
Architectures, Design Methodologies,
and Service Composition Techniques

for Grid Job and Resource
Management

Per-Olov Östberg

LICENTIATE THESIS, SEPTEMBER 2009
DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY
SWEDEN

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

p-o@cs.umu.se

Copyright c© 2009 by authors
Except Paper I, c© Springer-Verlag, 2007

Paper II, c© Springer-Verlag, 2008
Paper III, c© Crete University Press, 2008
Paper IV, c© Springer-Verlag, 2009

ISBN 978-91-7264-861-6
ISSN 0348-0542
UMINF 09.15

Printed by Print & Media, Umeå University, 2009

Abstract

The field of Grid computing has in recent years emerged and been established as
an enabling technology for a range of computational eScience applications. The use
of Grid technology allows researchers and industry experts to address problems too
large to efficiently study using conventional computing technology, and enables new
applications and collaboration models. Grid computing has today not only introduced
new technologies, but also influenced new ways to utilize existing technologies.

This work addresses technical aspects of the current methodology of Grid com-
puting; to leverage highly functional, interconnected, and potentially under-utilized
high-end systems to create virtual systems capable of processing problems too large
to address using individual (supercomputing) systems. In particular, this thesis studies
the job and resource management problem inherent to Grid environments, and aims to
contribute to development of more mature job and resource management systems and
software development processes. A number of aspects related to Grid job and resource
management are here addressed, including software architectures for Grid job man-
agement, design methodologies for Grid software development, service composition
(and refactorization) techniques for Service-Oriented Grid Architectures, Grid infras-
tructure and application integration issues, and middleware-independent and transpar-
ent techniques to leverage Grid resource capabilities.

The software development model used in this work has been derived from the
notion of an ecosystem of Grid components. In this model, a virtual ecosystem is
defined by the set of available Grid infrastructure and application components, and
ecosystem niches are defined by areas of component functionality. In the Grid ecosys-
tem, applications are constructed through selection and composition of components,
and individual components subject to evolution through meritocratic natural selec-
tion. Central to the idea of the Grid ecosystem is that mechanisms that promote traits
beneficial to survival in the ecosystem, e.g., scalability, integrability, robustness, also
influence Grid application and infrastructure adaptability and longevity.

As Grid computing has evolved into a highly interdisciplinary field, current Grid
applications are very diverse and utilize computational methodologies from a number
of fields. Due to this, and the scale of the problems studied, Grid applications typically
place great performance requirements on Grid infrastructures, making Grid infrastruc-
ture design and integration challenging tasks. In this work, a model of building on,
and abstracting, Grid middlewares has been developed and is outlined in the papers.
In addition to the contributions of this thesis, a number of software artefacts, e.g., the
Grid Job Management Framework (GJMF), have resulted from this work.

iii

iv

Preface

This thesis consists of a brief introduction to the field, a short discussion of the main
problems studied, and the following papers.

Paper I E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg.
Designing General, Composable, and Middleware-Independent Grid In-
frastructure Tools for Multi-Tiered Job Management. In T. Priol and
M. Vaneschi, editors, Towards Next Generation Grids, pages 175–184.
Springer-Verlag, 2007.

Paper II E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing
Service-Based Resource Management Tools for a Healthy Grid Ecosys-
tem. In R. Wyrzykowski et al., editors, Parallel Processing and Applied
Mathematics, Lecture Notes in Computer Science, vol. 4967, pages 259–
270. Springer-Verlag, 2008.

Paper III E. Elmroth and P-O. Östberg. Dynamic and Transparent Service Com-
positions Techniques for Service-Oriented Grid Architectures. In S. Gor-
latch, P. Fragopoulou, and T. Priol, editors, Integrated Research in Grid
Computing, pages 323–334. Crete University Press, 2008.

Paper IV E. Elmroth, S. Holmgren, J. Lindemann, S. Toor, and P-O. Östberg.
Empowering a Flexible Application Portal with a SOA-based Grid Job
Management Framework. In The 9th International Workshop on State-of-
the-Art in Scientific and Parallel Computing, to appear, 2009.

Paper V E. Elmroth and P-O. Östberg. A Composable Service-Oriented Archi-
tecture for Middleware-Independent and Interoperable Grid Job Manage-
ment. UMINF 09.14, Department of Computing Science, Umeå Univer-
sity, Sweden. Submitted for Journal Publication, 2009.

This research was conducted using the resources of the High Performance Com-
puting Center North (HPC2N). Financial support has been provided by The Swedish
Research Council (VR) under contract 621-2005-3667.

v

vi

Acknowledgements

A number of people have directly or indirectly contributed to the work in this thesis
and deserve acknowledgement. First of all, I would like to thank my advisor Erik
Elmroth for not only the opportunities provided and all the hard work, but also for
the positive environment he creates in our research group. I would also like to thank
my coadvisor Bo Kågström for inspiring discussions and the unique perspective he
brings to them. Among my colleagues in the GIRD group I would like to thank Lars
Larsson and Johan Tordsson for lengthy discussions of all things more or less related
to our work, and Francisco Hernández, Daniel Henriksson, Raphaela Bieber-Bardt,
Arvid Norberg, and Peter Gardfjäll (in no particular order) for all their contributions
to our collective effort. Among our research partners I would like to thank Sverker
Holmgren, Jonas Lindemann, and Salman Toor for interesting collaborations, and the
support staff of HPC2N for their contributions and knowledge of the Grid systems we
use. Finally, on a personal level I would like to thank my family and friends, without
whom none of this would be possible, for all the love and support they provide.
Thank you all.

vii

viii

Contents

1 Introduction 1

2 Grid Applications 3

3 Grid Infrastructure 7

4 Grid Job and Resource Management 9
4.1 Grid Environments 9
4.2 Grid Resources and Middlewares 11
4.3 Resource Management 12
4.4 Resource Brokering 12
4.5 Job Control 13
4.6 Job Management 14
4.7 (Non-Intrusive) Interoperability 15

5 An Ecosystem of Grid Components 17

6 Thesis Contributions 19
6.1 Paper I 19
6.2 Paper II 20
6.3 Paper III 20
6.4 Paper IV 20
6.5 Paper V 21

7 Future Work 23

Paper I 33

Paper II 47

Paper III 63

Paper IV 79

Paper V 93

ix

x

Chapter 1

Introduction

In the past decade, Grid computing has emerged and been established as an
enabling technology for a range of computational eScience applications. A
number of definitions of Grid computing exist, e.g., [33, 37, 64], and while
the scientific community has reached a certain level of agreement on what a
Grid is [58], best practices for Grid design and construction are still topics
for investigation. The definition used in this thesis details Grid computing to
be a type of distributed computing focused on aggregation of computational
resources for creation of meta-scale virtual supercomputers and systems.

As a paradigm, Grid computing revolves around concepts such as service
availability, performance scalability, virtualization of services and resources,
and resource (access) transparency [40, 58]. The current methodology of the
field is to leverage interconnected high-end systems to create virtual systems
capable of great performance scalability, high availability, and collaborative
resource sharing [37]. The approach taken in this work employs loosely cou-
pled and decentralized resource aggregation models, assumes resources to be
aggregated from multiple ownership domains, and expects all Grid services and
components to be subject to resource contention, i.e. to coexist with competing
mechanisms.

Grid technology and infrastructure have today found application in fields
as diverse as, e.g., life sciences, material sciences, climate studies, astrophysics,
and computational chemistry, making Grid computing an interdisciplinary field.
Current Grid applications occupy all niches of scientific computation, ranging
from embarrassingly parallel high-throughput applications to distributed and
synchronized data collation and collaboration projects.

Actors within, and contributions to, the field of Grid computing can broadly
be segmented into two main categories; application and infrastructure. Grid
applications often stem from independently developed computational method-
ologies more or less suited for use in Grid environments, and are often limited
(in Grid usage scenarios) by how well their methodology lends itself to par-
allelization. Motivations for migration to Grid environments vary, but often

1

include envisioned performance benefits or synergetic collaboration effects.
Typically, Grids are designed to provide a level of scalability beyond what is

offered by individual supercomputer systems. System requirements vary with
Grid application needs, and usually incorporate advanced demands for stor-
age, computational, or transmission capacity, which places great performance
requirements on underlying Grid infrastructure at both component and system
level. These conditions, combined with typical interdisciplinary requirements of
limited end-user system complexity, automation, and high system availability,
make Grid infrastructure design and resource federation challenging tasks.

The focus of this thesis lies on research questions related to Grid infrastruc-
ture and application design, with emphasis on job and resource management
issues. In particular, abstraction of Grid job management interfaces, and re-
lated application and infrastructure component integration issues have been
studied in the context of federated Grid environments. The methodology of
this work includes investigation of architectural design patterns inspired by the
notion of an ecosystem of Grid infrastructure components [62], and exploration
of Service-Oriented Architecture (SOA)-based [51] implementation techniques.
The concept of an ecosystem of Grid infrastructure components, where ap-
plications are composed through selection of software from an ecosystem of
components, and individual components are subject to meritocratic natural
selection, is further described in Section 5.

Two of the overarching goals of the GIRD [63] project, in which this re-
search has been performed, are to investigate and propose architectures for
abstraction and provisioning of Grid functionality, and to provide proof-of-
concept implementations of proposed architectures. Scientific contributions of
this thesis include investigation of architectural design patterns, development of
Grid infrastructure task algorithms, and contributions to formulation of design
methodologies for scalable Grid infrastructure and application components.

The rest of this thesis is structured as follows. Section 2 provides an in-
troduction to Grid applications and outlines a few of the requirements Grid
applications impose on Grid infrastructures and environments. Section 3 dis-
cusses Grid infrastructure and covers some of the trade-offs involved in Grid
infrastructure design and development. Section 4 provides an overview of the
Grid job and resource management problem, and structures the area into con-
stituent processes while briefly referencing some of the work within the field.
Section 5 sketches the notion of an ecosystem of Grid components, and serves
here as an introduction to the perspective chosen in this work. Section 6 sum-
marizes the contributions of this thesis, and relates the thesis papers to each
other. Finally, Section 7 outlines some future directions for this work, and
references current efforts related to the work of this thesis.

2

Chapter 2

Grid Applications

Utilization of Grid technology affords the scientific community to study prob-
lems too large to address using conventional computing technology. Use of
Grids has resulted in creation of new types of applications and new ways to
utilize existing computation-based technology [37]. Grid applications can based
on application requirements be segmented into categories such as

• computationally intensive, e.g., interactive simulation efforts such as the
SIMRI project [11], and very large-scale simulation and analysis applica-
tions such as the Astrophysics Simulation Collaboratory [55].

• data intensive, e.g., experimental data analysis projects such as the Eu-
ropean Data Grid [56], and image and sensor analysis applications such
as SETI@home [3].

• distributed collaboration efforts, e.g., online instrumentation tools such
as ROADnet [45], and remote visualization projects such as the Virtual
Observatory [66].

Based on computational requirements and topology of the application, com-
putational Grid applications can broadly be classified as High Performance
Computing (HPC), High Throughput Computing (HTC), or hybrid approaches.
HPC applications are generally concerned with system peak performance, and
measure efficiency in the amount of computation performed on dedicated re-
source sets within limited time frames. Computations are in HPC applica-
tions typically structured to maximize application computational efficiency for
a particular problem, e.g., through Message Passing Interface (MPI) [57] frame-
works. HTC applications are conversely focused on resource utilization and
measure performance in the amount of computation performed on shared re-
source sets over extended periods of time, e.g., in tasks per month. Computa-
tionally, HTC applications are generally composed of large numbers of (small)
independent jobs running on non-dedicated resource sets without real-time con-
straints for result delivery. A number of hybrids between the HPC and HTC

3

paradigms exist, e.g., the more recently formulated Many Task Computing
(MTC) [54] paradigm. MTC applications focus on running large amounts of
tasks over short periods of time, are typically communication-intensive but not
naturally expressed using synchronized communication patterns like MPI, and
measure performance using (application) domain-specific metrics.

Beside obvious computational requirements, Grid applications typically also
impose advanced system performance requirements for, e.g.,

• storage capacity: Grid applications potentially process very large data
sets, and often do so without predictable access patterns.

• data transfer capabilities: Grid computations are typically brokered and
may be performed far from the original location for input data and ap-
plication software. Efficient data transfer mechanisms are required to
relocate data to computational resources, and return results after com-
putation.

• usability: Grid interfaces abstract resource system complexity and use
of underlying computational resources to improve system usability and
lower learning requirements.

• scalability: Grid application system requirements are likely to vary dur-
ing application runtime, requiring underlying systems and infrastructure
to access and scale computational, storage, and transfer capabilities on
demand.

• availability: Grid applications and systems are typically composed through
aggregation of computational resources, allowing Grids to exhibit very
high levels of system availability despite system capacity varying over
time due to resource volatility issues. Consistent levels of system access
and quality of service improve the perception of Grid availability and
stability.

• collaboration: Grid applications and systems support levels of collabo-
ration ranging from multiple users working on shared data to multiple
organizations utilizing shared resources.

System complexity and the great demands and different requirements of
current Grid applications have led to the emergence of two major types of Grids;
computational Grids and data Grids. Typically, computational Grids focus
on providing abstracted views of computational resource access, and address
very large computational problems. Data Grids conversely focus on providing
virtualization of data storage capabilities and provide non-trivial and scalable
qualities of service for very large data sets. A number of additional Grid system
subtypes have also emerged, e.g., collaboration Grids, enterprise Grids, and
cluster Grids [58]. The work in this thesis has been focused on systems designed
for use in computational Grid environments.

4

From a performance perspective, the construction of Grid systems is facili-
tated by improvements in computational and network capacity, and motivated
by general availability of highly functional and well connected end systems.
Increase in network capacity alone has lead to changes in computing geometry
and geography [37], and technology advances have today made massive-scale
collaborative resource sharing not only feasible, but approaching ubiquitous.

From an application perspective, Grid computing holds promise of more ef-
ficient models for collaboration when addressing larger and more complex prob-
lems, less steep learning curves (as compared to traditional high-performance
computing), increased system utilization rates, and efficient computation sup-
port for broader ranges of applications. While Grids of today have achieved
much in system utilization, scalability and performance, much work in reducing
system complexity and increasing system usability still remain [58].

5

6

Chapter 3

Grid Infrastructure

The name Grid computing originated from an analogy in the initial guiding
vision of the field; to provide access to the capabilities of computational re-
sources in a way similar to how power grids provide electricity [37], i.e. with
transparency in

• resource selection (i.e. which resource to use).

• resource location (i.e. with transparency in resource access).

• resource utilization (i.e. amount of resource capacity used).

• payment models (i.e. pay for resource utilization rather than acquisition).

In this vision, the role of Grid infrastructure becomes similar to that of
power production infrastructure: to provide capacity to systems and end-users
in cost-efficient, transparent, federated, flexible, and accessible manners. While
application and user requirements on Grids vary greatly, and can be argued
to be more complex than those of power infrastructure, the analogy is apt
in describing a federated infrastructure providing flexible resource utilization
models and consistent qualities of service through well-defined interfaces.

To realize a generic computational infrastructure capable of flexible utiliza-
tion models, it is rational to build on standardized, reusable components. The
approach of this work is to identify and isolate well-defined Grid functionality
sets, and to design interfaces and architectures for these in manners that allow
components to be used as building blocks in construction of interoperable Grid
applications and systems [24, 26]. In an analogy to efforts within related fields,
the role of generic Grid components could be compared to the role of, e.g.,
frameworks such as Linear Algebra PACKage (LAPACK) [5] libraries in nu-
merical linear algebra. Similarly, the role of application integration components
could be compared to the role of Basic Local Alignment Search (BLAST) [60]
toolkits in bioinformatics, and component interfaces to Basic Linear Algebra
Subprograms (BLAS) [12] Application Programmer Interfaces (APIs).

7

From a systems perspective, Grid computing revolves around concepts such
as (performance) scalability, virtualization, and transparency [40]. Performance
scalability here refers to the ability of a system to dynamically increase the
computational (or storage, network, etc.) capacity of the system to meet the
requirements of an application on demand. Virtualization here denotes the
process of abstracting computational resources, a practice that can be found
on all levels of a Grid. For example, Grid applications’ use of infrastructure is
often abstracted and hidden from end-users, Grid systems and infrastructure
typically abstract the use of computational resources from the view of appli-
cations, and access to Grid computational resources is typically abstracted by
native resource access layers, e.g., batch systems. The term transparency is
used to describe that, like access to systems and system components, scal-
ability should be automatic and not require manual efforts or knowledge of
underlying systems to realize access to, or increase in, system capacity.

Typically today, performance scalability is achieved in Grid systems through
dynamic provisioning of multiple computational resources over a network, vir-
tualization through interface abstraction mechanisms, and transparency through
automation of core Grid component tasks (such as resource discovery, resource
brokering, file staging, etc.).

To facilitate flexible resource usage models, Grid users and resource allot-
ments are typically organized in Virtual Organizations (VOs) [38]. VOs is a
key concept in Grid computing that pertains to virtualization of a system’s
user base around a set of resource-sharing rules and conditions. The formula-
tion of VOs stems from the dynamical nature of resource sharing where resource
availability, sharing conditions, and organizational memberships vary over time.
This mechanism allows Grid resource usage allotments to be administrated and
provided by decentralized organizations, to whom individual users and projects
can apply for memberships and resource usage credits. VOs employ scalable re-
source allotment mechanisms suitable for cross-ownership domain aggregation
of resources, and provide a way to provision resource usage without pre-existing
trust relationships between resource owners and individual Grid users.

In summary, a Grid computing infrastructure should provide flexible and
secure resource access and utilization through coordinated resource sharing
models to dynamic collections of individuals and organizations. Furthermore,
resources and users should be organized in Virtual Organizations and systems
be devoid of centralized control, scheduling omniscience, and pre-existing trust
relationships.

8

Chapter 4

Grid Job and Resource
Management

A core task set of any Grid infrastructure is job and resource management, a
term here used to collectively reference a set of processes and issues related
to execution of programs on computational resources in Grid environments.
This includes, e.g., management, monitoring, and brokering of computational
resources; description, submission, and monitoring of jobs; fairshare scheduling
[46] and accounting in Virtual Organizations; and various cross-site adminis-
trational and security issues.

Grid job and resource management tasks seem intuitive when viewed indi-
vidually, but quickly become complex when considered as parts of larger sys-
tems. A number of component design trade-offs, requirements, and conditions
are introduced by core Grid requirements for, e.g., system scalability and trans-
parency, and tend to become oxymoronic when individual component designs
are kept strictly task oriented. An approach taken in this work is to primarily
regard components as parts of systems, and focus on component interoperabil-
ity to promote system composition flexibility [26]. The primary focus of the
Grid job and resource management contributions here is to abstract system
complexity and heterogeneity, and to allow applications to leverage resource
capabilities without becoming tightly coupled to particular Grids or Grid mid-
dlewares [27].

4.1 Grid Environments

Grid systems are composed through aggregation of multiple cooperating com-
puting systems, and federated Grid environments are realized through (possibly
hierarchical) federation of existing Grids.

In the naive model illustrated in Figure 1, regional organizations aggregate
dedicated cluster-based resources from local supercomputing centers to form

9

Figure 1: A naive Grid model. Grids aggregate clusters of computational
resources, which may be part of multiple Grids. Federated Grid environments
are composed from collaborative federation of existing Grids.

computational Grids. Due to the relatively homogeneous nature of today’s
supercomputers, such Grids typically exhibit low levels of system heterogeneity,
and administrators can to a large extent influence system configuration and
resource availability.

As also illustrated in Figure 1, international Grids are typically formed
from collaborative federation of regional, and other existing Grids. As fed-
erated Grids typically aggregate resources from multiple Grids and resource
sites, a natural consequence of resource and Grid federation is an increased de-
gree of system heterogeneity. System heterogeneity may be expressed in many
ways, e.g., through heterogeneity in hardware and software, resource avail-
ability, accessibility, and configuration, as well as in administration policies
and utilization pricing. Technical heterogeneity issues are in Grid systems ad-
dressed through interface abstraction methods and generic resource description
techniques, which allow virtualization of underlying resources and systems.

A core requirement in Grid systems is that resource owners at all levels
retain full administrative control over their respective systems. This Grid char-
acteristic, to be devoid of centralized control [33], is a design trait aimed to
promote scalability in design and implementation of Grids, and imposes a num-
ber of cross-border administrational and security issues.

Security issues naturally arise in federation of computational resources over
publicly accessible networks, i.e. the Internet, and are in Grid infrastructures
addressed through use of strong cryptographic techniques such as Public Key
Infrastructures (PKI) [49]. Grid users are typically organized in VOs, which
stipulate rules and conditions for access to Grid resources, and authenticated
through established security mechanisms such as PKI certificates [1].

10

4.2 Grid Resources and Middlewares

A typical HPC Grid resource consists of a high-end computer system equipped
with (possibly customized) software such as

• data access and transfer utilities, e.g., GridFTP [18].

• batch systems and scheduling mechanisms, e.g., PBS [10] and Maui [48].

• job and resource monitoring tools, e.g., GridLab Mercury Monitor [8].

• computation frameworks, e.g., BLAST [60].

HTC resources are of more varied nature, CPU-cycle scavenging schemes such
as Condor [61] for example typically utilize standard desktop machines, while
volunteer computing efforts such as distributed.net [17] may see use of any
type of computational resource provided by end-users. HTC Grids often deploy
softwares that can be considered part of Grid middlewares on computational
resources, e.g., Condor and BOINC [2] clients.

Grids are created through aggregation of computational resources, typically
using Grid middlewares to abstract complexity and details of native resource
systems such as schedulers and batch systems. Grid middlewares are (typically
distributed) systems that act on top of local resource systems, abstracting
native system interfaces, and provide interoperability between computational
systems. To applications, Grid middlewares offer virtualized access to resource
capabilities through abstractive job submission and control interfaces, informa-
tion systems, and authentication mechanisms.

A number of different Grid middlewares exist, e.g., ARC [19], Globus [42],
UNICORE [59], LCG/gLite [13], and vary greatly in design and implementa-
tion. In a simplified model, Grid middlewares contain functionality for

• resource discovery, often through specialized information systems.

• job submission, monitoring, and management.

• authentication and authorization of users.

Additionally, middlewares and related systems can incorporate solutions for
advanced functionality such as resource brokering [61], accounting [41], and
Grid-wide load balancing [13].

While one of the original motivations for construction of Grids where to
address resource heterogeneity issues, complexity and size of Grid middlewares
have led to a range of middleware interoperability issues, and given rise to the
Grid interoperability contradiction [30]; Grid middlewares are not interoper-
able, and Grid applications are not portable between Grids. The Grid inter-
operability contradiction results in Grid applications being tightly coupled to
Grid middlewares, and a lack of generic tools for Grid job management.

11

4.3 Resource Management

Grid resources are typically owned, operated, and maintained by local resource
owners. Local resource sharing policies override Grid resource policies; compu-
tational resources shared in Grid environments according to defined schedules
are possibly not available to Grid users outside scheduled hours. Due to this,
and hardware and software failures, administrational downtime, etc., Grid re-
sources are generally considered volatile.

In Grid systems, resource volatility is typically abstracted using dynamic
service description and discovery techniques, utilizing loosely coupled models
[65] for client-resource interaction. Local resource owners publish information
about systems and resources in information systems, and Grid clients, e.g.,
resource brokers and submission engines, discover resources on demand and
utilize the best resources currently available during the job submission phase.

Reliable resource monitoring mechanisms are critical to operation in Grid
environments. While resource characteristics, e.g., hardware specifications and
software installations, can be considered static, factors such as resource avail-
ability, load, and queue status are inherently dynamic. To facilitate Grid
utilization and resource brokering, resource monitoring systems are used to
provide information systems resource availability and status data.

As resource monitoring systems and information systems in Grid environ-
ments typically exist in different administrational domains, resource status in-
formation need to be disseminated through well-defined, machine-interpretable
interfaces. The Web Service Resource Framework (WSRF) [35] specification
family addresses Web Service state management issues, and contain interface
definitions and notification mechanisms suitable for this task. In Grid environ-
ments, information systems potentially contain large quantities of information
and can be segmented and hierarchically aggregated to partition resource in-
formation into manageable proportions.

4.4 Resource Brokering

A fundamental task in Grid job management is resource brokering; matching
of a job to computational resource(s) suitable for job execution. In this model,
resource brokers operate on top of Grid middlewares, and rely on information
systems and job control systems to enact job executions.

Typically in Grid resource brokering, jobs are represented by job descrip-
tions, which contain machine-readable representations of job characteristics and
job execution meta-data. A number of proposed job description formats exist,
including middleware-specific solutions such as Globus RSL [34], ARC XRSL
[19], and standardization efforts such as JSDL [6]. Job descriptions provide
information such as

• program to execute.

12

• parameters and environmental settings.

• hardware requirements, e.g., CPU, storage, and memory requirements.

• software requirements, e.g., required libraries and licenses.

• file staging information, e.g., data location and access protocols.

• meta-information, e.g., duration estimates and brokering preferences.

Resource brokering is subject to heuristic constraints and optimality criteria
such as minimization of cost, maximization of resource computational capacity,
minimization of data transfer time, etc., and is typically complicated by factors
such as missing or incomplete brokering information, propagation latencies in
information systems, and existence of competing scheduling mechanisms [30].

A common federated Grid environment characteristic designed to promote
scalability is absence of scheduling omniscience. From this, two fundamental
observations can be made. First, no scheduling mechanism can expect to mo-
nopolize job scheduling, all schedulers are forced to collaborate and compete
with other mechanisms. Second, due to factors such as system latencies, in-
formation caching and status polling intervals, all Grid schedulers operate on
information which to some extent is obsolete [31]. In these settings, Grid bro-
kers and schedulers need to adapt to their environments and design emphasis
should be placed on coexistence [27]. In particular, care should be taken to not
reduce total Grid system performance, or performance of competing systems,
through inefficient mechanisms in brokering and scheduling processes.

4.5 Job Control

Once resource brokering has been performed, and rendered a suitable computa-
tional resource candidate set, jobs can be submitted to resources for execution.
For reasons of virtualization and separation of concerns, this is typically done
through Grid middleware interfaces rather than directly to native resource in-
terfaces, as resource heterogeneity issues would needlessly complicate clients
and applications. Normally, execution of a Grid job on a computational re-
source adheres to the following schematic.

1. submission: job execution time is allocated at the resource site, i.e. the
job is submitted to a resource job execution queue.

2. stage in: job data, including data files, scripts, libraries, and executables
required for job execution are transfered to the computational resource
as specified by the job description.

3. execution: the job is executed and monitored at the resource.

4. stage out: job data and result files are transfered from the computational
resource as specified by the job description.

13

5. clean up: job data, temporary, and execution files are removed from the
computational resource.

Naturally, ability to prematurely abort and externally monitor job execu-
tions must be provided by job control systems. In general, most systems of
this complexity are built in layers, and Grid middlewares typically provide job
control interfaces that abstract native resource system complexity.

As in any distributed system, a number of failures ranging from submission
and execution failures to security credential validation and file transfer errors
may occur during the job execution process. To facilitate client failure manage-
ment and error recovery, failure context information must be provided clients.
In Grid systems, failure management is complicated by factors such as resource
ownership boundaries and resource volatility issues. Care must also be taken to
isolate jobs executions, and to ensure that distribution of failure contexts not
result in information leakage. Typically, Grids make use of advanced security
features that make failure management, administration, and direct access to
resource systems complex.

4.6 Job Management

Beyond generic resource brokering and job control capabilities, there exists a
functionality set required by advanced high-level Grid applications. For exam-
ple, efficient mechanisms for monitoring and workflow-based scheduling of jobs
can greatly facilitate management of large sets of jobs.

Two types of Grid job monitoring mechanisms exist, pull-based and push-
based. In pull models, clients and brokers poll resource status to detect and
respond to changes in job and resource status. As jobs and Grid clients typically
outnumber available Grid resources, polling-based resource update models scale
poorly. As clients and resources exist in different ownership domains, pull
models are also sometimes considered intrusive.

In push models, Grid resources, or systems monitoring them, publish status
updates for jobs and resources in information systems or directly to interested
clients. Push updates typically employ publish-subscribe communication pat-
terns, where interested parties register for updates in advance, e.g., during
job submission. In Grid systems, push models provide several performance
benefits compared to pull models. Push models improve system scalability
through reduced system load and decreased communication volumes, and may
sometimes simplify client-side system design as they afford clients to act re-
actively rather than proactively. This reduced client complexity comes at the
cost of increased service-side complexity. As Grid resources are volatile, sys-
tems distributed, and most Grids employ unreliable communication channels,
push models must often be supplemented with pull model mechanisms. Push
notifications can also be extended to notification brokering scenarios, and be
incorporated in Message-Oriented Middleware (MOM) [9] or Enterprise Ser-
vice Bus (ESB) [14]-like notification brokering schemes. The WS-Notification

14

[43] details interfaces for push model status notifications suitable for Grid job
management architectures.

A common advanced Grid application requirement is to, possibly condi-
tionally, run batches of jobs sequentially or in parallel. One way to organize
these sets is in Grid workflows [50], where job interdependencies and coordina-
tion information are expressed along with job descriptions. In simple versions,
workflows can be seen as job descriptions for sets of jobs. In more advanced
versions, e.g., the Business Process Execution Language (BPEL) [4], workflows
may themselves contain script-like instruction sets for, e.g., conditional execu-
tion, looping, and branching of jobs. When using workflows, Grid applications
rely on workflow engines, e.g., Taverna [52], Pegasus [16], and Grid infrastruc-
tures to automate execution of job sets. An important question here becomes
abstraction of level of detail, and balancing of level of detail against level of
control for advanced job management systems [23].

Advanced job management systems may also provision functionality for
customization of job execution, control, and management. In this case, job
management components should provide interfaces for customization that does
not require end-users or administrators to replace entire system components,
but rather offer flexible configuration and code injection mechanisms [26, 27].

4.7 (Non-Intrusive) Interoperability

A large portion of Grid infrastructure operation builds on automation of Grid
functionality tasks. This is achieved through Grid component and system col-
laboration, and thus require systems participating in Grids to provide machine-
interpretable and interoperable system interfaces. Due to Grid heterogeneity
issues stemming from Grid and resource federation, properties such as platform,
language, and versioning independence become highly desirable. For these rea-
sons, Grid components typically build on open standards and formats, and
utilize technologies that facilitate system interoperation, e.g., XML and Web
Services [40]. To promote non-intrusive interoperability in Grid system design,
many Grid systems are realized as Service-Oriented Architectures [51].

Grid standardization efforts have proposed interfaces for many interoper-
ability systems ranging from job description formats, e.g., JSDL [6], job sub-
mission and control interfaces, e.g., OGSA BES [36], to resource discovery, e.g.,
OGSA RSS [39], and Cloud computing interfaces, but broad consensus on best
practices for Grid construction has yet to be reached.

15

16

Chapter 5

An Ecosystem of Grid
Components

Currently, a number of open research questions regarding Grid and Cloud com-
puting software design are being addressed by the scientific community. A com-
mon problem in current efforts is that applications tend to be tightly coupled
to specific middlewares or Grids, and lack ability to be generally applicable
to computational problems [25]. This work addresses Grid software design
methodologies for computational eScience applications that support the ma-
jority of current computational approaches, and places focus on infrastructure
composition and scalability rather than specific problem sets [24].

The methodology of this work builds on the idea of an ecosystem of Grid
infrastructure components [62], which encompasses a view of a software ecosys-
tem where individual components compete and collaborate for survival on an
evolutionary basis. Fundamental to this idea is the notion of software niches,
areas of functionality defined and populated by software components that in-
teract and provision use of Grid resources to applications and end-users. Here,
standardization of interfaces and software components help define niche bound-
aries, and continuous development of Grid infrastructure components and inte-
gration with eScience applications help shape and redefine niches (as well as the
ecosystem at large) through competition, innovation, diversity, and evolution.

In this approach, identification and exploration of component and system
traits likely to promote software survival in the Grid ecosystem are central, and
generally help in identification and formulation of research questions. Softwares
designed using this methodology focus on establishment of core functionality,
and adapt to, and integrate with, members of neighboring niches rather than
attempt to replace them.

Currently, advanced eScience applications and computational infrastruc-
tures require software and systems to scale with problem complexity and si-
multaneously abstract heterogeneity issues introduced by this scalability. For

17

usability, software also require interoperability and robustness to enable au-
tomation of repetitive tasks in computational environments, and flexibility in
configuration and deployment to be employed in environments with great vari-
ance in usage and deployment requirements. The approach taken in this work
is to build on top of Grid middlewares and create layers of flexible software that
interoperate non-intrusively with components from different niches in the Grid
ecosystem, and allow applications to be decoupled from Grid middlewares.

18

Chapter 6

Thesis Contributions

Large portions of the work in this thesis focus on Grid job and resource man-
agement issues, and address how these can be approached using middleware-
independent techniques. Two of the papers outline and discuss approaches to
Grid software development, one from a software engineering perspective (II),
and one from a system (re)factorization point of view (III). Two of the papers (I
and V) investigate and outline a generic architecture for Grid job management
capable of adoption in a majority of existing Grid computing environments.
Paper IV studies integration issues related to use of the proposed job manage-
ment architecture, and details an integration architecture building on it.

6.1 Paper I

Paper I [21] investigates software design issues for Grid job management tools.
Building on experiences from previous work [28, 29, 31], an architectural model
for construction of a middleware-independent Grid job management system is
proposed, and the design is detailed from an architectural point of view. In
this work, a layered architecture of composable services that each manage a
separate part of the Grid job management process is outlined, and design and
implementation implications of this architecture are discussed. The architec-
ture separates applications from infrastructure through a customizable set of
services, and provides middleware-independence through use of (possible third
party) middleware adaption plug-ins.

A Globus Toolkit 4-based [34] prototype implementation of some of the
services in the architecture is presented, and the services are integrated with
the ARC [19] and Globus [42] middlewares. To demonstrate the feasibility of
the approach, preliminary results from prototype testing are presented along
with an evaluation of system performance and system use cases.

19

6.2 Paper II

Paper II [24] analyzes Grid software development practices from a software
engineering perspective. An approach to software development for high-level
Grid resource management tools is presented, and the approach is illustrated
by a discussion of software engineering attributes such as design heuristics,
design patterns, and quality attributes for Grid software development.

The notion of an ecosystem of Grid infrastructure components is extended
upon, and Grid component coexistence, composability, adoptability, adaptabil-
ity, and interoperability are discussed in this context. The approach is illus-
trated by five case studies from recent software development efforts within the
GIRD project; the Job Submission Service (JSS) [31], the Grid Job Manage-
ment Framework (GJMF) [27], the Grid Workflow Execution Engine (GWEE)
[22], the SweGrid Accounting System (SGAS) [41], and the Grid-Wide Fair-
share Scheduling System (FSGrid) [20].

6.3 Paper III

Paper III [26] investigates Service-Oriented Architecture-based techniques for
construction of Grid software, and details a set of service composition tech-
niques for use in Grid infrastructure environments. Transparent service de-
composition and dynamic service recomposition techniques are discussed in a
Grid software (re)factorization setting, and implications of their use are elab-
orated upon. A set of architectural design patterns and service development
mechanisms for service refactorization, service invocation optimization, cus-
tomization of service mechanics, dynamic service configuration, and service
monitoring are presented in detail, and synergetic effects between the patterns
are discussed. Examples of use of the patterns in actual software development
efforts are used throughout the paper to illustrate the presented approach.

6.4 Paper IV

Paper IV [25] addresses Grid software integration issues and discusses prob-
lems inherent to Grid applications being tightly coupled to Gird middlewares.
The paper proposes an architecture for system integration focused on seamless
integration of applications and Grid middlewares through a mediating layer
handling resource brokering and notification delivery. The proposed architec-
ture is illustrated in a case study where the LUNARC application portal [47] is
integrated with the Grid Job Management Framework [27] presented in papers
I and V. The proposed integration architecture is evaluated in a performance
evaluation and findings from the integration efforts are presented throughout
the paper.

20

6.5 Paper V

Paper V [27] further elaborates on the work of Paper I, and proposes a compos-
able Service-Oriented Architecture-based framework architecture for middleware-
independent Grid job management. The proposed architecture is presented in
the context of development and deployment in an ecosystem of Grid compo-
nents, and software requirements and framework composition are discussed in
detail. The model of Paper I is extended with additional services for job descrip-
tion translation, system monitoring and logging, as well as a broader integration
support functionality range. Furthermore, a proof-of-concept implementation
of the entire framework is presented and evaluated in a performance evaluation
that illustrates some of the major trade-offs in framework use.

The Grid ecosystem model of Paper II is further developed and discussed
in the context of the proposed job management architecture, and the software
composition techniques of Paper III are built upon and evaluated in the con-
text of this project. Throughout the paper, a number of software design and
implementation findings are presented, and the framework is related to a set of
similar software development efforts within adjoining Grid ecosystem niches.

21

22

Chapter 7

Future Work

A number of possible future extensions to the work of this thesis have been
identified, some of which are currently pursued within the GIRD project. Fur-
ther development, and documentation of experiences from use of the software
development model of Paper II is a continuous effort, and of current special
interest is adoption of the model to Cloud computing software development
efforts. The model itself is currently utilized in a number of projects under the
GIRD multi-project umbrella, and are in the projects of this thesis combined
with the techniques of Paper III.

The service composition techniques of Paper III have been further developed
in work on Paper V, and are currently under investigation for extension in a
code-generation effort within multiple projects. The techniques lend themselves
well to software refactorization efforts and prototype implementations are being
developed for integration with the Apache Axis2 [7] SOAP [44] engine. Exten-
sion of these techniques to Representational State Transfer (REST)-based [32]
Resource-Oriented Architectures (ROA) [53] would possibly be a viable alter-
native to current Web Service Description Language (WSDL)-based [15] code
generation. In this case the abstraction of the mechanisms would naturally
be placed in API implementations, instead of in generated stub code. Ex-
tension of these techniques to a more ubiquitous notification scheme, where
the current WSRF-based [35] approach could be extended to a more generic
MOM- [9] or ESB-based [14] approach would also be possible. Development of
a more generic framework for service development adapted to a larger number
of service engines would further such efforts.

The job management framework of Paper I and V is currently being devel-
oped into a more mature software product scheduled for use in SweGrid, the
Swedish national Grid, and a port of the framework to alternative SOAP stacks
is currently under investigation. Interesting research questions related to the
architecture of this framework include, e.g., development of data management
capabilities, (further) adaption to standardization efforts, investigation of ad-
vanced notification brokering capabilities, and inclusion of advanced resource

23

brokering features such as advance reservation and coallocation of resources,
and classadd-based match-making.

Further development and integration of high-level job clients such as work-
flow engines and Grid portals would be beneficial, as well as further investiga-
tion of integration architectures such as that of Paper IV, as these are expected
to increase the understanding of application-infrastructure integration issues.
Investigation of (minimalistic) implementation approaches for Grid middleware
development and simulation are also expected to render a deeper understand-
ing of these issues. Integration with Cloud Computing solutions, and other
virtualization-based infrastructure techniques, are also of interest and can be
expected to increase the adoptability and flexibility of these techniques.

24

Bibliography

[1] C. Adams and S. Farrell. Internet X. 509 public key infrastructure certifi-
cate management protocols, 1999.

[2] D.P. Anderson. BOINC: A system for public-resource computing and
storage. In 5th IEEE/ACM International Workshop on Grid Computing,
pages 4–10, 2004.

[3] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@ home: an experiment in public-resource computing. Communica-
tions of the ACM, 45(11):56–61, 2002.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, et al. Business process execution
language for web services, version 1.1. Specification, BEA Systems, IBM
Corp., Microsoft Corp., SAP AG, Siebel Systems, 2003.

[5] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammarling, J. Demmel, C. Bischof, and D. Sorensen. LA-
PACK: A portable linear algebra library for high-performancecomputers.
In Proceedings of Supercomputing’90, pages 2–11, 1990.

[6] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
A. S. McGough, D. Pulsipher, and A. Savva. Job Sub-
mission Description Language (JSDL) specification, version 1.0.
http://www.ogf.org/documents/GFD.56.pdf, September 2009.

[7] Apache Web Services Project - Axis2. http://ws.apache.org/axis2,
September 2009.

[8] Z. Balaton and G. Gombas. Resource and job monitoring in the grid.
Lecture notes in computer science, pages 404–411, 2003.

[9] G. Banavar, T. D. Chandra, R. E. Strom, and D. C. Sturman. A case
for message oriented middleware. In Proceedings of the 13th International
Symposium on Distributed Computing, pages 1–18, London, UK, 1999.
Springer-Verlag.

25

[10] A. Bayucan, R.L. Henderson, C. Lesiak, B. Mann, T. Proett, and
D. Tweten. Portable Batch System: External reference specification. Tech-
nical report, Technical report, MRJ Technology Solutions, 1999.

[11] H. Benoit-Cattin, G. Collewet, B. Belaroussi, H. Saint-Jalmes, and
C. Odet. The SIMRI project: a versatile and interactive MRI simula-
tor. Journal of Magnetic Resonance, 173(1):97–115, 2005.

[12] BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/.
September 2009.

[13] J. Knobloch (Chair) and L. Robertson (Project Leader). LHC computing
Grid technical design report. http://lcg.web.cern.ch/LCG/tdr/, Septem-
ber 2009.

[14] D. Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 2004.

[15] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl,
September 2009.

[16] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and D.S. Katz.
Pegasus: a framework for mapping complex scientific workflows onto dis-
tributed systems. Scientific Programming, 13(3):219–237, 2005.

[17] distributed.net. http://www.distributed.net/. September 2009.

[18] W. Allcock (editor). GridFTP: Protocol extensions to FTP for the Grid.
http://www.ogf.org/documents/GFD.20.pdf, September 2009.

[19] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann,
I. Livenson, J. L. Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen.
Advanced resource connector middleware for lightweight computational
Grids. Future Generation Computer Systems. The International Journal
of Grid Computing: Theory, Methods and Applications, 27(2):219–240,
2007.

[20] E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized
system for Grid-wide fairshare scheduling. In H. Stockinger, R. Buyya,
and R. Perrott, editors, e-Science 2005, First International Conference on
e-Science and Grid Computing, pages 221–229. IEEE CS Press, 2005.

[21] E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg.
Designing General, Composable, and Middleware-Independent Grid In-
frastructure Tools for Multi-Tiered Job Management. In T. Priol and
M. Vaneschi, editors, Towards Next Generation Grids, pages 175–184.
Springer-Verlag, 2007.

26

[22] E. Elmroth, F. Hernández, and J. Tordsson. A light-weight Grid work-
flow execution engine enabling client and middleware independence. In
R. Wyrzykowski et al., editors, Parallel Processing and Applied Mathe-
matics, Lecture Notes in Computer Science, vol. 4967, pages 754–761.
Springer-Verlag, 2008.

[23] E. Elmroth, F. Hernández, and J. Tordsson. Three fundamental dimen-
sions of scientific workflow interoperability: Model of computation, lan-
guage, and execution environment. Future Generation Computer Systems.
The International Journal of Grid Computing: Theory, Methods and Ap-
plications, 2009, to appear.

[24] E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing
Service-Based Resource Management Tools for a Healthy Grid Ecosystem.
In R. Wyrzykowski et al., editors, Parallel Processing and Applied Math-
ematics, Lecture Notes in Computer Science, vol. 4967, pages 259–270.
Springer-Verlag, 2008.

[25] E. Elmroth, S. Holmgren, J. Lindemann, S. Toor, and P-O. Östberg. Em-
powering a Flexible Application Portal with a SOA-based Grid Job Man-
agement Framework. In The 9th International Workshop on State-of-the-
Art in Scientific and Parallel Computing, to appear, 2009.

[26] E. Elmroth and P-O. Östberg. Dynamic and Transparent Service Compo-
sitions Techniques for Service-Oriented Grid Architectures. In S. Gorlatch,
P. Fragopoulou, and T. Priol, editors, Integrated Research in Grid Com-
puting, pages 323–334. Crete University Press, 2008.

[27] E. Elmroth and P-O. Östberg. A Composable Service-Oriented Archi-
tecture for Middleware-Independent and Interoperable Grid Job Manage-
ment. UMINF 09.14, Department of Computing Science, Ume̊a University,
Sweden. Submitted for Journal Publication, 2009.

[28] E. Elmroth and J. Tordsson. An interoperable, standards-based Grid re-
source broker and job submission service. In H. Stockinger, R. Buyya,
and R. Perrott, editors, e-Science 2005, First International Conference on
e-Science and Grid Computing, pages 212–220. IEEE CS Press, 2005.

[29] E. Elmroth and J. Tordsson. A Grid resource broker supporting advance
reservations and benchmark-based resource selection. In J. Dongarra,
K. Madsen, and J. Waśniewski, editors, Applied Parallel Computing - State
of the Art in Scientific Computing, Lecture Notes in Computer Science vol.
3732, pages 1061–1070. Springer-Verlag, 2006.

[30] E. Elmroth and J. Tordsson. Grid resource brokering algorithms enabling
advance reservations and resource selection based on performance predic-
tions. Future Generation Computer Systems. The International Journal of
Grid Computing: Theory, Methods and Applications, 24(6):585–593, 2008.

27

[31] E. Elmroth and J. Tordsson. A standards-based grid resource brokering
service supporting advance reservations, coallocation and cross-grid inter-
operability. Concurrency Computat.: Pract. Exper., 2009. accepted.

[32] R. T. Fielding. REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of Califor-
nia, Irvine, 2000.

[33] I. Foster. What is the grid? a three point checklist. GRID today, 1(6):22–
25, 2002.

[34] I. Foster. Globus toolkit version 4: Software for service-oriented systems.
In H. Jin, D. Reed, and W. Jiang, editors, IFIP International Conference
on Network and Parallel Computing, LNCS 3779, pages 2–13. Springer-
Verlag, 2005.

[35] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson,
F. Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vam-
benepe, and S. Weerawarana. Modeling stateful resources with Web ser-
vices. http://www-106.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf, September 2009.

[36] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse,
S. Pickles, D. Pulsipher, C. Smith, and M. Theimer. OGSA c© basic exe-
cution service version 1.0. http://www.ogf.org/documents/GFD.108.pdf,
September 2009.

[37] I. Foster and C. Kesselman. The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann, 2004.

[38] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of High Performance
Computing Applications, 15(3):200, 2001.

[39] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Grimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von
Reich. The Open Grid Services Architecture, version 1.5, 2006.
http://www.ogf.org/documents/GFD.80.pdf, May 2009.

[40] I. Foster and S. Tuecke. Describing the elephant: The different faces of IT
as service. ACM Queue, 3(6):26–34, 2005.

[41] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm. Scal-
able Grid-wide capacity allocation with the SweGrid Accounting System
(SGAS). Concurrency Computat.: Pract. Exper., 20(18):2089–2122, 2008.

[42] Globus. http://www.globus.org. September 2009.

28

[43] S. Graham, D. Hull, and B. Murray. Web Services Base Notifica-
tion 1.3 (WS-BaseNotification). http://docs.oasis-open.org/wsn/wsn-
ws base notification-1.3-spec-os.pdf, September 2009.

[44] M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, H. Frystyk Nielsen,
A. Karmarkar, and Y. Lafon. SOAP version 1.2 part 1: Messaging frame-
work. http://www.w3.org/TR/soap12-part1/, September 2009.

[45] T. Hansen, S. Tilak, S. Foley, K. Lindquist, F. Vernon, A. Rajasekar, and
J. Orcutt. ROADNet: A network of SensorNets. In Local Computer Net-
works, Proceedings 2006 31st IEEE Conference on, pages 579–587, 2006.

[46] J. Kay and P. Lauder. A fair share scheduler. Communications of the
ACM, 31(1):44–55, 1988.

[47] J. Lindemann and G. Sandberg. An extendable GRID application portal.
In European Grid Conference (EGC). Springer Verlag, 2005.

[48] Maui Cluster Scheduler. http://www.clusterresources.com/products/maui/,
September 2009.

[49] U. Maurer. Modelling a public-key infrastructure. Lecture Notes in Com-
puter Science, 1146:325–350, 1996.

[50] F. Neubauer, A. Hoheisel, and J. Geiler. Workflow-based Grid applica-
tions. Future Generation Computer Systems. The International Journal of
Grid Computing: Theory, Methods and Applications, 22(1-2):6–15, 2006.

[51] OASIS Open. Reference Model for Service Oriented Architecture
1.0. http://www.oasis-open.org/committees/download.php/19679/soa-
rm-cs.pdf, September 2009.

[52] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M.R. Pocock, A. Wipat, and P. Li. Taverna: A tool
for the composition and enactment of bioinformatics workflows. Bioinfor-
matics, 20(17):3045–3054, 2004.

[53] H. Overdick. The resource-oriented architecture. In 2007 IEEE Congress
on Services (Services 2007), pages 340–347, 2007.

[54] I. Raicu, I.T. Foster, and Y. Zhao. Many-task computing for grids and
supercomputers. In Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS) 2008., pages 1–11, 2008.

[55] M. Russell, G. Allen, G. Daues, I. Foster, E. Seidel, J. Novotny, J. Shalf,
and G. von Laszewski. The astrophysics simulation collaboratory: A sci-
ence portal enabling community software development. Cluster Comput-
ing, 5(3):297–304, 2002.

29

[56] B. Segal, L. Robertson, F. Gagliardi, and F. Carminati. Grid comput-
ing: The European Data Grid Project. In Nuclear Science Symposium
Conference Record, 2000 IEEE, volume 1, page 2/1, 2000.

[57] M. Snir, S.W. Otto, D.W. Walker, J. Dongarra, and S. Huss-Lederman.
MPI: The complete reference. MIT Press Cambridge, MA, USA, 1995.

[58] H. Stockinger. Defining the grid: a snapshot on the current view. The
Journal of Supercomputing, 42(1):3–17, 2007.

[59] A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt,
M. Riedel, M. Romberg, B. Schuller, and Ph. Wieder. UNICORE - from
project results to production grids. In L. Grandinetti, editor, Grid Com-
puting: The New Frontiers of High Performance Processing, Advances in
Parallel Computing 14, pages 357–376. Elsevier, 2005.

[60] T.A. Tatusova and T.L. Madden. BLAST 2 Sequences, a new tool for
comparing protein and nucleotide sequences. FEMS microbiology letters,
174(2):247–250, 1999.

[61] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in prac-
tice: The Condor experience. Concurrency Computat. Pract. Exper., 17(2–
4):323–356, 2005.

[62] The Globus Project. An “ecosystem” of Grid components.
http://www.globus.org/grid software/ecology.php, September 2009.

[63] The Grid Infrastructure Research & Development (GIRD) project. Ume̊a
University, Sweden. http://www.gird.se, September 2009.

[64] J. Treadwell. Open grid services architecture glossary of terms. In Global
Grid Forum, Lemont, Illinois, USA, GFD-I, volume 44, pages 2–2, 2005.

[65] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed
computing. Lecture Notes in Computer Science, pages 49–64, 1997.

[66] R. Williams. Grids and the virtual observatory. Grid Computing: Making
the Global Infrastructure a Reality, pages 837–858, 2003.

30

I

Paper I

Designing General, Composable, and
Middleware-Independent Grid Infrastructure Tools for

Multi-Tiered Job Management∗

Erik Elmroth, Peter Gardfjäll, Arvid Norberg,
Johan Tordsson, and Per-Olov Östberg

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, peterg, arvid, tordsson, p-o}@cs.umu.se

http://www.gird.se

Abstract: We propose a multi-tiered architecture for middleware-independent Grid
job management. The architecture consists of a number of services for well-defined
tasks in the job management process, offering complete user-level isolation of service
capabilities, multiple layers of abstraction, control, and fault tolerance. The middle-
ware abstraction layer comprises components for targeted job submission, job control
and resource discovery. The brokered job submission layer offers a Grid view on
resources, including functionality for resource brokering and submission of jobs to
selected resources. The reliable job submission layer includes components for fault
tolerant execution of individual jobs and groups of independent jobs, respectively. The
architecture is proposed as a composable set of tools rather than a monolithic solution,
allowing users to select the individual components of interest. The prototype presented
is implemented using the Globus Toolkit 4, integrated with the Globus Toolkit 4 and
NorduGrid/ARC middlewares and based on existing and emerging Grid standards. A
performance evaluation reveals that the overhead for resource discovery, brokering,
middleware-specific format conversions, job monitoring, fault tolerance, and manage-
ment of individual and groups of jobs is sufficiently small to motivate the use of the
framework.

Key words: Grid job management infrastructure, standards-based architecture, fault
tolerance, middleware-independence, Grid ecosystem.

∗ By permission of Springer Verlag

33

34

DESIGNING GENERAL, COMPOSABLE,
AND MIDDLEWARE-INDEPENDENT
GRID INFRASTRUCTURE TOOLS FOR
MULTI-TIERED JOB MANAGEMENT ∗

Erik Elmroth, Peter Gardfjäll, Arvid Norberg,
Johan Tordsson, and Per-OlovÖstberg
Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden

{elmroth, peterg, arvid, tordsson, p-o}@cs.umu.se

http://www.gird.se

Abstract We propose a multi-tiered architecture for middleware-independent Grid job man-
agement. The architecture consists of a number of services for well-defined tasks
in the job management process, offering complete user-level isolation of service
capabilities, multiple layers of abstraction, control, and fault tolerance. The mid-
dleware abstraction layer comprises components for targeted job submission, job
control and resource discovery. The brokered job submission layer offers a Grid
view on resources, including functionality for resource brokering and submission
of jobs to selected resources. The reliable job submission layer includes com-
ponents for fault tolerant execution of individual jobs and groups of independent
jobs, respectively. The architecture is proposed as a composable set of tools
rather than a monolithic solution, allowing users to select the individual com-
ponents of interest. The prototype presented is implemented using the Globus
Toolkit 4, integrated with the Globus Toolkit 4 and NorduGrid/ARC middlewares
and based on existing and emerging Grid standards. A performance evaluation
reveals that the overhead for resource discovery, brokering, middleware-specific
format conversions, job monitoring, fault tolerance, and management of individ-
ual and groups of jobs is sufficiently small to motivate the use of the framework.

Keywords: Grid job management infrastructure, standards-based architecture, fault toler-
ance, middleware-independence, Grid ecosystem.

∗Financial support has been received from The Swedish Research Council (VR) under contract number 621-
2005-3667. This research was conducted using the resources of the High Performance Computing Center
North (HPC2N).

35

2

1. Introduction

We investigate designs for a standards-based, multi-tier job management
framework that facilitates application development in heterogeneous Grid en-
vironments. The work is driven by the need for job management tools that:

offer multiple levels of functionality abstraction,

offer multiple levels of job control and fault tolerance,

are independent of, and easily integrated with, Grid middlewares,

can be used on a component-wise basis and at the same time offer a
complete framework for more advanced functionality,

An overall objective of this work is to provide understanding of how to
best develop such tools. Among architectural aspects of interest are, e.g., to
what extent job management functionalities should be separated into individ-
ual components or combined into larger, more feature-rich components, taking
into account both functionality and performance. As an integral part of the
project, we also evaluate and contribute to current Grid standardization efforts
for, e.g., data formats, interfaces and architectures. The evaluation of our ap-
proach will in the long term lead to the establishment of a set of general design
recommendations.

Features of our prototype software include user-level isolation of service
capabilities, a wide range of job management functionalities, such as basic
submission, monitoring, and control of individual jobs; resource brokering; au-
tonomous processing; and atomic management of sets of jobs. All services are
designed to be middleware-independent with middleware integration performed
by plug-ins in lower-level components. This enables both easy integration with
different middlewares and transparent cross-middleware job submission and
control.

The design and implementation of the framework rely on emerging Grid and
Web service standards [3],[9],[2] and build on our own experiences from devel-
oping resource brokers and job submission services [6],[7],[8], Grid scheduling
support systems [5], and the SweGrid Accounting System (SGAS) [10]. The
framework is based on WSRF and implemented using the Globus Toolkit 4.

2. A Model for Multi-Tiered Job Submission Architectures

In order to provide a highly flexible and customizable architecture, a basic
design principle is to develop several small components, each designed to per-
form a single, well-defined task. Moreover, dependencies between components
are kept to a minimum, and are well-defined in order to facilitate the use of al-
ternative components. These principles are adopted with the overall idea that a

36

Grid infrastructure tools for multi-level job management 3

specific middleware, or a specific user, should be able to make use of a subset
of the components without having to adopt an entire, monolithic system [11].

We propose to organize the various components according to the following
layered architecture.

Middleware Abstraction Layer. Similar to the hardware abstraction layer of
an operating system, the middleware abstraction layer provides the functionality
of a set of middlewares while encapsulating the details of these. This construct
allows other layers to access resources running different middlewares without
any knowledge of their actual implementation details.

Brokered Job Submission Layer. The brokered job submission layer offers
fundamental capabilities such as resource discovery, resource selection and job
submission, but without any fault tolerance mechanisms.

Reliable Job Submission Layer. The reliable job submission layer provides
a fault tolerant, reliable job submission. In this layer, individual jobs or groups
of jobs are automatically processed according to a customizable protocol, which
by default includes repeated submission and other failure handling mechanisms.

Advanced Job Submission & Application Layers. Above the three pre-
viously mentioned layers, we foresee both anadvanced job submission layer,
comprising, e.g., workflow engines, and anapplication layer, comprising , e.g.,
Grid applications, portals, problem solving environments and workflow clients.

3. The Grid Job Management Framework (GJMF)

Here follows a brief introduction to the GJMF, where the individual services
and their respective roles in the framework are described.

The GJMF offers a set of services which combined constitute a multi-tiered
job submission, control and management architecture. A mapping of the GJMF
architecture to the proposed layered architecture is provided in Figure 1.

All services in the GJMF offer a user-level isolation of the service capa-
bilities; a separate service component is instantiated for each user and only
the owner of a service component is allowed to access the service capabilities.
This means that the whole architecture supports a decentralized job manage-
ment policy, and strives to optimize the performance for the individual user.

The services in the GJMF also utilize a local call structure, using local Java
calls whenever possible for service-to-service interaction. This optimization is
only possible when the interacting services are hosted in the same container.

The GJMF supports a dynamic one-to-many relationship model, where a
higher-level service can switch between lower-level service instances to im-
prove fault tolerance and performance.

37

4

Figure 1. GJMF components mapped to their respective architectural layers.

As a note on terminology, there are two different types of job specifications
used in the GJMF: abstracttaskspecifications and concretejob specifications.
Both are specified in JSDL [3], but vary in content. A job specification includes a
reference to a computational resource to process the job, and therefore contains
all information required to submit the job. A task specification contains all
information required except a computational resource reference. The act of
brokering, the matching of a job specification to a computational resource, thus
transforms a task to a job.

Job Control Service (JCS). The JCS provides a functionality abstraction of
the underlying middleware(s) and offers a platform- and middleware-indepen-
dent job submission and control interface. The JCS operates on jobs and can
submit, query, stop and remove jobs. The JCS also contains customization
points for adding support for new middlewares and exposes information about
jobs it controls through WSRF resource properties, which either can be explic-
itly queried or monitored for asynchronous notifications. Note that this func-
tionality is offered regardless of underlying middleware, i.e., if a middleware
does not support event callbacks the JCS explicitly retrieves the information
required to provide the notifications. Currently, the JCS supports the GT4 and
the ARC middlewares.

Resource Selection Service (RSS).The RSS is a resource selection service
based on the OGSA Execution Management Services (OGSA EMS) [9]. The
OGSA EMS specify a resource selection architecture consisting of two services,
the Candidate Set Generator (CSG) and the Execution Planning Service (EPS).

38

Grid infrastructure tools for multi-level job management 5

The purpose of the CSG is to generate a candidate set, containing machines
where the jobcanexecute, whereas the EPS determines where the jobshould
execute. Upon invocation, the EPS contacts the CSG for a list of candidate ma-
chines, reorders the list according to a previously known or explicitly provided
set of rules and returns anexecution planto the caller.

The current OGSA EMS specification is incomplete, e.g., the interface of
the CSG is yet to be determined. Due to this, the CSG and the EPS are in
our implementation combined into one service - the RSS. The candidate set
generation is implemented by dynamical discovery of available resources using
a Grid information service, e.g., GT4 WS-MDS, and filtering of the identified
resources against the requirements in the job description. The RSS contains
a caching mechanism for Grid information, which alleviates the frequency of
information service queries.

Brokering & Submission Service (BSS). The BSS provides a functionality
abstraction for brokered task submission. It receives a task (i.e., an abstract job
specification) as input and retrieves an execution plan (a prioritized list of jobs)
from the RSS. Next, the BSS uses a JCS to submit the job to the most suitable
resource found in the execution plan. This process is repeated for each resource
in the execution plan until a job submission has succeeded or the resource list
has been exhausted. A client submitting a task to the BSS receives an EPR to
a job WS-Resource in the JCS as a result. All further interaction with the job,
e.g., status queries and job control is thus performed directly against the JCS.

Task Management Service (TMS). The TMS provides a high-level service
for automated processing of individual tasks, i.e., a user submits a task to the
TMS which repeatedly sends the task to a known BSS until a resulting job
is successfully executed or a maximum number of attempts have been made.
Internally, the TMS contains a per-user job pool from which jobs are selected
for sequential submission. The TMS job pool is of a configurable, limited size
and acts as a task submission throttle. It is designed to limit both the memory
requirements for the TMS and the flow of job submissions to the JCS. The
job submission flow is also regulated via a congestion detection mechanism,
where the TMS implements an incremental back-off behavior to limit BSS load
in situations where the RSS is unable to locate any appropriate computational
resources for the task. The TMS tracks job progress via the JCS and manages a
state machine for each job, allowing it to handle failed jobs in an efficient man-
ner. The TMS also contains customization points where the default behaviors
for task selection, failure handling and state monitoring can be altered via Java
plug-ins.

39

6

Task Group Management Service (TGMS). Like the TMS for individual
tasks, the TGMS provides an automated, reliable submission solution for groups
of tasks. The TGMS relies on the TMS for individual task submission and
offers a convenient way to submit groups of independent tasks. Internally, the
TGMS contains two levels of queues for each user. All task groups that contain
unprocessed tasks are placed in a task group queue. Each task group queue, in
turn, contains its own task queue. Tasks are selected for submission in two steps:
first an active task group is selected, then a task from this task group is selected
for submission. By default, tasks are resubmitted until they have reached a
terminal state (i.e., succeeded or failed). A task group reaches a terminal state
once all its tasks are processed. A task group can also be suspended, either
explicitly by the user or implicitly by the service when it is no longer meaningful
to continue to process the task group, e.g., when associated user credentials have
expired. A suspended task group must be explicitly resumed to become active.
The TGMS contains customization points for changing the default behaviors
for task selection, failure handling and state monitoring.

Client API. The Client API is an integral part of the GJMF; it provides
utility libraries and interfaces for creating tasks and task groups, translating job
descriptions, customizing service behaviors, delegating credentials and contains
service-level APIs for accessing all components in the GJMF. The purpose of
the GJMF Client API is to provide easy-to-use programmable (Java) access to
all parts of the GJMF.

For further information regarding the GJMF, including design documents and
technical documentation of the services, see [12].

4. Performance Evaluation

We evaluate the performance of the TGMS and the TMS by investigating the
total cost imposed by the GJMF services compared to the total cost of using
the native job submission mechanism of a Grid middleware, GT4 WS-GRAM
(without performing resource discovery, brokering, fault recovery etc.).

In the reference tests with WS-GRAM, a client sequentially submits a set
of jobs using the WS-GRAM Java API, delaying the submission of a job un-
til the previous one has been successfully submitted. All jobs run the trivial
/bin/true command and are executed on the Grid resources using the POSIX
Fork mechanism. The jobs in a test are distributed evenly among the Grid re-
sources using a round-robin mechanism. The WS-GRAM tests do not include
any WS-MDS interaction. No job input or output files are transferred and no
credentials are delegated to the submitted jobs. In each test, the total wall clock
time is recorded. Tests are performed with selected numbers of jobs, ranging
from 1 to 750.

40

Grid infrastructure tools for multi-level job management 7

 1

 10

 0 100 200 300 400 500 600 700

A
ve

ra
ge

 jo
b

tim
e

(s
)

Number of jobs

TMS
TGMS
GRAM

Figure 2. GRAM and GJMF job processing performance.

The configuration of the GJMF tests is the same as for the WS-GRAM tests,
with the following additions. For the TGMS tests, user credentials are delegated
from the client to the service for each task group (each test). Delegation is also
performed only once per test in the TMS case, as all jobs in a TMS test reuse
the same delegated credentials. For both the TGMS and the TMS tests, the BSS
performs resource discovery using the GT4 WS-MDS Grid information system
and caches retrieved information for 60 seconds. In the TMS and TGMS tests,
all services are co-located in the same container, to enable the use of local Java
calls between the services, instead of (more costly) Web service invocations.

Test Environment. The test environment includes four identical 2 GHz AMD
Opteron CPU, 2 GB RAM machines, interconnected with a 100 Mbps Ethernet
network, and running Ubuntu Linux 2.6 and Globus Toolkit 4.0.3.

In all tests, one machine runs the GJMF (or the WS-GRAM client) and
the other three act as WS-GRAM/GT4 resources. For the GJMF tests, the
RSS retrieves WS-MDS information from one of the three resources, which
aggregates information about the other two.

Analysis. Figure 2 illustrates the average time required to submit and execute
a job for different number of jobs in the test. As seen in the figure, the TGMS
offers a more efficient way to submit multiple tasks than the TMS. This is due
to the fact that the TMS client performs one Web service invocation per task
whereas the TGMS client only makes a single, albeit large, call to the TGMS.
The TGMS client requires between 13 (1 task) and 16.6 seconds (750 tasks)
to delegate credentials, invoke the Web service and get a reply. For the TMS,

41

8

the initial Web service call takes roughly 13 seconds (as it is associated with
dynamic class-loading, initialization and delegation of credentials), additional
calls average between 0.4 and 0.6 seconds. For the GRAM client, the initial
Web service invocation takes roughly 12 seconds. The additional TMS Web
service calls quickly become the dominating factor as the number of jobs are
increased. When using Web service calls between the TGMS and the TMS
this factor is canceled out. Conversely, when co-located with the TMS and
using local Java calls, the TGMS only suffers a negligible overhead penalty for
using the TMS for task submission. In a test with 750 jobs, the average job
time is roughly 0.35 seconds for WS-GRAM, and approximately 0.51 and 0.57
seconds for the TGMS and TMS, respectively.

As the WS-GRAM client and the JCS use the same GT4 client libraries, the
difference between the WS-GRAM performance and that of the other services
can be used as a direct measure of the GJMF overhead.

In the test cases considered, the time required to submit a job (or a task) can
be divided into three parts.

1 The initialization time for GT4 Java clients. This includes time for class
loading and run-time environment initialization. This time may vary with
the system setup but is considered to be constant for all three test cases.

2 The time required to delegate credentials. This only applies to the GJMF
tests, not the test of WS-GRAM. Even though delegated credentials are
shared between jobs, the TMS is still slightly slower than the TGMS in
terms of credential delegation. The TMS has to retrieve the delegated
credential for each task, whereas the TGMS only retrieves the delegated
credential once per test.

3 The Web service invocation time. This factor grows with the size of
the messages exchanged and affects the TGMS, as a description of each
individual task is included in the TGMS input message. The invocation
time is constant for the TMS and WS-GRAM tests, as these services
exchange fixed size messages.

Summary. When co-hosted in the same container, the GJMF services allots
an overhead of roughly 0.2 seconds per task for large task groups (containing
750 tasks or more). The main part of this overhead is associated with Java class
loading, delegation of credentials and initial Web service invocation. These
factors result in larger average overheads for smaller task groups. For task
groups containing 5 tasks, the average overhead per task is less than 1 second,
and less than 0.5 seconds for 15 tasks. It should also be noted that, as jobs are
submitted sequentially but executed in parallel, the submission time (including
the GJMF overhead), is masked by the job execution time. Therefore, when
using real world applications with longer job durations than those in the tests,
the impact of the GJMF overhead is reduced.

42

Grid infrastructure tools for multi-level job management 9

5. Related Work

We have identified a number of contributions that relate to this project in
different ways. For example, the Gridbus [16] middleware includes a lay-
ered architecture for platform-independent Grid job management; the GridWay
Metascheduler [13] offers reliable and autonomous execution of jobs; the Grid-
Lab Grid Application Toolkit [1] provides a set of services to simplify Grid
application development; GridSAM [15] offers a Web service-based job sub-
mission pipeline which provides middleware abstraction and uses JSDL job
descriptions; P-GRADE [14] provides reliable, fault-tolerant parallel program
execution on the grid; and GEMLCA [4] offers a layered architecture for run-
ning legacy applications through grid services. These contributions all include
features which partially overlap the functionality available in the GJMF. How-
ever, our work distinguishes itself from these contributions by, in the same
software, providing i) a composable service-based solution, ii) multiple lev-
els of abstraction, iii) middleware-interoperability while building on emerging
Grid service standards.

6. Concluding Remarks

We propose a multi-tiered architecture for building general Grid infrastruc-
ture components and demonstrate the feasibility of the concept by implementing
a prototype job management framework. The GJMF provides a standards-
based, fault-tolerant job management environment where users may use parts
of, or the entire framework, depending on their individual requirements. Fur-
thermore, we demonstrate that the overhead incurred by using the framework is
sufficiently small (approaching 0.2 seconds per job for larger groups of jobs) to
motivate the practical use of such an architecture. Initial tests demonstrate that
by proper methods, including reuse of delegated credentials, caching of Grid
information and local Java invocations of co-located services, it is possible to
implement an efficient service-based multi-tier framework for job management.
Considering the extra functionality offered and the small additional overhead
imposed, the GJMF framework is an attractive alternative to a pure WS-GRAM
client for the submission and management of large numbers of jobs.

Acknowledgments

We are grateful to the anonymous referees for constructive comments that
have contributed to the clarity of this paper.

References

[1] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. Merzky,
J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor. Enabling

43

10

applications on the Grid - a GridLab overview.Int. J. High Perf. Comput. Appl., 17(4),
2003.

[2] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Kónya, M. Mambelli, J. M.
Schopf, M. Viljoen, and A. Wilson. Glue schema specification version 1.2 draft 7.
http://glueschema.forge.cnaf.infn.it/uploads/Spec/GLUEInfoModel1 2 final.pdf, March
2007.

[3] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, A. S. McGough, D. Pulsipher,
and A. Savva. Job Submission Description Language (JSDL) specification, version 1.0.
http://www.ogf.org/documents/GFD.56.pdf, March 2007.

[4] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, and P. Kacsuk. GEMLCA:
Running legacy code applications as Grid services.Journal of Grid Computing, 3(1 – 2):75
– 90, June 2005. ISSN: 1570-7873.

[5] E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized system for Grid-
wide fairshare scheduling. In H. Stockinger, R. Buyya, and R. Perrott, editors,e-Science
2005, First International Conference on e-Science and Grid Computing, pages 221–229.
IEEE CS Press, 2005.

[6] E. Elmroth and J. Tordsson. An interoperable, standards-based Grid resource broker and
job submission service. In H. Stockinger, R. Buyya, and R. Perrott, editors,e-Science
2005, First International Conference on e-Science and Grid Computing, pages 212–220.
IEEE CS Press, 2005.

[7] E. Elmroth and J. Tordsson. A standards-based Grid resource brokering service sup-
porting advance reservations, coallocation and cross-Grid interoperability. Submitted to
Concurrency and Computation: Practice and Experience, December 2006.

[8] E. Elmroth and J. Tordsson. Grid resource brokering algorithms enabling advance reser-
vations and resource selection based on performance predictions.Future Generation
Computer Systems. The International Journal of Grid Computing: Theory, Methods and
Applications, 2007, to appear.

[9] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist,
R. Subramaniam, J. Treadwell, and J. Von Reich. The Open Grid Services Architecture,
version 1.5. http://www.ogf.org/documents/GFD.80.pdf, March 2007.

[10] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm. Scalable Grid-wide
capacity allocation with the SweGrid Accounting System (SGAS). Submitted toConcur-
rency and Computation: Practice and Experience, October 2006.

[11] Globus. An “Ecosystem” of Grid Components.
http://www.globus.org/gridsoftware/ecology.php. March 2007.

[12] Grid Infrastructure Research & Development (GIRD). http://www.gird.se. March 2007.

[13] E. Huedo, R.S. Montero, and I.M. Llorente. A framework for adaptive execution on Grids.
Software - Practice and Experience, 34(7):631–651, 2004.

[14] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton, and G. Gombás.
P-GRADE: a Grid programming environment.Journal of Grid Computing, 1(2):171 –
197, 2003.

[15] W. Lee, A. S. McGough, and J. Darlington. Performance evaluation of the GridSAM job
submission and monitoring system. InUK e-Science All Hands Meeting, Nottingham,
UK, 2005.

[16] S. Venugopal, R. Buyya, and L. Winton. A Grid service broker for scheduling e-Science
applications on global data Grids.Concurrency Computat. Pract. Exper., 18(6):685–699,
May 2006.

44

II

Paper II

Designing Service-Based Resource Management Tools
for a Healthy Grid Ecosystem∗

Erik Elmroth, Francisco Hernández, Johan Tordsson, and
Per-Olov Östberg

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, hernandf, tordsson, p-o}@cs.umu.se

http://www.gird.se

Abstract: We present an approach for development of Grid resource management
tools, where we put into practice internationally established high-level views of future
Grid architectures. The approach addresses fundamental Grid challenges and strives
towards a future vision of the Grid where capabilities are made available as indepen-
dent and dynamically assembled utilities, enabling run-time changes in the structure,
behavior, and location of software. The presentation is made in terms of design heuris-
tics, design patterns, and quality attributes, and is centered around the key concepts
of co-existence, composability, adoptability, adaptability, changeability, and interop-
erability. The practical realization of the approach is illustrated by five case studies
(recently developed Grid tools) high-lighting the most distinct aspects of these key
concepts for each tool. The approach contributes to a healthy Grid ecosystem that
promotes a natural selection of ”surviving” components through competition, innova-
tion, evolution, and diversity. In conclusion, this environment facilitates the use and
composition of components on a per-component basis.

∗ By permission of Springer Verlag

47

48

Designing Service-Based Resource Management

Tools for a Healthy Grid Ecosystem⋆

Erik Elmroth, Francisco Hernández, Johan Tordsson, and Per-Olov Östberg

Dept. of Computing Science and HPC2N
Ume̊a University, SE-901 87 Ume̊a, Sweden

{elmroth, hernandf, tordsson, p-o}@cs.umu.se

Abstract. We present an approach for development of Grid resource
management tools, where we put into practice internationally estab-
lished high-level views of future Grid architectures. The approach ad-
dresses fundamental Grid challenges and strives towards a future vision
of the Grid where capabilities are made available as independent and
dynamically assembled utilities, enabling run-time changes in the struc-
ture, behavior, and location of software. The presentation is made in
terms of design heuristics, design patterns, and quality attributes, and is
centered around the key concepts of co-existence, composability, adopt-
ability, adaptability, changeability, and interoperability. The practical
realization of the approach is illustrated by five case studies (recently
developed Grid tools) high-lighting the most distinct aspects of these
key concepts for each tool. The approach contributes to a healthy Grid
ecosystem that promotes a natural selection of “surviving” components
through competition, innovation, evolution, and diversity. In conclusion,
this environment facilitates the use and composition of components on
a per-component basis.

1 Introduction

In recent years, the vision of the Grid as the general-purpose, service-oriented
infrastructure for provisioning of computing, data, and information capabilities
has started to materialize in the convergence of Grid and Web services tech-
nologies. Ultimately, we envision a Grid with open and standardized interfaces
and protocols, where independent Grids can interoperate, virtual organizations
co-exist, and capabilities be made available as independent utilities.

However, there is still a fundamental gap between the technology used in
major production Grids and recent technology developed by the Grid research
community. While current research directions focus on user-centric and service-
oriented infrastructure design for scenarios with millions of self-organizing nodes,
current production Grids are often more monolithic systems with stronger inter-
component dependencies.
⋆ This research was conducted using the resources of the High Performance Comput-

ing Center North (HPC2N). Financial support has been provided by The Swedish
Research Council (VR) under contract 621-2005-3667.

49

2

We present an approach to Grid infrastructure component development,
where internationally established high-level views of future Grid architectures
are put into practice. Our approach addresses the future vision of the Grid,
while enabling easy integration into current production Grids. We illustrate the
feasibility of our approach by presenting five case studies.

The outline of the rest of the paper is as follows. Section 2 gives further
background information, including our vision of the Grid, a characterization
of competitive factors for Grid software, and a brief review of internationally
established conceptual views of future Grid architectures. Section 3 presents
our approach to Grid infrastructure development, which complies with these
views. The realization of this approach for specific components is illustrated
in Section 4, with a brief presentation of five tools recently developed within
the Grid Infrastructure Research & Development (GIRD) project [26]. These
are Grid tools or toolkits for resource brokering [9–11], job management [7],
workflow execution [8], accounting [16, 24], and Grid-wide fairshare scheduling
[6].

2 Background and Motivation

Our approach to Grid infrastructure development is driven by the need and
opportunity for a general-purpose infrastructure. This infrastructure should fa-
cilitate flexible and transparent access to distributed resources, dynamic com-
position of applications, management of complex processes and workflows, and
operation across geographical and organizational boundaries. Our vision is that
of a large evolving system, realized as a Service-Oriented Architecture (SOA)
that enables provisioning of computing, data, and information capabilities as
utility-like services serving business, academia, and individuals. From this point
of departure, we elaborate on fundamental challenges that need to be addressed
to realize this vision.

2.1 Facts of life in Grid environments

The operational context of a Grid environment is harsh, with heterogeneity in
resource hardware, software, ownerships, and policies. The Grid is distributed
and decentralized by nature, and any single point of control is impossible not
only for scalability reasons but also since resources are owned by different orga-
nizations. Furthermore, as resource availability varies, resources may at any time
join or leave the Grid. Information about the set of currently available resources
and their status will always to some extent be incomplete or outdated.

Actors have different incentives to join the Grid, resulting in asymmetric
resource sharing relationships. Trust is also asymmetric, which in scenarios with
cross trust-domain orchestration of multiple resources that interact beyond the
client-server model, gives rise to complex security challenges.

Demand for resources typically exceed supply, with contention for resources
between users as a consequence. The Grid user community at large is disparate

50

3

in requirements and knowledge, necessitating the development of wide ranges of
user interfaces and access mechanisms. All these complicating factors add up to
an environment where errors are rule rather than exception.

2.2 A General-purpose Grid ecosystem

Recently, a number of organizations have expressed views on how to realize a
single and fully open architecture for the future Grid. To a large extent, these
expressions conform to a single view of a highly dynamic service-oriented infras-
tructure for general-purpose use.

One such view proposes the model of a healthy ecosystem of Grid compo-
nents [25], where components occupy niches in the ecosystem and are designed
for component-by-component selection by developers, administrators, and end-
users. Components are developed by the Grid community at large and offer
sensible functionality, available for easy integration in high-level tools or other
software. In the long run, competition, innovation, evolution, and diversity lead
to natural selection of “surviving” components, whereas other components even-
tually fade out or evolve into different niches.

European organizations, such as the Next Generation Grids expert group
[12] and NESSI [23], have focused on a common architectural view for Grid
infrastructure, possibly with a more emphasized business focus compared to
previous efforts. Among their recommendations is a strong focus on SOAs where
services can be dynamically assembled, thus enabling run-time changes in the
structure, behavior, and location of software. The view of services as utilities
includes directly and immediately usable services with established functionality,
performance, and dependability. This vision goes beyond that of a prescribed
layered architecture by proposing a multi-dimensional mesh of concepts, applying
the same mechanisms along each dimension across the traditional layers.

In common for these views are, for example, a focus on composable com-
ponents rather than monolithic Grid-wide systems, as well as a general-purpose
infrastructure rather than application- or community-specific systems. Examples
of usage range from business and academic applications to individual’s use of
the Grid. These visions also address some common issues in current production
Grid infrastructures, such as interoperability and portability problems between
different Grids, as well as limited software reuse. Before detailing our approach
to Grid software design, which complies with the views presented above, we
elaborate on key factors for software success in the Grid ecosystem.

2.3 Competitive factors for software in the Grid ecosystem

In addition to component-specific functional requirements, which obviously differ
for different types of components, we identify a set of general quality attributes
(also known as non-functional requirements) that successful software components
should comply with. The success metrics considered here are the amount of users
and the sustainability of software.

51

4

In order to attract the largest possible user community, usability aspects
such as availability, ease of installation, understandability, and quality of docu-
mentation and support are important. With the dynamic and changing nature
of Grid environments, flexibility and the ability to adapt and evolve is vital for
the survival of a software component. Competitive factors for survival include
changeability, adaptability, portability, interoperability, and integrability. These
factors, along with mechanisms used to improve software quality with respect to
them, are further discussed in Section 3. Other criteria, relating to sustainabil-
ity, include the track record of both components and developers as well as the
general reputation of the latter in the user community.

Quality attributes such as efficiency (with emphasis on scalability), reliability,
and security also affect the software success rate in the Grid ecosystem. These
attributes are however not further discussed herein.

3 Grid Ecosystem Software Development

In this section we present our approach to building software well-adjusted to
the Grid ecosystem. The presentation is structured into five groups of software
design heuristics, design patterns, and quality attributes that are central to our
approach. All definitions are adapted to the Grid ecosystem environment, but
are derived from, and conform to, the ISO/IEC 9126-1 standard [20].

3.1 Co-existence – Grid ecosystem awareness

Co-existence is defined as the ability of software to co-exist with other indepen-
dent softwares in a shared resource environment. The behavior of a component
well adjusted to the Grid ecosystem is characterized by non-intrusiveness, respect
for niche boundaries, replaceability, and avoidance of resource overconsumption.

When developing new Grid components, we identify the purpose and bound-
aries of the corresponding niches in order to ensure the components’ place and
role in the ecosystem. By stressing non-intrusiveness in the design, we strive to
ensure that new components do not alter, hinder, or in any other way affect
the function of other components in the system. While the introduction of new
software into an established ecosystem may, through fair competition, reshape,
create, or eliminate niches, it is still important for the software to be able to
cooperate and interact with neighboring components.

By the principle of decentralization, it is crucial to avoid making assumptions
of omniscient nature and not to rely on global information or control in the Grid.
By designing components for a user-centric view of systems, resources, compo-
nent capabilities, and interfaces, we emphasize decentralization and facilitate
component co-existence and usability.

3.2 Composability – software reuse in the Grid ecosystem

Composability is defined as the capability of software to be used both as in-
dividual components and as building blocks in other systems. As systems may

52

5

themselves be part of larger systems, or make use of other systems’ components,
composability becomes a measure of usefulness at different levels of system de-
sign. Below, we present some design heuristics that we make use of in order to
improve software composability.

By designing components and component interactions in terms of interfaces
rather than functionality, we promote the creation of components with well-
defined responsibilities and provision for module encapsulation and interface
abstraction. We strive to develop simple, single-purpose components achieving a
distinct separation of concerns and a clear view of service architectures. Imple-
mentation of such components is faster and less error-prone than more complex
designs. Autonomous components with minimized external dependencies make
composed systems more fault tolerant as their distributed failure models become
simpler.

Key to designing composable software is to provision for software reuse rather
than reinvention. Our approach, leading to generic and composable tools well
adjusted to the Grid ecosystem, encourages a model of software reuse where
users of components take what they need and leave the rest. Being decentral-
ized and distributed by nature, SOAs have several properties that facilitate the
development of composable software.

3.3 Adoptability – Grid ecosystem component usability

Adoptability is a broad concept enveloping aspects such as end-user usability,
ease of integration, ease of installation and administration, level of portability,
and software maintainability. These are key factors for determining deployment
rate and niche impact of a software.

As high software usability can both reduce end-user training time and in-
crease productivity, it has significant impact on the adoptability of software. We
strive for ease of system installation, administration, and integration (e.g., with
other tools or Grid middlewares), and hence reduce the overhead imposed by
using the software as stand-alone components, end-user tools, or building blocks
in other systems. Key adoptability factors include quality of documentation and
client APIs, as well as the degree of openness, complexity, transparency and
intrusiveness of the system.

Moreover, high portability and ease of migration can be deciding factors for
system adoptability.

3.4 Adaptability and Changeability – surviving evolution

Adaptability, the ability to adapt to new or different environments, can be a key
factor for improving system sustainability. Changeability, the ability for software
to be changed to provide modified behavior and meet new requirements, greatly
affects system adaptability.

By providing mechanisms to modify component behavior via configuration
modules, we strive to simplify component integration and provide flexibility in,

53

6

and ease of, customization and deployment. Furthermore, we find that the use
of policy plug-in modules which can be provided and dynamically updated by
third parties are efficient for making systems adaptable to changes in operational
contexts. By separating policy from mechanism, we facilitate for developers to
use system components in other ways than originally anticipated and software
reuse can thus be increased.

3.5 Interoperability – interaction within the Grid ecosystem

Interoperability is the ability of software to interact with other systems. Our ap-
proach includes three different techniques for making our components available,
making them able to access other Grid resources, and making other resources
able to access our components, respectively. Integration of our components typ-
ically only requires the use of one or two of these techniques.

Whenever feasible, we leverage established and emerging Web and Grid ser-
vices standards for interfaces, data formats, and architectures. Generally, we for-
mulate integration points as interfaces expressing required functionality rather
than reflecting internal component architecture. Our components are normally
made available as Grid services, following these general principles.

For our components to access resources running different middlewares, we
combine the use of customization points and design patterns such as Adapter
and Chain of Responsibility [15]. Whenever possible, we strive to embed the
customization points in our components, simplifying component integration with
one or more middlewares.

In order to make existing Grid softwares able to access our components,
we strive to make external integration points as few, small, and well-defined as
possible, as these modifications need to be applied to external softwares.

4 Case Studies

We illustrate our approach to software development by brief presentations of
five tools or toolkits recently developed in the GIRD project [26]. The presenta-
tions describe the overall tool functionality and high-light the most significant
characteristics related to the topics discussed in Section 3.

All tools are built to operate in a decentralized Grid environment with no
single point of control. They are furthermore designed to be non-intrusive and
can coexist with alternative mechanisms. To enhance adoptability of the tools,
user guides, administrator manuals, developer APIs, and component source code
are made available online [26]. As these adoptability measures are common for
all projects, the adoptability characteristics are left out of the individual project
presentations.

The use of SOAs and Web services naturally fulfills many of the composability
requirements outlined in Section 3. The Web service toolkit used is the Globus
Toolkit 4 (GT4) Java WS Core, which provides an implementation of the Web
Services Resource Framework (WSRF). Notably, the fact that our tools are made

54

7

available as GT4-based Web services should not be interpreted as been built
primarily for use in GT4-based Grids. On the contrary, their design is focused
on generality and ease of middleware integration.

4.1 Job Submission Service (JSS)

The JSS is a feature-rich, standards-based service for cross-middleware job sub-
mission, providing support, e.g., for advance reservations and co-allocation. The
service implements a decentralized brokering policy, striving to optimize the job
performance for individual users by minimizing the response time for each sub-
mitted job. In order to do this, the broker makes an a priori estimation of the
whole, or parts of, the Total Time to Delivery (TTD) for all resources of interest
before making the resource selection [9–11].

Co-existence: The non-intrusive decentralized resource broker handles each
job isolated from the jobs of other users. It can provide quality of service to
end-users despite the existence of competing job submission tools.

Composability: The JSS is composed of several modules, each performing a
well-defined task in the job submission process, e.g., resource discovery, reserva-
tion negotiation, resource selection, and data transfer.

Changeability and adaptability: Users of the JSS can specify additional infor-
mation in job request messages to customize and fine-tune the resource selection
process. Developers can replace the resource brokering algorithms with alterna-
tive implementations.

Interoperability: The architecture of the JSS is based on (emerging) stan-
dards such as JSDL, WSRF, WS-Agreement, and GLUE. It also includes cus-
tomization points, enabling the use of non-standard job description formats, Grid
information systems, and job submission mechanisms. The latter two can be in-
terfaced despite differences in data formats and protocols. By these mechanisms,
the JSS can transparently submit jobs to and from GT4, NorduGrid/ARC, and
LCG/gLite.

4.2 Grid Job Management Framework (GJMF)

The GJMF [7] is a framework for efficient and reliable processing of Grid jobs.
It offers transparent submission, control, and management of jobs and groups of
jobs on different middlewares.

Co-existence: The user-centric GJMF design provides a view of exclusive
access to each service and enforces a user-level isolation which prohibits access
to other users’ information. All services in the framework assume shared access
to Grid resources. The resource brokering is performed without use of global
information, and includes back-off behaviors for Grid congestion control on all
levels of job submission.

Composability: Orchestration of services with coherent interfaces provides
transparent access to all capabilities offered by the framework. The functionality
for job group management, job management, brokering, Grid information system
access, job control, and log access are separated into autonomous services.

55

8

Changeability and adaptability: Configurable policy plug-ins in multiple loca-
tions allow customization of congestion control, failure handling, progress mon-
itoring, service interaction, and job (group) prioritizing mechanisms. Dynamic
service orchestration and fault tolerance is provided by each service being capable
of using multiple service instances. For example, the job management service is
capable of using several services for brokering and job submission, automatically
switching to alternatives upon failures.

Interoperability: The use of standardized interfaces such as JSDL as job de-
scription format, OGSA BES for job execution, and OGSA RSS for resource
selection improves interoperability and replaceability.

4.3 Grid Workflow Execution Engine (GWEE)

The GWEE [8] is a light-weight and generic workflow execution engine that fa-
cilitates the development of application-oriented end-user workflow tools. The
engine is light-weight in that it focuses only on workflow execution and the cor-
responding state management. This project builds on experiences gained while
developing the Grid Automation and Generative Environment (GAUGE) [19,
17].

Co-existence: The engine operates in the narrow niche of workflow execu-
tion. Instead of attempting to replace other workflow tools, the GWEE provides
a means for accessing advanced capabilities offered by multiple Grid middle-
wares. The engine can process multiple workflows concurrently without them
interfering with each other. Furthermore, the engine can be shared among mul-
tiple users, but only the creator of a workflow instance can monitor and control
that workflow.

Composability: The main responsibilities of the engine, managing task de-
pendencies, processing tasks on Grid resources, and managing workflow state,
are performed by separate modules.

Adaptability and Changeability: Workflow clients can monitor executing work-
flows both by synchronous status requests and by asynchronous notifications.
Different granularities of notifications are provided to support specific client
requirements – from a single message upon workflow completion to detailed up-
dates for each task state change.

Interoperability: The GWEE is made highly interoperable with different mid-
dlewares and workflow clients through the use of two types of plug-ins. Currently,
it provides middleware plug-ins for execution of computational tasks in GT4
and in the GJMF, as well as GridFTP file transfers. It also provides plug-ins
for transforming workflow languages into its native language, as currently has
been done for the Karajan language. The Chain of Responsibility design pattern
allows concurrent usage of multiple implementations of a particular plug-in.

4.4 SweGrid Accounting System (SGAS)

SGAS allocates Grid capacity between user groups by coordinated enforcement
of Grid-wide usage limits [24, 16]. It employs a credit-based allocation model

56

9

where Grid capacity is granted to projects via Grid-wide quota allowances. The
Grid resources collectively enforce these allowances in a soft, real-time man-
ner. The main SGAS components are a Bank, a logging service (LUTS), and
a quota-aware authorization tool (JARM), the latter to be integrated on each
Grid resource.

Co-existence: SGAS is built as stand-alone Grid services with minimal de-
pendencies on other software. Normal usage is not only non-intrusive to other
software but also to usage policies, as resource owners retain ultimate control
over local resource policies, such as strictness of quota enforcement.

Composability: There is a distinct separation of concerns between the Bank
and the LUTS, for managing usage quotas and logging usage data, respectively.
They can each be used independently.

Changeability and adaptability: The Bank can be used to account for any
type of resource consumption and with any price-setting mechanism, as it is
independent of the mapping to the abstract “Grid credit” unit used. The Bank
can also be changed from managing pre-allocations to accumulating costs for
later billing. The JARM provides customization points for calculating usage
costs based on different pricing models. The tuning of the quota enforcement
strictness is facilitated by a dedicated customization point.

Interoperability: The JARM has plug-in points for middleware-specific adapter
code, facilitating integration with different middleware platforms, scheduling sys-
tems, and data formats. The middleware integration is done via a SOAP message
interceptor in GT4 GRAM and via an authorization plug-in script in the Nor-
duGrid/ARC GridManager. The LUTS data is stored in the OGF Usage Record
format.

4.5 Grid-Wide Fairshare Scheduling System (FSGrid)

FSGrid is a Grid-wide fairshare scheduling system that provides three-party
QoS support (user, resource-owner, VO-authority) for enforcement of locally
and globally scoped share policies [6]. The system allows local resource capacity
as well as global Grid capacity to be logically divided among different groups of
users. The policy model is hierarchical and sub-policy definition can be delegated
so that, e.g., a VO can partition its share among its projects, which in turn can
divide their shares among users.

Co-existence: The main objective of FSGrid is to facilitate for distributed
resources to collaboratively schedule jobs for Grid-wide fairness. FSGrid is non-
intrusive in the sense that resource owners retain ultimate control of how to
perform the scheduling on their local resources.

Composability: FSGrid includes two stand-alone components with clearly
separated concerns for maintaining a policy tree and to log usage data, respec-
tively. In fact, the logging component in current use is the LUTS originally
developed for SGAS, illustrating the potential for reuse of that component.

Changeability and adaptability: A customizable policy engine is used to cal-
culate priority factors based on a runtime policy tree with information about

57

10

resource pre-allocations and previous usage. The priority calculation can be cus-
tomized, e.g., in terms of length, granularity, and rate of aging of usage history.
The administration of the policy tree is flexible as sub-policy definition can be
delegated to, e.g., VOs and projects.

Interoperability: Besides the integration of the LUTS (see Section 4.4), FSGrid
includes a single external point of integration, as a fair-share priority factor call-
out to FSGrid has to be integrated in the local scheduler on each resource.

5 Related Work

Despite the large amount of Grid related projects to date, just a few of these have
shared their experiences regarding software design and development approaches.
Some of these projects have focused on software architecture. In a survey by
Filkenstein et al. [13], existing data-Grids are compared in terms of their archi-
tectures, functional requirements, and quality attributes. Cakic et al. [2] describe
a Grid architectural style and a light-weight methodology for constructing Grids.
Their work is based on a set of general functional requirements and quality at-
tributes that derives an architectural style that includes information, control,
and execution. Mattmann et al. [22] analyze software engineering challenges for
large-scale scientific applications, and propose a general reference architecture
that can be instantiated and adapted for specific application domains. We agree
on the benefits obtained with a general architecture for Grid components to be
instantiated for specific projects, however, our focus is on the inner workings of
the components making up the architecture.

The idea of software that evolves due to unforeseen changes in the environ-
ment also appears in the literature. In the work by Smith et al. [3], the way
software is modified over time is compared with Darwinian evolution. In this
work, the authors discuss the best-of-breed approach, where an organization
collects and assembles the most suitable software component from each niche.
The authors also construct a taxonomy of the “species” of enterprise software. A
main difference between this work and our contribution is that our work focuses
on software design criteria.

Other high-level visions of Grid computing include that of interacting au-
tonomous software agents [14]. One of the characteristics of this vision is that
software engineering techniques employed for software agents can be reused with
little or no effort if the agents encompasses the service’s vision [21]. A different
view on agent-based software development for the Grid is that of evolution based
on competition between resource brokering agents [4]. These projects differ from
our contribution as our tools have a stricter focus on functionality (being well-
adjusted to their respective niches).

Finally, it is also important to notice that there are a number of tools that
simplify the development of Grid software. These tools facilitate, for example,
implementation [18], unit testing [5], and automatic integration [1].

58

11

6 Concluding Remarks

We explore the concept of the Grid ecosystem, with well-defined niches of func-
tionality and natural selection (based on competition, innovation, evolution, and
diversity) of software components within the respective niches. The Grid ecosys-
tem facilitates the use and composition of components on a per-component basis.
We discuss fundamental requirements for software to be well-adjusted to this en-
vironment and propose an approach to software development that complies with
these requirements. The feasibility of our approach is demonstrated by five case
studies. Future directions for this work include further exploration of processes
and practices for development of Grid software.

7 Acknowledgements

We acknowledge Magnus Eriksson for valuable feedback on software engineering
standardization matters.

References

1. M-E. Bégin, G. Diez-Andino, A. Di Meglio, E. Ferro, E. Ronchieri, M. Selmi, and
M. Zurek. Build, configuration, integration and testing tools for large software
projects: ETICS. In N. Guelfi and D. Buchs, editors, Rapid Integration of Software
Engineering Techniques, LNCS 4401, pp. 81–97. Springer-Verlag, 2007.

2. J. Cakic and R. F. Paige. Origins of the Grid architectural style. In Engineering
of Complex Computer Systems. 11th IEEE Int. Conference, IECCS 2006, pp. 227–
235. IEEE CS Press, 2006.

3. J. Smith David, W. E. McCarthy, and B. S. Sommer. Agility – the key to survival
of the fittest in the software market. Commun. ACM, 46(5):65–69, 2003.

4. C. Dimou and P. A. Mitkas. An agent-based metacomputing ecosystem.
http://issel.ee.auth.gr/ktree/Documents/Root Folder/ISSEL/Publications/Biogrid
An Agent-based Metacomputing Ecosystem.pdf, visited October 2007.

5. A. Duarte, W. Cirne, F. Brasileiro, and P. Machado. GridUnit: software testing on
the Grid. In K.M. Anderson, editor, Software Engineering. 28th Int. Conference,
ICSE 2006, pp. 779–782. ACM Press, 2006.

6. E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized system for
Grid-wide fairshare scheduling. In H. Stockinger et al., editors, First International
Conference on e-Science and Grid Computing, pp. 221–229. IEEE CS Press, 2005.

7. E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg. Designing
general, composable, and middleware-independent Grid infrastructure tools for
multi-tiered job management. In T. Priol and M. Vaneschi, editors, Towards Next
Generation Grids, pp. 175–184. Springer-Verlag, 2007.

8. E. Elmroth, F. Hernández, and J. Tordsson. A light-weight Grid workflow exe-
cution engine enabling client and middleware independence. In R. Wyrzykowski
et al., editors, Parallel Processing and Applied Mathematics. 7th Int. Conference,
PPAM 2007. Lecture notes in Computer Science, Springer Verlag, 2007 (to appear).

9. E. Elmroth and J. Tordsson. An interoperable, standards-based Grid resource bro-
ker and job submission service. In H. Stockinger et al., editors, First International
Conference on e-Science and Grid Computing, pp. 212–220. IEEE CS Press, 2005.

59

12

10. E. Elmroth and J. Tordsson. A standards-based Grid resource brokering service
supporting advance reservations, coallocation and cross-Grid interoperability. Sub-
mitted to Concurrency and Computation: Practice and Experience, 2006.

11. E. Elmroth and J. Tordsson. A Grid resource brokering algorithms enabling ad-
vance reservations and resource selection based on performance predictions. Fu-
ture Generation Computer Systems. The International Journal of Grid Computing:
Theory, Methods and Applications, 2008, to appear.

12. Expert Group on Next Generation Grids 3 (NGG3). Future for European Grids:
Grids and service oriented knowledge utilities. Vision and research directions 2010
and beyond, 2006. ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3 eg final.pdf, vis-
ited October 2007.

13. A. Finkelstein, C. Gryce, and J. Lewis-Bowen. Relating requirements and archi-
tectures: a study of data-grids. J. Grid Computing, 2(3):207–222, 2004.

14. I. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn: why Grid and
agents need each other. In Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems - Volume 1, pp. 8–15. IEEE CS
Press, 2004.

15. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

16. P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm. Scalable
Grid-wide capacity allocation with the SweGrid Accounting System (SGAS). Con-
currency and Computation: Practice and Experience, (accepted) 2007.

17. Z. Guan, F. Hernández, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, and
Y. Liu. Grid-Flow: a Grid-enabled scientific workflow system with a petri-net-
based interface. Concurrency Computat.: Pract. Exper., 18(10):1115–1140, 2006.

18. S. Hastings, S. Oster, S. Langella, D. Ervin, T. Kurc, and J. Saltz. Introduce: an
open source toolkit for rapid development of strongly typed Grid services. J. Grid
Computing, 5(4):407–427, 2007.

19. F. Hernández, P. Bangalore, J. Gray, Z. Guan, and K. Reilly. GAUGE: Grid
Automation and Generative Environment. Concurrency Computat.: Pract. Exper.,
18(10):1293–1316, 2006.

20. ISO/IEC. Software engineering - Product quality - Part 1: Quality model. Inter-
national standard ISO/IEC 9126-1. 2001.

21. P. Leong, C. Miao, and B-S. Lee. Agent oriented software engineering for Grid com-
puting. In Cluster Computing and the Grid. 6th IEEE Int. Symposium, CCGRID
2006. IEEE CS Press, 2006.

22. C. A. Mattmann, D. J. Crichton, N. Medvidovic, and S. Hughes. A software
architecture-based framework for highly distributed and data intensive scientific
applications. In K.M. Anderson, editor, Software Engineering. 28th Int. Confer-
ence, ICSE 2006, pp. 721–730. ACM Press, 2006.

23. Networked European Software and Services Initiative (NESSI). http://www.nessi-
europe.com, visited October 2007.

24. T. Sandholm, P. Gardfjäll, E. Elmroth, L. Johnsson, and O.Mulmo. A service-
oriented approach to enforce Grid resource allocations. International Journal of
Cooperative Information Systems, 15(3):439–459, 2006.

25. The Globus Project. An “ecosystem” of Grid components.
http://www.globus.org/grid software/ecology.php, visited October 2007.

26. The Grid Infrastructure Research & Development (GIRD) project. Ume̊a Univer-
sity, Sweden. http://www.gird.se, visited October 2007.

60

III

Paper III

Dynamic and Transparent Service Compositions
Techniques for Service-Oriented Grid Architectures∗

Erik Elmroth and Per-Olov Östberg

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, p-o}@cs.umu.se

http://www.gird.se

Abstract: With the introduction of the Service-Oriented Architecture design paradigm,
service composition has become a central methodology for developing Grid software.
We present an approach to Grid software development consisting of architectural de-
sign patterns for service de-composition and service re-composition. The patterns
presented can each be used individually, but provide synergistic effects when com-
bined as described in a unified framework. Software design patterns are employed
to provide structure in design for service-based software development. Service APIs
and immutable data wrappers are used to simplify service client development and iso-
late service clients from details of underlying service engine architectures. The use
of local call structures greatly reduces inter-service communication overhead for co-
located services, and service API factories are used to make local calls transparent to
service client developers. Light-weight and dynamically replaceable plug-ins provide
structure for decision support and integration points. A dynamic configuration scheme
provides coordination of service efforts and synchronization of service interactions in
a user-centric manner. When using local calls and dynamic configuration for creating
networks of cooperating services, the need for generic service monitoring solutions
becomes apparent and is addressed by service monitoring interfaces. We present these
techniques along with their intended use in the context of software development for
service-oriented Grid architectures.

Key words: Grid software development, Service-Oriented Architecture, Web Service
composition, Design patterns, Grid ecosystem.

∗ By permission of Crete University Press

63

64

DYNAMIC AND TRANSPARENT SERVICE
COMPOSITION TECHNIQUES FOR
SERVICE-ORIENTED GRID ARCHITECTURES∗

Erik Elmroth and Per-Olov Östberg
Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, p-o}@cs.umu.se

http://www.gird.se

Abstract With the introduction of the Service-Oriented Architecture design paradigm, ser-
vice composition has become a central methodology for developing Grid soft-
ware. We present an approach to Grid software development consisting of archi-
tectural design patterns for service de-composition and service re-composition.
The patterns presented can each be used individually, but provide synergistic
effects when combined as described in a unified framework. Software design
patterns are employed to provide structure in design for service-based software
development. Service APIs and immutable data wrappers are used to simplify
service client development and isolate service clients from details of underly-
ing service engine architectures. The use of local call structures greatly reduces
inter-service communication overhead for co-located services, and service API
factories are used to make local calls transparent to service client developers.
Light-weight and dynamically replaceable plug-ins provide structure for deci-
sion support and integration points. A dynamic configuration scheme provides
coordination of service efforts and synchronization of service interactions in a
user-centric manner. When using local calls and dynamic configuration for cre-
ating networks of cooperating services, the need for generic service monitoring
solutions becomes apparent and is addressed by service monitoring interfaces.
We present these techniques along with their intended use in the context of soft-
ware development for service-oriented Grid architectures.

Keywords: Grid software development, Service-Oriented Architecture, Web Service com-
position, Design patterns, Grid ecosystem.

∗Financial support has been received from The Swedish Research Council (VR) under contract number 621-
2005-3667. This research was conducted using the resources of the High Performance Computing Center
North (HPC2N).

65

2

1. Introduction
With the introduction of service-oriented computing and the increased pop-

ularity of the Service-Oriented Architecture (SOA) design paradigm, service
composition has become a key methodology for building distributed, service-
based applications. In this work we outline the foundational concepts of our
SOA development methodology, introducing and describing a number of tech-
niques targeting the development of robust, scalable, and flexible Grid software.
We investigate development methodologies such as design patterns, call opti-
mizations, plug-in structures, and techniques for dynamic service configuration.
When combined, these techniques make up the foundation of an approach for
composable Web Services that are to be used in Grid SOA environments. The
techniques are here presented in Grid Web Service development scenarios.

The outline of the paper is the following: A motivation and overview of our
work is presented in Section 2. A more detailed introduction to the concept
and aspects of service composition is given in Section 3, after which we present
architectural design patterns used to address these concepts in Section 4. Finally,
a brief survey of related work is presented in Section 5, followed by conclusions
in Section 6 and acknowledgements.

2. Motivation and Overview
The work presented here has grown out of a need for flexible development

techniques for the creation of efficient and composable Web Services. Current
Grid systems employ more and more SOA-based software where scalability is
a key requirement on all levels of system design, including in the development
process. Service composition techniques, which employ services as building
blocks in applications through the use of service aggregators, often create sys-
tems that impose substantial overhead in terms of memory requirements and
execution time. Although Web Services are distributed by definition, utilizing
them dynamically is often a process with lack of flexibility and transparency.
The complexity of SOAP message processing alone can present impracticalities
to SOA developers, as a single Web Service that exchanges large or frequent
messages may in itself negatively impact the performance of other, co-located,
services.

In our approach, we address these issues in two ways; by providing flex-
ible and transparent structures for dynamic reconfiguration of (networks of)
services, and by outlining development patterns for optimization of interac-
tion between co-located services and service components. More specifically,
we provide a set of architectural software design patterns for service APIs,
local call structures, flexible plug-in and configuration architectures, and ser-
vice monitoring facilities. Combined, these techniques make up a framework
that serves to reduce the temporal and spatial system footprints (time of ex-

66

Service Composition Techniques 3

ecution and memory requirements, respectively) of co-located services, and
provide for a software development model where dynamic service composi-
tion is made transparent to service client developers. The techniques presented
are completely orthogonal to approaches using the Business Process Execution
Language for Web Services (BPEL4WS) [9], Web Service Choreography Inter-
face (WSCI) and similar techniques for service composition, and the resulting
Web Services can be used in a range of service orchestration and choreography
scenarios.

The approach presented here has emerged from work on the Grid Job Man-
agement Framework (GJMF) [3], a software developed in the Grid Infras-
tructure Research & Development (GIRD) [14] project. As a key part of the
GIRD project, we investigate software development methodologies for the Grid
ecosystem [13], an ecosystem of niched software components where compo-
nent survival follows from evolution and natural selection [5], and a Grid built
on such components. We primarily develop software in Java using the Globus
Toolkit 4 (GT4) Java WS Core [7], which contains an implementation of the
Web Services Resource Framework (WSRF).

3. Service Composition Techniques
Two approaches to service composition are service orchestration and service

choreography. As the needs and practices in Grid and Web Service software de-
velopment vary, clear definitions of the terms are yet to be fully agreed upon. In
Peltz [11], service orchestration and choreography are described as approaches
to create business processes from composite Web Services. Furthermore, ser-
vice orchestration is detailed to be concerned with the message-level interac-
tions of (composite and constituent) Web Services, describing business logic
and goals to be realized, and representing the control flow of a single party
in the message exchange. Service choreography is defined in terms of public
message exchanges between multiple parties, to be more collaborative by na-
ture, and taking a system-wide perspective of the interaction, allowing involved
parties to describe their respective service interactions themselves.

Our approach to service composition is primarily concerned with trans-
parency and scalability in dynamic service usage. We investigate techniques
for developing Web Services in a dynamic and efficient manner, Web Services
that can be transparently de-composed and dynamically re-composed.

3.1 Transparent Service De-Composition
At system level, Web Services are defined in terms of their interfaces without

making any assumptions about the internal workings of the service functionality.
In SOA design, focus is on service interactions rather than service design, and
a service set providing required functionality is assumed to exist.

67

4

In the development of individual services, the structured software develop-
ment approach is often hindered by the practical limitations of Web Services.
By recursively subdividing the functionality of a composite Web Service, a pro-
cess here referred to as service de-composition, it is often possible to identify
functionality that can be reused by other services if exposed as Web Services.
However, response times and memory requirements of Web Services often make
it impractical to expose core functionality in this manner.

We address this issue with a framework for call optimizations, which allows
software components to simultaneously and transparently function as both Web
Services and local Java objects in co-located services. Small, single purpose
components are easier to develop and maintain, less error-prone, and often
better matched to standardized functionality [5]. By mediating the technical
limitations imposed by Web Services, the use of these techniques provides a
programming model that offers transparency in the use of services in distributed
object-oriented modelling. As these techniques are optimizations of calls be-
tween co-located services, they are completely orthogonal to, and can be used
in conjunction with, service composition techniques such as BPEL4WS, WS-
AtomicTransaction and WS-Coordination.

A recent example of the application of these techniques is the construction of
a workflow execution engine. A workflow engine typically contains function-
ality for, e.g., workflow state coordination, task submission, job monitoring,
and log maintenance. By de-composing the engine functionality into a set of
cooperating services rather than a large, monolithic structure, reusable soft-
ware components are created and can be exposed as Web Services. The use
of the proposed call optimization framework makes the de-composition pro-
cess transparent to developers, provides improved fault tolerance though the
use of multiple service providers (for, e.g., job submission), and preserves the
performance of a single software component (an example from [3] and [4]).

3.2 Dynamic Service Re-Composition
Given a mechanism for service de-composition, a natural next step is to iden-

tify mechanisms to facilitate dynamic and transparent reconfiguration of Web
Services during runtime, here referred to as service re-composition. In most
service orchestration and choreography scenarios, this can be achieved using
late service binding and dynamic discovery of services. As in the case of ser-
vice de-composition, natural inefficiencies in these techniques may discourage
developers from using them to their full potential.

We employ a scheme for dynamic configuration of services into networks
of smaller, constituent services. Once again, this is a lower-level optimiza-
tion of the service interactions that does not compete with traditional service
orchestration techniques, but can rather co-exist with them. The scheme (out-

68

Service Composition Techniques 5

lined in Section 4.5) consists of services keeping local copies of configuration
modules that may at any time be updated by external means. All services
consult their respective configuration modules when making decisions about
what plug-ins to load, which services to interact with, etc. Once a transac-
tion with another service has been initialized, information about this process
is maintained separately. The benefits of using this scheme include increased
flexibility in development and deployment; access to transparent mechanisms
for redundancy, fault tolerance and load balancing; and ease of administration.

A practical example of the application of this technique is the internal work-
ings of the GJMF [3]. All services in the framework are configured using the
dynamic configuration technique described, allowing services to reshape the
network of services that collectively make up the higher-level functionality of
the framework. Note that this technique is completely transparent to service
orchestration and choreography approaches as it operates on a lower level. In
fact, in a service orchestration scenario it is expected that the configuration data
would be provided the service by the orchestration mechanism itself.

4. Architectural Design Patterns
The techniques presented here are intended to be used as architectural design

patterns to facilitate the development of scalable and composable Web Services.
Though they may be used individually, the techniques have proven to provide
synergistic effects when combined, both in development and deployment.

4.1 Software Design Patterns
In architecture design, we extensively employ the use of established software

design patterns [8] for the creation of efficient and reusable software components
with small system footprints. The Flyweight, Builder, and Immutable patterns
are used to create lean and efficient data structures. Patterns such as the Sin-
gleton, Factory Method, and Observer are deployed in a variety of scenarios to
create dynamic and composable software components. To enable components
to dynamically update and replace functionality, we use the Strategy, Abstract
Factory, Model-View-Controller, and Chain of Responsibility patterns. The
Facade, Mediator, Proxy, Command, Broker, Memento, and Adapter patterns
are used to facilitate, organize, abstract, and virtualize component interaction.

4.2 Immutable Wrappers & Service APIs
In this section, we present patterns used for data representation and service

APIs. The techniques presented combine design patterns and design heuris-
tics, and are aimed to simplify service client development and facilitate the
techniques presented in the following sections.

69

6

Passive data objects such as job and workflow descriptions are rarely modified
once created. A useful pattern for the representation of passive data objects is
to construct immutable data wrapper classes that provide abstraction of the data
interface. Embedding data validation in wrappers also simplifies data handling,
and is considered good practice in defensive programming. Typically, in Web
Service development, data representations are specified in service descriptions
and stub types are generated from WSDL. The use of wrappers around stub
types provides the additional benefit of encapsulating service engine-specific
stub behavior and incompatibility issues between service engines. The practice
of assigning unique identifiers, e.g., in the form of Universally Unique Identi-
fiers (UUID), to data instances facilitates the use of persistence models such as
Java object serialization and GT4 resource persistence, and provides services
and clients with synchronized data identifiers. By creating a service-specific
data translation component, it is possible to help service instances to translate
stubs to wrappers, and vice versa. The use of immutable wrappers and a des-
ignated translation component is illustrated in Figure 1. In the figure, software
components are illustrated as boxes, component interactions as solid arrows,
and dynamically discovered and resolved interactions as arrows with dotted
lines. Note that the service client APIs and back-end make use of immutable
data wrappers and are isolated from the stubs by the stub type translator.

Figure 1. Illustration of local call optimizations for co-located services; dynamic resolution of
service client APIs, back-ends and resources; and the use of immutable data wrappers.

In the interest of software usability for developers, it is recommended to
provide client APIs with each Web Service. This practice allows developers

70

Service Composition Techniques 7

with limited experience of Web Service development to use SOAs transparently,
and offers reference implementations detailing service use. In service APIs, a
programming language interface, rather than a concrete implementation, should
be used to abstract the service interface. The API interface should furthermore
make strict use of wrapped data types in order to isolate it from changes in
underlying architectures, e.g., Web Service engine replacement.

4.3 Local Call Structures
The use of local call structures facilitates the development of components

that can be used both as generic objects and stand-alone Web Services. As illus-
trated in Figure 1, we propose a structure where Web Service implementations
are divided into separate components for service data, interface, and imple-
mentation. Here, the service data are modeled as WSRF resources, which are
dynamically resolved through the resource home using unique resource iden-
tifiers. The service interface contains the actual Web Service interfaces, and
handles call semantics, stub type translation, and parameter validation issues.
The service implementation back-end houses the service logic. It is dynami-
cally resolved using a service back-end factory that instantiates a unique service
implementation for each user, providing complete user-level isolation of service
capabilities and resources.

Separating the service interface from the service implementation makes it
possible for service clients that are co-located with the service (i.e., other ser-
vices running in the same service container) to directly access the service logic.
As illustrated in Figure 1, local calls bypass resource consuming data transla-
tions, credentials delegations, and Web Service invocations. For service noti-
fication invocations, the process is mediated through a notification dispatcher
that dynamically resolves service resources and provides optional notification
filtering and translation. Note that this scheme allows the GT4 resource per-
sistence mechanisms to function unhindered, and remains compatible with the
WSRF and WS-Notification specifications.

The resolution of the service back-end, and the local call logic, are encapsu-
lated and made transparent to developers through the use of service client API
classes. A service API factory provides appropriate service API implementa-
tions based on inspection of the service URLs, e.g., comparing IP address and
port number to the local service containers configuration to determine if a local
call can be made and wrapping the use of multiple (stateless) service instances
into a single, logical service client interface. The service API factory makes
this process transparent to the developer, which provides a set of service URLs
to retrieve a service client interface.

The use of local calls efficiently optimizes communication between co-
located services, but the main benefit of the technique is that it allows for

71

8

transparent de-composition of service functionality into networks of services.
This provides for a more flexible development model for services that can be dy-
namically re-composed with a minimum of overhead, a requirement for service
networks that rely on state update notifications for service coordination.

4.4 Policy Advisor and Mechanism Provider Plug-Ins
For situations where modules are to be dynamically provided and reused

within components, but not between them, we make use of dynamic plug-in
structures. Made up by a combination of programming language interfaces and
designated configuration points, plug-in modules are dynamically located and
loaded, and are considered volatile in the sense that they are intended to be
short-lived and dynamically replaceable.

Functionality provided by plug-ins can be divided into two major categories:
policy advisors and mechanism providers. A policy advisor implementation
is intended to function in a strict advisory capacity for scenarios where policy
logic is too complex to be expressed in direct configuration. The typical role
of a policy advisor is to provide decisions when asked specific questions (for-
mulated by the plug-in interface). This type of plug-in is useful for decision
support in, e.g., failure handling or job prioritization. Mechanism providers are
typically used for interface abstraction and integration point exposure. These
types of modules are used to provide, e.g., vendor-specific database accessors
or alternative brokering algorithms for job submitters.

Plug-in implementations should be light-weight, refrain from causing side-
effects, have short response times, be thread-safe, and use minimal amounts of
memory. Services using plug-ins should acquire the modules dynamically for
each use, and rely strictly on the plug-in interface for functionality. As plug-
ins can be provided by third party developers, and dynamically provided over
networks, the use of code signing techniques to maintain service integrity is
advisable. Grid security solutions that deploy Public-Key Infrastructures (PKI)
for associating X.509 certificates with users can also be used to provide key
pairs for code signing. When services provide user-centric views of service
functionality, per-user configuration of service mechanism is trivial to realize.

4.5 Dynamic Service Configuration
Configuration data for Web Services are typically expressed in XML and

loaded from local configuration files. Semantic Web Services provide con-
figuration metadata to facilitate a higher degree of automation in, primarily,
service composition and choreography. Similar to this approach, we employ
a simplistic architecture for dynamic configuration built on the interchange of
configuration data between services, and customized configuration modules to
be used within services. This approach allows services to be expressed as net-

72

Service Composition Techniques 9

works of services, and to dynamically adapt to changes in executional context
in a way that can be utilized by semantic service aggregators.

Central to our configuration approach is a dynamically replaceable config-
uration module. Each service maintains a configuration module factory that
instantiates configuration modules when needed. The manner in which data
contained in the configuration modules are acquired is encapsulated in the fac-
tory and can alternate between, e.g., polling of configuration files, triggering in
databases, querying of Grid Monitoring and Discovery Services, and notifica-
tions from dedicated configuration services.

Providing configuration data through dedicated configuration services allows
for transparent configuration of multiple services, where each service requests
configuration data based on current user identity and service location. Ded-
icated configuration services can monitor resource availability and perform,
e.g., load balancing through dynamic reconfiguration of networks of cooperat-
ing services. In terms of administrational overhead, this technique can alleviate
the managerial burden of administrating services as it provides a single point
of configuration for multiple service containers. As the local call structures
of Section 4.3 provide an automatic and transparent optimization of calls be-
tween co-located services, the configuration service may attempt to optimize
inter-service usage by favoring cooperation between co-located services.

In this scheme, services should never maintain direct references to configu-
ration modules, but rather rely on them as temporary factories for configuration
data. Interpretation of configuration data, type conversions, and data valida-
tion are examples of tasks to be performed by configuration modules. The
use of caching techniques for configuration modules, and the synchronization
and acquisition of raw configuration data should be encapsulated in configu-
ration module factories. As seen in Section 4.4, configuration data may also
be supplied in the form of plug-ins, in which case the configuration module is
responsible for the location and dynamic construction of these plug-ins. When
providing sensitive data, the personalization techniques of Section 4.3 can be
used to provide user-level isolation of service configuration.

4.6 Service Monitoring
The dynamic configuration solutions of Section 4.5 facilitate the deployment

of composite Web Services as networks of services. For reasons of system trans-
parency, it is equally important to make parts of this configuration available to
service clients, e.g., as WSRF resource properties. Consider a client submit-
ting workflows to a workflow execution service, which schedules and submits
a Grid job for each workflow task. In the interest of system openness, the client
should be provided means to trace job execution, e.g., from workflow down to
computational resource level. By publishing job End-Point References (EPR),

73

10

or log service URLs, the service empowers clients with the ability to monitor
and trace job execution.

As mentioned in Section 4.2, data entities are provided unique identifiers
prior to Web Service submission. Using these identifiers as resource keys for
corresponding WSRF resources in Web Services allow clients with knowledge
of identifiers (and service URL) to create resource EPRs when needed. Stateful
services expose interfaces for listing resources contained in the services. For
efficiency, the information returned by these interfaces are limited to lists of
data identifiers (UUIDs). To improve usability and ease of development for
service clients, boiler-plate solutions for tools to monitor service content are
provided with each service. Although not further explored here, it should be
noted that these monitoring interfaces, as well as the wrappers and service APIs
of Section 4.2, are well suited for use in web portals and directly usable in the
JavaService Pages (JSP) environment.

5. Related Work
There exists numerous valuable contributions on how to design for service

composition and orchestration within both the fields of Grid computing and
service orientation. For reasons of brevity, however, this section only references
a selected number of related publications that directly touch upon the concepts
presented in our software development approach.

The authors of [6] provide a grouping of service composition strategies.
Our approach, containing late service bindings and semi-automatic service in-
teraction planning, falls into the semi-dynamic service composition strategies
category of this model. Brief surveys of service orchestration and choreog-
raphy techniques are given in [10] and [11], and an approach for developing
pattern-based service coordination is presented in [15]. Our work focuses on
design heuristics and patterns for dynamic and transparent service composition
in Grid contexts, and is considered orthogonal to all these techniques. The au-
thors of [2] investigate a framework for service composition using Higher Order
Components. Here, component Web Service interface generation is automated,
and services are dynamically configured and deployed. We consider this a dif-
ferent technique pursuing a similar goal, i.e., dynamic service composition.

The Globus Toolkit [7] and the Apache Axis Web Service engine both contain
utilities for local call optimizations. The Axis engine provides an in-memory
call mechanism, and the Globus Toolkit provides a configurable local invocation
utility that performs dynamically resolved Java calls to methods in co-located
services. These approaches provide a higher level of transparency in service
development, whereas our approach focuses on transparency for service client
developers. In terms of performance, direct Java calls are naturally faster than
in-memory Web Service invocations, and the GT4 approach suffers additional

74

Service Composition Techniques 11

overhead for the dynamic invocation of methods compared to our approach.
Additionally, GT4 does not currently support local invocations for notifications.

Recent approaches to Grid job monitoring are presented in [1] and [12], and
are here included to illustrate service monitoring functionality in dynamically
composable service networks. We strive to provide dynamic monitoring and
traceability mechanisms that are usable in external service monitoring tools,
rather than providing stand-alone service monitoring solutions.

6. Conclusions
We present an approach to Grid software development consisting of a num-

ber of architectural design patterns. These patterns, as presented in Section
4, provide a framework addressing service de- and re-composition. The pat-
terns presented can each be used individually, but provide synergistic effects
when combined into a framework. E.g., the unique identifiers of the immutable
wrappers that are used in service client APIs can also be used as resource keys
for service resources, providing a simple mechanism for client-service data
synchronization. Additional examples of synergistic effects are the coopera-
tive use of local call structures, dynamic configuration, plug-ins, and service
monitoring techniques: Local call structures reduce service footprints to a level
where services are usable for the creation of transparent service networks. As
service APIs and service API factories make the use of local calls transparent,
service client developers are given an automated mechanism for optimization
of service interaction. Employing dynamic configuration techniques to ex-
ploit the transparency of local calls then further increases flexibility in service
interaction and administration of multiple services. Plug-ins can in turn be
used to represent policy decisions, i.e., configuration semantics too complex
to be represented in direct configuration, to provide alternative mechanisms,
and expose integration points in services. Parts of service configuration can be
exposed through monitoring interfaces to provide system transparency and mon-
itorability, and services can employ replaceable plug-ins to utilize customized
monitoring mechanisms.

The patterns described provide individually useful mechanisms for system
architecture, and are orthogonal in design to each other and related technolo-
gies. Combined, they provide a framework for building lean and efficient Web
Services that can be used transparently in cooperative networks of services.

Acknowledgments
We are grateful to Johan Tordsson and the anonymous referees for providing

valuable feedback on, and improving the quality of, this work.

75

12

References
[1] A. N. Duarte, P. Nyczyk, A. Retico, and D. Vicinanza. Global Grid monitoring: the

EGEE/WLCG case. In GMW ’07: Proceedings of the 2007 workshop on Grid monitoring,
pages 9–16, New York, NY, USA, 2007. ACM.

[2] J. Dünnweber, S. Gorlatch, F. Baude, V. Legrand, and N. Parlavantzas. Towards automatic
creation of Web Services for Grid component composition. In V. Getov, editor, Proceed-
ings of the Workshop on Grid Systems, Tools and Environments, 12 October 2005, Sophia
Antipolis, France, December 2006.

[3] E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg. Designing general,
composable, and middleware-independent Grid infrastructure tools for multi-tiered job
management. In T. Priol and M. Vaneschi, editors, Towards Next Generation Grids, pages
175–184. Springer-Verlag, 2007.

[4] E. Elmroth, F. Hernández, and J. Tordsson. A light-weight Grid workflow execution engine
enabling client and middleware independence. In R. Wyrzykowski et.al, editors, Parallel
Processing and Applied Mathematics. 7th Int. Conference, PPAM 2007. Lecture Notes in
Computer Science, Springer Verlag, 2007 (to appear).

[5] E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing service-based re-
source management tools for a healthy Grid ecosystem. In R. Wyrzykowski et al., editors,
Parallel Processing and Applied Mathematics. 7th Int. Conference, PPAM 2007. Lecture
Notes in Computer Science, Springer-Verlag, 2007 (to appear).

[6] M. Fluegge, I. J. G. Santos, N. P. Tizzo, and E. R. M. Madeira. Challenges and techniques
on the road to dynamically compose Web Services. In ICWE ’06: Proceedings of the 6th
international conference on Web engineering, pages 40–47, New York, NY, USA, 2006.
ACM.

[7] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In H. Jin et al.,
editors, IFIP International Conference on Network and Parallel Computing, Lecture Notes
in Computer Science 3779, pages 2–13. Springer-Verlag, 2005.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[9] IBM. Business Process Execution Language for Web Services, version 1.1.
http://www.ibm.com/developerworks/library/specification/ws-bpel/, visited Febru-
ary 2008.

[10] N. Milanovic and M. Malek. Current Solutions for Web Service Composition. IEEE
Internet Computing, 08(6):51–59, 2004.

[11] C. Peltz. Web Services Orchestration and Choreography. Computer, 36(10):46–52, 2003.

[12] M. Ruda, A. Křenek, M. Mulač, J. Pospı́šil, and Z. Šustr. A uniform job monitoring
service in multiple job universes. In GMW ’07: Proceedings of the 2007 workshop on
Grid monitoring, pages 17–22, New York, NY, USA, 2007. ACM.

[13] The Globus Project. An “ecosystem” of Grid components.
http://www.globus.org/grid software/ecology.php, visited February 2008.

[14] The Grid Infrastructure Research & Development (GIRD) project. Umeå University,
Sweden. http://www.gird.se, visited February 2008.

[15] C. Zirpins, W. Lamersdorf, and T. Baier. Flexible coordination of service interaction
patterns. In ICSOC ’04: Proceedings of the 2nd international conference on Service
oriented computing, pages 49–56, New York, NY, USA, 2004. ACM.

76

IV

Paper IV

Empowering a Flexible Application Portal with a
SOA-based Grid Job Management Framework∗

Erik Elmroth1, Sverker Holmgren2, Jonas Lindemann3,
Salman Toor2, and Per-Olov Östberg1

1 Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, p-o}@cs.umu.se

http://www.gird.se
2 Dept. Information Technology, Uppsala University,

Box 256, SE-751 05 Uppsala, Sweden
{sverker.holmgren, salman.toor}@it.uu.se http://www.uu.se
3 LUNARC, Lund University, Box 117, SE-221 00, Sweden

jonas.lindemann@lunarc.lu.se http://www.lu.se

Abstract: The complexity of simultaneously providing customized user interfaces
and transparent Grid access has led to a situation where current Grid portals tend to ei-
ther be tightly coupled to specific middlewares or only provide generic user interfaces.
In this work, we build upon the methodology of the Grid Job Management Framework
and propose a flexible and robust 3-tier integration architecture that decouples appli-
cation interface customization from Grid job management. Furthermore, we illustrate
the approach with a proof of concept integration of the Lunarc Application Portal,
which here serves as both a framework for the creation of application-oriented user
interfaces and a Grid portal, and the Grid Job Management Framework, a framework
for transparent access to multiple Grid middlewares. The loosely coupled architecture
facilitates creation of sophisticated user interfaces customized to enduser applications
while preserving the middleware-independence of the job management framework.
The integration architecture is presented together with brief introductions to the inte-
grated systems, and a system evaluation is provided to demonstrate the flexibility of
the architecture.

∗ By permission of Springer Verlag

79

80

Empowering a Flexible Application Portal with
a SOA-based Grid Job Management Framework

Erik Elmroth1, Sverker Holmgren2, Jonas Lindemann3, Salman Toor2, and
Per-Olov Östberg1

1 Dept. Computing Science and HPC2N, Ume̊a University, SE-901 87 Ume̊a, Sweden,
{elmroth, p-o}@cs.umu.se http://www.gird.se

2 Dept. Information Technology, Uppsala University,
Box 256, SE-751 05 Uppsala, Sweden

{sverker.holmgren, salman.toor}@it.uu.se http://www.uu.se
3 LUNARC, Lund University, Box 117, SE-221 00, Sweden

jonas.lindemann@lunarc.lu.se http://www.lu.se

Abstract. The complexity of simultaneously providing customized user
interfaces and transparent Grid access has led to a situation where cur-
rent Grid portals tend to either be tightly coupled to specific middlewares
or only provide generic user interfaces. In this work, we build upon the
methodology of the Grid Job Management Framework and propose a
flexible and robust 3-tier integration architecture that decouples appli-
cation interface customization from Grid job management. Furthermore,
we illustrate the approach with a proof of concept integration of the
Lunarc Application Portal, which here serves as both a framework for
the creation of application-oriented user interfaces and a Grid portal,
and the Grid Job Management Framework, a framework for transparent
access to multiple Grid middlewares. The loosely coupled architecture
facilitates creation of sophisticated user interfaces customized to end-
user applications while preserving the middleware-independence of the
job management framework. The integration architecture is presented to-
gether with brief introductions to the integrated systems, and a system
evaluation is provided to demonstrate the flexibility of the architecture.

1 Introduction

The task of constructing complete, robust, and high-performing systems that
simultaneously provide sophisticated user interfaces and transparent access to
computational resources is inherently complex. The range of Grid middlewares
available today combined with the amount of applications (potentially) running
on Grids introduces additional complexity. Thus, current portal-oriented efforts
towards this goal [8, 11, 13] typically yield solutions that provide application-
oriented interfaces tightly coupled to specific Grid middlewares, or Grid middle-
ware solutions accessible only through generic user interfaces.

In this work we explore an architectural design pattern for development of
advanced end-user applications capable of middleware-agnostic Grid use. We ex-
tend the methodology of [6] to development of flexible Grid portals that combine

81

2 Erik Elmroth et al.

application-oriented user interfaces with transparent Grid access. A 3-tier inte-
gration architecture that abstracts Grid functionality and isolates user interfaces
from job management is proposed, and the approach is illustrated by an inte-
gration of the Lunarc Application Portal, an application-oriented Grid portal,
and the Grid Job Management Framework, a middleware-independent Grid job
management system designed for this purpose. The integration of these systems
provides a flexible architecture where user interfaces can be adapted to specific
applications and abstracted beyond the details of the underlying middleware.

1.1 The Lunarc Application Portal

The Lunarc Application Portal (LAP) is a web-based portal for submitting jobs
to Grid resources [16–18]. The portal is implemented in Python using the Web-
ware for Python [21] application server, and utilizes (in the original design)
ARC/arcLib [5] for submitting and controlling jobs. Webware is a lightweight
application server providing multi-user session handling, servlets, and page ren-
dering. Although Webware provides a built-in web server, most applications use
the Apache web server and a special extension module, mod webkit2, to forward
HTTP requests to the Webware application server. The recommended way of
running LAP is through an SSL-enabled Apache web server.

The LAP can be viewed both as a web portal and as a Python-based frame-
work for implementation of customized user interfaces for Grid-enabled appli-
cations. The core implementation includes a set of modules that provide man-
agement of users and job definitions, security, middleware integration, and user
interface rendering. The portal also provides a set of servlets for non-application
oriented tasks such as job definition creation, job monitoring, and job control.

Support for new applications in LAP is offered through use of customization
points and plug-ins. An LAP plug-in is comprised of a user interface genera-
tion servlet, a task class that defines job attributes, methods for generating job
descriptions, and a set of bootstrap files required for Grid job submission.

In order to simplify the process of implementing user interfaces, LAP provides
an object-oriented user interface module, Web.Ui, that renders HTML for web
user interfaces and handles form submissions. LAP also provides functionality
for automatic generation of xRSL [5] job descriptions.

1.2 The Grid Job Management Framework

Developed in the Grid Infrastructure Research & Development (GIRD) [19]
project, the Grid Job Management Framework (GJMF) [6] is a toolkit for job
management in Grid environments. The design of the framework is a product of
research on service composition techniques [9] and exploration of software design
principles for a healthy Grid ecosystem [7]. The framework is implemented as a
Service-Oriented Architecture (SOA), using Java and the Globus Toolkit [10].

The GJMF is comprised of a hierarchical set of replaceable Web Services
that combined provide an infrastructure for virtualization of Grid middleware
functionality and automatization of the repetitive tasks of job management.

82

LAP-GJMF Integration 3

The granularity of job management in the GJMF ranges from management
of individual jobs to automatic and fault-tolerant processing of sets of abstract
task groups. The GJMF provides middleware virtualization by principle of ab-
straction, and presents a common interface to Grid middleware functionality to
developers and end-users without regard to details of the underlying middleware.
Functionality in the framework not supported by the underlying middleware,
e.g., job state notifications in ARC, is emulated by the framework and presented
to applications and end-users as native resources of the middleware. The GJMF
also provides numerous structures for customization of the job management pro-
cess. This customization ranges from individual configuration of the framework
services to plug-in structures where, e.g., brokering algorithms, monitoring in-
terfaces, failure handling, and job prioritization modules can be provided and
installed by third party developers. See [6] for details.

A full Java client API for the framework is provided and allows developers
with limited experience of Web Service development to utilize the framework.
This API, as demonstrated in this work, facilitates integration of the GJMF
with other systems, e.g., application portals and Grid applications. All features
of the framework are accessible through both the Web Service interfaces and the
Java client API. The GJMF utilizes JSDL [2] for job descriptions, and provides
a translation service for transformations to other job description formats.

2 Integration Architecture

In the proposed architecture, we employ a loosely coupled model where cus-
tomized modules in portals (the LAP) dynamically discover and access compu-
tational resources via a Grid access layer (the GJMF services). The LAP and
GJMF are assigned the following responsibilities in the integration architecture.

– Application management: It is the responsibility of the LAP to provide appli-
cation configuration parameters, gather job submission parameters, create
application file repositories, acquire user credentials, authenticate users in
the Grid environment, and to render user interfaces. For example, the LAP
provides application requirement metadata in job descriptions to indicate
and detail the use of Matlab in applications.

– Grid job management: The GJMF is responsible for all matters pertaining
to Grid job management. This includes functionality for resource brokering,
job submission, job monitoring, job control, and to provide robust handling
of failures in job submission and execution. For example, the GJMF uses the
previously mentioned application requirement metadata to broker Matlab
jobs to Matlab-equipped hosts.

As illustrated in Figure 1, the original 2-tier architecture of the LAP has been
extended into a classical 3-tier architecture [4] where the GJMF services are
accessed through bridge modules and the GJMF client API. As can be seen in
the illustration, the GJMF job management coexists non-intrusively with the
legacy ARC/arcLib-based job management modules of the original LAP.

83

4 Erik Elmroth et al.

Fig. 1. Overview of the LAP-GJMF integration architecture. Integration components
are presented without detailing the internal workings of the LAP or the GJMF.

The integration of the LAP and the GJMF has resulted in the development
of the GJMF Portal Integration Extensions (PIE), a customization of the xRSL
translation capabilities of the GJMF JSDL Translation Service (JTS), as well as
the inclusion of a number of Java-Python bridge components in the LAP.

In the GJMF, it is the purview of the JTS to provide translations between
job description formats and to ensure that job semantics are preserved in the
process. In the case of the LAP-GJMF integration, there are two types of transla-
tions performed: an xRSL to JSDL translation is performed in the LAP upon job
creation, and a translation from JSDL to the actual job description format used
by the middleware (xRSL for ARC, and RSL [10] for GT4) is performed inter-
nally in the GJMF during the final stages of job submission. In the LAP-GJMF
integration, the JTS uses job description annotations to provide semantically
correct translations of application support parameters (e.g., preserving process
environment information) for LAP applications. Naturally, the JTS also contains
customization points for extending the translation capabilities to support other
formats or alternative translation semantics.

The PIE is a Java-based software component consisting of an integration
bridge, a task (group) registry, a submission queue, and a state monitor. These
components provide an LAP interface, manage tasks and task groups, handle
background GJMF submissions, and monitor GJMF state updates respectively.
The PIE effectively wraps use of the GJMF client API and provides functional-
ity for job submission, job control, notification-based state monitoring, and job
brokering to the portal. PIE objects are deployed in authenticated sessions in
the LAP, run inside the LAP process space, and help enforce user-level isolation

84

LAP-GJMF Integration 5

of job information in the portal (each user session is provided a unique PIE in-
stance). In the LAP, bridge modules for job submission, job control, portal status
updates, and job monitoring that interface with the PIE have been added. As
the bridge modules are native to the LAP (i.e., developed in Python), JPype
(version 0.5.3) has been employed to bridge the Java-Python barrier. JPype is a
library that allows Python applications to access Java class libraries within the
Python process space, connecting the virtual machines on native code level.

As also illustrated in Figure 1, the flexibility of the integration architecture
allows existing legacy applications supported by the LAP to continue to function
unaltered, including applications who have not yet been adapted to the new
environment. This is achieved by the portal maintaining a concurrent legacy job
management setup, which utilizes the ARC/arcLib [5] for job management.

When investigating the scalability and flexibility of the architecture, it should
be noted that just as a single LAP can make use of multiple GJMFs, multi-
ple LAPs can make use of the same GJMF. Similarly, just as a single GJMF
can make use of multiple middleware installations concurrently, so can multi-
ple GJMFs utilize the same middleware installation. Furthermore, as demon-
strated by the test configurations of Section 3, the LAP, the GJMF, and the
middleware(s) can all be hosted locally or distributed to dedicated servers over
networks. The components of the architecture are designed to function non-
intrusively [7] for seamless integration in production Grid environments.

3 System Evaluation

To evaluate and demonstrate the flexibility of the proposed architecture, a num-
ber of tests have been performed using a range of test configurations and a set
of Grid applications that are in current production use.

Software Installations.
The test suites in the system evaluation have been run on nodes deploying dif-
ferent configurations of (at least) three software installations.

– LAP node: A front-end deploying an installation of the upgraded LAP. This
node houses the PIE and the bridge components of the integration archi-
tecture as well as a fully functional legacy installation of the original LAP
architecture. For file staging, the LAP node also deploys a GridFTP server.

– GJMF node: A node deploying a full installation of the GJMF. All GJMF
services are run in the same GT4 ws-core 4.0.5 service container to enable
inter-service local call optimizations [6, 9], and all communication is pro-
tected using GT4 Secure Conversation encryption.

– Middleware node(s): A (set of) middleware back-ends, running either the
GT4 or the ARC middleware. The middleware node(s) also deploy middleware-
specific GridFTP file staging solutions.

85

6 Erik Elmroth et al.

Fig. 2. The LAP and the production environment deployment configuration.

Deployment Configurations.
To illustrate the robustness and flexibility of the proposed architecture, the sys-
tem is demonstrated in three deployment configurations. NorduGrid certificates
are used for authentication of actors and security contexts in all tests.

– Local environment: All three software components are installed on the same
machine, and each software component executes in a dedicated process.

– Distributed environment: Each software component is installed on a dedi-
cated machine. All machines are located on the same network.

– Generic production environment: As illustrated in Figure 2, each software
component is installed on geographically distributed production machines.
The LAP node is located at LUNARC (Lund, Sweden), the GJMF node at
HPC2N (Ume̊a, Sweden), GT4 middleware node(s) at UPPMAX (Uppsala,
Sweden), and ARC middleware node(s) at NSC (Linköping, Sweden).

Test Applications.
Two applications for which the LAP is in production use today have been used
to gauge the usability of the portal in a production environment.

– Matlab application: The LAP contains a bootstrapping module for initializ-
ing and executing Matlab code on Grid resources without use of the Matlab
Compiler. This type of application requires a Matlab installation on the
computational resource, executes a single job, and performs bidirectional
file staging. The Matlab application module is here tested using an imple-
mentation of finite element code simulating stresses in straddling beams.

– Bioinformatics application (QTL mapping): This application searches for
locations in the genome of an organism affecting a quantitative trait like
body weight, crop yield, etc. The search is performed by solving a demanding

86

LAP-GJMF Integration 7

multidimensional global optimization problem, which is parallelized into a
set of independent jobs. This type of application performs bidirectional file
staging but does not require specific execution environment support libraries.

Usage Scenarios.
In the LAP, the main usage scenarios involve two user roles: the application
expert and the end-user. Support for new applications is added to the LAP
through the creation of application-specific plug-in modules that perform auto-
matic creation of job environments, configuration of application workflows, and
generation of application user interfaces. Creation and configuration of applica-
tions is the responsibility of the application expert (or system administrator).
The process of creating, submitting, and managing jobs is in the LAP performed
by the portal end-user, and includes four conceptual stages.

1. The portal end-user creates a job by instantiating a pre-configured applica-
tion workflow, and supplies the job with required application parameters in
the LAP. This results in the generation of an xRSL job description, which
is later translated to a JSDL job description using the GJMF JTS.

2. The end-user submits the job from the LAP, an action resulting in the sub-
mission of a GJMF task (for single jobs) or a GJMF task group (for multiple
jobs) to the PIE. The PIE places the task or task group in a background
submission queue, and eventually submits it to the GJMF.

3. The GJMF processes the task or task group, submitting and resubmitting it
to middlewares until the process has resulted in a successful job completion.
Portal end-users can monitor task or task group progress in the LAP.

4. Once a task or task group has been processed by the GJMF, the end-user
accesses resulting data files in the LAP, and removes the job from the LAP.
All file stagings are performed by middlewares as GridFTP transfers between
the LAP server and the computational resource used for job execution. The
GJMF conveys file staging information, but is not actively involved in any
file staging scenarios. The file staging semantics of the proposed architecture
differ from the original architecture of the LAP, where end-users manually
fetched job results from computational resources using HTTP requests. File
transfer status is considered part of job execution status and a failed file
staging attempt (in either direction) will result in a failed job. A multi-job
task failure will not affect the status of other multi-job tasks.

4 Performance Observations

We briefly discuss the proposed architecture’s impact on interface response times,
job management overhead, and job execution makespans.

– Interface response times. Compared to the original 2-tier architecture of the
LAP, the proposed integration architecture improves upon the system’s user
interface responsiveness, providing instantaneous response to user actions.
This is due to the background submission queues of the PIE and the new

87

8 Erik Elmroth et al.

architecture’s use of the GJMF notification-based state monitoring, which
improves scalability through a reduced need for middleware state polling.

– Job management overhead. The overhead associated with job management
tasks performed by the GJMF (e.g., resource discovery, task brokering) sum
to an average of less than one second per job and has previously been doc-
umented in [6]. As the GJMF job management overhead is masked by job
execution times, the system-wide impact of this overhead is negligible.

– Job execution makespan. The job execution makespan is made up by fac-
tors such as batch system queue times, middleware overhead, job execution
time, and file staging times. These factors are independent of the proposed
integration architecture and therefor out of the scope of this discussion.

The integration architecture has proven stable and provides enhanced function-
ality and middleware independence with comparable or improved performance.

5 Related Work

There exist a number of projects that implements web interfaces for Grid re-
sources, such as Gridsphere [13], GridBlocks [11], and the P-GRADE portal [15].
The user interfaces of these portals are often designed as workflow editors and
applications are viewed as building blocks in larger contexts. This differs from
our work as the LAP focuses on creation of customized user interfaces for specific
applications, and provides pre-configured workflows for target applications.

There also exist a number of projects related to the GJMF approach to job
management, e.g., the Gridbus [20] middleware that employs a layered architec-
ture and platform-independent approach to Grid job management; the GridWay
Metascheduler [14] that provides reliable and autonomous execution of Grid jobs;
the GridLab Grid Application Toolkit [1] that provides a service-oriented toolkit
for Grid application development; GridSAM [12] that uses JSDL job descriptions
and offers middleware-abstracted job submission through Web Services; and P-
GRADE [15], which provides fault-tolerant Grid execution of parallel programs.

Related to the integration architecture, a kin project is the GEMLCA [3]
integration with P-GRADE [15], where the layered architecture of GEMLCA is
employed to run legacy applications as Grid services and P-GRADE provides
interfaces for building execution environment, application monitoring, and re-
sults management. In comparison with other projects, the aim of the proposed
architecture is to illustrate how to exploit the already available components of
the LAP and the GJMF using the simplest possible integration model.

6 Conclusions

We have investigated integration techniques for user-friendly, robust, scalable,
and flexible Grid portal architectures, proposed a layered approach to system
integration, and demonstrated this in the integration of two existing systems; the
LAP and the GJMF. The proposed integration architecture improves upon the

88

LAP-GJMF Integration 9

original LAP architecture in terms of scalability, support for multiple middle-
wares, performance, response times, and deployment flexibility. The user-friendly
interfaces of the LAP abstract the use of the GJMF, allowing existing portal in-
stallations to be transparently upgraded to use the new integration architecture.

Use of the GJMF’s automated brokering and job (re)submission capabilities
improves the system’s fault-tolerance and robustness, and introduces transpar-
ent middleware independence. As the multiple job submission mode of the LAP
makes use of the GJMF Task Group Management Service (TGMS), the need
for manual synchronization of jobs is eliminated and allows end-users to treat
multiple jobs as a single management unit. Similarly, use of customized JTS job
description translations facilitates middleware independence and automated job
result retrieval. The middleware independence introduced by the GJMF allows
for integration of new middlewares, facilitates transitions to new environments,
and increases the expected lifetime of the LAP and LAP applications. Con-
versely, use of the LAP’s ability to easily create customized application user
interfaces empowers the GJMF with application support and usability features.

The proposed integration architecture is lightweight and non-intrusive, sup-
ports a representative range of Grid applications, and does not impede use of the
original architecture’s functionality in any way. In fact, the two versions are com-
pletely orthogonal in implementation and can co-exist in the same deployment
environment. Use of the GJMF for job management in the portal contributes
additional functionality in terms of resource brokering, failure handling, loose
coupling of resources, and middleware independence. The PIE improves portal
response times and scalability in state monitoring and job submission.

The GJMF-empowered LAP is currently available in a prototype version for
SweGrid, supporting bioinformatics, computational chemistry, and astronomy
applications. The Matlab extensions of the original architecture have been pre-
served and Matlab-based applications function unaltered in the new architecture.

7 Acknowledgments

This work has in part been supported by the Swedish Research Council (VR) un-
der contract 621-2005-3667. For use of their resources, we acknowledge HPC2N,
Ume̊a University, LUNARC, Lund University, NSC, Linköping University, and
UPPMAX, Uppsala University. We also thank Daniel Henriksson, Johan Tords-
son, and the anonymous referees for valuable feedback.

References

1. G. Allen, K. Davis, K. Dolkas, N. Doulamis, T. Goodale, T. Kielmann, A. Merzky,
J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor.
Enabling Applications on the Grid - A GridLab Overview. International Journal
of High Performance Computing Applications, 2003.

2. A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, A. S. McGough, D. Pul-
sipher, and A. Savva. Job Submission Description Language (JSDL) specification,
version 1.0. http://www.ogf.org/documents/GFD.56.pdf, March 2007.

89

10 Erik Elmroth et al.

3. T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Winter, and P. Kacsuk.
GEMLCA: Running legacy code applications as Grid services. Journal of Grid
Computing, 3(1 - 2):75 – 90, June 2005. ISSN: 1570-7873.

4. E. Eckerson. Three Tier Client/Server Architecture: Achieving Scalability, Perfor-
mance, and Efficiency in Client Server Applications. Open Information Systems,
10(1):3–22, 1995.

5. M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson,
J. L. Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen. Advanced Resource
Connector middleware for lightweight computational Grids. Future Generation
Computer Systems, 27:219–240, 2007.

6. E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg. Designing
general, composable, and middleware-independent Grid infrastructure tools for
multi-tiered job management. In T. Priol and M. Vaneschi, editors, Towards Next
Generation Grids, pages 175–184. Springer-Verlag, 2007.

7. E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing service-based
resource management tools for a healthy Grid ecosystem. In R. Wyrzykowski et al.,
editors, Parallel Processing and Applied Mathematics. 7th Int. Conference, PPAM
2007, volume 4967, pages 259–270. Lecture Notes in Computer Science, Springer-
Verlag, 2008.

8. E. Elmroth, M. Nylén, and R. Oscarsson. A User-Centric Cluster and Grid Com-
puting Portal. International Journal of Computational Science and Engineering,
3(5), 2007 (to appear).

9. E. Elmroth and P-O. Östberg. Dynamic and Transparent Service Compo-
sitions Techniques for Service-Oriented Grid Architectures. In S. Gorlatch,
P. Fragopoulou, and T. Priol, editors, Integrated Research in Grid Computing,
pages 323–334. Crete University Press, 2008.

10. I. Foster. Globus toolkit version 4: Software for service-oriented systems. In H. Jin
et al., editors, IFIP International Conference on Network and Parallel Computing,
LNCS 3779, pages 2–13. Springer-Verlag, 2005.

11. GridBlocks. http://gridblocks.hip.fi, visited December 2008.
12. GridSAM. http://gridsam.sourceforge.net, visited December 2008.
13. Gridsphere Portal Framework. http://www.gridsphere.org/gridsphere/gridsphere,

visited December 2008.
14. E. Huedo, R. S. Montero, and I. M. Llorente. A framework for adaptive execution

on Grids. Software - Practice and Experience, 34(7):631–651, 2004.
15. P. Kacsuk and G. Sipos. Multi-grid and multi-user workflows in the P-GRADE

Grid portal. Journal of Grid Computing, 3(3-4):221–238, 2006.
16. P. Linde and J. Lindemann. ELT Science Case Evaluation Using An HPC Portal.

In Astronomical Data Analysis Software and Systems XVII, 2007.
17. J. Lindemann and G. Sandberg. An extendable GRID application portal. In

European Grid Conference (EGC). Springer Verlag, 2005.
18. J. Lindemann and G. Sandberg. A Lightweight Application Portal for the Grid.

In Nordic Seminar on Computational Mechanics NSCM 19, 2006.
19. The Grid Infrastructure Research & Development (GIRD) project. Ume̊a Univer-

sity, Sweden. http://www.gird.se, visited December 2008.
20. S. Venugopal, R. Buyya, and L. Winton. A Grid service broker for scheduling e-

science applications on global data Grids. Concurrency and Computation: Practice
& Experience, 18(6):685–699, May 2006.

21. Webware, Python Web Application Toolkit. http://www.webwareforpython.org,
visited December 2008.

90

V

Paper V

A Composable Service-Oriented Architecture for
Middleware-Independent and Interoperable Grid Job

Management

Erik Elmroth and Per-Olov Östberg

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, p-o}@cs.umu.se

http://www.gird.se

Abstract: We propose a composable, loosely coupled Service-Oriented Architecture
for middleware-independent Grid job management. The architecture is designed for
use in federated Grid environments and aims to decouple Grid applications from Grid
middlewares and other infrastructure components. The notion of an ecosystem of Grid
infrastructure components is extended, and Grid job management software design is
discussed in this context. Nonintrusive integration models and abstraction of Grid
middleware functionality through hierarchical aggregation of autonomous Grid job
management services are emphasized, and service composition techniques facilitat-
ing this process are explored. Earlier efforts in Service-Oriented Architecture design
are extended upon, and implications of these are discussed throughout the paper. A
proof-of-concept implementation of the proposed architecture is presented along with
a technical evaluation of the performance of the prototype, and a details of archi-
tecture implementation are discussed along with trade-offs introduced by the service
composition techniques used.

Key words: Grid job management, service composition, federated Grids, middleware-
independence, Grid ecosystem

93

94

A Composable Service-Oriented Architecture for

Middleware-Independent and Interoperable Grid Job

Management

Erik Elmroth and Per-Olov Östberg

Dept. Computing Science and HPC2N, Ume̊a University, SE-901 87 Ume̊a, Sweden

Abstract

We propose a composable, loosely coupled Service-Oriented Architecture for
middleware-independent Grid job management. The architecture is designed
for use in federated Grid environments and aims to decouple Grid appli-
cations from Grid middlewares and other infrastructure components. The
notion of an ecosystem of Grid infrastructure components is extended, and
Grid job management software design is discussed in this context. Non-
intrusive integration models and abstraction of Grid middleware function-
ality through hierarchical aggregation of autonomous Grid job management
services are emphasized, and service composition techniques facilitating this
process are explored. Earlier efforts in Service-Oriented Architecture design
are extended upon, and implications of these are discussed throughout the
paper. A proof-of-concept implementation of the proposed architecture is
presented along with a technical evaluation of the performance of the proto-
type, and a details of architecture implementation are discussed along with
trade-offs introduced by the service composition techniques used.

Key words: Grid job management, service composition, federated Grids,
middleware-independence, Grid ecosystem

Email address: {elmroth, p-o}@cs.umu.se [http://www.gird.se] (Erik Elmroth
and Per-Olov Östberg)

Preprint submitted to Future Generation Computer Systems May 15, 2009

95

1. Introduction

The increasingly common use of federated Grids put new requirements on
software for job and resource management. Common examples of federated
Grids include hierarchical Grids, where large-scale international collabora-
tions make use of parts of national Grids, and multiple national Grids allow
cross-Grid utilization in order to more efficiently handle variations in resource
demand. Requirements placed on software for federated Grids even further
emphasize many of the key requirements typically put on software for indi-
vidual Grids. As federated Grids are often more short-lived, less monolithic,
and more heterogeneous in Grid middleware, there is an even stronger need
for tools to provide key functionality with great flexibility in deployment and
configuration. The need for software that coexist and non-intrusively in-
tegrate with other middleware components is vital, scalability requirements
even more emphasized as system size increases, and centralized solutions even
less feasible due to factors such as increased heterogeneity in Grid access, and
policy enforcement being performed locally on resource sites.

In these settings, Grid job management tools should focus on maintain-
ing non-intrusive integration models, provide functionality on top of avail-
able Grid interfaces, and abstract complexity of underlying Grid infrastruc-
ture components when possible. Resource brokering should be performed
assuming the use of multiple concurrent job submission systems and without
attempts of maintaining global state information for Grid jobs or resources.
Resource contention issues and failure handling should be implemented using
adaptive approaches and robustness provided through redundancy of capa-
bility rather than prediction of possible failure causes.

While there are many viable approaches to Grid job management in use
today, there exists a need for robust Grid job management tools that are able
to function across Grid boundaries, integrate non-intrusively, and provide ab-
stractions of Grid middleware functionality that decouple applications from
specific Grid middlewares. Generic Grid applications decoupled from Grid
middlewares are more likely to be able to migrate to new Grids, be reused
in new projects, and adapted to new problems. To further a looser coupling
between applications and Grid resources, tools need to provide flexibility in
utilization and deployment without sacrificing scalability, performance, or
middleware and platform independence.

The research question of how to best design Grid infrastructure software
is currently open-ended and addressed in a number of different ways. The

2

96

approach taken in this work consists of identification of a set of desirable
traits likely to promote software sustainability in a Grid ecosystem (as de-
scribed in Section 2), and exploration of software design and development
methodologies which result in composable software components that inhabit
and define niches in an ecosystem of Grid infrastructure components.

For software aimed for collaborative Grid environments, usage scenar-
ios tend to include a number of complex factors such as heterogeneous user
bases organized in virtual organizations, varying deployment requirements,
resource heterogeneity and contention issues, unpredictable failure models,
and ever-changing user requirements. In such settings, robustness of tools are
prioritized, and utility is measured in terms of scalability, flexibility in usage
and deployment, level of functionality and heterogeneity abstraction, com-
plexity of administration, ability to automate repetitive administrative tasks,
degree of coupling between components, and level of integration intrusion.

In this work, we extend the software design methodologies of [22], [20],
and [18], and propose a composable Service-Oriented Architecture (SOA) for
Grid job management constituted by layers of loosely coupled, composable,
and replaceable Web Services. The architectural model of the framework is
built upon the principle of abstraction; functionality is stratified into layers of
autonomous services that incrementally provide additional features to end-
users by utilizing and abstracting complexity of underlying services. This
enables software developers to build aggregated systems where individual
parts of the architecture can be deployed as stand-alone components, mini-
mizes the formal knowledge between components to provide a loosely coupled
model of component interaction, and allows great flexibility in system config-
uration. Application developers can choose what parts of the framework to
make use of based on current application needs, and system administrators
can reconfigure framework deployment dynamically. The architecture also
promotes application and middleware interoperability by providing an ab-
stracted interface to Grid middleware functionality, and supports concurrent
use of multiple middlewares. The services of the framework implement well
defined interfaces and provide customization points for dynamic alteration of
component and system behavior. By use of configurable customization points
in the middleware abstraction services, additional middleware support can
easily be provided by third parties.

The architecture is illustrated by a proof-of-concept implementation called
the Grid Job Management Framework (GJMF), which is presented along with
an evaluation of system performance. The framework is designed to provide

3

97

transparent Grid access to applications through a set of abstractive interfaces
that can be combined with (optional) advanced customizability features. Ap-
plications built on top of the framework are provided transparent Grid mid-
dleware functionality that allows Grid resource utilization without coupling
applications to specific middlewares. Applications and infrastructure tools
are also able to reuse components of the framework for generic Grid opera-
tion on an individual basis, promoting a functionality-based model of software
reuse and increasing component and system sustainability. Throughout the
paper, intended system behavior and implications of system design and ar-
chitecture are discussed alongside documentation of experiences from system
design and development.

The structure of the remainder of the paper is as follows: In Section 2
an introduction to the concept of an ecosystem of Grid components is given
along with a brief description of software requirements for infrastructure
components inhabiting such a system. After this, an architecture model for
a layered Grid job management framework is proposed in Section 3, followed
by a detailed presentation of the individual services of the proof-of-concept
implementation of the framework in Section 4. An architecture discussion
then ensues in Section 5, followed by a performance evaluation illustrating
some of the framework trade-offs in Section 6. Related and future work are
presented in sections 7 and 8, respectively, and the paper is concluded in
Section 9.

2. The Grid Ecosystem and Software Requirements

An ecosystem can be defined as a system formed by the interaction of
a community of organisms with their shared environment. Central to the
ecosystem concept is that organisms interact with all elements in their sur-
roundings, and that ecosystem niches are formed from specialization of in-
teractions within the ecosystem. In an ecosystem of Grid components [64],
[20], niches are defined by functionality required and provided by software
components, end-users, and other Grid actors; and Grid infrastructures are
constituted by systems composed of components selected from the ecosystem.
Here, software compete on evolutionary bases for ecosystem niches, where
natural selection tend to preserve components better at adapting to altered
conditions over time. Adaptability is hence defined in terms of integrability,
interoperability, adoptability, efficiency, and flexibility. For software to be
successful in the Grid ecosystem, individual software components should be

4

98

composable, replaceable, able to integrate non-intrusively with other com-
ponents, support established niche actors, e.g., Grid middlewares and appli-
cations, and promote adoptability through ease of use and minimization of
administrational complexity.

Currently however, the majority of Grid resources available are accessible
only through a specific Grid middleware deployed on the site of the resource.
This, combined with the complexity and interoperability issues of today’s
Grid middlewares, leads to the Grid interoperability contradiction [24], and
tend to result in a degree of tight coupling between Grid applications and
Grid middlewares. To isolate Grid end-users and applications from details
of the underlying middleware and create a more loosely coupled model of
Grid resource use, a Grid job management tool should be designed to op-
erate on top of middlewares, abstract middleware functionality and offer a
middleware-agnostic interface to Grid job management. From an ecosystem
point-of-view, this type of Grid middleware functionality abstraction helps
to define and decouple an autonomous job management niche.

Furthermore, to promote interchangeability, components should build
upon standardization efforts, e.g., support de facto standard approaches for
virtual organization-based authentication and accounting solutions, function
independent of platform, language, and middleware requirements, and pro-
vide transparent and easy-to-use Grid resource access models that support
use of federated Grid resources. This reduces ecosystem component devel-
opment complexity, mitigates learning requirements for Grid end-users, and
promotes interoperability and adoption of Grid utilization in new user groups.

Like in any evolution-based system, adaptability and efficiency are key to
software sustainability in the Grid ecosystem as they promote adoption and
use of software components. By creating systems composed of small, well-
defined, and replaceable components, functionality can be aggregated into
flexible applications, resulting in increased survivability for both components
and applications [22]. This idea to create composed and loosely coupled
applications from autonomous networked components lies at the heart of
Service-Oriented Architecture (SOA) [53] methodology.

In the framework, components are realized as autonomous Web Services
that contain multiple customization points where third party plug-ins can
be used to alter or augment both system and component behavior. To pro-
mote deployment flexibility, the framework composition, as well as individual
component customization setup, can also be dynamically altered via service
configurations as described in [22]. Additionally, individual components of

5

99

the framework can be used as stand-alone services, or in other composed ar-
chitectures, while concurrently serving as part of the framework in the same
deployment environment.

3. Framework Architecture

The practice of developing and deploying infrastructure components as
dynamically configured SOAs facilitates development of flexible and robust
applications that aggregate component functionality and are capable of dy-
namic reconfiguration [22]. This approach also provides a model for dis-
tributed software reuse, both on component and code level, and facilitates
integration software development with a minimum of intrusion into existing
systems [21]. Providing small, single-purpose components reduces compo-
nent complexity and facilitates adaptation to standardization efforts [22].

The architectural model used has previously been briefly introduced in
[18], and various aspects of the software development model have been dis-
cussed in [22], [20], and [21]. The software development model used in this
work is a product of work in the Grid Infrastructure Research & Develop-
ment (GIRD) multiproject [65] and is documented in [22] and [20]. The
models favor architectures built on principles of flexibility, robustness, and
adaptability; and aims to produce software well adjusted for use in the Grid
ecosystem [64].

3.1. Architecture Layers

As illustrated in Figure 1, the framework architecture is divided into six
layers of functionality, where each layer builds upon one or more lower layers
and provides aggregated functionality to service clients. The layers range
(bottom-up) from a Grid middleware layer to an application layer with four
job management layers in between. For each layer a core functionality set
has been identified and implemented as autonomous services in the proof-of-
concept prototype (illustrated in the figure).

Grid Middleware Layer. In the architecture model, the Grid middleware
layer houses all software components concerned with abstraction of native job
management capabilities. This typically constitutes traditional Grid middle-
wares abstracting batch systems, e.g., the Globus middleware (GT4) [35] ab-
stracting the Portable Batch System (PBS) [42], standardized job dispatch-
ment services, e.g., the OGSA BES [28], and desktop Grid approaches such as

6

100

Figure 1: The proposed framework architecture. Services organized in hier-
archical layers of functionality. Within the framework services communicate
hierarchically, service clients are not restricted to this invocation pattern.

the Berkeley Open Infrastructure for Network Computing (BOINC) [7] and
Condor [62] abstracting use of CPU cycle scavenging and volunteer comput-
ing resources. Components in the Grid middleware layer are not considered
part of, or provided by, the framework but are essential in providing native
job submission, control, and monitoring capabilities to the framework.

Middleware Abstraction Layer. The purpose of the middleware abstraction
layer is to abstract the details of Grid middleware components and provide a
unified Grid middleware interface to higher-layer components. All framework
components housed in other layers are insulated from details of native and
Grid job submission, monitoring, and control by the services in the middle-
ware abstraction layer. Hence, integration of the framework with additional
(or new versions of) Grid middlewares should ideally only concern compo-
nents in this layer.

Currently, the middleware abstraction layer contains services for targeted
job submission and control, information system interfaces, and services con-
cerned with translation of job descriptions. Components in the middleware
abstraction layer are expected to abstract middleware complexity and pro-
vide well-defined interfaces and customization support for integration of new

7

101

Grid middlewares. For middlewares lacking required functionality, e.g., mid-
dlewares with limited job monitoring capabilities, components in the middle-
ware abstraction layer are expected to implement required system function-
ality to provide a unified job control interface.

Brokered Job Submission Layer. Placed atop of the middleware abstraction
layer, the brokered job submission layer provides aggregated functionality
for indirect, or brokered, job submission. The services of this layer improves
upon the targeted job submission capabilities of the middleware abstraction
layer by providing automated matching of jobs to computational resources.
Job submission performed by services in this layer relies on the targeted job
submission capabilities and the information system interfaces of the middle-
ware abstraction layer, and provides a best effort type of failure handling by
identifying a set of suitable computational resources for a job and (sequen-
tially) attempting to submit the job to each of these until the job is accepted
by a resource. Services in the brokered job submission layer do not provide
job monitoring capabilities, as job submission here is expected to result in
monitorable jobs in middleware abstraction layer services.

Reliable Job Submission Layer. Intended as the robust job submission ab-
straction of the architecture, services of the reliable job submission layer
provide fault-tolerant and autonomous job submission and management ca-
pabilities. The term reliable job submission refers to the ability of these
services to autonomously handle different types of errors in the job sub-
mission and execution processes through resubmission of jobs according to
predefined failover policies. Services in the reliable job submission layer rely
on services of the brokered job submission layer for brokering and job sub-
mission, and services of the middleware abstraction layer for job monitoring
and control. Functionality for failure handling, e.g., for Grid congestion and
job execution failures, is aggregated, and management of sets of independent
jobs is provided. Services of the reliable job submission layer also provide
monitoring capabilities for jobs and sets of jobs through job management
contexts created for all resources submitted here.

Advanced Job Submission Layer. The advanced job submission layer is in
the architecture of the framework aimed towards more advanced mechanisms
for job management, e.g., workflow tools, Grid application components, and
portal interfaces that by functionality requirements are coupled to individual
components of the framework. The services of the advanced job submission

8

102

layer are intended to utilize the services of the reliable job submission layer,
and function as integration bridges and customized service interfaces to the
framework. Services in the advanced job submission layer are expected to
provide their own job management and monitoring contexts as they are in-
tended to aggregate the functionality of the other layers of the framework. A
number of functionality sets for advanced job management have been iden-
tified and are under consideration (see Section 8) for development in the
prototype implementation of the framework, e.g., management of data and
sets of interdependent jobs.

Application Layer. Residing at the top of the hierarchical structure of the
framework, the application layer houses Grid applications, computational
portals, and other types of external service clients. As in the case of the
Grid middleware Layer, softwares in the application layer are not necessarily
considered part of the architecture of the framework, but are likely to im-
pact the design of software in the architecture through design, construction,
and feature requirements. Typically, service clients not integrated with the
framework services are considered part of the application layer.

4. The Grid Job Management Framework (GJMF)

Implemented as a prototype of the proposed architecture of Section 3,
the Grid Job Management Framework (GJMF) is a Java-based toolkit for
submission, monitoring, and control of Grid jobs designed as a hierarchical
SOA of cooperating Web Services. Framework composition can be altered dy-
namically and controlled through service configuration and via customization
points in services. The Grid-enabled Web Services of the GJMF have been
implemented and are typically deployed using the Globus Toolkit [26], are
compatible with established Grid security models, and conform to the use of a
number of Web Service and Grid standards, e.g., the Web Service Description
Language (WSDL) [14], SOAP [40], the Web Service Resource Framework
(WSRF) [27], and the Job Submission Description Language (JSDL) [9]. The
GJMF also conforms to the design of the Open Grid Service Architecture
(OGSA) [29] and builds on the design of the OGSA Basic Execution Ser-
vice (OGSA BES) [28], and the OGSA Resource Selection Services (OGSA
RSS) [31].

The services in the framework interact by passing messages using either
request-response (for, e.g., job submissions) or publish-subscribe (for, e.g.,

9

103

state update notifications) communication patterns. The information routed
through the framework travels vertically in Figure 1, and typically consists
of job descriptions passed downwards in task and job submissions, and sta-
tus update notifications propagated upwards in service state coordination
messages. All services maintain state representations as WS-Resources [38],
and expose these through service interfaces and WS-ResourceProperties [37],
allowing clients to inspect state both explicitly and through subscription to
WS-BaseNotifications [36].

4.1. Job Definitions

To facilitate the model of offering aggregated functionality through ser-
vices organized in hierarchical layers, the GJMF defines three types of job
definitions.

• A job is a concrete job description, containing all information required
to execute a program on a (specified) computational resource. Jobs are
in the GJMF processed by the Job Control Service and correspond to
unique executions of programs on computational resources. Jobs typi-
cally consist of a JSDL file specifying an executable program, program
parameters, computational resource references, file staging information,
and optional JSDL annotations containing custom job processing hints.

• A task is an abstract (often incomplete) job description that typically
requires additional information, e.g., computational resource references
or specific job submission parameters, to become submitable to Grid
middlewares. This required information is typically provided by task
to resource matching (brokering). Tasks are in the GJMF processed by
the Task Management Service. Note that by the GJMF definition, a
job is a task subtype. This allows jobs to be submitted as tasks in the
GJMF, in which case the additional brokering information is utilized
in the brokering and job submission process.

• A task group is a set of independent tasks and jobs that can be executed
in any order. Task groups distinguish themselves from jobs and tasks by
having shared execution contexts for all tasks in a task group. Thus,
the processing result of a task group is determined by the combined
processing results of the task group’s tasks and jobs. Task groups are
in the GJMF processed by the Task Group Management Service.

10

104

(a) The Log Accessor Service. (b) The JSDL Translation Service.

Figure 2: Internal structure of the Log Accessor Service and the JSDL Trans-
lation Service. Customization points are illustrated using dotted lines. The
services are constructed around a set of customizable core components that
provide database access and job description translation semantics respec-
tively.

4.2. Components

As illustrated in Figure 1, the core of the GJMF is made up by five job
management services. Part of the framework but not illustrated in the figure
are also two auxiliary services, a job description translation and a log access
service, as well as two core libraries, a service development utility library and
the GJMF client Application Programming Interface (API). All services in
the GJMF make use of these libraries, and all service interaction within the
framework is routed through the service client APIs, allowing service com-
munication optimizations to be ubiquitous and completely transparent to
services, service clients, and end-users. Each service is capable of using mul-
tiple instances of other services, and supports a model of user-level isolation
where unique service instances (back-ends) are created for each service user.
Worker threads and contexts within individual services are shared among
service back-ends and competition for resources between service instances
occur as if services were deployed in separate service containers.

4.2.1. Log Accessor Service (LAS)

In a distributed architecture managing multiple synchronized states, abil-
ity to track state development and review processing progression is highly de-
sirable. The Log Accessor Service (LAS) is a service that provides database-
like interfaces to job, task, and task group logs generated by the GJMF. As

11

105

the name suggests, the LAS is designed to provide convenient log access to
services, end-users, and clients. Within the GJMF, the LAS is used to record
state transitions as well as job submission and processing information. The
LAS is typically expected to have monodirectional data transfers, e.g., the
GJMF services use the LAS to store data, and service clients use it to inspect
details of task processing.

The internal structure of the LAS is illustrated in Figure 2a. The log
accessor component offers a service interface and abstracts use of database-
specific accessor plug-ins. The LAS maintains internal storage queues and
resource serialization mechanisms to minimize overhead for use of the service
and provide an asynchronized communication model for log storage. As also
illustrated in Figure 2a, database support is provided the service through the
use of customizable database accessor plug-in modules. These accessors can
be provided by third parties to provide the LAS access to custom database
formats currently not supported. Boiler-plate solutions for accessor plug-
ins supporting Structured Query Language (SQL) [43] and Java Database
Connectivity (JDBC) [61] are provided to facilitate development of custom
plug-ins. Currently, the LAS supports use of MySQL [52], PostgreSQL [56],
and Apache Derby [63], and accessor plug-ins for these systems are provided.
Unlike the other services of the GJMF, use of the LAS is optional and not
required for any other part of the GJMF to function. The LAS can be
configured to use specific database accessors, and these accessors can also be
configured through the LAS configuration.

4.2.2. JSDL Translation Service (JTS)

In the GJMF, the JSDL Translation Service (JTS) is used to provide job
description translations to service clients and services. In terms of service
to service communication, the JTS is typically used by the Job Control Ser-
vice to provide translations of JSDL to formats used by Grid middlewares
in native job submission. When used by service clients, the JTS can both
provide translations from proprietary job description formats to JSDL, and
translations from JSDL to Grid middleware formats (where the latter typi-
cally would be used to verify that job description semantics are preserved in
translation).

As illustrated in Figure 2b, the JTS employs a modularized architecture
where translation semantics are provided by plug-in modules, and support
for new language translations can be added by third parties without modifi-
cation of the framework. The JSDL translator component provides a service

12

106

Figure 3: Internal structure of the Job Control Service. Customization points
are illustrated using dotted lines.

interface and abstracts the use of job description translator plug-ins. Both
the JSDL translator and the translator plug-ins make optional use of LASs for
log storage. Currently, the JTS supports translation between JSDL [9] and
Globus Toolkit 4 Resource Specification Language (GT4 RSL) [26], Nor-
duGrid Extended Resource Specification Language (XRSL) [17], and a cus-
tom dialect of XRSL presented in [21]. Translations of job descriptions are
made based on the context of the job description representation created.
Typically this means that job descriptions to be translated are parsed record
by record for information required to create new representations of corre-
sponding semantics. Type-specific data representations are translated based
on the semantics of the enacting middleware, e.g., Uniform Resource Loca-
tors (URLs) are reformatted and supplied suitable protocol tags to match
middleware transfer mechanism preferences. The JTS can be configured to
use a specific set of translation modules, which can be configured through
the JTS configuration.

4.2.3. Job Control Service (JCS)

Being one of the two fundamental middleware abstraction services of the
GJMF, the purpose of the Job Control Service (JCS) is to provide a uniform
and middleware-independent interface for job submission and control. The
JCS defines a set of generic job functionality, as well as a job state model (il-
lustrated in Figure 8c), that provide a fundamental view of job management

13

107

that other services in the GJMF build upon. Within the GJMF, the JCS is
used by the Brokering & Submission Service as a job submission interface,
and by the Task Management Service as a job monitoring and control inter-
face, but the service may also be used directly by service clients as a targeted
Grid job submission and control tool.

The internal structure of the JCS is illustrated in Figure 3. The job
controller component provides a service interface and coordinates execution
of jobs. Job resources are used to maintain job state and are exposed as
inspectable WS-ResourceProperties to service clients. The job controller
abstracts the use of middleware-specific job dispatcher and dispatcher prior-
itizer plug-ins, and both the job controller and the middleware dispatchers
utilize LASs for log storage. Middleware support in the JCS is provided
through customizable and configurable plug-in modules that allow third par-
ties to develop and deploy support for proprietary job management solu-
tions. Middleware dispatchers abstract use of Grid middlewares and employ
the JTS and the LAS for job description translation and log storage respec-
tively. The JCS currently provides middleware support for the NorduGrid
ARC [17], GT4 [35] middlewares, and Condor [62]. For test and service client
development purposes, the JCS also provides a simulation environment where
jobs are simulated rather than submitted and executed. This utility allows
JCS clients to encounter exotic job behaviors on demand via discrete-event
simulation of job state transitions.

The JCS can be configured to use a specific set of middleware dispatch-
ers, a middleware dispatcher prioritizer, a state monitor, a set of JTSs, and
an optional set of LASs. For custom job processing, the functionality of the
JCS may also be altered by providing processing hints to the JCS through
annotations in the JSDL job description. These annotations can affect, e.g.,
middleware dispatcher prioritization, or provide job submission parameters
such as queue system information for ARC submissions (an example from
[21]) or GT4 Globus Resource Allocation Manager (WS-GRAM) parameters
for Condor-G [32] submissions. As these types of processing hints are com-
pletely orthogonal to standard service behavior, i.e. does not affect processing
of other jobs or other service functionality, they can be used to temporar-
ily alter service behavior for a specific job without alteration of framework
composition or configuration.

14

108

(a) The Resource Selection Ser-
vice.

(b) The Brokering and Submission Service.

Figure 4: Internal structures of the Resource Selection Service and the Bro-
kering and Submission Service. Customization points are illustrated using
dotted lines.

4.2.4. Resource Selection Service (RSS)

The fundamental task of matching a job to a suitable computational re-
source on a Grid is referred to as job or resource brokering. Built on the
OGSA RSS [31] model, the GJMF Resource Selection Service (RSS) pro-
vides a service interface for performing job to resource matching in Grid
environments. Within the GJMF, the RSS is used by the Brokering & Sub-
mission Service as an execution planning and brokering tool, but the service
may also be used by service clients for job to resource matching directly.

The internal structure of the RSS is illustrated in Figure 4a. The re-
source selector component provides a service interface, coordinates brokering
of tasks to computational resources, abstracts the use of middleware-specific
information system accessor plug-ins, and utilizes LASs for log storage. Infor-
mation system accessors abstract the use of middleware information systems,
provide translations of middleware-specific record formats to an internal RSS
format, and make use of LASs for log storage. The RSS internally maintains
mechanisms for retrieval of resource information from information systems,
caching of resource information, information system monitoring, and a cus-
tomization mechanism that allows third parties to develop plug-ins to support
new information sources, e.g., new Grid middleware information systems.

The RSS can be configured to retrieve information from a range of in-
formation systems, currently including the ARC and GT4 Grid middleware

15

109

information systems, as well as a simulated information system configurable
through the RSS configuration intended for service development purposes.
The RSS also provides boiler-plate solutions for data access and type con-
version to facilitate implementation of custom information accessors.

4.2.5. Brokering & Submission Service (BSS)

The Brokering & Submission Service (BSS) provides the GJMF and ser-
vice clients with an interface for best-effort brokered job submission. The
definition of best effort job submission used here is that no measures for
correction of, or compensation for, failed job submissions or executions are
taken. Once brokered, the BSS attempts to sequentially submit jobs to each
suitable computational resource identified (as ranked by the RSS) until a
resource has accepted the job or the list of resources has been exhausted.
Beyond this behavior, failures are considered permanent.

Within the GJMF, the BSS is used by the Task Management Service for
task submissions, but the BSS may also be used directly by service clients as
a best effort job submission tool for brokered submission of abstract (incom-
plete) job descriptions. The BSS does not maintain a context for submitted
jobs, service clients that wish to inspect job state are referred to a JCS in-
stance hosting the job upon successful job submission. Note that while job
submission failures are reported directly to service clients, errors in job ex-
ecutions are by the BSS assumed to be reported by the enacting JCS or
detected and handled by service clients.

The internal structure of the BSS is illustrated in Figure 4b. The job
broker component provides a service interface and interacts with RSSs to
retrieve execution plans for tasks. The job submitter component is used by
the job broker and interfaces with JCSs to submit jobs. Both components
make use of LASs for log storage. The BSS relies on the RSS and JCS for
job to resource matching and job control respectively, and is capable of using
multiple instances of each service to provide redundancy in job brokering
and submission. Note that jobs, i.e., tasks with a concrete job description
including a resource specification, are not relayed to the RSS for resource
brokering but directly submitted to resources via the JCS. The BSS can be
configured to use a set of RSSs, a set of JCSs, and an optional set of LASs.

4.2.6. Task Management Service (TMS)

Being the primary mechanism for reliable submission of individual jobs in
the GJMF, the Task Management Service (TMS) provides an interface for au-

16

110

Figure 5: Internal structure of the Task Management Service. Customization
points are illustrated using dotted lines.

tomated and fault-tolerant task management and defines a task state model
(illustrated in Figure 8b). The TMS maintains inspectable state contexts for
tasks and employs a model of event-driven state management powered by
the JCS state mechanisms. To provide failover capabilities, tasks submitted
through the TMS are repeatedly submitted and monitored by the TMS until
resulting in a successful job execution, or a configurable amount of attempts
have been made (in which case the task fails). Within the GJMF, the TMS is
used by the Task Group Management Service for management of individual
tasks.

The internal structure of the TMS is illustrated in Figure 5. The task
manager provides a service interface, coordinates task processing using a task
prioritizer plug-in, and uses LASs for log storage. The task submitter utilizes
BSSs for task submission, employs congestion and failure handler plug-ins
for task resubmission decision support, and stores state through LASs. Task
state is maintained and exposed through WS-ResourceProperties by task
resources. A state monitor plug-in can be employed to provide customizable
access to task state. The job monitor utilizes JCSs for job monitoring and
control of jobs, updates task resources, and stores state through LASs.

The internal mechanisms of the TMS can be customized via configuration

17

111

Figure 6: Internal structure of the Task Group Management Service. Cus-
tomization points are illustrated using dotted lines.

and a set of plug-in modules that control task prioritization, congestion han-
dling, failure handling, and state monitoring. To enforce user-level isolation
and fair competition in multi-user scenarios, the TMS maintains separate job
queues for each user. The TMS relies on the BSS for submission of tasks to
Grid resources, and can be configured to use customized congestion and fail-
ure handlers to control task resubmission behaviors, and a customized task
prioritizer to influence task processing order. The TMS can also be config-
ured to use a state transition monitor for event-driven state monitoring, a
set of BSSs, and an optional set of LASs.

4.2.7. Task Group Management Service (TGMS)

Similar to the TMS for individual jobs, the Task Group Management
Service (TGMS) exposes an interface for management of groups of (mutually
independent) jobs and tasks, and defines a task group state model (illustrated
in Figure 8a). The TGMS provides a convenient way to manage sets of tasks
as a single entity, and is intended to be used by service clients and more
complex task management systems, e.g., workflow engines such as [19] or
parameter sweep applications. The TGMS is currently not used by other
services in the GJMF.

18

112

The internal structure of the TGMS is illustrated in Figure 6. The
task group manager provides a service interface, coordinates task and task
group processing using task and task group prioritizer plug-ins, and stores
state through LASs. Task group state is maintained and exposed as WS-
ResourceProperties by task group resources, which can also be accessed by
state monitor plug-ins. The task submitter submits jobs to TMSs, uses a
congestion handler plug-in for resubmission decision support, and stores logs
through LASs. The task monitor utilizes TMSs for task monitoring, updates
task group resources, and stores logs through LASs.

The TGMS maintains state contexts for task groups, employs user-exclusive
submission queues for both task groups and tasks, provides customizable
plug-in modules for task group and task prioritization, state management,
and congestion handling. As the TGMS relies on the TMS for task sub-
mission and management, the TGMS does not contain a failure handler for
job submission or execution failures. Task execution failures in the TMS are
by the TGMS considered permanent, no error recovery or failover actions
are taken by the TGMS. Task submission failures, i.e. failures in TMS task
submission, are considered temporary and result in the TGMS rescheduling
task submissions indefinitely until successful.

The TGMS also provides a mechanism for suspension of (processing of)
task groups, a mechanism designed to adapt to scenarios where user creden-
tials expire or large task groups need to be paused. Once suspended, task
groups need to be explicitly resumed to be processed by the TGMS. Tasks in
a suspended task group that have already been submitted to a TMS will be
processed if possible, but no new task submissions will be made until (pro-
cessing of) the task group has been resumed. The TGMS can be configured
to use a congestion handler to customize back-off behaviors in Grid conges-
tion situations; task group and task prioritizers to customize processing order
of task groups, tasks, and jobs; a state transition monitor for event-driven
state monitoring, a set of TMSs, and an optional set of LASs.

4.2.8. The GJMF Common Library

The GJMF common library is a service development utility library that
encapsulates functionality common to all services of the GJMF. The library
facilitates service development by providing a common type set, a service
development model, and boiler-plate solutions for, e.g., local call optimiza-
tions, service stubs, credentials delegation, security contexts, worker threads,
state management, service client APIs, dynamic configuration, and resource

19

113

Figure 7: The GJMF service structure. The GJMF common library provides
boiler-plate solutions for service instantiation, service back-end implementa-
tion, resource management, and client APIs. The GJMF client API abstracts
use of the service invocation optimizations through use of service client fac-
tories. Dynamic invocation patterns illustrated using dotted lines.

serialization.
The GJMF common library provides a simple framework for service de-

velopment that defines a service structure used by all services in the GJMF.
The service structure is illustrated in Figure 7, and details separation of ser-
vice interface implementation from service back-end implementations, and
service clients from service client factories. Service client factories are ex-
posed to applications and dynamically instantiate service client implementa-
tions based on type of service invocation to be used. Service clients marshal
data and perform service invocations, in the case of regular service clients
through Web Service SOAP messages and through direct service back-end in-
vocations using immutable wrapper types for local call optimization clients.
Service interface implementations marshal SOAP data through stubs into
immutable wrapper types and invoke corresponding methods in service back-
ends. Service back-end implementations are responsible for maintaining state
in service resources, which are accessed through service resource homes. The
service structure of the GJMF common library has previously been discussed
in [22].

The service development framework, in concert with the GJMF client
API, handles common tasks such as data type marshalling, service instanti-
ation, notification subscription management, and notification delivery. The
framework also encapsulates a local call optimization mechanism that allows
service components to be exposed as local objects to other services code-
ployed in the same service container, which allows co-hosted services to make

20

114

marshalled in-process Java calls directly between service clients and service
back-ends. This optimization mechanism, which is discussed in Section 5.1,
evaluated in Section 6.3.5, and also addressed in [22], is hidden by the service
structure of the common library and made completely transparent to service
clients through the client API. As described in [22], the common library pro-
vides a set of basic and immutable types for use in the GJMF client API as
well as a type marshalling mechanism that abstracts the use of stub types in
the GJMF.

The primary purpose of the GJMF common library is to facilitate ser-
vice development by providing standardized solutions to common tasks in
service development. While end-users and GJMF service clients typically
never interact directly with the common library, most of the functionality is
accessible to service developers for use outside the GJMF context.

The GJMF common library includes four parts:

• Clients - contains boilerplate solutions for service clients and service
client factories. These service client abstractions hide the use of lo-
cal call optimizations within the GJMF, provide transparent factory
mechanisms for creation of client instances, and perform client-side
marshalling of data types.

• Interfaces - contains definitions of all service interfaces for the GJMF,
including base interfaces that service interfaces are derived from. These
interfaces are used in the GJMF client APIs and abstract all service to
service interaction in the GJMF.

• Types - contains all type definitions used in GJMF service interfaces,
including WSDL stub type to immutable wrapper translation mech-
anisms for marshalling of Web Service invocations and notifications.
These type definitions encapsulate all state and log information for the
GJMF, and provides boilerplate solutions for state management.

• Utilities - contains utility functions and mechanisms for the GJMF
services such as boilerplate solutions for service implementations, tools
for management and delegation of credentials, service configuration
solutions, and service resource management mechanisms.

All parts of the common library are used cooperatively to reduce the
length of service development cycles and produce robust service implementa-
tions. The Clients and Interfaces modules are used for producing service

21

115

client APIs, the Utilities modules to produce service back-end implemen-
tations, and the Interfaces and Types modules to define service interaction
protocols. One example of the flexibility of the service interaction model is
the use of JSDL documents to convey both job specification data and pro-
cessing hints, e.g., middleware submission parameters and queue information
markers. To facilitate this model, and simplify use of the framework, all data
exchanged with services in the GJMF have dedicated immutable wrapper
types defined. All GJMF service interfaces have also been specified as Java
interfaces, operating exclusively on these wrapper types. The common li-
brary provides all services with a configuration mechanism, providing service
back-ends with dynamic access to configuration data from configuration files.

4.2.9. The GJMF Client Application Programming Interface

The GJMF client Application Programming Interface (API) is a set of
Java classes abstracting the use of the GJMF Web Services for Java pro-
grammers. Mimicking the interface of the GJMF services, the client API is
designed to provide intuitive use of the framework to developers with limited
experience of Web Service and SOA development. As illustrated in Figure 7,
and discussed in Section 4.2.8, the GJMF client API transparently handles
local call optimizations, state notification management, and service instance
management [22]. All GJMF functionality provided to service clients and
end-users are accessible through both the GJMF services and the GJMF
client API.

5. Architecture Discussion

To meet the flexibility and adaptability requirements discussed in Section
2, we build upon and extend the software development model previously pre-
sented in [22]. Key approaches in this model include use of Service-Oriented
Architectures (SOAs) [53], design patterns, refactorization methods, and
techniques to improve software adaptability such as dynamic configuration
techniques and provisioning of software customization points. All software is
developed in Java using common open source tools such as Eclipse, Apache
Ant, and Apache Axis. The Globus Toolkit [26] is employed as a development
environment for the production of Grid-enabled Web Services compatible
with established Grid security models.

22

116

5.1. Invocation Patterns
The services of the GJMF support two basic modes of service invocation;

sequential (regular) service invocation and batch invocation. In batch invo-
cations, a set of service requests are bundled and sent to the service in a
single service invocation. The batch invocation mode allows service clients
to, e.g., submit a set of tasks to the TMS in a single request, significantly
reducing service invocation makespan. Batch invocations conserve network
bandwidth and reduce service invocation memory footprints on the server
side. To simplify service invocation semantics, sets of requests sent using
batch invocation modes are processed as transactions by the services in the
GJMF. That is, if, e.g., a job submission in a batch request fails, other job
submissions in the batch are canceled and rolled back if processed.

When service clients are codeployed with the GJMF services, i.e. residing
inside services deployed in the same service container as the GJMF, service
invocations are by default routed through the GJMF local call optimization
framework. GJMF local call optimization mechanisms observe that services
hosted in the same container share the same process space, and thus operate
in the same Java Virtual Machine (JVM), and bypass service request serial-
izations to allow service clients to directly invoke methods in the service im-
plementation back-end. Use of local call optimizations greatly reduce service
invocation time and memory footprint of service request processing, allowing
for greater scalability in service implementations, more fine-grained commu-
nication models for interservice communication, and promotes a model of
service aggregation where modules from constituent services can function
as local Java objects in aggregated services [22]. When building systems
aggregated from services there are also indirect benefits of this model. In
the GJMF, this results, e.g., in a reduced need for polling to maintain dis-
tributed state coordination as state update notifications are less likely to be
dropped due to excessive service container load. All services of the GJMF
can be distributed in separate service deployments, but are recommended to
be deployed in the same service container for performance reasons.

As any GJMF service can at any time be invoked directly by a service
client, regardless of whether or not it is used as part of the framework, service
invocation patterns can be hard to predict and are likely to vary over time.
For this, as well as for reasons of transparency, all interservice communica-
tion is routed through the GJMF client API, which allows invocation modes
and service communication optimizations to be ubiquitous and completely
transparent to services, service clients, and end-users.

23

117

5.2. Deployment Scenarios

The GJMF has been designed to be as versatile as possible in terms
of deployment and usage without imposing complexity of administration or
loss of user control. The dynamic configuration structures, and the cus-
tomizable code modules used throughout the framework provide options for
modification of framework behavior combined with fully functional default
configurations.

The hierarchical architecture of the GJMF is intended to provide clients
a set of job management interfaces that offer an increasing range of automa-
tion of the job submission process without sacrificing user control. Services
in lower layers offer fine-grained job submission interfaces with high degrees
of explicit control, while services in higher layers attempt to automate the job
submission process and offer control through configuration of behavior and
optional use of customization point modules. The construction of the frame-
work as a SOA with local call optimizations allows the framework transpar-
ent distribution of components combined with high efficiency in interservice
communication when services are codeployed.

Envisioned usage scenarios for the framework include, e.g.,

• Running the framework on a gateway server to act as a middleware-
independent multi-user Grid job submission interface.

• Running the framework on a client computer to act as a convenient
personal job submission and management tool for Grids access.

• Running multiple instances of the framework to provide partitioning
and load balancing of large job submission queues and multiple Grids.

• Running multiple instances of the framework utilizing different config-
urations to provide alternative job submission behaviors.

A natural overlap between these usage scenarios exist, and each of these
are expected to be seen in hierarchical or other types of federated Grid envi-
ronments, as well as in federated Cloud computing systems. Typical usage
scenarios for the GJMF are expected to include hierarchical (or other forms
of) combinations of multiple deployments of the framework, on top of mul-
tiple Grid middlewares and resource manager systems. To meet advanced
application requirements, e.g., transparent workflow enactment, the GJMF
is expected to be utilized in combination with high-level tools such as the
Grid Workflow Execution Engine (GWEE) [19].

24

118

(a) The GJMF task group state model.

(b) The GJMF task state model. (c) The GJMF job state model.

Figure 8: The GJMF state models. Task group states are used in the TGMS,
task states in the TGMS and the TMS, job states in the JCS. The JCS
job state model is semantically identical to the state model of the OGSA
BES [28]. The recurring states of the GJMF job state model are used to
incorporate and abstract state information from more fine-grained Grid mid-
dleware state models.

The deployment and utilization flexibility of the GJMF makes the frame-
work viable for application within a number of computational settings, in-
cluding high-performance computing (HPC) (depending on support from un-
derlying middlewares for some functionality, e.g., execution of MPI jobs),
high-throughput computing (HTC), as well as the more recently defined
many-task computing (MTC) [57] paradigm. In MTC, focus is placed on
enactment of loosely coupled applications constituted by large numbers of
short-lived, data intensive, heterogeneous tasks with high (non-message pass-
ing) communication requirements, a setting envisioned in the design of the
GJMF.

5.3. State Models

As the GJMF is composed of (possibly distributed) interoperating ser-
vices, state management and coordination is inherently complex. To address
this, the GJMF employs a hierarchical model for distributed state updates,

25

119

State Interpretation
Transient states
Idle Work unit successfully submitted.
Active Work unit currently being processed.
Suspended Work unit temporarily suspended (TGMS).
Terminal states
Successful Work unit successfully processed.
Canceled Work unit processing canceled.
Failed Work unit processing failed.
Processed Work unit processed with partial success (TGMS).

Table 1: GJMF state interpretations.

where each service hosting a job description resource is responsible for coor-
dinating state updates to clients. As state updates for services are delivered
via WS-BaseNotifications, the distributed state model of the GJMF is event
driven; services respond to state changes in lower layers by updating state
and producing notifications that are propagated up the service hierarchy. To
compensate for dropped state notifications due to network failures or ser-
vice container load, all services implement a state monitoring mechanism
that regularly checks for missing notifications through polling. This mecha-
nism simplifies state management and allows framework state coordination
mechanisms to consider state delivery transparent and reliable.

As illustrated in Figure 8, each type of GJMF job definition has a corre-
sponding finite state model that drives the processing of jobs, tasks, and task
groups in the GJMF. In this processing, a job, task, or task group is referred
to as a work unit, and is assigned an individual work unit context which
is exposed to clients through service interfaces and WS-ResourceProperties.
Table 1 gives a brief summary of work unit processing state interpretations
in the GJMF.

5.4. Data Management

To maintain middleware transparency, the GJMF does not by default
actively participate in data transfers between clients and computational re-
sources. The GJMF assumes that data files are available and can be trans-
fered to and from computational resources by the enacting Grid middleware

26

120

via a file transfer mechanism chosen by the middleware. File staging infor-
mation is conveyed from clients to middlewares by the GJMF as part of job
descriptions, typically in the form of GridFTP [16] URL tags in job and task
JSDL.

In the GJMF, file transfers are expected to be initiated and performed by
the enacting Grid middleware, existing data files are expected to be available
prior to job submission (i.e., the GJMF does not verify the existence of
data files during brokering), and computational resources and clients are
responsible for maintaining file system allocations capable of accommodating
incoming and outgoing data files respectively. If required, JSDL annotations
can be used to provide job brokering hints related to storage requirements
for computational elements.

Data transfer URLs are translated by the JTS to formats recognized by
the underlying middleware as part of the job description translation process.
If the underlying middleware does not support file staging, the JCS cus-
tomization points can be used to provide data transfer capabilities as part
of the middleware job submission process without coupling GJMF clients or
services to underlying middlewares. Plans to extend the GJMF with utility
mechanisms and services for data management are under consideration, see
Section 8.

5.5. Resource Brokering

To decouple the GJMF services from Grid middlewares and each other,
all job to computational resource brokering activities are in the GJMF ab-
stracted by the RSS, which in turn relies on Grid middleware information
systems for monitoring of computational resource availability, characteris-
tics, and load. As middleware information systems typically contain large
volumes of cached information, and federated Grid environments are likely
to contain multiple concurrent job submission and management systems, it
is observed that a brokering component will always operate on information
deprecated to some extent [24].

In the GJMF model, the RSS has been limited to provide computational
resource recommendations and rankings, services and clients are expected to
handle submission and failure handling for jobs without providing feedback
to the RSS. This abstraction implies that the RSS is agnostic of whether a
particular execution plan is enacted or not. To compensate for middleware
information system update latencies, it would be possible for the RSS to
maintain an internal cache of prior execution plans and update resource load

27

121

weights through speculation based on this information. As the RSS enforces
user-level isolation of service capabilities, a unique cache would be created
for each user and restricted to contain only recommendations for that user.

To improve quality of job to resource brokering, it would also be possible
to interface the RSS with Grid accounting and load balancing systems, e.g.,
the SweGrid Accounting System (SGAS) [34], as well as provide the RSS with
feedback from the JCS or job submission systems such as the Job Submission
Service (JSS) [24]. To reduce system complexity and maintain a clean sep-
aration of concerns, the RSS does not implement speculative resource load
prediction or brokering behavior, but offers customization points for third
party implementation of advanced brokering algorithms where such feedback
loops can be implemented without affecting the design of the framework.

The current implementation of the RSS is to be regarded a prototype,
we foresee development of additional RSS versions with resource selection
capabilities of particular interest for certain users [23]. Evaluation of RSS
brokering performance and quality of execution plans is out of scope for this
work.

5.6. Security

The GJMF employs the Grid Security Infrastructure (GSI) [30] security
model provided by the Globus Toolkit [26], and can be configured to use
the Secure Message, Secure Conversation, or Credentials Delegation (i.e. use
of the Globus Delegation Service) communication mechanisms. Client and
service security modes are individually configured using security descriptors,
and service clients identities are established and verified for all service invo-
cations from standalone clients. For service invocations using GJMF local
call optimizations, i.e. from clients codeployed with the service invoked, cre-
dential proxies are accepted from the caller without verification of caller iden-
tity. This relaxation of authentication is done for performance reasons and
is deemed as acceptable for situations where services trust the deployment
environment of the service, and where service environments trust software
deployed in it. Should verification of caller identity be required, GJMF local
call optimizations can be disabled or replaced with Axis local call optimiza-
tions.

All types of job definitions, including task groups, are upon submission
to a GJMF service associated with a set of user credentials used for, e.g.,
user authentication, resource ownership, and job execution privileges. User
credentials are inherited in subsequent submissions within the GJMF, i.e.

28

122

task group credentials are assigned to tasks upon submission to a TMS, and
jobs are assigned task credentials when submitted to a JCS. Task groups
distinguish themselves from jobs and tasks by the ability to be suspended in
execution, e.g., upon expiration of task group credentials.

For each user invoking a service in the GJMF, a separate service imple-
mentation (back-end) is instantiated and used for request processing. This
imposes a degree of user-level isolation of service functionality and enforces
sandboxing of service resources between users. Service caller identity is also
used to enforce a similar restriction of access to service WS-Resources.

To facilitate the construction of job submission proxies, a requirement
in, e.g., Grid portal construction [21], it is possible to submit a task to the
GJMF specifying different credentials for job execution than those used in
submission to the GJMF. For these situations, the authenticity of caller cre-
dentials are validated in the GJMF service invocation and the authenticity of
the submission credentials are validated in the Grid middleware job submis-
sion process. As tasks will inherit credentials from task groups, as jobs will
from tasks, resulting GJMF resources will be owned by the identity of the
credentials used for job execution rather than the caller identity. This means
that, e.g., a task group submitted using a certain set of user credentials will
result in job submissions that use credentials belonging to that user, and
only that user will be able to inspect details of the GJMF’s processing of the
task group (including LAS logs).

6. Performance Evaluation

To evaluate and analyze the performance of the framework prototype we
run a series of tests using a standard setup of the framework on a deployment
of a Grid middleware representative of production use.

6.1. Performance Measurement

To measure the efficiency of the framework, we define overhead as the
time penalty imposed by use of the framework and use it as a cost function
for efficiency. To quantify overhead incurred by the GJMF, we configure a
GJMF deployment to operate on top of a Grid middleware and compare job
submission performance and makespan to using the middleware directly for
corresponding tasks. Total overhead imposed by the GJMF is in this perfor-
mance evaluation computed as the total makespan of processing a group of
jobs subtracted by the theoretical minimum time required to execute all jobs

29

123

(a) Sequential invocation mode, in-
finite computational nodes.

(b) Sequential invocation mode, limited computa-
tional nodes. Job executions mask submission and
GJMF overhead.

(c) Batch invocation mode, infinite
computational nodes.

(d) Batch invocation mode, limited computational
nodes. Job executions mask GJMF overhead.

Figure 9: GJMF overhead components and invocation modes. Submis-
sion overhead, processing overhead, and execution overhead (illustrated in
gray, red, and black, respectively) are independent components of the total
makespan of a job.

in the group on an ideal system, i.e. a system that does not impose overhead
associated with execution of jobs.

The overhead model used in the performance evaluation is illustrated in
Figure 9, and expresses overhead associated with execution of groups of jobs.
The illustration details four overhead scenarios spanned by the permutations
of two invocation modes and two workload scenarios.

As illustrated in Figure 9, overhead associated with execution of an in-
dividual job is in the model divided into three sequential components; sub-
mission overhead, processing overhead, and execution overhead. Submission
overhead is defined as overhead incurred prior to a job description being
present in a GJMF service and typically consists of factors such as Java class
loading and Web Service invocation time. Processing overhead is the GJMF
contribution to the total overhead and consists of factors such as internal
GJMF communication latencies and time spent performing job management
tasks, e.g., job brokering and failure handling. Execution overhead is defined
as time spent performing actions related to execution of a job on a computa-
tional resource, e.g., Grid middleware submission, file staging, job execution,
execution environment clean-up, and status update delivery.

As also illustrated in Figure 9, parallel processing of job management ac-
tivities allow the GJMF to partially mask individual overhead contributions
through temporal overlaps with job executions and other job management
activities. Total system overhead imposed by the GJMF is thus constituted
by the sum of all overhead contributions associated with individual jobs sub-

30

124

tracted by overhead the GJMF is able to mask by parallel execution of job
management tasks.

When the number of available computational hosts exceeds the number of
jobs, the GJMF ability to mask overhead is limited and total system overhead
bound by the submission and processing overhead components, as illustrated
in Figure 9a and Figure 9c, respectively. When the number of jobs exceed
the number of available computational hosts, total system overhead will be
bound by the job execution overhead component. The GJMF ability to mask
overhead contributions from individual jobs in these situations is illustrated
in figures 9b and 9d.

To isolate individual contributions to the total system overhead we employ
deployment options designed to minimize the contribution and impact of
external, i.e. non-GJMF, overhead components, and measure job submission
time and makespan for all GJMF job management components. To quantify
the GJMF contributions to total system overhead, measurements of Grid
middleware overhead are used as a comparative baseline for the minimum
time required to process groups of jobs.

6.2. Test Environment

As the tests of the performance evaluation focus on illustrating overhead
imposed by use of the GJMF, a limited test environment is sufficient for
testing as these performance limitations are independent of the number of
computational resources used, and will be representative for larger-scale use.

The test environment used in the evaluation is comprised of four identical
2 GHz AMD Opteron CPU, 2 GB RAM machines, interconnected with a 100
Mbps Ethernet network, and running Ubuntu Linux 2.6 and Globus Toolkit
4.0.5. Another set of four identical 1.8 GHz quad core AMD Opteron CPU,
4 GB RAM machines, interconnected using a Gigabit Ethernet network,
and running Ubuntu Linux 2.6, Torque 2.3, and Maui 3.2.6 are employed as
computational nodes in job throughput tests. The Java version used in tests
is 1.6.0, and Java memory allocation pools range in size from 512 MB to 1
GB.

We employ GT4 WS-GRAM as Grid middleware and run /bin/true ex-
ecutions for ideal jobs (zero execution time) and /bin/sleep executions for
jobs with known, non-zero execution times. To maximize the impact of the
GJMF overhead when testing ideal jobs, we utilize the GT4 Fork mechanism
for job dispatchment. For tests of more realistic scenarios we use /bin/sleep

31

125

to get exact job execution times and use the GT4 PBS module for job dis-
patchment, which submits jobs to a local cluster using Torque. To minimize
impact of stochastic network behaviors in our overhead measurements we do
not use jobs that involve file transfers.

In all tests, one machine deploys the GJMF (or the WS-GRAM client)
and the other three act as WS-GRAM/GT4 resources. For the GJMF tests,
the RSS retrieves GT4 Monitoring and Discovery Service (WS-MDS) infor-
mation from one of the three resources, which aggregates information from
the other two. A single instance of each GJMF service is deployed in a com-
mon service container, and the services are configured (by default) to use
local call optimizations for invocations.

In the tests, we use the GT4 WS-SecureConversation [5] security mech-
anism with client and service security descriptors in all Web Service invoca-
tions, including communication with the underlying Grid middleware. This
mechanism performs both authentication and encryption of communication
channels and will increase communication overhead and significantly reduce
invocation throughput for Web Service invocations. The security setup used
is deemed representative for intended production use in federated Grid envi-
ronments.

A major performance factor in service invocation using Java is the impact
of Java class loading. In service-to-service invocations, class loading over-
head will impact framework performance differently than in client-to-service
interaction, as services are more likely to have a class loaded, and may utilize
local call optimizations when codeployed in the same container. Typically,
overhead associated with Java class loading will impact performance severely
during the submission phase, and show up in measurements as a one-time
initial performance cost that obscure contributions of individual overhead
components. In these tests, all service clients have been codeployed with the
GJMF services to minimize the (potentially stochastic) impact of Java class
loading issues on client performance. To emulate behavior of standalone
service clients, full Web Service invocations are made between clients and
services. For tests of codeployed clients local call optimizations are used.

6.3. Performance Tests

The purpose of the performance evaluation is to investigate and quantify
individual contributions to total system overhead, and to verify that overhead
imposed by the GJMF is sufficiently small in relation to the functionality
offered by the framework. In the performance evaluation, we perform a set of

32

126

tests of service invocation capabilities, job submission performance, and job
throughput to quantify and evaluate the impact of the GJMF overhead on the
total system overhead. The tests performed are based on the overhead model
presented in Section 6.1 and are designed to illustrate individual aspects of
the framework overhead. The five types of tests performed are:

1. Job submission tests (Section 6.3.1). Investigate GJMF service client
overhead associated with job submission and illustrate impact of, and
trade-offs between, different service deployment and invocation meth-
ods.

2. Job throughput tests for ideal computational settings (Section 6.3.2).
Investigate service-side overhead for scenarios illustrated by figures 9a
and 9c, where the number of available computational resources exceed
the number of jobs. This test setting constitutes a worst-case scenario
for GJMF overhead and serves to quantify an upper bound for overhead
imposed by use of the framework.

3. Job throughput tests for realistic computational settings (Section 6.3.3).
Investigate service-side overhead for scenarios illustrated by figures 9b
and 9d, where the number of jobs exceed the number of available com-
putational resources. These tests illustrate the GJMF’s ability to mask
overhead by parallel processing of job management and execution ac-
tivities.

4. Service invocation capability tests (Section 6.3.4). Investigate invo-
cation throughput for the GJMF auxiliary services to quantify their
contributions to the total system overhead and illustrate trade-offs be-
tween service communication overhead and service complexity.

5. Service invocation optimization tests (Section 6.3.5). Investigate per-
formance trade-offs for different types of service invocation optimization
mechanisms and illustrate impact of local call optimizations and their
ability to reduce service communication overhead.

6.3.1. Job Submission

To evaluate the submission overhead component of the total system over-
head, we measure the framework’s job submission throughput and quantify
overhead incurred by the GJMF against a baseline measurement of the GT4
WS-GRAM job submission performance. To illustrate trade-offs involved
when using the GJMF from service clients, we perform tests using sequen-
tial and batch invocation modes for Web Service invocations and local call
optimization invocations.

33

127

For all tests, job, task, and task group submission performance is mea-
sured as turn-around time for submission in service clients using realistic
job descriptions. The average job submission makespan is used as a direct
measurement of the overhead incurred by the GJMF for job submission.

As can be seen in Figure 10, JCS and BSS job submission throughput
is slightly lower than that of GT4 WS-GRAM. This result is expected as
both these services perform synchronized invocations to the underlying mid-
dleware for job submission, and thus add their overhead contributions to
the middleware’s overhead contribution. The JCS also performs a job de-
scription translation from JSDL to GT4 RSL (via a JTS) and in addition to
this, the BSS also performs a task to resource matching (via a RSS). TGMS
and TMS throughput is higher than GT4 WS-GRAM throughput as they
contain submission buffers that allow them to perform asynchronized pro-
cessing of jobs, resulting in delayed submissions to underlying services. The
TGMS exhibits the highest throughput as it submits multiple tasks in single
service invocations. As can be seen in Figure 10b, use of batch invocation
modes enables the TMS to submit multiple tasks in a single WS invocation,
and thus increase submission throughput. Compared to the TGMS however,
TMS throughput is slightly lower. This is due to the TMS incurring over-
head from multiple synchronized calls to the TMS service back-end during
the submission phase.

When using local call optimizations, as illustrated in Figure 10c and 10d,
submission overhead can be reduced for all GJMF services. The TGMS
and TMS achieve very high submission throughput due to their ability to
perform asynchronous job submissions. Use of local call optimizations reduce
invocation overhead to a range where impact of this overhead component
becomes almost negligible.

6.3.2. Job Throughput for Ideal Computational Settings

To evaluate and get an upper bound for the processing overhead compo-
nent of the total system overhead, we measure the job processing capacity of
the framework in terms of throughput and quantify overhead incurred by the
GJMF against a baseline measurement of the GT4 WS-GRAM job process-
ing performance when the GJMF’s ability to mask overhead is minimized. As
indicated in Figure 9, this occurs in situations where the number of available
computational resources exceeds the number of jobs. To simulate this, and
isolate and maximize the impact of the GJMF overhead, we use jobs with
zero execution time, i.e. /bin/true executions, submitted to the GT4 middle-

34

128

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Jo
b

 s
u

b
m

is
si

o
n

 t
h

ro
u

g
h

p
u

t
(j

o
b

s
/

s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(a) GRAM and GJMF job submission
throughput. Web Service invocations, se-
quential job submission.

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Jo
b

 s
u

b
m

is
si

o
n

 t
h

ro
u

g
h

p
u

t
(j

o
b

s
/

s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(b) GRAM and GJMF job submission
throughput. Web Service invocations,
batch job submission.

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Jo
b

 s
u

b
m

is
si

o
n

 t
h

ro
u

g
h

p
u

t
(j

o
b

s
/

s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(c) GRAM and GJMF job submission
throughput. Local call optimization invo-
cations, sequential job submission.

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Jo
b

 s
u

b
m

is
si

o
n

 t
h

ro
u

g
h

p
u

t
(j

o
b

s
/

s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(d) GRAM and GJMF job submission
throughput. Local call optimization invo-
cations, batch job submission.

Figure 10: GRAM and GJMF job submission performance. Job submission
throughput as a function of number of jobs, vertical axis logarithmic.

35

129

ware using the Fork dispatcher, which starts all jobs in parallel on the same
machine with minimal delay. As this test setting will minimize the GJMF’s
ability to mask processing overhead through task parallelization, it will con-
stitute a worst-case scenario for GJMF overhead and is used to quantify an
upper bound for the GJMF overhead (for non-failing jobs). Job, task, and
task group throughput are measured using sequential and batch invocation
modes for Web Service invocations and local call optimization invocations.

As can be seen in Figure 11, the GJMF incurs an average performance
penalty of less than one second per job for ideal (zero execution time) jobs.
This overhead includes factors such as job submission, interservice communi-
cation, job brokering, and distributed state management. When using batch
invocation modes for Web Service invocation job submissions (Figure 11b)
the overhead incurred can be somewhat mediated for the GJMF services.
Particularly, the overhead for using the JCS is reduced to a level close to
that of using GT4 WS-GRAM directly. This is due to the fact that the JCS
does not perform any type of task to resource matching. The BSS and the
services using the BSS, i.e. the TGMS and the TMS, suffer overhead from
the brokering process that, as illustrated in figures 9a and 9b, is partially
masked by the submission overhead when using sequential invocation modes
(Figure 11a).

When using service clients codeployed with the GJMF, as illustrated in
figures 11c and 11d, GJMF local call optimizations allow the JCS overhead to
be reduced to close to GT4 WS-GRAM performance regardless of invocation
mode. Local call optimizations do not greatly affect the throughput of the
other GJMF services as these are still bound by the brokering overhead. It is
worth noting that while local call optimizations do not increase throughput
in these tests, they do reduce memory load for clients and services involved,
promoting system scalability. BSS brokering overhead can also be masked
by external overhead and job execution times, allowing higher order GJMF
services to approach WS-GRAM throughput.

Use of the GT4 Fork mechanism for job dispatchment results in all jobs
executing as spawned processes on the local machine. Despite the use of a
computationally cheap process, this still causes increased load on the machine
that in the measurements show as a slight decrease in average job throughput
for all services (including the WS-GRAM) as the number of jobs increase. In
tests using large numbers of jobs, use of full Web Service invocations results in
memory starvation effects in the service container, negatively affecting service
processing throughput. This effect can be observed for the TMS, BSS, and

36

130

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(a) GRAM and GJMF job processing
throughput. Web Service invocations, se-
quential job submission, ideal jobs.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(b) GRAM and GJMF job processing
throughput. Web Service invocations,
batch job submission, ideal jobs.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(c) GRAM and GJMF job processing
throughput. Local call optimization in-
vocations, sequential job submission, ideal
jobs.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(d) GRAM and GJMF job processing
throughput. Local call optimization invo-
cations, batch job submission, ideal jobs.

Figure 11: GRAM and GJMF job processing performance for ideal compu-
tational settings. Average job makespan as a function of number of jobs.

37

131

JCS in figures 11a and 11b. Note that the TGMS does not suffer from this
effect as it performs single service invocations for task group submissions, and
uses delays between subsequent TMS task submissions. Note also that use
of batch invocation modes alleviates this effect, but does not eliminate it as
back-end invocations still marshal requests and create job and task resources.

6.3.3. Job Throughput for Realistic Computational Settings

To evaluate the processing overhead component of the total system over-
head under more realistic circumstances, we measure the job processing ca-
pacity of the framework in terms of throughput and quantify overhead in-
curred by the GJMF when deployed with a production environment system
(GT4 and PBS Torque) against a baseline measurement of the GT4 WS-
GRAM job processing performance. In these tests, computational power is
limited as the number of jobs exceed the number of available computational
resources, allowing the GJMF to mask overhead through parallel task pro-
cessing. To establish a theoretical minimum time required to execute a set
of jobs, we employ /bin/sleep jobs of a known, non-zero execution length in
the tests. Job, task, and task group throughput are measured using sequen-
tial and batch invocation modes for Web Service invocations and local call
optimization invocations.

In Figure 12, a theoretical minimum time for execution of a set of jobs
(based on number of jobs, job execution length, and number of available
computational hosts) has been subtracted from each measurement to better
illustrate remaining overhead components. As illustrated, a stochastic ele-
ment has now been introduced to the overhead model for the system. This
is a result of using the PBS scheduler, which has two polling intervals for job
submission and job status inspection (in the tests set to 60 and 120 seconds
respectively). PBS Torque also implements a behavior where jobs arriving to
an empty PBS queue are scheduled faster than the scheduling interval may
suggest. In the tests job execution lengths are set to 60 seconds, which com-
bined with the PBS scheduling intervals result in each set of jobs receiving
an overhead contribution from PBS of between 0 and 180 seconds depending
on when in the scheduling cycle a job arrives and terminates. PBS over-
head contribution appears stochastic as the GJMF and the PBS scheduling
mechanisms are not synchronized. The GJMF overhead has in the tests been
partially masked by job execution times and is, independently of invocation
mode and mechanism, small enough to be masked by the PBS component.

The term realistic computational settings used in this test refers to the

38

132

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(a) GRAM and GJMF job processing
throughput. Web Service invocations, se-
quential job submission, non-ideal jobs.

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(b) GRAM and GJMF job processing
throughput. Web Service invocations,
batch job submission, non-ideal jobs.

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(c) GRAM and GJMF job processing
throughput. Local call optimization in-
vocations, sequential job submission, non-
ideal jobs.

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

A
v

er
ag

e
jo

b
 m

ak
es

p
an

 (
s)

Number of jobs

GJMF TGMS
GJMF TMS
GJMF BSS
GJMF JCS

GT4 WS-GRAM

(d) GRAM and GJMF job processing
throughput. Local call optimization in-
vocations, batch job submission, non-ideal
jobs.

Figure 12: GRAM and GJMF job processing performance for realistic com-
putational settings. Average job processing makespan as a function of num-
ber of jobs, vertical axis logarithmic.

39

133

job management components operating in a setting where non-zero job exe-
cution overhead and duration allow the GJMF to mask individual component
overhead contributions. In realistic scenarios, job execution durations would
typically be several orders of magnitude larger, and mask GJMF overhead
even more. Job execution durations used here are selected to be sufficiently
small to allow for greater numbers of tests.

6.3.4. GJMF Auxiliary Services

To evaluate performance of the GJMF auxiliary services, quantify RSS
overhead contributions in job throughput tests, and illustrate impact of in-
vocation modes and mechanisms on interservice communication within the
framework, we measure invocation capacity of the LAS, the JTS, and the
RSS using sequential and batch invocation modes for Web Service invoca-
tions and local call optimization invocations. For all tests, typical GJMF
tasks containing full JSDL documents are used as service invocation param-
eters. In LAS tests tasks are stored in logs, for JTS tests task JSDLs are
translated to GT4 RSL, and in RSS tests tasks are brokered to computational
resources.

As can be seen in Figure 13, local call optimizations allow for much greater
invocation throughput than Web Service invocations. This is natural as they
avoid network transport and mitigate the need for message serialization and
parsing. Use of batch invocation modes also increase invocation through-
put as they reduce the number of service invocations required. As the LAS
implements asynchronous storage queues, it allows for an asynchronous com-
munication model and can thus reduce service client invocation overhead to
be bound by communication overhead (Figure 13a). The JTS and RSS pro-
vide synchronous request processing models, and are therefor performance
bound by the processing limitations of the service implementation as well as
the communication overhead (figures 13b and 13c, respectively). The JTS
is able to process requests in a manner efficient enough to increase invoca-
tion throughput by use of local call optimizations as it implements context-
dependent job description translations through customization points. While
the RSS implements background information retrieval for brokering informa-
tion, the brokering process itself is complex enough to become the limiting
factor for invocation throughput. In this case, use of local call optimizations
does not greatly affect invocation throughput, but will serve to conserve
memory in service invocation. As these measurements are made using the
same setup as the job submission and throughput tests of sections 6.3.1,

40

134

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Batch Local Call
Sequential Local Call
Batch Invocation Call

Sequential Invocation Call

(a) The Log Accessor Service.

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Batch Local Call
Sequential Local Call
Batch Invocation Call

Sequential Invocation Call

(b) The JSDL Translation Service.

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Batch Local Call
Sequential Local Call
Batch Invocation Call

Sequential Invocation Call

(c) The Resource Selection Service.

Figure 13: Invocation performance for the auxiliary services of the GJMF.
Invocation throughput as a function of number of invocations, vertical axis
logarithmic. Sequential and batch invocation mode performance for local call
optimization and Web Service invocation calls.

41

135

Figure 14: Local call optimization types. Illustrates actors and overhead
involved.

6.3.2, and 6.3.3, the values for the local call optimization tests can be used
as rough estimates of the individual overhead contributions of these services
to the GJMF processing overhead.

6.3.5. Local Call Optimizations

To evaluate performance and impact of the GJMF local call optimization
mechanisms, we measure invocation throughput for a reference service using
the GJMF local call optimizations and compare it to invocation throughput
for the same service using Axis Local Calls, Globus Local Invocations, Axis
Web Service invocations, and direct Java method invocations to the service
implementation. Invocations are made sequentially and in parallel (using a
multithreaded service client) with small messages as parameters and a lean
service method implementation to minimize the impact of memory starvation
effects in the tests.

The different types of service invocation mechanisms used in the tests
are illustrated in Figure 14. GJMF local call optimizations identify service
implementation back-ends based on class name and perform marshalling of
service invocation data using immutable wrapper types. Globus Local Invo-
cations perform service implementation lookup through a Java Naming and
Directory Interface (JNDI) [60] based container service registry and utilize
generated stub types for service invocation data representations. Axis Lo-
cal Calls locate service implementations through the same container service
registry and perform full SOAP serializations of service messages.

42

136

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Java Method Invocation
GJMF Local Call

Globus Local Invocation
Axis Local Call

Axis Web Service Invocation

(a) Sequential invocations.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600 700 800 900 1000

In
v

o
ca

ti
o

n
 t

h
ro

u
g

h
p

u
t

(i
n

v
o

ca
ti

o
n

s
/

s)

Number of invocations

Java Method Invocation
GJMF Local Call

Globus Local Invocation
Axis Local Call

Axis Web Service Invocation

(b) Parallel invocations.

Figure 15: Web Service invocation capacity comparison. Service invocation
throughput as a function of number of invocations, vertical axis logarithmic.

It should be noted that the GJMF local call optimizations also provide
local call capabilities for state notification delivery with comparable perfor-
mance. This has not been evaluated in the tests as neither Globus Local
Invocations or Axis Local Calls offer this functionality.

As illustrated in Figure 15, use of local call optimizations greatly improve
service invocation throughput. The GJMF local call optimizations provide
invocation performance comparable to existing Axis and Globus optimiza-
tions. All invocation methods scale well for parallel invocations, which is
to be expected as they are designed for this use case. For large numbers of
parallel invocations, the Axis Web Service invocation mechanism throughput
drops drastically as the service container is unable to handle large numbers
of concurrent service invocations due to memory and thread pool exhaustion
issues.

While not illustrated by the tests, the GJMF local call optimizations
require less memory than Axis and Globus invocation optimizations as the
GJMF mechanisms do not perform message serialization, maintain message
contexts, or invoke message handlers for local service invocations. While this
trait does not directly affect service invocation times, it reduces the memory
load of the service container when using WS-BaseNotification based notifi-
cation schemes for services handling large numbers of objects, e.g., a TGMS
containing large task groups. As can be seen in Figure 15a, the Globus lo-

43

137

cal invocation mechanism outperforms the GJMF local calls for sequential
service invocations due to two factors. First, the Globus local invocation
mechanism performs a caching of Web Service objects between invocations,
something the GJMF is unable to do as the GJMF enforces a user-level isola-
tion of service capabilities for each call. Second, the GJMF performs context-
based type validation of job description data in immutable wrapper types,
e.g., parses job descriptions and verifies that that all required information
is present, a process that simplifies service development but imposes addi-
tional computational overhead. For the parallel invocation case illustrated
in Figure 15b, the GJMF local call optimizations outperforms the Globus
local invocations mechanism, which is attributed to the lower memory usage
of the GJMF local call optimizations.

6.4. Performance Discussion

In the GJMF, job processing overhead is parallelized between services
and, as illustrated in Figure 9, masked by job submission and job execution
overhead. As also illustrated, parallelization of job execution is independent
of GJMF overhead and a function of the number of computational nodes
available. When the number of jobs exceeds the number of nodes available for
immediate job submission (as illustrated in 9b and 9d), GJMF job processing
will be performed in parallel with job executions, and job durations will
mask impact of overhead incurred by the GJMF. For realistic scenarios, e.g.
use of codeployed GJMF services in computational Grids, job durations are
typically several orders of magnitude larger than overhead incurred by the
GJMF and will help mask GJMF overhead even when large numbers of
computational nodes are available. As Grids typically have high utilization
rates and individual Grid users rarely have exclusive access to computational
nodes, this effect is expected to effectively mediate the impact of GJMF
overhead on total job makespan.

Furthermore, as the greater bulk of the GJMF job processing overhead is
constituted of service invocation times, co-hosting the services of the GJMF
allow GJMF local call optimizations to reduce the overhead contribution of
the GJMF job processing mechanisms to a level where the initial job submis-
sion overhead component becomes dominant. When using standalone clients,
i.e. clients not co-located with the GJMF, job submission overhead can be
mediated to a one-time cost by using batch invocation modes (illustrated in
9c and 9d). In most cases, submission overhead will impact total overhead
regardless of whether the GJMF is used or not, but the various invocation

44

138

and deployment modes of the GJMF can be used to mediate this compo-
nent. GJMF processing overhead can be mediated by GJMF deployment
and configuration options, e.g., by use of codeployment of services and local
call optimizations. Use of batch invocation modes for service invocations
conserve network bandwidth and reduce the memory footprint of both the
GJMF services and GJMF service clients. Use of local call optimizations
eliminates network bandwidth requirements and reduces memory used for
service invocations to a minimum.

The overhead model used here (illustrated in Figure 9) is somewhat sim-
plified as the GJMF will incur additional overhead associated with failure
handling and resubmission in situations where jobs fail. As common causes
for Grid job submission failures include, e.g., submission of erroneous job
descriptions, Grid congestion scenarios (lack of available computational re-
sources), and resource overload situations [50], the GJMF has been design to
approach these situations using incremental back-off behaviors modeled af-
ter network failure handling protocols. As a result, the overhead component
associated with failure handling is expected to quickly become dominant in
the total system overhead for individual jobs, but should not affect other
Grid jobs, resources, or end-users. As rational failure handling depends on
the failure context, i.e. why and how a job fails, this behavior is hard to
objectively quantify in general settings and has therefor not been evaluated
in tests.

Tests reveal that use of the GJMF for job management imposes an average
overhead of less than one second per job, and that the GJMF is able to par-
tially mask this overhead by parallel processing of job management tasks and
job executions. The mainstay of the GJMF overhead is constituted by service
communication overhead, and can be mitigated by service invocation modes,
codeployment of services, and use of local call optimizations. The individual
overhead contributions of the GJMF auxiliary services are sufficiently small
to not greatly affect the total system overhead of the GJMF. The local call
optimizations of the GJMF perform competitively when compared to ex-
isting service invocation optimizations and provide additional functionality
required by the deployment model of the GJMF. Local call optimizations
provide great reductions in service invocation overhead and memory require-
ments for services, and serve to reduce total system overhead and increase
scalability of service-based systems.

45

139

7. Related Work

A number of contributions that in various ways relate to the job manage-
ment architecture proposed in this work have been identified. Standardiza-
tion efforts such as JSDL [9], GLUE [8], OGSA BES [28], and OGSA RSS
[31] have helped shape boundaries between niches in the Grid infrastruc-
ture component ecosystem, and directly impacted the design of the proposed
architecture. Standardized Web Service and security technologies such as
WSRF [27], WSDL [14], SOAP [40], and GSI [5] have outlined the archi-
tecture communication models, and Grid middleware and resource manager
systems such as the Globus middleware [35], NorduGrid ARC [17], Condor
[62], and BOINC [7] have all contributed to the design of the architecture’s
middleware abstraction layer. Standardization and interoperability efforts
such as The Open Grid Services Architecture (OGSA) [29], the Open Mid-
dleware Infrastructure Institute (OMII Europe) [54], and Grid Interopera-
tion/Interoperability Now (GIN) [39], as well as contributions such as [67],
[47], [55], and [10] have provided perspective, insight, and inspiration regard-
ing interoperability aspects of the architecture design.

The Grid resource management system survey presented in [48] provides
a taxonomy of Grid job management systems. In this model, the GJMF is
classified as a job management system providing soft quality of service for
computational Grids. Resource organization, namespace, information sys-
tem, discovery, and dissemination as defined in this model are all determined
by the underlying middleware. Type of scheduler organization is determined
by how the framework is employed, but is typically expected to be decen-
tralized for multi-user use of the framework. Non-predictive state estimation
models are currently provided by the RSS, along with event-driven and ex-
tensible (re)scheduling policies.

A set of job management systems exhibiting similarities in design or in-
tended use have also been identified, and include, e.g., the GridWay Metasched-
uler [41], a framework for adaptive scheduling and execution of Grid jobs.
Like the GJMF, GridWay builds on the Globus Tookit and offers an ab-
stracted (”submit and forget”) type of Grid job submission focused on reliable
and autonomous execution of jobs. Both systems provide failover capabilities
through resubmission of jobs, where GridWay offers job migration capabilities
through checkpointing and migration interfaces, whereas the GJMF focuses
on abstraction of Grid middleware capabilities and system composability, and
offers coarse-grained resubmission policies in higher services. GridWay also

46

140

offers a performance degradation mechanism which may be used to detect
and trigger job migration mechanisms. The GJMF assumes computational
hosts maintain acceptably consistent performance levels and relies on Grid
applications and middlewares to handle checkpointing and application pre-
emption issues.

The Falkon [58] framework provides a fast and lightweight task execution
framework focused on task throughput and efficiency in task dispatchment.
Falkon is by design not a fully featured local resource manager, and achieves
high job submission throughput rates through, e.g., elimination of features
such as multiple submission queues and accounting, and the use of custom
protocols for state updates. Both Falkon and the GJMF are service-based
frameworks and make use of notifications for distributed state notifications,
but are in essence designed for different use cases. Falkon is, e.g., designed
for efficient job submissions and achieve much higher submission throughput
that the GJMF, whereas the GJMF, e.g., provides middleware-independence
to service clients.

The Minimum intrusion Grid (MIG) [46] is a framework aimed at pro-
viding Grid middleware functionality while placing as little requirements as
possible on Grid users and resources. Building on existing operating system
and Grid tools such as SSH and X.509 certificates, the MIG provides a non-
intrusive integration model and abstracts the use of Grid resources through
service-based interfaces. The approaches differ on a number of points, e.g.,
where the MIG uses a centralized and monolithic job scheduler the GJMF
provides a framework of composable services and relies on underlying mid-
dlewares for job to resource submissions.

The Imperial College e-Science Networked Infrastructure (ICENI) [33] is
a composable OGSA Grid middleware implementation based on Jini [44].
ICENI provides a semantic approach to build autonomously composable
Grid infrastructure components where services are annotated with capabil-
ity information and new services are instantiated through SLA negotiations
with existing services. The ICENI composability approach differs from the
GJMF one, whereas the GJMF only provides mechanisms for framework
(re)composition and service customization. ICENI also exposes service im-
plementations locally through the Jini registry, a mechanism similar to the
GJMF local call optimizations, and provisions for plug-in implementations of
schedulers and launchers [70] in a way similar to the GJMF RSS customiza-
tion points. Compared to ICENI, the GJMF provides additional functionality
in terms of higher-level abstractions of job management, client APIs, more

47

141

flexible deployment options, and greater standardization support.
The Job Submission Service (JSS) [24] is a resource brokering and job

submission service developed in the GIRD [65] project. The JSS supports ad-
vanced brokering capabilities, e.g., advance reservation of resources and coal-
location of jobs, customization of algorithms through plug-ins, and standards-
based middleware-independent job submission. Compared to the JSS, the
GJMF provides additional functionality in, e.g., management and monitoring
of jobs and groups of jobs, client APIs, logging capabilities, and translation
of job descriptions. Work on the GJMF began as a functionality extension
and refactorization effort targeted towards the OGSA BES and RSS stan-
dardizations, and builds on experiences from the JSS project.

All of these approaches are considered to operate in, or close to, the Grid
middleware layer in the GJMF architectural model, and could be integrated
with the GJMF as Grid middleware providers.

eNANOS [59] is a resource broker that abstracts Grid resource use and
provides an API-based model of Grid access. Internally, uniform resource
and job descriptions combined with XML-based user multi-criteria descrip-
tions provide dynamic policy management mechanisms facilitating use of ad-
vanced brokering mechanisms. Job and resource monitoring mechanisms are
provided, and failure handling through resubmission of jobs is supported.
The primary difference between eNANOS and the GJMF lies in the flexi-
bility of the GJMF architecture, which allows dynamic composition of the
framework and provides additional levels of abstraction of job management
functionality. The GJMF also builds on more recent standardization efforts
such as JSDL, WSRF, and the OGSA BES.

The Community Scheduler Framework (CSF4) [69] is an OGSA-based
open source Grid meta-scheduler. Like the GJMF, CSF4 is constructed as
a framework of Web Services, builds on GT4, provides WSRF compliance,
and exposes abstractions for job submission and control. In addition to this,
CSF4 also provides user-selectable job submission queues and a mechanism
for advance reservation of resources (via local resource managers). Compared
to the CSF4, the GJMF provides support for concurrent use of multiple
middlewares, framework composability, standards compliance, and a Java-
based client API.

The GridLab Grid Application Toolkit (GAT) [4] is a high-level applica-
tion programming toolkit for Grid application development. The fundamen-
tal ideas behind the GAT and the GJMF are similar, both projects aim to
decouple Grid applications from Grid middlewares by providing middleware-

48

142

independent Grid access through client APIs aimed at simplifying Grid ap-
plication development. The GAT builds on the GridLab [3] architecture
which aims to be a complete Grid utilization platform, providing, e.g., data
management services (including data transfer and replica management capa-
bilities), monitoring services, and services for visualization of data, while the
GJMF provides a composable and lean architecture for Grid utilization focus-
ing on functionality required for job management, and relying on underlying
middlewares for functionality such as job control and file staging.

GridSAM [49] is a standards-based job submission system that builds on
standardization efforts such as JSDL, and aims to provide transparent job
submission capabilities independent of underlying resource manager through
a Web Service interface. Similar to the asynchronous job processing of the
GJMF, GridSAM employs a job submission pipeline inspired by the staged
event-driven architecture (SEDA) [68] that allows for short response times in
job submission. Fault recovery capabilities are in GridSAM built by persist-
ing event queues and job instance information, similar to the failure handling
mechanisms of the GJMF that provide redundancy and resubmission capa-
bilities. Compared to GridSAM, the GJMF provides additional functionality
for composition of the job management framework, external exposure of job
description translation functionality, job monitoring capabilities, and multi-
ple job submission and control modes.

Nimrod-G [12] provides a layered architecture for resource management
and scheduling for computational Grids. Nimrod-G provides an economy-
driven broker that supports user-defined deadline and budget constraints for
schedule optimizations [1], and manages supply and demand of resources
through the Grid Architecture for Computational Economy (GRACE) [11].
Like the GJMF architecture, the Nimrod-G provides layered abstractions of
middleware access components and facilitates use of parameter-sweep style
applications. While the GJMF lacks capabilities for economy-based schedul-
ing decisions, it does offer customization points for these types of mechanisms
in the RSS, and provides a flexible architecture that can incorporate such
usage-pattern specific adaptations with only local modifications.

The Gridbus [66] broker is a Grid broker that mediates access to dis-
tributed data and computational resources, and brokers jobs to resources
based on data transfer optimality criteria. Gridbus extends the resource
broker model of Nimrod-G, defining a hierarchical model for job brokering
containing separate resource discovery, Grid scheduling, and monitoring com-
ponents. Like in the GJMF, tasks are defined as sequences of commands that

49

143

describe user requirements, including, e.g., file staging and job execution in-
formation, located within the task description itself. Task requirements drive
resource discovery and tasks are resolved into jobs, here defined as units of
work sent to Grid nodes, i.e. instantiations of tasks with unique combina-
tions of parameter values. The Gridbus broker also abstracts use of multiple
middlewares through a service-based interface. Differences between the two
platforms include, e.g., Gridbus heuristics-based scheduling strategies, and
the GJMF’s ability to dynamically reconfigure framework deployment during
runtime.

GMarte [6] is a Grid metascheduler framework exposing a high-level Java
API for Grid application development. Like the GJMF, the GMarte archi-
tecture is built in layers and employs a middleware abstraction layer that ab-
stracts use of multiple middlewares. GMarte also provides failure handling
through resubmission of jobs, and extends upon this through provisioning
for application-level checkpointing of job executions. GMarte exposes a Java
client API, plug-in points for information system access, and a service-based
interface through GMarteGS [51], which supports WS-BaseNotification based
state updates. The GJMF differs from the GMarte on a number of points,
e.g., through the use of standardization efforts like JSDL and the OGSA
BES, and by providing a dynamically composable architecture.

All of these contributions are considered to operate on a layer higher
than the Grid middleware layer in the GJMF architecture, and are as job
management solutions considered alternative approaches to the GJMF. Each
system could naturally be incorporated with the GJMF as Grid middleware
accessors, or could with modifications utilize the GJMF in a similar manner.
While there are many viable workflow-based approaches to Grid job manage-
ment, e.g., ASKALON [25], Pegasus [15], and GWEE [19], these have been
omitted here as the scope of this work is restricted to generic job management
architectures rather than workflows. Naturally, with modifications, most of
these could make use of the GJMF for middleware-independent Grid access.

Finally, a few slightly different approaches have been identified, e.g., P-
GRADE [45], which is a high-level environment for transparent enactment
of parallel and Grid execution of applications. P-GRADE abstracts use of
Grid resources through Condor and Globus interfaces, and provides enact-
ment of individual jobs, MPI jobs, and workflows through generation of job
wrapper scripts that stage, checkpoint, and execute jobs on computational
resources. P-GRADE also supports monitoring of jobs and resources through
tools provided by the environment, and job migration through checkpointing.

50

144

Compared to P-GRADE, the GJMF provides a different approach, focusing
on providing infrastructure for autonomic job management rather than facil-
itation of Grid execution of applications. The GJMF assumes the existence
of Grid applications and provides functionality to automate the job manage-
ment process, e.g., high-level abstractions for execution of groups of tasks
and client APIs.

EMPEROR [2] is an OGSA-based Grid meta-scheduler framework for
dynamic job scheduling. EMPEROR provides a framework for integrating
performance-based scheduling optimization algorithms based on time-series
analysis of job history, as well as support for advance reservations (through
local resource managers). The GJMF does not perform speculative schedul-
ing or advance reservations, but offers customization points in the RSS for
injection of such mechanisms. Compared to EMPEROR, the GJMF provides
a more flexible architecture, greater standardization support, and levels of
job management abstractions.

The Application Level Scheduling (AppLeS) [13] project provides a method-
ology, application software, and software environments for adaptive schedul-
ing and deployment of Grid applications. In the AppLeS methodology,
project developers team up with application experts to develop customized
scheduling agents for applications that dynamically generates schedules for
application staging and execution in a continuous process. Here each agent
perform resource discovery and selection, schedule generation and selection,
and executes and monitors applications. AppLeS agents interact directly
with resource managers, perform all application management tasks, includ-
ing, e.g., file staging, and can enact collations of applications, e.g., parameter
sweeps. The AppLeS agents are similar in concept to use of personal deploy-
ments of the GJMF as individual job management clients, but differ in both
technology chosen and the fact that the GJMF defers much functionality to
underlying middlewares.

8. Future Work

A number of possible future extensions to the proposed architecture have
been identified and are under consideration for investigation.

• Data management. In a future extension, the GJMF is envisioned
to be complemented with a service-based, middleware- and transport-
independent data management abstraction that builds on top of mech-
anisms such as GridFTP and Grid Storage Brokers, and integrates

51

145

seamlessly with the GJMF services and service clients. Support for
data management would need to be provided by implementations of
GJMF middleware customization points in the JCS, as well as by
GJMF service clients. Interesting research questions regarding this
extension include investigation of how transport-independence can be
maintained while providing efficient functionality abstractions well ad-
justed to seamless integration with generic job management solutions.

• Workflow management. While the GJMF currently integrates with
workflow management solutions by offering middleware-independent
Grid job management interfaces, the framework itself lacks support for
execution of interdependent tasks. Inclusion of a middleware-independent
tool for execution of task graphs and static workflows would provide
clients with a fire-and-forget type of workflow management solution
similar to the functionality offered by the higher-order services of the
GJMF for tasks and task groups.

• Evaluation of experiences from production use. Experiences from fu-
ture production use of the framework is expected to provide feedback
and suggest alterations or redesigns of parts of the framework.

9. Conclusion

We have proposed a flexible and loosely coupled architecture for middleware-
independent Grid job management built as a composable set of Web Services.
Intended for use in federate Grid environments, the architecture makes no
assumptions of central control of resources or omniscience in scheduling,
and abstracts resource and system heterogeneity in multiple levels. Focus
is placed on maintaining non-intrusive coexistence and integration models,
and Grid and Web Service standardization efforts such as JSDL, WSRF,
OGSA BES, and OGSA RSS are built upon and leveraged.

The architecture is organized in hierarchical layers of functionality, where
services in layers abstract and aggregate functionality from underlying lay-
ers. Services in lower layers provide explicit job submission capabilities and
a fine-grained control model for the job management process while services
in higher layers attempt to automate the job management process and pro-
vide a more coarse-grained control model through preconfigured job control
and failure handling mechanisms. The architecture is designed to decouple
Grid applications for Grid middlewares and infrastructure components, and

52

146

abstracts Grid functionality behind generic Grid job management interfaces.
Applications built on the framework will be loosely coupled to underlying
Grids, gaining portability and flexibility in deployment, as well as ability to
utilize heterogeneous Grid resources transparently.

In this work we have also presented a proof-of-concept implementation
of the architecture that builds on emerging Grid and Web Service standards
and supports a range of Grid middlewares. Middleware independence is
provided the framework through a set of foundational middleware abstraction
services and aggregated Grid job management functionality is built on top
of these. Services of the framework are individually configurable, and can be
customized through configuration and the use of plug-ins without affecting
other framework components. Framework composition can dynamically be
altered and will adapt to failures occurring in job submission or execution.

All services in the framework provide a degree user-level isolation of ser-
vice capabilities that function as if each user has exclusive access to the
framework. Any service can at any time be used by service clients as an au-
tonomous job management component while concurrently serving as a com-
ponent in the framework. The use of local call optimizations allow service
composition techniques to be used to construct software that simultaneously
function as networks of services and monolithic architectures. Use of service
client factories embedded in the client API make local call optimizations
completely transparent to services, service clients, and end-users.

The underlying software design principles developed within the project
have been described and findings from the project have been presented along
with an evaluation of the performance of the proof-of-concept implemen-
tation. Tests in the evaluation show that overhead imposed by use of the
framework for job submission, brokering, monitoring, and control is small,
on average less than 1 second per job, and that overhead imposed by the
framework is partially masked by job execution times in realistic applica-
tions. Codeployment of services enabling the use of local call optimizations
and batch service invocation modes can further reduce overhead imposed by
the framework on both client and service side.

10. Acknowledgements

We extend gratitude to Peter Gardfjäll, Arvid Norberg, and Johan Tords-
son who’s prior work and feedback have provided a foundation to build upon
in this work. We acknowledge the Swedish Research Council (VR) who have

53

147

supported the project under contract 621-2005-3667, and the High Perfor-
mance Computer Center North (HPC2N) on who’s resources the research
has been performed.

References

[1] D. Abramson, R. Buyya, and J. Giddy. A computational economy for
grid computing and its implementation in the Nimrod-G resource broker.
Future Generation Computer Systems, 18(8):1061–1074, 2002.

[2] L. Adzigogov, J. Soldatos, and L. Polymenakos. EMPEROR: An OGSA
Grid meta-scheduler based on dynamic resource predictions. J. Grid
Computing, 3(1–2):19–37, 2005.

[3] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kiel-
mann, A. Merzky, J. Nabrzyski, J. Pukacki, T. Radke, M. Russell,
E. Seidel, J. Shalf, and I. Taylor. Enabling applications on the Grid
- a GridLab overview. Int. J. High Perf. Comput. Appl., 17(4), 2003.

[4] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schott,
E. Seidel, and B. Ullmer. The Grid Application Toolkit: Toward generic
and easy application programming interfaces for the Grid. Proceedings
of the IEEE, 93(3):534–550, 2005.

[5] The Globus Alliance. Globus Toolkit Version 4
Grid Security Infrastructure: A Standards Perspective.
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-
Overview.pdf, May 2009.

[6] J.M. Alonso, V. Hernández, and G. Moltó. Gmarte: Grid middleware to
abstract remote task execution. Concurrency and Computation: Prac-
tice and Experience, 18(15):2021–2036, 2006.

[7] D.P. Anderson. BOINC: A system for public-resource computing and
storage. In 5th IEEE/ACM International Workshop on Grid Computing,
pages 4–10, 2004.

[8] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya,
M. Litmaath, P. Millar, and J.P. Navarro. GLUE specification

54

148

v. 2.0. http://www.ogf.org/Public Comment Docs/Documents/2008-
06/ogfglue2rendering.pdf, May 2009.

[9] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
A. S. McGough, D. Pulsipher, and A. Savva. Job Sub-
mission Description Language (JSDL) specification, version 1.0.
http://www.ogf.org/documents/GFD.56.pdf, May 2009.

[10] N. Bobroff, L. Fong, S. Kalayci, Y. Liu, J.C. Martinez, I. Rodero S.M.
Sadjadi, and D. Villegas. Enabling interoperability among meta-
schedulers. In T. Priol et al., editors, CCGRID 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid, pages
306–315, 2008.

[11] R. Buyya, D. Abramson, and J. Giddy. An economy driven resource
management architecture for global computational power grids, 2000.

[12] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An architecture of a
resource management and scheduling system in a global computational
grid. CoRR, cs.DC/0009021, 2000.

[13] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS
Parameter Sweep Template: User-level middleware for the Grid m{1}.
Scientific Programming, 8(3), 2000.

[14] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl,
May 2009.

[15] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and D.S. Katz.
Pegasus: a framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13(3):219–237, 2005.

[16] W. Allcock (editor). GridFTP: Protocol extensions to FTP for the Grid.
http://www.ogf.org/documents/GFD.20.pdf, May 2009.

[17] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann,
I. Livenson, J. L. Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen.
Advanced resource connector middleware for lightweight computational
Grids. Future Generation Computer Systems, 27(2):219–240, 2007.

55

149

[18] E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg.
Designing general, composable, and middleware-independent Grid in-
frastructure tools for multi-tiered job management. In T. Priol and
M. Vaneschi, editors, Towards Next Generation Grids, pages 175–184.
Springer-Verlag, 2007.

[19] E. Elmroth, F. Hernández, and J. Tordsson. A light-weight Grid work-
flow execution engine enabling client and middleware independence. In
R. Wyrzykowski et al., editors, Parallel Processing and Applied Mathe-
matics, Lecture Notes in Computer Science, vol. 4967, pages 754–761.
Springer-Verlag, 2008.

[20] E. Elmroth, F. Hernández, J. Tordsson, and P-O. Östberg. Designing
service-based resource management tools for a healthy Grid ecosystem.
In R. Wyrzykowski et al., editors, Parallel Processing and Applied Math-
ematics, Lecture Notes in Computer Science, vol. 4967, pages 259–270.
Springer-Verlag, 2008.

[21] E. Elmroth, S. Holmgren, J. Lindemann, S. Toor, and P-O. Östberg.
Empowering a flexible application portal with a soa-based grid job man-
agement framework. In The 9th International Workshop on State-of-the-
Art in Scientific and Parallel Computing, to appear, 2009.

[22] E. Elmroth and P-O. Östberg. Dynamic and Transparent Service Com-
positions Techniques for Service-Oriented Grid Architectures. In S. Gor-
latch, P. Fragopoulou, and T. Priol, editors, Integrated Research in Grid
Computing, pages 323–334. Crete University Press, 2008.

[23] E. Elmroth and J. Tordsson. Grid resource brokering algorithms en-
abling advance reservations and resource selection based on perfor-
mance predictions. Future Generation Computer Systems. The Interna-
tional Journal of Grid Computing: Theory, Methods and Applications,
24(6):585–593, 2008.

[24] E. Elmroth and J. Tordsson. A standards-based grid resource brokering
service supporting advance reservations, coallocation and cross-grid in-
teroperability. Concurrency Computat.: Pract. Exper., 2009. accepted.

[25] T. Fahringer, R. Prodan, R.Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and

56

150

M. Wieczorek. ASKALON: A development and Grid computing en-
vironment for scientific workflows. In I. Taylor et al., editors, Workflows
for e-Science, pages 450–471. Springer-Verlag, 2007.

[26] I. Foster. Globus toolkit version 4: Software for service-oriented systems.
In H. Jin, D. Reed, and W. Jiang, editors, IFIP International Conference
on Network and Parallel Computing, LNCS 3779, pages 2–13. Springer-
Verlag, 2005.

[27] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Fer-
guson, F. Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey,
W. Vambenepe, and S. Weerawarana. Modeling stateful resources with
Web services. http://www-106.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.pdf, May 2009.

[28] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan,
S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, and
M. Theimer. OGSA c© basic execution service version 1.0.
http://www.ogf.org/documents/GFD.108.pdf, May 2009.

[29] I. Foster, H.Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and
J. Von Reich. The Open Grid Services Architecture, Version 1.5.
http://www.ogf.org/documents/GFD.80.pdf, May 2009.

[30] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architec-
ture for computational Grids. In Proc. 5th ACM Conference on Com-
puter and Communications Security Conference, pages 83–92, 1998.

[31] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Grimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von
Reich. The Open Grid Services Architecture, version 1.5, 2006.
http://www.ogf.org/documents/GFD.80.pdf, May 2009.

[32] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-g:
A computation management agent for multi-institutional grids. Cluster
Computing, 5(3):237–246, 2002.

[33] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington.
ICENI: an open grid service architecture implemented with Jini. In Pro-

57

151

ceedings of the 2002 ACM/IEEE conference on Supercomputing, pages
1–10. IEEE Computer Society Press Los Alamitos, CA, USA, 2002.

[34] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm.
Scalable Grid-wide capacity allocation with the SweGrid Accounting
System (SGAS). Concurrency Computat.: Pract. Exper., 20(18):2089–
2122, 2008.

[35] Globus. http://www.globus.org. May 2009.

[36] S. Graham and B. Murray (editors). Web Services Base Notification 1.2
(WS-BaseNotification). http://docs.oasis-open.org/wsn/2004/06/wsn-
WS-BaseNotification-1.2-draft-03.pdf, May 2009.

[37] S. Graham and J. Treadwell (editors). Web Services Resource Properties
1.2 (WS-ResourceProperties). http://docs.oasis-open.org/wsrf/wsrf-
ws resource properties-1.2-spec-os.pdf, May 2009.

[38] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, and I. Sedukhin
(editors). Web Services Resource 1.2 (WS-Resource). http://docs.oasis-
open.org/wsrf/wsrf-ws resource-1.2-spec-os.pdf, May 2009.

[39] Grid Interoperability Now. http://wiki.nesc.ac.uk/read/gin-jobs. May
2009.

[40] M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, H. Frystyk Nielsen,
A. Karmarkar, and Y. Lafon. SOAP version 1.2 part 1: Messaging
framework. http://www.w3.org/TR/soap12-part1/, May 2009.

[41] E. Huedo, R.S. Montero, and I.M. Llorente. A framework for adaptive
execution on Grids. Software - Practice and Experience, 34(7):631–651,
2004.

[42] Cluster Resources inc. Torque resource manager.
http://www.clusterresources.com/pages/products/torque-resource-
manager.php, May 2009.

[43] ISO/IEC. ISO/IEC 9075:1992, Database Language SQL - July 30,
1992. http://www.contrib.andrew.cmu.edu/ shadow/sql/sql1992.txt,
May 2009.

58

152

[44] Jini. http://www.jini.org, May 2009.

[45] P. Kacsuk, G. Dzsa, J. Kovcs, R. Lovas, N. Podhorszki, Z. Balaton, and
G. Gombs. P-GRADE: a Grid programming environment. Journal of
Grid Computing, 1(2):171 – 197, 2003.

[46] H.H. Karlsen and B. Vinter. Minimum intrusion Grid - The Simple
Model. In 14th IEEE International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprise (WETICE’05), pages
305–310, 2005.

[47] A. Kertesz and P. Kacsuk. Meta-Broker for Future Generation Grids:
A new approach for a high-level interoperable resource management.
In CoreGRID Workshop on Grid Middleware in conjunction with ISC,
volume 7, pages 25–26. Springer, 2007.

[48] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of
Grid resource management systems for distributed computing. Softw.
Pract. Exper., 32(2):135–164, 2002.

[49] W. Lee, A. S. McGough, and J. Darlington. Performance evaluation of
the GridSAM job submission and monitoring system. In UK e-Science
All Hands Meeting, pages 915–922, 2005.

[50] H. Li, D. Groep, L. Wolters, and J. Templon. Job Failure Analysis and
Its Implications in a Large-Scale Production Grid. In Proceedings of the
2nd IEEE International Conference on e-Science and Grid Computing,
2006.

[51] G. Moltó, V. Hernández, and J.M. Alonso. A service-oriented WSRF-
based architecture for metascheduling on computational grids. Future
Generation Computer Systems, 24(4):317–328, 2008.

[52] MySQL. http://www.mysql.com/, May 2009.

[53] OASIS Open. Reference Model for Service Oriented Architecture
1.0. http://www.oasis-open.org/committees/download.php/19679/soa-
rm-cs.pdf, May 2009.

[54] OMII Europe. OMII Europe - open middleware infrastructure institute.
http://omii-europe.org, August 2008.

59

153

[55] G. Pierantoni, B. Coghlan, E. Kenny, O. Lyttleton, D. O’Callaghan, and
G. Quigley. Interoperability using a Metagrid Architecture. In ExpGrid
workshop at HPDC2006 The 15th IEEE International Symposium on
High Performance Distributed Computing, Paris, France, February 2006.

[56] PostgreSQL. http://www.postgresql.org/, May 2009.

[57] I. Raicu, I.T. Foster, and Y. Zhao. Many-task computing for grids and
supercomputers. In Many-Task Computing on Grids and Supercomput-
ers, 2008. MTAGS 2008. Workshop on, pages 1–11, 2008.

[58] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: a
Fast and Light-weight tasK executiON framework. In Proceedings of
IEEE/ACM Supercomputing 07, 2007.

[59] I. Rodero, J. Corbalán, R. M. Badia, and J. Labarta. eNANOS Grid
Resource Broker. In P. M. A. Sloot, A. G. Hoekstra, T. Priol, A. Reine-
feld, and M. Bubak, editors, Advances in Grid Computing - EGC 2005,
LNCS 3470, pages 111–121, 2005.

[60] Sun Microsystems. Java Naming and Directory Interface (JNDI).
http://java.sun.com/products/jndi/, May 2009.

[61] Sun Microsystems. The Java Database Connectivity (JDBC).
http://java.sun.com/javase/technologies/database/, May 2009.

[62] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in
practice: The Condor experience. Concurrency Computat. Pract. Ex-
per., 17(2–4):323–356, 2005.

[63] The Apache Software Foundation. Apache Derby.
http://db.apache.org/derby/, May 2009.

[64] The Globus Project. An “ecosystem” of Grid components.
http://www.globus.org/grid software/ecology.php, May 2009.

[65] The Grid Infrastructure Research & Development (GIRD) project.
Ume̊a University, Sweden. http://www.gird.se, May 2009.

[66] S. Venugopal, R. Buyya, and L. Winton. A Grid service broker for
scheduling e-Science applications on global data Grids. Concurrency
Computat. Pract. Exper., 18(6):685–699, May 2006.

60

154

[67] S. Venugopal, K. Nadiminti, H. Gibbins, and R. Buyya. Designing a
resource broker for heterogeneous grids. Softw. Pract. Exper., 38(8):793–
825, 2008.

[68] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-connected scalable internet services. Operating System Review,
35(5):230–243, 2001.

[69] W. Xiaohui, D. Zhaohui, Y. Shutao, H. Chang, and L. Huizhen. CSF4:
A WSRF Compliant Meta-Scheduler. In The 2006 World Congress
in Computer Science, Computer Engineering, and Applied Computing,
pages 61–67. GCA’06, 2006.

[70] L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling ar-
chitecture and algorithms within the ICENI Grid middleware. In Simon
Cox, editor, Proceedings of the UK e-Science All Hands Meeting, pages
5 – 12, 2003.

61

155

156

