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Abstract

We propose a composable, loosely coupled Service-Oriented Architecture for
middleware-independent Grid job management. The architecture is designed
for use in federated Grid environments and aims to decouple Grid appli-
cations from Grid middlewares and other infrastructure components. The
notion of an ecosystem of Grid infrastructure components is extended, and
Grid job management software design is discussed in this context. Non-
intrusive integration models and abstraction of Grid middleware function-
ality through hierarchical aggregation of autonomous Grid job management
services are emphasized, and service composition techniques facilitating this
process are explored. Earlier efforts in Service-Oriented Architecture design
are extended upon, and implications of these are discussed throughout the
paper. A proof-of-concept implementation of the proposed architecture is
presented along with a technical evaluation of the performance of the proto-
type, and a details of architecture implementation are discussed along with
trade-offs introduced by the service composition techniques used.
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1. Introduction

The increasingly common use of federated Grids put new requirements on
software for job and resource management. Common examples of federated
Grids include hierarchical Grids, where large-scale international collabora-
tions make use of parts of national Grids, and multiple national Grids allow
cross-Grid utilization in order to more efficiently handle variations in resource
demand. Requirements placed on software for federated Grids even further
emphasize many of the key requirements typically put on software for indi-
vidual Grids. As federated Grids are often more short-lived, less monolithic,
and more heterogeneous in Grid middleware, there is an even stronger need
for tools to provide key functionality with great flexibility in deployment and
configuration. The need for software that coexist and non-intrusively in-
tegrate with other middleware components is vital, scalability requirements
even more emphasized as system size increases, and centralized solutions even
less feasible due to factors such as increased heterogeneity in Grid access, and
policy enforcement being performed locally on resource sites.

In these settings, Grid job management tools should focus on maintain-
ing non-intrusive integration models, provide functionality on top of avail-
able Grid interfaces, and abstract complexity of underlying Grid infrastruc-
ture components when possible. Resource brokering should be performed
assuming the use of multiple concurrent job submission systems and without
attempts of maintaining global state information for Grid jobs or resources.
Resource contention issues and failure handling should be implemented using
adaptive approaches and robustness provided through redundancy of capa-
bility rather than prediction of possible failure causes.

While there are many viable approaches to Grid job management in use
today, there exists a need for robust Grid job management tools that are able
to function across Grid boundaries, integrate non-intrusively, and provide ab-
stractions of Grid middleware functionality that decouple applications from
specific Grid middlewares. Generic Grid applications decoupled from Grid
middlewares are more likely to be able to migrate to new Grids, be reused
in new projects, and adapted to new problems. To further a looser coupling
between applications and Grid resources, tools need to provide flexibility in
utilization and deployment without sacrificing scalability, performance, or
middleware and platform independence.

The research question of how to best design Grid infrastructure software
is currently open-ended and addressed in a number of different ways. The
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approach taken in this work consists of identification of a set of desirable
traits likely to promote software sustainability in a Grid ecosystem (as de-
scribed in Section 2), and exploration of software design and development
methodologies which result in composable software components that inhabit
and define niches in an ecosystem of Grid infrastructure components.

For software aimed for collaborative Grid environments, usage scenar-
ios tend to include a number of complex factors such as heterogeneous user
bases organized in virtual organizations, varying deployment requirements,
resource heterogeneity and contention issues, unpredictable failure models,
and ever-changing user requirements. In such settings, robustness of tools are
prioritized, and utility is measured in terms of scalability, flexibility in usage
and deployment, level of functionality and heterogeneity abstraction, com-
plexity of administration, ability to automate repetitive administrative tasks,
degree of coupling between components, and level of integration intrusion.

In this work, we extend the software design methodologies of [22], [20],
and [18], and propose a composable Service-Oriented Architecture (SOA) for
Grid job management constituted by layers of loosely coupled, composable,
and replaceable Web Services. The architectural model of the framework is
built upon the principle of abstraction; functionality is stratified into layers of
autonomous services that incrementally provide additional features to end-
users by utilizing and abstracting complexity of underlying services. This
enables software developers to build aggregated systems where individual
parts of the architecture can be deployed as stand-alone components, mini-
mizes the formal knowledge between components to provide a loosely coupled
model of component interaction, and allows great flexibility in system config-
uration. Application developers can choose what parts of the framework to
make use of based on current application needs, and system administrators
can reconfigure framework deployment dynamically. The architecture also
promotes application and middleware interoperability by providing an ab-
stracted interface to Grid middleware functionality, and supports concurrent
use of multiple middlewares. The services of the framework implement well
defined interfaces and provide customization points for dynamic alteration of
component and system behavior. By use of configurable customization points
in the middleware abstraction services, additional middleware support can
easily be provided by third parties.

The architecture is illustrated by a proof-of-concept implementation called
the Grid Job Management Framework (GJMF), which is presented along with
an evaluation of system performance. The framework is designed to provide
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transparent Grid access to applications through a set of abstractive interfaces
that can be combined with (optional) advanced customizability features. Ap-
plications built on top of the framework are provided transparent Grid mid-
dleware functionality that allows Grid resource utilization without coupling
applications to specific middlewares. Applications and infrastructure tools
are also able to reuse components of the framework for generic Grid opera-
tion on an individual basis, promoting a functionality-based model of software
reuse and increasing component and system sustainability. Throughout the
paper, intended system behavior and implications of system design and ar-
chitecture are discussed alongside documentation of experiences from system
design and development.

The structure of the remainder of the paper is as follows: In Section 2
an introduction to the concept of an ecosystem of Grid components is given
along with a brief description of software requirements for infrastructure
components inhabiting such a system. After this, an architecture model for
a layered Grid job management framework is proposed in Section 3, followed
by a detailed presentation of the individual services of the proof-of-concept
implementation of the framework in Section 4. An architecture discussion
then ensues in Section 5, followed by a performance evaluation illustrating
some of the framework trade-offs in Section 6. Related and future work are
presented in sections 7 and 8, respectively, and the paper is concluded in
Section 9.

2. The Grid Ecosystem and Software Requirements

An ecosystem can be defined as a system formed by the interaction of
a community of organisms with their shared environment. Central to the
ecosystem concept is that organisms interact with all elements in their sur-
roundings, and that ecosystem niches are formed from specialization of in-
teractions within the ecosystem. In an ecosystem of Grid components [64],
[20], niches are defined by functionality required and provided by software
components, end-users, and other Grid actors; and Grid infrastructures are
constituted by systems composed of components selected from the ecosystem.
Here, software compete on evolutionary bases for ecosystem niches, where
natural selection tend to preserve components better at adapting to altered
conditions over time. Adaptability is hence defined in terms of integrability,
interoperability, adoptability, efficiency, and flexibility. For software to be
successful in the Grid ecosystem, individual software components should be
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composable, replaceable, able to integrate non-intrusively with other com-
ponents, support established niche actors, e.g., Grid middlewares and appli-
cations, and promote adoptability through ease of use and minimization of
administrational complexity.

Currently however, the majority of Grid resources available are accessible
only through a specific Grid middleware deployed on the site of the resource.
This, combined with the complexity and interoperability issues of today’s
Grid middlewares, leads to the Grid interoperability contradiction [24], and
tend to result in a degree of tight coupling between Grid applications and
Grid middlewares. To isolate Grid end-users and applications from details
of the underlying middleware and create a more loosely coupled model of
Grid resource use, a Grid job management tool should be designed to op-
erate on top of middlewares, abstract middleware functionality and offer a
middleware-agnostic interface to Grid job management. From an ecosystem
point-of-view, this type of Grid middleware functionality abstraction helps
to define and decouple an autonomous job management niche.

Furthermore, to promote interchangeability, components should build
upon standardization efforts, e.g., support de facto standard approaches for
virtual organization-based authentication and accounting solutions, function
independent of platform, language, and middleware requirements, and pro-
vide transparent and easy-to-use Grid resource access models that support
use of federated Grid resources. This reduces ecosystem component devel-
opment complexity, mitigates learning requirements for Grid end-users, and
promotes interoperability and adoption of Grid utilization in new user groups.

Like in any evolution-based system, adaptability and efficiency are key to
software sustainability in the Grid ecosystem as they promote adoption and
use of software components. By creating systems composed of small, well-
defined, and replaceable components, functionality can be aggregated into
flexible applications, resulting in increased survivability for both components
and applications [22]. This idea to create composed and loosely coupled
applications from autonomous networked components lies at the heart of
Service-Oriented Architecture (SOA) [53] methodology.

In the framework, components are realized as autonomous Web Services
that contain multiple customization points where third party plug-ins can
be used to alter or augment both system and component behavior. To pro-
mote deployment flexibility, the framework composition, as well as individual
component customization setup, can also be dynamically altered via service
configurations as described in [22]. Additionally, individual components of
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the framework can be used as stand-alone services, or in other composed ar-
chitectures, while concurrently serving as part of the framework in the same
deployment environment.

3. Framework Architecture

The practice of developing and deploying infrastructure components as
dynamically configured SOAs facilitates development of flexible and robust
applications that aggregate component functionality and are capable of dy-
namic reconfiguration [22]. This approach also provides a model for dis-
tributed software reuse, both on component and code level, and facilitates
integration software development with a minimum of intrusion into existing
systems [21]. Providing small, single-purpose components reduces compo-
nent complexity and facilitates adaptation to standardization efforts [22].

The architectural model used has previously been briefly introduced in
[18], and various aspects of the software development model have been dis-
cussed in [22], [20], and [21]. The software development model used in this
work is a product of work in the Grid Infrastructure Research & Develop-
ment (GIRD) multiproject [65] and is documented in [22] and [20]. The
models favor architectures built on principles of flexibility, robustness, and
adaptability; and aims to produce software well adjusted for use in the Grid
ecosystem [64].

3.1. Architecture Layers

As illustrated in Figure 1, the framework architecture is divided into six
layers of functionality, where each layer builds upon one or more lower layers
and provides aggregated functionality to service clients. The layers range
(bottom-up) from a Grid middleware layer to an application layer with four
job management layers in between. For each layer a core functionality set
has been identified and implemented as autonomous services in the proof-of-
concept prototype (illustrated in the figure).

Grid Middleware Layer. In the architecture model, the Grid middleware
layer houses all software components concerned with abstraction of native job
management capabilities. This typically constitutes traditional Grid middle-
wares abstracting batch systems, e.g., the Globus middleware (GT4) [35] ab-
stracting the Portable Batch System (PBS) [42], standardized job dispatch-
ment services, e.g., the OGSA BES [28], and desktop Grid approaches such as
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Figure 1: The proposed framework architecture. Services organized in hier-
archical layers of functionality. Within the framework services communicate
hierarchically, service clients are not restricted to this invocation pattern.

the Berkeley Open Infrastructure for Network Computing (BOINC) [7] and
Condor [62] abstracting use of CPU cycle scavenging and volunteer comput-
ing resources. Components in the Grid middleware layer are not considered
part of, or provided by, the framework but are essential in providing native
job submission, control, and monitoring capabilities to the framework.

Middleware Abstraction Layer. The purpose of the middleware abstraction
layer is to abstract the details of Grid middleware components and provide a
unified Grid middleware interface to higher-layer components. All framework
components housed in other layers are insulated from details of native and
Grid job submission, monitoring, and control by the services in the middle-
ware abstraction layer. Hence, integration of the framework with additional
(or new versions of) Grid middlewares should ideally only concern compo-
nents in this layer.

Currently, the middleware abstraction layer contains services for targeted
job submission and control, information system interfaces, and services con-
cerned with translation of job descriptions. Components in the middleware
abstraction layer are expected to abstract middleware complexity and pro-
vide well-defined interfaces and customization support for integration of new
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Grid middlewares. For middlewares lacking required functionality, e.g., mid-
dlewares with limited job monitoring capabilities, components in the middle-
ware abstraction layer are expected to implement required system function-
ality to provide a unified job control interface.

Brokered Job Submission Layer. Placed atop of the middleware abstraction
layer, the brokered job submission layer provides aggregated functionality
for indirect, or brokered, job submission. The services of this layer improves
upon the targeted job submission capabilities of the middleware abstraction
layer by providing automated matching of jobs to computational resources.
Job submission performed by services in this layer relies on the targeted job
submission capabilities and the information system interfaces of the middle-
ware abstraction layer, and provides a best effort type of failure handling by
identifying a set of suitable computational resources for a job and (sequen-
tially) attempting to submit the job to each of these until the job is accepted
by a resource. Services in the brokered job submission layer do not provide
job monitoring capabilities, as job submission here is expected to result in
monitorable jobs in middleware abstraction layer services.

Reliable Job Submission Layer. Intended as the robust job submission ab-
straction of the architecture, services of the reliable job submission layer
provide fault-tolerant and autonomous job submission and management ca-
pabilities. The term reliable job submission refers to the ability of these
services to autonomously handle different types of errors in the job sub-
mission and execution processes through resubmission of jobs according to
predefined failover policies. Services in the reliable job submission layer rely
on services of the brokered job submission layer for brokering and job sub-
mission, and services of the middleware abstraction layer for job monitoring
and control. Functionality for failure handling, e.g., for Grid congestion and
job execution failures, is aggregated, and management of sets of independent
jobs is provided. Services of the reliable job submission layer also provide
monitoring capabilities for jobs and sets of jobs through job management
contexts created for all resources submitted here.

Advanced Job Submission Layer. The advanced job submission layer is in
the architecture of the framework aimed towards more advanced mechanisms
for job management, e.g., workflow tools, Grid application components, and
portal interfaces that by functionality requirements are coupled to individual
components of the framework. The services of the advanced job submission
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layer are intended to utilize the services of the reliable job submission layer,
and function as integration bridges and customized service interfaces to the
framework. Services in the advanced job submission layer are expected to
provide their own job management and monitoring contexts as they are in-
tended to aggregate the functionality of the other layers of the framework. A
number of functionality sets for advanced job management have been iden-
tified and are under consideration (see Section 8) for development in the
prototype implementation of the framework, e.g., management of data and
sets of interdependent jobs.

Application Layer. Residing at the top of the hierarchical structure of the
framework, the application layer houses Grid applications, computational
portals, and other types of external service clients. As in the case of the
Grid middleware Layer, softwares in the application layer are not necessarily
considered part of the architecture of the framework, but are likely to im-
pact the design of software in the architecture through design, construction,
and feature requirements. Typically, service clients not integrated with the
framework services are considered part of the application layer.

4. The Grid Job Management Framework (GJMF)

Implemented as a prototype of the proposed architecture of Section 3,
the Grid Job Management Framework (GJMF) is a Java-based toolkit for
submission, monitoring, and control of Grid jobs designed as a hierarchical
SOA of cooperating Web Services. Framework composition can be altered dy-
namically and controlled through service configuration and via customization
points in services. The Grid-enabled Web Services of the GJMF have been
implemented and are typically deployed using the Globus Toolkit [26], are
compatible with established Grid security models, and conform to the use of a
number of Web Service and Grid standards, e.g., the Web Service Description
Language (WSDL) [14], SOAP [40], the Web Service Resource Framework
(WSRF) [27], and the Job Submission Description Language (JSDL) [9]. The
GJMF also conforms to the design of the Open Grid Service Architecture
(OGSA) [29] and builds on the design of the OGSA Basic Execution Ser-
vice (OGSA BES) [28], and the OGSA Resource Selection Services (OGSA
RSS) [31].

The services in the framework interact by passing messages using either
request-response (for, e.g., job submissions) or publish-subscribe (for, e.g.,
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state update notifications) communication patterns. The information routed
through the framework travels vertically in Figure 1, and typically consists
of job descriptions passed downwards in task and job submissions, and sta-
tus update notifications propagated upwards in service state coordination
messages. All services maintain state representations as WS-Resources [38],
and expose these through service interfaces and WS-ResourceProperties [37],
allowing clients to inspect state both explicitly and through subscription to
WS-BaseNotifications [36].

4.1. Job Definitions

To facilitate the model of offering aggregated functionality through ser-
vices organized in hierarchical layers, the GJMF defines three types of job
definitions.

• A job is a concrete job description, containing all information required
to execute a program on a (specified) computational resource. Jobs are
in the GJMF processed by the Job Control Service and correspond to
unique executions of programs on computational resources. Jobs typi-
cally consist of a JSDL file specifying an executable program, program
parameters, computational resource references, file staging information,
and optional JSDL annotations containing custom job processing hints.

• A task is an abstract (often incomplete) job description that typically
requires additional information, e.g., computational resource references
or specific job submission parameters, to become submitable to Grid
middlewares. This required information is typically provided by task
to resource matching (brokering). Tasks are in the GJMF processed by
the Task Management Service. Note that by the GJMF definition, a
job is a task subtype. This allows jobs to be submitted as tasks in the
GJMF, in which case the additional brokering information is utilized
in the brokering and job submission process.

• A task group is a set of independent tasks and jobs that can be executed
in any order. Task groups distinguish themselves from jobs and tasks by
having shared execution contexts for all tasks in a task group. Thus,
the processing result of a task group is determined by the combined
processing results of the task group’s tasks and jobs. Task groups are
in the GJMF processed by the Task Group Management Service.
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(a) The Log Accessor Service. (b) The JSDL Translation Service.

Figure 2: Internal structure of the Log Accessor Service and the JSDL Trans-
lation Service. Customization points are illustrated using dotted lines. The
services are constructed around a set of customizable core components that
provide database access and job description translation semantics respec-
tively.

4.2. Components

As illustrated in Figure 1, the core of the GJMF is made up by five job
management services. Part of the framework but not illustrated in the figure
are also two auxiliary services, a job description translation and a log access
service, as well as two core libraries, a service development utility library and
the GJMF client Application Programming Interface (API). All services in
the GJMF make use of these libraries, and all service interaction within the
framework is routed through the service client APIs, allowing service com-
munication optimizations to be ubiquitous and completely transparent to
services, service clients, and end-users. Each service is capable of using mul-
tiple instances of other services, and supports a model of user-level isolation
where unique service instances (back-ends) are created for each service user.
Worker threads and contexts within individual services are shared among
service back-ends and competition for resources between service instances
occur as if services were deployed in separate service containers.

4.2.1. Log Accessor Service (LAS)

In a distributed architecture managing multiple synchronized states, abil-
ity to track state development and review processing progression is highly de-
sirable. The Log Accessor Service (LAS) is a service that provides database-
like interfaces to job, task, and task group logs generated by the GJMF. As
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the name suggests, the LAS is designed to provide convenient log access to
services, end-users, and clients. Within the GJMF, the LAS is used to record
state transitions as well as job submission and processing information. The
LAS is typically expected to have monodirectional data transfers, e.g., the
GJMF services use the LAS to store data, and service clients use it to inspect
details of task processing.

The internal structure of the LAS is illustrated in Figure 2a. The log
accessor component offers a service interface and abstracts use of database-
specific accessor plug-ins. The LAS maintains internal storage queues and
resource serialization mechanisms to minimize overhead for use of the service
and provide an asynchronized communication model for log storage. As also
illustrated in Figure 2a, database support is provided the service through the
use of customizable database accessor plug-in modules. These accessors can
be provided by third parties to provide the LAS access to custom database
formats currently not supported. Boiler-plate solutions for accessor plug-
ins supporting Structured Query Language (SQL) [43] and Java Database
Connectivity (JDBC) [61] are provided to facilitate development of custom
plug-ins. Currently, the LAS supports use of MySQL [52], PostgreSQL [56],
and Apache Derby [63], and accessor plug-ins for these systems are provided.
Unlike the other services of the GJMF, use of the LAS is optional and not
required for any other part of the GJMF to function. The LAS can be
configured to use specific database accessors, and these accessors can also be
configured through the LAS configuration.

4.2.2. JSDL Translation Service (JTS)

In the GJMF, the JSDL Translation Service (JTS) is used to provide job
description translations to service clients and services. In terms of service
to service communication, the JTS is typically used by the Job Control Ser-
vice to provide translations of JSDL to formats used by Grid middlewares
in native job submission. When used by service clients, the JTS can both
provide translations from proprietary job description formats to JSDL, and
translations from JSDL to Grid middleware formats (where the latter typi-
cally would be used to verify that job description semantics are preserved in
translation).

As illustrated in Figure 2b, the JTS employs a modularized architecture
where translation semantics are provided by plug-in modules, and support
for new language translations can be added by third parties without modifi-
cation of the framework. The JSDL translator component provides a service
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Figure 3: Internal structure of the Job Control Service. Customization points
are illustrated using dotted lines.

interface and abstracts the use of job description translator plug-ins. Both
the JSDL translator and the translator plug-ins make optional use of LASs for
log storage. Currently, the JTS supports translation between JSDL [9] and
Globus Toolkit 4 Resource Specification Language (GT4 RSL) [26], Nor-
duGrid Extended Resource Specification Language (XRSL) [17], and a cus-
tom dialect of XRSL presented in [21]. Translations of job descriptions are
made based on the context of the job description representation created.
Typically this means that job descriptions to be translated are parsed record
by record for information required to create new representations of corre-
sponding semantics. Type-specific data representations are translated based
on the semantics of the enacting middleware, e.g., Uniform Resource Loca-
tors (URLs) are reformatted and supplied suitable protocol tags to match
middleware transfer mechanism preferences. The JTS can be configured to
use a specific set of translation modules, which can be configured through
the JTS configuration.

4.2.3. Job Control Service (JCS)

Being one of the two fundamental middleware abstraction services of the
GJMF, the purpose of the Job Control Service (JCS) is to provide a uniform
and middleware-independent interface for job submission and control. The
JCS defines a set of generic job functionality, as well as a job state model (il-
lustrated in Figure 8c), that provide a fundamental view of job management
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that other services in the GJMF build upon. Within the GJMF, the JCS is
used by the Brokering & Submission Service as a job submission interface,
and by the Task Management Service as a job monitoring and control inter-
face, but the service may also be used directly by service clients as a targeted
Grid job submission and control tool.

The internal structure of the JCS is illustrated in Figure 3. The job
controller component provides a service interface and coordinates execution
of jobs. Job resources are used to maintain job state and are exposed as
inspectable WS-ResourceProperties to service clients. The job controller
abstracts the use of middleware-specific job dispatcher and dispatcher prior-
itizer plug-ins, and both the job controller and the middleware dispatchers
utilize LASs for log storage. Middleware support in the JCS is provided
through customizable and configurable plug-in modules that allow third par-
ties to develop and deploy support for proprietary job management solu-
tions. Middleware dispatchers abstract use of Grid middlewares and employ
the JTS and the LAS for job description translation and log storage respec-
tively. The JCS currently provides middleware support for the NorduGrid
ARC [17], GT4 [35] middlewares, and Condor [62]. For test and service client
development purposes, the JCS also provides a simulation environment where
jobs are simulated rather than submitted and executed. This utility allows
JCS clients to encounter exotic job behaviors on demand via discrete-event
simulation of job state transitions.

The JCS can be configured to use a specific set of middleware dispatch-
ers, a middleware dispatcher prioritizer, a state monitor, a set of JTSs, and
an optional set of LASs. For custom job processing, the functionality of the
JCS may also be altered by providing processing hints to the JCS through
annotations in the JSDL job description. These annotations can affect, e.g.,
middleware dispatcher prioritization, or provide job submission parameters
such as queue system information for ARC submissions (an example from
[21]) or GT4 Globus Resource Allocation Manager (WS-GRAM) parameters
for Condor-G [32] submissions. As these types of processing hints are com-
pletely orthogonal to standard service behavior, i.e. does not affect processing
of other jobs or other service functionality, they can be used to temporar-
ily alter service behavior for a specific job without alteration of framework
composition or configuration.

14



(a) The Resource Selection Ser-
vice.

(b) The Brokering and Submission Service.

Figure 4: Internal structures of the Resource Selection Service and the Bro-
kering and Submission Service. Customization points are illustrated using
dotted lines.

4.2.4. Resource Selection Service (RSS)

The fundamental task of matching a job to a suitable computational re-
source on a Grid is referred to as job or resource brokering. Built on the
OGSA RSS [31] model, the GJMF Resource Selection Service (RSS) pro-
vides a service interface for performing job to resource matching in Grid
environments. Within the GJMF, the RSS is used by the Brokering & Sub-
mission Service as an execution planning and brokering tool, but the service
may also be used by service clients for job to resource matching directly.

The internal structure of the RSS is illustrated in Figure 4a. The re-
source selector component provides a service interface, coordinates brokering
of tasks to computational resources, abstracts the use of middleware-specific
information system accessor plug-ins, and utilizes LASs for log storage. Infor-
mation system accessors abstract the use of middleware information systems,
provide translations of middleware-specific record formats to an internal RSS
format, and make use of LASs for log storage. The RSS internally maintains
mechanisms for retrieval of resource information from information systems,
caching of resource information, information system monitoring, and a cus-
tomization mechanism that allows third parties to develop plug-ins to support
new information sources, e.g., new Grid middleware information systems.

The RSS can be configured to retrieve information from a range of in-
formation systems, currently including the ARC and GT4 Grid middleware
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information systems, as well as a simulated information system configurable
through the RSS configuration intended for service development purposes.
The RSS also provides boiler-plate solutions for data access and type con-
version to facilitate implementation of custom information accessors.

4.2.5. Brokering & Submission Service (BSS)

The Brokering & Submission Service (BSS) provides the GJMF and ser-
vice clients with an interface for best-effort brokered job submission. The
definition of best effort job submission used here is that no measures for
correction of, or compensation for, failed job submissions or executions are
taken. Once brokered, the BSS attempts to sequentially submit jobs to each
suitable computational resource identified (as ranked by the RSS) until a
resource has accepted the job or the list of resources has been exhausted.
Beyond this behavior, failures are considered permanent.

Within the GJMF, the BSS is used by the Task Management Service for
task submissions, but the BSS may also be used directly by service clients as
a best effort job submission tool for brokered submission of abstract (incom-
plete) job descriptions. The BSS does not maintain a context for submitted
jobs, service clients that wish to inspect job state are referred to a JCS in-
stance hosting the job upon successful job submission. Note that while job
submission failures are reported directly to service clients, errors in job ex-
ecutions are by the BSS assumed to be reported by the enacting JCS or
detected and handled by service clients.

The internal structure of the BSS is illustrated in Figure 4b. The job
broker component provides a service interface and interacts with RSSs to
retrieve execution plans for tasks. The job submitter component is used by
the job broker and interfaces with JCSs to submit jobs. Both components
make use of LASs for log storage. The BSS relies on the RSS and JCS for
job to resource matching and job control respectively, and is capable of using
multiple instances of each service to provide redundancy in job brokering
and submission. Note that jobs, i.e., tasks with a concrete job description
including a resource specification, are not relayed to the RSS for resource
brokering but directly submitted to resources via the JCS. The BSS can be
configured to use a set of RSSs, a set of JCSs, and an optional set of LASs.

4.2.6. Task Management Service (TMS)

Being the primary mechanism for reliable submission of individual jobs in
the GJMF, the Task Management Service (TMS) provides an interface for au-
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Figure 5: Internal structure of the Task Management Service. Customization
points are illustrated using dotted lines.

tomated and fault-tolerant task management and defines a task state model
(illustrated in Figure 8b). The TMS maintains inspectable state contexts for
tasks and employs a model of event-driven state management powered by
the JCS state mechanisms. To provide failover capabilities, tasks submitted
through the TMS are repeatedly submitted and monitored by the TMS until
resulting in a successful job execution, or a configurable amount of attempts
have been made (in which case the task fails). Within the GJMF, the TMS is
used by the Task Group Management Service for management of individual
tasks.

The internal structure of the TMS is illustrated in Figure 5. The task
manager provides a service interface, coordinates task processing using a task
prioritizer plug-in, and uses LASs for log storage. The task submitter utilizes
BSSs for task submission, employs congestion and failure handler plug-ins
for task resubmission decision support, and stores state through LASs. Task
state is maintained and exposed through WS-ResourceProperties by task
resources. A state monitor plug-in can be employed to provide customizable
access to task state. The job monitor utilizes JCSs for job monitoring and
control of jobs, updates task resources, and stores state through LASs.

The internal mechanisms of the TMS can be customized via configuration
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Figure 6: Internal structure of the Task Group Management Service. Cus-
tomization points are illustrated using dotted lines.

and a set of plug-in modules that control task prioritization, congestion han-
dling, failure handling, and state monitoring. To enforce user-level isolation
and fair competition in multi-user scenarios, the TMS maintains separate job
queues for each user. The TMS relies on the BSS for submission of tasks to
Grid resources, and can be configured to use customized congestion and fail-
ure handlers to control task resubmission behaviors, and a customized task
prioritizer to influence task processing order. The TMS can also be config-
ured to use a state transition monitor for event-driven state monitoring, a
set of BSSs, and an optional set of LASs.

4.2.7. Task Group Management Service (TGMS)

Similar to the TMS for individual jobs, the Task Group Management
Service (TGMS) exposes an interface for management of groups of (mutually
independent) jobs and tasks, and defines a task group state model (illustrated
in Figure 8a). The TGMS provides a convenient way to manage sets of tasks
as a single entity, and is intended to be used by service clients and more
complex task management systems, e.g., workflow engines such as [19] or
parameter sweep applications. The TGMS is currently not used by other
services in the GJMF.
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The internal structure of the TGMS is illustrated in Figure 6. The
task group manager provides a service interface, coordinates task and task
group processing using task and task group prioritizer plug-ins, and stores
state through LASs. Task group state is maintained and exposed as WS-
ResourceProperties by task group resources, which can also be accessed by
state monitor plug-ins. The task submitter submits jobs to TMSs, uses a
congestion handler plug-in for resubmission decision support, and stores logs
through LASs. The task monitor utilizes TMSs for task monitoring, updates
task group resources, and stores logs through LASs.

The TGMS maintains state contexts for task groups, employs user-exclusive
submission queues for both task groups and tasks, provides customizable
plug-in modules for task group and task prioritization, state management,
and congestion handling. As the TGMS relies on the TMS for task sub-
mission and management, the TGMS does not contain a failure handler for
job submission or execution failures. Task execution failures in the TMS are
by the TGMS considered permanent, no error recovery or failover actions
are taken by the TGMS. Task submission failures, i.e. failures in TMS task
submission, are considered temporary and result in the TGMS rescheduling
task submissions indefinitely until successful.

The TGMS also provides a mechanism for suspension of (processing of)
task groups, a mechanism designed to adapt to scenarios where user creden-
tials expire or large task groups need to be paused. Once suspended, task
groups need to be explicitly resumed to be processed by the TGMS. Tasks in
a suspended task group that have already been submitted to a TMS will be
processed if possible, but no new task submissions will be made until (pro-
cessing of) the task group has been resumed. The TGMS can be configured
to use a congestion handler to customize back-off behaviors in Grid conges-
tion situations; task group and task prioritizers to customize processing order
of task groups, tasks, and jobs; a state transition monitor for event-driven
state monitoring, a set of TMSs, and an optional set of LASs.

4.2.8. The GJMF Common Library

The GJMF common library is a service development utility library that
encapsulates functionality common to all services of the GJMF. The library
facilitates service development by providing a common type set, a service
development model, and boiler-plate solutions for, e.g., local call optimiza-
tions, service stubs, credentials delegation, security contexts, worker threads,
state management, service client APIs, dynamic configuration, and resource
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Figure 7: The GJMF service structure. The GJMF common library provides
boiler-plate solutions for service instantiation, service back-end implementa-
tion, resource management, and client APIs. The GJMF client API abstracts
use of the service invocation optimizations through use of service client fac-
tories. Dynamic invocation patterns illustrated using dotted lines.

serialization.
The GJMF common library provides a simple framework for service de-

velopment that defines a service structure used by all services in the GJMF.
The service structure is illustrated in Figure 7, and details separation of ser-
vice interface implementation from service back-end implementations, and
service clients from service client factories. Service client factories are ex-
posed to applications and dynamically instantiate service client implementa-
tions based on type of service invocation to be used. Service clients marshal
data and perform service invocations, in the case of regular service clients
through Web Service SOAP messages and through direct service back-end in-
vocations using immutable wrapper types for local call optimization clients.
Service interface implementations marshal SOAP data through stubs into
immutable wrapper types and invoke corresponding methods in service back-
ends. Service back-end implementations are responsible for maintaining state
in service resources, which are accessed through service resource homes. The
service structure of the GJMF common library has previously been discussed
in [22].

The service development framework, in concert with the GJMF client
API, handles common tasks such as data type marshalling, service instanti-
ation, notification subscription management, and notification delivery. The
framework also encapsulates a local call optimization mechanism that allows
service components to be exposed as local objects to other services code-
ployed in the same service container, which allows co-hosted services to make
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marshalled in-process Java calls directly between service clients and service
back-ends. This optimization mechanism, which is discussed in Section 5.1,
evaluated in Section 6.3.5, and also addressed in [22], is hidden by the service
structure of the common library and made completely transparent to service
clients through the client API. As described in [22], the common library pro-
vides a set of basic and immutable types for use in the GJMF client API as
well as a type marshalling mechanism that abstracts the use of stub types in
the GJMF.

The primary purpose of the GJMF common library is to facilitate ser-
vice development by providing standardized solutions to common tasks in
service development. While end-users and GJMF service clients typically
never interact directly with the common library, most of the functionality is
accessible to service developers for use outside the GJMF context.

The GJMF common library includes four parts:

• Clients - contains boilerplate solutions for service clients and service
client factories. These service client abstractions hide the use of lo-
cal call optimizations within the GJMF, provide transparent factory
mechanisms for creation of client instances, and perform client-side
marshalling of data types.

• Interfaces - contains definitions of all service interfaces for the GJMF,
including base interfaces that service interfaces are derived from. These
interfaces are used in the GJMF client APIs and abstract all service to
service interaction in the GJMF.

• Types - contains all type definitions used in GJMF service interfaces,
including WSDL stub type to immutable wrapper translation mech-
anisms for marshalling of Web Service invocations and notifications.
These type definitions encapsulate all state and log information for the
GJMF, and provides boilerplate solutions for state management.

• Utilities - contains utility functions and mechanisms for the GJMF
services such as boilerplate solutions for service implementations, tools
for management and delegation of credentials, service configuration
solutions, and service resource management mechanisms.

All parts of the common library are used cooperatively to reduce the
length of service development cycles and produce robust service implementa-
tions. The Clients and Interfaces modules are used for producing service
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client APIs, the Utilities modules to produce service back-end implemen-
tations, and the Interfaces and Types modules to define service interaction
protocols. One example of the flexibility of the service interaction model is
the use of JSDL documents to convey both job specification data and pro-
cessing hints, e.g., middleware submission parameters and queue information
markers. To facilitate this model, and simplify use of the framework, all data
exchanged with services in the GJMF have dedicated immutable wrapper
types defined. All GJMF service interfaces have also been specified as Java
interfaces, operating exclusively on these wrapper types. The common li-
brary provides all services with a configuration mechanism, providing service
back-ends with dynamic access to configuration data from configuration files.

4.2.9. The GJMF Client Application Programming Interface

The GJMF client Application Programming Interface (API) is a set of
Java classes abstracting the use of the GJMF Web Services for Java pro-
grammers. Mimicking the interface of the GJMF services, the client API is
designed to provide intuitive use of the framework to developers with limited
experience of Web Service and SOA development. As illustrated in Figure 7,
and discussed in Section 4.2.8, the GJMF client API transparently handles
local call optimizations, state notification management, and service instance
management [22]. All GJMF functionality provided to service clients and
end-users are accessible through both the GJMF services and the GJMF
client API.

5. Architecture Discussion

To meet the flexibility and adaptability requirements discussed in Section
2, we build upon and extend the software development model previously pre-
sented in [22]. Key approaches in this model include use of Service-Oriented
Architectures (SOAs) [53], design patterns, refactorization methods, and
techniques to improve software adaptability such as dynamic configuration
techniques and provisioning of software customization points. All software is
developed in Java using common open source tools such as Eclipse, Apache
Ant, and Apache Axis. The Globus Toolkit [26] is employed as a development
environment for the production of Grid-enabled Web Services compatible
with established Grid security models.
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5.1. Invocation Patterns
The services of the GJMF support two basic modes of service invocation;

sequential (regular) service invocation and batch invocation. In batch invo-
cations, a set of service requests are bundled and sent to the service in a
single service invocation. The batch invocation mode allows service clients
to, e.g., submit a set of tasks to the TMS in a single request, significantly
reducing service invocation makespan. Batch invocations conserve network
bandwidth and reduce service invocation memory footprints on the server
side. To simplify service invocation semantics, sets of requests sent using
batch invocation modes are processed as transactions by the services in the
GJMF. That is, if, e.g., a job submission in a batch request fails, other job
submissions in the batch are canceled and rolled back if processed.

When service clients are codeployed with the GJMF services, i.e. residing
inside services deployed in the same service container as the GJMF, service
invocations are by default routed through the GJMF local call optimization
framework. GJMF local call optimization mechanisms observe that services
hosted in the same container share the same process space, and thus operate
in the same Java Virtual Machine (JVM), and bypass service request serial-
izations to allow service clients to directly invoke methods in the service im-
plementation back-end. Use of local call optimizations greatly reduce service
invocation time and memory footprint of service request processing, allowing
for greater scalability in service implementations, more fine-grained commu-
nication models for interservice communication, and promotes a model of
service aggregation where modules from constituent services can function
as local Java objects in aggregated services [22]. When building systems
aggregated from services there are also indirect benefits of this model. In
the GJMF, this results, e.g., in a reduced need for polling to maintain dis-
tributed state coordination as state update notifications are less likely to be
dropped due to excessive service container load. All services of the GJMF
can be distributed in separate service deployments, but are recommended to
be deployed in the same service container for performance reasons.

As any GJMF service can at any time be invoked directly by a service
client, regardless of whether or not it is used as part of the framework, service
invocation patterns can be hard to predict and are likely to vary over time.
For this, as well as for reasons of transparency, all interservice communica-
tion is routed through the GJMF client API, which allows invocation modes
and service communication optimizations to be ubiquitous and completely
transparent to services, service clients, and end-users.
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5.2. Deployment Scenarios

The GJMF has been designed to be as versatile as possible in terms
of deployment and usage without imposing complexity of administration or
loss of user control. The dynamic configuration structures, and the cus-
tomizable code modules used throughout the framework provide options for
modification of framework behavior combined with fully functional default
configurations.

The hierarchical architecture of the GJMF is intended to provide clients
a set of job management interfaces that offer an increasing range of automa-
tion of the job submission process without sacrificing user control. Services
in lower layers offer fine-grained job submission interfaces with high degrees
of explicit control, while services in higher layers attempt to automate the job
submission process and offer control through configuration of behavior and
optional use of customization point modules. The construction of the frame-
work as a SOA with local call optimizations allows the framework transpar-
ent distribution of components combined with high efficiency in interservice
communication when services are codeployed.

Envisioned usage scenarios for the framework include, e.g.,

• Running the framework on a gateway server to act as a middleware-
independent multi-user Grid job submission interface.

• Running the framework on a client computer to act as a convenient
personal job submission and management tool for Grids access.

• Running multiple instances of the framework to provide partitioning
and load balancing of large job submission queues and multiple Grids.

• Running multiple instances of the framework utilizing different config-
urations to provide alternative job submission behaviors.

A natural overlap between these usage scenarios exist, and each of these
are expected to be seen in hierarchical or other types of federated Grid envi-
ronments, as well as in federated Cloud computing systems. Typical usage
scenarios for the GJMF are expected to include hierarchical (or other forms
of) combinations of multiple deployments of the framework, on top of mul-
tiple Grid middlewares and resource manager systems. To meet advanced
application requirements, e.g., transparent workflow enactment, the GJMF
is expected to be utilized in combination with high-level tools such as the
Grid Workflow Execution Engine (GWEE) [19].
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(a) The GJMF task group state model.

(b) The GJMF task state model. (c) The GJMF job state model.

Figure 8: The GJMF state models. Task group states are used in the TGMS,
task states in the TGMS and the TMS, job states in the JCS. The JCS
job state model is semantically identical to the state model of the OGSA
BES [28]. The recurring states of the GJMF job state model are used to
incorporate and abstract state information from more fine-grained Grid mid-
dleware state models.

The deployment and utilization flexibility of the GJMF makes the frame-
work viable for application within a number of computational settings, in-
cluding high-performance computing (HPC) (depending on support from un-
derlying middlewares for some functionality, e.g., execution of MPI jobs),
high-throughput computing (HTC), as well as the more recently defined
many-task computing (MTC) [57] paradigm. In MTC, focus is placed on
enactment of loosely coupled applications constituted by large numbers of
short-lived, data intensive, heterogeneous tasks with high (non-message pass-
ing) communication requirements, a setting envisioned in the design of the
GJMF.

5.3. State Models

As the GJMF is composed of (possibly distributed) interoperating ser-
vices, state management and coordination is inherently complex. To address
this, the GJMF employs a hierarchical model for distributed state updates,
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State Interpretation
Transient states
Idle Work unit successfully submitted.
Active Work unit currently being processed.
Suspended Work unit temporarily suspended (TGMS).
Terminal states
Successful Work unit successfully processed.
Canceled Work unit processing canceled.
Failed Work unit processing failed.
Processed Work unit processed with partial success (TGMS).

Table 1: GJMF state interpretations.

where each service hosting a job description resource is responsible for coor-
dinating state updates to clients. As state updates for services are delivered
via WS-BaseNotifications, the distributed state model of the GJMF is event
driven; services respond to state changes in lower layers by updating state
and producing notifications that are propagated up the service hierarchy. To
compensate for dropped state notifications due to network failures or ser-
vice container load, all services implement a state monitoring mechanism
that regularly checks for missing notifications through polling. This mecha-
nism simplifies state management and allows framework state coordination
mechanisms to consider state delivery transparent and reliable.

As illustrated in Figure 8, each type of GJMF job definition has a corre-
sponding finite state model that drives the processing of jobs, tasks, and task
groups in the GJMF. In this processing, a job, task, or task group is referred
to as a work unit, and is assigned an individual work unit context which
is exposed to clients through service interfaces and WS-ResourceProperties.
Table 1 gives a brief summary of work unit processing state interpretations
in the GJMF.

5.4. Data Management

To maintain middleware transparency, the GJMF does not by default
actively participate in data transfers between clients and computational re-
sources. The GJMF assumes that data files are available and can be trans-
fered to and from computational resources by the enacting Grid middleware
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via a file transfer mechanism chosen by the middleware. File staging infor-
mation is conveyed from clients to middlewares by the GJMF as part of job
descriptions, typically in the form of GridFTP [16] URL tags in job and task
JSDL.

In the GJMF, file transfers are expected to be initiated and performed by
the enacting Grid middleware, existing data files are expected to be available
prior to job submission (i.e., the GJMF does not verify the existence of
data files during brokering), and computational resources and clients are
responsible for maintaining file system allocations capable of accommodating
incoming and outgoing data files respectively. If required, JSDL annotations
can be used to provide job brokering hints related to storage requirements
for computational elements.

Data transfer URLs are translated by the JTS to formats recognized by
the underlying middleware as part of the job description translation process.
If the underlying middleware does not support file staging, the JCS cus-
tomization points can be used to provide data transfer capabilities as part
of the middleware job submission process without coupling GJMF clients or
services to underlying middlewares. Plans to extend the GJMF with utility
mechanisms and services for data management are under consideration, see
Section 8.

5.5. Resource Brokering

To decouple the GJMF services from Grid middlewares and each other,
all job to computational resource brokering activities are in the GJMF ab-
stracted by the RSS, which in turn relies on Grid middleware information
systems for monitoring of computational resource availability, characteris-
tics, and load. As middleware information systems typically contain large
volumes of cached information, and federated Grid environments are likely
to contain multiple concurrent job submission and management systems, it
is observed that a brokering component will always operate on information
deprecated to some extent [24].

In the GJMF model, the RSS has been limited to provide computational
resource recommendations and rankings, services and clients are expected to
handle submission and failure handling for jobs without providing feedback
to the RSS. This abstraction implies that the RSS is agnostic of whether a
particular execution plan is enacted or not. To compensate for middleware
information system update latencies, it would be possible for the RSS to
maintain an internal cache of prior execution plans and update resource load
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weights through speculation based on this information. As the RSS enforces
user-level isolation of service capabilities, a unique cache would be created
for each user and restricted to contain only recommendations for that user.

To improve quality of job to resource brokering, it would also be possible
to interface the RSS with Grid accounting and load balancing systems, e.g.,
the SweGrid Accounting System (SGAS) [34], as well as provide the RSS with
feedback from the JCS or job submission systems such as the Job Submission
Service (JSS) [24]. To reduce system complexity and maintain a clean sep-
aration of concerns, the RSS does not implement speculative resource load
prediction or brokering behavior, but offers customization points for third
party implementation of advanced brokering algorithms where such feedback
loops can be implemented without affecting the design of the framework.

The current implementation of the RSS is to be regarded a prototype,
we foresee development of additional RSS versions with resource selection
capabilities of particular interest for certain users [23]. Evaluation of RSS
brokering performance and quality of execution plans is out of scope for this
work.

5.6. Security

The GJMF employs the Grid Security Infrastructure (GSI) [30] security
model provided by the Globus Toolkit [26], and can be configured to use
the Secure Message, Secure Conversation, or Credentials Delegation (i.e. use
of the Globus Delegation Service) communication mechanisms. Client and
service security modes are individually configured using security descriptors,
and service clients identities are established and verified for all service invo-
cations from standalone clients. For service invocations using GJMF local
call optimizations, i.e. from clients codeployed with the service invoked, cre-
dential proxies are accepted from the caller without verification of caller iden-
tity. This relaxation of authentication is done for performance reasons and
is deemed as acceptable for situations where services trust the deployment
environment of the service, and where service environments trust software
deployed in it. Should verification of caller identity be required, GJMF local
call optimizations can be disabled or replaced with Axis local call optimiza-
tions.

All types of job definitions, including task groups, are upon submission
to a GJMF service associated with a set of user credentials used for, e.g.,
user authentication, resource ownership, and job execution privileges. User
credentials are inherited in subsequent submissions within the GJMF, i.e.
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task group credentials are assigned to tasks upon submission to a TMS, and
jobs are assigned task credentials when submitted to a JCS. Task groups
distinguish themselves from jobs and tasks by the ability to be suspended in
execution, e.g., upon expiration of task group credentials.

For each user invoking a service in the GJMF, a separate service imple-
mentation (back-end) is instantiated and used for request processing. This
imposes a degree of user-level isolation of service functionality and enforces
sandboxing of service resources between users. Service caller identity is also
used to enforce a similar restriction of access to service WS-Resources.

To facilitate the construction of job submission proxies, a requirement
in, e.g., Grid portal construction [21], it is possible to submit a task to the
GJMF specifying different credentials for job execution than those used in
submission to the GJMF. For these situations, the authenticity of caller cre-
dentials are validated in the GJMF service invocation and the authenticity of
the submission credentials are validated in the Grid middleware job submis-
sion process. As tasks will inherit credentials from task groups, as jobs will
from tasks, resulting GJMF resources will be owned by the identity of the
credentials used for job execution rather than the caller identity. This means
that, e.g., a task group submitted using a certain set of user credentials will
result in job submissions that use credentials belonging to that user, and
only that user will be able to inspect details of the GJMF’s processing of the
task group (including LAS logs).

6. Performance Evaluation

To evaluate and analyze the performance of the framework prototype we
run a series of tests using a standard setup of the framework on a deployment
of a Grid middleware representative of production use.

6.1. Performance Measurement

To measure the efficiency of the framework, we define overhead as the
time penalty imposed by use of the framework and use it as a cost function
for efficiency. To quantify overhead incurred by the GJMF, we configure a
GJMF deployment to operate on top of a Grid middleware and compare job
submission performance and makespan to using the middleware directly for
corresponding tasks. Total overhead imposed by the GJMF is in this perfor-
mance evaluation computed as the total makespan of processing a group of
jobs subtracted by the theoretical minimum time required to execute all jobs

29



(a) Sequential invocation mode, in-
finite computational nodes.

(b) Sequential invocation mode, limited computa-
tional nodes. Job executions mask submission and
GJMF overhead.

(c) Batch invocation mode, infinite
computational nodes.

(d) Batch invocation mode, limited computational
nodes. Job executions mask GJMF overhead.

Figure 9: GJMF overhead components and invocation modes. Submis-
sion overhead, processing overhead, and execution overhead (illustrated in
gray, red, and black, respectively) are independent components of the total
makespan of a job.

in the group on an ideal system, i.e. a system that does not impose overhead
associated with execution of jobs.

The overhead model used in the performance evaluation is illustrated in
Figure 9, and expresses overhead associated with execution of groups of jobs.
The illustration details four overhead scenarios spanned by the permutations
of two invocation modes and two workload scenarios.

As illustrated in Figure 9, overhead associated with execution of an in-
dividual job is in the model divided into three sequential components; sub-
mission overhead, processing overhead, and execution overhead. Submission
overhead is defined as overhead incurred prior to a job description being
present in a GJMF service and typically consists of factors such as Java class
loading and Web Service invocation time. Processing overhead is the GJMF
contribution to the total overhead and consists of factors such as internal
GJMF communication latencies and time spent performing job management
tasks, e.g., job brokering and failure handling. Execution overhead is defined
as time spent performing actions related to execution of a job on a computa-
tional resource, e.g., Grid middleware submission, file staging, job execution,
execution environment clean-up, and status update delivery.

As also illustrated in Figure 9, parallel processing of job management ac-
tivities allow the GJMF to partially mask individual overhead contributions
through temporal overlaps with job executions and other job management
activities. Total system overhead imposed by the GJMF is thus constituted
by the sum of all overhead contributions associated with individual jobs sub-
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tracted by overhead the GJMF is able to mask by parallel execution of job
management tasks.

When the number of available computational hosts exceeds the number of
jobs, the GJMF ability to mask overhead is limited and total system overhead
bound by the submission and processing overhead components, as illustrated
in Figure 9a and Figure 9c, respectively. When the number of jobs exceed
the number of available computational hosts, total system overhead will be
bound by the job execution overhead component. The GJMF ability to mask
overhead contributions from individual jobs in these situations is illustrated
in figures 9b and 9d.

To isolate individual contributions to the total system overhead we employ
deployment options designed to minimize the contribution and impact of
external, i.e. non-GJMF, overhead components, and measure job submission
time and makespan for all GJMF job management components. To quantify
the GJMF contributions to total system overhead, measurements of Grid
middleware overhead are used as a comparative baseline for the minimum
time required to process groups of jobs.

6.2. Test Environment

As the tests of the performance evaluation focus on illustrating overhead
imposed by use of the GJMF, a limited test environment is sufficient for
testing as these performance limitations are independent of the number of
computational resources used, and will be representative for larger-scale use.

The test environment used in the evaluation is comprised of four identical
2 GHz AMD Opteron CPU, 2 GB RAM machines, interconnected with a 100
Mbps Ethernet network, and running Ubuntu Linux 2.6 and Globus Toolkit
4.0.5. Another set of four identical 1.8 GHz quad core AMD Opteron CPU,
4 GB RAM machines, interconnected using a Gigabit Ethernet network,
and running Ubuntu Linux 2.6, Torque 2.3, and Maui 3.2.6 are employed as
computational nodes in job throughput tests. The Java version used in tests
is 1.6.0, and Java memory allocation pools range in size from 512 MB to 1
GB.

We employ GT4 WS-GRAM as Grid middleware and run /bin/true ex-
ecutions for ideal jobs (zero execution time) and /bin/sleep executions for
jobs with known, non-zero execution times. To maximize the impact of the
GJMF overhead when testing ideal jobs, we utilize the GT4 Fork mechanism
for job dispatchment. For tests of more realistic scenarios we use /bin/sleep
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to get exact job execution times and use the GT4 PBS module for job dis-
patchment, which submits jobs to a local cluster using Torque. To minimize
impact of stochastic network behaviors in our overhead measurements we do
not use jobs that involve file transfers.

In all tests, one machine deploys the GJMF (or the WS-GRAM client)
and the other three act as WS-GRAM/GT4 resources. For the GJMF tests,
the RSS retrieves GT4 Monitoring and Discovery Service (WS-MDS) infor-
mation from one of the three resources, which aggregates information from
the other two. A single instance of each GJMF service is deployed in a com-
mon service container, and the services are configured (by default) to use
local call optimizations for invocations.

In the tests, we use the GT4 WS-SecureConversation [5] security mech-
anism with client and service security descriptors in all Web Service invoca-
tions, including communication with the underlying Grid middleware. This
mechanism performs both authentication and encryption of communication
channels and will increase communication overhead and significantly reduce
invocation throughput for Web Service invocations. The security setup used
is deemed representative for intended production use in federated Grid envi-
ronments.

A major performance factor in service invocation using Java is the impact
of Java class loading. In service-to-service invocations, class loading over-
head will impact framework performance differently than in client-to-service
interaction, as services are more likely to have a class loaded, and may utilize
local call optimizations when codeployed in the same container. Typically,
overhead associated with Java class loading will impact performance severely
during the submission phase, and show up in measurements as a one-time
initial performance cost that obscure contributions of individual overhead
components. In these tests, all service clients have been codeployed with the
GJMF services to minimize the (potentially stochastic) impact of Java class
loading issues on client performance. To emulate behavior of standalone
service clients, full Web Service invocations are made between clients and
services. For tests of codeployed clients local call optimizations are used.

6.3. Performance Tests

The purpose of the performance evaluation is to investigate and quantify
individual contributions to total system overhead, and to verify that overhead
imposed by the GJMF is sufficiently small in relation to the functionality
offered by the framework. In the performance evaluation, we perform a set of
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tests of service invocation capabilities, job submission performance, and job
throughput to quantify and evaluate the impact of the GJMF overhead on the
total system overhead. The tests performed are based on the overhead model
presented in Section 6.1 and are designed to illustrate individual aspects of
the framework overhead. The five types of tests performed are:

1. Job submission tests (Section 6.3.1). Investigate GJMF service client
overhead associated with job submission and illustrate impact of, and
trade-offs between, different service deployment and invocation meth-
ods.

2. Job throughput tests for ideal computational settings (Section 6.3.2).
Investigate service-side overhead for scenarios illustrated by figures 9a
and 9c, where the number of available computational resources exceed
the number of jobs. This test setting constitutes a worst-case scenario
for GJMF overhead and serves to quantify an upper bound for overhead
imposed by use of the framework.

3. Job throughput tests for realistic computational settings (Section 6.3.3).
Investigate service-side overhead for scenarios illustrated by figures 9b
and 9d, where the number of jobs exceed the number of available com-
putational resources. These tests illustrate the GJMF’s ability to mask
overhead by parallel processing of job management and execution ac-
tivities.

4. Service invocation capability tests (Section 6.3.4). Investigate invo-
cation throughput for the GJMF auxiliary services to quantify their
contributions to the total system overhead and illustrate trade-offs be-
tween service communication overhead and service complexity.

5. Service invocation optimization tests (Section 6.3.5). Investigate per-
formance trade-offs for different types of service invocation optimization
mechanisms and illustrate impact of local call optimizations and their
ability to reduce service communication overhead.

6.3.1. Job Submission

To evaluate the submission overhead component of the total system over-
head, we measure the framework’s job submission throughput and quantify
overhead incurred by the GJMF against a baseline measurement of the GT4
WS-GRAM job submission performance. To illustrate trade-offs involved
when using the GJMF from service clients, we perform tests using sequen-
tial and batch invocation modes for Web Service invocations and local call
optimization invocations.
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For all tests, job, task, and task group submission performance is mea-
sured as turn-around time for submission in service clients using realistic
job descriptions. The average job submission makespan is used as a direct
measurement of the overhead incurred by the GJMF for job submission.

As can be seen in Figure 10, JCS and BSS job submission throughput
is slightly lower than that of GT4 WS-GRAM. This result is expected as
both these services perform synchronized invocations to the underlying mid-
dleware for job submission, and thus add their overhead contributions to
the middleware’s overhead contribution. The JCS also performs a job de-
scription translation from JSDL to GT4 RSL (via a JTS) and in addition to
this, the BSS also performs a task to resource matching (via a RSS). TGMS
and TMS throughput is higher than GT4 WS-GRAM throughput as they
contain submission buffers that allow them to perform asynchronized pro-
cessing of jobs, resulting in delayed submissions to underlying services. The
TGMS exhibits the highest throughput as it submits multiple tasks in single
service invocations. As can be seen in Figure 10b, use of batch invocation
modes enables the TMS to submit multiple tasks in a single WS invocation,
and thus increase submission throughput. Compared to the TGMS however,
TMS throughput is slightly lower. This is due to the TMS incurring over-
head from multiple synchronized calls to the TMS service back-end during
the submission phase.

When using local call optimizations, as illustrated in Figure 10c and 10d,
submission overhead can be reduced for all GJMF services. The TGMS
and TMS achieve very high submission throughput due to their ability to
perform asynchronous job submissions. Use of local call optimizations reduce
invocation overhead to a range where impact of this overhead component
becomes almost negligible.

6.3.2. Job Throughput for Ideal Computational Settings

To evaluate and get an upper bound for the processing overhead compo-
nent of the total system overhead, we measure the job processing capacity of
the framework in terms of throughput and quantify overhead incurred by the
GJMF against a baseline measurement of the GT4 WS-GRAM job process-
ing performance when the GJMF’s ability to mask overhead is minimized. As
indicated in Figure 9, this occurs in situations where the number of available
computational resources exceeds the number of jobs. To simulate this, and
isolate and maximize the impact of the GJMF overhead, we use jobs with
zero execution time, i.e. /bin/true executions, submitted to the GT4 middle-
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Figure 10: GRAM and GJMF job submission performance. Job submission
throughput as a function of number of jobs, vertical axis logarithmic.
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ware using the Fork dispatcher, which starts all jobs in parallel on the same
machine with minimal delay. As this test setting will minimize the GJMF’s
ability to mask processing overhead through task parallelization, it will con-
stitute a worst-case scenario for GJMF overhead and is used to quantify an
upper bound for the GJMF overhead (for non-failing jobs). Job, task, and
task group throughput are measured using sequential and batch invocation
modes for Web Service invocations and local call optimization invocations.

As can be seen in Figure 11, the GJMF incurs an average performance
penalty of less than one second per job for ideal (zero execution time) jobs.
This overhead includes factors such as job submission, interservice communi-
cation, job brokering, and distributed state management. When using batch
invocation modes for Web Service invocation job submissions (Figure 11b)
the overhead incurred can be somewhat mediated for the GJMF services.
Particularly, the overhead for using the JCS is reduced to a level close to
that of using GT4 WS-GRAM directly. This is due to the fact that the JCS
does not perform any type of task to resource matching. The BSS and the
services using the BSS, i.e. the TGMS and the TMS, suffer overhead from
the brokering process that, as illustrated in figures 9a and 9b, is partially
masked by the submission overhead when using sequential invocation modes
(Figure 11a).

When using service clients codeployed with the GJMF, as illustrated in
figures 11c and 11d, GJMF local call optimizations allow the JCS overhead to
be reduced to close to GT4 WS-GRAM performance regardless of invocation
mode. Local call optimizations do not greatly affect the throughput of the
other GJMF services as these are still bound by the brokering overhead. It is
worth noting that while local call optimizations do not increase throughput
in these tests, they do reduce memory load for clients and services involved,
promoting system scalability. BSS brokering overhead can also be masked
by external overhead and job execution times, allowing higher order GJMF
services to approach WS-GRAM throughput.

Use of the GT4 Fork mechanism for job dispatchment results in all jobs
executing as spawned processes on the local machine. Despite the use of a
computationally cheap process, this still causes increased load on the machine
that in the measurements show as a slight decrease in average job throughput
for all services (including the WS-GRAM) as the number of jobs increase. In
tests using large numbers of jobs, use of full Web Service invocations results in
memory starvation effects in the service container, negatively affecting service
processing throughput. This effect can be observed for the TMS, BSS, and
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Figure 11: GRAM and GJMF job processing performance for ideal compu-
tational settings. Average job makespan as a function of number of jobs.

37



JCS in figures 11a and 11b. Note that the TGMS does not suffer from this
effect as it performs single service invocations for task group submissions, and
uses delays between subsequent TMS task submissions. Note also that use
of batch invocation modes alleviates this effect, but does not eliminate it as
back-end invocations still marshal requests and create job and task resources.

6.3.3. Job Throughput for Realistic Computational Settings

To evaluate the processing overhead component of the total system over-
head under more realistic circumstances, we measure the job processing ca-
pacity of the framework in terms of throughput and quantify overhead in-
curred by the GJMF when deployed with a production environment system
(GT4 and PBS Torque) against a baseline measurement of the GT4 WS-
GRAM job processing performance. In these tests, computational power is
limited as the number of jobs exceed the number of available computational
resources, allowing the GJMF to mask overhead through parallel task pro-
cessing. To establish a theoretical minimum time required to execute a set
of jobs, we employ /bin/sleep jobs of a known, non-zero execution length in
the tests. Job, task, and task group throughput are measured using sequen-
tial and batch invocation modes for Web Service invocations and local call
optimization invocations.

In Figure 12, a theoretical minimum time for execution of a set of jobs
(based on number of jobs, job execution length, and number of available
computational hosts) has been subtracted from each measurement to better
illustrate remaining overhead components. As illustrated, a stochastic ele-
ment has now been introduced to the overhead model for the system. This
is a result of using the PBS scheduler, which has two polling intervals for job
submission and job status inspection (in the tests set to 60 and 120 seconds
respectively). PBS Torque also implements a behavior where jobs arriving to
an empty PBS queue are scheduled faster than the scheduling interval may
suggest. In the tests job execution lengths are set to 60 seconds, which com-
bined with the PBS scheduling intervals result in each set of jobs receiving
an overhead contribution from PBS of between 0 and 180 seconds depending
on when in the scheduling cycle a job arrives and terminates. PBS over-
head contribution appears stochastic as the GJMF and the PBS scheduling
mechanisms are not synchronized. The GJMF overhead has in the tests been
partially masked by job execution times and is, independently of invocation
mode and mechanism, small enough to be masked by the PBS component.

The term realistic computational settings used in this test refers to the
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Figure 12: GRAM and GJMF job processing performance for realistic com-
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job management components operating in a setting where non-zero job exe-
cution overhead and duration allow the GJMF to mask individual component
overhead contributions. In realistic scenarios, job execution durations would
typically be several orders of magnitude larger, and mask GJMF overhead
even more. Job execution durations used here are selected to be sufficiently
small to allow for greater numbers of tests.

6.3.4. GJMF Auxiliary Services

To evaluate performance of the GJMF auxiliary services, quantify RSS
overhead contributions in job throughput tests, and illustrate impact of in-
vocation modes and mechanisms on interservice communication within the
framework, we measure invocation capacity of the LAS, the JTS, and the
RSS using sequential and batch invocation modes for Web Service invoca-
tions and local call optimization invocations. For all tests, typical GJMF
tasks containing full JSDL documents are used as service invocation param-
eters. In LAS tests tasks are stored in logs, for JTS tests task JSDLs are
translated to GT4 RSL, and in RSS tests tasks are brokered to computational
resources.

As can be seen in Figure 13, local call optimizations allow for much greater
invocation throughput than Web Service invocations. This is natural as they
avoid network transport and mitigate the need for message serialization and
parsing. Use of batch invocation modes also increase invocation through-
put as they reduce the number of service invocations required. As the LAS
implements asynchronous storage queues, it allows for an asynchronous com-
munication model and can thus reduce service client invocation overhead to
be bound by communication overhead (Figure 13a). The JTS and RSS pro-
vide synchronous request processing models, and are therefor performance
bound by the processing limitations of the service implementation as well as
the communication overhead (figures 13b and 13c, respectively). The JTS
is able to process requests in a manner efficient enough to increase invoca-
tion throughput by use of local call optimizations as it implements context-
dependent job description translations through customization points. While
the RSS implements background information retrieval for brokering informa-
tion, the brokering process itself is complex enough to become the limiting
factor for invocation throughput. In this case, use of local call optimizations
does not greatly affect invocation throughput, but will serve to conserve
memory in service invocation. As these measurements are made using the
same setup as the job submission and throughput tests of sections 6.3.1,

40



 0.1

 1

 10

 100

 1000

 10000

 0  100  200  300  400  500  600  700  800  900  1000

In
v
o
ca

ti
o
n
 t

h
ro

u
g
h

p
u

t 
(i

n
v

o
ca

ti
o
n

s 
/ 

s)

Number of invocations

Batch Local Call
Sequential Local Call
Batch Invocation Call

Sequential Invocation Call

(a) The Log Accessor Service.

 0.1

 1

 10

 100

 1000

 10000

 0  100  200  300  400  500  600  700  800  900  1000

In
v
o
ca

ti
o
n
 t

h
ro

u
g
h

p
u

t 
(i

n
v

o
ca

ti
o
n

s 
/ 

s)

Number of invocations

Batch Local Call
Sequential Local Call
Batch Invocation Call

Sequential Invocation Call

(b) The JSDL Translation Service.

 0.1

 1

 10

 100

 1000

 10000

 0  100  200  300  400  500  600  700  800  900  1000

In
v
o
ca

ti
o
n
 t

h
ro

u
g
h
p
u
t 

(i
n
v
o
ca

ti
o
n
s 

/ 
s)

Number of invocations

Batch Local Call
Sequential Local Call
Batch Invocation Call

Sequential Invocation Call

(c) The Resource Selection Service.

Figure 13: Invocation performance for the auxiliary services of the GJMF.
Invocation throughput as a function of number of invocations, vertical axis
logarithmic. Sequential and batch invocation mode performance for local call
optimization and Web Service invocation calls.
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Figure 14: Local call optimization types. Illustrates actors and overhead
involved.

6.3.2, and 6.3.3, the values for the local call optimization tests can be used
as rough estimates of the individual overhead contributions of these services
to the GJMF processing overhead.

6.3.5. Local Call Optimizations

To evaluate performance and impact of the GJMF local call optimization
mechanisms, we measure invocation throughput for a reference service using
the GJMF local call optimizations and compare it to invocation throughput
for the same service using Axis Local Calls, Globus Local Invocations, Axis
Web Service invocations, and direct Java method invocations to the service
implementation. Invocations are made sequentially and in parallel (using a
multithreaded service client) with small messages as parameters and a lean
service method implementation to minimize the impact of memory starvation
effects in the tests.

The different types of service invocation mechanisms used in the tests
are illustrated in Figure 14. GJMF local call optimizations identify service
implementation back-ends based on class name and perform marshalling of
service invocation data using immutable wrapper types. Globus Local Invo-
cations perform service implementation lookup through a Java Naming and
Directory Interface (JNDI) [60] based container service registry and utilize
generated stub types for service invocation data representations. Axis Lo-
cal Calls locate service implementations through the same container service
registry and perform full SOAP serializations of service messages.
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Figure 15: Web Service invocation capacity comparison. Service invocation
throughput as a function of number of invocations, vertical axis logarithmic.

It should be noted that the GJMF local call optimizations also provide
local call capabilities for state notification delivery with comparable perfor-
mance. This has not been evaluated in the tests as neither Globus Local
Invocations or Axis Local Calls offer this functionality.

As illustrated in Figure 15, use of local call optimizations greatly improve
service invocation throughput. The GJMF local call optimizations provide
invocation performance comparable to existing Axis and Globus optimiza-
tions. All invocation methods scale well for parallel invocations, which is
to be expected as they are designed for this use case. For large numbers of
parallel invocations, the Axis Web Service invocation mechanism throughput
drops drastically as the service container is unable to handle large numbers
of concurrent service invocations due to memory and thread pool exhaustion
issues.

While not illustrated by the tests, the GJMF local call optimizations
require less memory than Axis and Globus invocation optimizations as the
GJMF mechanisms do not perform message serialization, maintain message
contexts, or invoke message handlers for local service invocations. While this
trait does not directly affect service invocation times, it reduces the memory
load of the service container when using WS-BaseNotification based notifi-
cation schemes for services handling large numbers of objects, e.g., a TGMS
containing large task groups. As can be seen in Figure 15a, the Globus lo-
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cal invocation mechanism outperforms the GJMF local calls for sequential
service invocations due to two factors. First, the Globus local invocation
mechanism performs a caching of Web Service objects between invocations,
something the GJMF is unable to do as the GJMF enforces a user-level isola-
tion of service capabilities for each call. Second, the GJMF performs context-
based type validation of job description data in immutable wrapper types,
e.g., parses job descriptions and verifies that that all required information
is present, a process that simplifies service development but imposes addi-
tional computational overhead. For the parallel invocation case illustrated
in Figure 15b, the GJMF local call optimizations outperforms the Globus
local invocations mechanism, which is attributed to the lower memory usage
of the GJMF local call optimizations.

6.4. Performance Discussion

In the GJMF, job processing overhead is parallelized between services
and, as illustrated in Figure 9, masked by job submission and job execution
overhead. As also illustrated, parallelization of job execution is independent
of GJMF overhead and a function of the number of computational nodes
available. When the number of jobs exceeds the number of nodes available for
immediate job submission (as illustrated in 9b and 9d), GJMF job processing
will be performed in parallel with job executions, and job durations will
mask impact of overhead incurred by the GJMF. For realistic scenarios, e.g.
use of codeployed GJMF services in computational Grids, job durations are
typically several orders of magnitude larger than overhead incurred by the
GJMF and will help mask GJMF overhead even when large numbers of
computational nodes are available. As Grids typically have high utilization
rates and individual Grid users rarely have exclusive access to computational
nodes, this effect is expected to effectively mediate the impact of GJMF
overhead on total job makespan.

Furthermore, as the greater bulk of the GJMF job processing overhead is
constituted of service invocation times, co-hosting the services of the GJMF
allow GJMF local call optimizations to reduce the overhead contribution of
the GJMF job processing mechanisms to a level where the initial job submis-
sion overhead component becomes dominant. When using standalone clients,
i.e. clients not co-located with the GJMF, job submission overhead can be
mediated to a one-time cost by using batch invocation modes (illustrated in
9c and 9d). In most cases, submission overhead will impact total overhead
regardless of whether the GJMF is used or not, but the various invocation
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and deployment modes of the GJMF can be used to mediate this compo-
nent. GJMF processing overhead can be mediated by GJMF deployment
and configuration options, e.g., by use of codeployment of services and local
call optimizations. Use of batch invocation modes for service invocations
conserve network bandwidth and reduce the memory footprint of both the
GJMF services and GJMF service clients. Use of local call optimizations
eliminates network bandwidth requirements and reduces memory used for
service invocations to a minimum.

The overhead model used here (illustrated in Figure 9) is somewhat sim-
plified as the GJMF will incur additional overhead associated with failure
handling and resubmission in situations where jobs fail. As common causes
for Grid job submission failures include, e.g., submission of erroneous job
descriptions, Grid congestion scenarios (lack of available computational re-
sources), and resource overload situations [50], the GJMF has been design to
approach these situations using incremental back-off behaviors modeled af-
ter network failure handling protocols. As a result, the overhead component
associated with failure handling is expected to quickly become dominant in
the total system overhead for individual jobs, but should not affect other
Grid jobs, resources, or end-users. As rational failure handling depends on
the failure context, i.e. why and how a job fails, this behavior is hard to
objectively quantify in general settings and has therefor not been evaluated
in tests.

Tests reveal that use of the GJMF for job management imposes an average
overhead of less than one second per job, and that the GJMF is able to par-
tially mask this overhead by parallel processing of job management tasks and
job executions. The mainstay of the GJMF overhead is constituted by service
communication overhead, and can be mitigated by service invocation modes,
codeployment of services, and use of local call optimizations. The individual
overhead contributions of the GJMF auxiliary services are sufficiently small
to not greatly affect the total system overhead of the GJMF. The local call
optimizations of the GJMF perform competitively when compared to ex-
isting service invocation optimizations and provide additional functionality
required by the deployment model of the GJMF. Local call optimizations
provide great reductions in service invocation overhead and memory require-
ments for services, and serve to reduce total system overhead and increase
scalability of service-based systems.
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7. Related Work

A number of contributions that in various ways relate to the job manage-
ment architecture proposed in this work have been identified. Standardiza-
tion efforts such as JSDL [9], GLUE [8], OGSA BES [28], and OGSA RSS
[31] have helped shape boundaries between niches in the Grid infrastruc-
ture component ecosystem, and directly impacted the design of the proposed
architecture. Standardized Web Service and security technologies such as
WSRF [27], WSDL [14], SOAP [40], and GSI [5] have outlined the archi-
tecture communication models, and Grid middleware and resource manager
systems such as the Globus middleware [35], NorduGrid ARC [17], Condor
[62], and BOINC [7] have all contributed to the design of the architecture’s
middleware abstraction layer. Standardization and interoperability efforts
such as The Open Grid Services Architecture (OGSA) [29], the Open Mid-
dleware Infrastructure Institute (OMII Europe) [54], and Grid Interopera-
tion/Interoperability Now (GIN) [39], as well as contributions such as [67],
[47], [55], and [10] have provided perspective, insight, and inspiration regard-
ing interoperability aspects of the architecture design.

The Grid resource management system survey presented in [48] provides
a taxonomy of Grid job management systems. In this model, the GJMF is
classified as a job management system providing soft quality of service for
computational Grids. Resource organization, namespace, information sys-
tem, discovery, and dissemination as defined in this model are all determined
by the underlying middleware. Type of scheduler organization is determined
by how the framework is employed, but is typically expected to be decen-
tralized for multi-user use of the framework. Non-predictive state estimation
models are currently provided by the RSS, along with event-driven and ex-
tensible (re)scheduling policies.

A set of job management systems exhibiting similarities in design or in-
tended use have also been identified, and include, e.g., the GridWay Metasched-
uler [41], a framework for adaptive scheduling and execution of Grid jobs.
Like the GJMF, GridWay builds on the Globus Tookit and offers an ab-
stracted (”submit and forget”) type of Grid job submission focused on reliable
and autonomous execution of jobs. Both systems provide failover capabilities
through resubmission of jobs, where GridWay offers job migration capabilities
through checkpointing and migration interfaces, whereas the GJMF focuses
on abstraction of Grid middleware capabilities and system composability, and
offers coarse-grained resubmission policies in higher services. GridWay also
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offers a performance degradation mechanism which may be used to detect
and trigger job migration mechanisms. The GJMF assumes computational
hosts maintain acceptably consistent performance levels and relies on Grid
applications and middlewares to handle checkpointing and application pre-
emption issues.

The Falkon [58] framework provides a fast and lightweight task execution
framework focused on task throughput and efficiency in task dispatchment.
Falkon is by design not a fully featured local resource manager, and achieves
high job submission throughput rates through, e.g., elimination of features
such as multiple submission queues and accounting, and the use of custom
protocols for state updates. Both Falkon and the GJMF are service-based
frameworks and make use of notifications for distributed state notifications,
but are in essence designed for different use cases. Falkon is, e.g., designed
for efficient job submissions and achieve much higher submission throughput
that the GJMF, whereas the GJMF, e.g., provides middleware-independence
to service clients.

The Minimum intrusion Grid (MIG) [46] is a framework aimed at pro-
viding Grid middleware functionality while placing as little requirements as
possible on Grid users and resources. Building on existing operating system
and Grid tools such as SSH and X.509 certificates, the MIG provides a non-
intrusive integration model and abstracts the use of Grid resources through
service-based interfaces. The approaches differ on a number of points, e.g.,
where the MIG uses a centralized and monolithic job scheduler the GJMF
provides a framework of composable services and relies on underlying mid-
dlewares for job to resource submissions.

The Imperial College e-Science Networked Infrastructure (ICENI) [33] is
a composable OGSA Grid middleware implementation based on Jini [44].
ICENI provides a semantic approach to build autonomously composable
Grid infrastructure components where services are annotated with capabil-
ity information and new services are instantiated through SLA negotiations
with existing services. The ICENI composability approach differs from the
GJMF one, whereas the GJMF only provides mechanisms for framework
(re)composition and service customization. ICENI also exposes service im-
plementations locally through the Jini registry, a mechanism similar to the
GJMF local call optimizations, and provisions for plug-in implementations of
schedulers and launchers [70] in a way similar to the GJMF RSS customiza-
tion points. Compared to ICENI, the GJMF provides additional functionality
in terms of higher-level abstractions of job management, client APIs, more
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flexible deployment options, and greater standardization support.
The Job Submission Service (JSS) [24] is a resource brokering and job

submission service developed in the GIRD [65] project. The JSS supports ad-
vanced brokering capabilities, e.g., advance reservation of resources and coal-
location of jobs, customization of algorithms through plug-ins, and standards-
based middleware-independent job submission. Compared to the JSS, the
GJMF provides additional functionality in, e.g., management and monitoring
of jobs and groups of jobs, client APIs, logging capabilities, and translation
of job descriptions. Work on the GJMF began as a functionality extension
and refactorization effort targeted towards the OGSA BES and RSS stan-
dardizations, and builds on experiences from the JSS project.

All of these approaches are considered to operate in, or close to, the Grid
middleware layer in the GJMF architectural model, and could be integrated
with the GJMF as Grid middleware providers.

eNANOS [59] is a resource broker that abstracts Grid resource use and
provides an API-based model of Grid access. Internally, uniform resource
and job descriptions combined with XML-based user multi-criteria descrip-
tions provide dynamic policy management mechanisms facilitating use of ad-
vanced brokering mechanisms. Job and resource monitoring mechanisms are
provided, and failure handling through resubmission of jobs is supported.
The primary difference between eNANOS and the GJMF lies in the flexi-
bility of the GJMF architecture, which allows dynamic composition of the
framework and provides additional levels of abstraction of job management
functionality. The GJMF also builds on more recent standardization efforts
such as JSDL, WSRF, and the OGSA BES.

The Community Scheduler Framework (CSF4) [69] is an OGSA-based
open source Grid meta-scheduler. Like the GJMF, CSF4 is constructed as
a framework of Web Services, builds on GT4, provides WSRF compliance,
and exposes abstractions for job submission and control. In addition to this,
CSF4 also provides user-selectable job submission queues and a mechanism
for advance reservation of resources (via local resource managers). Compared
to the CSF4, the GJMF provides support for concurrent use of multiple
middlewares, framework composability, standards compliance, and a Java-
based client API.

The GridLab Grid Application Toolkit (GAT) [4] is a high-level applica-
tion programming toolkit for Grid application development. The fundamen-
tal ideas behind the GAT and the GJMF are similar, both projects aim to
decouple Grid applications from Grid middlewares by providing middleware-
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independent Grid access through client APIs aimed at simplifying Grid ap-
plication development. The GAT builds on the GridLab [3] architecture
which aims to be a complete Grid utilization platform, providing, e.g., data
management services (including data transfer and replica management capa-
bilities), monitoring services, and services for visualization of data, while the
GJMF provides a composable and lean architecture for Grid utilization focus-
ing on functionality required for job management, and relying on underlying
middlewares for functionality such as job control and file staging.

GridSAM [49] is a standards-based job submission system that builds on
standardization efforts such as JSDL, and aims to provide transparent job
submission capabilities independent of underlying resource manager through
a Web Service interface. Similar to the asynchronous job processing of the
GJMF, GridSAM employs a job submission pipeline inspired by the staged
event-driven architecture (SEDA) [68] that allows for short response times in
job submission. Fault recovery capabilities are in GridSAM built by persist-
ing event queues and job instance information, similar to the failure handling
mechanisms of the GJMF that provide redundancy and resubmission capa-
bilities. Compared to GridSAM, the GJMF provides additional functionality
for composition of the job management framework, external exposure of job
description translation functionality, job monitoring capabilities, and multi-
ple job submission and control modes.

Nimrod-G [12] provides a layered architecture for resource management
and scheduling for computational Grids. Nimrod-G provides an economy-
driven broker that supports user-defined deadline and budget constraints for
schedule optimizations [1], and manages supply and demand of resources
through the Grid Architecture for Computational Economy (GRACE) [11].
Like the GJMF architecture, the Nimrod-G provides layered abstractions of
middleware access components and facilitates use of parameter-sweep style
applications. While the GJMF lacks capabilities for economy-based schedul-
ing decisions, it does offer customization points for these types of mechanisms
in the RSS, and provides a flexible architecture that can incorporate such
usage-pattern specific adaptations with only local modifications.

The Gridbus [66] broker is a Grid broker that mediates access to dis-
tributed data and computational resources, and brokers jobs to resources
based on data transfer optimality criteria. Gridbus extends the resource
broker model of Nimrod-G, defining a hierarchical model for job brokering
containing separate resource discovery, Grid scheduling, and monitoring com-
ponents. Like in the GJMF, tasks are defined as sequences of commands that
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describe user requirements, including, e.g., file staging and job execution in-
formation, located within the task description itself. Task requirements drive
resource discovery and tasks are resolved into jobs, here defined as units of
work sent to Grid nodes, i.e. instantiations of tasks with unique combina-
tions of parameter values. The Gridbus broker also abstracts use of multiple
middlewares through a service-based interface. Differences between the two
platforms include, e.g., Gridbus heuristics-based scheduling strategies, and
the GJMF’s ability to dynamically reconfigure framework deployment during
runtime.

GMarte [6] is a Grid metascheduler framework exposing a high-level Java
API for Grid application development. Like the GJMF, the GMarte archi-
tecture is built in layers and employs a middleware abstraction layer that ab-
stracts use of multiple middlewares. GMarte also provides failure handling
through resubmission of jobs, and extends upon this through provisioning
for application-level checkpointing of job executions. GMarte exposes a Java
client API, plug-in points for information system access, and a service-based
interface through GMarteGS [51], which supports WS-BaseNotification based
state updates. The GJMF differs from the GMarte on a number of points,
e.g., through the use of standardization efforts like JSDL and the OGSA
BES, and by providing a dynamically composable architecture.

All of these contributions are considered to operate on a layer higher
than the Grid middleware layer in the GJMF architecture, and are as job
management solutions considered alternative approaches to the GJMF. Each
system could naturally be incorporated with the GJMF as Grid middleware
accessors, or could with modifications utilize the GJMF in a similar manner.
While there are many viable workflow-based approaches to Grid job manage-
ment, e.g., ASKALON [25], Pegasus [15], and GWEE [19], these have been
omitted here as the scope of this work is restricted to generic job management
architectures rather than workflows. Naturally, with modifications, most of
these could make use of the GJMF for middleware-independent Grid access.

Finally, a few slightly different approaches have been identified, e.g., P-
GRADE [45], which is a high-level environment for transparent enactment
of parallel and Grid execution of applications. P-GRADE abstracts use of
Grid resources through Condor and Globus interfaces, and provides enact-
ment of individual jobs, MPI jobs, and workflows through generation of job
wrapper scripts that stage, checkpoint, and execute jobs on computational
resources. P-GRADE also supports monitoring of jobs and resources through
tools provided by the environment, and job migration through checkpointing.
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Compared to P-GRADE, the GJMF provides a different approach, focusing
on providing infrastructure for autonomic job management rather than facil-
itation of Grid execution of applications. The GJMF assumes the existence
of Grid applications and provides functionality to automate the job manage-
ment process, e.g., high-level abstractions for execution of groups of tasks
and client APIs.

EMPEROR [2] is an OGSA-based Grid meta-scheduler framework for
dynamic job scheduling. EMPEROR provides a framework for integrating
performance-based scheduling optimization algorithms based on time-series
analysis of job history, as well as support for advance reservations (through
local resource managers). The GJMF does not perform speculative schedul-
ing or advance reservations, but offers customization points in the RSS for
injection of such mechanisms. Compared to EMPEROR, the GJMF provides
a more flexible architecture, greater standardization support, and levels of
job management abstractions.

The Application Level Scheduling (AppLeS) [13] project provides a method-
ology, application software, and software environments for adaptive schedul-
ing and deployment of Grid applications. In the AppLeS methodology,
project developers team up with application experts to develop customized
scheduling agents for applications that dynamically generates schedules for
application staging and execution in a continuous process. Here each agent
perform resource discovery and selection, schedule generation and selection,
and executes and monitors applications. AppLeS agents interact directly
with resource managers, perform all application management tasks, includ-
ing, e.g., file staging, and can enact collations of applications, e.g., parameter
sweeps. The AppLeS agents are similar in concept to use of personal deploy-
ments of the GJMF as individual job management clients, but differ in both
technology chosen and the fact that the GJMF defers much functionality to
underlying middlewares.

8. Future Work

A number of possible future extensions to the proposed architecture have
been identified and are under consideration for investigation.

• Data management. In a future extension, the GJMF is envisioned
to be complemented with a service-based, middleware- and transport-
independent data management abstraction that builds on top of mech-
anisms such as GridFTP and Grid Storage Brokers, and integrates

51



seamlessly with the GJMF services and service clients. Support for
data management would need to be provided by implementations of
GJMF middleware customization points in the JCS, as well as by
GJMF service clients. Interesting research questions regarding this
extension include investigation of how transport-independence can be
maintained while providing efficient functionality abstractions well ad-
justed to seamless integration with generic job management solutions.

• Workflow management. While the GJMF currently integrates with
workflow management solutions by offering middleware-independent
Grid job management interfaces, the framework itself lacks support for
execution of interdependent tasks. Inclusion of a middleware-independent
tool for execution of task graphs and static workflows would provide
clients with a fire-and-forget type of workflow management solution
similar to the functionality offered by the higher-order services of the
GJMF for tasks and task groups.

• Evaluation of experiences from production use. Experiences from fu-
ture production use of the framework is expected to provide feedback
and suggest alterations or redesigns of parts of the framework.

9. Conclusion

We have proposed a flexible and loosely coupled architecture for middleware-
independent Grid job management built as a composable set of Web Services.
Intended for use in federate Grid environments, the architecture makes no
assumptions of central control of resources or omniscience in scheduling,
and abstracts resource and system heterogeneity in multiple levels. Focus
is placed on maintaining non-intrusive coexistence and integration models,
and Grid and Web Service standardization efforts such as JSDL, WSRF,
OGSA BES, and OGSA RSS are built upon and leveraged.

The architecture is organized in hierarchical layers of functionality, where
services in layers abstract and aggregate functionality from underlying lay-
ers. Services in lower layers provide explicit job submission capabilities and
a fine-grained control model for the job management process while services
in higher layers attempt to automate the job management process and pro-
vide a more coarse-grained control model through preconfigured job control
and failure handling mechanisms. The architecture is designed to decouple
Grid applications for Grid middlewares and infrastructure components, and
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abstracts Grid functionality behind generic Grid job management interfaces.
Applications built on the framework will be loosely coupled to underlying
Grids, gaining portability and flexibility in deployment, as well as ability to
utilize heterogeneous Grid resources transparently.

In this work we have also presented a proof-of-concept implementation
of the architecture that builds on emerging Grid and Web Service standards
and supports a range of Grid middlewares. Middleware independence is
provided the framework through a set of foundational middleware abstraction
services and aggregated Grid job management functionality is built on top
of these. Services of the framework are individually configurable, and can be
customized through configuration and the use of plug-ins without affecting
other framework components. Framework composition can dynamically be
altered and will adapt to failures occurring in job submission or execution.

All services in the framework provide a degree user-level isolation of ser-
vice capabilities that function as if each user has exclusive access to the
framework. Any service can at any time be used by service clients as an au-
tonomous job management component while concurrently serving as a com-
ponent in the framework. The use of local call optimizations allow service
composition techniques to be used to construct software that simultaneously
function as networks of services and monolithic architectures. Use of service
client factories embedded in the client API make local call optimizations
completely transparent to services, service clients, and end-users.

The underlying software design principles developed within the project
have been described and findings from the project have been presented along
with an evaluation of the performance of the proof-of-concept implemen-
tation. Tests in the evaluation show that overhead imposed by use of the
framework for job submission, brokering, monitoring, and control is small,
on average less than 1 second per job, and that overhead imposed by the
framework is partially masked by job execution times in realistic applica-
tions. Codeployment of services enabling the use of local call optimizations
and batch service invocation modes can further reduce overhead imposed by
the framework on both client and service side.
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