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Abstract

We consider parallel reduction of a real matrix to Hessenberg form using orthogonal
transformations. Standard Hessenberg reduction algorithms reduce the columns of the
matrix from left to right in either a blocked or unblocked fashion. However, the standard
blocked variant performs 20% of the computations as large matrix–vector multiplica-
tions. We show that a two-stage approach consisting of an intermediate reduction to
r-Hessenberg form speeds up the reduction by avoiding matrix–vector multiplications.
We describe and evaluate a new high-performance implementation of the two-stage ap-
proach that attains significant speedups over the one-stage approach on a dual quad-core
machine. The key components are a dynamically scheduled implementation of the first
stage and a blocked adaptively load-balanced implementation of the second stage.

Keywords: Hessenberg reduction, blocked algorithm, parallel computing, dynamic
scheduling, high performance, multicore, memory hierarchies

1. Introduction

The Hessenberg decomposition A = QHQT of a square matrix A ∈ Rn×n, where H ∈
Rn×n is an upper Hessenberg matrix and Q ∈ Rn×n is orthogonal, has many applications
in numerical linear algebra [1]. Our focus is on large-scale applications that require
blocked and parallel algorithms. For example, the Hessenberg QR algorithm, which
computes a Schur form, takes as input a matrix in Hessenberg form [2]. Other examples
include solvers for dense Sylvester-type matrix equations, which typically simplify the
coefficient matrices to Schur and/or Hessenberg form [3, 4]. A third application is the
solution of linear systems (A − σI)x = b for many shifts σ. By first reducing A to
Hessenberg form, each system can be solved with only O(n2) flops.

The aim of this paper is to describe and evaluate a new efficient Hessenberg reduction
algorithm for shared-memory machines. The implementation assumes nearly uniform
memory access, but the underlying algorithmic ideas are also applicable to machines with
a strong NUMA component or distributed memory. The proposed algorithm consists of
two stages, whereas the conventional approach goes directly to Hessenberg form. The first
stage reduces a dense matrix to r-Hessenberg form, i.e., such that A(i, j) = 0 if i > j+r.
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The second stage completes the Hessenberg reduction with a bulge-chasing procedure
that annihilates the r−1 unwanted nonzero subdiagonals from the r-Hessenberg matrix.

The idea to do reduction in two stages is not new. Two-stage algorithms are effective
for both symmetric band reduction [5] and Hessenberg-triangular reduction [6, 7].

The rest of the paper is organized as follows. We recall the conventional unblocked
and blocked Hessenberg reduction algorithms in Section 2. We discuss some pros and
cons of the two-stage approach in Section 3. We describe a new implementation of the
first stage in Section 4. We outline the authors’ recently published implementation of
the second stage [8] in Section 5. We evaluate the performance of the two stages, both
in isolation and combined, in Section 6. Finally, we summarize our findings and briefly
review some related work in Section 7.

2. One-stage Hessenberg reduction

In both the blocked and the unblocked standard algorithms, the matrix is reduced
from left to right using one Householder reflection per column. We recall the unblocked
variant in Section 2.1 and the blocked variant in Section 2.2. They form the basis of
several high-performance implementations of the Hessenberg reduction, e.g., see [9, 10].

2.1. Unblocked one-stage Hessenberg reduction
Algorithm 1 is a reformulation of the standard unblocked Hessenberg reduction algo-

rithm. The j-loop iterates over the columns of the matrix and reduces them from left to
right. A Householder reflection Qj of order n − j is constructed on line 2. A similarity
transformation derived from Qj is immediately applied to the matrix on lines 3–4. The
input matrix A is reduced to Hessenberg form after n− 2 iterations.

Algorithm 1 Unblocked one-stage Hessenberg reduction. Given a dense matrix A ∈
Rn×n, this algorithm overwrites A with H = QTAQ, where H ∈ Rn×n is in upper
Hessenberg form and Q ∈ Rn×n is orthogonal.
1: for j = 1:n− 2 do
2: Reduce A(j + 1:n, j) with a Householder reflection Qj = I − τvvT

3: A(j + 1:n, j :n) = QT
j ·A(j + 1:n, j :n)

4: A(1 :n, j + 1:n) = A(1 :n, j + 1:n) ·Qj

5: end for

The flop count of Algorithm 1 is 10
3 n

3 plus lower order terms. Due to the special
structure of a Householder reflection, its multiplication with a vector of length n requires
only 4n flops compared to 2n2 flops for a dense matrix–vector multiplication. Approxi-
mately 60% of the flops are associated with updates on the right-hand side (line 4), and
the remaining 40% are associated with updates on the left-hand side (line 3).

The performance of Algorithm 1 is limited on large matrices due to its exclusive use
of matrix–vector multiplications. However, it is competitive for small matrices since it
uses the least amount of flops of all the Hessenberg reduction algorithms that we discuss
in this paper.
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2.2. Blocked one-stage Hessenberg reduction
Most of the performance issues of Algorithm 1 are averted by applying the compact

WY representation [11] as described in [9, 12]. Algorithm 2 states the resulting blocked
algorithm. A benefit of using the compact WY representation is that 80% of the flops
get associated with matrix–matrix multiplications. However, the remaining 20% flops
remain as matrix–vector multiplications.

Algorithm 2 Blocked one-stage Hessenberg reduction. Given a dense matrix A ∈ Rn×n,
this algorithm overwrites A with H = QTAQ, where H ∈ Rn×n is in upper Hessenberg
form and Q ∈ Rn×n is orthogonal. The block size is b.
1: for j1 = 1:b :n− 2 do
2: b̂ = min{b, n− j1 − 1}
3: i1 = 1:j1; i2 = j1 + 1:n; i3 = j1 + b̂ :n

4: Set Y ∈ Rn×b̂, V ∈ Rn×b̂, and T ∈ Rb̂×b̂ to zero.
5: for j = j1 :j1 + b̂− 1 do
6: i4 = j + 1:n; i5 = 1:j − j1
7: A(i2, j) = A(i2, j)− Y (i2, i5) · V (j, i5)T

8: A(i2, j) = (I − V (i2, i5) · T (i5, i5) · V (i2, i5)T )T ·A(i2, j)
9: Reduce A(i4, j) with a Householder reflection I − τvvT

10: V (i4, j − j1 + 1) = v; T (j − j1 + 1, j − j1 + 1) = τ
11: T (i5, j − j1 + 1) = τ · V (i4, i5)T · v
12: Y (i2, j − j1 + 1) = τ ·A(i2, i4) · v − Y (i2, i5) · T (i5, j − j1 + 1)
13: T (i5, j − j1 + 1) = −T (i5, i5) · T (i5, j − j1 + 1)
14: end for
15: Y (i1, :) = A(i1, i2) · V (i2, :) · T
16: A(i1, i2) = A(i1, i2)− Y (i1, :) · V (i2, :)T

17: A(i2, i3) = A(i2, i3)− Y (i2, :) · V (i3, :)T

18: A(i2, i3) = (I − V (i2, :) · T · V (i2, :)T )T ·A(i2, i3)
19: end for

Algorithm 2 applies a sequence of orthogonal similarity transformations

A← (I − V TV T )TA(I − V TV T ) (1)

that eventually produces a matrix in upper Hessenberg form. The purpose of the inner
loop (lines 5–14) is to construct a compact WY representation I − V TV T such that (1)
reduces columns j1 :j1 + b̂−1. The inner loop also computes the lower part of the matrix
Y = AV T . The statements 15–18 in the outer loop completes the computation of Y and
also updates the matrix A via

A← (I − V TV T )T (A− Y V T ). (2)

The formulas that are used in the inner loop to compute the upper triangular matrix
T are derived from a special case of equation (3), which expresses the product of two
compact WY representations as a new one:

(I − V1T1V
T
1 )(I − V2T2V

T
2 ) = I − [V1 V2

]︸ ︷︷ ︸
V

[
T1 −T1V

T
1 V2T2

0 T2

]
︸ ︷︷ ︸

T

[
V1 V2

]T︸ ︷︷ ︸
V T

. (3)
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The lower part of the matrix Y is computed using the formula

Y =
[
Y1 Y2

]
= AV T

= A
[
V1 V2

] [T1 −T1V
T
1 V2T2

0 T2

]
=
[
AV1T1 AV2T2 −AV1T1V

T
1 V2T2

]
=
[
Y1 AV2T2 − Y1V

T
1 V2T2

]
.

(4)

Since the expression V T
1 V2T2 appears in both (3) and (4), it is computed only once by

Algorithm 2.
The flop count is similar to that of Algorithm 1 if we neglect lower order terms.

However, the overhead of the blocked algorithm grows proportionally to b3. The leading
term of the flop count can be broken down into five primary contributions as follows.
Line 12: 2

3n
3 (20%), line 15: 1

3n
3 (10%), line 16: 1

3n
3 (10%), line 17: 2

3n
3 (20%), and

line 18: 4
3n

3 (40%).

3. Two-stage Hessenberg reduction

Recall that the two-stage approach first reduces the matrix to r-Hessenberg form
and then to upper Hessenberg form. The free parameter r can be chosen to maximize
performance. As is explained in the coming sections, the performance of the first stage
increases with r, whereas the performance of the second stage decreases with r. This
trade-off leads to the conclusion that a modest r-value gives the best performance when
the two stages are combined.

The one-stage approach requires 10
3 n

3 flops to compute H and an additional 4
3n

3

flops to accumulate Q. The two-stage approach requires 10
3 n

3 flops for the first stage
alone, and 2n3 flops for the second stage. Accumulation of the reflections from the first
stage requires 4

3n
3 flops, and the reflections from the second stage add 2n3 flops on top of

that. In summary, the two-stage approach consumes 60% more flops than the one-stage
approach when computing H, and it consumes 86% more flops when Q is also explicitly
computed.

4. Stage 1: reduction from dense to r-Hessenberg form

It is straightforward to modify Algorithm 2 to produce an r-Hessenberg form using
two levels of blocking. The inner block size is determined by the number of subdiagonals
r. The outer block size b, however, does not influence the second stage and can hence be
tuned independently. Two levels of blocking are necessary since r is relatively small.

4.1. Algorithm
Algorithm 3 generalizes Algorithm 2 to produce an r-Hessenberg form. In each it-

eration of the inner loop, Algorithm 3 reduces r columns by a recursive QR factoriza-
tion [13, 14] (line 10). The matrix–vector multiplications Av in Algorithm 1 correspond
to matrix–matrix multiplications AV , where V has r columns, in Algorithm 2.

A sequential implementation of Algorithm 3 that is linked to a multithreaded BLAS
library would have suboptimal performance since many operations are small and hence
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Algorithm 3 Blocked reduction to r-Hessenberg form. Given a dense matrix A ∈ Rn×n,
this algorithm overwrites A with H = QTAQ, where H ∈ Rn×n is in upper r-Hessenberg
form and Q ∈ Rn×n is orthogonal. The outer block size is b.
1: for j1 = 1:b :n− r − 1 do
2: b̂ = min{b, n− r − j1}
3: Set Y ∈ Rn×b̂, V ∈ Rn×b̂, and T ∈ Rb̂×b̂ to zero
4: i1 = 1:j1 + r − 1; i2 = j1 + r :n; i3 = j1 + b̂ :n

% Task T1 (lines 5–15)
5: for j2 = j1 :r :j1 + b̂− 1 do
6: r̂ = min{r, j1 + b̂− j2}
7: i4 = j2 + r :n; i5 = 1:j2 − j1; i6 = j2 − j1 + 1:j2 + r̂ − j1; i7 = j2 :j2 + r̂ − 1

% Task T1.1 (lines 8–12)
8: A(i2, i7) = A(i2, i7)− Y (i2, i5) · V (i7, i5)T

9: A(i2, i7) = (I − V (i2, i5) · T (i5, i5) · V (i2, i5)T )T ·A(i2, i7)

10: Reduce A(i4, i7) with the QR-factorization A(i4, i7) = (I − V̂ T̂ V̂ T )R

11: V (i4, i6) = V̂ ; T (i6, i6) = T̂
12: T (i5, i6) = V (i4, i5)T · V (i4, i6) · T (i6, i6)

% Task T1.2 (line 13)
13: Y (i2, i6) = A(i2, i4) · V (i4, i6) · T (i6, i6)− Y (i2, i5) · T (i5, i6)

% Task T1.3 (line 14)
14: T (i5, i6) = −T (i5, i5) · T (i5, i6)

15: end for

% Task T2 (line 16)
16: Y (i1, :) = A(i1, i2) · V (i2, :) · T

% Task T3 (line 17)
17: A(i1, i2) = A(i1, i2)− Y (i1, :) · V (i2, :)T

% Task T4 (lines 18–19)
18: A(i2, i3) = A(i2, i3)− Y (i2, :) · V (i3, :)T

19: A(i2, i3) = (I − V (i2, :) · T · V (i2, :)T )T ·A(i2, i3)

20: end for
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Figure 1: Partial task graphs for the outer (left) and inner (right) loops. The nodes represent task
instances, and the edges represent precedence constraints. Only a few task instances, enough to display
the pattern of constraints, are shown. The index i1 is constant in the graph on the right.

do not parallelize well. One consequence is a substantial overhead due to idle proces-
sors/cores.

Our implementation of Algorithm 3 relies on dynamic scheduling of coarse-grained
tasks that call sequential BLAS. The scheduler tries to overlap the sequential bottlenecks,
e.g., the QR factorization, with delayed updates, e.g., lines 16–17.

The distribution of flops in Algorithm 3 is essentially the same as in Algorithm 2. In
particular, the delayable updates on lines 16–17 account for 20% of the flops.

4.2. Tasks, atoms, and constraints
The comments in Algorithm 3 define four tasks within the outer loop, namely, tasks

T1, T2, T3, and T4. There is one instance of each task per iteration of the outer loop. We
let Ta(i), where a ∈ {1, 2, 3, 4}, denote the i-th instance of task Ta.

Precedence constraints are expressed using “≺”. For example, Ta(i) ≺ Tb(j) means
that the instance Ta(i) must complete before the instance Tb(j) is allowed to start. Our
implementation imposes the following constraints, which are also illustrated in Figure 1
(left).

1. T1(i) ≺ T2(i). Instance T1(i) must complete the computation of V and T before
instance T2(i) can use them.

2. T1(i) ≺ T4(i). Instance T1(i) must complete the computation of Y , V , and T before
instance T4(i) can use them.

3. T2(i) ≺ T3(i). Instance T2(i) must complete the computation of Y before instance
T3(i) can use it.

4. T4(i) ≺ T1(i+ 1). Instance T4(i) must complete the updates of the trailing matrix
before instance T1(i+ 1) can use it.

5. T3(i) ≺ T2(i + 1). Instance T3(i) must complete its use of the buffer for Y before
instance T2(i+ 1) overwrites it.

6. T2(i) ≺ T1(i+2). Instance T2(i) must complete its use of one of the two buffers for
T before instance T1(i+ 2) overwrites it.

Constraints 1–4 are direct consequences of the data flow of the algorithm. Constraint 5
is a result of the use of a single buffer for Y . Constraint 6 is a result of the use of double

6



T1

T2 T3 T4

T1.1 T1.2 T1.3

Figure 2: Decomposition of tasks into atoms. The granularity (fine to large) of the atoms are illustrated
by discs of different size. Since the tasks T1.1 and T1.3 are sequential, each of them contains a single disc
only.

buffers for T . Instance T1(i+ 1) can be overlapped with the updates represented by the
two instances T2(i) and T3(i).

The inner loop, i.e., task T1, is further partitioned into the three tasks T1.1, T1.2, and
T1.3. The instances of these tasks are decsribed by two parameters. Specifically, the
notation Tb(i1, i2), where b ∈ {1.1, 1.2, 1.3}, refers to the i2-th instance of task Tb within
the instance T1(i1).

The nested tasks are constrained by the following constraints, which are also illus-
trated in Figure 1 (right).

7. T1.1(i1, i2) ≺ T1.2(i1, i2). Instance T1.1(i1, i2) must complete the reduction step
before instance T1.2(i1, i2) can use the new reflections.

8. T1.2(i1, i2) ≺ T1.3(i1, i2). Instance T1.2(i1, i2) must complete its use of the buffer
for T before instance T1.3(i1, i2) overwrites it.

9. T1.3(i1, i2) ≺ T1.1(i1, i2 + 1). Instance T1.3(i1, i2) must complete the computation
of T before instance T1.1(i1, i2 + 1) can use it.

Constraints 7–8 restrict the instances within one iteration, and constraint 9 forces one
iteration to end before the next iteration begins. In other words, the instances in the
inner loop must be executed in sequence.

The instances are too coarse to be scheduled directly to the threads. Each instance
is therefore partitioned into one or more independent atoms, which are the units of
sequential computation that the scheduler maps to threads. The constraints are enforced
at the task level, while the computations are scheduled at the atom level.

The granularity of the atoms is an important consideration. Fine-grained atoms
typically lead to tight schedules that have little idle time overhead. However, fine-grained
atoms also lead to large amounts of scheduler overhead and slow kernels. Coarse-grained
atoms, on the other hand, lead to less scheduler overhead and faster kernels, but can also
lead to idle time overhead.

We use a mix of both fine- and coarse-grained atoms, as illustrated in Figure 2. In-
stances of the tasks T1.1 and T1.3 are executed sequentially and thus they each correspond
to a single atom. Instances of the tasks T1.2 and T4 are decomposed into coarse-grained
atoms, i.e., one atom per thread. Instances of the remaining tasks are decomposed into
fine-grained atoms. The coarse-grained tasks T1.2 and T4 account for 80% of the flops in
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Algorithm 3. Thus, the majority of the computations are done by the efficient kernels
that are enabled by the coarse-grained atoms.

4.3. Scheduler of stage 1
A suitable scheduler should overlap the sequential reduction step with delayed updates

while also avoiding excessive idle time overhead due to the presence of coarse-grained
atoms.

Conceptually, the scheduler consists of a centralized priority queue that contains the
atoms that are ready for execution. The threads fetch ready atoms from the queue one at
a time. The tasks (and consequently their atoms) are prioritized from highest to lowest
priority according to the priority list

(T1.2, T4, T1.1, T1.3, T2, T3). (5)

Specifically, if an atom belonging to task T4 is ready at the same time as an atom
belonging to task T2, then the T4-atom is fetched first.

In reality, the scheduler uses implicit representations for both the priority queue and
the task graph, in an attempt to reduce scheduler overhead. In particular, the entire
state of the scheduler fits in a few cache lines. Due to the constraints on the tasks, there
is at most one ready instance per task at any moment in time. To find the next ready
atom, the scheduler examines each ready instance in the order specified by the list (5).
The first free atom that is found in a ready instance is fetched, since it has the highest
priority.

The scheduler avoids excessive idle time overhead by keeping the threads nearly syn-
chronized in their execution of atoms that have long durations. Note that the two
coarse-grained tasks, i.e., T1.2 and T4, have the highest priority in (5) and that both can
not be ready at the same time. Thus, if a thread fetches a coarse-grained atom, then the
other threads shortly thereafter fetch the sibling atoms. The lag depends on the duration
of a fine-grained atom, which is relatively short by definition.

5. Stage 2: reduction from r-Hessenberg to Hessenberg form

The input to the second stage is an r-Hessenberg matrix A ∈ Rn×n. The aim is
to complete the reduction to Hessenberg form. Algorithms for symmetric band reduc-
tion [15, 16, 17] can be adapted to nonsymmetric matrices, e.g., matrices in r-Hessenberg
form.

This section covers some aspects of our recently published parallel algorithm [8]. It
has a dynamic adaptive load-balancing scheme that partitions the load into coarse tasks
and uses time measurements as feedback to further improve the load balance. One level
of look-ahead enables the algorithm to hide a sequential bottleneck by overlapping it
with delayed updates. Below, we focus on the aspects that are related to blocking and
refer the reader to [8] for details on the parallelization.

Algorithm 4 reduces a matrix from r-Hessenberg to Hessenberg form using House-
holder reflections of order r. The columns are reduced from left to right. When column
j is reduced, an r × r bulge with fill-in elements appears below the r-th subdiagonal in
the block A(j+ r+1:j+2r, j+1:j+ r). A sequence of reductions are applied to reduce
the first column of each bulge that appears. This results in a chain of partially reduced
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Algorithm 4 Given an upper r-Hessenberg matrix A ∈ Rn×n, this algorithm overwrites
A with H = QTAQ, where H ∈ Rn×n is in upper Hessenberg form and Q ∈ Rn×n is
orthogonal.
1: for j = 1:n− 2 do
2: k1 = 1 +

⌊
n−j−2

r

⌋
3: for k = 0:k1 − 1 do
4: ` = j + max{0, (k − 1)r + 1}
5: i1 = j + kr + 1:min{j + (k + 1)r, n}
6: i2 = ` :n
7: i3 = 1:min{j + (k + 2)r, n}
8: Reduce A(i1, `) with a Householder reflection Qj

k = I − τvvT

9: A(i1, i2) = (Qj
k)TA(i1, i2)

10: A(i3, i1) = A(i3, i1)Qj
k

11: end for
12: end for

bulges that are spaced r elements apart along the r-th subdiagonal of A. The reduction
of the (j + 1)-st column can now begin, since the new bulges consume the old ones.

In symmetric band reduction, the bulge-chasing requires only O(n2) flops and is
therefore relatively cheap compared to the O(n3) cost of accumulating the transformation
matrix Q [15].

In the nonsymmetric case, however, the nonzero upper triangular part of A increases
the flop count from O(n2) to 2n3. Therefore, the low arithmetic intensity, i.e., the ratio
of flops to bytes transferred to/from main memory, of Algorithm 4 makes it too slow to
be practical.

A blocked algorithm must delay updates from several consecutive sweeps. A sweep
consists of the computations in one complete execution of the inner loop of Algorithm 4
(lines 3–11). It is possible to obtain all of the reflections associated with q consecutive
sweeps starting at column j1, i.e., the reflections Qj

? for j = j1 : j1 + q − 1, by updating
entries only inside a band with bandwidth O(qr). Hence, the reflections are obtained
using no more than O(q2rn) flops, which is negligible compared to the O(qn2) flops that
are associated with the q sweeps.

Figure 3 illustrates which entries are necessary to update in order to construct the
reflections Q1

? associated with the first sweep. The bulges must be generated by applying
some of the updates from the right-hand side to r rows (regions 2–9 ). Moreover, the first
column of each bulge must be reduced from the left-hand side (dark). To also obtain
the reflections from a second sweep, updates from the right-hand side must be applied
to an additional r rows and the updates from the left-hand side must be applied to one
additional column.

The remaining updates can be applied first from the right-hand side and then from
the left-hand side. The aim is to rearrange the remaining updates from either side so
that the arithmetic intensity is increased by a factor close to q. Consider the problem of
applying the reflections Qj

? for j = j1 :j1 + q− 1 from the left-hand side to a single block
of c columns. Assume for simplicity that there are k1 reflections in each of the sweeps.
If the cache is initially empty and emptied explicitly after the updates, then at least

qk1r + 2c(k1r + q − 1) (6)
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1

23

45

67

89

Figure 3: Entries updated from the left-hand side (dark) and the right-hand side (light + dark, excluding
region 1) during the construction of Q1

? for n = 20, r = 4. The numbers 1–9 show the order in which the
updates are applied. The solid outline encloses the nonzeros that remain after the updates have been
applied.

entries must be read from or written to main memory. The first term comes from reading
the Householder vectors, and the second term comes from reading and writing the block
column.

If there is no cache reuse across reflections, then at least

qk1r + 2qk1rc (7)

entries must be read from or written to main memory. The first term comes from reading
the Householder vectors, and the second term comes from reading and writing one block
of rc entries per reflection.

Since the number of flops is the same for the best and worst cases, the ratio of the
arithmetic intensity in the best case to that in the worst case approaches

q

(
1 + 2c
q + 2c

)
(8)

as k1 tends to infinity. In particular, the improvement factor is close to q if q � c.
The minimum amount of cache memory that is required to attain the lower bound (6)

on the amount of memory traffic depends on the order in which the updates are applied.
Figure 4 (left) shows the 19 reflections that belong to the first q = 4 sweeps of an n = 20,
r = 4 problem. The dashed edges illustrate the fact that Qj−1

k and Qj−1
k+1 must precede

Qj
k. First, consider the order in Figure 4 (left). The reflections are applied one sweep at

a time, and therefore c(k1r − 1) entries must be cached from one sweep to the next in
order to attain the lower bound (6). Second, consider the order in Figure 4 (right). The
reflections are applied one bulge at a time, and only c(q−1) entries must be cached from
one bulge to the next in order to attain the lower bound (6). Thus, the order in Figure 4
(right) is inherently more effective. Another reason to prefer this order is that it can be
used in conjunction with the compact WY representation, as explained in [5, 15].

6. Performance evaluation

Numerical experiments was carried out on one node of the Akka system at HPC2N.
Akka consists of 672 interconnected nodes with a total of 5376 processor cores. Each
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Figure 4: Two different ways to apply the updates. The order in which reflections are constructed (left)
and the order in which they are applied (right). The sequence starts at the solid dot, •, and continues
along the solid edges. The dashed edges illustrate the fact that Qj−1

k and Qj−1
k+1 must precede Qj

k.

node consists of two Intel Xeon L5420 quad-core processors with 12 MB of L2 cache. The
processors run at 2.5 GHz and they share 16 GB of RAM. A node’s theoretical double
precision peak performance is 8·2.5·2·2 = 80 Gflop/s. The code was linked to the libraries
GotoBLAS2 1.13, LAPACK 3.2.1, ScaLAPACK 1.8.0, BLACS 1.1, and OpenMPI 1.4.2.
In order to reduce the impact of system noise, each problem configuration was run twice
and we selected the shortest execution time.

We compare our implementation of the two-stage approach with the blocked one-
stage Hessenberg reduction algorithms available in LAPACK and ScaLAPACK. The
LAPACK code was linked against multithreaded BLAS and the ScaLAPACK code was
linked against sequential BLAS.

The tuning parameters that are explicitly exposed to the user were set as follows.
The multithreaded BLAS library and the two-stage implementation used eight threads,
i.e., one thread per core. The ScaLAPACK code used a distribution block size of 64× 64
and a 2× 4 processor mesh.

The first stage of the two-stage implementation used r = 12, b = 48, and the fine-
grained atoms consisted of 64 rows/columns each. The second stage used q = 16 consec-
utive sweeps (see [8]). The updates from the left-hand (right-hand) side were applied to
blocks of 64 columns (32 rows).

The measured speedup with respect to LAPACK for various matrix sizes is reported
in Figure 5. The ScaLAPACK implementation achieves its highest speedups (1.2–1.5)
for matrices that almost fit in the L2 cache. For such small-sized problems, the two-stage
implementation is considerably slower than the other implementations. The ScaLAPACK
routine is somewhat slower than the LAPACK routine for large matrices. We do not have
a good explanation for this behaviour.

The two-stage implementation obtains its highest speedups (close to 2.5) for large
matrices. The computational kernels that apply the Householder reflections have a strong
influence on the overall performance. The fine granularity of the computations would
cause a significant per-call overhead if the kernels were based on the BLAS [8]. Therefore,
the kernels have been implemented from scratch. Moreover, two versions of the kernels
have been written in an attempt to estimate the effect of hardware-specific optimizations.
The main version of the kernels is written in portable C with loops that are partially
unrolled and then optimized by the compiler. The second version of the kernels is written
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Figure 5: Speedup of four implementations of Hessenberg reduction compared to the LAPACK imple-
mentation.
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Figure 6: Speedup for the second stage and the entire Hessenberg reduction when using the SSE kernels
in the second stage instead of the plain C kernels.
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Figure 7: The performance of the two-stage implementation broken down into performance for the first
stage, the second stage, and the full reduction.

in assembler and it uses SIMD instructions from the SSE instruction sets. According to
Figure 6, the SSE kernels improve the performance of the second stage in isolation by
around 20% and the full reduction by around 10%.

The performance of the individual stages as well as the full reduction are reported
in Figure 7. The first stage peaks at around 30 Gflop/s, which is more than twice as
fast as the second stage. The performance of the two stages combined peaks at around
22 Gflop/s, which corresponds to 28% of the theoretical peak.

7. Conclusions

The performance of the conventional blocked one-stage Hessenberg reduction algo-
rithm is limited by large matrix–vector multiplications that account for 20% of the total
number of flops.

We show that a two-stage approach to Hessenberg reduction can obtain high perfor-
mance in both stages and thus overcome its 60% increase in the number of flops compared
to the one-stage approach.

Experiments on a dual quad-core machine shows a performance of 22 Gflop/s, or
28% of the theoretical peak, for the complete Hessenberg reduction. This corresponds
to a speedup of 2.5 over the one-stage implementation in LAPACK linked against mul-
tithreaded BLAS. The first stage peaks above 30 Gflop/s while the second stage peaks
close to 15 Gflop/s.

The results indicate that an implementation for general matrix sizes should use the
standard blocked algorithm for small matrices and the blocked two-stage algorithm for
large matrices.
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7.1. Related work
Recent developments related to the use of hybrid CPU+GPU systems have demon-

strated that performing the matrix–vector multiplications as well as most of the matrix–
matrix multiplications on a GPU can significantly boost the performance of blocked
Hessenberg reduction [18]. Careful design of the algorithm in [18] ensures that the data
transfers between the host and GPU memories do not outweigh the potential benefits.
Specifically, the CPU and GPU need to be used in tandem instead of using the GPU as
an accelerator at the BLAS layer.

So-called tiled algorithms or algorithms-by-tiles have recently received some atten-
tion. They typically use a combination of a blocked data layout with a data-flow driven
scheduling of fine-grained tasks, each of which operates on a few small tiles/blocks of
the matrix. A fast and scalable tiled algorithm for reduction to r-Hessenberg form, i.e.,
the first stage, is presented in [19]. The tiled algorithm incrementally reduces the tile
rows of each tile column from left to right. The additional flops are compensated for by
fine-grained parallelism and an effective memory access pattern.

The two-stage approach is analysed with respect to I/O efficiency in [20]. Sequential
algorithms for both stages are proposed. The algorithm for the first stage is analogous to
the one presented in this paper. The algorithm for the second stage is different from that
in [8]. A chain of bulges are chased inside a sliding computational window. Updates to
the off-diagonal entries are delayed and applied efficiently. However, the computational
window becomes relatively large even for small increases in arithmetic intensity.
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