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Abstract. A new cache-efficient algorithm for reduction from block Hes-
senberg form to Hessenberg form is presented and evaluated. The al-
gorithm targets parallel computers with shared memory. One level of
look-ahead in combination with a dynamic load-balancing scheme signif-
icantly reduces the idle time and allows the use of coarse-grained tasks.
The coarse tasks lead to high-performance computations on each proces-
sor/core. Speedups close to 13 over the sequential unblocked algorithm
have been observed on a dual quad-core machine using one thread per
core.
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1 Introduction

We say that an n x n matrix A with zeroes below its r-th subdiagonal, i.e.,
A(i,j) =0if ¢ > j+ r, is in (upper) Hessenberg form if r = 1 and in (upper)
block Hessenberg form if r > 1. The number of (possibly) nonzero subdiagonals
is thus equal to r.

The Hessenberg decomposition A = QHQT of a square matrix consists of an
orthogonal matrix () and a matrix H in upper Hessenberg form. The Hessenberg
decomposition is a fundamental tool in numerical linear algebra and has many
diverse applications. For example, a Schur decomposition is typically computed
using the nonsymmetric QR algorithm with an initial reduction to Hessenberg
form. Other applications include solving Sylvester-type matrix equations.

We focus in this paper on the special case when A is in block Hessenberg
form. There are certainly applications where this case occurs naturally. How-
ever, our interest is primarily motivated by the fact that finding a Hessenberg
decomposition of a matrix in block Hessenberg form is the second stage in a
two-stage approach for Hessenberg reduction of general matrices. The first stage
is reduction to block Hessenberg form and it can be implemented efficiently as
described in, e.g., [2, 6].

In the following, we describe and evaluate a new high-performance algorithm
that finds a Hessenberg decomposition of an n x n block Hessenberg matrix A
with 1 < r < n nonzero subdiagonals.
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Algorithm 1 (Unblocked) Given a block Hessenberg matrix A € R"*™ with r
nonzero subdiagonals, the following algorithm overwrites A with H = QT AQ
where H € R™*" is in upper Hessenberg form and @ € R"*" is orthogonal.

1: for j=1:n—2

5 b= 14 22022

3 for k=0:k1 -1

4: ar=j+kr+1; a=min{ar+r—1,n}
5: B1 =j+max{0,(k—1)r+1}; [2=n

6: y1=1; 72 =min{j+ (k+2)r,n}

7 Reduce A(ai:az,B1) using a reflection Ql
8

Alar:oz, Br:B2) = (@)  A(ar: o, B1: B2)

9: Ay, ariaz) = A(yiiy2, a1 ta2)Qy
10: end for
11: end for

2 Algorithms

Our blocked algorithm evolved from a known unblocked algorithm for symmetric
band reduction [1] adapted to the nonsymmetric case. Since the understanding
of the unblocked algorithm is crucial, we begin by describing it.

2.1 Unblocked algorithm

Algorithm 1 reduces the columns of A from left to right [1,4,5]. Consider
the first iteration of the outer loop, i.e., j = 1. In the first iteration of the inner
loop, k = 0 and a Householder reflection, Q}, of order r is constructed on line 7.
Lines 8-9 apply a similarity transformation that reduces the first column and
also introduces an r x r bulge of fill-in elements in the strictly lower triangular
part of A(r4+2:2r+1,2:7+1).

The next iteration of the inner loop, i.e., & = 1, constructs and applies
the reflection Q1 of order r which reduces the first column of the bulge. This
introduces another bulge r steps further down the diagonal. The subsequent
iterations of the inner loop reduce the first column of each newly created bulge.

The second iteration of the outer loop, i.e., j = 2, reduces column two and
the leftmost column of all bulges that appear. Note that the new bulges align
with the partially reduced bulges from the previous iteration. The bulges thus
move one step down the diagonal in each iteration of the outer loop.

Applying a Householder reflection of order r to a vector involves 4r flops.
The flopcount of Algorithm 1 is thus 2n® plus lower order terms. During one
iteration of the outer loop, each entry in the matrix is involved in exactly O,
1, or 2 reflections. This means that Algorithm 1 has a low arithmetic intensity
(flops per main memory reference) and its performance is ultimately bounded
by the memory bandwidth.

The reflections can be accumulated into a dense orthogonal matrix of order n
for the cost of 2n3 additional flops. Efficient accumulation is accomplished using
an alternative ordering of the reflections as described in [1].
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2.2 Blocked algorithm

The key to increasing the arithmetic intensity of Algorithm 1, and thus creating a
blocked algorithm, is to obtain reflections from multiple consecutive sweeps' and
then apply them in a different order. The reflections are generated in the order
of increasing j and increasing k for each j. A more efficient way to apply them,
however, is in the order of decreasing k and increasing j for each k [1]. The reason
for better efficiency is that the ¢ reflections @7, for j = j1:j1 + ¢ — 1 touch only
r + ¢ — 1 unique entries in each row/column of the matrix. Thus, the arithmetic
intensity can be increased almost by a factor of ¢. The primary problem is how
to use this trick when updating A itself and not only when accumulating the
transformations. Below, we describe a solution to this problem.

Overview of the blocked algorithm. Fundamentally, the blocked algorithm
consists of a sequence of iterations consisting of three main steps. In the first
step, all reflections from g consecutive sweeps are generated while only necessary
updates are applied. In the second/third step, the remaining updates from the
right-hand/left-hand side are applied. Due to dependencies, these steps must
be done in sequence. The first step is both time-consuming and sequential in
nature so the three-step iteration can potentially cause large amounts of parallel
overhead due to idle processors/cores. Therefore, we bisect the second and third
steps to create a five-step iteration. This is enough to support one level of look-
ahead, as we later show.
The purpose of each step is explained below.

. Generate reflections from ¢ consecutive sweeps (label: G).

. Apply updates from the right-hand side to enable look-ahead (label: P(R)).
. Apply updates from the left-hand side to enable look-ahead (label: P(L)).

. Apply the remaining updates from the right-hand side (label: U(R)).

. Apply the remaining updates from the left-hand side (label: U(L)).

W N

ot

Steps 4-5 are the most efficient in terms of memory traffic and parallel execution.
Steps 2-3 are less efficient but still worthwhile to parallelize. Step 1 is mostly
sequential and cannot make efficient use of the cache hierarchy.

Figure 1 shows an example where the entries touched by each step are distin-
guished. Note that the G, P(R), and P(L) steps combined touch entries which
are close to the diagonal. The thickness of the band (light and medium gray in
Figure 1) depends on the number of subdiagonals, r, and the number of consec-
utive sweeps, ¢, but is independent of the matrix size. The algorithm as a whole
therefore performs O(n?) flops in a cache-efficient manner, i.e., during U(R) and
U(L), and only O(n?) in more or less inefficient ways, i.e., during G, P(R), and
P(L).

Generate reflections from multiple consecutive sweeps. The core of our
algorithm is the G-step which is detailed in Algorithm 2. This algorithm gener-

L A sweep corresponds to the computations in one iteration of the outer loop in Algo-
rithm 1.
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Sweep 1 Sweep 2 Sweep 3

Left

- I i

Right s L

Fig. 1. Entries touched in each of the five steps: G (light gray), P(R) (medium gray, bot-
tom), P(L) (medium gray, top), UR) (dark gray, bottom), and U(L) (dark gray, top).
Transformations from the left-hand side (top) are shown separately from the transfor-
mations from the right-hand side (bottom). The q¢ = 3 sweeps are shown separately
from left to right.

ates Qi for g consecutive sweeps starting at column j = j;. Only a few entries
near the main diagonal are updated in the process (light gray in Figure 1).

The structure of Algorithm 2 is as follows. The outer j-loop steps through
the g sweeps starting at column j;. The k-loop steps through the k; reflections
contained in this sweep. First, the column that is about to be reduced is brought
up-to-date by applying delayed updates from the left (if any) in the loop that
starts on line 6. The actual reduction is performed on line 13. Some of the
updates from the right-hand side gets applied on line 16.

Apply updates efficiently. Algorithm 3 applies the updates that were not
performed in the G-step. The algorithm implements all four of the steps P(R),
P(L), U(R), and U(L) since they are similar. The arithmetic intensity is increased
by using the reordering trick from [1].

To facilitate parallel execution, Algorithm 3 restricts the updates from the
left-hand side to the column range ¢; : co and the updates from the right-hand
side to the row range ry : ro. By partitioning the range 1 : n into p disjoint
ranges, the same variant of Algorithm 3 can be concurrently executed by p
threads without any need for synchronization. The arbitrary partitioning can be
exploited in order to balance the load.
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Algorithm 2 (Generate) Given a block Hessenberg matrix A € R™*" with
r nonzero subdiagonals which is already in upper Hessenberg form in columns
1:41 —1, the following algorithm generates Q% for j = j1:j1+¢g—1. The matrix A
is partially overwritten by the similarity transformation implied by the ¢ sweeps.
The remaining updates can be applied using Algorithm 3.

1: for j=j1:j1+q—1

2 k=2 2

3 for k=0:k —1

4 a1 =j+kr+1; o =min{a1 +r—1,n}
5: 8 =74+ max{0,(k—1)r+1}
6: j
7
8

for j=j51:7—1
&1 :j+kr+1; G2 = min{d1 +r — 1,n}
: ifdg—dl—i—lZchen
9: A1 262, B) = (QL)TA(41: 62, B)

10: end if

11: end for

12: if as — a3 +1> 2 then

13: Reduce A(a1:az,3) using a reflection QJ

14: A(a1:a27ﬂ) = (Qi)TA(Oq:a%ﬂ)

15: =51+ 1+max{0,(k+j—j1 —q+2)r}; e =min{j+ (k+2)r,n}
16: A(yi:iyz, anraz) = A(y1:y2, o1 o) Q)

17: end if

18:  end for

19: end for

3 Parallel Issues

To develop a shared-memory implementation of the new algorithm we have to
decide how to decompose the five steps into independent tasks, how to map the
tasks to threads, and how to synchronize the threads to honor the dependencies.
Moreover, the load must be balanced to achieve high parallel efficiency.

3.1 Task decomposition and dependencies

Figure 2 illustrates all direct dependencies between the steps of four consecutive
iterations. The steps within one iteration are layed out horizontally. Note in
particular that the U(R)-step is not dependent on the P(L)-step and that the
G-step of the next iteration can begin as soon as the P(L)-step finishes. This
latter fact is what makes look-ahead possible.

The polygons in Figure 2 must execute sequentially even though some steps
may overlap within each polygon. Thus it is appropriate to implement the com-
putation as a loop where each iteration corresponds to a polygon in Figure 2. The
prologue and epilogue polygons correspond to the computations before and after
the look-ahead loop, respectively. The steps PU(R) and PU(L) in the epilogue
represent the merging of P(R) with U(R) and of P(L) with U(L), respectively.
This is a more efficient way to apply the updates when no look-ahead is desired.



6 Lars Karlsson and Bo Kagstrom

Algorithm 3 (Update) Given a block Hessenberg matrix A € R"*" with r
nonzero subdiagonals, the following algorithm applies Q% for j = ji:j1 +¢q—1
from both sides. This algorithm consists of four variants (P(R), P(L), U(R),
and U(L)). Together they complete the updates which were not performed by
Algorithm 2. The range of rows/columns updated is controlled by 71 : ro and
c1:co , respectively

Lok =1+ |2=0=2]

2: fork=k —1:-1:0

3: forj=j1:j1+qg—1

4: a1 =j+kr+1; a=min{a1 +r—1,n}
5: if aoc — a1 +1> 2 then
6: if variant is P(R) or U(R) then
7 if variant is P(R) then
8: 11 = max{ry, j1 + (k+Jj —j1 — 2¢+2)r + 1}
9: ~v2 = min{ra, j1 + max{0, (k+j — j1 — ¢+ 2)r}}
10: else if variant is U(R) then
11: v1 = max{ry, 1}
12: v2 = min{re, j1 + (k+ 75— 71 —2q + 2)r}
13: end if ’
14: A(yi:yz, araz) = Ay iyz, o ta2)Q),
15: else if variant is P(L) or U(L) then
16: if variant is P(L) then
17: f1 = max{c1, j1 + ¢, 51 +q+ (k—1)r + 1}
18: B2 = min{cz,j1 + ¢+ (k+q¢—1)r}
19: else if variant is U(L) then
20: B =max{ci,j1+qg+ (k+q¢—1)r+1}
21: B2 = min{cz,n}
22: end if .
23: Alar:ag,f1:62) = (Qi)TA(al a2, 1:62)
24: end if
25: end if
26: end for
27: end for

3.2 Parallel execution

Following the dependencies in Figure 2, we see that step P(R) must be completed
before either of the steps P(L) or U(R) may start. This implies a barrier-style
synchronization. Next, we could potentially do both P(L) and U(R) concurrently.
However, heuristically we would like to start the G-step as soon as possible. Thus
we do the P(L)-step before doing the steps G and U(R) in parallel. Note that
the G-step must not start until P(L) has completed, but U(R) can start at any
time. Thus, the synchronization implied at this point is weaker than a barrier.
Proceeding to the U(L)-step we see that both U(R) and P(L) must complete, so
again we have a barrier-style synchronization. At the end of the iteration there is
a third and final barrier since all steps must complete before the next iteration.
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1st iteration

Prologue

Epilogue

Fig. 2. Dependence graph for a problem consisting of four iterations (separated verti-
cally). The steps of one iteration are layed out horizontally. Polygons enclose the steps
within the prologue, epilogue, and looka-head iterations, respectively.

The large number of inherent barrier-style synchronization points, namely
O(n/q), are a cause for concern if we want to use dynamic scheduling of fine-
grained tasks. The two primary reasons are that (i) fine-grained tasks cannot be
executed as efficiently and cause more overhead than large-grained tasks, and
(ii) the barriers introduce overhead due to idle processors/cores. We therefore
adopted a model-driven dynamic load-balancing scheme capable of supporting
coarse-grained tasks.

Task mapping. As the G-step is difficult to parallelize, we have chosen to
keep it sequential. The other steps can be parallelized simply by partitioning the
rows/columns.

The main problem is how to map tasks to threads in a way that minimizes the
idle time caused by the implicit barriers. Thread py could potentially participate
in the computation of both U(R) and U(L), only U(L), or none of them. The
correct choice depends on how long it takes to complete the G-step. Figure 3
shows three hypothetical scenarios. In Figure 3(a), the G-step is the limiting

a) Po,P1,P2,P3 P4, P5, P6
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Fig. 3. Three scenarios for parallel execution of one look-ahead iteration.

Time

factor and py should not take part in the updates. In Figure 3(b), the G-step
finishes half-way into step U(L) and a (small) piece of the U(L)-step should thus
be assigned to thread po. In Figure 3(c), the G-step finishes before the U(R)-step
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and now pg should be assigned a (small) piece of U(R) as well as a (large) piece
of U(L).

Dynamic load balancing. The problem at hand is the following. Given p
threads and a step (P(R), P(L), U(R), or U(L)), find a row/column partitioning
corresponding to p tasks mapped to p threads such that if thread i starts execut-
ing at time a; then all threads finish their respective task at the same time. By
using an appropriate model to simplify the problem, we solve it exactly. Under
reasonable assumptions, the obtained solution is an approximate solution to the
original problem.

Let f(z) be a function defined at the integer values x = 1:n that gives the
number of flops applied to the entries on row/column z by a particular step.
The total number of flops is therefore W = Y""_, f(x).

Assume for a moment that we know that thread i will execute its next task
with an average speed of s; flops per second. If this task requires w; flops and
the thread starts executing it at time a;, then it finishes at time ¢; = a; + w;s;.

The optimal execution time, ty;,, is obtained by solving fox s(t) dt = W
for  where s(t) is the sum of the speeds s; for all ¢ such that a; < ¢. The
corresponding task sizes can be computed from w; = s;-max{0, t;in—a; }. Finally,
a partitioning of the range 1:n is constructed from the task sizes by solving
Yoo flx) = Z;;%) wj for x; where i = 1:p — 1. The range of rows/columns
assigned to thread i is x; 12,41 — 1 where we use the convention that zop = 1 and
Tp=n+1

The accuracy of the scheme clearly depends on how well we can guess the fu-
ture speeds s;. A good predictor in this case comes from the previously observed
speeds. Specifically, we measure the actual execution time #; and use the guess
8i = w;/ {; for the next iteration. We expect this to work reasonable well because
there are strong similarities between the load-balancing problems in consecutive
iterations.

4 Experiments

Tests were run on the Akka system at HPC2N. Akka is a cluster with dual Intel
Xeon L5420 nodes (4 cores per socket) with a double precision theoretical peak
performance of 80 Gflop/s (10 Gflop/s per core and 8 cores in total).

We compare four different implementations to give an idea of the impact of
various aspects of our implementation. The first is an implementation of Algo-
rithm 1 which we labeled Unblocked. The second, labeled Basic, is a variant
of our blocked algorithm without both look-ahead and adaptive modeling of
the speeds. The third, labeled Basic + Adapt, includes adaptive modeling. The
fourth implementation, labeled Look-ahead + Adapt, includes both look-ahead
and adaptive modeling.

The unblocked implementation is sequential while the others are parallel. All
parallel executions use one thread per core (8 threads in total). We performed
each experiment twice and selected the shortest execution time.
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Fig. 4. Performance (r = 12, ¢ = 16).

The performance, which we calculate as 2n3/t where t is the execution time,
is illustrated in Figure 4. As expected, the unblocked implementation is quite
slow since not only is it sequential but it also causes a lot of memory traffic.
The most advanced implementation, Look-ahead + Adapt, comes out on top
and peaks close to 15 Gflop/s (19% of the theoretical peak). The corresponding
speedups over Unblocked is shown in Figure 5. The look-ahead technique adds
a significant performance boost (15-50%) as shown in Figure 6.

The idle time gets substantially reduced by the addition of adaptation and the
look-ahead implementation incurs relatively small amounts of idle time. Figure 7
illustrates this by showing the measured idle time per iteration on an n = 3000,
r = 12, ¢ = 16 problem. The improvements obtained when going from Basic to
Basic + Adapt are obious. However, it is not possible to isolate the effect of the
adaptive modeling in the look-ahead implementation since the adaptation is an
integral part of the look-ahead approach (see Figure 3).

5 Conclusion

We have presented a new blocked high-performance shared-memory implementa-
tion of a Householder-based algorithm for reduction from block Hessenberg form
to Hessenberg form. The implementation delays updates and applies them cache-
efficiently in parallel. One level of look-ahead in conjunction with an adaptive
coarse-grained load-balancing scheme significantly improves the performance. A
performance of 15 Gflop/s (19% of the theoretical peak) has been observed on
a dual quad-core machine. This corresponds to a speedup close to 13 over a
sequential unblocked algorithm.
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Fig. 5. Speedup over Unblocked (r = 12, ¢ = 16).

5.1 Related work

A different approach to increase the arithmetic intensity of the reduction from
block Hessenberg form to Hessenberg form is presented in [3]. A sliding com-
putational window is employed to obtain a set of reflections while at the same
time delaying most of the updates. The off-diagonal blocks are then updated
efficiently. However, the focus in [3] is on algorithms which are theoretically
I/O-efficient and it is also primarily concerned with efficiency in the asymptotic
sense. Specifically, the proposed blocking appears to be impractical for matrices
that fit entirely in main memory since the computational window would have to
be relatively large in order to obtain even modest improvements to the arithmetic
intensity.
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