

Programming B Programming C Programming B …

Different Languages

OO
100p

50p

50p 50p

50p
50p = 100 hours of work

!CS1

Fig. 1: The structure of programming courses in Swedish Upper Secondary
School

Computing provides knowledge of PCs and skills in using software. Program-
ming A provides a basic theoretical and practical knowledge of programming.
Programming B is aiming at theoretical and practical knowledge in a struc-
tured programming language and skills in designing algorithms. Programming
C provides theoretical and practical knowledge in an object-oriented program-
ming language, as well as a knowledge of analysis and design methods. It also
provides knowledge of graphical user interfaces, see Skolverket (2010b) for more
details.

4 Method

The research question was thematically operationalised according to four themes;
the paradigm itself, the concept of an object, examples and the problem solv-
ing process of object orientation. Each theme was viewed from three different
aspects, the educator’s personal view, the educator’s view of student difficulties
and the educator’s choice of methodology to address those difficulties, see Figure
2 and (Nordström, 2010) for further details.

The goal of all qualitative research is to understand a phenomenon. Shank
and Villella (2004) use the metaphor of a lantern to describe qualitative research.
In this particular study the purpose was to explore and investigate different ways
of thinking about object orientation among educators.

The data for this study has been collected through semi-structured inter-
views and analysed through qualitative content analysis.

4.1 Sample

In all, 10 interviews were conducted, 6 with teachers from upper secondary
school (students at the age 16-19) and 4 with lecturers at the university level.
The group of interviewees consists of nine men and one woman, all, except one,
with many years experience of teaching and experience with object orientation.

3

4 Method

KoliCalling'09 2010-11-04

Marie Nordström

Teacher's personal view on
concept

Teacher's view of students
difficulties

Teacher's choice of
methodology

Characteristical Problematic Teaching-practice

Paradigm
(OO)

What are the
characteristics of OO?

What is most important to
stress?

What about OO is most
difficult to internalise?

How is OO presented, as
paradigm?

Concept
(Object)

Ideal objects, how are they
defined?

What is perceived as
difficult about objects?

How does a displayed
object typically look?

Examples What is characterstic of a
good example?

What makes an example
difficult for students?

How are examples chosen
and/or designed? What

characteristics are
prioritised?

Process
(OOA&D)

What is characteristic for
the problem-solving

approach?

What do students find
difficult in OOA&D?

How is OOA&D introduced
and practised?

Fig. 2: Interview guide.

The educators participating in this study show diverse backgrounds. The
demographic data shown in Figure 3 consists of what type of degree the respon-
dent holds, if object orientation has been acquired through formal training or
through own studies. The figure also shows whether the interviewee teacher at
upper secondary school (USS) or university. The relative size of the schools as
given as well as the number of years of experience in teaching programming,
regardless of paradigm.

The demographics of the respondents are shown in Figure 3, and the content
described below.

ID Degree OO School Size Exp
R1 T Self USS M 18
R2 T* Formal USS S 2
R3 Bach CS+T Formal USS S 11
R4 T Formal USS L 11
R5 T Formal USS L 13
R6 T Self USS M 13
R7 PhD IS Formal U M 11
R8 Master CS Formal U S 11
R9 Bach. IS Formal U S 16
R10 PhD CS Formal U L 5

Fig. 3: Demographics of Interviewees. T*: R2 is on the way to a teaching
degree at the time of the interview.

ID All interviewees are identified by an simple code, R1-R10.

Degree Knowing that the recruitment of CS-teachers for upper secondary school

4

4.2 Interviews

is difficult, it was interesting to collect information on the formal degree of
the respondents. Degree-abbreviations: T=trained teacher, CS=Computer
Science, and IS=Information Systems. T* is on his/her way to a teachers
degree, but not graduated at the time of the interview.

OO Furthermore, we collected information on how the interviewees had gained
their competence and skills in object oriented problem solving and pro-
gramming, whether they had formal academic training or were autodi-
dacts.

School The first six respondents work in upper secondary schools (USS), and
the last four lecture at university-level (U).

Size It is always a risk that small institutions have more restrictions on their
courses, e.g. having students from very different programs in the same
class, which may affect the teachers working conditions. Therefore, we
made an effort to have Small (S), Medium (M) and Large (L) size schools/
universities represented in the population, which was successful.

Exp The last column of Figure 3 shows the respondents’ experience, in years,
in teaching programming (Exp).

It was not easy to find women teaching object orientation, so we are grateful to
have one woman among the respondents. Sample size for qualitative studies is
often discussed, and Sandelowski (1995) concludes that the quality of informa-
tion obtained per unit is the most critical measure. Sample size is difficult to
determine and one recommendation is to proceed until analytical saturation is
received. Another recommendation for this particular kind of study is to include
about six to ten participants (Sandelowski, 1995; Morse, 1991).

All of the upper secondary school teachers, with the exception of R3, are
trained teachers in maths and/or physics. Another background not uncommon
in Sweden, is to have a bachelors degree in some major subject and then to
add courses for the fulfillment of a teachers degree (e.g. R3). This variety in
teacher background in upper secondary schools is due to the fact that Computer
Science is not recognised as a subject within the teacher training programmes
in Sweden. The lack of trained CS-teachers makes it common for schools to
assign science teachers, even without formal CS training, to teach programming
courses. They are often autodidacts and on many schools the sole teacher in this
subject. CS being a young discipline it is not unusual for university educators
to teach before and during their PhD-studies. One of the university lecturers in
this study earned a PhD in Chemistry before switching to CS.

4.2 Interviews

The interviews lasted in the range of 45 minutes to 1 hour and 16 minutes. The
interviews were all conducted by the author, in Swedish. A verbatim transcrip-
tion was conducted by, or supervised by, the author, using Transcriva. All inter-
view quotes throughout the present paper have been translated by the author.

5

5 Results

In an attempt to limit the effect the interviewer might have on the interviewee,
the vocabulary was kept at a non-formal level, to avoid any unnecessary influ-
ence or intimidation of the interviewee. The interviewer is always part of the
research, and the relationship between the interviewer and interviewee affects
the outcome of the interview.

In all cases, the interview was performed at a locality of the interviewees
choice, on most occasions in their office. Every interview starts with the inter-
viewer asking the interviewee to describe his/her background, how he/she came
to this point in his/her professional life, teaching object orientation to novices.

4.3 Analysis

The analysis has been done using qualitative content analysis (Hsieh and Shan-
non, 2005; Forman and Damschroder, 2007). Content analysis is a widely used
qualitative research technique, particularly in health studies (Graneheim and
Lundman, 2004; Hsieh and Shannon, 2005; Elo and Kyngas, 2008). Current
applications of content analysis show three distinct approaches: conventional,
directed, or summative. They are all used to interpret meaning from the content
of text data. The major differences among the approaches are coding schemes,
origins of codes, and threats to trustworthiness. In conventional content analy-
sis, coding categories are derived directly from the text data. With a directed
approach, analysis starts with a theory or relevant research findings as guidance
for initial codes. A summative content analysis involves counting and com-
parisons, usually of keywords or content, followed by the interpretation of the
underlying context (Hsieh and Shannon, 2005).

In this study the conventional approach has been used, because of the lack of
previous studies. The primary objective is the manifest view of object orienta-
tion investigated through a number of different aspects. A thorough description
of the study as well as results concerning educators personal view on object
orientation, objects and examples for object orientation can be found in (Nord-
ström, 2010).

To be able to return to the original record for any statement, at any time
during the analysis, they were all given an identification tag [id_row], where id
is the respondents identification (see Figure 3), and row is the row number of
that particular transcript.

5 Results

In the present paper, two aspects are analysed: Educators choice of methodology
for introducing OO and Educators choice of methodology for teaching OOA&D.

5.1 Introducing the Paradigm

To investigate how the paradigm was introduced, information had to be collected
throughout the interviews. A more direct question would often be perceived as
asking about objects or programming in general.

6

5.1 Introducing the Paradigm

Three categories of strategies for the introduction of object orientation as
a problem solving approach have emerged from the interviews. They can be
characterised as: Building a world of objects, Induced by contexts, databases
and concepts, or Not addressed.

Building a world of objects

In upper secondary school the students have already been introduced to pro-
gramming through the procedural/imperative paradigm. Some of the teachers
utilize this prerequisite knowledge to show the difference in approach using the
object oriented paradigm.

R4_182: eh, i use, i use an example close to them, that i, that we do it differently, [...] so far

we have been working with functional programming, eh and..., and try to show what the

difference is. eh.. and that in object orientation you explain this with the aid of objects,

a world. that, for example, that we are to describe a forest in procedural programming

then you see things that might happen in the forest, functions, birds sing, trees grow,

leafs are falling and so on. in object oriented programming you see the objects that

make up the forest, trees, stones, birds, and so on... that i try, something like that,

that was the forest before and this is the forest now.

In many university programmes the introduction to programming is done di-
rectly in the object oriented paradigm. In general, R10 and R7 apply the most
theoretical approach.

R10_164: Well... I was going to say that the first thing I do, usually is.., eh... an example

that I use.. an enclosed field where it, eh.. where there are different types of beings.

There are carrots that grow, and bunnies that jump around and a wolf maybe that

chases the rabbits and things like that. So then, then we have different types of objects

interacting in this field.

R7_527: Well... I am not sure actually, I told before that I try to work scenario ... based,

or how I should phrase it, I try to put things into a potential...

There are however not many instances in these interviews, where the educators
explicitly attempt to illustrate object orientation. Much more common is the
use of contexts that force some kind of object oriented solution.

Induced by contexts, databases and concepts

R8 avoided discussing how he/she introduces object orientation, using different
excuses, this and that being exceptions for a particular course he/she is teaching,
so finally the interviewer poses a direct question:

I_194: but since it has been decided to introduce object orientation, you must have an idea

of what that means.

R8_197: Yes right, but then it is, the main, the basic idea so to speak. That is, that I want

to introduce classes and objects, and try to make small examples where object interact

to solve a certain problem, Eh.. and... I don’t think I succeed because this is a very

small part of the course, eh...

Using contexts like games seem to be a popular way to “show” the students what
object orientation is.

7

5 Results

R8_209: In a way, you might say that object orientation presents itself. The students do a

project, because, they make a project, many... and get to chose [project] for themselves,

more or less. But since I hint about what to do it ends with them building small

games. And that is smart to, then they use an existing module, that enhances this

game construction. Eh, and then inheritance show up naturally, they have to inherit

from some module classes, so that they have existing Sprite-classes that they inherit

to their own Sprite and particularly, well and things like that, so it becomes kind of a

drill in , in certain object oriented concepts in that project.

One of the educators is consistently using databases as a point of departure,
even when implicitly introducing object orientation.
R5_9: [This particular programme] demands a different kind of motivation than the Science

programme, you can not introduce the concepts theoretically to them, they need to see

the practical uses. This is done through databases.

Not addressed

Most interviewees (eight) do not specifically introduce object orientation as a
paradigm.
I_299: So, you are not making any introduction to object orientation in general, as a problem

solving approach? The difference compared to the imperative approach?

R1_302: Nae.... I ... no not in that respect.

Prompted for any particular characteristics that would definitely be considered
non-object oriented, R2 answered:
R2_435: Well, it... But I, yes, no I have not... not decided on any high standards when it

comes to that [object orientation], no I haven’t.

R6 is really enthusiastic about objects and object orientation, but still has a
hard time finding a way to formulate the essence of object orientation to his/her
students:
R6_455: you’re standing there trying to convince them that objects are IT.

I_458: And how do you get this idea through to them?

R6_461: I think I do that through.. partly through... eh, it is something that has emerged

lately, it has... it has not been around for long. [...] you see it almost everywhere [...]

it is a reality [...] hopeless to avoid

One of the educators even admits to having trouble understanding him-/herself:
R9_972: I don’t remember... but... well, yes of course I have... they know it is about Java,

so I try to give some background on Java and why it is object orientation and what the

goal of object orientations is. Although I had a hard time accepting Java when it it first

showed up, at the end of... or when I started to learn some object orientation, I had

a hard time understanding the motives why object orientation compared to procedural

[programming] that we had then, but I really haven’t gotten the answer yet (laughing).

5.2 Teaching Object Oriented Analysis and Design

Introducing students to object oriented analysis and design can be done explic-
itly or implicitly, or not at all. The emerging categories for the methodological
approach is seen in Figure 4.

8

5.2 Teaching Object Oriented Analysis and Design

Explicit Implicit

Lexical analysis Scenariobased

Design Patterns Metaphors

Design reasoning Fomal notation (UML)

Object-rich contexts

Fig. 4: A&D method

Lexical analysis

R8 is the educator most explicitly discussing active objects as an important part
of an object oriented solution.

R10_734: Well I think I am a little towards, maybe that you start from some kind of... eh,

well,... how should I phrase it, this thing with nouns, just to have a starting point.

And the I am rather fond of analysing the interaction, to work with that.

Design Patterns

Several of the interviewees mention design patterns. R5 is explicitly working
with the Model-View-Controller pattern. To make the students realise the need
for a structured approach he/she makes them “box themselves into a corner”
before showing them this pattern. Even though not in the explicit way of
MVC-patterns, R2 promotes a separation of the core of the programme from
the user interface:

R2_270: Yes we do that... eh, I have designed a couple of assignments, or I have had a

couple of assignments that they start out to solve in a pure... in an environment with

only text representation and then they have to add GUI’s to that. I do think... that it

is a part of the problem that you can separate, that the graphical interface is something

that is beside or surrounding the problem, and can be solved separately.

One of the educators uses design patterns as tools for object oriented problem
solving:

R10_647: [...] we talk about some, some chosen design patterns, I have chosen a couple

that I find, eh,... that, that in some sense deals with the more general ideas of object

orientation. Eh, like for instance specialisation.

Design reasoning

The most commonly mentioned way of handling analysis and design is talking
while doing. The educator is using his/her own work during teaching as illus-
tration. This is not done in a formal way, but conveyed through discussion of
different approaches and decisions while developing a solution to a problem.

9

5 Results

R8_563: Well not that much, well. I don’t think, well I don’t think that class diagram is that

interesting when there is only one class. But it, eh, then you can think and write a

little about what, what things we need to know about this Elevator, and then, eh, then

I connect the computer and try to run, to write an example corresponding to what’s

on the blackboard.

Collecting ideas from the students, makes them active and part of the implicit
design process:

R4_266: [...] In fact, I ask the students what we should do, for instance in a school context.

Well, well, Student then, and what.. and then it pops up what kind of attribute a

Student should have. And what a Student can do and so on, and what happens if you

study? Well, IQ might increase and so on. And so on, and well... as naive as possible

[...] they have to participate and it should be as simple as possible.

Gently guiding the students through problem solving, R10 expresses a strategy
of “thinking with the students”.

R10_512: Eh, in this course I also work a lot with me just standing there with the exercises,

and I don’t bring prepared solutions, because I want to walk the students through the

process of thought. Or that they should contribute with input, and from that input we

do the thinking process.

R10 also tries to show several solutions and discuss differences, and consequences
of different approaches. This is also to encourage students to try out different
ideas, to be a little bit more creative without knowing where it will end. R10
wants to encourage them not to be afraid to try their ideas.

R10_980: [...] Since I do it on the board [solves problems] and collect ideas from the students,

and kind of, someone says something, then “well, then you thought in that direction

instead, well then this is the result” and then you hear “well you thought about it

this way”, and then you really confirm and legitimise different ways of doing it. And

encourages the students to do not one, but three solutions.

R10_986: and then, then when you have made three, then you start thinking if anyone of

them is better than the others.

Less articulate, in terms of strategy, but still with a conscious goal to foster
design:

R2_162: Well, well I try to help them as best as I can, how to think and to isolate... eh,

attributes and phenomena.

Few of the interviewees uses an explicit method for the introduction of object
oriented analysis and design. However, looking at what and how they are de-
scribing their work, some implicit strategies for analysis and design show up.

Scenario based

Trying to make sure that problems and exercises are non-artificial, R7 seeks
problem domains that are realistic from a software developing point of view,
and tries to formulate events in this context.

R7_527: [...] I try to work from scenarios, or what to call it, try to put things into a potential

context

10

5.2 Teaching Object Oriented Analysis and Design

Even more clearly, R5 expresses that the design is defined from possible events
in the system.

R5_37: Well, this is done through cases, you write down all cases there are and plan for

what you need and fetch and so on.

Metaphors

Some of the educators deliberately uses the metaphors of clients and service
providers, to convey an outside view of objects. What can be expected from
the clients point of view and what could be supplied from the providers point
of view.

R9_423: Methods, I often compare them to a service supplied by a consultant. I try to explain

it that way. That you.... you order a service from a consultant. OK. And then I move

on to this, what the consultant need, the parameters. What the consultant need to

accommodate my request. And that is how I...

In support of object thinking, some educators explicitly discusses the use of
main, or imagined clients.

R10_872: In my examples, actually we, eh... I have made a separate class, some kind of

client-class kind of.

R10_884: It is much about acquiring the feeling that programmes are not necessarily some-

thing that is directly used by the one sitting at the terminal, but that it might as well

be used by another programme, that the the user must not be a human. [...] to re-

turn something does not mean to display it on the screen, but it is something sent to

someone who have asked for this value, kind of.

R2_276: [...] I have talked a lot about the communication between different parts, eh and

that is... discussing object orientation based on well defined interfaces among objects.

And then, it helps those pieces as well.

If one way to support the perception of interacting objects is to take the clients
view, then another, maybe complementing, approach might be to play the role
of an object:

R6_392: When you get into what an object is and ehh.... how to think about an object..

[...] when you call a method, but you may also think about it in terms of talking to

the objects, that you pose a question, that it becomes more of a conversation among

objects [...] I play a game pretending to be the object and eh-.. maybe pretend that a

student is an object...

Promoting the idea of active objects, as opposed to passive data containers, R10
humanises the objects:

R10_173: Let’s say that someone would like to move this chair, then this person will have

to communicate with this chair-object saying “now I push you” and then the chair will

react to this in some way. And then it might check “is someone sitting on me?” because

then I’m supposed to react in one way, and if not my reaction will be something else,

and so on. But again, then the chair becomes active all of a sudden.

11

5 Results

Formal notation – UML

When it comes to notational support for object oriented analysis and design, sur-
prisingly few interviewees brings this up, and when asked directly, they vaguely
refer to lack of time and focusing on the “core”. Some use UML and others some
semi-formal notation of their own.
R7_65: Yes, we do [use a formal notation] and they learn at least class diagrams in UML

and some relations; Association, aggregation and inheritance.

However, students are seldom required to achieve any notational skills.
R10_275: But, I have set the requirements to be that if they see a UML-diagram they should

be able to recognise and understand it briefly.

R2_369: I lecture UML.

Neither R10 nor R2 require their students to use it in their own development
or documentation.
R6_215: Well, [exemplifying with String -objects] I drew a circle with data in the middle

and functions, at , length surrounding on the outside. And then I tell them that what

is inside is hidden. And you have to communicate with this text over those functions,

something like that.

Object-rich contexts

One way to compensate for the lack of a methodological approach to object
oriented analysis and design is to make sure that the problem domain in itself
naturally contains many objects. This way the possibilities of making reasonably
good choices when modeling the problem are much higher than when dealing
with more general problem definitions. Several of the educators have made a
choice to use object-rich contexts. Robots, games and web applications can all
be viewed as populated with easily recognised objects. Sometimes this is in
combination with databases and graphical interfaces.
R4_236: Well, when you’re dealing with games it becomes much easier to put all those classes

into, eh, a game. Now we have this game, these are 3D-models or something, and they,

they accept that they understand that this is 3D-models, this may be the camera and

so on, and it is much easier for me to argue that if we have this game, we need to

have a class that pulls these objects into our game. We need something to control the

camera, when you move the mouse or keyboard you have to be able to move the camera

and view from different angles, and that, they accept that. And somehow I think it’s

a little bit fun too and then they almost get along with, well let’s do a separate class

for this. And then, precisely in this situation it becomes easier for them to accept that

you design classes of your own.

R4 also uses the forest to illustrate the object view of a problem domain, as
shown in the quote R4_182 in section 5.1.

R8 teaches a slightly differently organised course, with a shorter introduction
to object oriented programming followed by a larger project.
R8_374: Well they have to, the first day they have to come up with an idea for a project, and

then they have a couple of days to move on with the design, or mainly functionality

and by that time we have not yet introduced use-cases and things like that, it is more

to write...

12

5.3 Not supporting Object Oriented Analysis and Design

Most of the students pick games for their projects:

R8_209: [...] they can chose almost anything for their project. But since I hint them possible

things to do, it usually ends up with them building small games. And the smart thing

is that they get to use an existing module [library] that enhances the game building.

Eh, and then inheritance is automatically included, they have to inherit from module

classes [...] so it becomes an exercise in object oriented concepts in this project.

R8_377: But, ... in this you might say that it is quite some thinking to do about what could

be needed, and then you could say that, when building small games, well then it pretty

much shows itself, that they need a hero and some enemies and a field/track and so

on. Eh, and then the rest so to speak, the really difficult parts are handled by this

framework with events and things like that, so they don’t have to think about that

much themselves.

Other, slightly more restricted, object-rich contexts are hotels, banking and
student administrative systems where there are a limited number of entities to
deal with:

R9_228: And then I use for example the results to be formally registered by the student

administrator, that could be a class too. Then I move on, from the basics...

R7_416: Then I might use an example of a... I have used a hotel scenario where you have

a class Booking, and this booking has, besides being placed by someone, it is a booking

of something and this something might be a room, and a room then becomes a class of

its own, ...

5.3 Not supporting Object Oriented Analysis and Design

Not supporting object oriented analysis and design does not mean avoiding
objects. There will always be objects, and that could in one sense be regarded as
supporting analysis and design implicitly through examples. However, in some
cases the students got to decide on very few classes of their own. Either the
design was given by the lecturer, or through libraries, and in some cases through
formal notation or in words. The practices not giving any support for object
oriented analysis and design emerging from the interviews can be summarized
as: Data driven, Objects supplied, Physical objects and Design supplied.

Focusing on databases makes the design entirely driven by the data to be
stored and does not leave much room for object oriented design decisions. Using
graphical contexts such as games, makes an extensive use of library classes
necessary, and the design of objects is to some extent already decided through
the library classes available.

Some of the educators use physical objects like chairs and cars, to convey
the idea of objects. Used without a motivating context this often results in
a static behaviour. It is also common to practice programing skills through
implementation of given designs. These designs are sometimes given in UML-
diagrams or as a detailed descriptions of named attributes and methods to be
implemented.

13

6 Conclusions

6 Conclusions

In the educational context we have conditions limiting the possible approaches to
teach the subject at hand. What and how an educator does in his/her teaching
is depending on several factors. Student group, time frames, curricula to be
covered, but also a personal belief of what is essential and what is difficult in
the subject, will affect the teaching. The purpose of this study has been to
listen to educators describing how they introduce object orientation, and how
they introduce object oriented analysis and design.

Most of the categories for analysis and design emerging from the ten inter-
views are used by single educators, and often only mentioned or superficially
demonstrated to the students. Only two of the interviewees expressed a more
systematic approach to introduce object oriented analysis and design. However,
the students were not required to practice these approaches themselves.

For educators in upper secondary school the choice of problem domain is
important. It is vital to keep the interest and attention of the students with
something considered fun, and at the same time find a context that would assist
in teaching and learning object oriented problem solving. The two university
educators aiming for a more conceptual approach, preferred contexts that are
software oriented.

It seem that in some instances it is a language being taught, rather than
a paradigm. This can not be criticised per se, but for all ten interviewees the
task given, according to syllabi, was to teach object oriented programming, or
object orientation. If the mission is to teach object oriented programming, we
can not restrict ourselves to teaching the syntax of a language and do it in an
basically imperative fashion.

If object orientation is to be taught properly, as a problem solving approach
with a distinct focus on proper objects, it is my belief that some discussion of
object oriented analysis and design need to be present. Introducing a strategy or
method for choosing objects in a proper fashion, to be able to make reasonable
abstractions, modeling entities in the problem domain, is absolutely necessary.

The purpose of empirical research is not only to observe be-
haviour, but to think about behaviour. Empirical science in young
domains such as CS education is not so much a process of getting
answers as one of finding even better questions. (Fincher and Petre,
2004, p.23)

Threats to validity There is always a possibility that the mere fact that a
certain research area is discussed influences the statements of the respondents.
Some might have a nagging feeling of being evaluated and might be restricted
in their description of certain issues. This is unavoidable.

A conscious choice was to try to use a “neutral” language during the inter-
views, to avoid intimidating the respondents with a language more formal than
the one they would choose themselves to discuss object orientation. However,
this might also have been counterproductive and influenced them to use the

14

Bibliography

same wording, instead of their own vocabulary. The object oriented vocabulary
has not been a major part of the analysis, and great effort has been made to
listen to descriptions rather than exact wording. My point of departure is not
unbiased regarding the subject, since object oriented examples for novices has
been the main focus of my research for the last three years. Being aware of this,
I have made an effort to set aside my preconceptions of object oriented quality.

The question of validity in qualitative research is a matter of standards to
be upheld as ideals (Whittemore et al., 2001).

In this study the classification of statements has been validated by a test-test
procedure with a second researchers coding the same data with only minor, and
insignificant, differences. About 17% of all statements were randomly selected
and classified. The major part of differences in classifications, was due to the
interpretation of the aspects of the theme Examples, which is not part of the
study presented here.

By supplying a rich amount of quotations the results are transparent and
allow for evaluation on credibility and authenticity. The research process has
been tested and the author’s long experience and training in counseling skills,
working for many years as a student counselor, makes it plausible that the author
is concerned of giving voice to all participants, and is sensitive to differences
among participants. Therefore the criteria for credibility and authenticity can
be regarded as fulfilled.

The design of the study is conscious and articulated. Furthermore, the op-
erationalisation of the research area is structured, data collection decisions are
presented, and verbatim transcriptions are provided, which implies thorough-
ness.

Bibliography

Clancey, M. (2004). Misconceptions and Attitudes that Infere with Learning to
Program, pages 85–100. Taylor & Francis.

Dale, N. (2005). Content and emphasis in CS1. ACM SIGCSE Bulletin,
37(4):69–73.

Du Bois, B., Demeyer, S., Verelst, J., and Temmerman, T. M. M. (2006). Does
god class decomposition affect comprehensibility? In Kokol, P., editor, SE
2006 International Multi-Conference on Software Engineering, pages 346–355.
IASTED.

Eckerdal, A., Thuné, M., and Berglund, A. (2005). What does it take to learn
’programming thinking’? In ICER ’05: Proceedings of the first international
workshop on Computing education research, pages 135–142, New York, NY,
USA. ACM.

Elo, S. and Kyngas, H. (2008). The qualitative content analysis process. Journal
of Advanced Nursing, 62(1):107–115.

15

Bibliography

Fincher, S. and Petre, M. (2004). Computer science education research. Taylor
& Francis, London.

Forman, J. and Damschroder, L. (2007). Qualitative content analysis. Advances
in Bioethics, 11:39–62.

Graneheim, U. H. and Lundman, B. (2004). Qualitative content analysis in nurs-
ing research: concepts, procedures and measures to achieve trustworthiness.
Nurse Education Today, 24(2):105 – 112.

Guzdial, M. (2008). Paving the way for computational thinking. Commun.
ACM, 51(8):25–27.

Holland, S., Griffiths, R., and Woodman, M. (1997). Avoiding object misconcep-
tions. In Proceedings of the 28th Technical Symposium on Computer Science
Education, pages 131–134.

Hsieh, H.-F. and Shannon, S. E. (2005). Three Approaches to Qualitative Con-
tent Analysis. Qualitative Health Research, 15(9):1277–1288.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., and Herman, G. L. (2010). Iden-
tifying student misconceptions of programming. In SIGCSE ’10: Proceedings
of the 41st ACM technical symposium on Computer science education, pages
107–111, New York, NY, USA. ACM.

Morse, J. M. (1991). Approaches to qualitative-quantitative methodological
triangulation. Nursing research, 40(2):120–123.

Nordström, M. (2010). Educators’ views on object orientation. (to be submitted).

Sandelowski, M. (1995). Sample size in qualitative research. Research in Nursing
& Health, 18(2):179–183.

Shank, G. and Villella, O. (2004). Building on new foundations: Core princi-
ples and new directions for qualitative research. The Journal of Educational
Research, 98(1):46–55.

Skolverket (2010a). The swedish national agency for education—-homepage.
http://www.skolverket.se/sb/d/353 Last visited: 2010-09-30.

Skolverket (2010b). The swedish national agency for education: Syl-
labuses. http://www3.skolverket.se/ki03/front.aspx?sprak=EN Last
visited: 2010-09-30.

Thompson, E. (2008). How do they understand? Practitioner perceptions of an
object-oriented program. PhD thesis, Massey University, Palmerston North,
New Zealand.

Transcriva. Transcriva homepage. http://www.bartastechnologies.com/
products/transcriva/.

Whittemore, R., Chase, S. K., and Mandle, C. L. (2001). Validity in Qualitative
Research. Qualitative Health Research, 11(4):522–537.

16

168

Paper VII

Improving OO Example Programs

169

IEEE TRANSACTIONS ON EDUCATION, VOL. 54, NO. X, MONTH 2011 1

Improving OO Example Programs
Marie Nordström and Jürgen Börstler, Member, IEEE

Abstract—When teaching object oriented programming, ed-
ucators rely heavily on textbook examples. However, research
shows that such examples are often of insufficient quality regard-
ing their object-oriented characteristics. In this paper, we present
a number of guidelines for designing or improving object oriented
example programs for novices. Using actual textbook examples,
we show how the guidelines can help in assessing and improving
the quality of object oriented example programs.

Index Terms—Object oriented programming, Example pro-
grams, Guidelines, Quality, Education.

I. INTRODUCTION

EXAMPLE programs are a key resource for the teaching or
learning of programming [1], [2]. It has been argued that

object orientation is a “natural” way of thinking and therefore
well suited for problem solving using program development.
However, several studies question this claim [3]. Novices,
for example, have more problems understanding a delegation-
based control style, which is central to object-orientation, than
a centralized one. This adds to the difficulties of teaching
object orientation.

We have little scientific theory or evidence guiding us in
how to introduce object orientation. However, there should be
no doubt that we need to strive for examples that emphasize the
general characteristics of object orientation. Research shows,
though, that the overall quality of object oriented example
programs in introductory textbooks is insufficient [4], [5].
The quality of common example programs, like the famous
“HelloWorld” program, have been critically discussed for
a long time [6] and there have been ongoing debates on
the object-orientedness of these and similar examples [7]–[9].
However, all of these discussions have focused on superficial
technicalities, rather than the inherent object oriented qualities
(and suitability) of the examples.

In this paper, we present quality guidelines for object
oriented example programs for novices that have been derived
from key object oriented concepts and design principles [10].
We then show how these guidelines can be used to assess
and improve typical examples from introductory programming
texts. The reader should note that programming is not an exact
science and there are varying opinions on and perceptions of
quality. Improving an example is always easier than develop-
ing it in the first place. This paper suggests a critical attitude
towards the object oriented quality of example programs. If
we want students to write quality code, we have to give

Marie Nordström is with the Department of Computing Science, Umeå
University, Umeå, Sweden. Corresponding e-mail: marie@cs.umu.se

Jürgen Börstler is with the Department of Computing Science, Umeå
University, Umeå, Sweden (on leave) and with the School of Computing,
Blekinge Institute of Technology, Karlskrona, Sweden. Corresponding e-mail:
jurgen.borstler@bth.se

Manuscript received November X, 2010; revised month date, 2010.

them “good” examples and insist on commonly agreed object
oriented principles, guidelines, and rules even in small scale
examples for novices.

II. RELATED WORK

Textbooks are a major source for example programs and
also work as a reference for how to solve specific problems.

Becker [11] reviewed 16 introductory object oriented pro-
gramming texts and analyzed how objects and classes are
introduced, how I/O is handled, and how they support software
engineering concepts. His results show that it is difficult to find
a text that meets every need, but that there are books that do
a good job.

McConnell and Burhans [12] have examined the coverage
of basic concepts in programming textbooks over time and
observed a shift in the amount of coverage of various topics
with each new programming paradigm. With object orientation
they observe a decrease in the treatment of subprograms but
also a decrease in basic programming constructs.

De Raadt et al. [13] examineed 49 textbooks used in Aus-
tralia and New Zealand and found quite poor compliance with
the ACM/IEEE curriculum guidelines. One explanation they
offered for the poor compliance was that many texts are more
focused on the syntactical details of a programming language
than on conveying a more holistic view of programming as a
problem solving tool.

In a multi-national study Lister et al. [14] concluded that few
students are able to articulate the intent of code when asked to
“think out loud” while taking a multiple-choice questionnaire.

Research also revealed that students hold a range of miscon-
ceptions about object orientation. Ragonis and Ben Ari [15]
identified seven such misconceptions about program flow in
object orientated programs. The same authors also present
a comprehensive list of frequently observed difficulties and
misconceptions of novices along with probable sources of
these problems [16].

Holland et al. [17] discuss misconceptions concerning the
concept of an object. They present a number of misconceptions
that might relate to particular features of example programs
and suggest guidelines for example construction to avoid
these problems. Fleury [18] identifies a number of student
constructed rules, where students generalize from valid models
in erroneous ways.

Börstler et al. [4], [19] developed a checklist for evaluating
the quality of object oriented examples for novices. Their
checklist covers three aspects of example quality; technical
quality, object-oriented quality, and didactic quality. Object
oriented quality is captured by the following five quality
factors: Reasonable Abstractions (O1), Reasonable State and
Behaviour (O2), Reasonable Class Relationships (O3), Ex-
emplary OO code (O4), Promotes “Object Thinking” (O5).

2 IEEE TRANSACTIONS ON EDUCATION, VOL. 54, NO. X, MONTH 2011

Results of a large scale study shows that the object oriented
quality of example programs in common introductory text
books is low [4], [5].

III. EDUCATIONAL HEURISTICS FOR OO EXAMPLES

Based on key concepts found in literature, and on key object
oriented design principles used by the software developing
community, a number of educational heuristics were developed
and described in [10]. The intention of these heuristics is to
support the design of exemplary examples, with respect to
the characteristics of object orientation, and at the same time
conceptually addressing the particular needs of novices. Based
on the experiences with the design, evaluation, and use of an
evaluation tool for object oriented examples for novices [4],
[5], [19], further fine-tuning of these heuristics have resulted
in five Eduristics.

The Eduristics are targeted towards general design charac-
teristics, which means that more detailed practices, like keep-
ing all attributes private, are not stated explicitly. Furthermore,
they are designed to be independent of a particular pedagogic
approach (objects first/late, order of concepts, ...), language,
or environment.

In short, the Eduristics can be summarized as follows:
1) Model Reasonable Abstractions

• Abstractions must be meaningful from a software
perspective, but also plausible from a novice’s point
of view.

• Do not put the entire application into main and
isolate it from other application classes.

• No God classes [20].
2) Model Reasonable Behaviour

• Show objects changing state and behaviour depend-
ing on state.

• Do not confuse the model with the modelled.
• No classes with just setters/getters (“containers”).
• No code snippets.
• No printing for tracing; use toString to commu-

nicate textual representations.
3) Emphasize Client View

• Promote thinking in terms of services that are re-
quired from explicit clients.

• Separate the internal representation from the exter-
nal functionality.

4) Promote Composition
• Emphasize the idea of collaborating objects; use

non-trivial attributes to emphasise the distribution
of responsibilities.

• Do not use inheritance to model roles [21].
• Inheritance should separate behaviour and demon-

strate polymorphism.
5) Use Exemplary Objects Only

• Promote “object thinking”, i.e. objects are au-
tonomous entities with clearly defined responsibili-
ties.

• Instantiate multiple objects of at least one class.
• Do not model “one-of-a-kind” objects.

• Make all objects/classes explicit: avoid anonymous
classes and explain where objects that are not in-
stantiated explicitly come from.

• Make all relationships explicit: avoid message
chains. Objects should only communicate with ob-
jects they know explicitly (Law of Demeter [22]).

• Avoid shortcuts.
Using exemplary objects in particular means to support

students in their generalizing from concrete examples to
general properties. Emphasising improper role models might
lead to erroneous generalisations or misconceptions. Many
introductory (Java) textbooks use classes like String or
Math to introduce the concepts of object and class. However,
neither of them is a good role-model of a class. String-objects
are immutable and can therefore not be shared, which means
that they do not behave like “proper” objects. Math is just a
container for methods and cannot even be instantiated.

We are well aware that real software features more non-
exemplary than exemplary objects (see for example [23]), but
from a teaching and learning point of view initial examples
need to be prototypical for a concept [24], [25].

Our five Eduristics correspond well with the object oriented
quality factors of the evaluation tool used in [4], [5]. We
therefore argue that they help to increase the object oriented
quality of examples for novices.

IV. A CLOSER LOOK AT EXAMPLES

An important category of examples is the first user defined
class (FUDC). For a novice, this example sets the stage for a
typical class and must therefore be carefully chosen. Defining
a small, simple, and easy to understand example, that exhibits
high object oriented quality is a challenging task, in particular
since novices only have a very small repertoire of concepts and
syntactical constructs. As part of a larger study, a number of
FUDCs from common introductory textbooks were evaluated
and analysed in [4], [5]. The results of this analysis are
discouraging; many examples score low in particular regarding
their object oriented quality.

In the following sub-section, we use the Eduristics to
examine a typical FUDC-example. This is followed by a more
general discussion on common deficiencies in FUDCs. Alter-
native designs are proposed and finally we suggest a number
of suitable abstractions to use in examples with appropriate
contexts.

A. The BMI-example
Fig. 1 shows an example of a FUDC from a common

textbook [26, chpt. 10].
The class is modeling Body Mass Index1 objects. The class

is presented as an attempt to make a previously introduced
static method (see below) for calculating the BMI reusable.

1“Body Mass Index (BMI) is a number calculated from a person’s weight
and height. For adults 20 years old and older, BMI is interpreted using standard
weight status categories that are the same for all ages and for both men and
women. For children and teens, on the other hand, the interpretation of BMI is
both age- and sex-specific” http://www.cdc.gov/healthyweight/assessing/bmi/
adult\ bmi/index.html

NORDSTRÖM: IMPROVING OO EXAMPLE PROGRAMS 3

getBMI(): double
getStatus(): String
getName(): String
getAge(): int
getWeight(): double
getHeight(): double

name: String
age: int
weight: double
height: double

BMI

Computes and returns the
BMI value attributes weight
and height

Computes the BMI value and
returns the BMI status as a
string, e.g. ”overweight”

Fig. 1. UML class diagram for BMI.

public static double getBMI(

double weight, double height);

The example text argues that if there is a need to associate
the weight and height with a person’s name and birth date,
the ideal way to couple them, would be to create an object
that holds them all. According to the text, this example
demonstrates the advantages of the object-oriented paradigm
over the procedural paradigm. Using our Eduristics, we would
evaluate the object oriented qualities of this example in the
following way:

1) Model Reasonable Abstractions: Abstraction is a mech-
anism to cope with complexity. A good abstraction
focuses on the essential properties of a phenomenon
while ignoring irrelevant details. BMI is basically a
value or value/weight status pair and the BMI-class could
be said to focus on these essential properties. However,
it is difficult to understand why name and age should
be properties (state) of a BMI-object. In the present
case, the attributes name and age are never even used,
although BMI’s for children and adults are calculated
differently. It is therefore unclear what BMI is actually
modelling.

2) Model Reasonable Behaviour: The BMI-class is just a
“wrapper” for some immutable values set on instantia-
tion. The state of an BMI-object never changes, although
it would seem reasonable that at least age and weight
should be mutable. Nevertheless, the BMI-value and its
corresponding status are recalculated for every call of
the methods getBMI() and getStatus(). This is
highly unreasonable behaviour, not only from the class’
interface point of view, but also from an implementation
point of view.

3) Emphasize Client View: BMI-objects do not offer any
significant services. The only thing clients can do is to
group a set of immutable values and ask BMI-objects
for “their own values”:

BMI bmi = new BMI(...);

double bmiValue = bmi.getBMI();

String bmiStatus = bmi.getStatus();

Martin argues that a model can only be meaningfully
validated in terms of its clients [27]. In the BMI case it
is, however, difficult to imagine a client.

5) Use Exemplary Objects Only: BMI-objects do neither
have mutable state nor meaningful behaviour. Although

the accompanying test program instantiates two BMI-
objects that does not help much to emphasise the differ-
ence between objects and classes, since the only thing
done with the objects is to get their BMI-values and print
them to System.out. The example does not promote
object thinking; the objects are no autonomous entities
with clearly defined responsibilities.

This example also illustrates the importance of naming.
Judging from the attributes of the BMI-class, it seems more
adequate to name this class something like PersonalData,
which is responsible for keeping track of the weight-history
for an individual. Then calculating the BMI would be a smaller
task to be performed for some supplied service. However,
naming is also dependent on the context. The name of a class
must adequately describe a phenomenon from the problem
domain’s point of view. The name should also give proper
associations of what to expect from objects of this type.

B. Common example deficiencies
Simple “structures”, like Clock, Card, GradeBook etc.

are commonly used as early examples in introductory pro-
gramming textbooks. They are characterised by a number of
attributes of basic types and String, and methods to set
and get those attributes individually. See Fig. 2 for typical
designs, taken almost straight out of common introductory
Java textbooks. Formally, all examples in Fig. 2 follow the
fundamental notion of a class as encapsulating data and
methods that operate on that data. However, we would argue
that a method does not really operate on the data, if the only
thing it does is to assign or retrieve the value of an instance
variable.

setTime(int, int, int)
getHours(): int
getMinutes(): int
getSeconds(): int
incrementHours(): int
incrementMinutes(): int
incrementSeconds(): int
equals(Clock): boolean
makeCopy(Clock)
getCopy(): Clock

hr: int
min: int
sec: int

Clock

setRank(int)
getRank(): int
setSuit(char)
getSuit(): char

rank: int
suit: char

Card
2 .. 14

’D’, ’H’, ’S’, ’C’

setCourseName(String)
getCourseName(): String
displayMessage()

courseName: String

GradeBook

Fig. 2. UML class diagram for common container classes.

All three abstraction in Fig. 2 are reasonable. They model
intuitive entities that can be easily placed in some context,
but we would still argue that they lack certain object oriented
qualities. Primarily, they do not exhibit reasonable behaviour
(Eduristic 2), and they do not emphasize client view (Eduristic
3).

However, it is possible to improve examples like the ones
above without too much effort. The Clock-example might be
turned into a StopWatch (see Fig. 3), or a ClockDisplay
(see Fig. 4) that both add reasonable behaviour beyond just set-
and get-methods. The ClockDisplay-example goes even

4 IEEE TRANSACTIONS ON EDUCATION, VOL. 54, NO. X, MONTH 2011

a step further and shows non-trivial collaboration between
objects without making the example overly complex.

The Card-class could be a central class of some card game,
but this would require substantial extensions, both in size and
complexity. One would at least need classes for rank and
suit to complete the actual card abstraction (see [28] for an
excellent discussion on when to make a type). Furthermore,
additional classes for deck and hand objects might be needed
to do something meaningful with Card-objects.

A GradeBook-object basically is a container for student-
grade pairs. Reasonable behaviour could for example be added
by methods for the calculation of average scores etc. However,
it would still basically be a container, but now with a “bloated”
interface/protocol that violates the Single Responsibility Prin-
ciple [27].

C. Alternative clock-designs
To use the idea of a clock, and still make it an exemplary

example, we have found two appealing designs. The first
example is the timer, or the stopwatch, see Fig. 3.

start()
stop()
read(): long
reset()

running: boolean
start: long
timeElapsed: long

StopWatch

Starts and restarts time-taking.

Returns elapsed time in milliseconds.
Does not reset timeElapsed!

Fig. 3. Class diagram for StopWatch [29].

In this design, the actual representation of time is delegated
to a system supplied service. The state is easy to understand,
either the timer is running, or not. Time is not updated con-
tinuously by the object, but calculated when needed (method
read). The possibilities to accumulate time, and to reset the
timer provides clients with the typical features one would
expect from a timer or stop watch. This makes StopWatch
an intuitive and useful abstraction with reasonable behaviour.

Another example of a simple and elegant design, is the
ClockDisplay-example, shown in Fig. 4.

setValue(int)
getValue(): int
getDisplayValue(): String
increment()

rollOverLimit: int
value: int

NumberDisplay

setTime(int, int)
getTime(): String
timeTick()
- updateDisplay()

displayString: String

ClockDisplay

minutes

hours

Delegates to
`hours´and
`minutes´.

Fig. 4. Class diagram for ClockDisplay and NumberDisplay [30].

This example even illustrates collaborating objects, without
adding much to the overall complexity of the example. Using
instance variables of class-type early on makes it easier for
novices to understand that instance variables don’t need to be
of basic types. Although this is a common novice miscon-
ception [17], we found that early examples almost exclusively
feature instance variables of basic types.

D. Further Examples
In this section we give a short list of suggestions for suitable

early examples.
• Die: A simple, intuitive abstraction that can be easily

placed in meaningful contexts and it is easy to imagine
applications using several Die-objects. Rolling a die is a
meaningful non-trivial behaviour. Die-objects could even
be instantiated with different numbers of faces to illustrate
that quite different objects can be instantiated.

• BankAccount: Can be a very good example, if used
with care. A bank account is a simple and intuitive
abstraction and bank account-objects have simple but
non-trivial behaviour. It is also fairly easy to imagine
meaningful contexts and clients. However, educators must
be aware that specializations of bank accounts are local-
ized phenomena and students might have a hard time to
figure out the meanings of checking and saving accounts.

• ClickCounter: A very simple abstraction modelling a
manual counter that increases a value on every click. Has
many features in common with the StopWatch shown
in Fig. 3, but is even simpler.

• TrafficLight: Slightly more complicated abstraction
that illustrates state dependent behaviour.

Further suitable examples can be derived from situations
where we—out of convenience—usually just use variables
of some base type. For example to model monetary values,
it is very common to use just a variable of floating point
type. However, money arithmetic works slightly different than
floating point arithmetic. Furthermore, things will become
complicated in case one needs to handle different currencies.
Fowler [28] presents an interesting discussion on this subject
and recommends to define a type (class) whenever some entity
needs special behaviour in its operations that a primitive type
do not have.

V. CONCLUSION

The object oriented quality of examples for novices is
often insufficient. To prevent students from making premature
erroneous generalisations, we find it important to always
be faithful to the object-oriented paradigm. Since students
will use examples as role models, they must not contradict
the concepts and rules we intend them to pick up. In this
paper we have described how the design of examples can be
enhanced by the use of educational heuristics. Small details
can often make a big differences when it comes to object
oriented quality. When dealing with examples for novices, it
is important to respect that every example serves two purposes.
On one hand it demonstrates a particular concept or feature of
the paradigm or the language. On the other hand it is also a
stepping stone in conveying the general idea of the paradigm,
and this must be given appropriate attention.

An important ingredient of an example is its context. A
good abstraction focuses on the essential characteristics of
some object from a particular point of view [27], [31]. Without
this point of view, it can be difficult to make sense of an
abstraction. The context, or cover story [4], provides meaning
and motivation and supports novices in understanding of the

NORDSTRÖM: IMPROVING OO EXAMPLE PROGRAMS 5

source code: What problem is being addressed and what is the
reason for this particular solution?

REFERENCES

[1] J. Anderson, R. Farrell, and R. Sauers, “Learning to program in LISP,”
Cognitive Science, vol. 8, no. 2, pp. 87–129, 1984.

[2] E. Lahtinen, K. Ala-Mutka, and H. Järvinen, “A study of the difficulties
of novice programmers,” in Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Educa-
tion, 2005, pp. 14–18.

[3] M. Guzdial, “Paving the way for computational thinking,” Commun.
ACM, vol. 51, no. 8, pp. 25–27, 2008.

[4] J. Börstler, M. S. Hall, M. Nordström, J. H. Paterson, K. Sanders,
C. Schulte, and L. Thomas, “An evaluation of object oriented example
programs in introductory programming textbooks,” Inroads, vol. 41, pp.
126–143, 2009.

[5] J. Börstler, M. Nordström, and J. H. Paterson, “On the quality of
examples in introductory java textbooks,” The ACM Transactions on
Computing Education (TOCE), vol. Accepted for publication, 2010.

[6] R. Westfall, “’hello, world’ considered harmful,” Communications of the
ACM, vol. 44, no. 10, pp. 129–130, 2001.

[7] CACM, “Hello, world gets mixed greetings,” Communications of the
ACM, vol. 45, no. 2, pp. 11–15, 2002.

[8] M. H. Dodani, “Hello world! goodbye skills!” Journal of Object
Technology, vol. 2, no. 1, pp. 23–28, 2003.

[9] CACM Forum, “For programmers, objects are not the only tools,”
Communications of the ACM, vol. 48, no. 4, pp. 11–12, 2005.

[10] M. Nordström, “He[d]uristics – heuristics for designing object oriented
examples for novices,” Licenciate Thesis, Umeå University, Sweden,
March 2009.

[11] B. Becker, “Pedagogies for CS1: A survey of java textbooks,” 2002.
[12] J. J. McConnell and D. T. Burhans, “The evolution of CS1 textbooks,”

in Proceedings FIE’02, 2002, pp. T4G–1–T4G–6.
[13] M. De Raadt, R. Watson, and M. Toleman, “Textbooks: Under inspec-

tion,” University of Southern Queensland, Department of Maths and
Computing, Toowoomba, Australia, Tech. Rep., 2005.

[14] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hame, M. Lindholm,
R. McCartney, J.-E. Moström, K. Sanders, O. Seppälä, B. Simon, and
L. Thomas, “A multi-national study of reading and tracing skills in
novice programmers,” SIGCSE Bull., vol. 36, no. 4, pp. 119–150, 2004.

[15] N. Ragonis and M. Ben-Ari, “On understanding the statics and dynamics
of object-oriented programs,” in Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education, 2005, pp. 226–
230.

[16] ——, “A long-term investigation of the comprehension of OOP concepts
by novices,” Computer Science Education, vol. 15, no. 3, pp. 203–221,
2005.

[17] S. Holland, R. Griffiths, and M. Woodman, “Avoiding object misconcep-
tions,” in Proceedings of the 28th Technical Symposium on Computer
Science Education, 1997, pp. 131–134.

[18] A. E. Fleury, “Programming in java: Student-constructed rules,” in Pro-
ceedings of the thirty-first SIGCSE technical symposium on Computer
science education, 2000, pp. 197–201.

[19] J. Börstler, H. B. Christensen, J. Bennedsen, M. Nordström, L. Kallin
Westin, Jan-ErikMoström, and M. E. Caspersen, “Evaluating oo example
programs for CS1,” in ITiCSE ’08: Proceedings of the 13th annual
conference on Innovation and technology in computer science education.
New York, NY, USA: ACM, 2008, pp. 47–52.

[20] A. J. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[21] M. Fowler, “Dealing with roles,” in Proceedings of the 4th Pattern

Languages of Programming Conference (PLoP), 1997.
[22] K. Lieberherr and I. Holland, “Assuring good style for object-oriented

programs,” IEEE Software, vol. 6, no. 5, pp. 38–48, 1989.
[23] J. Gil and I. Maman, “Micro patterns in java code,” in Proceedings

of the 20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications. San Diego, CA,
USA: ACM, 2005.

[24] R. K. Atkinson, S. J. Derry, A. Renkl, and D. Wortham, “Learning from
examples: Instructional principles from the worked examples research,”
Review of Educational Research, vol. 70, no. 2, pp. 181–214, 2000.

[25] R. D. Tennyson, F. R. Woolley, and M. D. Merrill, “Exemplar and
non exemplar variables which produce correct concept classification
behaviour and specified classification errors,” Journal of Educational
Psychology, vol. 63, no. 2, pp. 144–52, 1972.

[26] Y. D. Liang, Introduction to Java programming : comprehensive version,
8th ed. Upper Saddle River, N.J.: Pearson Education, 2009.

[27] R. C. Martin, Agile Software Development, Principles, Patterns, and
Practices. Addison-Wesley, 2003.

[28] M. Fowler, “When to make a type,” IEEE Software, vol. 20, no. 1, pp.
12–13, 2003.

[29] D. A. Bailey and D. W. Bailey, Java Elements–Principles of Program-
ming in Java. McGraw Hill, 2000.

[30] D. J. Barnes and M. Kölling, Objects First with Java: A Practical
Introduction Using BlueJ: International Edition, 4/E, 4th ed. Pearson
Higher Education, 2009.

[31] G. Booch, Object-Oriented Analysis and Design with Applications, 2nd
edition. Addison-Wesley, 1994.

Marie Nordström is finishing her PhD in Computer Science didactics, after
many years of teaching introductory programming to both CS majors and
minors.

Jürgen Börstler is a professor of Computing Science with many years of
experience in object oriented analysis and design and a strong interest in
computer science education research.

Appendix A

Programming within the

Educational System in Sweden

The Swedish National Agency for Education (Skolverket) (Skolverket, 2010a) is the
central administrative authority for the Swedish public school system for children,
young people and adults, as well as for preschool activities and child care for school
children. Government and Parliament specify goals and guidelines for preschool and
school. The general organisation is shown in Figure A.1.

Schooling starts with a nine-year compulsory type of school. It is composed of 9
school years and each school year consists of a fall and spring semester. Compulsory
school is mandatory and is open to all children aged 7-16.

The National Agency steers, supports, follows up and evaluates the work of
municipalities and schools with the purpose of improving quality and the result of
activities to ensure that all pupils have access to equal education.

Secondary Education
All young people in Sweden who have finished compulsory school are entitled to
three years of schooling at upper secondary school. Based on interest the stu-
dents make a choice among a number of programs with different focus, yielding
different eligibility for moving on to the university level. The government sets out
the programme goals of each national programme at upper secondary school. The
programme goals describe the purpose and objective of the course. The National
Agency for Education adopts syllabi, and the syllabi set out the goals of the teach-
ing of each individual subject and course. Because of this it is well known what
the syllabi and requirements for programming courses in upper secondary school
are (Skolverket, 2010b).

All courses concerning computers and programming are organized in a subject
called Computer technology. In FigureA.2 the structure and relationships among
the programming courses in upper secondary school is shown.

Computing is a course common to most of the programs. It provides knowledge
of PCs and skills in using software. Programming A provides a basic theoretical and
practical knowledge of programming. Programming B is aiming at theoretical and
practical knowledge in a structured programming language and skills in designing

175

Appendix A. Programming within the Educational System in Sweden

Figure A.1: The swedish educational system.

Figure A.2: Computing courses in upper secondary school.

algorithms. Programming C should provide theoretical and practical knowledge in
an object oriented programming language, as well as a knowledge of analysis and
design methods. It also provides knowledge of graphical user interfaces. According
to the syllabi, Programming A and Programming C together roughly contains the
amount of stuff and time allocated to a university-level CS1 course. See (Skolverket,
2010b) for more details.

Higher Education
In Sweden, the Government has the overriding responsibility for higher education
and research. It enacts the legislation and establishes the targets, guidelines and
funding for the sector. At the university level the Swedish educational system is now
adjusted to the Bologna system with 3-year bachelor degrees (Kandidatexamen)
and 2-year Master degrees (Figure A.1). In addition to this, the Master of Science in
Engineering (Civilingenjörsexamen) is a 5-year Masters degree. These degrees are
given for a number of different majors, including Computer Science. In general, the
computing curricula of these programs contains traditional CS1 and CS2 courses,
for both CS majors and minors.

176

	Introduction
	Learning to Program
	The Problem
	Outline of this Thesis

	Learning from Examples
	Teaching and Learning Object Orientation
	Teaching object orientation
	Learning object orientation
	Summary

	Object Oriented Quality
	Core Concepts and Design Principles
	The Object Oriented Quality of Examples

	Designing Object Oriented Examples
	Eduristics for the Design of Object Oriented Examples
	Evaluating the Object Oriented Quality of Examples

	Listening to Educators
	Educators' Personal Views on Object Orientation
	Respondents
	Interviews
	Analysis
	Results
	Discussion
	Trustworthiness

	Conclusions and Further Work
	Summary of Papers
	Paper I - Transitioning to OOP/Java – A Never Ending Story
	Paper II - Heuristics for designing OO examples for novices
	Paper III - Evaluating OO example programs for CS1
	Paper IV - On the Quality of Examples in Introductory Java Textbooks
	Paper V - Educators’ Views on OO, Objects and Examples
	Paper VI - Educators’ Strategies for OOA&D
	Paper VII - Improving OO Example Programs

	Bibliography
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI
	Paper VII
	Programming within the Educational System in Sweden

