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Abstract

Using rapid prototyping, we manufacture an acoustic horn designed by
gradient-based shape optimization to have virtually perfect impedance-
matching properties. The horn is 161.5 mm long, has a mouth diameter of
300 mm, and a throat diameter intended for a 1.5 inch driver. We optimize
the horn with the aim of having perfect radiation efficiency at 31 frequencies
in the range 1.6–9.05 kHz, while satisfying a convexity constraint on the
flare. The acoustical properties, as needed by the optimization algorithm,
are calculated through numerical solutions with the finite-element method
of the axisymmetric Helmholtz equation. The prototype has been analyzed
in an anechoic chamber. In the design frequency band, the acoustic input
impedance agrees reasonably well with the ideal characteristic impedance
of a waveguide with the same cross sectional area as the horn throat.

1 Introduction

The horn loudspeaker was the first loudspeaker that was successfully used for
public address (PA) systems. The horn concept, or variations/extensions of it,
such as the assembly into line arrays, remains a popular solution also today, but
its acoustical properties are not always preferred due to its sound quality that is
sometimes perceived as “honky” or “funnel like”. Some of the disadvantages of
horn loudspeakers may, however, be attributed to suboptimal design and are not
necessarily due to inherent properties of the acoustical horn. It should be borne
in mind that different acoustical horns serve diametrically opposed purposes.
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The horn found in brass wind instruments is a part of a resonator (which actually
minimizes the radiation capacity precisely at the resonating frequencies), whereas
the loudspeaker horn has the opposite purpose: to radiate sound as efficiently
as possible over as wide a frequency band as possible. For a loudspeaker it is
desirable to reduce resonances, since those may affect the performance of the
loudspeaker adversely. Resonances assign various formants to the horn, which
in effect is perceived as a coloring of the signal. By the use of linear filters, such
effects can be counteracted, but each PA-system has to be tuned individually.
With a matched horn, the internal sound pressure level (SPL) is kept down for
a given external SPL, and this may possibly be advantageous to the non-linear
distortion properties of the loudspeaker. The non-linear effects occur due to
the finite amplitude of the acoustic waves, as well as the non-linearity of the
suspension of the diaphragm. Another significant source of non-linear distortion
is when the volume change of the compression chamber as the diaphragm moves
is not negligible compared to the equilibrium volume.

The unsuccessful design of some horn loudspeakers can be attributed to the
fact that the driver and the horn have not been matched to each other. A careful
design of a horn loudspeaker should ideally not treat the driver and the horn sep-
arately; it would be desirable to optimize simultaneously the internal geometry
of the driver and the horn shape. However, if higher-mode excitation is small in
the junction between driver and horn, the design process becomes modular in
the sense that once a horn with a real and constant impedance spectrum has
been computed, a matching phaser plug can be designed in a subsequent step.
Or, conversely, given an existing driver, an optimal acoustic loading of the driver
can be determined in a first step. The spectrum corresponding to this optimal
loding could then be used as a target input impedance for the horn in a second
shape optimization run. The present report should be regarded as a first step in
such a program. It constitutes a concept study in that a very specific issue—the
maximization of transmission efficiency—is addressed. A natural, and in a real
loudspeaker design case necessary, extension would be to optimize also with
respect to the loudspeakers directivity properties.

It is hoped that the results of the present paper be valuable to related applica-
tions, either as a source of inspiration or offering more immediately applicable
results. For instance, a horn optimized for maximum transmission efficiency
simulates a perfect absorber. Such a device is a central component in measure-
ment systems for bore reconstruction of musical instruments based on pulse
reflectometry [5]. Such dampers are presently implemented by very long tubes
(50–100 m), relying on the internal damping in the tube. For a system of small
internal diameter, this is not a problem since the tube is readily coiled and damp-
ing is high (0.11 dB/m at 200 Hz for a 7.8 mm tube), but a wider tube is both
much harder to handle and provides significantly lower damping (doubling the
diameter approximately halves the damping), which further increases the re-
quired length. The impedance matching cone in the aforementioned system is a
contracting horn connecting the large-diameter loudspeaker, responsible for the
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generation of a pulse, to a tube of the (small) input diameter of the object to be
investigated. Such an impedance transformer is in principle akin to the matched
loudspeaker horn, and could be designed using the tools employed in the present
work.

2 The design problem

The present work utilizes previously developed methods [1, 7], where numerical
optimization algorithms have been applied to the design of loudspeaker horn.
The aim is to find a horn profile within a large search space of admissible designs
that optimizes the performance of the horn with respect to its transmission
properties, as measured in the horn throat. Only a limited set of constraints,
mainly related to manufacturing issues, are imposed; instead of working with
a relatively small number of variables in a parameterization (for instance the
control points of a spline curve), design variations that act in principle on the
grid resolution level are allowed. In this way, it is possible to find shapes with
corners or other features that may be difficult to foresee when choosing more
restrictive parameterizations.

The angular variation of the exterior sound field is of course of great interest
for a PA system. One of the advantages of horn loudspeakers is their compar-
atively homogeneous field, without pronounced fringes or split central lobes,
etc. Previous experience [7] of directivity optimization through flare adjustments
of axisymmetric horns indicates that the far field directivity can be controlled
only at the expense of a serious penalty on the transmission efficiency. It is thus
likely that a larger design space, such as real 3D shapes, and/or additional diffrac-
tive devices are needed to obtain both high transmission efficiency and good
control of the directivity properties. A first step in that direction has recently
been attempted by considering design optimization of an horn/acoustic lens
combination in a planar 2D setting [8].

The underlying physical model is the wave equation in two dimensions. By
choosing an axisymmetric geometry, the model is effectively three-dimensional
and takes higher acoustical radial (but not circumferential) modes into considera-
tion. The equations are solved using a finite element method on a computational
mesh that conforms to the horn contour. This means that at each design cycle,
the computational mesh needs to be modified, and the finite element solution is
recomputed for a set of frequencies suitable distributed over a design frequency
band. Due to the computationally intensive model, it is necessary to use an
optimization algorithm that makes efficient use of the computed solution and
its properties. The large sensitivity of acoustic problems to geometrical shapes
makes gradient-based optimization schemes an excellent choice. By the use of
the so-called adjoint technique [4], it is possible to compute the gradient of the
objective function at a cost that is roughly similar to that of a forward solution,
regardless of the number of design parameters. The success of the method de-
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Figure 1: The computational domain and the representation of the geometry of
the horn.

pends on several factors, such as the ability to smoothly distribute boundary
deformations to the interior points of the computational mesh while keeping the
mesh topology fixed [1, 7].

2.1 Mathematical model

The exterior domain of propagation is truncated to a bounded domain Ω, as
illustrated in Fig. 1, to facilitate the numerical treatment. To model the exterior
propagation of a wave with wave number k, we solve the following boundary
value problem for the Helmholtz equation in cylindrical symmetry:

∇· (r∇p)+k2r p = 0 inΩ, (1a)(
ik + 1

RΩ

)
p + ∂p

∂n
= 0 on Γout, (1b)

ikp + ∂p

∂n
= 2ik A on Γin, (1c)

∂p

∂n
= 0 on Γn ∪Γsym, (1d)

where p is the complex pressure amplitude field. (We assume an eiωt temporal
behavior). Here n denotes the local normal at the boundary, r is the distance to
symmetry axis, and ∇ and ∇· are the two-dimensional gradient and divergence
operators, respectively. Boundary condition (1c) specifies a right-going wave
(towards the domain interior) of amplitude A at boundary Γin and absorbs all
left-going waves (leaving the domain). Sound-hard and symmetry boundaries are
described with boundary condition (1d), and Γout is an artificial boundary, where
we apply the lowest order Engquist–Majda absorbing boundary conditions [3]
to avoid reflections of out-going waves and thus to approximate the Sommerfelt
radiation condition for the exterior wave propagation. Bängtsson et al. [1] discuss
more about the boundary conditions.
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The most notable idealization of the model is the omission of losses. In free
air, losses are negligible for propagation over distances characteristic to e.g. a
concert hall, but near boundaries viscous and thermal effects can be significant,
especially for narrow waveguides. For the short and rather wide ducts at hand in
the case of the loudspeaker horn, losses are of subordinate importance due to
the relatively small area to volume ratio. This assumption has also been verified
by calculating a rough check of the influence of losses using a one-dimensional
transmission line model [6].

2.2 Optimization

Let η denote a set of design variables that specifies the actual shape of the horn
flare. In this work we choose as design variables η the local second derivative
of the horn flare function (the horn flare function is the distance from the horn
boundary to a conical reference horn). This choice of design variables has the
advantage of promoting smooth shapes without limiting the design flexibility
and also makes it easy to impose convex shapes by constraining η to be of one
sign [1].

The solution to Eq. (1) depends on the horn design through the shape of
Ω, which in turn depends on the value of design variable η. To measure the
transmission efficiency of a particular horn, we observe the reflection coefficient
at boundary Γin. The reflection coefficient for a horn associated with design
variable η and for a wave at frequency f can be defined as

R( f ;η) = B

A
, (2)

where A and B are the complex amplitudes at Γin of the imposed (right-going)
and reflected (left-going) waves, respectively. The horn design problem under
consideration can then be formulated as the optimization problem

min
η

[ ∑
f ∈F

|R( f ;η)|2 + ε

2

∫
Γref

d

η2 dΓ

]
,

s.t. η≥ 0

(3)

where the second term is a (Tikhonov) regularization term and F is the set of
frequencies for we minimize reflections. The inclusion of a regularization term
makes it possible, if necessary, to balance the requirement of low reflections
with the need for smooth shapes by adjustments of parameter ε ≥ 0. We use
lsqnonlin in large-scale mode from Matlab’s optimization tool box for optimiza-
tion, where the gradient are supplied by the adjoint method. Udawalpola and
Berggren [7] describe the optimization procedure in detail.
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3 Experimental study

The purpose of the experimental study is to assess the validity of the design
process, and to gain insight into its limitations in terms of modeling errors and
the influence of the manufacturing tolerance.

3.1 The prototype

With the advent of different rapid manufacturing techniques, it has become
possible to fabricate advanced shapes at low cost. For this project, an epoxy
based stereo lithography technique (SLA) was used. Each layer in the printing
process is 0.1 mm thick, effectively producing a staircase approximation of the
intended shape. After sanding down the stairs, a final tolerance of around 0.2 mm
is achieved.

The intention was to produce a prototype with roughly the same dimensions
as existing 1.5” driver horns. However, in order to comply with the dimensions of
available tubing used for the measurement system, the horn was scaled down by
a factor of 0.93. The solution to the Helmholtz equation scales with the character-
istic size (wave number to dimension) of the horn, but effects due to losses do not.
As size decreases, the fraction of the acoustic field within the acoustic boundary
layer becomes relatively larger. However, the scaling factor close to unit together
with the already weak influence of damping, vouches for the validity of results
also after the scaling.

It is usually desirable that the frequency band [ fmin, fmax] within which the
horn is effective be as wide as possible. The choice of fmin and fmax, is however to
some extent subject to interactive adjustment. With the maximum dimensions of
the horn given as a first design constraint, the limit for the functioning is quickly
found from a set of initial design tests. As a rule of thumb, the horn is ineffective
as an impedance matching for wavelengths above the length of the horn. By
experimentation, it was found that fmin = 1.6 kHz was a reasonable choice as
a lower limit to obtain favorable transmission properties. Moreover, fmax was
set at 9.05 kHz, which was mainly a limit imposed by numerical considerations.
In purely acoustical terms, the value of fmax is usually not so critical, however,
since the horn radiates efficiently quite regardless of its shape above the horn
cutoff frequency. The frequency band 1.6–9.05 kHz over which the reflection is
minimized is sampled at the 31 exponentially spaced frequencies 1600 ·2m/12

Hz, where m = 0,1, . . . ,301. Finite-element solutions of Eq. (1) were carried out
using continuous, piecewise linear elements on a triangulation of domainΩwith
a total of 49,701 degrees of freedom during the optimization step. For the post-
optimization analysis, where the reflection spectrum associated with a computed
design is evaluated more carefully, piecewise quadratic elements with 190,489
degrees of freedom are used. We use 231 design variables with a small amount of
regularization, ε= 10−5, in the design study.

1The spacing corresponds to the notes of the equally-tempered scale.
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Figure 2: Drawing of the optimized horn.

A drawing of the computed optimal design can be seen in Fig. 2. The reflection
spectrum, shown in Fig. 6, is flat over the design frequency range with a value that
does not exceed 2%, except possibly at 1.6 kHz, where the curve slopes rapidly
downwards. The finished horn prototype is shown in Fig. 3.

In a real horn, the driver is typically placed directly at the throat of the horn.
The computations do, of course, consider higher modes, but the optimization
is only made with regard to the planar mode. Inclusion of higher order mode
information in the objective function is straightforward, if need be, but the low
flare rate at the throat of the design found makes even the first radial mode of
subordinate importance. For a driver–horn combination, it is likely that higher
order modes near the driver are mainly a consequence of the membrane exhibit-
ing a complex movement for high frequencies. This has been noted for real horns
and has as a positive effect an increase in efficiency for high frequencies. In order
to reduce the influence of higher modes excited by the flaring contour, the horn
was attached to a 206.5 mm long cylindrical duct. In this way, evanescent modes
generated by the horn are negligible at the measurement point. The cut-off fre-
quency of the first radial mode is 11.7 kHz at room temperature. At 10 kHz, the
same mode has decreased by a factor of 2.5 ·10−10 over a distance of 200 mm,
so it is safe to assume that influences of higher order modes stemming from the
horn are of negligible importance. The length of the connecting duct was chosen
in order to accommodate at least one wavelength at the design frequency low
limit. This choice was made in order to prepare for an alternative measurement
technique, whereby the standing wave ratio (SWR) is measured by moving a
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probe microphone along the connecting duct.
The effect of geometrical deviations due to manufacturing deficiencies de-

pends strongly on the position of the defect. If design constraints are not active,
small deviations from the optimal profile can be expected to be of negligible
effect, since perturbations of the objective function vanish to first order by def-
inition of an unconstrained minimum. If constraints are active, the first order
sensitivity to perturbations is in general not zero, though. Tests with different per-
turbation curves (constant positive or negative deviation of 0.2 mm, sinusoidal
along the horn axis and with 0.2 mm amplitude) have shown that, at least for the
tested perturbations, the effect on the impedance spectrum is less than 2 % for
frequencies up to 6.5 kHz, but can be up to 8% near 8 kHz.

3.2 Measurement system

The reflection spectrum of an acoustic component can be measured in a variety of
ways. In this project, the reflection spectrum was computed from the measured
acoustic input impedance of the horn. The input impedance was measured
using an impedance measuring head described by Dalmont et al. [2]. The system
consists of a piezoelectric membrane with a cavity on one side, and an orifice on
the other side. The membrane generates an acoustic signal, and by measuring
the sound pressure via two microphones placed in the cavity and at the orifice,
respectively, it is possible to calculate the input impedance of the object under
investigation. The system has the advantage of ease of handling, and can be
attached to objects with an entry diameter varying over a wide range of values.
The system is also more easily characterized than systems based on an acoustic
capillary. Once the input impedance Z ( f ) of the horn is known, the complex
reflection coefficient is given by the relation

R( f ) = Z ( f )−Z0

Z ( f )+Z0
.

In order to verify the performance of the measurement setup, an initial
impedance measurement was performed on the cylindrical duct only. The duct
is terminated by a small flange, and will show a large reflection for frequencies in
the range of interest. Fig. 4 shows the results, where the measurements are com-
pared with reflection coefficients computed using our finite-element method.
Comparing the absolute value of the impedances, the curves agree on average
within 1% in the band 1.0–6.0 kHz.

The measurements on the horn prototype were carried out in an anechoic
chamber in order to minimize the influence of reflected waves and external noise.
For systems with large reflections and correspondingly high internal sound levels
such as in musical instruments, this is not such an important issue. A loudspeaker
horn optimized for transmission has however the lowest possible internal sound
pressure level for a given excitation, and is therefore potentially susceptible to
disturbances.
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Figure 3: The horn prototype and the connecting duct.
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Figure 4: Input impedance for a cylindrical tube with a small flange.
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Figure 5: The horn prototype attached to the impedance head. Seen in the
background are the foam wedges that cover the floor, walls, and the ceiling of the
anechoic chamber.
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Figure 6: Measured and computed reflection spectra for the optimized horn.
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mized horn: modulus.
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Figure 9: The electrical input impedance measured at the driver attached to the
optimized horn (—), a horn in production (D.A.S. BP64)(- -), and to a damped
cylindrical pipe (· · · ).
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3.3 Results

The measurement system parameters were selected as to yield maximum accu-
racy for frequencies above 1 kHz. The main compromise is the selection of signal
strength, which varies with the frequency. Fig. 7–8 shows a comparison between
the computed input impedance spectrum of the prototype and the measured
one. The curves have been normalized by the characteristic impedance ρc/S of a
waveguide of the same cross sectional area S as the horn throat. Here, ρ is the
density of air and c the speed of sound. A perfect match is achieved when Zin = 1.
We see that the measured impedance is close to unity, although not perfectly so.
According to the documentation of the instrument, around 2% can be attributed
to uncertainties in the measurement system. We see that the measurements
indicate a somewhat larger error than what might be expected considering the
documented accuracy of the measurement system, and the errors due to the
geometrical deviations mentioned in Sec. 3.1. The reason for this difference is
note entirely clear, but a possible source of errors is the influence of higher modes
around the orifice of the impedance measurement head. The diameter ratio
between the horn throat and the orifice is rather large (3.6), and some localized
radial motion is bound to take place. It is not clear to what extent this has been
accounted for in the impedance measurement software. In terms of the reflec-
tion coefficient, the corresponding curves are shown in Fig. 6. The increasing
deviation between measured and ideal data slightly above 6 kHz is in conformity
with the observation that the system is locally more sensitive to manufacturing
errors from 6.5 kHz. The trend is, however, masked just after 7 kHz where there is
a resonance in the piezoelectric membrane of the impedance head.

In a loudspeaker configuration consisting of the horn and a driver, the acous-
tical input impedance of the horn influences the electrical impedance of the
driver. Fig. 9 shows the input impedance of a D.A.S. M75-N driver attached to
the transmission optimized horn and to the in-production horn D.A.S. BP64.
It is seen that the impedance curves correspond over large parts of the design
frequency band. In the lower part of the design frequency band, the electrical
impedance is lower for the optimized horn, but this comes at the expense of the
properties at frequencies just below fmin. The peak at 1 kHz corresponds with the
second impedance peak of the optimized horn. The electrical impedance was
also measured with the driver attached to a damped cylindrical pipe. Ideally, this
pipe mimics the behavior of an infinite pipe with the constant impedance ρc/S.
We see that the impedance curve for the optimized horn is in close agreement
with that of the damped pipe from around 1.25 kHz.

No data for the acoustic impedance of the BP64 horn were available, and the
dependency of the electrical impedance on the acoustical loading of the driver
is somewhat complicated, so we cannot presently make further quantitative
statements.
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4 Discussion and future outlooks

By automatic design tools, such as the one employed here, it is possible to find
shapes that would otherwise be very difficult to find. Heuristic arguments are
helpful in understanding acoustical phenomena in qualitative terms, but are
of limited value for such highly sensitive problems as acoustical horn design.
Although rapid manufacturing tools are becoming increasingly available, each
produced unit is associated to a cost that gets considerable if multiple prototypes
have to be made, not to mention the associated work. If a finely tuned horn
is desired, automatic design is a prerequisite. The computational time for the
presented design problem is in the order of a few hours on a personal computer,
which makes the process tractable also for tailored design of specialized horns in
limited series.

The main limitation of the presented tools is the restriction to two dimen-
sions. Although not a source of errors under the chosen experimental conditions,
the careful design of a practical loudspeaker whose shape or near surrounding
deviates strongly from axisymmetry would probably need a three-dimensional
model. The computational effort, which is completely manageable in two di-
mensions, quickly becomes prohibitively demanding in the three-dimensional
case for a traditional finite element scheme. Current work employing different
numerical schemes addresses this issue with the intention to develop design
tools that useful for practical fully three-dimensional horn loudspeaker design.

Future work entails simultaneous optimization of the horn and the driver
interior, notably the part commonly known as the phasing plug, which is in effect
a part of the acoustical horn.
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