
3D Measurements of Buildings and Environment

for Harbor Simulators
Report UMINF 09.19

Niclas Börlin∗ Christina Igasto†

Department of Computing Science
Ume̊a University

October 15, 2009

Abstract

Oryx Simulations develops and manufactures real-time physics simu-
lators for training of harbor crane operator in several of the world’s major
harbors. Currently, the modelling process is labor-intensive and a faster
solution that can produce accurate, textured models of harbor scenes is
desired. The accuracy requirements vary across the scene, and in some
areas accuracy can be traded for speed. Due to the heavy equipment
involved, reliable error estimates are important throughout the scene.

This report surveys the scientific literature of 3D reconstruction algo-
rithms from aerial and terrestrial imagery and laser scanner data. Fur-
thermore, available software solutions are evaluated.

The conclusion is that the most useful data source is terrestrial im-
ages, optionally complemented by terrestrial laser scanning. Although
robust, automatic algorithms exist for several low-level subproblems, no
automatic high-level 3D modelling algorithm exists that satisfy all the
requirements. Instead, the most successful high-level methods are semi-
automatic, and their respective success depend on how well user input is
incorporated into an efficient workflow.

Furthermore, the conclusion is that existing software cannot handle
the full suite of varying requirements within the harbor reconstruction
problem. Instead we suggest that a 3D reconstruction toolbox is im-
plemented in a high-level language, Matlab. The toolbox should contain
state-of-the-art low-level algorithms that can be used as “building blocks”
in automatic or semi-automatic higher-level algorithms. All critical algo-
rithms must produce reliable error estimates.

The toolbox approach in Matlab will be able to simultaneously support
basic research of core algorithms, evaluation of problem-specific high-level
algorithms, and production of industry-grade solutions that can be ported
to other programming languages and environments.

∗niclas.borlin@cs.umu.se
†Maiden name: Christina Olsén
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1 Introduction

1.1 Background

Oryx simulations1 develops and manufactures real-time physics simulator for
e.g. harbor environments. Among its customers are the harbors in Gothen-
burg, Rotterdam, Kuala Lumpur, and Shanghai. The simulators are used for
education of harbor crane operators. Currently, the items within the simu-
lator environment are hand-modelled and therefore a large amount of objects
present in a harbor scene are not modelled. Furthermore, the surrounding is
only introduced in a limited fashion into the simulation, resulting in a synthetic
“look-and-feel”. Recently, customers have presented the desire to have more
realistically looking environment simulators. This would not only be more aes-
thetically pleasing but only be beneficial to training and smooth the transition
between the training and real-world environment.

1.2 Aim

The aim of this pilot study is twofold: 1) Survey existing algorithms and soft-
ware for creating textured 3D models of objects and the surrounding environ-
ment from images and other information sources. 2) Unless a software solution
is available for the harbor reconstruction problem, formulate an implementation
project with the necessary capabilities. Of the general requirements we mention
speed, flexibility, and error estimates: Since the crane operators are to operate
real heavy equipment after training, it is of paramount importance to have reli-
able error estimates of the measured values that comprise their virtual training
environment.

2 Harbor modelling requirements

A harbor scene has different objects with different capture requirements. Fur-
thermore, the requirements on the captured environment differ. In this context,
objects are generally considered man-made whereas the environment is not.

Objects may be classified into active objects, obstacles, and landmarks. Po-
tential attributes to reconstruct are shape (geometry), position, and texture.
The environment consists of work areas, the general area and the horizon. At-
tributes to reconstruct are the topography (shape and position), and texture.

2.1 Active objects

The objects with the highest requirements for geometry and texture are the ac-
tive objects. Active objects are objects that can be manipulated in the simulation
environment, e.g. cargo containers or pallets. However, their exact position do
not need to be recovered.

1http://www.oryx.se
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2.2 Work areas

The areas with the highest requirement for topography and texture are the work
areas where the active objects are to be manipulated. Examples are container
storage areas or loading-unloading areas for pallets.

2.3 The general area

The general area consist of everything except the work areas. Parts of the
general area may be used for transporting objects, but no manipulation of active
objects generally takes place in the general area.

The exact topography of the general area do not need to be known with
a high precision, and a high-quality texture is generally not need. However,
in some areas, e.g. road junctions, the road markings may have to be of high
quality.

Within the general area, obstacles and landmarks are placed.

2.4 Obstacles

Obstacles are objects that are not intended to be manipulated. However, they
should not be bumped into during e.g. a transportation. As such, they have
medium requirements on geometry and texture. Furthermore, their position
should be known with medium precision. Examples of obstacles include “con-
crete pigs” and light towers.

2.5 Landmarks

Landmarks are buildings that an operator can use for navigation. Most buildings
outside the work area are considered landmarks. The requirement for the exact
position, size and texture are comparably low. However, they must still look
“good enough” from the important viewpoints within the scene.

2.6 The horizon

The horizon consist of the part of the environment that is considered “far
enough” away not to have to be individually modeled. However, if the real
scene has an interesting horizon, e.g. a city skyline, the horizon may still be im-
portant for navigation and realism. The horizon is considered to have medium
requirement for the angular position and texture.

3 Other requirements

The harbor is a busy workplace, and site access for data capture may thus be
limited. Furthermore, the cost for data acquisition should not be too high.
Finally, the visualization quality is especially important from select viewpoint,
e.g. at the top of the work cranes and loading/unloading areas.
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4 Literature study

4.1 Background

The studied literature falls mainly within the research fields of Photogrammetry,
Computer Vision, and, to a lesser extent, Computer Graphics and Surveying.
See Appendix A for a list of sources and Appendix B for a list of grouped
references.

Photogrammetry2 has developed since the mid-1850:s, originally as a tech-
nique for creating accurate topographical maps (McGlone et al. 2004, Ch. 1).
Only recently, digital images have become standard input, and some 3D mea-
surements is still performed manual on analog aerial images. Photogrammetry
carries a strong statistical tradition, with error analysis and blunder detection
being an integral part of most algorithms.

Surveying (or Land surveying) has historically been used longer than pho-
togrammetry to construct maps. Surveying techniques include angle measure-
ments between distinct point by a theodolite. Modern surveying is typically by
tacheometry, where a laser theodolite can measure both angles and distances.
For optimal accuracy and identification, highly reflective synthetic targets can
be used. Often the theodolite is combined with a Global Positioning System
(GPS) receiver for geo-referencing (Grussenmeyer et al. 2008).

Computer Vision has developed from the desire to make computers “see”(Hartley
and Zisserman 2003, Foreword), i.e. to detect, measure, analyze, and understand
the 3D environment. Computer Vision has a solid foundation in mathematics,
especially in projective geometry and linear algebra. Many algorithms are ori-
ented towards full automation. The interest in 3D reconstruction from the
Computer Graphics area is based on the desire to capture and visualize real
scenes rather than synthetic ones. The main strength of the research field lies
in rendering and visualization.

4.2 3D reconstruction methods — overview

The 3D reconstruction methods presented in the literature differ in four major
aspects; sensor type, sensor platform, algorithmic approach, and error treat-
ment. The sensor type can be range-based (laser scanning, LIDAR3) or image-
based. Either acquisition mode can be terrestrial (ground-based) or aerial (air-
borne). The algorithmic approaches differ widely based on the input and output
requirements. Finally, the methods differ in their approach to errors, from a rig-
orous error analysis with presented precision values in object space coordinates,
e.g. m, to error analysis in image coordinates or no error analysis at all, i.e. “it
looks fine”.

2from photos—light, gramma—something drawn or written, and metron—to measure
3LIght Detection and Ranging, “laser radar”

6



4.3 Sensor type and platform

4.3.1 Laser scanner

Most laser scanners measure the time-of-flight between an emitted laser pulse
and its reflection. One (“line scanners”) or two (“image scanners”) rotating mir-
rors enable the laser to “scan” its surrounding. In principle, the recorded time
is used to calculate the coordinates of one 3D point. However, more advanced
scanners exist that record multiple echos per pulse, the reflected intensity, and
even color (Akca and Gruen 2007; Remondino et al. 2005; Rottensteiner et al.
2007). Laser scanners can either be terrestrial (TLS — Terrestrial Laser Scan-
ners) or aerial (LIDAR).

The basic algorithm for 3D reconstruction with a laser scanner is (see e.g. Re-
mondino (2006b, Ch. 1)):

1. Acquisition of a in a scanner-local coordinate system.

2. Co-registration of multiple point clouds into a common, global, coordinate
system.

3. Segmentation and structuring of the point cloud, surface generation.

4. Extraction of texture data.

4.3.2 Image-based techniques

Image-based techniques are today almost entirely based on digital still and video
cameras. Both types of cameras can either be single or mounted in stereo or in
multi-nocular4 configurations. Airborne or spaceborne cameras are custom-built
whereas many consumer digital cameras today have a high enough quality to be
used for 3D measurements (Fraser and Cronk 2009). Classical aerial imagery is
taken in regular patterns at high altitude (2000-5000 m) with nadir-mounted5

cameras. Some modern cameras are so called pushbroom cameras, consisting of
three to four lines angled forward, nadir, and backward (McGlone et al. 2004,
Ch. 8). Low-level aerial imagery can either be obtained by nadir-mounted or
oblique-looking cameras mounted on an Unmanned Aerial Vehicle (UAV) or out
the window of a low-flying aircraft.

In principle, all image-based techniques use the following algorithm to cal-
culate 3D points from the input images (see e.g. Remondino (2006b, Ch. 1)):

1. Image acquisition.

2. Detection and measurement of feature points, e.g. corners, in each image.

3. Matching of feature points between images, i.e. which 2D points corre-
spond to the same 3D point?

4camera configurations with more than two cameras
5looking straight down
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4. Calculation of the relative orientation between (pairs of) images, i.e. the
relative position and orientation of the camera stations at the instants
when the images were taken.

5. Triangulation, i.e. calculation of object point coordinates. This will gen-
erate a “cloud” of 3D points expressed in a local coordinate system.

6. Co-registration of multiple point clouds into a common, global, coordinate
system (optional).

7. Fine-tuning of calculated object points and camera coordinates (optional).

8. Point cloud densification, i.e. measurements of more points (optional).

9. Segmentation and structuring of the point cloud, surface generation.

10. Extraction of texture data.

In addition to the above steps, calibration of each camera is required to
obtain high-quality results. This can be performed separately or in conjunction
with the point cloud processing.

If two cameras are fixed to a stereo rig, the rig itself can be calibrated. This
corresponds to determining the relative orientation between the rig-mounted
cameras. If this process is performed prior to step 4 of the algorithm above,
the relative orientation problem reduces to calculating the relative orientation
between successive image pairs.

4.4 Algorithms for subproblems

4.4.1 Camera calibration

The purpose of camera calibration is to calculate parameters internal to the
camera. We distinguish between two different types of parameters; linear and
non-linear. The most important linear parameter is the (effective) focal length,
which is generally not the same value as the focal length written on the camera
or stored in the image. The effect of the non-linear parameters is commonly
called lens distortion, and has the effect that projections of straight lines are
not straight (Figure 1). Most mathematics of photogrammetry and computer
vision relies on that no lens distortion is present, or equivalently that the images
or the measured coordinates are corrected for lens distortion. Such a corrected
“camera” is said to be straight-line-preserving (see Figure 2). Lens distortion
can only be ignored in low precision application or with cameras with very long
focal lengths (>500mm).

Camera calibration is typically performed by taking multiple images of a
calibration object, see Figure 3. For optimal results, camera calibration should
be performed separate to the 3D reconstruction (Remondino and Fraser 2006).
If that is not possible, the internal camera parameters may be estimated together
with the object coordinates (“self-calibration” or “auto-calibration”) (Hartley
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Figure 1: Lines straight in object space, bent by lens distortion. Left: pin-
cushion distortion. Right: barrel distortion.

x

image plane
camera
center

C

X

Figure 2: In a straight-line-preserving camera, the object point X, the camera
center C, and the projected point x are collinear, i.e. on a straight line. The
distance between the image plane and the camera center is known as the (ef-
fective) focal length. In this figure, the image plane is presented in front of the
camera center instead.

Figure 3: Left: A image of a calibration object with artificial targets (black
circles). The targets have known three-dimensional coordinates. The code rings
around four of the targets are used for identification. Right: Artificial targets
attached to the outside of the Destiny lab attached to the International Space
Station. Image credit: NASA.
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Figure 4: Two corners detected by the Förstner operator (Förstner and Gülch
1987) in synthetic images. The ellipses describe the uncertainty of each corner.

et al. 1992; Duan et al. 2008) or during the fine-tuning stage (Fraser 1997), at
the cost of a reduced quality of the result.

In order to obtain useful 3D information, the camera calibration information
has to be added at some stage of the reconstruction. Some algorithms only
require the non-linear parameters to be known, i.e. that the cameras are straight-
line-preserving (Devernay and Faugeras 2001).

4.4.2 Feature point detection

A feature point is a point or an area6 of an image that is likely to be found
and recognized in other images. Typical feature points are corners and circu-
lar features, although many textured areas will also be good feature points.
In industrial applications, artificial targets are often added to a scene. These
targets provide good feature points and are sometimes coded to aid automatic
identification (Fraser and Cronk 2009), see Figure 3.

Most feature point detectors are automatic — they take an image as input
and generates a list of 2D coordinates where feature points have been detected.
Some detectors furthermore estimate the uncertainty of each 2D coordinate, see
Figure 4. In addition, each feature point may be accompanied by a descriptor
that describe the surrounding of the detected point, such as the size of the
feature and the dominant direction within the region containing the feature, see
Figure 5. The purpose of the descriptors is to enable matching of feature points
detected in different images, i.e. to enable identification of the same 3D point
viewed e.g. from different distances and/or directions.

In a comparison by Remondino (2006a), the methods by Förstner and Gülch
(1987) and Heitger et al. (1992) had the highest precision of the detected 2D
coordinates. Other common feature point detectors include the Harris detec-
tor (Harris and Stephens 1988), SUSAN (Smith and Brady 1997), the KLT
tracker (Tomasi and Kanade 1991), and SIFT (Lowe 2004). The KLT tracker
is especially common in videogrammetry.

6For simplicity, this report does not distinguish between point detectors and region detec-
tors, found in some of the literature.
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Figure 5: Top row: Feature points found with the SIFT detector (Lowe 2004)
in two images of the same building. One match is highlighted. Bottom row:
Zoom of the matched points in the images, indicating the size and dominant
orientation of the feature, a sign on the wall.

4.4.3 Feature point matching

In order to extract 3D information from 2D images, a correspondence between
points in different images must be established. This process is called matching.
Feature points can be matched based on the image content around them or
from the descriptors calculated by the feature point detector. Furthermore,
if the relative orientation between two images is known, the matching can be
restricted to epipolar lines (see Figure 6 (left)) rather than the whole image.
Furthermore, if a third image is used, the matching ambiguities can be further
reduced (Shashua 1997; Schaffalitzky and Zisserman 2002), see Figure 6 (right).
Among the feature point detectors compared by Mikolajczyk and Schmid (2003),
the SIFT descriptor (Lowe 2004) had the highest tolerance to changes in viewing
geometry.

4.4.4 Combined feature point detection and matching

The Least Squares Template Matching (LSTM) technique performs the match-
ing and precise location of the matches simultaneously. The basic algorithm
compares patches between images while allowing a controlled geometric and ra-
diometric deformation (Gruen 1985, 1996), see Figure 7. The LSTM algorithm
is an iterative procedure that uses initial estimates of the match positions and
other geometrical parameters. If the initial estimates are good and the image
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Figure 6: Left: An epipolar line restricts the search for corresponding points.
Potential matches outside the epipolar line do not correspond to the same 3D
point. Right: Adding a third image further reduces the ambiguity. A match
found in along the epipolar line of image 2 must have a corresponding match in
the third image.

Figure 7: The patch (image region marked in the right image) is matched to the
image to the left by Least Squares Template Matching (LSTM). Given the initial
position (dashed red) in the left image, the algorithm updates the shape and
position of the region (final value, solid blue). In this example, the region was
allowed to deform by an affine transformation (shift, rotate, scale, and shear).

contains enough information (texture), the algorithm will converge to more pre-
cise matching coordinates, including error estimates. Otherwise, the algorithm
may fail to converge, indicating a failed matching. LSTM can also use epipolar
information (Baltsavias 1991), in which case the algorithm is known as Multi-
Photo Constrained Template Matching. Furthermore, LSTM can be used to
fine-tune the position of feature point matched by other detectors (Remondino
and Ressl 2006), see Figure 8.

4.4.5 Relative orientation

The calculation of the relative orientation between different images is central
to image-based techniques. A poor estimation of the relative orientation will
affect the calculation of 3D object coordinates, both in terms of the object point
precision and potential blunders due to incorrect matches.
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Figure 8: LSTM update of the SIFT match in Figure 5. The highlighted region
in the right image is matched to the left image. The initial values from SIFT
(dashed, red) are updated by LSTM (solid, blue).

Assuming that the correspondence problem has been solved, the relative ori-
entation can be calculated from image point correspondences. The eight-point
algorithm (Hartley 1997; Hartley and Zisserman 2003) is the most important al-
gorithm for calculating the relative orientation for straight-line-preserving cam-
eras. A recent important development is the five-point algorithm (Nistér 2004;
Stewénius et al. 2006) that uses camera calibration information and is thus more
stable.

If the correspondence between image points and control points (object points
with known 3D coordinates) is known, the position and orientation of the image
can be calculated for single images. This process is called resection (Grussen-
meyer and Khalil 2002) . Two of the most important resection algorithms are
the Direct Linear Transformation (DLT) (Abdel-Aziz and Karara 1971; Mikhail
et al. 2001, Ch. 9.3) (straight-line-preserving) and Grunert (Haralick et al. 1994;
McGlone et al. 2004, Ch. 11.1.3.4) (calibrated). Recent work on calibrated re-
section include Schweighofer and Pinz (2006); Olsson et al. (2009).

Automatic relative orientation is still subject to active research Läbe and
Förstner (2006); Remondino and Ressl (2006); Läbe et al. (2008); Frahm et al.
(2009), and challenges remain for especially low-textured images or wide-baseline
images with little overlap and large differences in viewpoint.

4.4.6 Triangulation

The calculation of 3D coordinates for an object point given corresponding points
with a known relative orientation is known as triangulation (Hartley and Zis-
serman 2003, Ch. 12.2; Förstner et al. 2004, Ch. 11.2). Beside the calculated
3D coordinate, an estimate of the error can also be produced (Förstner et al.
2004, Ch. 11.2.7; Heuel 2004; Förstner and Wrobel 2004, Ch. 2.3.5).

4.4.7 Fine-tuning (bundle adjustment)

Bundle adjustment is the process of simultaneously estimating object points and
camera position and orientations. The process has been used in photogrammetry
since the late 1950:ies (Brown 1976). After a seminal paper by Triggs et al.
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Figure 9: Bundle adjustment example with only two cameras, the leftmost of
which is kept stationary. Left: The initial approximations of the object points
(gray) and rightmost camera. Right: The final values of the object points (blue)
and rightmost camera. The camera positions during the iteration process is also
indicated.

(2000), it is now widely accepted within the Computer Vision community as
well.

The process is iterative and require initial approximation from e.g. relative
orientation and triangulation (Mikhail et al. 2001, Ch. 5.8). The initial approx-
imation are iteratively modified until the projection of the estimated object
points into the cameras at the estimated positions matches the measured image
coordinates as closely as possible, see Figure 9. Besides the updated estimates
of the object points and camera positions and orientations, error estimates of all
estimated parameters are also produced (Förstner and Wrobel 2004, Ch. 2.2.5).
Bundle adjustment is necessary in order to get high-quality results. At the same
time, the method is general, and can handle any number of cameras and object
points as well as other 3D geometric objects and scene constraints, e.g. that two
estimated planes should be orthogonal.

Recent development in bundle adjustment include Börlin et al. (2004); Lourakis
and Argyros (2005); Dickscheid et al. (2008); Lourakis and Argyros (2009).

4.4.8 Densification of the point cloud

The point cloud generated by general feature point matching is generally sparse
and unevenly distributed over the images. However, once the relative orientation
between two or more images is known, it is possible to use guided matching to
densify the point cloud. Several “dense stereo” algorithms have been developed.
The basic algorithm matches intensity variations along scan-lines of image pairs.
Continuity constraints enable calculation of almost one depth value per pixel
in well-textured image areas (Scharstein and Szeliski 2002; Yoon and Kweon
2008). Extension algorithms work on three or more images (Gallup et al. 2007;
Seitz et al. 2006). Most algorithms are focused toward short-baseline input, i.e.
situations where the camera motion between images is small, such as e.g. with
video data. However, the algorithms work comparably well on wide-baseline
images if the imaged regions are almost planar. Many algorithms focus on
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speed and report only qualitative accuracy results. Some recent exceptions are
Seitz et al. (2006); Mordohai et al. (2007); Zhang et al. (2009).

The Least Squares Template Matching (LSTM) technique (Gruen 1985;
Baltsavias 1991) can also be used for densification. Compared to “dense stereo”
methods, LSTM generates less dense point clouds. However, an advantage is
that bad matches can be detected and excluded and precision values can be
calculated for each generated match (Grün et al. 2004; Remondino and Zhang
2006; Remondino et al. 2008).

4.4.9 Co-registration of point clouds

Image-based methods generally generate a point cloud in the same coordinate
system, since new images are added sequentially and the relative orientation
is determined from feature point matches with the existing images. However,
if two point clouds are generated without any common images, or from other
sensors such as laser scanners, the point clouds need to be co-registered, i.e.
transformed into the same coordinate system.

If three or more point correspondences between the clouds are known, the
transformation is a simple rigid-body transformation (Arun et al. 1987; Förstner
et al. 2004, Ch. 11.1.6). For optimal robustness, point correspondences between
different clouds can be determined from artificial targets in the scene (Akca
2003) or by manual assignment.

Without point correspondences, the co-registration problem is hard. Several
algorithms have been presented in the literature, either based on point-point
(or line-line) correspondences (Besl and McKay 1992; Früh and Zakhor 2004;
Barnea and Filin 2008; Boström et al. 2008; Brenner et al. 2008; Stamos et al.
2008; González-Aguilera et al. 2009) or surface matching (Gruen and Akca 2005;
Pottmann et al. 2006; Akca 2007; Bae and Lichti 2008). Other techniques are
based on global features of the point cloud (Johnson and Hebert 1999; Huber
and Hebert 2003; Bucksch and Lindenbergh 2008) or by matching with CAD
models (Rabbani and van den Heuvel 2004; Rabbani et al. 2007). Methods for
matching point clouds detected by hybrid camera-laser scanner hardware have
also been developed (Wendt 2007; Smith et al. 2008). In order to work well,
the algorithms for unorganized point clouds require good initial values (unless
known from the hardware) or require good global coverage of the scene.

4.4.10 Object extraction and model generation

If the points have been labelled in previous stages, automatically or manually,
object extraction usually consists of fitting primitives, e.g. planar surfaces or
edges, to the labelled points (Debevec et al. 1996; Gruen and Wang 1998; Koch
2005; Yang et al. 2009). Many automatic algorithms have been developed to
detect simple planar surfaces in unlabelled terrestrial and aerial laser scanner
data (Rottensteiner 2003; Yu et al. 2008; Tarsha-Kurdi et al. 2008). Other
algorithms search for known complex geometric objects, e.g. CAD models, in
point clouds generated from images or laser scanner data (Rabbani and van den
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Heuvel 2004; Ferrari et al. 2006; Rabbani et al. 2007; Leibe et al. 2008). An
approach that does not try to group points into geometric objects is to generate
a 3-D mesh directly from the point cloud (Früh and Zakhor 2002; Akbarzadeh
et al. 2006; Gallup et al. 2007; Mordohai et al. 2007; Pollefeys et al. 2008).

Beside the actual measurements, it is also possible to add scene constraints,
e.g. that two surfaces should be orthogonal, to aid the model generation (De-
bevec 1996; El-Hakim 2002).

4.4.11 Texture extraction

Once the camera positions and the 3D geometry of an object has been calculated,
determining what part of an image that can be used as a texture map on each
surface is trivial. However, in order to generate a convincingly looking textured
3D model, some practical aspects need to be considered, e.g. occlusion (Debevec
et al. 1998; Ortin and Remondino 2005) and differences in lighting (Kim and
Pollefeys 2008; Troccoli and Allen 2008). Furthermore, several papers have
been presented that try to analyze repeated patterns in textures (Zalesny et al.
2005; Mayer and Reznik 2007; Müller et al. 2007; Wenzel and Förstner 2008).
However, the problem in the general case is still unsolved.

4.4.12 Panoramic image stitching

If images are acquired by a rotating camera, no 3-D information may be inferred
(Remondino and Börlin 2004). However, it is still possible to “stitch” the images
together to form a panorama as described by e.g. Brown and Lowe (2007).

4.5 Reconstruction approaches and the type of input data

This section reports some of the major high-level approaches presented in the
literature. The choice of approach is strongly correlated to the type of input
data, and this section is thus structured by the type of input data.

4.5.1 Video-based reconstruction

The video-based approaches, exemplified by Akbarzadeh et al. (2006); Mordohai
et al. (2007); Pollefeys et al. (2008); Frahm et al. (2009) are characterized by
a high level of automation based on video input. The automation is successful
mainly due to the small image distortion between consecutive video frames. No
specific assumptions are made about the reconstructed environment and the
result is usually in the form of textured 3D meshes. Several methods are able
to generate automatic results in real-time, albeit without error estimates.

4.5.2 Reconstruction from aerial/satellite imagery

Methods based on aerial and/or satellite imagery are characterized by a high
level of automation (Zhang and Gruen 2006). The automation is mainly achieved
due to the regularity of the images capturing process. The output is usually in
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the form of a 2.5D Digital Surface Map (DSM), including error estimates. A
2.5D DSM is a 2D grid of positions that describes the elevation above a vertical
datum, such as mean sea level. A DSM typically cover a large area and is useful
for generating topographic maps. However, due to its low resolution and that
each position only has one height value associated with it, a DSM does not
contain any information about e.g. building facades.

4.5.3 Reconstruction from laser scanner data

Methods based on laser scanner data, either aerial (LIDAR) or terrestrial (TLS),
focus on analyzing huge point clouds (Rottensteiner 2003; Tarscha-Kurdi et al.
2007; Barnea and Filin 2008; Tarsha-Kurdi et al. 2008), mainly to detect com-
mon points for point cloud co-registration and planar surfaces for building de-
tection. The result is usually with error estimates but without textures.

4.5.4 Image-based reconstruction

There is a multitude of papers about image-based 3D reconstruction in the liter-
ature. Some example applications include: city model generation from aerial im-
ages (Gruen and Wang 1998), modeling of Arc de Triomphe in Paris from tourist
images (El-Hakim 2002), reconstruction of buildings using scene constraints (De-
bevec 2003), high-resolution reconstruction of cultural heritage objects (The
Standing Buddhas of Bamyan) from multi-resolution images (Grün et al. 2004;
Remondino and Niederoest 2004), and a fully automatic measurements for in-
dustrial applications (Fraser and Cronk 2009). As stated by Remondino and
El-Hakim (2006, abstract), “. . . image-based modelling . . . remains the most
complete, economical, portable, flexible and widely used approach”. However,
no unified method exist that cover all reconstruction problem. Indeed, from the
same paper

. . . there is no single modelling technique able to satisfy all require-
ments of high geometric accuracy, portability, full automation, photo-
realism and low cost as well as flexibility and efficiency (Remondino
and El-Hakim 2006, p. 272).

4.5.5 Combination of image and laser scanner data

Methods that use a combination of images and laser scanner data are also com-
mon. Fruh and Zakhor (2003), used aerial images and laser scans of part of a
city to generate a textured DSM of the ground and rooftops. A laser-scanner
and camera-equipped car was used to acquire terrestrial data. The terrestrial
data was used to determine the path within the DSM driven by the car and to
generate texture maps of the vertical building facades.

Rabbani and van den Heuvel (2004) used laser scans to reconstruct an in-
dustrial site. Multiple scans were used to model the bulk of the site. Images
were taken to complement the laser scan data in regions that were hard to reach
for the laser scanner due to the crowded scene. The image data was used to aid
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interpretation of the point cloud and to provide complementary measurements
of edges within the scene.

In an opposite approach, Gonzo et al. (2004) used aerial images and tacheo-
metric data to generate an overall model of an Italian castle. Detail was added
to the model from terrestrial images and laser scans. The tacheometric and laser
scans were considered optional in their setup, i.e. they suggest that image-only
methods would be viable.

Several papers have compared tacheometry, laser scanning, and photogram-
metry to reconstruct complicated buildings, e.g. castles (Remondino et al. 2005;
Landes et al. 2007; Grussenmeyer et al. 2008). The consensus is that either
technique has its strength and weaknesses, but that they complement each other
well. However, a comparative paper by Strecha et al. (2008) challenges the con-
sensus by posing the question on whether image-based methods can completely
replace close-range laser scanning.

In a recent paper, Remondino et al. (2009) suggests the following workflow
for modeling of complicated architectures:

1. Use surveying to obtain a high-accuracy reference grid.

2. Acquire low-level oblique aerial images to model the majority of the model.

3. Take terrestrial images to for complementary modelling and detailed mod-
elling of parts of the scene.

4. Use medium-range (1–50m) laser scanner of interiors less suited for image-
based modeling.

4.6 Automatic vs. semi-automatic reconstruction

A 3-D reconstruction application should ideally satisfy the following require-
ments (El-Hakim 2002):

1. High geometric accuracy.

2. Capturing all details.

3. Photo-realism.

4. Full automation.

5. Low cost.

6. Portability.

7. Flexibility in applications.

8. Efficiency in model size.
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Thus, automation is a highly wanted requirement. However, the only avail-
able fully automated techniques either generate incomplete textured meshes
without any error information (Akbarzadeh et al. 2006; Mordohai et al. 2007;
Pollefeys et al. 2008; Frahm et al. 2009) or require a substantial modification of
the scene (Fraser and Cronk 2009). Indeed, many authors suggest that semi-
automated methods are the most efficient, and e.g. Mayer (2008, p. 217) con-
cludes that: “Key factors determining the practical usefulness of a system are
thorough testing as well as an optimized user interaction” (our emphasis).

5 “Reconstruction” software

In this section, some software related to 3-D reconstruction from images are
described. Evaluated software is listed in sections 5.1–5.3.

5.1 Google Sketchup

Google Sketchup7 is a free tool for constructing 3D models that can be uploaded
to the Internet and viewed by Google Earth. It can generate textured models
but does not perform any measurements from images.

5.2 Microsoft Photosynth

Microsoft Photosynth8 is a free9 tool for organizing images of a scene. The
application uses SIFT (Lowe 2004) features to determine the relative orientation,
followed by bundle adjustment with restricted camera self-calibration to improve
the estimated 3D coordinates and camera positions. The camera self-calibration
is restricted to the focal length and two radial lens distortion parameters. For
details, see Snavely et al. (2006, 2008).

Presently (June 2009) it is not possible to view the result on your local
machine. Instead, it is necessary to upload the result to the Photosynth web
site, where it is automatically made publicly available. The result is presented
as a virtual 3D world, where it is possible to change the viewpoint between
different calculated camera coordinates. Snavely et al. (2008, p. 191) writes

. . . our objective is not to synthesize a photo-realistic view of the
world from all viewpoints per se, but to browse a specific collection
of photographs in a 3D spatial context that gives a sense of the
geometry of the underlying scene

(their emphasis) and as of this writing it is not possible to extract 3D information
from the generated result.

7http://sketchup.google.com
8http://photosynth.net
9However, a Microsoft Live ID is required.
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5.3 Photomodeler

Photomodeler10 is a photogrammetric software from EOS Systems, Inc. The
basic software is based on manual measurements, although an automatic camera
calibration component is included. Add-ons include automatic measurement
of coded targets and dense matching. The software can export 3-D textured
models as well as the raw 3-D data, including positions of object points and
cameras. Furthermore, uncertainty estimates for the calculated positions are
also available. The list price (June 2009) for the software is between USD 1000
(basic version) and USD 2700 (complete version).

5.4 ShapeCapture/ShapeScan

ShapeCapture and ShapeScan are two software from ShapeQuest Inc11. Ac-
cording to the ShapeQuest homepage, ShapeCapture provides the capability
for 3D Modeling from images, Camera Calibration, Accurate 3D Coordinate
Measurement, Photogrammetry, Texture Mapping, Automatic Target Extrac-
tion and Stereo Matching. Furthermore, the ShapeScan software is be able to
work with both images and point clouds acquired by a laser scanner. However,
ShapeCapture/ShapeScan are unable to measure stored parametric models of
e.g. buildings. The list prices (June 2009) for ShapeCapture and ShapeScan are
USD 1600 and USD 8000, respectively.

5.5 ImageModeler

Autodesk ImageModeler is a reconstruction software sold by Autodesk Inc12.
According to the Autodesk homepage, ImageModeler is able to reconstruct
photo-realistic objects, scenes and cities from images as well as take measure-
ments of buildings. The software can export the results in FBX, Maya, OBJ,
and DWG formats. However, the FAQ13 does not mention anything about ex-
tracting the precision of the calculated values. The list price (June 2009) of the
software is USD 1500.

5.6 Other photogrammetric software

Other photogrammetric software include Australis14 and iWitness PRO14, V-
STARS15, and DPA-Pro16 oriented mainly at industrial applications.

10http://www.photomodeler.com
11http://www.shapecapture.com
12http://www.autodesk.com/imagemodeler
13http://images.autodesk.com/adsk/files/imagemodeler2009 faq0.pdf
14http://www.photometrix.com.au
15http://www.geodetic.com
16http://www.aicon.de
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Figure 10: Reconstruction results from Fors Nilsson and Grundberg (2009).
Top left: Manual “painting” of image regions corresponding to different object
surfaces. Top right: Resulting point cloud labelling. Bottom row: Two textured
views of the reconstructed result.

6 Proof of concept

A proof of concept for 3D measurements of buildings from image data is pre-
sented in the work by Fors Nilsson and Grundberg (2009). The reconstruction is
based on planar surfaces and uses calibrated cameras. Initially, the acquired im-
ages are ordered sequentially by the operator. Feature detection and matching
is performed automatically between consecutive images and the relative orien-
tation and triangulation is calculated using robust methods. The triangulation
result is presented to the operator for quality control. Adequate results are
added to the sequential registration process. Otherwise, the process is re-run
with different parameters. At any stage, bundle adjustment may be run to
fine-tune the reconstructed data.

Object measurements is also semi-automatic. The operator marks image
parts that correspond to the same planar object surface with a “paint” tool.
Labelling of the reconstructed point cloud is automatically inferred from the
images, and the planes are calculated from the labelled points. The result is
presented to the user that has the possibility to repeat the calculation after
removing mis-labelled or wrongly calculated points. Finally, several planes are
combined into a polyhedral object. See Figure 10 for an example.

In agreement with Mayer (2008), the report stresses the importance of op-
timizing the workflow for the user and that in some cases a too high degree of
automation may be of more harm than good. As future work the authors sug-
gest fitting points to other surface primitives than planes. Furthermore, recon-
structed composite primitives could be stored in a “library” and later retrieved
when a similarly composed object is to be reconstructed. Other suggestions
include detail enhancement on facades with dense stereo methods and guided
matching to increase the number of matched surface feature points.
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7 Summary and discussion

7.1 Input data for harbor modelling

Some harbor scenes cover a substantial area, and conventional aerial methods
carry the advantage of being able to cover large areas quickly. However, aerial
data also carry a substantial cost. Furthermore, it is believed that on some sites,
obtaining the proper permissions may be difficult or even impossible. Obtain-
ing low-level aerial data from e.g. a UAV (unmanned aerial vehicle) could be
easier and cheaper, but the maturity of the technology is unclear. However, an
interesting possibility is that the harbor cranes provide elevated vantage points
that may be utilized instead of low-level aerial images.

Instead, we argue that we should focus on terrestrial images and possibly
laser scanner data. A possible solution is to model the general area from ter-
restrial image data. The work areas could either be modelled from image data
or from short-range laser scanner data. An interesting prospect would be to
use high-resolution images acquired by a calibrated stereo rig, something that
increases the robustness of e.g. relative orientation and triangulation.

7.2 Software

There is no software that satisfy all our requirements. Of the investigated soft-
ware, ShapeCapture/ShapeScan (Section 5.4) seem to be the best candidate for
the harbor reconstruction problem. However, the software lacks the possibil-
ity to construct parameterized 3D models of e.g. buildings that can later be
retrieved and used to speed up measurements of repeated structures. Further-
more, there is a question mark on the quality of the dense point clouds generated
by ShapeScan from image data.

7.3 Potential research areas

Among the identified potential research areas within this field are

• Camera calibration, especially stereo rig calibration.

• Bundle adjustment, especially bundle adjustment with scene constraints.

• Optimization of camera networks.

• 3D reconstruction for physical simulation.

7.4 The 3D reconstruction toolbox

We suggest that a toolbox is implemented with algorithms for 3D reconstruc-
tion. The main data source should be terrestrial images and laser scan data
and optionally tacheometry data. State-of-the-art automatic low-level algo-
rithms for well-understood subproblems should be implemented “as is”. How-
ever, algorithm without error estimates should be avoided unless they can be
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augmented to include error estimates. Higher-level algorithms, automatic or
semi-automatic, can be combined from the low-level algorithms and evaluated
to find efficient measurement workflows.

The toolbox is suggested to be implemented in a high-level language, Mat-
lab17. Matlab supports efficient implementation of many automatic 3D recon-
struction algorithms. Furthermore, it has enough support for GUI implemen-
tations to enable the necessary efficiency evaluations. Additionally, non-GUI-
algorithm can be ported with relative ease to efficient implementations in low-
level languages such as C/C++. More toolbox details are presented in Ap-
pendix C.

It is our belief that a 3D reconstruction toolbox in Matlab will be a flexible
tool since it can simultaneously support basic research of core algorithms, evalu-
ation of problem-specific high-level algorithms, and production of industry-grade
results that can be spawned and ported to other environments. The develop-
ment will be incremental, and by using the toolbox in different 3D reconstruction
projects it is possible to learn from different cases.

A potential application of the toolbox on the harbor reconstruction problem
would be to model the ground as a 3-D topographic mesh and reconstruct it
from image data and possibly laser scanner data. Ground texture data would
automatically be extracted from the images. Distant landmarks with restricted
image coverage could be modelled using scene constraints or stored composite
primitives as suggested in Section 6. Composite primitives could also be used
for obstacle modelling and modelling of active objects. Whether the geometric
quality of the reconstructed models is sufficient for modelling of active objects
remains an open question and will be interesting to investigate. The horizon
could finally be reconstructed from image data acquired from e.g. the harbor
cranes using panoramic image stitching as described in Section 4.4.12.

17http://www.mathworks.com
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Dickscheid, T., Läbe, T., and Förstner, W. (2008). Benchmarking automatic
bundle adjustment results. In 21st Congress of the International Society for
Photogrammetry and Remote Sensing (ISPRS), volume B3a, pages 7–12, Bei-
jing, China.

Duan, C., Meng, X., and Wang, L. (2008). 3d reconstruction from uncalibrated
images taken from widely separated views. In Cybernetics and Intelligent
Systems, 2008 IEEE Conference on, pages 58–62.

El-Hakim, S. (2002). Semi-automatic 3d reconstruction of occluded and un-
marked surfaces from widely separated views. International Archives of Pho-
togrammetry, Remote Sensing, and Spatial Information Sciences, 34(5):143–
148.

Ferrari, V., Tuytelaars, T., and Gool, L. V. (2006). Simultaneous object recog-
nition and segmentation from single or multiple model views. Int J Comp
Vis, 67(2):159–188.

Fors Nilsson, H. and Grundberg, D. (2009). Plane-based close range photogram-
metric reconstruction of buildings. Master’s thesis, Department of Computing
Science, Ume̊a University.

25



Förstner, W. and Gülch, E. (1987). A fast operator for detection and precise
location of distinct points, corners and circular features. In Intercommission
Conference on Fast Processing of Photogrammetric Data, pages 281–305, In-
terlaken.

Förstner, W. and Wrobel, B. (2004). Mathematical Concepts in Photogramme-
try, chapter 2, pages 15–180. IAPRS, 5 edition.

Förstner, W., Wrobel, B., Paderes, F., Craig, R., Fraser, C., and Dolloff, J.
(2004). Analytical Photogrammetric Operations, chapter 11, pages 763–948.
IAPRS, 5 edition.

Frahm, J.-M., Pollefeys, M., Clipp, B., Gallup, D., Raguram, R., Wu, C., and
Zach, C. (2009). 3d reconstruction of architectural scenes from uncalibrated
video sequences. International Archives of Photogrammetry, Remote Sensing,
and Spatial Information Sciences, XXXVIII(5/W1):7 pp.

Fraser, C. S. (1997). Digital camera self-calibration. ISPRS J Photogramm,
52(4):149–159.

Fraser, C. S. and Cronk, S. (2009). A hybrid measurement approach for close-
range photogrammetry. ISPRS J Photogramm, 64(3):328 – 333.

Früh, C. and Zakhor, A. (2002). Data processing algorithms for generating tex-
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C Toolbox

C.1 Project idea

• Input: A set of overlapping images of buildings and optionally 3D data
from a laser scanner.

• The buildings are not assumed to be free-standing, i.e. the toolbox must
be able to handle real-world restrictions such as occlusions, etc.

• The toolbox should be able to handle images taken by uncalibrated or
calibrated camera, optionally on a stereo rig.

• The toolbox should support measurements of primitives such as points,
lines, and planes.

• It should be possible to combine primitives into e.g. a rectangular house
with a saddle-back roof.

• It should be possible to use stored combined primitives for faster measure-
ments of recurring objects.

• The output should be a geometric model with precision estimates and
texture maps for visualization.

C.2 Toolbox organization

• Key questions:

– What algorithms should be included?

– How should the data be organized?

– What kind of user interface is required? (API/GUI)

– What about data import/export features?

– Compatibility with other software?

C.3 Toolbox themes

• The algorithms should be as automatic as possible.

• The user input should be where it is most efficient, i.e. either at the be-
ginning or the end of a calculation pipeline.

• If a choice is necessary, the code should be transparent, i.e. easy to read,
rather than optimized.

• The code should contain references to the literature.

• Estimation functions should produce error estimates in addition to the
estimated values.
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• For non-advanced users, the estimation functions should have traffic-light
features (green=ok, red=not ok, yellow=manual attention required).

Quality measures (Fraser) 0th...3rd

C.4 Algorithms

Tentative list of core algorithms:

• Orientation

• Triangulation

• Bundle adjustment

• Camera calibration

• Feature detection

• Feature matching

• Least squares matching

• Lens distortion correction

• Co-registration

• Texture extraction

Other algorithms:

• Coded targets

• . . .

C.4.1 Orientation

• Relative orientation

– Direct solution

∗ Eight-point
∗ Seven-point
∗ Five-point

– Statistically optimal solution

– Robust solutions

• Trifocal tensor

– Direct solution

∗ Eighteen-parameters
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∗ Eleven-parameters

– Statistically optimal solution

– Robust solutions

• Absolute orientation

– Direct

– Optimal

C.4.2 Triangulation

• Forward intersection

• Bundle adjustment

– Datum

– Control points

– Self-calibration

– Functional (hard) constraints

– Soft constraints

– Robustness (bad initial values)

– Robustness (outliers)

– Robust estimation (Huber, Cauchy, . . . )

C.4.3 Feature point extraction

• Förstner/Köthe interest operator.

• Harris corner

• SIFT

C.4.4 Least squares matching

• Standard

• Multi-photo constrained

C.4.5 Algorithm validation and simulation

• Simulation

– Camera networks

– Image distortion

• Optimization of camera networks

• Algorithm validation

61



C.5 Data organization

Tentative data organization:

• Project

– Cameras

– Images

– Measurements

– Objects

– Uncertainties

– . . .

C.6 Camera models

• Perspective (pin-hole)

– Outer orientation

∗ roll, pitch, yaw
∗ azimuth, tilt, swing
∗ other

– Lens distortion models

∗ Brown K1, K2, K3, P1, P2
∗ Chebychev polynomials
∗ Modelling of zoom lenses
∗ . . .

• Non-perspective cameras

– Line-cameras

– Fish-eye

– . . .

• Stereo rig

C.7 Measurement tools

• GUI for

– Manual measurements

– “Guided” measurements

– Input of approximate values
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C.8 Visualization

• Points

• Lines

• Cameras

• Residuals

• Error ellipsoids

• . . .
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