
Shuffle Languages for Plan Recognition

Henrik Björklund and Johanna Högberg

Department of Computing Science, Ume̊a University
90187 Ume̊a, Sweden

{henrikb, johanna}@cs.umu.se

Abstract. Considering applications in plan recognition, we study how
shuffle operators can be incorporated into language models that also cap-
ture the context-free languages. Our aim is to provide a formal framework
for plan recognition, in which the balance between expressive power and
computational tractability can be tuned through natural restrictions on
the model. We also study the complexity of the membership problem for
various restrictions of the suggested model.

1 Introduction

The goal of this paper is to provide a formal framework for language theoretic
aspects of plan recognition and to study the complexity of various related com-
putational problems. Plan recognition is the task of inferring an agent’s plan
or goal, based on observations of the agent’s actions, or the effects of those ac-
tions [?,?]. The field, which is also known as activity recognition, has applications
in, e.g., military surveillance, sensor analysis, and medicine, wherein cognitive
support for patients suffering from dementia is a frequently used example. Plan
recognition relies on a plan library, i.e., a set of activity schemas that can be
executed by the agent. The plan recognition problem consists in deducing which
plans in the library are active, given a series of observations. The abstract ma-
chinery used to solve this problem is called a plan recognizer.

In [?], the authors remark that the features and algorithms used in the fields
of plan recognition and natural language processing overlap, but that dialog be-
tween the two fields has not been effective. They continue to draw a parallel
between hierarchical task networks (HTNs) and context-free grammars, and ar-
gue that parsing algorithms for the latter can be used to match HTNs against
observation series. A similar approach is taken in [?], where we investigate the
usefulness of unranked tree automata (UTA) for plan recognition. In the in-
tended application, a human analyst enters plan description trees (PDT) into
the plan library. Each PDT declares a plan for accomplishing a specific goal,
and the nodes of the PDT correspond to intermediate plans. The internal nodes
are labelled by operator symbols that combine simple plans into more complex
plans, and the leaf nodes are labelled by observable events. The intermediate
levels in the PDT provide structure and simplify understanding [?].

Each PDT p describes a language L over an alphabet of observable events Σ,
consisting of the sequences in Σ∗ that realise the top-level plan of p. Similarly, a

2 Henrik Björklund and Johanna Högberg

Ninja attack!
∀

Ninjas assess
the battleground

∃ Ninjas pounce
on their prey

∃

1 2 7 85 63 4

Ninjas are
out and about

∀ Ninjas become
aggrevated

∀

Tuesday, April 20, 2010

1. No Chuck Norris reruns on TV this week to keep the Ninjas at home.
2. The local apparel store is sold out of black turtlenecks and tights. Again!
3. You refer to ninjutsu as a pajamas sport.
4. You compare a Sai to an ugly-looking fork.
5. Black lint is found in the tumble dryer.
6. All the black Smarties are missing from your easter egg.
7. The trip-wires in your ceiling go off.
8. Your spider sense is tingling.

Fig. 1. A PDT for a ninja attack. The observable events are given as text.

set of PDTs describe the union of its constituent PDTs’ languages. To solve the
plan recognition problem in this setting means to identify occurrences of L in a
sequence of events. This can be done by turning the PDT into a CFG or UTA,
and then using traditional chart parsing to find (fragments) of words in L.

Example 1. A toy PDT t for recognizing that you might be targeted by a ninja
attack is given in Figure ??. The plan operator that labels an internal node v of
t determines how many of the subplans immediately below v need to be realised,
for the subplan at v to be realised (this example only uses operators ∀ and ∃).

A limitation that is common for both CFG and UTA is that they cannot
represent parallel activities. To compensate, shuffling can be introduced into the
model. Consider Example ?? again. Suppose that for the two leftmost subplans
in Figure ??, the temporal order within the subplans is important, but not the
temporal order between the subplans. Then, any interleaving of the sequences 12
and 34, i.e., the sequences in {1234, 1324, 1342, 3412, 3142, 3124}, would indicate
that both subplans were active. In general, if one subplan requires the sequence
w of events, while another requires w′, but there is no temporal ordering required
between the two subplans, then a mechanism that recognizes the shuffle of w
and w′, written w � w′, can detect that both subplans are active. We can also
consider the shuffling of two languages, the shuffle closure of one language, etc.

Various aspects of shuffling has been studied in the theory of formal lan-
guages, see, e.g., [?,?,?,?]. In this paper, we take the shuffle languages considered
by Jedrzejowicz and Szepietowski [?] as the starting point and study how they

Shuffle Languages for Plan Recognition 3

can be integrated into a formal framework for studying plan recognition from
the perspective of formal languages and complexity.

The formalism we suggest is an automaton model with an equivalent gram-
matical interpretation. It generalizes both shuffle languages and context-free
languages. It is thus very expressive, and cannot be expected to have nice algo-
rithmic properties in general. Rather, we suggest it as a flexible framework for
investigating various kinds of combinations of shuffling with other constructions
that are useful in plan recognition. We also start this investigation by studying
the expressive power and closure properties of (restrictions of) the formalism,
and by proving complexity results for some relevant classes.

Contributions. We introduce concurrent finite state automata (CFSA), pro-
vide an automata- and a grammar-based semantics for the device (which yield
the same class of languages), and investigate the expressive power and closure
properties of CFSA (Section ??).

For the shuffle languages (as used in [?]), the uniform membership problem,
where both the language description and the word to be checked are part of
the input, is NP-complete [?], while the non-uniform membership problem is
solvable in polynomial time [?]. We shed further light on the complexity of the
membership problem by showing that the uniform version, parameterized by
the number of shuffle operations, is hard for the complexity class W[1]. For this
reason, we do not expect to find a particularly efficient algorithmic solution to
the non-uniform membership problem for language definitions involving many
shufflings, even if it is theoretically polynomial. We conclude by showing that
the non-uniform membership problem for the shuffling of a context-free language
and a regular language is solvable in polynomial time.

2 Preliminaries

Sets and numbers. If S is a set, then S∗ is the set of all finite sequences of
elements of S, and precl(S) is the set of all finite prefix-closed subsets of S∗.
The powerset of S is denoted by pow (S). We write N for the natural numbers,
or N+ if we wish to exclude 0 from N. For k ∈ N, we write [k] for {1, . . . , k}.
Note that [0] = ∅. The domain of a mapping f is denoted dom (f).

An alphabet is a a finite nonempty set. We denote Σ ∪{ε} by Σε and the set
of all regular expressions over the alphabet Σ by Reg(Σ). The length of a string
w = α1 · · ·αn ∈ Σ∗ is written |w|, and for every α ∈ Σ, |w|α = |{i ∈ [n] | αi = α}|.
Trees. The set TΣ of (unranked) trees over the alphabet Σ consists of all
mappings t : D → Σ, where D ∈ precl(N). The empty tree, denoted tε, is the
unique tree such that dom (t) = ∅. We henceforth refere to dom (t) as the nodes
of t (and write nodes(t) rather than dom (t)) to help intution.

For a tree t ∈ TΣ and a node v ∈ nodes(t), the subtree of t rooted at v
is denoted by t/v. It is defined by nodes(t/v) = {v′ ∈ N∗ | vv′ ∈ nodes(t)}
and, for all v′ ∈ nodes(t/v), (t/v)(v′) = t(vv′). The leaves of t is the set
leaves(t) = {v ∈ N∗ | @i ∈ Ns.t. vi ∈ nodes(t)}. The substitution of t′ into t

4 Henrik Björklund and Johanna Högberg

at node v is denoted t[[v ← t′]]. It is defined by

nodes(t[[v ← t′]]) = (nodes(t) \ {vu | u ∈ N∗}) ∪ {vu | u ∈ nodes(t′)} ;

and, for every u ∈ nodes(t[[v ← t′]]), if u = vv′ for some v′ ∈ nodes(t′) then
t[[v ← t′]](u) = t′(v′), otherwise t[[v ← t′]](u) = t(u).

The mapping ind : [k]→ N is given by ind(i) = minj∈N{|[j] ∩ nodes(t)| = i}.
We denote a tree t as f [t1, . . . , tk] if k = |nodes(t) ∩ N| and, for every i ∈ [k],
ti = t/ind(i). In the special case where k = 0 (i.e., when nodes(t) = {ε}), the
brackets may be omitted, thus denoting t as f .

Shuffle operations and shuffle expressions. We recall the definitions of
the shuffle operation, shuffle closure and shuffle expressions from [?].

The shuffle operation � : Σ∗ × Σ∗ → pow (Σ∗) is inductively defined by
�(u, ε) = �(ε, u) = {u}, for every u ∈ Σ∗, and by

�(α1u1, α2u2) = {α1w | w ∈ �(u1, α2u2)} ∪ {α2w | w ∈ �(α1u1, u2)} ,
for every α1, α2 ∈ Σ, and u1, u2 ∈ Σ∗.

Operation � extends to a mapping �̂ : pow (Σ∗)×pow (Σ∗)→ pow (Σ∗) with

�̂(L1,L2) =
⋃

u1∈L1,u2∈L2

� (u1, u2) .

For readability, we sometimes use infix notation for �, and, due to the associa-
tivity of the shuffle operator, we also write �(�(w,w′), w′′) as �(w′, w′′, w′′).
From here on, we write the shuffle operation for languages as � rather than �̂.

The shuffle closure of a language L ∈ Σ∗, denoted L�, is

L� =
∞∪
i=0
L�i , where L�0 = {ε} and L�i = L � L�i−1 .

Shuffle expressions are regular expressions that can additionally use the shuf-
fle operators. Formally, the set Sh(Σ) of all shuffle expressions over alphabet Σ
is formed as follows. Every α ∈ Σ is a shuffle expression, as well as ε and ∅. If s1
and s2 are shuffle expressions, then so are (s1 ·s2), (s1+s2), (s1�s2), s∗1, and s1

�.
Pure shuffle expressions are shuffle expressions that do not use concatination or
Kleene star. The set of all pure shuffle expressions over Σ is denoted by PSh(Σ).
The language L(s) of a shuffle expression s is defined in the usual way. The
shuffle languages are the languages defined by shuffle expressions.

3 Concurrent finite-state automata

In this section, we introduce concurrent finite-state automata (CFSA). The de-
vice is inspired by recursive Markov models, but differs from these in two aspects:
the global state space is not partitioned into component automata, and, more
importantly, recursive calls can be made in parallel. The latter feature allows for
an unbounded number of invocations to be executed simultaneously, although
only one invocation at a time is permitted to consume a symbol from the input
string. The formal definition reads as follows:

Shuffle Languages for Plan Recognition 5

Definition 2 (CFSA) A Concurrent FSA is a tuple M = (Q,Σ, δ, I), where
– Q is an alphabet of states,
– Σ is an alphabet of input symbols,
– δ is a set of transitions that is partitioned into δ1 ∪ δ2 ∪ δ3, where
• δ1 ⊆ Q×Σε ×Q is a set of horizontal transitions,
• δ2 ⊆ Q×Σε × PSh(Q)×Q is a set of vertical transitions, and
• δ3 ⊆ Q is a set of terminal transitions,

– I ⊆ Q is the set of initial states. �

During a run of a CFSA, we maintain a branching call-stack (represented as
an unranked tree over the alphabet of states) to track concurrent invocations of
the automaton.

Definition 3 (CFSA semantics) The CFSA M = (Q,Σ, δ, I) accepts the
string w = α1 . . . αk ∈ Σ∗ε if there are trees t0, . . . , tk ∈ TQ such that t0 ∈ I,
tk = tε, and for every i ∈ [k], there is a node v ∈ leaves(ti−1) such that either
– ti−1 = t[[v ← q]] and ti = t[[v ← q′]] for some (q, αi, q

′) ∈ δ1;
– ti−1 = t[[v ← q]] and ti = t[[v ← q′[u]]] for some (q, αi, s, q

′) ∈ δ2 and
string u ∈ L(s); or

– ti−1 = t[[v ← q]], ti = t[[v ← tε]], αi = ε, and q ∈ δ3.
The language L(M) recognised by M is the set of strings that M accepts. �

It is known that L1 = {anbn | n ∈ N} is a context-free language, but it is not
a shuffle language. Conversely, L2 = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} is given

by the shuffle expression ({abc}+ {acb}+ {bac}+ {bca}+ {cab}+ {cba})�, but
it is not a context-free language. Both L1 and L2 can be recognised by a CFSA,
and so can L1 ∪L2, which is neither a context-free nor a shuffle language. Thus
the class of languages recognized by CFSA properly extend the union of the
context-free languages and the shuffle languages.

By supplying an alternative, but equivalent, semantics to that of Defini-
tion ??, we can choose to view a CFSA M as a grammar. When we take this
point of view, we refer to M as a concurrent grammar.

Definition 4 (Alternative semantics) Let G = (Q,Σ, δ, I) be a concurrent
FSA (in this context; a concurrent grammar). The intermediate sentences of G,
denoted ∆(G), is the smallest subset of (Σ ∪ Q ∪ {f�, (,), , })∗, where f� is a
special symbol that does not appear in Σ ∪Q, such that
– {ε} ∪Σ ∪Q ⊆ ∆(G);
– ww′ ∈ ∆(G), for every w,w′ ∈ ∆(G); and
– f�(w1, . . . , wk) ∈ ∆(G), for every k ∈ N+ and w1, . . . , wk ∈ ∆(G) \ {ε}.

Let u, v, w,w′ ∈ ∆(G). We say that there is a transition step from uwv
to uw′v and write uwv → uw′v if
– w = q, w′ = αq′, and (q, α, q′) ∈ δ1;
– w = q, w′ = αf�(q1, . . . , qk) q′, (q, α, s, q′) ∈ δ2, and q1 · · · qk ∈ L(s);
– w = f�(w1, . . . , wk), w′ ∈ �i∈[k]wi, and wi ∈ Σ∗ for every i ∈ [k]; or
– w = q, w′ = ε, and q ∈ δ3.

6 Henrik Björklund and Johanna Högberg

As usual, the reflexive and transitive closure of→ is denoted
∗→. The language

generated by G is LG(G) = {w ∈ Σ∗ | ∃q ∈ I : q
∗→ w}. �

A straight-forward inductive proof yields Theorem ??.

Theorem 5 (Semantic equivalence). For every CFSA M , L(M) = LG(M).

Closure properties. It is known that the context-free languages and the shuf-
fle languages alike are closed under union, concatenation and Kleene-star. Addi-
tionally, the context-free languages are closed under intersection with a regular
language. Shuffle languages are not, but they are closed under shuffle and shuffle
closure. Neither language family is closed under intersection or complementation.
As we shall see, the CFSA have comparatively nice closure properties.

Theorem 6 (Closure properties). The languages recognised by CFSA are
closed under union, concatenation, Kleene star, shuffle and shuffle closure. They
are not closed under intersection with a regular language or complementation.

Proof (Sketch) The remaining closure proofs can be found in the appendix.

Intersection. Consider the languages L1 = (abc)
�

and L2 = a∗b∗c∗. The former
is a shuffle language, and the latter a regular language, so both are recognis-
able by CFSA. As we shall see, their intersection L = {anbncn | n ∈ N}, is
not. To obtain a contradiction, assume that L = L(M) = LG(M) for some
CFSA M = (Q,Σ, δ, I). There must the exist a derivation tree t with respect
to M of every string in w ∈ L. Suppose (i) that t contains a node u labelled
with a production (q, α,�(q1 · · · qk), q′), (ii) that the subtrees of t rooted at u
are tα, t1, . . . , tk, t

′, and (iii) that there are trees ti and tj , i, j ∈ [k], i < j, such
that a ∈ {ti(v) | v ∈ leaves(ti)} and b ∈ {tj(v) | v ∈ leaves(tj)}. It is then easy
to see that the shuffle operation at u may arrange the leaves of ti and tj so that
a b appears to the left of an a. As the labels in L are strictly ordered, we draw
the conclusion that M can only apply the shuffle operation to nonterminals that
generate strings over some singleton alphabet Σ1. Computing the shuffle of a
sequence of strings w1, . . . , wk ∈ Σ∗1 yields the singleton set {w1 · · ·wk}, so the
shuffle operations can be rewritten as regular concatenation. However, without
shuffle operations M is a context-free grammar, and it is well known that L is
not a context-free language. Consequently, L is not recognisable by a CFSA.

Complementation. Since the CFSA languages are closed under union, but not
under intersection, we can conclude that they are not closed under complemen-

tation, since (L1 ∩ L2) = (L1 ∪ L2). ut

Corollary 7. Neither the CFSA languages nor the shuffle languages are closed
under intersection with a regular language.

Restrictions and expressive power. Our motivation for introducing CFSA
is to provide a formal device for plan recognition, in which the balance between

Shuffle Languages for Plan Recognition 7

expressive power and computational tractability can be tuned through natural
restrictions on the model. The restrictions considered here are as follows:

A CFSA M is

– horizontal if the set of vertical transitions is empty;
– non-branching if the vertical transitions form a subset of (Q×Σ ×Q×Q),

i.e., if the shuffle expressions in the definition are all singleton state symbols;
– finitely branching if all the shuffle expressions in the definitions of vertical

transitions define finite languages, i.e., if no expression uses shuffle closure;
– acyclic if there is no configuration tree t of M such that some state q appears

twice on a path from the root to a leaf of t.

The above restrictions affect the expressive power of CFSA as follows:

Observation 8 (Regular languages) A language is regular if and only if it
is recognised by a horizontal CFSA.

Theorem 9 (Context-free languages). A language is context-free if and only
if it is recognised by a non-branching CFSA.

Theorem 10 (Shuffle languages). A language is a shuffle language if and
only if it is recognised by an acyclic CFSA.

Corollary 11 (Shuffle languages w.o. shuffle closure). A language is a
closure-free shuffle language if and only if it is recognised by an acyclic and
finitely branching CFSA.

Corollary 12. Closure-free shuffle languages are regular.

Corollary ?? follows from Corollary ?? and the fact that an acyclic and finitely
branching CFSA admits only a finite number of distinct configuration trees.

Theorem 13 (Mildly context-sensitive). The languages recognised by CFSA
are properly contained in the context-sensitive languages.

4 Decision problems

We continue to address the decision problems associated with CFSA. Let us
first consider emptiness testing, which is useful, e.g., for sanity-checking the
automaton specification.

Theorem 14 (Emptiness). The emptiness problem for CFSA is decidable in
polynomial time.

We now turn to the membership problem, beginning with acyclic CFSA, i.e.,
the restriction of CFSA that recognises the shuffle languages.

Corollary 15. For acyclic CFSA
1. the non-uniform membership problem is solvable in polynomial time, and

8 Henrik Björklund and Johanna Högberg

2. the uniform membership problem is NP-complete.

The uniform membership problem is NP-complete already for acyclic and finitely
branching CFSA, which only recognise regular languages (see Corollary ??).
The explanation is that for some languages, CFSA offer a more succinct form of
representation than nondeterministic finite automata.

Corollary ?? tells us that the problem is polynomial for a fixed automaton
but NP-hard if the automaton is considered input. This is however not the
whole story. Exactly how does the automaton contribute to the complexity?
Does a change in the automaton only change the coefficients of the polynomial?
Or does it even affect the degree of the polynomial? We partially answer this
question by showing that when parameterized by the maximal branching of the
automaton, the uniform memebership problem is not fixed-parameter tractable
(unless FPT = W[1], which is considered very unlikely and would have far-
reaching complexity-theoretic implications).1 We state the result for acyclic and
finitely branching CFSA, but it could be equivalently stated for closure-free
shuffle expressions. We first define the parameterized version of the problem.

Definition 16 An instance of the parameterized uniform shuffle membership
problem for acyclic and finitely branching CFSA is a pair (M,w) where M is
an acyclic and finitely branching CFSA over a finite alphabet Σ and w is a
word in Σ∗. The parameter is the maximal branching of M , i.e., the maximal
length of a word in one of the shuffle languages in the definition of M :s vertical
transitions. The question is whether w ∈ L(M). ut

If the problem were fixed-parameter tractable, there would be an algorithm for it
with running time f(k) ·nc, where f is a computable function, k is the parameter
(the maximal branching) of the instance, n is the instance size (i.e., |M |+ |w|),
and c is a constant. Theorem ?? gives strong evidence to the contrary.

Theorem 17. The parameterized uniform membership problem for acyclic and
finitely branching CFSA is W[1]-hard.

The proof is by a fixed-parameter reduction from parameterized clique. We start
by defining the latter problem.

Definition 18 An instance of k-Clique is a pair (G, k), where G = (V,E) is
an undirected graph and k is an integer. The question is whether there is a
set C ⊆ V of size k such that the subgraph of G induced by C is complete. ut

In terms of parameterized complexity, k is the parameter and the problem is
known to be W [1]-complete [?].

Proof (of Theorem ??). Let (G = (V,E), k) be an instance of k-Clique, and
let n = |V | and m = |E|. We construct an alphabet Σ, a shuffle expression r
and a string w ∈ Σ∗ such that |Σ| = O(n + m), |r| = O(k · n2 + k2 · m),

1 For more on parameterized complexity theory, see, e.g., [?,?].

Shuffle Languages for Plan Recognition 9

|w| = O(k · n+m), the shuffle operator appears O(k2) times in r, and w ∈ L(r)
if and only if G has a clique of size k. To construct Σ, we assume that the vertices
in V are named v1, v2, . . . , vn and that the edges are named ei,j where i < j are
the numbers of the two incident vertices and let Σ = V ∪ E. The word w
is vk1 · vk2 · · · vkn · edges, where edges is any enumeration of the edges in E. We
define the regular expressions s, t, u by
– s = (vk1 + vk2 + · · ·+ vkn)n−k;
– t = V ∗ · E∗;
– u = Σei,j∈E(vi · vj · ei,j).

Finally, we define

r = s� t� (

k(k−1)/2⊙
i=1

u).

The intuition behind the reduction is as follows:
– The expression s matches n−k sequences of k copies of a vertex name. This

leaves only k such sequences in w for the rest of r to match against. In other
word, the rest of the expression can only use k distinct vertex names.

– Each instance of expression u matches one sequence vi · vj · ei,j . Thus, in
total, the k(k − 1)/2 instances of u match against k(k − 1) vertex names
and k(k − 1)/2 edge names. Due to the matching of s, the k(k − 1) vertex
names can only be chosen from among k vertex names. Thus the k(k− 1)/2
edge names, which are distinct since edges is an enumeration of E, represent
edges that all have both their endpoints in a set of vertices of size k.

– The expression t matches any extra vertex and edge names that are left over.
– Any graph that has k(k − 1)/2 distinct edges whose endpoints are all in a

set of vertices of size k has a clique of size k.
Thus w belongs to L(r) if and only if G has a clique of size k. Since the reduction
is polynomial and the size of the new parameter (the number of shuffle operators
in the expression) depends only on the old parameter (k), it is a fixed-parameter
reduction. We conclude that uniform membership for closure-free shuffle expres-
sions, parameterized by the number of shuffle operators, is W[1]-hard.

Using Corollary ?? (and the construction from the proof of Theorem ??) it
is straightforward to construct an acyclic and finitely branching CFSA Mr such
that L(Mr) = L(r), the size of Mr is polynomial in the size of r, and the maximal
branching of Mr is the same as the number of shuffle operators in r. Thus there
is a fixed-parameter reduction from k-Clique to parameterized membership for
acyclic and finitely branching CFSA, and the latter problem is W[1]-hard. ut
We next show that the shuffle of a context-free language and a regular language
is efficiently recognizable, even if the language descriptions are part of the input.

Theorem 19. The uniform membership problem for the shuffle of two lan-
guages, one represented by context-free grammar and one represented by a non-
deterministic finite automaton, is solvable in polynomial time.

Since acyclic and finitely branching CFSA only contribute a more compact rep-
resentation, Theorem ?? extends, via Corollary ??, to non-uniform membership
for the shuffle of a context-free language and a closure-free shuffle language:

10 Henrik Björklund and Johanna Högberg

Corollary 20. The non-uniform membership problem for the shuffle of two lan-
guages, one represented by a context-free grammar and one represented by an
acyclic and finitely branching CFSA, is solvable in polynomial time.

5 Conclusions and Future Work

In concurrent finite-state automata, the expressive power of context-free and
shuffle languages combine. The synthesis of nested and freely ordered dependen-
cies is particularly convenient when modelling parallel activities in plan recogni-
tion. On the algorithmic side, the CFSA languages are properly included in the
context-sensitive languages, and minor restrictions of the device suffice to obtain
the regular, context-free, and shuffle languages. CFSA have comparatively nice
closure properties, and can be sanity-checked in polynomial time.

To be of practical use in plan recognition, the non-uniform membership prob-
lem needs to be efficiently decidable. We know that the uniform membership
problem for unrestricted CFSA is NP-complete, and the non-uniform member-
ship problem is likely to be computationally expensive without additional re-
strictions. Future work should therefore strive to determine the complexity of
the non-uniform membership problem for restricted and unrestricted CFSA. If
even very sparse use of shuffling has a large negative impact on the complexity,
one could consider replacing the shuffle operator with a weaker alternative, e.g.,
a permutation operator that rearranges the symbols of a string in any order.

Shuffle Languages for Plan Recognition 11

A Proofs from Section ??

Theorem ??. The languages recognised by CFSA are closed under union, con-
catenation, Kleene star, shuffle and shuffle closure. They are not closed under
intersection with a regular language or complementation.

Proof. Let M = (Q,Σ, δ, I) and M ′ = (Q′, Σ, δ′, I ′) be CFSA. We assume with-
out loss of generality that Q ∩Q′ = ∅.

Union. To construct a CFSA for the union of the languages of M and M ′ we
just have to add a unique new initial state with horizontal ε-transitions to all
initial states of M and M ′ and use the union of the two automata.

Concatination. For concatination, we again take the union of the states and
transitions of M and M ′, and additionally add a new, unique, initial state qI .
We then add a vertical transition (qI , ε, q1, q2) for every pair (q1, q2) ∈ (I × I ′).

Kleene closure. Next, we construct a CFSA for the Kleene closure of M . All we
have to do is add a new, unique, initial state qI to Q along with the terminal
transition qI and the vertical transitions (qI , ε, q, qI) for every q ∈ I. This allows
the automaton to simulate any number of runs of M , one after the other.

Shuffle. For the shuffle of L(M) and L(M ′) we add a unique inital state qI and a
state qF to the union of the two automata. We also add the terminal tranisition
qF and the vertical transition (qI , ε, (q1�q2), qF) for each pair (q1, q2) ∈ (I×I ′).

Shuffle closure. To construct the shuffle closure of the language of M , we again
add a unique inital state qI along with a state qF . Additionally, we add the
terminal transition qF and the vertical transition (qI , ε, I

�, qF). This means that
the new automaton can spawn any number of copies of M that will run in parallel
over the string.

The proofs for non-closedness under intersection and complementation can
be found in the body of the paper. ut

Theorem ??. A language is context-free if and only if it is recognised by a
non-branching CFSA.

Proof (Sketch). It is easy to turn a context-free grammar G = (N,Σ, γ, S)
on Chomsky normal form into a non-branching CFSA M = (Q,Σ, δ, I). Let
Q = N ∪ {q | q ∈ N}, I = S, and define δ as follows.

– For every rule q → α in γ, where α ∈ Σε, there is a transition (q, α, q) in δ1
and a transition q in δ3.

– For every rule q → pp′ in γ, there is a transition (q, ε, p, p′) in δ2.

For the opposite direction, it is equally easy to turn a non-branching CFSA into
a language-equivalent push-down automaton. ut

12 Henrik Björklund and Johanna Högberg

Theorem ??. A language is a shuffle language if and only if it is recognised by
an acyclic CFSA.

Proof. The only-if direction follows directly from the proof of Theorem ?? since
the constructions there preserve acyclicity.

Given a CFSA M = (Q,Σ, δ, I) we show how to construct a shuffle expression
s recognizing L(M). We consider two states q, q′ ∈ Q to be connected if there is
a transition (q, α, q′) ∈ δ1 or a transition (q, α, r, q′) ∈ δ2, for some α ∈ Σε and
r ∈ PSh(Q). With this notion of connectivity, let C1, . . . , Ck be the connected
components of M . Consider the directed graph GM = (C1, . . . , Ck, E), where
(Ci, Cj) ∈ E if there are states q, q′ ∈ Ci, a transition (q, α, r, q′) ∈ δ2, and a
state p ∈ Cj such that p appears in some word in L(r). Since M is acyclic, it
follows that GM is acyclic.

Next, we create a set ∆ with one unique new alphabet symbol for each
vertical transtition. Let h : δ2 → ∆ be the bijection mapping each d ∈ δ2 to
the corresponding alphabet symbol. Also, for each d ∈ δ2, let qd be a new state.
Define Mh to be the CFSA obtained from M by replacing each vertical transition
d = (q, α, r, q′) with the horizontal transitions (q, α, qd) and (qd, h(d), q′). Notice
that the connected components of Mh are the same as the connected components
of M and that Mh is a finite automaton recognizing a regular language.

For each q ∈ Q, let the regular expression r(q) be such that L(r(q)) is exactly
the language recognized by Mh when starting from q. Such a regular expression
can be computed from Mh using standard constructions.

We are now ready to describe how to construct the shuffle expression cor-
responding to M . To be precise, for each state q ∈ Q, we will define a shuffle
expression s(q) such that the language of s(q) is the language of M [q], i.e., the
CFSA obtained from M by replacing I by {q}. We do this by induction on the
structure of GM .

Suppose q belongs to a leaf of GM . This means that there are no vertical
transitions in the connected component q belongs to. This, in turn, means that
s(q) = r(q).

Suppose that q belongs to a connected component Ci such that for all states
in all components reachable from Ci in GM , we have already computed the
corresponding shuffle expressions. In this case we get the shuffle expression for q
by taking r(q) and replacing symbols in ∆ by appropriate shuffle expressions. In
particular, consider symbol h(d) ∈ ∆ that corresponds to d = (p, α, r, p′) ∈ δ2.
The shuffle expression for h(d) is obtained from r by replacing each occurance
of a state q′ in r by s(q′). Finally, the shuffle expression for M is the union of
the shuffle expressions for states in I, i.e.,

s = Σq∈I s(q).

The equivalence L(M) = L(s) can be shown by a standard induction. ut

Shuffle Languages for Plan Recognition 13

Theorem ??. The languages recognised by CFSA are properly contained in the
context-sensitive languages.

Proof. Let M = (Q,Σ, δ, I) be a CFSA and w an input string. If there is an
accepting run of M on w from some initial state p, then a non-deterministic
Turing machine can guess and verify this run in linear space by proceeding as
follows. (1) The TM simulates a run of M on w starting in p, but every time a
vertical transition (q, α, s, q′) is used on the top level, the TM guesses what part
of the subsequent string is to be consumed by s, marks this segment off with
brackets and a pointer to s, and continues in state q′ after the closing bracket
until it has read all of w. If it accepts what it has seen so far, then it goes on
to verify each of the bracketed segments. Let w′ be such a segment, annotated
with the expression s. The automaton guesses a number n ∈ [|w′|], a way to
partition w′ into n subsequences w1, . . . , wn (i.e., w′ ∈ w1�· · ·�wn), a sequence
q1, . . . , qn ∈ Q, and a string u ∈ L(s) ∩ Q∗q1Q∗ · · ·Q∗qnQ∗ s.t. every state
p 6∈ {q1, . . . , qn} that appears in u accepts the empty string (i.e., ε ∈ L(M [p]))
and |u| ≤ c ·n, where c ∈ N is a constant depending on M .2 For each i ∈ [n], the
TM repeats the procedure starting at (1) for the string wi and the initial state
qi. This process continues recursively until no unprocessed bracketed segment
has non-zero length. We note that the total amount of information that was
recorded in the process is linear in |w|, so the non-uniform membership problem
for CFSA can be decided by a linearly bounded nondeterministic TM. ut

B Proofs from Section ??

Theorem ??. The emptiness problem for CFTA is decidable in polynomial time.

Proof. Let M = (Q,Σ, δ, I) be a CFTA. For any state q of M , let M [q] be the
automaton obtained by replacing I by {q} in M . We say that a state q of M is
live if L(M [q]) is nonempty.

Given M , let F ⊆ Q be the smallest set satisfying the following conditions.

1. F0 = δ3
2. if q ∈ Fi, then q ∈ Fi+1

3. if (q, α, q′) ∈ δ1 for some α ∈ Σε and some q′ ∈ Fi, then q ∈ Fi+1

4. if (q, α, s, q′) ∈ δ2 for some α ∈ Σε, some q′ ∈ Fi and some s such that the
set L(s) ∩ F ∗i is nonempty, then q ∈ Fi+1

5. F = ∪∞i=0Fi

Claim. A state q of M is live if and only if q ∈ F .
For the if-direction, we prove by induction on the smallest i such that q ∈ Fi

that q is live. For i = 0 this is trivially true, since q ∈ δ3, and thus M [q] accepts
the string ε.

2 A shrinking argument yields that if L(s)∩Q∗q1Q
∗ · · ·Q∗qnQ

∗ is non-empty, then it
contains a string of length less than c · n.

14 Henrik Björklund and Johanna Högberg

Assume that every state in Fi is live, and consider a q ∈ Fi+1 \ Fi. If there
is a rule (q, α, q′) ∈ δ1, with q′ ∈ Fi, then there is a string w such that M [q′]
accepts w. This means that M [q] accepts αw and we conclude that q is live. If
there is no such rule, there must be a rule (q, α, s, q′) ∈ δ2 such that q′ ∈ Fi and
there is a word u = q1q2 · · · qm ∈ L(s) ∩ F ∗i . If this is the case, then there is a
word wq′ accepted by M [q′] and for each position qi of u, there is a word wqi
that is accepted by M [qi]. This, in turn, means that α ·wq1 ·wq2 · · · · ·wqm ·wq′
is accepted by M [q]. Thus q is live.

For the other direction, assume that q is live, i.e., there is a word w = w1 · · ·wm
that is accepted by M [q]. Let ρ = t0 · · · tm be an accepting run of M [q] on w.
We show by induction that every state that appears in a tree in ρ belongs to F .
In particular, this means that q belongs to F , since t0 = q. Since ρ is accepting,
we have tm = tε. Thus all states in tm belong to F . Assume that all states
appearing in ti belong to F and consider ti−1. One of the following cases apply
(for some node v).

1. ti−1 = t[[v ← q]], ti = t[[v ← q′]], and there is a transition (q, αi, q
′) ∈ δ1. If

this is the case, q ∈ F and thus all states of ti−1 belong to F .
2. ti−1 = t[[v ← q]], ti = t[[v ← q′[u]]], and there is a transition (q, αi, s, q

′) ∈ δ2
such that u ∈ L(s). Again, q ∈ F and thus all states of ti−1 belong to F .

3. ti−1 = t[[v ← q]], ti = t[[v ← tε]]. In this case, q belongs to F0 and we can
conclude that all states appearing in ti−1 belong to F .

The set F can be computed in polynomial time and L(M) is empty if and only
if F ∩ I = ∅. Thus emptiness for CFTA can be decided in polynomial time. ut

Corollary ??. For acyclic CFSA

1. the non-uniform membership problem is solvable in polynomial time, and
2. the uniform membership problem is NP-complete.

Proof. The result for non-uniform membership follows directly from Theorem ??
and the fact, proved in [?], that non-uniform parsing for shuffle expressions is
polynomial.

For the uniform membership problem, membership in NP is obvious – just
guess and verify a run of the automaton. NP-hardness follows by an easy adap-
tation of a result by Mayer and Stockmeyer [?]. ut

Theorem ??. The uniform membership problem for the shuffle of two languages,
one represented by context-free grammar and one represented by a nondetermin-
istic finite automaton, is solvable in polynomial time.

Proof. Let G = (N,Σ, δ, S) and M = (Q,Σ, γ, I, F) be a context-free grammar
on Chomsky normal form and an NFA, respectively.

A parse triple for G and M over a string w = w1 · · ·wm is a triple (A, q1, q2)
in ((N ∪ {ε}) × Q × Q) such that w can be partitioned into subsequences w1

and w2, where w1 is in the language of (N,Σ, δ,A) (or w1 is empty, if A = ε),

Shuffle Languages for Plan Recognition 15

and w2 is in the language of (Q,Σ, γ, {q1}, {q2}). There are at most (|N |+1)·|Q|2
distinct parse triples.

The idea of our algorithm is to compute all parse triples for all substrings
of w, in order of increasing length. In the end, w ∈ L(G) � L(M) if and only
if there is a parse triple (S, qI , qF) for the whole of w such that S is the start
symbol of G, qI ∈ I, and qF ∈ F . Since w has O(m2) substrings we will compute
at most O(m2 · |N | · |Q|2) parse triples.

For substrings of length one, computing the triples is trivial. Assume that we
have computed all the parse triples for all substrings of length k−1. We show how
to compute the parse triples for a substring of length k. Let v = v1 · · · vk be such
a substring. To find out whether (ε, q1, q2) is a parse triple for v, we proceed as
follows. We check whether there is an i ∈ [k−1] and a state q such that (ε, q1, q)
is a parse triple for v1 · · · vi, and (ε, q, q2) is a parse triple for vi+1 · · · vk. If this
is the case, (ε, q1, q2) is a parse triple for v.

To determine whether (A, q1, q2), A ∈ N , is a parse triple for v, we proceed
in two steps. First, if there is a rule A → a in δ, for some a ∈ Σ, we check
whether there is an i ∈ [k] and a q ∈ Q such that vi = a, (ε, q1, q) is a parse
triple for v1 · · · vi−1, and (ε, q, q2) is a parse triple for vi+1 · · · vk. If this is the
case, (A, q1, q2) is a parse triple for v. Second, we check, for each rule A→ BB′

whether there is an i ∈ [k] and a q ∈ Q such that (B, q1, q) is a parse triple
for v1 · vi and (B′, q, q2) is a parse triple for vi+1 · vk. In this case too, (A, q1, q2)
is a parse triple for v. ut

