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Techniques and algorithms for efficient in-place conversion to and from standard and blocked ma-
trix storage formats are described. Such functionality is required by numerical libraries that use
different data layouts internally. Parallel algorithms and a software package for in-place matrix
storage format conversion based on in-place matrix transposition are presented and evaluated. A
new algorithm for in-place transposition which efficiently determines the structure of the trans-
position permutation a priori is one of the key ingredients. It enables effective load balancing in
a parallel environment.

1. INTRODUCTION

Deep memory hierarchies require both spatial and temporal locality of reference
to amortize the relatively high cost of memory accesses. Explicitly blocked algo-
rithms obtain high performance by arranging for a large number of floating point
operations to be performed on a small block of the matrix with a technique known
as cache blocking [IBM 1986; Gallivan et al. 1988; Lam et al. 1991]. The high
arithmetic intensity pays off the cost of transferring the matrix blocks to and from
main memory. When blocked algorithms are used in conjunction with blocked stor-
age formats, instead of the standard column- and row-major formats, the memory
hierarchy is better utilized and even higher performance can be obtained. Blocked,
recursive, and hybrid data layouts are able to reduce the number of cache- and
TLB-misses by storing the elements of a block contiguously [Gustavson 2000; Hong
et al. 2003]. Ideally, blocked formats match the memory access patterns of blocked
algorithms.
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In this paper, a blocked format partitions the matrix into submatrices, so called
blocks, of size mb × nb and stores each rectangular block contiguously in mbnb

consecutive memory locations. A key property is that a few such fixed-sized blocks
fit perfectly into all caches.

Recursively blocked formats partition a matrix into blocks and stores the blocks
in a specified order governed by the definition of the recursive scheme. The scheme
is applied recursively to each block. Examples of recursive blocked formats include
recursive blocked row and column orderings [Gustavson et al. 1998], which are
variations of Morton, Hilbert, and Peano orderings [Elmroth et al. 2004; Bader
and Zenger 2006; Bader and Heinecke 2008].

Both theoretical and empirical evidence shows that blocked storage formats may
improve performance of blocked matrix computations, especially on multicore pro-
cessors, see for example [Gustavson 2000; Hong et al. 2003; Chan et al. 2008;
Gustavson et al. 2009; Dongarra and Kurzak 2009]. This suggests that numerical
libraries should use blocked formats for algorithms that benefit from them. The
choice of internal data layout should be hidden from the library users, e.g., by stor-
age format conversion at the library interface. When it is undesirable or impossible
to copy the matrix, e.g., due to memory limitations or performance concerns, then
in-place conversion can be used.

This paper addresses the problem of parallel and cache-efficient in-place matrix
storage format conversion and provides novel algorithms, techniques, and software.
Our conversion algorithms are built on top of in-place matrix transposition and
extends the work in [Gustavson 2008; Karlsson 2009]. A major contribution is our
new algorithm GKKleaders, that efficiently determines the properties of the in-
place transposition permutation between standard column and row major formats.
These properties make load balancing very efficient in many parallel environments.

The organization of the paper is as follows. Notation and necessary facts from
classical number theory are introduced in Section 1.1. Section 1.2 reviews standard
blocked matrix formats and introduces parameterized storage mappings of blocked
formats. Mixed radix number systems and some of their connections to matrix
storage formats are addressed in Section 1.3. Section 1.4 introduces the problem
of in-place matrix transposition and presents a generic in-place transposition al-
gorithm based on following cycles. The connections between mixed radix number
systems and matrix storage formats, conversion, and transposition are further elab-
orated in Section 2. Notably, important shared-memory parallelization issues are
discussed in Section 2.3. The theory and most implementation issues related to our
new algorithm GKKleaders that determines the cycle leaders of the transposition
permutation a priori is explained in Section 3.

Section 4 briefly discusses the problem of in-place transposition of square matri-
ces, for which efficient algorithms already exist. Generalizations of the standard
blocked storage formats to arbitrary matrix dimensions and a conversion scheme
(amenable to parallelization) between these new formats are presented in Section 5.
Some computational experiments are discussed in Section 6. These include a com-
parison of the performance and overhead of different cycle-following algorithms,
showing that our GKKleaders algorithm outperforms previous algorithms. In
addition, performance results for conversion between different matrix storage for-
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mats are presented, demonstrating the effectiveness of our algorithms and software.
Related work on in-place matrix transposition that has most influenced our work
is briefly reviewed in Section 7. Finally, some conclusions are given in Section 8.
Various subalgorithms (called by a higher level algorithm) and proofs related to
GKKleaders are deferred to Appendices A and B.

1.1 Preliminaries

1.1.1 Notation and terminology. When referring to elements in matrices, arrays,
and memory we use zero-based indexing. In particular, the top left element of an
m × n matrix A is denoted A(0, 0), or simply (0, 0) when A is implicit, and its
bottom right element is denoted A(m − 1, n − 1). The indices of A make up the
domain

I = {(i, j) : i = 0, 1, . . . ,m− 1, j = 0, 1, . . . , n− 1}.

A matrix is stored in memory starting at some base location and occupies mn
consecutive memory locations. Element (i, j) ∈ I is stored at some offset k ∈M =
{0, 1, . . . ,mn − 1} from the base location. When referring to a matrix element
A(i, j) by its offset k, then we use the array notation A[k]. The notation a : b refers
to the sequence of integers a, a+ 1, . . . , b.

A permutation algorithm which permutes the elements of an array A into another
array B is called an out-of-place algorithm and it requires mn extra storage for B.
In contrast, if only a constant amount of workspace, i.e., not depending on m and
n, is required, then the algorithm is said to be in-place. Semi-in-place algorithms
require more than a constant amount of workspace, for instance O(m+n), but still
much less than mn. Semi-in-place algorithms are in common use, especially when
the required workspace is relatively small.

1.1.2 Number theory facts. The set of integers is denoted by Z and the subset
of nonnegative integers less than or equal to n is denoted by Zn = {0, 1, . . . , n− 1}.

Every positive integer k has a unique prime power factorization:

k = pe1
1 p

e2
2 · · · p

et
t , p1 < p2 < · · · < pt, ei > 0.

pi is a prime number and pei
i is a prime power of k.

A divisor d of a nonnegative integer k is a positive integer which evenly divides
k. The notation d | k expresses that d is a divisor of k, or equivalently that k is a
multiple of d. In particular, every integer divides 0.

The greatest common divisor of two nonnegative integers a and b, written gcd(a, b),
is the largest positive integer c such that c | a and c | b. In particular, gcd(a, 0) = a.
The integers a and b are said to be relatively prime or coprime if they have no factor
in common, i.e., if gcd(a, b) = 1. If a and b are coprime, then gcd(ac, b) = gcd(c, b).

The least common multiple of two positive integers a and b, written lcm(a, b), is
the smallest positive integer c such that a | c and b | c. The least common multiple
generalizes to any number of integers.

The remainder operator, written a mod b, gives the remainder of a after division
by b and is defined as a mod b = a−

⌊
a
b

⌋
b. The remainder operator is closely related

to the notion of congruency modulo m. The notation a ≡ b (mod m) means that
m | (a− b) and is read as “a is congruent to b modulo m”.
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The linear congruence ax ≡ b (mod m) is solvable for x if and only if gcd(a,m) |
b. If the congruence is solvable, then the infinite set of solutions is {x∗+km/ gcd(a,m)},
where x∗ is an arbitrary solution and k is an integer. In particular, with b = 0
the congruence ax ≡ 0 (mod m) is always solvable and the set of solutions is
{km/ gcd(a,m) : k ∈ Z}. Both sides of a congruence and its modulus can be
divided by any of their common divisors, i.e., ax ≡ b (mod m) is equivalent to
(a/d)x ≡ (b/d) (mod m/d) where d is any common divisor of a, b, and m. Both
sides of a congruence can be divided by any of their common divisors if it is coprime
to the modulus, i.e., ax ≡ b (mod m) is equivalent to (a/d)x ≡ (b/d) (mod m)
where d is a common divisor of a and b and d and m are coprime.

The totient function, or Euler’s φ-function, is written as φ(k) and gives the
number of positive integers less than or equal to k which are coprime to k. For
a prime power, φ(pe) = pe−1(p − 1). If h = ab with gcd(a, b) = 1, then φ(h) =
φ(a)φ(b).

1.2 Storage Formats and Mappings

A storage mapping f of an m×n matrix is an invertible mapping from the domain
I to the set of memory offsetsM, i.e.,

f : I 7→ M.

A matrix storage format is a parameterized set of storage mappings where the
parameters typically include the matrix sizes m and n, and possibly some block
sizes such as mb and nb. The two standard formats Column-Major (CM) and
Row-Major (RM) have the parameterized mappings

fCM(i, j) = i+ jm and fRM(i, j) = in+ j,

respectively. Note that a matrix is sometimes stored with a leading dimension
which is larger than m (CM) or n (RM). In these cases, replace m (or n) with the
leading dimension throughout the paper. See also Section 5 for a discussion on how
we deal with blocked data layouts of matrices with arbitrary dimensions.

In the following, we are assuming that m = Mmb and n = Nnb, i.e., that all
blocks are of size mb × nb. A blocked format is constructed from two independent
formats: the intra-block format specifies the order of the elements of a block and
the inter-block format specifies the order of the blocks. Choosing between CM and
RM for the inter- and intra-block formats result in four combinations that we refer
to here as the standard blocked formats:

Mnemonic Inter Intra
CCRB CM CM
CRRB CM RM
RCRB RM CM
RRRB RM RM

The suffix RB stands for Rectangular Block. The first letter designates the inter-
block format and the second letter designates the intra-block format as shown
above.

The parameters of the CM and RM formats are m and n. The standard blocked
formats have two additional parameters, mb and nb, specifying the block size.
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A row index i maps into a block index 0 ≤ i2 < M and a block offset 0 ≤ i1 < mb

by

i2 =
⌊
i

mb

⌋
and i1 = i mod mb.

Similarly, a column index j maps into a block index j2 and a block offset j1 by

j2 =
⌊
j

nb

⌋
and j1 = j mod nb.

With block indices and offsets, the parameterized storage mappings of the four
standard blocked formats can be defined as

fCCRB(i, j) = (i2 + j2M)mbnb + i1 + j1mb,

fCRRB(i, j) = (i2 + j2M)mbnb + i1nb + j1,

fRCRB(i, j) = (i2N + j2)mbnb + i1 + j1mb,

fRRRB(i, j) = (i2N + j2)mbnb + i1nb + j1.

1.3 Mixed Radix Representation of Storage Mappings

A mixed radix number system is a positional number system in which the radix (or
base) is position dependent [Knuth 1998]. The radices of a mixed radix system
with t positions are denoted by r = (rt, rt−1, . . . , r1) where ri > 0. The digits are
denoted by d = (dt, dt−1, . . . , d1) with 0 ≤ di < ri. The least significant position
has radix r1 and digit d1. The invertible function ψr below defines what we mean
by a mixed radix number:

ψr(d) = dt · rt−1rt−2 · · · r1 + dt−1 · rt−2rt−3 · · · r1 + · · ·+ d2 · r1 + d1.

Note that ψr is a generalization of the fixed-base expansion of decimal numbers,
e.g., 123 = 1 · 102 + 2 · 10 + 3, to mixed radices. The inverse of ψr gives the mixed
radix digits of an integer k:

ψ−1
r (k) = d, di =

⌊
k

ri−1ri−2 · · · r1

⌋
mod ri.

In particular, d1 = k mod r1.
Note that ψr can be seen as a generalization of the CM and RM mappings to

higher dimensions and it is a standard mapping used by compilers when storing
multi-dimensional arrays. Thus, a matrix stored in any of the storage formats we
consider can be accessed using a four-dimensional array.

Choose some radices r such that their product equals mn. Define an invertible
mapping h from the matrix elements (i, j) to the numbers in the mixed radix number
system defined by the chosen radices r. Then the composed function f = ψr ◦h is a
storage mapping. For example, choose r = (N,M,mb, nb) and define the mapping

h(i, j) = (j2, i2, i1, j1).

After composition with ψr we get

f(i, j) = (ψr ◦ h)(i, j) = ψr(h(i, j))
= j2 ·Mmbnb + i2 ·mbnb + i1 · nb + j1

= (i2 + j2M)mbnb + i1nb + j1 = fCRRB(i, j).
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In other words, element (i, j) of a matrix in CRRB format is represented by the
number d = (j2, i2, i1, j1) in a mixed radix system with radices r = (N,M,mb, nb).
After repeating the procedure above for the other formats we end up with different
permutations of the same basic components i1, i2, j1, j2 and M,N,mb, nb:

Mnemonic Radices, r Digits, d
CM (N,nb,M,mb) (j2, j1, i2, i1)

CCRB (N,M,nb,mb) (j2, i2, j1, i1)
CRRB (N,M,mb, nb) (j2, i2, i1, j1)
RCRB (M,N, nb,mb) (i2, j2, j1, i1)
RRRB (M,N,mb, nb) (i2, j2, i1, j1)
RM (M,mb, N, nb) (i2, i1, j2, j1)

1.4 Cycle-Following In-Place Matrix Transposition

We are given an m × n matrix A stored in CM format. Thus, element (i, j) is
stored at offset k = fCM(i, j) = i + jm. The in-place transposition problem is to
rearrange the storage of A, using only a constant amount of workspace, so that
element (i, j) is moved to offset k̂ = fRM(i, j) = in + j. The storage format of A
thus changes from CM to RM. Alternatively, we can interpret the output as AT

stored in CM format. The latter interpretation explains the heading of this section.
We emphasize the former interpretation since the topic of this paper is storage
format conversion. Note that the mapping from k to k̂, denoted k̂ = P (k), is a
permutation of Zmn.

Set q = mn− 1 and notice that for all k in the range 0 < k < q, i.e., excluding 0
and q which are fixed points of the permutation, we have

P (k) = kn mod q = (in+ jmn) mod q = (in+ j + j(mn− 1)) mod q = k̂.

The inverse of P is P−1(k̂) = k̂m mod q = k. The transposition permutation
associated with CM and RM is clearly related to multiplication of integers modulo
q. The structure of the transposition permutation is analyzed in detail in Section 3.

Since transposition is a permutation it can be expressed as a combination of
simple permutations called cycles. A cycle shifts a subset of the elemenets one step
in a cyclic fashion while the remaining elements are left untouched. For example,
m = 5 and n = 3 has q = 14 and Z15 is permuted according to the product of
cycles

(0)(1 3 9 13 11 5)(7)(2 6 4 12 8 10)(14).

For example, the elements at offset 2 is moved to offset 6, i.e., P (2) = 6. There are
three singleton cycles, or fixed points, in this example: (0), (7), and (14). Since sin-
gleton cycles usually have no effect, they are sometimes omitted. The two nontrivial
cycles in this example both have length six.

The notion of a cycle leader, i.e., a unique representative of a cycle, is an im-
portant concept. In this paper, cycle-following in-place transposition algorithms
consist of two phases. In the first phase, a complete leader set is constructed. Such
a set contains one and only one cycle leader for each (nonsingleton) cycle. In the
second phase, each cycle is shifted backwards starting from its cycle leader. In the
example above, S = {0, 1, 2, 7, 14} is one of many possible leader sets.



· 7

Algorithm 1 ShiftCycle(A, s, L, P )
Input: An array A, a cycle leader s, a permutation P−1, and a chunk size L.
Purpose: Shifts contiguous memory chunks of length L in A around the cycle of P that contains

s.
1: B ← A[sL : sL+ L− 1]

2: k1 ← s
3: k2 ← P−1(s)

4: while k2 6= s do
5: A[k1L : k1L+ L− 1]← A[k2L : k2L+ L− 1]

6: k1 ← k2
7: k2 ← P−1(k2)
8: end while
9: A[k1L : k1L+ L− 1]← B

Algorithm 1 takes an array A, a cycle leader s, a chunk size L, and a permutation
P as input and shifts contiguous chunks of size L around the cycle of P that contains
s. The cycle of P is traversed backwards via P−1 since this leads to a more efficient
implementation than shifting forwards using P .

Note that the transposition permutation P is similar to a pseudo-random number
generator. Furthermore, there is typically no spatial locality of reference within
a cycle and pairs of cycles do not tend to stay close to one another. The first
memory access to a chunk is therefore most likely a cache miss in all levels of
the cache hierarchy. When L is small, this is a disaster which makes shifting the
cycle very inefficient. However, when L is large, then the cost of the first cache
miss is amortized over the large contiguous chunk, which is being streamed in from
main memory at the peak rate of the machine. The techniques described in this
paper obtain high performance by expressing storage format conversion as in-place
transpositions with a large chunk size, e.g., L is typicallymb, nb, ormbnb, wheremb

and nb are block sizes [Gustavson 2008]. Some conversions lead to transpositions of
size mb × nb with L = 1. This is generally no problem since mbnb is small enough
to allow all of the transposed elements to reside in cache simultaneously. Thus, for
these cases an out-of-place algorithm can be used to obtain high performance.

Algorithm 2 GenericInPlaceTransposition(A, m, n, L)
Input: An array A with mnL elements where m, n, and L are positive integers.
Purpose: Applies the permutation P (k) = kn mod q where q = mn− 1 to A with chunk size L.
1: Define P : k 7→ kn mod q where q = mn− 1
2: S ← CycleLeaders(m,n)

3: while S 6= ∅ do
4: Select an s ∈ S and let S ← S \ {s}
5: ShiftCycle(A, s, L, P )
6: end while

A generic in-place transposition algorithm can be conceptually formulated as in
Algorithm 2. A leader set is constructed on line 2 and each cycle is shifted starting
from its leader on lines 3 to 6. Thus, even though the algorithm conceptually
consists of two phases, in practice they have to be interleaved since the leader
set is sometimes O(q) and can not be explicitly stored. One of the challenges is
to construct an efficient algorithm that implements the so far undefined function
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CycleLeaders. We develop a new algorithm called GKKleaders in Section 3
and recall some previously published algorithms in Section 7.

2. IN-PLACE MATRIX STORAGE FORMAT CONVERSION

We now continue our discussion of the connection between mixed radix number
systems and matrix storage formats that we started in Section 1.2. The notion
of a digit permutation [Fraser 1976] plays an important role. Since the mixed
radix representations of the storage mapping in Section 1.2 use the same digits and
radices, they are connected via digit permutations.

If we permute the digits in the mixed radix representation of the storage mapping
f , we obtain another storage mapping f̂ . By rearranging the stored matrix so that
the element at offset f(i, j) is moved to offset f̂(i, j), we have effectively converted
the storage format of the matrix. For example, by swapping the second and third
digits in the representation of the CM mapping, we obtain the representation of the
CCRB mapping. By reflecting this change in the stored matrix, the storage format
is converted from CM to CCRB.

2.1 Adjacent Digit Swap

In the following, we remark thatm and n refer to the size of a transposition problem,
which normally concerns (only) a submatrix of the original A. To simplify notation,
we still use A for this submatrix (array).

note that m and n do not refer to the size of the matrix A any longer. Instead,
they refer to the size of a transposition problem.

An adjacent digit swap is a special type of digit permutation in which two adjacent
digits are swapped. We pay special attention to this type of digit permutation since
it is possible to reflect it in a stored matrix using only in-place transpositions.

Suppose we want to swap the digits di and di+1 in a t-radix system. Define

nind = rtrt−1 · · · ri+2,

n = ri+1,

m = ri,

L = ri−1ri−2 · · · r1.

Algorithm 3 reflects the adjacent digit swap in a stored matrix A. Each call to
GenericInPlaceTransposition (Algorithm 2) picks up a chunk of size L start-
ing at offset (jm+ i)L and moves it to a chunk of size L starting at offset (in+ j)L.
Thus, the element that originally resided at offset

Algorithm 3 AdjacentSwap(A, nind, m, n, L)
Input: An array A with nindmnL elements, where nind, m, n, and L are positive integers.
Purpose: Moves A[k] to A[k̂] where

k = ψ(nind,n,m,L)(d4, j, i, d1) and k̂ = ψ(nind,m,n,L)(d4, i, j, d1).

1: for r = 0, 1, . . . , nind − 1 do
2: GenericInPlaceTransposition(A[rnmL], m, n, L)
3: end for
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(N, M, mb, nb)

2

3

3

2

CM

(N, nb, M, mb)

1

RM

(M, mb, N, nb)

1

CCRB

RCRB RRRB

CRRB

(N, M, nb, mb)

(M, N, nb, mb) (M, N, mb, nb)

Fig. 1. Conversion graph for six matrix storage formats. An adjacent digit swap converts between
two neighbouring formats.

d4nmL+ (jm+ i)L+ d1 = ψ(nind,n,m,L)(d4, j, i, d1)

is moved to offset

d4nmL+ (in+ j)L+ d1 = ψ(nind,m,n,L)(d4, i, j, d1),

by Algorithm 3.

2.2 Conversion Graph

Conversion between any pair of the matrix storage formats in Section 1.2 can be
realized by one or more adjacent digit swaps by following the edges of the conversion
graph in Figure 1. Each edge in the conversion graph represents an adjacent digit
swap:

(1) swaps the second and third digits with chunk size L = mb or L = nb,
(2) swaps the third and fourth digits with chunk size L = mbnb, and
(3) swaps the first and second digits with chunk size L = 1.

Each swap requires reading and writing the matrix only once. Assuming that the
bottleneck is the memory bandwidth, each of the three swaps above should take
roughly the same time to complete.

According to Figure 1, converting from CM to RM, i.e., transposing the matrix,
can be implemented by four digit swaps. However, note that swaps (2) and (3)
can be fused, meaning that both are performed without reading and writing the
matrix more than once. Fusion is possible since the chunks in swap (2) correspond
to the transposition of block in swap (3). Hence, these subtranspositions can be
performed while shifting the cycles of swap (2). Note that during a fused swap
operation the singleton cycles of swap (2) can no longer be ignored since they are
still affected by swap (3).

2.3 Parallelization

Algorithm 3 and the subalgorithms that it calls form the building blocks of matrix
storage format conversion. In this section, we describe a shared-memory paral-
lelization suitable for implementation using OpenMP [OpenMP.org ], threads, or
similar technologies.

The aim is to utilize all of the available memory bandwidth when shifting cycles.
Typically, at least on modern computer architectures, p threads need to execute in
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Fig. 2. The probability, P (ncycles ≤ x), that the number of cycles, ncycles, is less than or equal to
x for x = 1, 2, . . . , 100 for random problem parameters m,n ∈ {2, 3, . . . , 100}, excluding m = n.

parallel to saturate the memory bandwidth. Usually, the optimal p is smaller than
the total number of processor cores since memory bandwidth eventually becomes
the bottleneck. Algorithm 3 can be parallelized at three different levels described
below. To be effective on all possible inputs, an implementation should exploit all
of them.

2.3.1 Independent subtranspositions. Recall that AdjacentSwap performs nind

independent and identical in-place transpositions of size m× n with chunk size L.
At the highest level is a loop over the nind independent transpositions. The input
parameter nind may be small or large. For matrix storage format conversion, it
is typical to have nind ∈ {1,M,N,MN}. The independent transpositions can be
performed in parallel and load balancing is simplified since the subproblems are
identical. This is the coarsest level of parallelization and is enough to obtain high
efficiency in many cases. However, when nind is small, such as when converting
between CCRB and RRRB, a second level of parallelism becomes necessary.

2.3.2 Independent cycles. Another level of parallelism is found in the indepen-
dent cycles within one transposition [Gustavson 2008]. All cycles can be shifted in
parallel, but the number of cycles and the length of each cycle vary greatly with the
problem parameters m and n. In many cases there are only a couple of long cycles,
perhaps not enough to utilize all the bandwidth. Figure 2 shows the cumulative
distribution function of the number of cycles over a wide range of problems. The
marker highlights that almost 45% of the tested problems have eight or fewer cycles.
For problems with only a few long cycles, a third level of parallelism is required.

2.3.3 Long cycles. For a chunk size L > 1 it is possible to partition each chunk
and form several independent cycles with smaller chunk sizes. These cycles can
then be shifted in parallel without further synchronization. Since splitting the
chunks reduces the chunk size, this approach might actually degrade the overall
performance.

A different approach, which keeps the chunk size intact, is to split the cycle into
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several linear sequences [Gustavson 2008]. A cycle is broken into a sequence by
copying one of its chunks to workspace. A sequence can be further broken up by
copying another chunk. In general, a cycle of length ` ≥ p with leader s can be
broken into p sequences, i.e., one sequence per thread, in the following way. Choose
p integers

xi ∈ {0, 1, . . . , `− 1}, i = 0, 1, . . . , p− 1, x0 < x1 < · · · < xp−1

and define the p sequence leaders

si = snxi mod q, i = 0, 1, . . . , p− 1.

Copy the first chunk of each sequence in parallel, i.e.,

Bi ← A[siL : siL+ L− 1],

and synchronize the threads. Thread i shifts the `i = xi − x(i−1) mod p elements
starting at si backwards along the sequence. The final chunk at snxi−`i+1 mod q
is stored in B(i−1) mod p and was initialized by a different thread. This approach
requires pL elements of workspace for the copies Bi for i = 0, 1, . . . , p − 1 and a
barrier synchronization of the p threads.

2.3.4 Load balancing. Given a leader set and associated cycle lengths, the load
balancing problem is to decide how best to assign the cycles to the p threads in order
to minimize the execution time. Several simplifications are necessary to reduce the
complexity of the problem.

We need a performance model in order to estimate the load assigned to each
thread. Basically, the only information that is available a priori is the length of each
cycle. Thus, let T (i) for i = 0, 1, . . . , p− 1 be the total number of chunks assigned
to thread i. The parallel execution time, according to our model, is proportional to

Tp = max
0≤i<p

{T (i)}.

The sum of the idle times is proportional to

To =
p−1∑
i=0

(Tp − T (i)) = pTp −
p−1∑
i=0

T (i).

The relative overhead is defined as

To

pTp
= 1−

∑p−1
i=0 T (i)
pTp

and it quantifies the load imbalance in the following sense. The relative overhead is
the relative reduction in pTp obtained by perfectly balancing the load. For instance,
if To/pTp = 0.05, then pTp can not be reduced by more than 5% by a perfect load
balancing scheme.

It is difficult to find an optimal solution. A simple and good approximation is
obtained by greedily assigning each cycle to the thread with the currently smallest
T (i). If the cycles are assigned to threads with the longest cycles first, then the
greedy algorithm produces even better approximations. For our purposes, the first
approach, i.e., without sorting, is sufficient. If the relative overhead becomes too
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large after the greedy algorithm terminates, long cycles can be split into smaller
cycles until the relative overhead becomes sufficiently small.

3. A PRIORI DETERMINATION OF CYCLE LEADERS AND LENGTHS

After having established the usefulness of in-place transposition to the problem
of matrix storage format conversion in the previous section, we now focus on the
development of an efficient algorithm called GKKleaders that determines cycle
leaders and cycle lengths. Such an algorithm makes it possible to cheaply balance
the load in a parallel environment.

The problem of finding a leader set naturally partitions into one subproblem for
each divisor v of q = mn− 1 [Pall and Seiden 1960]. The set of elements associated
with v is {k : 1 ≤ k ≤ q, gcd(k, q) = v}, the size of which is φ(q/v). These elements
are spread over φ(q/v)/` cycles of the same length `.

What we call themain subproblem or the coprime case corresponds to v = 1. It in-
cludes the φ(q) integers which are coprime to q. For all the remaining subproblems,
v > 1. Recall that the k-th element in the cycle starting at s is snk mod q. Sup-
pose v = gcd(s, q) > 1 and factor s = vs̃. Rewrite snk mod q as v(s̃nk mod (q/v)).
Thus, any subproblem reduces to a coprime case with q replaced by q/v. After
obtaining a leader set for the reduced subproblem, the solution to the unreduced
subproblem is obtained by multiplying each leader by v.

The basic idea of GKKleaders is inspired by the pen-and-paper algorithm
proposed by Pall and Seiden [1960]. We include several nontrivial improvements
and identify and resolve a number of implementation issues.

The material presented here is based on elementary number theory, as described
in introductory textbooks such as Niven et al. [1991].

3.1 Moving to an Additive Domain

The cycle structure of the transposition permutation in the coprime case is not read-
ily apparent in the multiplicative domain modulo q. Therefore, we first establish an
isomorphism from the multiplicative domain to an additive domain for each divisor
v of q. The analysis in the additive domain turns out to be much clearer and leads
to a compact description of a leader set. The leader set is finally translated back
into the multiplicative domain where cycle shifting takes place. The set of leaders,
S, in the additive domain is a direct product of sets of integers of {0, 1, . . . , ki− 1}.
Thus, there is no need to explicitly store these sets and the GKKleaders algo-
rithm could generate the leaders one by one and require no workspace. However,
for efficiency reasons, we use a small, bounded amount of workspace.

The prime power factorization

q = mn− 1 = pe1
1 p

e2
2 · · · p

et
t , p1 < p2 < · · · < pt, ei ≥ 1

has t prime powers pei
i . It is worth noting that the theory, and an implementation

in particular, becomes more technical when p1 = 2, i.e., q is even and hence both
m and n are odd. We advise readers first to fully understand the special case of q
odd, since the general case does not alter the big picture.

3.1.1 Modular arithmetic. By using the t prime powers pei
i of q as moduli in a

modular arithmetic system, each integer s ∈ Zq is uniquely represented by its so
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called modular components, which we denote by ŝi for i = 1, 2, . . . , t. The Chinese
Remainder Theorem (CRT) ensures that the CRT mapping

Zq → Zp
e1
1
× · · · × Zp

et
t

: s 7→ (ŝ1, ŝ2, . . . , ŝt), ŝi = s mod pei
i

is invertible. The inverse CRT mapping transfers (ŝ1, ŝ2, . . . , ŝt) to s ∈ Zq, where

s =

(
t∑

i=1

Miziŝi

)
mod q, Mi =

q

pei
i

, Mizi ≡ 1 (mod pei
i ). (1)

Modular multiplication in Zq, i.e., c = ab mod q, turns into component-wise mod-
ular multiplication of the modular components âi and b̂i, i.e., ĉi = âib̂i mod pei

i .

3.1.2 The additive domain. For an element s associated with the main sub-
problem we have gcd(s, q) = 1. The modular components ŝi of s are coprime to
their respective moduli pei

i . This allows us to relate ŝi to so called indices si in an
additive domain.

When pi is odd, there exist integers gi which are called primitive roots for all
powers of pi. A primitive root gi of pei

i has the property that the multiplicative
order of gi is φ(pei

i ). Thus, relative to a primitive root gi, each integer coprime to
pei

i is associated with a unique index between 0 and Ni − 1 where Ni = φ(pei
i ). In

particular, we denote the index of ŝi by si and it is defined by

ŝi ≡ gsi
i (mod pei

i ).

Note that computing the index si appears to require a linear search through the
set of all indices. Hence, it can be prohibitively expensive to do so. We use indices
only as a theoretical tool and do not compute them explicitly.

As an example of primitive roots and indices, take ŝi = 227 modulo pei
i = 73.

Given the primitive root gi = 3, the index of ŝi is si = 175 since 227 ≡ 3175

(mod 73).
When pi is even, i.e., i = 1 and p1 = 2, a complication arises. No power of two

except for 21 and 22 has primitive roots. However, there exists a unique pair of
indices, s0 and s1, such that

ŝ1 ≡ (−1)s05s1 (mod 2e1).

The integers −1 and 5 take on a similar role as the primitive roots. The powers
of 5 trace out the set of integers which are congruent to 1 modulo 4. Multiplying
this set by −1 gives the set of integers which are congruent to 3 modulo 4. To-
gether these two sets cover all the φ(2e1) odd integers. The index s0 ∈ {0, 1} is
uniquely determined modulo N0 = min{e1, 2}. It equals zero if and only if ŝ1 ≡ 1
(mod 4). The index s1 is uniquely determined modulo N1 = max{2e1−2, 1}. Note
that N0N1 = φ(2e1) = 2e1−1.

As an example, consider ŝ1 = 43 modulo 26 = 64. From 43 ≡ (−1)513 (mod 26)
it follows that the indices of ŝ1 are s0 = 1 and s1 = 13.

Primitive roots turn modular multiplication into modular addition in much the
same way as logarithms turn multiplication into addition. For instance, if pi is odd,
then

âib̂i ≡ gai
i g

bi
i ≡ g

ai+bi
i (mod pei

i )
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and if p1 is even, then

â1b̂1 ≡ (−1)a05a1(−1)b05b1 ≡ (−1)a0+b05a1+b1 (mod 2e1).

To handle general q, we set h = 1 if q is odd, and h = 0 if q is even. Thus, we
say that for any q, an integer s which is coprime to q has t modular components ŝi

for i = 1, 2, . . . , t and t or t+ 1 indices si for i = h, h+ 1, . . . , t.

3.2 A Leader Set for the Main Subproblem in the Additive Domain

We are now ready to describe a leader set for the main subproblem in the additive
domain. The cycle of a contains b = anx mod q for some x. The components of
this equation in the additive domain expands to

bi = (ai + nix) mod Ni, for all h ≤ i ≤ t,

where ai, bi, and ni are the indices of a, b, and n, respectively. Consider the
sequence x = 0, 1, . . . and note that bi is periodic and takes on values in a subset
of ZNi

. Specifically, define

di = gcd(ni, Ni) and Ki =
Ni

di
(2)

and observe from

nix ≡ 0 (mod Ni)⇔ (ni/di)x ≡ 0 (mod Ki)⇔ x ≡ 0 (mod Ki) (3)

that bi has a period of Ki. The first equivalence in (3) comes from factoring out
di and the second equivalence comes from the fact that ni/di and Ki are coprime.
Note that b = a precisely when x is a multiple of all the periods. Thus, the cycle
length is

` = lcm(Kh,Kh+1, . . . ,Kt). (4)

The leader set which forms the basis for GKKleaders is stated in Theorem 3.1.
It is simply the direct product of integers in the range (0 : k).

Theorem 3.1 Leader set for the main subproblem. Define for i = h, h+
1, . . . , t

Li = gcd(Ki, lcm(Kh,Kh+1, . . . ,Ki−1)). (5)

The set

S = {(sh, sh+1, . . . , st) : 0 ≤ si < diLi, for all i = h, h+ 1, . . . , t} (6)

is a leader set for the main subproblem.

Proof. See Section B.1.

The following Corollary allows us to produce a more efficient GKKleaders algo-
rithm by setting zi = 1 in the inverse CRT map (1) of Section 3.1.1.

Corollary 3.2. The set

S̃ = {(ch + sh, ch+1 + sh+1, . . . , ct + st) : 0 ≤ si < diLi, for all i = h, h+ 1, . . . , t}

with arbitrary constants ci is a leader set.
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3.2.1 Avoiding index calculations. It is possible to obtain the crucial quantities
without computing the indices of n. This crucial observation is in large parts what
makes the GKKleaders algorithm so efficient.

The period Ki defined in (2) is closely related to the multiplicative order `i of
n modulo pei

i . In fact, from n̂i ≡ gni
i (mod Ni) it follows that Ki = `i for all odd

primes pi. Thus, it is possible to first determine Ni, then compute Ki, e.g., by
the fast algorithm given in Section A.2, followed by setting di = Ni/Ki. Thus, the
index ni need not be computed.

For p1 = 2 we do not even have to compute the multiplicative order of n. Instead
we determine N1, then compute d1 followed by K1, where d1 is obtained using
Lemma 3.3, again without computing an index.

Lemma 3.3. Either n̂1 = 1 + 4k or n̂1 = 2e1 − (1 + 4k). In both cases, d1 =
gcd(k,N1).

Proof. See Section B.2

We also need to determine N0, d0, and K0. Since n0 is just 0 or 1, it is trivial to
compute. From n0 we then get d0 = gcd(n0, N0) and K0 = N0/d0.

3.2.2 Example. It is best to describe how to apply Theorem 3.1 by using an
example.

The m× n = 68× 227 transposition problem leads to q = mn− 1 = 15435. The
prime power factorization of q is given in the second to fourth columns of the table
below. The entries in the fifth row are the products of all the entries above.

i pi ei pei
i Ni n̂i ni Ki di Li diLi gi Mi zi

1 3 2 9 6 2 1 6 1 1 1 2 1715 2
2 5 1 5 4 2 1 4 1 2 2 2 3087 3
3 7 3 343 294 227 175 42 7 6 42 3 45 61

15345 7056 84

Since q is odd, we get h = 1 and the additive domain of indices becomes ZN1×ZN2×
ZN3 , where Ni = φ(pei

i ). The multiplicative orders of n give Ki and di = Ni/Ki.
Since di = 1 for i ∈ {1, 2}, we get g1 = n mod pe1

1 = 2 and g2 = n mod pe2
2 = 2.

For pe3
3 = 73 we find g3 = 3 after a search, see Section A.3. After computing Li we

obtain diLi and the leader set in Theorem 3.1 becomes

S = {(s1, s2, s3) : s1 = 0, s2 = 0, 1, s3 = 0, 1, . . . , 41},

which can also be expressed as the Cartesian product S = {0}×{0, 1}×{0, 1, . . . , 41}.
The cycle length is ` = lcm(K1,K2,K3) = 84. The number of leaders is N1N2N3/`,
which happens to be 84 as well.

Take (s1, s2, s3) = (0, 1, 19) as an example of the translation of a leader from the
additive to the multiplicative domain modulo q:

s = (M1g
s1
1 +M2g

s2
2 +M3g

s3
3 ) mod q = (1715+3087·2+45·319) mod 15435 = 14009.

3.3 A Complete Set of Leaders

In Section 3.2, we outlined the GKKleaders algorithm for the main subproblem.
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In the following, assume that the prime power factorization of q/v is

q/v = pf1
1 p

f2
2 · · · p

ft

t , 0 ≤ fi ≤ ei,

which means that the prime power factorization of v must be

v = pe1−f1
1 pe2−f2

2 · · · pet−ft

t .

In Section 3.3.1, we let f0 = f1 when h = 0.

3.3.1 Computing subproblem quantities. The central quantities Mi, Ni, Ki, di,
and Li are dependent on v. Notably, the primitive roots gi are constant with respect
to v (see Section A.3). The notationMi(fi), Ni(fi), Ki(fi), and di(fi) distinguishes
the different values of the quantities and emphasizes that their dependence on v is
restricted to the exponent fi. From (5) we observe that Li depends on Kj(fj) for
h ≤ j ≤ i. We therefore use the notation Li(v) to distinguish the different values
of Li. Without an argument, the quantities refer to those of the main subproblem.

Since Ki(fi) is related to the multiplicative order of n modulo pfi

i it appears
to be costly to compute. However, Lemma 3.4 establishes a connection between
Ki(fi) and Ki = Ki(ei), which makes the computation of Ki(fi) trivial when Ki

is known.

Lemma 3.4. If i ∈ {1, 2, . . . , t}, then for any fi in the range 0 ≤ fi < ei

Ki(fi) =


1 if fi = 0,
Ki(fi + 1) if 0 < fi < ei and Ki(fi + 1) < pi,
Ki(fi + 1)/pi otherwise.

Proof. See Section B.3.

The LCM computation (4), which computes the cycle length `, is arranged in
Algorithm 4 so that the Li, defined in (5), fall out as byproducts.

Algorithm 4 LCM(Kh(fh), . . . ,Kt(ft))
Input: Ki(fi) for i = h, h+ 1, . . . , t where fi are the exponents associated with the subproblem

divisor v.
Purpose: Computes the cycle length

` = lcm(Kh(fh),Kh+1(fh+1), . . . ,Kt(ft))

and Li(v) for all i = h, h+ 1, . . . , t.
1: `← 1

2: for i = h, h+ 1, . . . , t do
3: Li(v)← gcd(`,Ki(fi))

4: `← Ki(fi)`
Li(v)

5: end for

3.3.2 Preparing for the generation of leaders. For an arbitrary subproblem cor-
responding to v, the translation from the additive description of the leader set
into the multiplicative domain involves computing the modular components of
each leader using the primitive roots, then applying the inverse CRT map (1),
and finally multiplying the generated leader by v. Let Sv denote the leader set,
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given by Theorem 3.1, for the reduced subproblem corresponding to v. The indices
(sh, sh+1, . . . , st) ∈ Sv are mapped to the integer s ∈ Zq according to

s = v

[(
t∑

i=1

Mi(fi) · (gsi
i mod pfi

i )

)
mod q/v

]

=

(
t∑

i=1

pei−fi

i Mig
si
i

)
mod q.

(7)

If q is even, simply replace gs1
1 with (−1)s05s1 . According to Theorem 3.1, the

range of si is 0 ≤ si < di(fi)Li(v). The upper bound, di(fi)Li(v) is maximal when
fi = ei, i.e., for the main subproblem. Thus, the powers of gi need to be computed
only once and later reused for all subproblems. Specifically, when solving the main
subproblem we compute and store

Vi(si) = Mig
si
i mod q for i = 1, 2, . . . , t.

This simplifies (7) and reduces the number of operations considerably when there
are multiple subproblems. When q is even, V1 actually depends on both s0 and s1:
V1(s0, s1) = M1(−1)s05s1 mod q.

3.3.3 Generating leaders. When evaluating (7) for all possible index combina-
tions in sequence, it is possible to further reduce the number of operations. Denote
the partial sum of the first k terms in (7) by

Sk =

(
k∑

i=1

pei−fi

i Vi(si)

)
mod q =

{
pei−fi

i Vi(si) mod q if k = 1,
(Sk−1 + pei−fi

i Vi(si)) mod q otherwise.

Thus, s = St. After prescaling Vi(si) with pei−fi

i , each leader is generated by little
more than a single modular addition. This is a significant reduction compared to the
t−1 modular additions, 2t modular multiplications, and t modular exponentiations
suggested by (7).

3.4 The GKKleaders Algorithm

We are finally in a position to present GKKleaders (Algorithm 5). The loop over
all divisors of v is cheap since the prime power factorization of q is already known.

The search for primitive roots is a relatively expensive operation. Fortunately,
when di = 1, which it frequently is, it follows from Ki = φ(pei

i ) that n mod pei
i is a

primitive root of pei
i .

4. SQUARE IN-PLACE MATRIX TRANSPOSITION

When the matrix is square, i.e., m = n, the diagonal elements lead to singleton cy-
cles. The off-diagonal element aij pairs with aji, forming a total of n(n−1)/2 cycles
of length two. An algorithm such as GKKleaders is not required in this case since
special-purpose cache-blocked in-place transposition algorithms for square matrices
already exist.

It is interesting to note that the square case, although seemingly simple, still has
many subproblems scattered in the domain. For instance, consider m×n = 19×19,
which leads to q = mn− 1 = 360 = 23 · 32 · 5. There are 24 divisors of q and hence
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Algorithm 5 GKKleaders(m,n)
Input: Transposition problem of size m× n.
Purpose: Computes a complete leader set S for the transposition permutation.
1: Factor q = mn− 1 = pe11 pe22 · · · p

et
t (Section A.1).

2: Set h = 0 if q is even and h = 1 otherwise.
3: Factor pi − 1 for i = 1, 2, . . . , t for later use in steps 4 and 6. subalgorithms (Section A.1).
4: Compute Ki = Ki(ei) for i = h, h+ 1, . . . , t (Section A.2).
5: Compute Ki(fi) for fi = 0, 1, . . . , ei − 1 from Ki for i = h, h+ 1, . . . , t (Section 3.3.1).
6: Compute primitive roots gi for all odd pi for which Ki 6= φ(p

ei
i ) (Section A.3).

7: Compute Li for i = h, h+ 1, . . . , t (Algorithm 4).
8: Compute Vi(si) for si = 0, 1, . . . , diLi − 1 for i = 1, 2, . . . , t (Section 3.3.2).
9: for each divisor v 6= q of q do

10: Compute Li(v) for i = h, h+ 1, . . . , t (Algorithm 4).
11: Temporarily scale Vi(si) with pei−fi

i for i = 1, 2, . . . , t

12: Generate leaders for subproblem v using summation with partial sums (Section 3.3.3).
13: end for
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(b) m× n = 16× 25

Fig. 3. Visualization of subproblems for a square and a rectangular transposition problem. The
subproblems (divisors) are numbered in ascending order.

there are 24 subproblems if we count v = q. The offset zero is technically not
a part of any subproblem, but for consistency we associate it with v = q since
gcd(0, q) = q. Figure 3(a) visualizes the subproblem membership of each of the 361
integers (0 : q − 1). The integers are laid out as the elements of a matrix in CM
order. A light (dark) shade represents a subproblem with a small (large) divisor v.
The rectangular 16× 25 example in Figure 3(b) is included for reference.

Note that converting a square matrix from CM or RM format to a blocked format
involves at least one rectangular transposition except for rare cases such asM = nb.
One of the notable exceptions is the conversion between CCRB and RRRB for
a square matrix with square blocks. It leads to a fused operation with square
transposition both as the outer and inner problem.
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5. ARBITRARY MATRIX DIMENSIONS

In this section, we assume arbitrary matrix dimensions, i.e.,

m = Mmb + rm and n = Nnb + cn, where 0 ≤ rm < mb, 0 ≤ cn < nb.

The integers rm and cn are the number of trailing rows and columns, respectively.
The standard blocked formats require that the matrix sizes m and n are divisible

by the block sizes mb and nb, i.e., rm = cn = 0. Padding, i.e., deliberately storing
the matrix as a leading submatrix of a larger matrix to satisfy this constraint, is
an effective way to bypass the problem of arbitrary matrix dimensions. However,
a legacy library can not rely on padding since it would require changing existing
software.

A first generalization is to maintain the notion that a blocked format lays out
the blocks, including the trailing blocks, in either CM or RM format. It is a
reasonable approach, but it makes conversion and transposition more expensive
than necessary. For instance, our in-place conversion algorithms can not be applied
directly to matrices stored using this scheme.

Below we describe another generalization to which our in-place conversion algo-
rithms apply directly. Partition A into four submatrices,

A =
[
A11 A12

A21 A22

]
with A22 of size rm × cn. There are MN blocks in A11 of size mb × nb; M blocks
in A12 of size mb × cn; N blocks in A21 of size rm × nb; and one block in A22

of size rm × cn. When A is stored in CM or RM format, these submatrices are
interleaved in memory. However, a simple procedure that we call packing, which is
essentially what Dow [1995] refers to as a cut), rearranges the matrix in a (semi-
)in-place fashion while reading and writing the matrix only once. Assuming that A
is initially stored in CM format, the packing procedure rearranges the submatrices
so that they are stored contiguously in the order A11, A12, A21, followed by A22.
Each submatrix is stored in CM format. The key idea is that each submatrix has
a homogeneous block size, i.e., all blocks have the same size, and can therefore be
stored in any storage format independently of the other submatrices.

A suitable generalization of CRRB, for instance, is obtained by converting each
of the four submatrices of A from CM to CRRB format. The block sizes of the four
submatrices are different, but each submatrix has a homogeneous block size. Our
conversion algorithms therefore apply to all of the submatrices.

With this generalization, it is simple and cheap to convert between pairs of gener-
alized blocked formats since the conversion reduces to conversion of each submatrix.
For certain conversions, such as from CCRB to RRRB, the roles of the submatrices
A12 and A21 need to be reversed.

The next section describes the packing procedure in more detail, see also Gus-
tavson [2008].

5.1 Packing and Unpacking

Given is nseg segments with ncon consecutive elements each placed in memory with
a stride of ncon +nsep. The first segment starts at offset zero. In other words, there
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f)

a)

b)

c)

d)

e)

Fig. 4. Parallel scheme for the Pack procedure. The (nseg − 1)nsep intermediate elements are
initially copied to workspace and at the end they are copied back. a) 8 segments initially scattered
in memory, b) 4 threads copy one segment each into cache-resident workspace, c) 4 threads
synchronize and write their copied segments back, d) the next group of 4 segments is copied, e)
and written back after synchronization. The final arrangement is illustrated in f).

are nsep elements between two adjacent segments that are not part of any segment.
Figure 4(a) illustrates the case nseg = 8.

The Pack procedure rearranges the segments so that they are stored contigu-
ously starting at offset zero. It maintains the order of the elements that belong to
segments as well as the order of the intermediate elements. The UnPack procedure
is the inverse of Pack.

A semi-in-place implementation of Pack first copies the (nseg−1)nsep intermedi-
ate elements into workspace. The segments are then moved to their new locations
one after the other. Finally, the copied elements are written back directly following
the packed segments.

A shared-memory parallelization of Pack using p threads is illustrated by the
example p = 4 and nseg = 8 in Figure 4. A barrier synchronization ensures that
the segments have been completely copied before they are written back.

6. COMPUTATIONAL EXPERIMENTS

In-place conversion is necessary in cases where out-of-place conversion is not pos-
sible due to a lack of available memory. Even when out-of-place conversion is an
option, it might turn out that in-place conversion is faster, e.g., due to its smaller
memory footprint.

Out-of-place transformations can be slower for various reasons. One example is
on systems with a write-back cache in combination with a write-allocate policy.
On such systems, a write miss triggers a read of the cache line, even if the entire
cache line is going to be overwritten. This is precisely the scenario in out-of-place
transformations. In contrast, an in-place transformation reads a cache line which
it later overwrites, hopefully while it is still in the cache. Thus, both the read and
the write are essential operations.

The potential difference between in-place and out-of-place is captured by the
following benchmarks:

—copy (tcopy): copies a vector (w ← v).
—scale (tscale): scales a vector in-place (v ← αv).
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Table I. Characteristics of the HPC2N systems Akka and Sarek.
Name Akka Sarek

Processor Dual Intel Xeon QC L5420 Dual AMD Opteron 248
Frequency 2.5 GHz 2.2 GHz
Compiler PathScale 3.2 PathScale 3.2
Switches -O3 -mp -O3 -mp

tcopy 3.02 ns (2530 MB/s) 6.52 ns (1170 MB/s)
tscale 1.62 ns (4710 MB/s) 4.54 ns (1680 MB/s)

tcopy/tscale 1.86 1.44

Both benchmarks are perfectly parallelizable and use only stride-1 accesses, so they
are idealized out-of-place (copy) and in-place (scale) transformations. Measure-
ments need to be carried out on vectors that do not fit in cache in order to reflect
the main memory bandwidth. After dividing the running time with the length of
the vectors, the quantities tcopy and tscale are obtained in the unit seconds per ele-
ment. We compare the benchmarks against the normalized running time of in-place
conversion. Ideally, the results should be close to tscale.

6.1 Experimental Setup

In all our experiments, we selected the best time after executing each problem on
p = 1, 2, . . . , nc threads, where nc is the number of cores on one node of the ma-
chine. To reduce the impact of system noise on the measurements, we executed
each problem setup three times and selected the best. Table I lists some informa-
tion about the two machines at the High Performance Computing Center North
(HPC2N) facility in Umeå, Sweden that we ran our tests on.

Note that we would expect the ratio tcopy/tscale to be close to 1.5, since the
out-of-place transformation has potentially 50% more memory traffic.

6.2 Experiments

The computations involved in finding cycle leaders are not for free. In Section 6.2.1,
we examine the overheads of the three representative cycle leader algorithms Bit-
table (essentially the approach of Berman [1958]), Brenner (essentially the ap-
proach of Brenner [1973]), and GKKleaders (Algorithm 5) during in-place trans-
position. See Section 7 for a brief explanation of Bittable and Brenner.

We examine the conversion between pairs of formats in Section 6.2.2.

6.2.1 Cycle-Following Algorithms: Performance and Overhead. We measured
the time spent searching for cycle leaders while executing AdjacentSwap (Algo-
rithm 3) with nind = 1 and L = 64 on 50 problems with m × n chosen randomly
from (2 : 500). All threads are cooperatively performing a single in-place matrix
transposition (nind = 1). Choosing the problem size at random increases the chance
to detect problematic cases, since the numbers m or n and q = mn− 1 are critical
to the cycle structure.

Figure 5 summarizes the overhead, measured on Akka, calculated as a percentage
of the total execution time. The overhead for both Brenner and Bittable is
around 10%, whereas the overhead of GKKleaders is a fraction of one percent for
all but small matrices. Thus, the overhead of our a priori method is negligible and
substantially lower than the two search-based algorithms. Note that the overhead
of the search-based algorithms is around 10% because of the large chunk size (64
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Fig. 5. Overhead of finding cycle leaders on Akka for 50 instances of AdjacentSwap with nind = 1
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Fig. 6. Normalized execution time (nanoseconds per element) on Akka for 50 instances of Adja-
centSwap with nind = 1 and L = 128.

elements). For smaller chunk sizes the ratios would increase and vice versa.
Figures 6 and 7 illustrate the normalized execution time on the 50 randomly

chosen problems. This time, the block size is L = 128 and the same problems and
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Fig. 7. Normalized execution time (nanoseconds per element) on Sarek for 50 instances of Adja-
centSwap with nind = 1 and L = 128.

tests are run on both Akka and Sarek. For comparison with the practical peak,
the values of tcopy and tscale are included in the graphs. Note that the normalized
execution time is often below the tcopy benchmark result. In those cases, in-place
conversion is faster than out-of-place conversion.

6.2.2 Data Format Conversion: Performance. The time required to perform a
data format conversion depends on many parameters such as matrix size, block
size, formats involved, etc. We selected a matrix with size m = n = 9984 and
partitioned it into blocks of size mb = nb = 64. Thus, the blocked matrix is M ×N
with M = N = 156. Since the block size divides the matrix size, there is no need
for packing and unpacking. Conversion proceeds along the edges of the graph in
Figure 1 and hence some conversions involve several stages. In these experiments,
we have not used fused conversions between CCRB and RRRB or CRRB and
RCRB. Thus, conversion between CM and RM is essentially a four-stage process.
The transpositions that arise during the conversions are 156× 64 or 64× 156 with
L = 64; 156× 156 with L = 4096; or 64× 64 with L = 1.

We have applied GKKleaders to all resulting in-place transpositions, includ-
ing those that are square, except for L = 1 when we perform the element-wise
transposition out-of-place in cache.

The normalized execution times (nanoseconds per element) observed on Akka are
as follows.
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From \ To CM CCRB CRRB RCRB RRRB RM

CM 2.2 4.8 4.1 6.6 8.9
CCRB 2.3 2.5 1.8 4.4 6.7
CRRB 4.8 2.6 4.4 1.9 4.1
RCRB 4.1 1.8 4.4 2.6 4.8
RRRB 6.7 4.4 1.9 2.6 2.3

RM 8.9 6.6 4.1 4.8 2.3

The average (normalized) time per stage is shown below. Recall from Table I that
tcopy = 3.02 and tscale = 1.62 on Akka.

From \ To CM CCRB CRRB RCRB RRRB RM
CM 2.2 2.4 2.1 2.2 2.2

CCRB 2.3 2.5 1.8 2.2 2.2
CRRB 2.4 2.6 2.2 1.9 2.1
RCRB 2.1 1.8 2.2 2.6 2.4
RRRB 2.2 2.2 1.9 2.6 2.3

RM 2.2 2.2 2.1 2.4 2.3

The results show that the performance is good and without anomalies.
On Sarek, the corresponding results for pairwise conversion are listed below.

From \ To CM CCRB CRRB RCRB RRRB RM
CM 5.8 11.3 10.9 16.3 22.2

CCRB 5.8 5.5 5.0 10.5 16.3
CRRB 11.3 5.5 10.5 5.0 10.9
RCRB 10.9 5.0 10.5 5.5 11.3
RRRB 16.3 10.5 5.0 5.5 5.8

RM 22.2 16.3 10.9 11.3 5.8

Similarly, the average (normalized) time per stage shows good performance for all
pairs. Recall that tcopy = 6.52 and tscale = 4.54 on Sarek.

From \ To CM CCRB CRRB RCRB RRRB RM
CM 5.8 5.7 5.5 5.4 5.5

CCRB 5.8 5.5 5.0 5.2 5.4
CRRB 5.7 5.5 5.2 5.0 5.5
RCRB 5.5 5.0 5.2 5.5 5.7
RRRB 5.4 5.2 5.0 5.5 5.8

RM 5.5 5.4 5.5 5.7 5.8

7. RELATED WORK ON IN-PLACE TRANSPOSITION

There is a vast literature on in-place matrix transposition and the more general
topic of in-place permutation. There are also many published semi-in-place and
out-of-place algorithms. Here, we only mention the references which have had the
most influence on our work.

By using a bit-table one can tag which cycles of the transposition permutation
that have been shifted. A new cycle is easily determined by finding an unmarked
element in the bit-table. This is essentially the method proposed by Berman [1958].
It requires O(mn) extra bits of storage unless the bit-table is embedded in the data.
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One can go one step further and remove the bit-table completely. Thus, one
needs a method to distinguish between a new cycle and a previous cycle, which was
the original reason for the bit-table. By designating the smallest element in a cycle
as the leader of that cycle, it is possible to determine if a candidate is a leader or not
by traversing its cycle. If a smaller element is found, then the candidate is rejected
and otherwise it is accepted. This algorithm is originally due to J. C. Gower. It
was presented by Windley [1959] and later improved and implemented by Brebner
and Laflin [1970]. One of the improvements proposed by Brebner and Laflin [1970]
is to exploit dual cycles, i.e., if s is a cycle leader, then q−s is a cycle leader for the
dual cycle. A cycle and its dual sometimes coincide. However, this can be detected
and handled efficiently if a cycle and its dual are shifted simultaneously [Brebner
and Laflin 1970; Brenner 1973; Cate and Twigg 1977].

The computational complexity of Gower’s algorithm when applied to general
permutations is O(q2) in the worst case. If both the permutation and its inverse
are known, then searching for a smaller element in both directions simultaneously
reduces this upper bound to O(q log q) [Knuth 1971; 1998; Fich et al. 1995; Gus-
tavson and Swirszcz 2007]. We are not aware of any other complexity results related
to the transposition permutation.

Windley [1959] described, apart from Gower’s algorithm, also an algorithm of his
own. It is in-place but not based on cycle leaders. Windley’s algorithm was later
implemented by Boothroyd [1967].

Pall and Seiden [1960] analyze the transposition permutation using Abelian group
theory and they give a pen-and-paper algorithm for a priori determination of cycle
leaders and lengths. An important observation they make is that the cycle leader
problem naturally partitions into one subproblem for each divisor of q = mn− 1.

Brenner [1973] uses the result of Pall and Seiden [1960] to produce an effective
method which reduces the number of rejected candidates of Gower-type algorithms.

Gustavson and Swirszcz [2007] improved on Brenner’s algorithm in several ways.
They search for smaller elements in both directions simultaneously, which makes
their algorithm O(q log q) in the worst case. They also point out that computing kn
mod q in 32-bit arithmetic leads to a possible catastrophic overflow. They go on to
prove that the equivalent 32-bit expression kn − q

⌊
k
m

⌋
is correct in wrap-around

arithmetic, even though both multiplications might overflow.
Dow [1995] presents algorithms and techniques suitable for vector computers and

machines wtih caches. He uses cutting and padding to reduce modestly rectangular
transposition problems to square in-place transposition problems. He also gives a
few multi-stage transposition algorithms, similar to the ones presented earlier by
Alltop [1975].

For more information on the large topic of multi-stage matrix transposition for
out-of-core or cache-based systems, see for instance Huang et al. [1993], Johnson
[1995], Gustavson [2008], and Karlsson [2009].

8. CONCLUSIONS

In-place storage format conversion allows software libraries that include matrix
computations to use separate internal and external data layouts even when the
matrix can not be copied.
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Conversion between standard and blocked storage formats can be built entirely
upon in-place matrix transposition in a parallel and cache-efficient way. General
matrix dimensions are best handled by partitioning the matrix into four submatrices
so that each submatrix has a homogeneous block size. The submatrices can then
be stored separately and independently in any storage format.

A priori determination of cycle leaders is necessary for effective load balancing
in a parallel environment. Our new GKKleaders algorithm has a very small
overhead when applied to storage format conversion and is superior to previously
known cycle-following algorithms.

Computational experiments suggest that in-place conversion is fast in general
and that a one-stage in-place conversion is sometimes even faster than out-of-place
conversion.

APPENDIX

A. SUBALGORITHMS OF GKKLEADERS

This appendix discusses implementation issues related to three of the key subalgo-
rithms in GKKleaders (Algorithm 5).

A.1 Prime Factorization

GKKleaders and its subalgorithms make use of the prime factorization of q as well
as of p− 1 for all primes p in the factorization of q. To find the prime factorization
of φ(pe) = pe−1(p − 1) we use the factorization of p − 1 and append pe−1. Since
q is relatively small, e.g., less than 231 − 1, we may use a trial division algorithm
in conjunction with a precomputed table containing all primes less than

√
231 − 1.

This is practical since the table has only 4792 entries. Even if q is a large prime,
no more than this number of trials is required before the trial division algorithm
detects that q is indeed a prime.

Storing a table of primes becomes impractical at some point. With a chunk size
of L = 64, the matrix must have at least 64 · 231 = 237 entries before q exceeds 231.
Since this is equivalent to one terabyte of double precision matrix data, a large q
rarely occurs.

A.2 Multiplicative Order

The multiplicative order of n modulo pe is the smallest integer ` such that n` ≡ 1
(mod pe). Testing whether a given integer x is a multiple of ` is cheap. Simply
compute c = nx mod pe and if c = 1 then ` | x. Once the prime factorization
of φ(pe) is known, Algorithm 6 computes ` cheaply, by taking out one factor at
a time from x = φ(pe). Since Algorithm 6 is repeatedly computing powers of n
modulo pe, the fast exponentiation should be arranged so that a table of n2i

for
i = 0, 1, . . . , blog2 ec is precomputed and reused.

A.3 Primitive Root

Finding a primitive root g of an odd prime p and all powers of p is one of the
more computationally intensive parts of GKKleaders. The algorithm that we
use has much in common with Algorithm 6 in the sense that it tests whether the
multiplicative order of a candidate primitive root is φ(p) = p − 1. Since we are
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Algorithm 6 MultiplicativeOrder(n, p, e)
Input: Positive integer n, a prime p, and a positive exponent e.
Purpose: Computes the multiplicative order ` of n modulo pe.
1: Set x← φ(pe)

2: for each prime r in the decomposition of φ(pe) do
3: Compute c← nx/r mod pe using fast exponentiation
4: while c = 1 and r | x do
5: x← x/r

6: Compute c← nx/r mod pe using fast exponentiation
7: end while
8: end for
9: Exit with `← x

satisfied with any primitive root, we may as well calculate the least primitive root
which is typically very small. A small primitive root also leads to faster modular
multiplication via conditional subtraction.

A primitive root g of p is a primitive root for all powers of p unless gp−1 ≡ 1
(mod p2), in which case g+p is such a primitive root. It is an extremely rare event
that the least primitive root of p fails the test. The basic algorithm is given in
Algorithm 7. There are several ways in which the basic algorithm can be improved.

Algorithm 7 PrimitiveRoot(p, e)
Input: An odd prime p and a positive exponent e.
Purpose: Computes a primitive root g of pf for f = 1, 2, . . . , e.
1: for g = 2, 3, . . . do
2: for each prime r in the decomposition of φ(p) do
3: Compute c← gφ(p)/r mod p using fast exponentiation
4: if c = 1 then
5: Reject g and continue with the next candidate
6: end if
7: end for
8: if gφ(p) ≡ 1 (mod p2) then
9: g ← g + p

10: end if
11: Exit with g as a primitive root
12: end for

For instance, there is no need to test a candidate g which is a power of some
other integer since such a number can not be a primitive root. Furthermore, some
primitive roots occur much more frequently than others, so trying the candidates
in ascending order is probably not optimal.

B. PROOFS

B.1 Proof of Theorem 3.1

Proof. We first verify that S has the correct size by observing that

`|S| = `

t∏
i=h

diLi =
t∏

i=h

Ni = φ(q).

Dividing both sides by ` shows that |S| = φ(q)/`, as required of a leader set.
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The idea behind the rest of the proof is to show that for each leader a =
(ah, . . . , at) ∈ S, no other element b = (bh, . . . , bt) in the cycle of a is in S. Some
index components of a and b will then satisfy ai 6= bi. Pick the smallest such i.
Since b is in the cycle of a we get aj +njx ≡ bj (mod Nj) for all j. Exploiting that
aj = bj for j < i leads to

x ≡ 0 (mod Kh),
...
x ≡ 0 (mod Ki−1),

ai + nix ≡ bi (mod Ni).

(8)

Congruences h through i− 1 are solved simultaneously by

x = lcm(Kh,Kh+1, . . . ,Ki−1)x̃, x̃ ∈ Z.

Substitute x into the i-th congruence above and get

ai + niFix̃ ≡ bi (mod Ni)

where Fi = lcm(Kh,Kh+1, . . . ,Ki−1). This last congruence is solvable for x̃ if and
only if

gcd(niFi, Ni) | (bi − ai).

Let ñi = ni/di. Then

gcd(niFi, Ni) = di · gcd(ñiFi,Ki) = di · gcd(Fi,Ki) = diLi.

The first equality comes from factoring out di. The second equality follows from ñi

and Ki being coprime and the GCD property gcd(ac, b) = gcd(a, b) if gcd(c, b) = 1.
The last equality is applying the definition of Li. So, we get

diLi | (bi − ai).

Since bi 6= ai and ai ∈ {0, 1, . . . , diLi − 1}, we have bi 6∈ {0, 1, . . . , diLi − 1}.
Therefore, (bh, bh+1, . . . , bt) 6∈ S and so S is a leader set.

B.2 Proof of Lemma 3.3

Proof. We give a proof only for n̂1 = 1+4k since the proof for n̂1 = 2e1−(1+4k)
is similar. Let y = 2xỹ where ỹ is positive and odd. Thus, d1 = gcd(y,N1) = 2x

since N1 is a power of two. We proceed by showing that 2x | k and 2x+1 - k. Write

n = 1 + 4k = 5n1 + 2e1s = (1 + 4)n1 + 2e1s =
n1∑
i=0

(
y

i

)
22i + 2e1s

where s is some integer. Solve for k to obtain

k = y +
n1∑
i=2

y!
i!(y − i)!

22i−2 + 2e1−2s. (9)

Note that i! does not have more than i − 1 twos in its prime factorization. Thus,
after cancelling the twos in 22i−2 with the twos in i!, we are left with (at least) 2i−1.
Therefore, each term in the sum is divisible by 2x+1. Note that 2e1−2 is divisible
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by 2x+1 since y < 2e1−2. It follows that k is divisible by 2x. Furthermore, 2x+1 - k
since all but one term in the right hand side of (9) is divisible by 2x+1.

B.3 Proof of Lemma 3.4

Proof. Suppose pi is odd. Factor the index ni into ni = px
i s where s is an

integer and pi - s. It follows that

Ki(fi) =
Ni(fi)
di(fi)

=
Ni(fi)

gcd(ni, Ni(fi))
=

pi − 1
gcd(s, pi − 1)

p
max{0,fi−x−1}
i .

The first and the second equalities use the definitions of Ki and di in (2). The
third equality uses the definition of Ni in Section 3.1.2. If Ki(fi +1) < pi, then the
exponent of pi is 0 both for Ki(fi) and Ki(fi + 1) and hence Ki(fi) = Ki(fi + 1),
as claimed. If Ki(fi + 1) ≥ pi, then the exponent of pi for Ki(fi) is one less than
for Ki(fi + 1) and hence Ki(fi) = Ki(fi + 1)/pi, which concludes the proof.
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