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Abstract

This thesis presents theory and a prototype computer application for photogrammetric
reconstruction of textured 3D models of buildings. The application uses bounded planes
to represent building facades. The planes are approximated from a reconstructed point
cloud and initially bounded by the convex hull of the relevant points. Multiple bounded
planes may be combined into complex, composite models. The intersection between two
or more planes is used to update the bounds of the corresponding planes.

The focus of the thesis has been to create a streamlined operator workflow that
reduces operator work time while creating models of sufficient quality. Thus, the main
approach is operator-guided automation rather than a fully automatic approach. Of
course, subproblems are solved automatically wherever appropriate.

Reconstruction results from several buildings of low to high geometric complexity
are presented together with the approximate operator work time required for the recon-
struction. Furthermore, a time exposure experiment was performed to investigate the
effect of the poor lighting conditions common during the winter in northern Sweden.

The results show that the reconstruction is sensitive to a combination of three factors:
1) Low-contrast texture in the foreground, 2) low-contrast texture on the building, 3)
poor lighting conditions. However, tripod-mounted cameras and sufficient exposure
times are shown to alleviate most of these problems. With images of sufficient quality,
the total required operator work time, including photography, is in the order of a few
man hours per building.

The thesis concludes with a discussion on how to improve the robustness of the
applications, reduce the operator time, and extend the prototype to work with other
primitives, e.g. cylinders, as well as predefined composite primitives.
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Chapter 1

Introduction

Photogrammetry is the science of measuring objects pictured in photographs. Using
methods developed in this science, it is possible to construct 3D models of objects. The
aim of this thesis is to create a prototype computer application which enables a user to
process digital photographs into 3D models.

1.1 Problem Statement

Oryx Simulations is a company that produces simulation equipment for training pur-
poses. Examples include front loaders, harvesters, and harbour cranes complete with
real-life cabins and instruments, allowing an operator to train both basic skills and
specific tasks in a safe and conveniently located environment.

The virtual environments are currently being created manually in 3D modelling
software. To create a model that closely match a real work site takes many man hours
and is expensive. Oryx Simulations is for that reason interested in a process that is
more automated and requires less man hours.

1.2 Aims

The primary aim of this thesis is to present a prototype tool for rapid measurements and
3D reconstruction of buildings. Specifically, the following tasks should be considered:

– Image pairing, i.e. determining what images are overlapping and what order to
include them in the measurements.

– Automated point matching between paired images.

– Reconstruction of geometric primitives, e.g. planes and cylinders.

– Combining geometrical primitives.

– Reconstruction of the ground using DTM (digital terrain map).

Furthermore, the efficiency of the workflow is a priority in the design of the prototype
application. Especially two aspects are considered important:

1



2 Chapter 1. Introduction

– All tasks performed by the operator should be made in the application (no external
software).

– Operator guided methods should be aided by the graphical interface, provide vi-
sualization and good overview.

1.3 Related Work

Automatic reconstruction is implemented in Photo tourism: Exploring Photo Collections
in 3D[30], where the photos have not been ordered and no calibration information is
known. By using heuristics and a lot of computing power, camera poses of these photos
may be found without human intervention. A similar paper is [4], where M. Brown
and D. G. Lowe also work with unordered, uncalibrated photos. None of these papers
explore surface detection or texturing.

Man-made buildings often contain planar surfaces that can be roughly described
with a simple linear mapping between photos, e.g. walls or roofs. If two or more of
these homographies are known, Q.-T. Luong[20] describes a direct method to obtain
the fundamental matrix. Comparing to the 8-point method[11], they find that a) the
8-point method will give better results if there are more than 3 planes, b) their method
deteriorates while the 8-point method excels as the number of visible planes is increased
and concludes c) that their method can only have usable applications in the case of two
planes.

Furthermore in [34], R. Szeliski and P. H. S. Torr experiment with using extra infor-
mation to improve bundle adjustment between two views. They incorporate facts known
from the planes (like point co-planarity) and inter-plane relations (e.g. right angles in
intersections and parallelity). Enforcing inter-plane angles removes major error sources
like ambiguities in camera orientation, while co-planarity constraints do not do much
difference.

The authors of [9] explores the possibilities of semi-automatic fitting of wireframe
models to buildings. Although the authors goals are similar to the aims of this thesis,
Glüch et al. focus on areal photos. Since areal photos convey less details their methods
were not applicable.

On the subject of creating models from point clouds R. Ramamoorthi and J. Arvo[27]
describes a tree based method using parameterized operations such as scaling and rota-
tions on user supplied shapes. In [6] A. Fitzgibbon and A. Zisserman proposes using line
matching as a complement to point matching. The matched lines provides additional
information such as connectivity among the reconstructed points.

1.4 Organization of Thesis

In this thesis, photogrammetry is explained and used to create computer models of real-
world environments. The fundamental theory needed to understand the photogrammet-
ric methods is explained in Chapter 2. Furthermore the theoretical workflow of a close
range photogrammetric reconstruction is described. In Chapter 3 surface parameteriza-
tion and modeling is presented. Chapter 4 is more of a “hands on” section with concrete
methods of solving the problems described in the previous chapters.

In Chapter 5 implementation details can be found, together with a workflow descrip-
tion and screenshots.
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Image acquisition and a description of the camera equipment used is available in
Chapter 6, also containing an introduction to the sites that has been shot. The resulting
reconstructed models are presented in Chapter 7 together with results from an exposure
time experiment

Finally, in Chapter 8, a discussion and analysis of the results and limitations of the
thesis can be found. Also suggestions on future works and limitations of the prototype
is situated there.

A digital copy of the thesis report in color is available for download at:
http://www.cs.umu.se/education/examina/Rapporter/ForsNilssonGrundberg.pdf

http://www.cs.umu.se/education/examina/Rapporter/ForsNilssonGrundberg.pdf
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Chapter 2

Close Range Photogrammetry

In this chapter, the theory of close range photogrammetry and related topics are intro-
duced.

2.1 Introduction to Projective Geometry

This section is an introduction to basic projective geometry needed to understand the
methods described in the later chapters. This section also explains the notation used
throughout the thesis. The geometry part of this section is based on [12, Chapter 2]
unless otherwise noted.

2.1.1 Points and Lines in P
2

In two dimensional projective space, P2, a point is represented by a 3-vector

x =
[
x y t

]T
,

this is called the homogeneous representation or homogeneous coordinates. All homoge-

neous vectors x = k
[
x y t

]T
, k 6= 0 are interpreted as the same object, in this case

a point. In P
2 lines are represented by homogeneous 3-vectors like

l =
[
a b c

]T
.

Vectors are represented by boldface letters. A point x lies on a line l iff xTl = 0 and
since the scalar product is commutative, xTl = lTx, the scalar product may also be
interpreted as a test if a line intersects a given point. The intersection of two lines l1
and l2 is the point x that satisfies xTl1 = 0 and xTl2 = 0. It is possible to construct such
a point using the cross product. The cross product produces a vector that is orthogonal
to the input vectors and is written as

l1 × l2 = x.

Since points and lines are indistinguishable in P
2, the cross product may be put to other

uses as well. For example a line joining the two points x1 and x2 may be calculated as
l = x1 × x2.

5



6 Chapter 2. Close Range Photogrammetry

2.1.2 Conversion to Euclidean Coordinates

A point in P
2 can easily be converted to a point in R

2 as

x =
[
x y t

]T
=
[x

t

y

t
1
]T

→ x̃ =
[x

t

y

t

]T

, for t 6= 0. (2.1)

For t = 0, the right hand side of equation (2.1) is undefined. Such points are called points

at infinity or ideal points. All ideal points lie on the line at infinity, l∞ =
[
0 0 1

]T
.

For example the point x =
[
x y 0

]T
lies on l∞, since

lT∞x = 0 · x + 0 · y + 1 · 0 = 0.

Ideal points are not defined in Euclidean space and may be interpreted as directions in-
stead of points. In fact, two parallel lines will actually intersect each other in projective
space, but this intersection will lie on the line at infinity. In this thesis vectors represent-
ing Euclidean coordinates are annotated with a superscripted tilde sign to distinguish
them from projective coordinates.

2.1.3 Second Order Curves in P
2

Parabolas, hyperbolas, ellipses, and circles are all second order curves. These curves and
the degenerate cases are all defined by the general equation (where not all coefficients
are zero)

ax2
1 + bx1x2 + cx2

2 + fx1 + gy1 + d = 0. (2.2)

This equation may be turned into a homogeneous equation by substituting x1 and x2

so that x1 → x
t

and x2 → y
t

and then multiplying the equation with t2 producing

t2
(

a
x2

t2
+ b

xy

t2
+ c

y2

t2
+ f

x

t
+ g

y

t
+ d

)

= ax2 + bxy + cx2 + fxt + gyt + dt2. (2.3)

The coefficients from the right hand side of equation (2.3) can be stacked into the 3× 3
symmetric matrix

C =





a b/2 f/2
b/2 c g/2
f/2 g/2 d



 .

Thus equation (2.2) may be rewritten in a more compact form

xTCx = 0 (2.4)

using homogeneous coordinates. Equation (2.4) is the definition of a conic. Conics may
represent degenerate curves such as straight lines and points.

2.1.4 3-Dimensional Projective Space

Points in P
3 are represented by homogeneous 4-vectors

X =
[
x y z t

]T
.

Ideal points in P
3 all lie on the plane at infinity, π∞ =

[
0 0 0 1

]T
. In this thesis

points in P
3 are always denoted by a boldface uppercase letter.
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2.1.5 Homogeneous Representation of Planes

The homogeneous representation of planes is very similar to the Euclidean space equation

π1x1 + π2x2 + π3x3 + π4 = 0.

This equation can be extended to include homogeneous points as well, since the multi-
plication of a scalar leaves the equation unchanged. With the substitutions x1 → x/t,
x2 → y/t and x3 → z/t, we get

t(π1x1 + π2x2 + π3x3 + π4) = 0 ⇒ π1x + π2y + π3z + π4t = 0. (2.5)

If the plane π is defined as π =
[
π1 π2 π3 π4

]T
and a homogeneous point as

X =
[
x y z t

]T
then equation (2.5) can be expressed in terms of inner prod-

uct

π
TX = 0.

2.1.6 Lines in P
3

There exists several ways to represent lines in P
3. Two non-coincident points X1 and

X2 defines the line going through them. Let the matrix W be formed as

W =

[
XT

1

XT
2

]

so the column space of WT spans the line. In other words the points on the lines can
be described as a linear combination of the rows of W,

X(λ, µ) = λX1 + µX2.

Lines can also be defined by the intersection of two planes. Given two non parallel
planes π1 and π2, form W∗ with the planes as its row vectors

W∗ =

[
π

T
1

π
T
2

]

.

W∗ is similar to W but it is the null space of W∗ that spans the line of intersection
between π1 and π2.

2.1.7 Construction of Plane Coordinate Systems

It is sometimes necessary to create a two-dimensional coordinate system for a plane.
This coordinate system describes a mapping from a 2D point in the plane to a 3D point
and vice versa.

In P
3 three points define a plane. Since for each of the three points π

TXi = 0, these
points can be expressed as a matrix, whose rows are the coordinates of the points. This
yields a 3 × 4 matrix whose null space is

N





XT
1

XT
2

XT
3



 = π.
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Figure 2.1: Points defining the plane, and its internal basis (u,v).

To create a coordinate system, a basis for the plane and a reference point is needed. Let
the points P̃1, P̃2 and P̃3 define the plane π. See Figure 2.1. The centroid Õ of these
points is chosen to map to the origin of the 2D system, i.e.

Õ =
(P̃1 + P̃2 + P̃3)

3
.

The base vectors for the coordinate system, Ũ and Ṽ, are also derived from the points.
If Ũ is chosen as

Ũ = P̃1 − Õ,

Ṽ can be constructed from the Euclidean plane normal Ñ =
[
π1 π2 π3

]T
and Ũ,

such that Ṽ is orthogonal to Ũ, by letting

Ṽ = Ũ × Ñ.

The mapping of a 2D point x in the plane coordinate system to a point X in world
coordinates can be expressed as a matrix-vector multiplication Mπx = X. The 4 × 3
matrix Mπ is defined as

Mπ =

[

Ũ Ṽ Õ

0 0 1

]

in [3]. The pseudo inverse M+
π performs the opposite operation, M+

π X = x. If the matrix
U is defined as U = [Ũ Ṽ] then the pseudo inverse can be formed as

M+
π =

[
U+

0T

] [

−U+Õ

1

]

.

2.1.8 Plane-Plane Intersection

As stated earlier, the intersection of two distinct planes is a line in P
3. If π1 and π2 is

the homogeneous representation of two planes then the line of their intersection is

W∗ =

[
π

T
1

π
T
2

]

.

The span of the 2D null space of W∗ is the line of intersection. If the planes are parallel
then the line of intersection will lie on π∞.
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2.1.9 Second Order Surfaces

A seconds order surface, a quadric, is defined by the general equation

ax2 + bx2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0.

This equation can be expressed as a 4 × 4 symmetric matrix

Q =







a h g p
h b f q
g f c r
p q r d







.

All homogeneous points on the surface defined by the quadric Q satisfies

XTQX = 0.

A rank deficient quadric matrix, also called a degenerate quadric, can represent a line,
plane, point, or no points at all.

2.1.10 Intersection of a Second Order Surface and a Plane

An example of a degenerate quadric is the elliptic cylinder and is defined by the equation

x2

α2
+

y2

β2
= 1. (2.6)

This equation may be rewritten to the general form

β2x2 + α2y2 − β2α2 = 0,

which gives the quadric Q of rank 3,

Q =







β2 0 0 0
0 α2 0 0
0 0 0 0
0 0 0 −β2α2







.

The intersection of a quadric Q and a plane π is a point conic on the plane. Since
XTQX = 0 if X lies on Q and since X can be defined as X = Mπx one can see that if X

lies on both π and Q then
xTMT

πQMπx = 0 (2.7)

where
XT = (Mπx)T = xTMT

π .

If Cπ is defined as Cπ = MT
π QMπ then equation (2.7) can be rewritten as

xTCπx = 0

which is the definition of a conic. As described in Chapter 2 a conic defines a second
order curve in a plane. In the general case this plane is the x-y plane.

The intersection of a cylinder and a plane can result in four different curves: an
ellipse, a circle, and two degenerate curves; coincident lines, and two parallel lines.
Figure 2.2 shows two of these possibilities. The elliptic curve is the intersection of a
plane which is tilted relative to the cylinder. The circle can be considered a special case
of the ellipse with a = b, that occurs when the plane is perpendicular to the cylinder
axis. When the plane is parallel to the cylinder axis, the intersection will consist of two
parallel lines. These lines will become incident if the plane become a tangent to the
cylinder.
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Figure 2.2: Intersection of quadrics and planes with resulting conics.

2.1.11 Classification of Conics

In [36] two approaches to conic classification are described. The first approach determi-
nates what kind of curve the conic represents by partitioning C. Recall that C is defined
as

C =





a b/2 f/2
b/2 c g/2
f/2 g/2 d



 .

Let C be partitioned into the parts

∆ = |C| , I = a + c, J =

∣
∣
∣
∣

a b/2
b/2 c

∣
∣
∣
∣

and, K =

∣
∣
∣
∣

a f/2
f/2 d

∣
∣
∣
∣
+

∣
∣
∣
∣

c g/2
g/2 d

∣
∣
∣
∣
.

With the help of these partitions it is possible to decide which kind of curve the conic
C is representing by consulting Table 2.1.

Table 2.1: Classification table (Purely imaginary solutions are omitted).
From [36].

Conic type ∆ J ∆
I

K
Hyperbola 6= 0 < 0
Parabola 6= 0 0
Ellipse 6= 0 > 0 < 0
Intersecting lines 0 < 0
Point 0 > 0
Distinct parallel lines 0 0 < 0
Coincident lines 0 0 0

The other approach presented is best described as an algorithm and can be found in
Appendix A.
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2.1.12 Transformations in Projective Space

A transformation or homography is a straight line preserving mapping of P2 onto itself.
A transformation in P

2 is defined as a Hx = x′ or





h11 h12 h13

h21 h22 h23

h31 h32 h33









x1

x2

x3



 =





x′
1

x′
2

x′
3



 .

Transformations can be classified by describing what properties of the coordinate system
that stay invariant. Here four distinct types of transformations will be discussed as well
as their invariants.

The first and the most basic transformation is the Euclidean transformation. This
transformation is composed of a translation and a rotation and can be written

HE =

[
R t

0 1

]

.

The R block of HE is a 2× 2 rotation matrix and t is a translation vector. A Euclidean
transformation will not change the length or area of the transformed object. This
transformation has three degrees of freedom; the rotation angle and the translation in
the x and y directions.

A similarity transform is a Euclidean transform with a scale factor σ resulting in

HS =

[
σR t

0 1

]

.

The scale factor adds one degree of freedom to a total of four. This also affects the
invariants of this transformation. Lengths and areas are no longer invariant, but the
ratio of lengths and the ratio of areas are unchanged under this transformation.

The third class of transformations is the affine transformation also called an affinity

HA =

[
A t

0 1

]

and has six degrees of freedom. Two degrees from the translation and four from 2 × 2
affine block A. The matrix A must be non-singular, i.e. invertible.

Since the affine transformation is not limited to a rotation, the invariant properties
are different from the previous two transformations. Orthogonality is not preserved.
However parallelism is, i.e. two parallel lines will still be parallel after an affinity.

The fourth and most general form of transformations in P
2 is the projective trans-

formation and has eight degrees of freedom. The matrix

HP =





p11 p12 p13

p21 p22 p23

p31 p32 p33





is homogeneous, meaning that it is determined up to a scale, that is why it only has
eight degrees of freedom instead of nine. The only requirement on HP is that it is
invertible. The largest difference from the earlier transformations is that a projective
transformation does not preserve parallelism.
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2.2 Cameras and Camera Models

The pinhole camera is one of the simplest forms of cameras. It is an opaque box with a
hole in one of the sides. The image plane is situated at the opposite side of the pinhole.
The world outside the box is projected onto the image plane through the hole.

A light sensitive surface that resides on the image plane accumulates the light. This
surface could for example be a film or a charge coupled device (CCD) for a digital
camera.

The pinhole camera is used as a mathematical model to describe how a camera
transforms “real world” 3-dimensional points to 2-dimensional points in an image, or

Xworld → ximage.

In the mathematical model used in this thesis, the point where all light rays intersects
is called the focal point or camera center. This point is analogous to the pinhole. The
image plane is modeled in front of the focal point in contrast to the pin hole camera,
where the image sensing device is situated behind the pin hole. This simplification
lets us ignore the fact that the image actually is turned upside down in the acquisition
process.

Let the focal point be the origin of the 3D coordinate system and the Z-axis be the
direction in which the camera is facing as seen in, Figure 2.3. Now the mapping from
a 3D point with the coordinate (X, Y, Z) to a 2D point (x, y) can be described through
this mapping[12, p. 154]:

(X, Y, Z) →







x =
fX

Z

y =
fY

Z

(2.8)

The mapping in equation (2.8) can also be described in matrix form as the camera
matrix

P =





f 0 0 0
0 f 0 0
0 0 1 0



 . (2.9)

f is the focal length of the camera, the distance from the focal point C to the principal
point p. The principal point is the intersection of the image plane with the Z-axis. The
parameters f and p are often given in mm.

Figure 2.3: Diagram of a mathematical camera model. Coincidentally
also shows the pose of a canonical camera. From [12], used with per-
mission.
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The mapping in equation (2.8) can now with the matrix P from (2.9) be turned into
a simple matrix-vector multiplication PX = x.

2.2.1 Internal Parameters

The camera matrix P is often factored into two parts. The first part, K, represents the
internal parameters of the camera, e.g. the focal length. This matrix is often called the
camera calibration matrix. The other part of P represents the external parameters, i.e.
the position and rotation of the camera, relative to the world[12, p. 155]. The internal
parameters of the mapping in equation (2.8) can be expressed as

K =





f 0 0
0 f 0
0 0 1



 .

The model described so far assumes two things about the configuration of the camera.
First that the principal point is the origin of the image. This is often not the case as most
digital image coordinate systems have the origin in the top left corner. A translation of
each point image coordinate (px, py) is needed. This leads to a new camera calibration
matrix

K =





f 0 px

0 f py

0 0 1



 .

The other assumption made is that the image sensing devices on the detector plane are
square. In other words the x-axis and the y-axis in the image plane must be equal in
magnitude. This can be remedied by adding a “stretch” factor. Let mx and my be this
factor for the x-axis respectively y-axis given in pixels/mm. By including these factors
in K the model can compensate for the scaling[12, pp. 156 - 157]. The notation of K is
simplified by substituting the products with the new variables αx, αy, x0, and y0 as

K =





mxf 0 mxpx

0 myf mypy

0 0 1



 =





αx 0 x0

0 αy y0

0 0 1



 .

The units of αx, αy, x0, and y0 are in pixels.
The last and final internal parameter in the camera model is the skew factor s. This

variable can be thought of as representing a camera where the x- and y-axes in the
image plane are not orthogonal. Although this is not likely to be the case for a digital
camera it completes the model, letting

K =





αx s x0

0 αy y0

0 0 1



 .

2.2.2 External Parameters

In the camera model described above the camera center is in the center of the coordinate
system and the camera coordinate system is aligned with the world coordinate system.
To enable arbitrary placement of the camera, a set of external parameters are added to
the camera model. The rotation of the camera is described by a rotation matrix R and
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the translation part is formed from the Euclidean representation of the camera center.
The final model

P = KR[I | −C̃]

is called the finite projective camera model.

2.2.3 Lens Distortion

The finite projective camera model is a linear mapping from a world coordinate X to
an image point x. As seen in Figure 2.3, this mapping is a straight line.

However, a real camera contains lenses that bends this straight line. This error
in the model is called lens distortion[12, p. 189]. Lens distortion cannot be described
by a linear function, thus it cannot be introduced into the camera model as such. In
photogrammetry, it is common to divide lens distortion into two distinct components,
radial distortion and tangential distortion[19].

Radial Distortion

Radial distortion is present in all lens systems. Radial distortion displace image points.
The displacement is function of the distance to the principal point p of the camera. This
effect can be seen in ordinary photographs. For example in photographs of buildings,
corners near the edges of the photographs can appear to be curved. The diagram in
Figure 2.4 shows the effect of this error.
The radial lens distortion can be modeled using the polynomial[21, pp. 297 - 298]

∆r = k0r + k1r
3 + k2r

5 + k3r
7

where

r = ||x̃ − p̃||2

is the distance from a point to the principal point, and the coefficients k0, k1, k2, and k3

are determined in a calibration process. The correction function for an image point x is
defined as

x′ =







x

(

1 −
∆r

r

)

y

(

1 −
∆r

r

)







.

Figure 2.4: Lens distortion and correction. From [12], used with per-
mission.
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Tangential Distortion

Unlike the radial distortion, tangential distortion has a decentering effect which varies
with direction of the point x with respect to the principal point. This distortion is an
effect of poorly centered lenses in the camera objective. The mathematical model to
describe this distortion is more complex and is described in detail in [21, pp. 299 - 300].

2.3 Two-view Geometry

An object imaged in two photos can be measured by triangulation, where relative 3D
coordinates can be produced. This requires the location and orientation (the pose) of
both cameras to be known. However, by matching points between the two photos, it is
possible to calculate the second pose in relation to the first pose (which could be fixed
to any arbitrary value). This relative orientation makes it possible to triangulate 3D
coordinates.

The epipolar geometry describes the relationship between two views. This relation-
ship depends only on the internal parameters of the cameras and their poses[12, p. 239].

The line between the two focal points (C and C′) is called a baseline. An epipolar
plane is defined as the plane spanned by the three points C, C′, and an arbitrary point
X. Figure 2.5 depict an epipolar plane.
Each point X defines an epipolar plane. An epipolar plane intersects each of the views,
the line of intersection is called the epipolar line, l in left view and l′ in the right view.
The 2D points in the image planes, x (left) and x′ (right) must lie on their epipolar
lines. This is called the epipolar constraint

{
lTx = 0

l′
T
x′ = 0

.

The intersection of the baseline and the image plane is called an epipole. The epipole e

is the projection of the right view’s focal point in the left view’s image plane. On the
opposite image plane the epipole e′ is the projection of the left focal point. All epipolar
lines intersect the epipole.

Figure 2.5: An epipolar plane of two views. Illustration by Arne Nord-
mann, used with permission.
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2.3.1 The Fundamental Matrix

The epipolar geometry may be described by a 3×3 homogeneous matrix F. This matrix
is called the fundamental matrix. For the complete derivation of the fundamental matrix
see [21, p. 247] or [12, pp. 246 - 247]. However, one important result is that F is directly
dependent on the camera matrices P and P′ as

F = [e′]×P′P+

where [e′]× is the cross product matrix of e′, and P+ is the pseudo inverse of P.

The following relations between the point x in the left view and the epipolar line l′

in the right view can be described in the mapping

l′ = Fx.

The corresponding mapping from a point in the right view to an epipolar line in the left
view is found through FT and thus

l = FTx′.

From these equations one can derive that for each matched point pair, x ↔ x′,

x′TFx = 0 (2.10)

will hold. Since l′ = Fx equation (2.10) can be rewritten as

x′Tl′ = 0

which holds iff x′T lie on l′ the epipolar line. This again is the epipolar constraint.

2.3.2 The Essential Matrix

The essential matrix[16] E is a 3×3 matrix with similar properties as F. But it removes
the calibration information from the equations. E only has five degrees of freedom
compared to the seven degrees in F [12, p. 257].

Consider a point x that has been mapped with P through PX = x and that P is
defined as P = KR[I | − C̃]. The point x must be transformed to its normalized form
x̂[12, p. 257]. To convert a point to its normalized form one multiplies it with the inverse
of the calibration matrix used to take the photograph, i.e.

x̂ = K−1x.

This normalization operation can be thought of as removing all the calibration informa-
tion from the point x. With normalized coordinates the same mappings as with F can
be performed with E i.e.

x̂
′TEx̂ = 0.

The relation still requires that the point correspondence x̂ ↔ x̂
′ is known.
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2.4 Error Minimization and Estimation

Error minimization or optimization is often applied when trying to solve a problem where
finding the solution will take hours, days or even longer. Methods used to perform the
minimizations depend on the nature of the problem. For this reason there exist a myriad
of different solvers with different strengths and shortcomings.

The ideal situation would be if the measured data exactly fit into the model. This
is usually not the case, and many of the algorithms previously mentioned fit data to a
model by minimizing an error measure. One example is the epipolar geometry, where
the matching points contain measurement errors.

Consider a model f(x), that depend on some parameter x. From a measurement b
it may not be possible to estimate x̂ so that f(x̂) = b. But it is possible to construct r
so that r(x̂) = f(x̂) − b and by minimizing this function an estimation x̂ can be made.

The most common error measure is the sum of the squared distances. The squared
distance might not be the most intuitive error measurement but it is optimal if the errors
are normal distributed[25, p. 246].

If the problem one is trying to solve is (partially) differentiable then a Newton method
can be used like Levenberg-Marquardt or Gauss-Newton. These methods need a starting
point, this is called the initial guess. This initial guess is often found using a direct
solution. The optimization method iteratively changes the parameters to minimize the
error, thus improving the solution. More information about non-linear optimization
methods can be acquired in [25].

In some scenarios, the measurements contains wildly outlying data points that can
not be modeled. In e.g. the calculation of the epipolar geometry, the matching points
may be mismatched. Fitting all data points then become impossible. One has to classify
the measurements as inliers or outliers. The model is then fitted to the inliers only.
Algorithms that classify points are called robust methods.

2.4.1 Linear Least Squares Approximation

The least squares method is used to approximate an overdetermined system of equations.
Usually this means fitting a linear model to a set of measured data points[1, p. 469].
Given n measured data points (x1, y1), (x2, y2), ...(xn, yn) to be fitted against the 2
parameter model y = α + βx one can form a series of equations

α + βx1 = y1

α + βx2 = y2

...
α + βxn = yn.

This equation system can be rewritten in matrix form








1 x1

1 x2

...
...

1 xn








[
α
β

]

=








y1

y2

...
yn








or Ax = b. If n > 2 the system is said to be overdetermined, there are more equa-
tions that unknowns. An overdetermined system cannot be solved directly unless the
measured points are collinear[26, p. 105].
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When there is no solution to Ax = b an approximation of x may be sought. The
least squares approximation is the solution x̂ that minimizes ||Ax − b||22. To find x̂ the
normal equations are formed as

ATAx̂ = ATb

and solved for x̂ as
x̂ = (ATA)−1(ATb).

2.4.2 Orthogonal Distance Regression

Consider a cloud of points, which we know approximately lie on a common plane. We
want to estimate an equation for such a plane. More specifically, if these points are
projected to a plane, how do we find the plane that minimizes the distances between the
original positions and the projections? If the measurement we want to minimize is the
sum of the (squared) distance of each point, the problem is called orthogonal distance
regression (ODR).

Raleigh Quotient

In order to solve the ODR problem, we will need the Raleigh quotient, defined as[33]

R(A,x) =
xHAx

xHx

where A is an Hermitian matrix and xH is the Hermitian conjugate of an arbitrary
vector x. All symmetric real matrices are Hermitian. For real values of x the Hermitian
conjugate is simply xT. For the purposes of this thesis we will only be considering real
values.

Consider A fixed. Now the only independent variable of the quotient is x. It can
be shown that R reaches its minimum value when x equals the eigenvector of A, corre-
sponding to the smallest eigenvalue[33].

Minimization Problem

The orthogonal distance between a Euclidean point X̃ and its projection on the plane
π is

dist(π, X̃) =
|π1x + π2y + π3z + π4|

√

π2
1 + π2

2 + π2
3

. (2.11)

The fitted plane will however always contain the centroid point ˜̄X, thus we can describe
π4 as

π4 = −(π1x̄ + π2ȳ + π3z̄).

Substitute π with the set {ñ, π4}, where ñ = (π1, π2, π3) is unknown. Substituting π4

in the right-hand side of equation (2.11) we get

dist(π, X̃) =
|π1(x − x̄) + π2(y − ȳ) + π3(z − z̄)|

√

π2
1 + π2

2 + π2
3

,

which can be formulated with vectors if it is squared, as

dist2(π, X̃) =
(ñT(X̃ − ˜̄X))2

ñTñ
.
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We want to add up the squared distance of all points, and minimize this sum. The
minimization problem for n points is

min
ñ

n∑

i=1

dist2(π, X̃i) = min
ñ

[

(ñTñ)−1ñT

(
n∑

i=1

(X̃i −
˜̄X)(X̃i −

˜̄X)T

)

ñ

]

.

Rewriting the problem by constructing a matrix

K =
[

X̃1 −
˜̄X X̃2 −

˜̄X . . . X̃n − ˜̄X

]

consisting of all translated Euclidean points as column vectors. The problem formulation
is now

min
ñ

ñTKKTñ

ñTñ
.

Since KKT is symmetric, the problem now visibly consists of a Raleigh quotient.
Thus we want to find the minimum of the Raleigh quotient R(KKT, ñ). As expressed

earlier, the Raleigh quotient is minimized by the eigenvector of KKT corresponding to
the smallest eigenvalue.

Let UΣVT be the singular value decomposition of K. The eigenvalue decomposition
of KKT can then be written as UΣVT(UΣVT)T = UΣ2UT. U is the eigenvector matrix
and Σ2 is the diagonal eigenvalue matrix. The eigenvectors of KKT are stored in the
columns of U, sorted in descending order by their eigenvalue[33, p. 355].

In conclusion, the ODR problem is solved by constructing the K matrix and calcu-
lating the SVD of it. The vector minimizing the objective function is the last row of U,
or simply u3 = π.

2.4.3 Robust Methods

The presence of outliers can seriously perturb fitting, especially when minimizing squared
distances. Consider the simple 2-parameter problem of fitting a linear equation to a set
of points. One point, to the eye clearly not part of any line, could seriously skew the
fitted function. Thus the fitting is not robust in the presence of outliers.

A robust method tries to identify the outliers and only fit to measurements that
are actually part of the expected function. There are several methods available, least
median of squares, M-estimators etc. One reoccurring method in photogrammetry is

(a) Fit on all points (b) Two RANSAC samples (a and b, c and d)

Figure 2.6: Naive fitting versus robust fitting. From [12], used with
permission.
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RANSAC (RANdom Sample Consensus) which will be described in more detailed in the
following section.

RANSAC

RANSAC is an iterative method for robust estimation. RANSAC needs three inputs:
First a model which the data is to be fitted against. Furthermore it needs two thresholds
t and T . t is the maximum distance a data point can be within and still be considered
an inlier. T is the minimum number of inliers needed for the solution to be considered
a good approximation of the data. The third and final input is the data to be fitted
against the model.

Lets use a 2D line like the one in Figure 2.6 as an example. The model to describe
the line is y = ax+b the input is a set of noisy point data, i.e. the points are all supposed
to lie on the line, but they do not. RANSAC’s objective is to determine the parameters
a and b which makes the line pass a close as possible to all the inlier points. A point is
deemed to be an inlier if the orthogonal distance is shorter than t2 units from the line.

The first step in RANSAC is to randomly select a number of data points from the
input set. The number of points vary with the model, two points is the smallest amount
of data points to define a line, so in this case two points are selected, this is called a
sample. From this sample the parameters a and b are calculated. Figure 2.6(b) shows
two lines from two samples.

When the sample has been fitted to the model the next step is to decide which of
the data points in the input are inliers and outliers. Again this varies with the model,
in the case of the 2D line the orthogonal distance squared is the preferred measure. The
distance from data point i to the line is d2

i⊥. By forming a simple classification function

{

d2
i⊥ < t2 inlier

d2
i⊥ ≥ t2 outlier

each point i is classified either as an outlier or an inlier.
The inliers are collected in a set called the consensus set, S. If the consensus set is

large enough, |S| > T , then the approximation of the model is sufficient for the next
step. Otherwise RANSAC discards the consensus set and selects a new random sample
and the process is repeated.

When the consensus set is large enough a final approximation is made of the data.
All the data points in the consensus set is used to make a better approximation of the
parameters. In the case of the 2D line an ODR approach would yield the final result.

On a side note, it is often a good idea to include one more input threshold in
RANSAC, N which is the maximum number of iterations, if no sufficiently good so-
lutions has been found after N attempts RANSAC simply produces a solution from the
largest consensus set found.

Adaptive RANSAC

The adaptive RANSAC is an extended version of the regular RANSAC. This approach
uses a statistical model to determinate the values of the thresholds instead of having
them fixed. Variable thresholds is very useful when the size and signal to noise ratio of
data varies a lot.

In [12, pp. 119 - 121] a model for selecting the size of N based on the probability of
selecting a sample free of outliers is derived. p is the probability that at least on of the
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N samples selected will be free of outliers. The authors recommend choosing p = 0.99.
N is defined as

N =
log(1 − p)

log(1 − (1 − ǫ)s)

where s is the number of data points in each sample. ǫ is defined as

ǫ = 1 −
|S|

|D|

where |S| and |D| is the size of the consensus set respectively the size of the data set.
The value of T , the limit on the consensus set size, can also be chosen in an adaptive
way

T = (1 − ǫ)|D|.

The final threshold t can be approximated given that one has knowledge about the
distribution of the noise that is included in the input. It is shown how this can be done
in [12, p. 120].

2.5 Photogrammetric Reconstruction

This section is an introduction of the photographic reconstruction process, which results
in a point cloud of discrete points. The necessary steps are presented, together with a
presentation of the parameters required for each step.

Network Design The number of overlapping photos and how the photos are shot
are critical to the quality of the reconstruction. It is vital to capture the object
completely and accurately. Failure to plan ahead may lead to difficulties that
cannot be corrected without going back and shooting the site again.

Calibration, On-site Photographing and Rectification Calibration is used to de-
termine the lens distortion and (in our case) to determine the internal parameters
of each camera used. On-site photographing is the actual photographing of the
site, while rectification removes the lens distortion from the images. These topics
are only briefly discussed in this thesis.

Matching Corresponding points between images need to be matched. The robustness
of this step affects the quality of the following steps, since the data acquired here
are used throughout the other steps.

Determining Epipolar Geometry An essential or fundamental matrix is calculated
using the matched points acquired in the previous step.

Relative Orientation The camera matrices are estimated using the epipolar geome-
try. Since it is not possible to know the size or location of the depicted objects,
some of the parameters in the camera matrices will be fixed.

Triangulation Calculates the 3D coordinates of matched points. Beside the matched
points, this also requires the camera matrices.

Registration Combine the triangulated coordinates to a common coordinate system.

Error minimization Minimize the combined error of all the 3D coordinates, this is
usually referred to as bundle adjustment.
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Absolute Orientation Use control points with known coordinates to transform the
Euclidean reconstruction to an external coordinate system.

2.5.1 Network Design

It is important to make sure the cameras not only capture the material needed but also
be set in correct angles to make triangulation possible and ease feature point matching.
Some factors are competing, i.e. to get a reliable triangulation a wide baseline is needed,
while the automatic feature point matching is simplified by a narrow baseline. An object
need to be shot considering both aspects. The shots are often taken moving around the
object. In order to get many feature points, there must be photos taken close to each
other, only moving a short distance along the object (narrow baseline). Wide baseline
shots are optimally taken at distances 1/4 of the circumference, i.e. at 90 degree angle
between the principal axes.

It should be noted that there are often objects blocking the view of the sought object,
this should also be considered when planning.

The rules how to layout shots involve heuristics rather than strict rules. Lerma et
al.[13] describes the 3x3 rules. These rules consists of three categories all with three
basic rules in each[5].

The geometric rules are to prepare control points (plumb lines and distances), place
shots in a circle around the object (wide baseline, preferably at a height half of
the object) and arranging stereo views properly (narrow baseline, avoiding degen-
erative configurations).

The photographic rules stress the need to have a controlled camera calibration (no
zooming, no auto-focus), planning for illumination (or artificially changing it on
site) and selecting the right camera for the work (wide angle preferred).

The organizational rules state advice about bookkeeping. First, a proper sketch
must be done, with camera positions and directions decided. Secondly, while pho-
tographing, documenting at least the calibration and camera position is necessary
for cataloging. The third rule is reminder to verify everything before leaving the
site.

2.5.2 Matching

The image correspondence problem is the problem of finding out which and how the
pictured elements in one photo relates to the elements in another photo. More precisely,
finding pairs of points between the images that belong to each other. Most seeing
creatures are hardwired to solve this problem, hence it is tempting to think of this as a
trivial problem. Unfortunately it turns out to be a difficult problem.

The usual approach to this problem is to first find places in an image – feature points
– that have distinct features [10]. There is something special with the image intensity
at these coordinates with surrounding neighborhood. Something that discerns it from
other points in the same image, while still making it possible to match with features
from another image. The detectors not only find feature points, they also describe the
points in some way, providing extra data for the matching process.

Once these points have been detected, one finds point correspondences in two photos
by comparing feature points between the two images. There are a lot of different schemes
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to match feature points. Since different feature point detectors neither find features at
the same places nor have the same kind of descriptor data, the match method is often
specialized on the characteristics of one particular feature point detector.

The difficulties with detection and matching includes but are not limited to perspec-
tive distortion and illumination changes. Some feature point detection and matching
schemes also take into account properties of the whole image – they do not blindly just
look at the individual points.

So what signifies a good feature point? Förstner[7] defined four properties that a
good feature point should have.

Distinctness A point should be distinct in relation to its neighborhood in the image.

Invariance A feature should be invariant to geometrical transformations, e.g. a change
in scale should not affect the feature point. This is to make it possible to match
points in photos where the perspective has changed.

Stability A feature should be expected to be visible in other photos.

Seldomness While the distinctness criteria states that a point should be unique with
respect to its neighbors, the seldomness property states that it should be unique
with respect to the whole image. This is to avoid repetitive patters in the photo
which could lead to false matches.

Feature Detectors

The scale-invariant feature transform method, SIFT, covers both feature point detection
and feature matching. Here follows a short description based on [18].

In order to find the same features at different zoom levels, the image is resampled
in different resolutions. This is often described as an image pyramid. This makes the
feature matching scale invariant. Each layer in the pyramid is called an octave.

Furthermore, each octave consists of a scale space, where the image is exposed to
different levels of Gaussian blur. Each level is subtracted to the next level, resulting in
new levels stored in the space of difference-of-Gaussian (DoG space).

To find points of interest, the DoG space is searched for extreme points, i.e. points
that are stronger than their neighbors in the octave and stronger than the same point
in adjacent levels. Points may be rejected if they are not distinct enough, e.g. have too
low contrast or they are situated along an edge.

In order to make the features rotation invariant, SIFT calculates both an intensity
gradient and orientation grid local to the point. An orientation histogram is calculated
from the grids, where cells close to the point are weighted higher than points far away.
The highest peak of the orientation histogram determines the dominant orientation.

The feature descriptors are created by calculating a new gradient and orientation
histogram relative to the dominant orientation. The values of the histogram is stored
in a feature vector.

Matches are formed as pairs of feature vectors. Each pair is graded according to
the Euclidean distance between the two vectors, where a short distance signifies a close
match.
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Figure 2.7: The four different solutions to the relative orientation prob-
lem given an essential matrix. From [12], used with permission.

2.5.3 Determining Epipolar Geometry

The essential matrix relation between two images is estimated from their matched points,
together with the calibration matrices. If the calibration matrices are unavailable, the
fundamental matrix can be computed instead.

Determining the epipolar geometry consists of finding the essential or fundamental
matrix that satisfies the equation x̂

′TEx̂ = 0 or x′TFx = 0 for all matched points. Ad-
ditionally, one algebraic property must be satisfied. The fundamental matrix must have
rank 2[12, p. 280], and the essential matrix furthermore needs specific singular values[12,
p. 257]. Calculating E and F is described in [32] and [12, Chapter 11] respectively.

2.5.4 Relative Orientation

To decide the relative orientation is to calculate the two camera matrices from a given
epipolar geometry. Since it is not possible to determine neither the scale nor absolute
pose from the geometry, the first camera matrix is fixed to the origin facing the z-
axis. See Figure 2.3. This camera is said to be canonical. The second camera may be
orientated in any direction, but since the scale is unknown the position is constrained to
be exactly one unit from the origin. Given the essential matrix, there are four different
camera configurations possible[12], see Figure 2.7 for an illustration. These camera
matrices can be constructed using the SVD of the essential matrix.

2.5.5 Triangulation

Consider two views with one camera matrix and one 2D point for each view, and that
the points have been matched to each other. We want to find the 3D position of the
point seen in both views.

The back-projection of an image point is a line going through both the camera focal
point and the image plane. The back-projection of each view’s point will result in two
lines. By estimating the intersection of these two lines, a 3D coordinate can be found.
If the measurements in the views contain errors, the rays will most likely not intersect.
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There are two approaches to solve this problem, either by minimizing the object-space
error or image-space error.

Back-projection

Given camera matrix P and homogeneous image coordinate x, the back-projected line
can be described as a linear combination of the camera center and a 3D coordinate X

such that PX = x for the image point. The function

l(α) = C− αP+x
︸︷︷︸

T

(2.12)

spans all homogeneous points that are part of this line[12, p. 161].
It is difficult to solve the geometric problem of forward intersection in homogeneous

space and one need to rewrite this function to Euclidean space. The resulting function
is

l̃(α) = C̃ − αT̃.

Forward Intersection

Forward intersection minimizes the object-space error by picking the point closest to
both lines. The image points are regarded as free from errors.

Given the back-projected lines l̃1 and l̃2, solve the minimization problem

min
α1,α2,X̃
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2
. (2.13)

This formulation exploits the fact that each norm describes the distance between the
point X̃ and the closest point on that line.

An alternative formulation considers the difference vector d̃ = l̃1 − l̃2. This vector
must be perpendicular[24, p. 183] to both l̃1 and l̃2. This assumption is only applicable
when the number of lines are exactly two. The former problem hence has an advantage
since it easily can be expanded to a multitude of lines.

Looking at minimization problem (2.13), the line functions can be expanded, giving

min
α1,α2,X̃
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The norms can be joined together to form a combined norm expression

min
α1,α2,X̃
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∣
∣

α1T̃1 + X̃ − C̃1

α2T̃2 + X̃ − C̃2
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∣
∣
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2

,

the content of which can be written in matrix form as

[
T̃1 0 I

0 T̃2 I

]

︸ ︷︷ ︸

A





α1

α2

X̃





︸ ︷︷ ︸

p

−

[
C̃1

C̃2

]

︸ ︷︷ ︸

b

.

In conclusion the problem can be rewritten in the common form

min
p

||Ap − b||22
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and be recognized as a common linear least squares problem. The solution to a linear
least squares problem can be found by solving the normal equations

ATAp = ATb.

Algebraic Solution

In contrast to the geometric formulation, this method requires no projected line.
Given the camera matrices P and P′ with image points x and x′ respectively, find

the point X such that

x = PX

x′ = P′X

This only works when the cameras and points are known exactly, otherwise the sys-
tem will not have any (non-trivial) solutions. One can approximate a solution anyway
using Direct Linear Transform (DLT), minimizing algebraic error rather than a geomet-
ric. The downside is that the algebraic error is dependent on the coordinate system,
hence translating or otherwise transforming the coordinates before triangulation affects
the result.

The algebraic formulation involves the cross product of two P
2 vectors:

x1 × x2 =





y1t2 − t1y2

t1x2 − x1t2
x1y2 − y1x2



 =





−t1 y1

t1 −x1

−y1 x1





︸ ︷︷ ︸

[x1]×

x2.

The [x1]× matrix has two linearly independent rows, only two equations are needed to
solve x1 × x2 = 0.

The original formulation of the problem can be written as

[x]×PX = 0

[x′]×P′X = 0

where there is one unnecessary equation in each cross product. Rewrite the system to
remove these, introducing the 4 × 4 matrix A such that

AX = 0.

If the points correspond exactly to each other, the null space of A will be one-dimensional.
However, since P,x, P′ and x′ are not known exactly, the system has only the trivial
solution X = 0.

We can however solve the problem

min
X

||AX|| subject to ||X|| = 1

using DLT.

2.5.6 Registration

The coordinates created by triangulation is relative to the camera coordinate system.
Registration puts the triangulated data and their cameras into a common coordinate
system. One way of accomplishing this is sequential relative orientation.
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Figure 2.8: Three views of a house. The orientations AB and BC is
known. Since we know that B is the same camera in both orientations,
the AC orientation can be determined.

(a) A and B (b) B and C

Figure 2.9: The two pairs of relative orientation.

Sequential Relative Orientation

Consider two relative orientations, the first between views A and B, and the second
between views B and C. See the views illustrated in Figure 2.8. By using the relative
orientation found between B and C, we want to find the location of view C in the
coordinate system of A and B.

In Figure 2.9 camera matrices PA and PB for relation AB, and matrices P′
B and

P′
C for BC are introduced. These matrices are determined with previously described

relative orientation methods. Hence PA and P′
B are canonical, and the corresponding

baselines to PB and P′
C have a fixed length of 1.

We want to find a homography H that both satisfies PB = P′
BH and scales the

baseline in BC to fit relative to AB. The scaling can be determined by comparing a
common point between the views, and the unscaled homography can be found through
DLT. Combining these two results gives the final homography. This homography may
then be used to find the missing camera matrix PC = P′

CH.

Since the camera matrices are approximated, using the resulting AC orientation to
project points might give large image-space errors. More accurate orientation can be
achieved by using more information. If there are plenty of points common in all views,
one might prefer to use points instead of the camera matrices. This also requires that
the points are all not co-linear.

Consider correctly matched points common to all three views. The points are stored
as homogeneous columns in a matrix X for AB, and the corresponding matrix X′ for
BC. The projection on C should be PCX = P′

CHX = P′
CX′ and thus HX = X′ or
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X = H−1X′. The homography H can now be determined by X and X′ alone.

2.5.7 Bundle Adjustment

Bundle adjustment is the process of minimizing the projection error over all images by
moving the 3D point coordinates and camera parameters.

Consider one 3D point X̃ projected into a view described by P. The function q(P, X̃)
applies the camera projection P to X̃, the result being a 2D point. Furthermore the
true position x̃ of the 2D point is known. Taking the difference between the projected
point q(P, X̃) and the true point x̃ gives us the residual

r(P, X̃) = q(P, X̃) − x̃.

Minimizing this residual may be written as

min
P,X̃

f(P, X̃) = min
P,X̃
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Expanding the concept to several views and points, with m points, n views, and V
is the set of all view-point pairs, the complete minimization problem can be described
as

min
P,X̃
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where
rj(Pi, X̃j) = q(Pi, X̃j) − x̃j .

The problem may be rewritten to a standardized form

min
P,X̃
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by introducing a vector function

R(. . . ) = concat
(i,j)∈V

rj(Pi, X̃j).

The problem may be solved by a gradient method like Gauss-Newton or Levenberg-
Marquardt .



Chapter 3

Surface Parameterization

Geometric surface primitives must be parameterized and bounded before they can be
turned into models of objects. Before the bounding process is described a few modeling
representations are described.

The best representation of a model depends on its purpose. If a model is to be used
in a physics simulation, the volume, mass, center of gravity of the object must be known.
However, if a model is produced for visualization purposes, information about its mass
becomes redundant. This leads to a number of different representations of models which
focuses on describing different features.

3.1 Surface Modeling

A model is a digital approximation of the 3D geometry of a (physical) object. The
model is often constructed from a set of geometrical primitives, like blocks, cylinders,
and spheres.

Wireframe Models This is the simplest form of the surface models. The wireframe
only contain information about the connectivity of its vertices. Since there is no
information about faces there is basically no texturing possibilities. Although this
form of model has its drawbacks it can be used when trying to visualize complex
shapes that are occluded.

Polygon Meshes The polygon mesh is a slightly extended model compared to the wire
frame model. In a polygon mesh structure, face information is also stored. This
allows for textured models which is an import factor in this application.

3.2 Solid Modeling

An alternative to surface modeling is solid modeling. In [28] and [9] the authors explores
the usage of Constructive Solid Geometry for modeling extracted buildings.

3.2.1 CSG

Constructive Solid Geometry (CSG) describes a solid model as a hierarchical structure
of primitives, a set of logical operations, and rigid body operations. The primitives can

29
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either be a set of simple geometrical objects, like blocks, spheres, and cylinders, or a
set of predefined primitive instances. The logical operations are union, intersection and
difference. The rigid body motions are scaling, translation and rotation.

The hierarchical relation is represented using a tree structure where the leafs are the
primitives and the nodes are operations. The root of the tree represents the modeled
object. This hierarchical structure of this model allows for fast implementations of for
example point membership. Point membership is the question whether a given point
resides in the solid. Since the model is constructed from a set of primitives and the
query whether a point resides inside a primitive is a fast operation, this is done for the
primitives and is then propagated up through the tree.

If a point resides in two primitives then it will also be included in the intersection of
those two primitives, and if a point is included in one primitive it will also be included in
the union of two primitives. On the other hand, some operations cannot be performed on
CSG model directly, for example the visualization of a CSG model requires a conversion
to a different representation, usually a boundary representation.

3.3 Extent Bounding

To create models from geometrical primitives they need to be bounded. Spheres and
ellipsoids for example are bounded (as long as their radii are finite) while lines, planes,
and cylinders are infinite in extent. Since planes extent to infinity in all directions most
of this section will deal directly with planes. There exists different ways to limit the
extent of a plane. One way to do this is to bound the plane using a set of points which
lie in the plane. Such points are referred to as member points. The idea is to let these
member points span the plane and create a convex hull, that defines the perimeter of
the plane. See Figure 3.1.

It is also possible to bound a plane using the intersections of other planes. To
completely bound a plane this technique will require at least three non-parallel planes.
Furthermore the planes must intersects the given plane. Since the three planes are non
parallel they will produce three non parallel lines of intersection in the bounded plane.
These lines will in turn intersects in non ideal points in the planes coordinate system.
These three points then span the bounded plane.

These two techniques can also be combined, so that a plane can be bound by the
span of its member points as well as one or more lines of intersection. This is done
by projecting the member points on the calculated line of intersection. The projected
points are then added to set of member points. This allows for a new convex hull to be
calculated from the updated set of member points.

3.4 Surface Texturing

To make the rendered face more realistic, its surface can be textured. Textures usually
consists of some kind of raster data. In an image-based reconstruction, photographs of
the reconstructed object is available.

Texturing is usually handled by assigning each vertex a texture coordinate. This
texture coordinate is two dimensional and consists of two elements u and v. For this
reason this is sometimes also refereed to as uv-mapping. The uv-mapping process for
the primitives may be performed by projecting each of the vertices into a suitable image
PX = x, where x is the texture coordinate in the selected image.
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Figure 3.1: From left to right: Plane bounded by intersection, plane
bounded by its convex hull, plane bounded by both convex hull and
an intersection. The arrows indicate a direction in which the planes
extends.

There is usually a large number of photos available as a texture for a single primi-
tive. To choose the optimal two simple criteria have been proposed in [22] to make the
selection process automatic. The angle between the camera which took the image and
the polygon should be as close to orthogonal as possible. Furthermore, the area of the
primitive projected into the image should be as large as possible.

Let α be the angle between the camera and the surface which is being textured.
Let A be the percentage of the area the surface covers in the image. Then ω can be
constructed as a measurement of how good texture candidate an image is

ω = β sin(α) + γA.

Here β and γ are weights. A high value of γ will make the selection function put more
emphasis on the area covered, while a large value of β will make the function more
biased towards a near perpendicular camera angle.

3.5 Plane Parameterization

A plane can be parameterized by the set

Π = {M, P, C, B,π}

where M is the 4× 3 matrix defining the mapping from the planes coordinate system to
P

3. P is the set of 2D member points belonging to the plane. C is a subset of P and
contains all the points in the planes convex hull. B is the set of 2D lines, bounds, in
the plane which has resulted from intersections with other planes. Finally the vector π

is the homogeneous representation of the plane.
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Chapter 4

Photogrammetric

Reconstruction

The dominant features of buildings can generally be broken down into building blocks of
simple geometrical primitives. Such primiteves could be rectangular blocks, cylinders,
and planes. Composite objects can be created by combining the primitives.

Photogrammetry is a process that outputs a point cloud without connectivity or
relationships between points. Hence it is necessary to label these points according to
what primitive they belong to. As an example, an operator may label all points on a wall
as being on the same plane. The points may then be fitted to the geometric primitive of
the wall, in this case a plane. Combining several of such primitives by relating them to
each other, creates a complete composite object. The strategy is illustrated in Figure 4.1.

This chapter first looks at the techniques required to calculate the points. The latter
part of this chapter will focus on how to create the geometrical primitives and then
how combine these into a surface model. The emphasis is put on combining planes and
cylinders.

4.1 Camera Calibration

Before point cloud reconstruction, the calibration matrix and lens distortion for each
camera is determined. This is usually done by photographing a special calibration
object. A separate, external application is then used to estimate the parameters. Once
determined, the calibration parameters can be reused on all photos taken with the
camera.

Figure 4.1: From left to right: 3D Points from a reconstruction. Ap-
proximated planes from the points, Solid model created from the planes.

33
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4.2 Image Management

The photographs in this thesis are digital still images taken in the range 5 – 300 meters.
The sheer number of photos required for a photogrammetric reconstruction is a problem,
even for a moderately sized scene. It is therefore required to be able to organize and
present this data in the application. A divide and conquerer approach can be applied to
this problem. The operator groups the images into smaller groups containing a single
building.

The matching of corresponding image pairs, i.e. overlapping areas in one or more
images is a fundamental part of a photogrammetric reconstruction. The solution pre-
sented in this thesis is that the operator manually pairs together matching photos in
each group. The matching process itself in each image pair is automatic, reducing the
workload of the user.

As stated earlier, the order of which images are added in the registration process
is important. The operator manually registers each photo, where the image groups are
used as an aid to the operator.

4.3 User-assisted Labeling

There are several ways to let a user label plane surfaces to be included in the 3D model.
They all assume that the user is labeling on the photos, not the reconstructed point
cloud.

Directly marking the contour with a 2D polygon This has the downside of be-
ing difficult due to occlusion and indistinct corners.

Labeling the feature points in the picture This makes it possible to use the tri-
angulated points from these labeled points to run e.g. ODR or other primitive
fitting. The downside is that the labels are discrete points and rerunning feature
point detection will not be able to reuse the labels in an effective matter. Letting
the user label the 3D cloud points is essentially the same thing as this option.

Using a “paint” tool to mark each wall with a distinct color in every photo

By using a separate mask layer, and letting a operator color-code the walls, a pro-
gram can determine what label a feature belong to by referencing the mask. The

Figure 4.2: Point labeling
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user may skip objects that occlude the wall and there is no need to exactly mark
the contour of the wall. This paint information could also be useful in texture
extraction. See Figure 4.2

4.4 Point Reconstruction

In this section the specific methods used to reconstruct 3D point clouds in this thesis
are presented. All measurements and calculations are made by algorithms. Since there
will be measurement errors, robust methods are used to estimate a solution. The robust
method is aborted if it goes beyond 1000 iterations. When a solution has been estimated,
it is shown to the operator, which decides whether or not to register the result.

4.4.1 Image Rectification

Since camera lenses introduce nonlinear errors in the photos, all images were rectified
with a separate external application. To simplify the prototype, it only manages rectified
images.

4.4.2 Feature Point Detection and Matching

Feature point detection and matching are done with SIFT[18] through a software library
called SIFT++. SIFT have many different parameters that can be adjusted to the
specific characteristics of the input images. The values used in the implementation by
Lowe are sufficient, and often give a large amount of points.

Matching is done pairwise, iterating through all features in the first image, comparing
them to the features in the second image. The Euclidean distance between the feature
vectors are used to order the features according to similarity. In order to avoid creating
pairs where there are multiple similar features, the two pairs with shortest distance are
determined. If the difference between these distances is too small, and the match is
discarded. Otherwise the pair is significant enough, and a match is created.

4.4.3 Epipolar Geometry

The epipolar geometry is determined with the five-point method by Stewenius at al[32].
This method requires only 5 points as a minimum, and is superior to the other five-point
methods known. Unlike similar 5-point methods, it correctly determines situations solely
consisting of co-planar points. Up to ten solutions may be returned, due to ambiguities.

RANSAC is used in order to make the fitting robust to outliers. The essential matrix
with most inliers is selected, using the Sampson distance[12] as distance measurement.
This is a geometric image-space error. The distance also determines which solution to
use from those returned by the 5-point method.

4.4.4 Relative Orientation and Triangulation

The relative orientation for the essential matrix gives four different solutions for the
relative camera matrix (the canonical camera is fixed). See Figure 2.7. In order to
determine which camera matrix is most likely to be correct, triangulation is done for
each solution. Each solution is a pair of camera matrices: the canonical and the relative



36 Chapter 4. Photogrammetric Reconstruction

Figure 4.3: Above: Two photos with automatically matched points
(red). Below: Triangulated points (magenta) together with representa-
tions of the canonical (red) and the relative (green) cameras. Outliers
have been removed automatically.

matrix. A successful triangulation can be seen in Figure 4.3. The pair with the highest
amount of points in front of both cameras is chosen.

There are several different reasons why points triangulate behind the camera pair.
There might be outliers from the match process, since triangulated mismatches may
have very deviant positions. Another reason might be that some points are close to the
epipole and thus easily perturbed, causing a whirlwind-like effect. These two reasons
have nothing to do with the relative orientation. A third reason, and the cases we
want to detect and avoid, is that either one of the cameras is orientated in the wrong,
opposite, orientation. The points are thus projected correctly to the image plane, but
their triangulated position in relation to the camera would be impossible.

4.4.5 Registration

Registration is initiated by picking a starting image pair. The resulting point cloud from
the triangulation can be directly saved into the register. In Figure 4.4, the starting pair
is AB. The next image pair in the registration tree is BC, then CD and so on.

An image pair, lets say BC, is registered by looking at its triangulated points. If there
are at least 3 points common with the register, which in this case consists of points from
AB, the registration can be performed. The 3-point limitation is due to the rigid-body
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Figure 4.4: Topological view of a sequence of cameras.

(a) Before (b) After

Figure 4.5: The Kiosk shot using the stereo rig. 22 left cameras and 4
right cameras has been registered. After bundle adjustment, the four
right-hand cameras move significantly, correctly taking their places in
the stereo pairs.

transformation method of sequential orientation. If the rigid-body transformation can
be calculated correctly, the extra points in BC can be added, and the common points
are merged into tracks. A registered point that is visible in both A, B, and C is called
to be tracked through these images. If one of the two views in the pair have not already
been registered, the camera position is also registered. In the case of registering BC, the
camera position of C would be created in the register. If AC would later be registered,
only the point information would be updated.

The rigid-body transformation is determined by the method described by Söderkvist
and Wedin[31].

4.4.6 Fine-Tuning

The point reconstruction is fine-tuned by minimizing the image-space error with bundle
adjustment. The track information from the registration is used during the adjustment,
i.e. features that are matched over several images are reconstructed as one 3D point.
Both the external parameters of the cameras, and the position of all reconstructed
points are adjusted in the minimization. The minimization problem is solved with a
Levenberg-Marquardt algorithm.
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4.5 Plane Surface Reconstruction

Most buildings have large walls built of bricks or wood. These walls can be measured
by fitting a mathematical plane equation to it and model it with a polygon surface with
all vertices coplanar. The intrinsic depth structure of the wall – like individual bricks –
is not modelled.

To fit a plane to a photographed surface, one has to somehow make it possible to
mathematically describe the problem. There are basically two major approaches, either
use 2D data (photo measurements) or 3D data (point cloud from reconstruction).

Using 2D data directly is difficult, one could mark the outline of a wall in two
photos and triangulate the 3D outline. This is hard to accomplish because the user will
not be able to enter the outline consistently over all photos and with enough precision
to make for a reliable input. Even if these problems were solved there is still the
problem of relative orientation needed for triangulation, which is more reliably solved
with traditional reconstruction methods.

On the other hand, using 3D data to model planes is easy since the hard work is
already done – the triangulation. A plane equation can be fitted to the reconstructed
3D points using ODR.

Limiting the primitive is necessary since walls have a limited span, unlike planes
which are infinite. Possibly the plane could be limited by its outermost points, i.e.
the convex hull. Regarding buildings and other block structures, limiting the plane in
intersections with other planes is a possible solution.

4.6 Reconstruction of Composite Objects

From the perspective of creating a realistic 3D model of a reconstructed object the pure
mathematical representations of the geometrical primitive does not suffice. The geomet-
rical primitives must be bounded and combined with other primitives into composite
models. The composite models may later be textured for a more realistic look.

4.6.1 Extent Bounding

Since planes are approximated from measurements which are not exact the approach
described in Section 3.3 does not always suffice. For example, if a rectangular box is to be
created from a set of planes then only points lying on the surface of the rectangle should
be included in the model. If there is a set of outlier among the plane’s member points,
i.e. lying outside of the rectangular box, they would been included in the model and
produced jagged edges on the rectangle instead of straight edges as desired. Figure 4.6
shows an example of such artifacts.

The solution to this problem is to only keep member points which are on the correct
half plane. The half planes are created when a line of intersection partitions a plane
into two parts. To decide which half plane is the correct one, a membership majority
function can be constructed to decide which half is to be kept. Simply put, the half plane
with the largest number of member points is deemed to be the correct one. The plane’s
set of member points can then be updated and a new convex hull can be calculated.
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Bounding from Multiple Primitives

When a plane is bounded from several other primitives, special care has to be taken
when the convex hull is updated. This is due to the fact that the line of intersection on
which the member points are projected upon, might have been bounded in a previous
intersection.

Take for example the gable of a saddleback house. This facet of a plane is bounded
by four other planes, the two adjacent walls and the two sides of the roof, Figure 4.7. To
solve this problem one can keep track of the previous bounds and make sure that only
points which are on the correct side of all previous bounds are included in the convex
hull.

4.6.2 Texturing

Each model is textured by uv-mapping the points from the convex hull. Each point is
projected onto an image and assigned uv coordinates. The image that is selected as
texture data is the photograph that contains the most member points.

A surface that spans many photos, i.e. there is no photo in which the entire surface
is visible causes problems. One of the problems is that many rendering systems require
the whole surface to be mapped to the same raster. Although it is possible to merge
images, the result is going to contain ugly seams. This could potentially be solved by
using an automatic stitching algorithm. But care has to be taken so that the mapping
of 3D points into the merged photo are correct.

Figure 4.6: Bounded plane showing a jagged edge due to erroneous point
data.
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Figure 4.7: Gable of a saddleback house. From left to right: Desired
convex hull. Projection trace of two member points (dashed) and lines of
intersections (bold). Finally the erroneous convex hull due to unchecked
bounding (bold) and the desired hull (dashed).



Chapter 5

Implementation

The prototype application was written for GNU/Linux systems, and features a graphical
user interface together with persistant storage. A complete list of all used software is
available in Appendix C.

5.1 Development Tools

The choice of programming language for the prototype application was Python. Two
major factors were significant in the choice of language: Rapid development, and the
ready accessibility to a vast number of libraries. Python is a high-level multi-paradigm
scripting language. Since it is a scripting language and has numerous modules to inter-
face third-party libraries, it was deemed suitable.

Development of a GUI (graphical user interface) applications can be time consuming
due to the amount of code that must be written, both in regard of GUI widget layout
and event handling. Instead of programming the layout using the API, the layout was
done graphically using the Glade Interface Designer.

5.2 Numerical Calculations

The numerical calculations and algorithms were implemented in m-code, the Matlab

language. Since a lot of algorithms have already been implemented in this language, it
was advantageous to be able to use existing implementations.

Although the numerical code originally was written to be interpreted by Matlab,
the Octave software was used to run the code. Octave, unlike the proprietary Matlab,
is free software. This makes it possible to read the source code and create derivative
work of the software.

To be able to call Octave and have the calculations returned to the calling script, a
Python module was written specifically for the thesis. The module, called Pytave, dy-
namically links against the Octave libraries. This makes an Octave interpreter reachable
through the module Python interface. For convenience, arguments and return values
are transparently converted between the native data structures of both languages. The
module has been published as free software and is available on the Internet.

Similar modules were also written to interface the SIFT++ and sba libraries, which
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previously had no Python interface. Bundle adjustment is done with the sba implemen-
tation from Lourakis and Argyros[17].

5.3 Relational Database

The prototype uses a relational database to store photos, user input, intermediate data,
and the final result. A self-contained, server-less relational database manager called
SQLite 3 was used through a Python module pysqlite.

The overall design of the database scheme is diagrammed in Figure 5.1.

5.4 Bundle Adjustment Package

Version 0.2 of the Bundler application from [29] has been evaluated, a program derived
from the system used in [30]. It was possible to run the demo application with custom
input. However, difficulties emerged when trying to adapt the package to the purposes
of this thesis. Problems included memory errors both in input parsing and in the data
processing. It was deemed too time-consuming to fix these shortcomings.

5.5 Workflow Implementation

Before the photographs can be used in the application the radial distortion must been
removed. The calibration data must be specified when loading the images into the
application.

Image groups After the images has been loaded the first task the operator performs
is to create one or more image groups. Images that are related in some way are
placed in the same image group. This could for example be all the images of a
single building. Figure 5.2 shows an example of this view. The main view display
feature points superimposed on the photograph as red squares.

Image pairing When the photographs has been placed into suitable image groups, the
operator pair the images. SIFT feature point matching is performed on each image
pair. Figure 5.3 shows an image pair being matched.

Triangulation For each image pair the operator calculates the relative orientation and
triangulates the matched points. The operator can preview the result and decide
whether it is adequate to be added to the sequential registration, or if needs to be
recalculated.

The operator has the possibility to change the minimum degree of separation of
the SIFT matching. This can be thought of as how good each match must be
to be considered a correct match. Figure 5.4 shows the relative orientation and
triangulation results of an image pair.

Bundle adjustment Bundle adjustment can be done as long as the sequential regis-
tration has been initialized. The operator would usually run this operation when
the sequential registration is done. The view seen in Figure 5.5 offers views of
both before and after bundle adjustment has been performed.
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Plane fitting The plane fitting consists of two steps. First the operator marks the
surfaces of interest in the images. Each surface is marked with the same color in
each image. When all the surfaces has been marked the operator can create planes
from the labeled points.

The operator has the option of removing points that have been mislabeled or
wrongly triangulated.

To combine planes, the operator selects two planes and issues the intersect com-
mand. The operator also has the option to export the model to an external 3D
modeling application. Figure 5.6 shows a labeled photograph, color coded points,
and half completed model.
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Figure 5.1: ER diagram of the relational database.
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Figure 5.2: View of the image grouping screen. Panel on the left shows
images belonging to the selected image group. Top right panel offers
a larger view of the select photograph. Bottom right panel shows all
available images.

Figure 5.3: View of the image pairing screen. The top right panel
displays the images to be paired.
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Figure 5.4: View of the triangulation screen. Top right panel displays
the matched featured points. Lower right panel displays the triangulated
3D points and camera positions.

Figure 5.5: View of the bundle adjustment screen. The Right panel
shows a view of all camera positions and points added to the sequential
registration. The view offers a comparison of results before and after
bundle adjustment has been performed.
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Figure 5.6: View of the plane fitting screen. The top right panel offers
the operator the possibility to label surfaces. The lower left panel dis-
plays the color coded 3D points marked in the image. Lower right panel
shows the textured surfaces.
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Chapter 6

Image Acquisition

All images were acquired specifically for the work in this thesis, using digital SLR cam-
eras. The sites were shot using a stereo rig of two cameras, mounted on a tripod. The
rig consisted of two Canon Eos 40D digital cameras situated 52 cm apart. A photograph
of the used rig can be seen in Figure 6.3.

6.1 Exposure Time Experiment

A series of photographs were taken on each site while changing the exposure time. For
each of the two series, 7 different exposure times were used: 1/100, 1/50, 1/25, 1/10,
1/5, 1/2, and 1 second. A remote shutter trigger was employed to minimize movement
during exposure.

Two different sites on the university campus were used; the facility Universum (Uni-
versum) and the MIT building (MIT ). Photographs of MIT and Universum can be seen
in Figure 6.1 and 6.2.

The experiment was performed January 22, 2009 around noon time.

6.2 Site Photography

The photo sets presented in this thesis were shot using a shutter speed of 1/8 of a second.
The reconstructions of four sites were selected to be presented in the thesis. These sites
are:

– Origo, a facility building / night club owned by one of the student unions at Ume̊a
University (Figure 6.4).

– A small Utility House located between the MIT building and Teknikhuset (Fig-
ure 6.5).

– Fantastisk Grill, a small fast food kiosk (Kiosk) situated on the Ume̊a university
campus area (Figure 6.5).

– Minerva, a secondary education school close to the campus (Figure 6.7).

The front facade of the Minerva building was shot along the opposite of the neigh-
boring road. The Utility House and Kiosk was shot from all sides. At the Origo site the
front facade and entrance was shot.
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Figure 6.1: Photograph of MIT.

Figure 6.2: Photograph of Universum.
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Figure 6.3: Stereo rig used during the photo sessions.

Figure 6.4: Photograph of Origo.
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Figure 6.5: Photograph of Utility House.

Figure 6.6: Photograph of the Kiosk.

Figure 6.7: Photograph of Minerva.



Chapter 7

Results

Four different photo sets have been used with the prototype application. The recon-
structed models are presented in the end of this chapter.

7.1 Exposure Time Experiment Results

SIFT matching is an important element in the prototype application, getting a lot
of correct matches is important to be able to successfully run e.g. sequential relative
orientation. Thus to examine what impact shutter speed has on SIFT matching, an
experimental photo session on two sites was performed.

For each of the corresponding photos in the stereo rig, feature point matching was
performed. Only photos with the same exposure times were matched. The result is
shown in Figure 7.1.
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Figure 7.1: Diagram of the number of SIFT matches as a function of
the exposure time.

(a) Exposure time 1/100 s. (b) Exposure time 1/25 s.

(c) Exposure time 1/10 s. (d) Exposure time 1 s.

Figure 7.2: MIT shot with four different exposure times.
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7.2 Reconstruction Results

The number of photographs, reconstructed points, surfaces fitted, and points used in the
fitting are shown in Table 7.1 together with the time consumed for each site. The time
is measured in wall time (hh:mm). The time measurement only includes triangulation,
registering, labeling, and surface fitting.

The Origo photo set did not produce enough feature point matches to be able to
do relative orientation. The building and the ground had few matches, while the back-
ground – consisting mostly of tree tops – had the majority of the matches. A photo
from the set can be seen in Figure 7.3. No further results are presented on this site.

The Utility House (Figure 7.4) was fully reconstructed, with all walls and roofs
modeled. A full lapse around the building was completed. The background elements
of this photo set was static and close to the utility house. Views of the model, both
textured and in wireframe, can be seen in Figure 7.5 and 7.6.

The Kiosk (Figure 7.7) was also reconstructed with a full lapse. The surrounding
environment of this site was more complex, with backgrounds depicting far-away objects
– some of which was moving. See Figure 7.8 and 7.9.

The front facade (Figure 7.10) of Minerva was reconstructed, creating a complex
model. This building was shot with a distance ranging 50 – 100 m, unlike the other
buildings that were shot at a distance of 5 – 20 m. The textured model can be seen in
Figure 7.11 while 7.12 shows the same reconstruction as a wireframe.

Table 7.1: Comparison of model complexity.

Site name No. photos No. points No. surfaces No. used points Time
Utility House 41 11946 9 1328 1:10
Kiosk 24 6909 8 3113 1:45
Minerva 16 4636 12 940 0:45

Figure 7.3: Photograph of Origo.
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Figure 7.4: A photograph of the Utility House.
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(a) View front.

(b) View from above.

Figure 7.5: Two views of the Utility House.
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Figure 7.6: Two views of a reconstruction of Utility House.
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Figure 7.7: Photograph of the kiosk.

Figure 7.8: Reconstruction of the Kiosk.
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Figure 7.9: Wire frame view of the Kiosk.
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Figure 7.10: Photograph of Minerva.

Figure 7.11: Two views of a textured model of Minerva.
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Figure 7.12: Two views of a wireframe model of Minerva.



Chapter 8

Conclusions

The aim of this thesis was broad, both in implementation and theory. Evaluation of
methods described in various papers is time consuming and can be theoretically difficult.
This limited the number of methods that were thoroughly evaluated. With the broad
aim in mind only existing solutions and implementations were employed in the prototype
application.

8.1 Feature Extraction Analysis

In the summer season, northern Sweden has sunlight during a majority of the day. It
is possible to photograph an out-door object by simply walking with a camera and
shooting by hand. In the winter season however, not even noon daylight is always
enough to ensure good image quality with a hand-held camera. The shutter speed must
be longer, and holding the camera by hand is not stable enough. Hence it is necessary
to use a tripod and use an extended exposure time.

From the experimental results shown in Figure 7.1, it was clearly visible that proper
lighting conditions improved the number of matches. For reference, four of the pho-
tographs of the MIT site shot with different exposure times can be seen in Figure 7.2.

The backgrounds in the photo sets were a significant factor in whether or not the
relative orientation was successful, especially if the reconstruction object was depicted
only on a smaller fraction of the image area. If the background only consisted of trees
and moving objects, the reconstruction process proved more difficult. This was the case
for the Kiosk photo set. On the other hand, The Utility House had other buildings in
the background and was easier to reconstruct.

Another problem that arises during the winter season is that snow covers the ground
around the objects as well as roofs. This leads to fewer feature points around objects
which in turn could cause the reconstruction to fail. The Origo photo set (Figure 7.3)
suffered from this problem, having few feature points in its surroundings. The backdrop
of the photos was both far away and consisted of swaying tree-tops.

8.2 Time Consumption

No clear conclusions can be made from the time consumption presented in Table 7.1.
However the different scenes posed different problems. For example the point labeling
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step in Minerva set consumed more time than in the other sets. The Minerva building
was more complex in shape compared to the Kiosk and the Utility House. Minerva was
shot from a longer distance this also contributed in making the labeling process more
cumbersome. While geometrical simple, the registration process of the Kiosk was more
problematic than the other sites, due to the backdrop of the photo set.

In conclusion, many factors play a role in time consumption of a reconstruction, and
it should be noted that the individual operator has a large impact on time. The results
presented in Table 7.1 were acquired from different operators.

8.3 Implementation

The application consists of both compiled C++ libraries and interpreted Python and
m-code. This way, each problem domain could be treated with its closest matching
language. Some algorithms were already implemented in C or C++, and we were able
to reuse those implementation. Similar things could be said about using m-code to solve
mathematical problems and Python to create the graphical user interface.

Using a relation database scheme instead of developing custom data structures proved
advantageous, since saving, reading, and combining data could be delegated to the
database manager. An added advantage of using Sqlite is that the database is stored as
a single file on the file system, making it easy to move projects between computers.

8.4 Restrictions

One restriction on the prototype application is the lack of support for uncalibrated
cameras. This was motivated by the fact that using a calibrated camera makes the ap-
proximation of the epipolar geometry better conditioned. Furthermore, the calibration
process does not consume much time, and is done only once.

One feature lacking in the prototype is the possibility to model the ground around
buildings. This was deemed out of scope for this thesis due to time limitations. This
lack of ground modeling capability makes measurements of larger environments difficult.

The choice of only using automatic feature point detection and matching turned
out to be less flexible than desired. Allowing for an operator to manually edit the
correspondence matching would have been a useful feature in the case of bad input.

Measurements and modeling of planes had a higher priority than cylinders through
the work. This caused the cylinder measurement and modeling to be cut out from the
application. Though some parts of the theoretical work was kept and can be found in
Appendix B.

8.5 Limitations

Lack of texture on walls is a problem that can causes the correspondence matching to
fail. This problem can also arise when photographs are taken under badly illuminated
conditions.

It is not possible to recalibrate the calibration matrices against a reconstruction. In
other words, fixing the reconstruction and minimizing the reprojection error by changing
the camera matrices. The implementation of bundle adjustment (sba) does not support
changing the parameters of the K matrix globally.
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Furthermore there is no error estimate presented to the operator in certain steps,
instead the operator has to make a judgment if the result of e.g. a triangulation is
plausible. No undo feature has been implemented in the prototype.

The texturing scheme used in the prototype may introduce visible artifacts in the
models. These artifacts results from the projective changes in photographs. To avoid
the artifacts, photographs picturing the surfaces orthogonally, in relation to the surface
should be used as textures.

8.6 Evaluation of Aims

Image pairing was implemented as a completely operator-lead process. The automated
point matching was implemented with SIFT and proved largely successful, given photos
of high quality. Some difficulties arose in certain circumstances. Problematic cases
included organic, moving backdrops and low-contrast surroundings.

Designing a flexible and usable way for the operator to perform these task raised
some interesting questions. For example, how does the operator select the input for a
plane reconstruction. The choice in this particular case fell on labeling portions of the
image in which the plane is visible. This approach is flexible since 3D points can change
if a new triangulation is made. The feature points in an image can also change if the
correspondence matching is updated. The photographs however do not change, an area
portraying a plane will always do so.

Since the number of photos required to make a reconstruction is large, at least a
couple photos of each building’s wall, gaining a good overview of the input data is
difficult. The proposed solution to this is to allow the operator to group the images
together into smaller groups. The use of photo groups improved the overview of the
large input and allowed the operator to focus on the task at hand.

One aspect of the workflow design was to use automatic methods for measurements
and calculations. The estimated solution is then visualized to the operator. Using this
visualization, the operator can determine whether or not the solution is adequate.

8.7 Future Work

Photogrammetry and computer vision is quite an active area of research, and there
exists interesting features on which further study can be made. Here a few approaches
to improve the model and the reconstruction process are presented.

8.7.1 Parameterized Primitive Instancing

Primitive instancing is a way to avoid “reinventing the wheel” while modeling. His-
torically this has been models like bolts and screws in CAD software which can be
instantiated by simply entering a diameter, etc. Compared to going through the whole
process of modeling the object instancing is much faster. Given a database contain-
ing the simplest forms of buildings like hip-, flat-, pent-, and saddleback-roof buildings
would, combined with traditional modeling be a good asset. The parameters to these
models could be the lengths of the different edges, or a more flexible model, where one
specify ratios of lengths and angles between the different pieces in the model.
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8.7.2 Fitting Models to Geometrical Primitives

To be able to take full advantage of primitive instancing there must exist a convenient
way to fit these models to point clouds measured in a reconstruction. The fitting process
could be seen either as a minimization problem, where the application tries to automati-
cally fit the model to a given point cloud, or an operator guided approach. The operator
could for example fit parts of the model to a subset of the point cloud and for each step
remove degrees of freedom from the model until it is fixed.

8.7.3 Creating Parametrized Models

The parameterized modeling would be a lot more flexible if the operator could create
generic models which in turn could be saved in the model database and then be used
for instancing. The models could also have a set of basic parameters, e.g. what angles
should be fixed, free, or perpendicular. Further parameters could be ratio of lengths
and areas.

8.7.4 Extended Modeling Tools

Doors and windows in buildings are often “sunken” into facades. To model this correctly
at least 4 or 5 planes including the window or door has to be measured. A more efficient
solution to this problem would be to implement an intrude operation. The intrusion
operation automatically connects the sunken plane, e.g. window or door with the facade
polygon without the need to measure the adjacent planes.

Another useful feature is the opposite operation of an intrusion, i.e. the plane is
not sunken into a facade but is extruding from it. These features could thus improve
workflow of the application.

8.7.5 Facade Detail Enhancement

One way of extending the level of detail of the facades would be to implement the
features proposed by Pascal Müller et. al. in [23]. Here methods to automatically derive
high resolution 3D models from a single rectified photograph of a facade is presented.
The approach described utilises image analysis to subdivide the facade. The facade is
then reconstructed using procedural modeling.

[35] explores the possibilities of using computer vision techniques to identify common
architectural details on buildings, particularly on facades. Indentions on the wall surfaces
as like windows and portals may be extracted automatically.

8.7.6 Guided Matching

Currently, primitives are created from triangulated SIFT matches. The SIFT matches
are very good while creating the relative orientation, but are less than perfect for prim-
itive reconstruction. The point clouds are often sparse, and some walls can have very
few SIFT matches. Still the camera poses has been determined, and this could be used
to get denser clouds. Since the camera positions are known, the epipolar constraints can
be used to make quasi-dense matching[15][14].

Another possibility is to use the plane geometries and try to improve them. A plane
visible in two images could be translated into a homography, which could be used to
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do a guided template matching[2][8]. This would improve the accuracy of the plane
geometry.

Using a stereo rig creates several advantages. Since the relative orientation is fixed
in the rig, it is possible to calculate this once and use it for every photo pair. This also
improves feature point matching between these photo pairs since the epipolar constraint
can be used while matching the points.

8.7.7 Reusing Label Information

In the prototype application the operator label surfaces in photos by coloring them. This
information could be put to other uses as well. Consider the image matching problem,
if for example a red surface is painted in two photos then matching could automatically
be performed between these images. The color information could potentially also be
employed as an initial guess for the sequential registration process.
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Appendix A

Conic Classification Algorithm

Note that the algorithm described here ignore imaginary curves. If there are multiple
substitutions in the same step these are performed simultaneously.

if b 6= 0 then

Let q =

√
(

c−a
b

)2
+ 1 + c−a

b
and perform the substitutions x → qx and y → qy.

end if

Now b = 0
if c = 0 then

Perform the substitutions x → y and y → x
end if

Now c 6= 0
if g 6= 0 then

Perform the substitution y → y − g

2c

end if

Now g = 0
if a = 0 then

if f 6= 0 then

Perform the substitution x → x− d
f
. Now d = 0. Dived the equation with c. The

conic is a parabola. On the form y2 = αx where α = − f

c
.

else

The conic is degenerate.
if d = 0 then

The conic is the line y = 0 with multiplicity two.
else if d < 0 then

The conic is the two parallel lines y = ±
√

− d
c

end if

end if

else

if f 6= 0 then

Perform the substitution x → x − f
2a

end if

Now f = 0
if d 6= 0 then

Divide the equation with d.
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76 Chapter A. Conic Classification Algorithm

Now d = 1
if sgn(a) 6= sgn(c) then

The conic is a hyperbola with α = 1√
a

and β = 1√
c
. If necessary exchange x

and y to make a positive.
else if a ≥ 0 and c ≥ 0 then

The conic is an ellipse with α = 1√
a

and β = 1√
c
. If a > c exchange x and y so

that a ≤ c. If α = β then the conic is a circle.
end if

else

If a and c has different signs then the conic represents a line, y = αx where
α = ±

√
− c

a
. If a and c has the same sign then the conic is a point, the origin.

end if

end if

Since the curve produced by this algorithm is on its normal form the curve is not a true
representation of the conic, so for each point xi derived from the standard equation it
must be transformed xi → x′

i so that x′T
i Cx′

i = 0 holds. This is done by reversing the
substitutions performed on the equation on the point i.



Appendix B

Cylinder Reconstruction

B.1 Quadric Representation Revisited

A quadric is defined by a symmetric 4× 4 matrix where all points on the surface satisfy
XTQX = 0. The dual quadric is a function that defines all planes tangent to the
surface. If Q∗ is the adjoint matrix of Q, then π

TQ∗π = 0, where π is a homogeneous
vector describing a plane tangent to the quadric. The 2D analog is the dual conic, with
lTC∗l = 0, where the line l is tangent to the conic C.

A projection of the quadric can be described in simple terms using the dual repre-
sentation, namely PQ∗PT = C∗, where P is an arbitrary camera matrix.

The idea here is to use the projected conics to reconstruct the quadric.

For two cameras P, P′ with the quadric Q projected to C and C′ respectively, we have
a system:

{
C∗ = PQ∗PT

C′∗ = P′Q∗P′T

This is the system we want to solve in order to determine the quadric from two views,
where it is being projected as a conic.

Now we take advantage of the fact that Q∗ and C∗ are symmetric, and rewrite the
system to:

{
Bv∗ = c∗

B′v∗ = c′∗

Bv∗ = c∗ has 6 equations, but a conic only has 5 degrees of freedom. Let’s add the
scaling explicitly.

{
Bv∗ = αc∗

B′v∗ = βc′∗

Naturally this can be rewritten as a single matrix system:

[
B c∗ 0

B′ 0 c′∗

]




v∗

α
β



 = 0
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Figure B.1: Parameterized cylinder.

The null space will have several dimensions (there are an unlimited number of quadrics
that satisfies these conics), and one must have additional data to get a unambiguous
reconstruction.

B.2 Cylinder Parameterization

A cylinder can be parameterized as the set

C = {P1,P2, Q, Ω̃, α, β}

where P1 and P2 is two point lying on the center line of the cylinder in P
3. Furthermore

Q is the quadric defining the cylinder. Ω is the “direction” vector which defines the base
direction and is perpendicular to the base line and its Euclidean 2-norm is the radius of
the cylinder. The scalars α and β defines how much of the cylinder which has a surface.
Figure B.1 visualizes a parameterized cylinder.



Appendix C

List of Software Libraries

List of software libraries used for the prototype application along with their licences and
web address where more information and documentation can be found.

– Glade Interface Designer GPL http://glade.gnome.org/

– GTK+ LGPL http://www.gtk.org/

– Octave GPLv3 http://www.octave.org/

– pysqlite Custom license http://pysqlite.org/

– Pytave GPLv3 https://launchpad.net/pytave/

– sba GPL http://www.ics.forth.gr/∼lourakis/sba/

– SIFT++ Custom license http://vision.ucla.edu/∼vedaldi/code/siftpp/siftpp.html
Note: This library has, since this thesis was written, been superseded by a new
library called VLFeat, which is distributed under the GPLv2 license.

– SQLite 3 Public domain http://www.sqlite.org/

– VTK VTK license (BSD-derived license) http://www.vtk.org/

– essmat5.m License unknown.

– ransac.m Permissive license. From Peter Kovesi’s homepage.
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