
Finding, Extracting and
Exploiting Structure

in Text and Hypertext

Ola Ågren

PHD THESIS, 2009
DEPARTMENT OFCOMPUTING SCIENCE

UMEÅ UNIVERSITY

COPYRIGHT©C OLA ÅGREN 2009
EXCEPT PAPER:

I COPYRIGHT©C OLA ÅGREN 2001
II COPYRIGHT©C CSREA PRESS2002

III COPYRIGHT©C KNOWLEDGE SYSTEMS INSTITUTE 2003
IV COPYRIGHT©C CSREA PRESS2003
V COPYRIGHT©C OLA ÅGREN 2006

VI COPYRIGHT©C EMERALD GROUP PUBLISHING 2008

UMINF 09.12 ISSN 0348–0542 ISBN 978-91-7264-799-2

To my family

Till min familj

v

Abstract

Data mining is a fast-developing field of study, using computations to either predict
or describe large amounts of data. The increase in data produced each year goes
hand in hand with this, requiring algorithms that are more and more efficient in
order to find interesting information within a given time.

In this thesis, we study methods for extracting informationfrom semi-structured
data, for finding structure within large sets of discrete data, and to efficiently rank
web pages in a topic-sensitive way.

The information extraction research focuses on support forkeeping both doc-
umentation and source code up to date at the same time. Our approach to this
problem is to embed parts of the documentation within strategic comments of the
source code and then extracting them by using a specific tool.

The structures that our structure mining algorithms are able to find among crisp
data (such as keywords) is in the form of subsumptions, i.e. one keyword is a more
general form of the other. We can use these subsumptions to build larger structures
in the form of hierarchies or lattices, since subsumptions are transitive. Our tool
has been used mainly as input to data mining systems and for visualisation of data-
sets.

The main part of the research has been on ranking web pages in asuch a way
that both the link structure between pages and also the content of each page matters.
We have created a number of algorithms and compared them to other algorithms
in use today. Our focus in these comparisons have been on convergence rate, algo-
rithm stability and how relevant the answer sets from the algorithms are according
to real-world users.

The research has focused on the development of efficient algorithms for gath-
ering and handling large data-sets of discrete and textual data. A proposed system
of tools is described, all operating on a common database containing “fingerprints”
and meta-data about items. This data could be searched by various algorithms to
increase its usefulness or to find the real data more efficiently.

All of the methods described handle data in a crisp manner, i.e. a word or a
hyper-link either is or is not a part of a record or web page. This means that we can
model their existence in a very efficient way. The methods andalgorithms that we
describe all make use of this fact.

Finding, Extracting and Exploiting Structure in Text and Hypertext

vi

Keywords

Automatic propagation; CHiC; data mining; discrete data; extraction; hierarchies;
ProT; rank distribution; S2ProT; spatial linking; web mining; web searching

Ola Ågren

vii

Sammanfattning
Informationsutvinning (som ofta kallas data mining även påsvenska) är ett forsk-
ningsområde som hela tiden utvecklas. Det handlar om att använda datorer för att
hitta mönster i stora mängder data, alternativt förutsäga framtida data utifrån redan
tillgänglig data. Eftersom det samtidigt produceras mer och mer data varje år ställer
detta högre och högre krav på effektiviteten hos de algoritmer som används för att
hitta eller använda informationen inom rimlig tid.

Denna avhandling handlar om att extrahera information frånsemi-strukturerad
data, att hitta strukturer i stora diskreta datamängder ochatt på ett effektivt sätt
rangordna webbsidor utifrån ett ämnesbaserat perspektiv.

Den informationsextraktion som beskrivs handlar om stöd för att hålla både
dokumentationen och källkoden uppdaterad samtidigt. Vår lösning på detta prob-
lem är att låta delar av dokumentationen (främst algoritmbeskrivningen) ligga som
blockkommentarer i källkoden och extrahera dessa automatiskt med ett verktyg.

De strukturer som hittas av våra algoritmer för strukturextraktion är i form
av underordnanden, exempelvis att ett visst nyckelord är mer generellt än ett annat.
Dessa samband kan utnyttjas för att skapa större struktureri form av hierarkier eller
riktade grafer, eftersom underordnandena är transitiva. Det verktyg som vi har tagit
fram har främst använts för att skapa indata till ett informationsutvinningssystem
samt för att kunna visualisera indatan.

Huvuddelen av den forskning som beskrivs i denna avhandlinghar dock hand-
lat om att kunna rangordna webbsidor utifrån både deras innehåll och länkarna
som finns mellan dem. Vi har skapat ett antal algoritmer och visat hur de beter sig i
jämförelse med andra algoritmer som används idag. Dessa jämförelser har huvud-
sakligen handlat om konvergenshastighet, algoritmernas stabilitet givet osäker data
och slutligen hur relevant algoritmernas svarsmängder haransetts vara utifrån an-
vändarnas perspektiv.

Forskningen har varit inriktad på effektiva algoritmer föratt hämta in och
hantera stora datamängder med diskreta eller textbaseradedata. I avhandlingen
presenterar vi även ett förslag till ett system av verktyg som arbetar tillsammans
på en databas bestående av “fingeravtryck” och annan meta-data om de saker som
indexerats i databasen. Denna data kan sedan användas av diverse algoritmer för
att utöka värdet hos det som finns i databasen eller för att effektivt kunna hitta rätt
information.

Finding, Extracting and Exploiting Structure in Text and Hypertext

viii

Ola Ågren

Preface ix

Preface

The thesis consists of the six papers listed below and an introductory part. In the
introductory part, a general background on data mining is presented, as well as
more in depth coverage of the areas that are more closely related to our research.
The main findings of our research are described, as well as a proposed system for
handling large amounts of discrete and semi-structured data. The main parts of
this thesis are followed by an appendix containing a Users’ Guide for CHIC (see
Paper III).

List of Papers

I ÅGREN, O. ALGEXT — anALGorithm EXTractor for C Programs, Tech-
nical Report UMINF 01.11, Department of Computing Science,Umeå Uni-
versity, 2001.

II ÅGREN, O. Automatic Generation of Concept Hierarchies for a Discrete
Data Mining System, inProceedings of the International Conference on In-
formation and Knowledge Engineering (IKE ’02)(Las Vegas, Nevada, USA,
June 24–27, 2002), pp. 287–293.

III ÅGREN, O. CHIC: A Fast Concept HIerarchy Constructor for Discrete or
Mixed Mode Databases, inProceedings of the Fifteenth International Con-
ference on Software Engineering and Knowledge Engineering(SEKE’03)
(San Francisco, California, USA, July 1–3, 2003), pp. 250–258.

IV ÅGREN, O. Propagation of Meta Data over the World Wide Web, inPro-
ceedings of the International Conference on Internet Computing (IC ’03)
(Las Vegas, Nevada, USA, June 23–26, 2003), pp. 670–676.

V ÅGREN, O. Assessment of WWW-Based Ranking Systems for Smaller Web
Sites,INFOCOMP Journal of Computer Sciencevol. 5, no. 2 (June 2006),
pp. 45–55.

VI ÅGREN, O. S2ProT: Rank Allocation by Superpositioned Propagation of
Topic-Relevance,International Journal of Web Information Systemsvol. 4,
no. 4 (2008), pp. 416-440.

Finding, Extracting and Exploiting Structure in Text and Hypertext

x Preface

Other Publications

Outside the thesis work, and in addition to the papers listedabove, Ola Ågren has
(co-)authored the following publications:

• ÅGREN, O. Teaching Computer Concepts Using Virtual Machines,SIGCSE
Bulletin vol. 31, no. 2 (June 1999), pp. 84–85.
• ÅGREN, O.The DARK-Series of Virtual Machines, Technical Report UMINF

00.15, Department of Computing Science, Umeå University, 2000.
• ÅGREN, O. Virtual Machines as an Aid in Teaching Computer Concepts,

IEEE TCCA Newsletter(September 2000), pp. 72–76.
• ÅGREN, O. BitSet: Implementing Sets of Natural Numbers Using Packed

Bits, Technical Report UMINF 02.10, Department of Computing Science,
Umeå University, 2002.
• BÖRSTLER, J., JOHANSSON, O., LARYD , A., ORCI, T., SEGERBERG, H.,

AND ÅGREN, O. Quality Management for Small Enterprises, Technical Re-
port UMINF 02.20, Department of Computing Science, Umeå University,
2002.
• Editor for the proceedings of Umeå’s student workshop in Computer Archi-

tecture, 2000–2006.

Ola Ågren

Acknowledgements xi

Acknowledgements

A thesis is not something that can be done in isolation and there has been a lot of
input from various sources that I am extremely grateful for.

My thesis supervisor, Associate Professor Jürgen Börstler, for giving me more
or less free hands to pursue my own personal interests, for commenting on the
almost endless sets of drafts, and long discussions on various parts of what research
is and Computing Science (especially Software Engineering).

My thesis co-supervisor, Associate Professor Frank Drewes, for discussing the
more technical aspects of what I have been working on, for creative revisions, and
for being there as a friend and a former (and future?) Table Tennis team mate.

The staff at the Department of Computing Science, especially Steven Hegner,
Michael Minock, Lena Kallin Westin, Per-Åke Wedin, andall of the administration
and support staff. This includes all those that inspired me but have moved on in
life: Peter Jacobson, Olof Johansson, Krister Dackland, and those that have worked
as teaching assistants in my courses over the years.

The staff at the Department of Interactive Media and Learning, you made me
feel welcome and gave me support.

On a more personal level I must say that I’m unable to thank my friends
enough. You already know who you are, but a short list of your names1 includes:
Anders, Anna, Anne, Annelie, Annika, Anton, Bertil, Björn,Britta, Cecilia, Claes,
Clas, Claudia, Daniel, David, Elin, Elina, Emelie, Emilott, Eric, Erik, Erika, Eva,
Fredrik, Frida, Gunnar, Göran, Hanna, Hans, Helena, Henrik, Ingemar, Ingrid,
Jan, Jannek, Jenni, Jennie, Jennifer, Jenny, Jens, Jeroen,Joakim, Johan, Johanna,
Jonas, Jörgen, Katarina, Klas, Krister, Kristina, Lars, Leif, LenaMaria, Lennart,
Lina, Linda, Linus, Lisa, Lotta, Lovisa, Magnus, Malin, Marcus, Maria, Marianne,
Martin, Mattias, Melker, Mikael, Mona, Mårten, Niclas, Niklas, Nikoletta, Nils,
Nina, Ola, Olov, Oskar, Palle, Per, Per-Olof, Peter, Petter, Pär Anders, Rickard,
Rikard, Robert, Roger, Runa, Sabina, Sandra, Sara, Sigrid,Simon, Sofi, Stefan,
Stephan, Teresa, Therese, Thomas, Tomas, Tommy, Ulrika, Valentin, Viktoria,
Viveka, Wenche, Åke, Örjan, and probably some more that I missed. You are
the best!

1Name appears once, even if I know more than one with that name.

Finding, Extracting and Exploiting Structure in Text and Hypertext

xii Acknowledgements

Finally, and most importantly, I thank my family; My mother Solveig, father
Sten and former wife Anneli for supporting me and allowing meto follow my own
paths in life. My son Simon for being the sunshine of my life. My brother Bo, his
wife Maria and their fantastic daughters Sanna and Emma for being there for me.
My cousins and their families for being great sources of inspiration.

Live Long and Prosper!

Ola Ågren

CONTENTS xiii

Contents

1 Introduction 1
1.1 Research Questions . 3

2 Data Mining 5
2.1 Information Extraction . 7
2.2 Clustering . 7
2.3 Mining for Association Rules 7
2.4 Thesis Contributions . 12

3 Web Search Engines 15
3.1 Web Mining . 16
3.2 Web Link Mining . 17
3.3 Thesis Contributions . 22
3.4 Summary . 26

4 Final Remarks 29

5 Bibliography 31

Finding, Extracting and Exploiting Structure in Text and Hypertext

xiv CONTENTS

Paper I 41

6 ALG EXT — an ALGorithm E XT ractor for C Programs 43
6.1 Introduction . 45
6.2 Contents of a C File . 46
6.3 Source Code Requirements . 48
6.4 Implementation . 48
6.5 Examples . 49
6.6 Discussion . 51
6.7 References . 52
6.A Users’ Guide . 53
6.B System Documentation . 54
6.C Comment Comparison vis-à-vis ALGEXT 57

Paper II 59

7 Automatic Generation of Concept Hierarchies for. . . 61
7.1 Introduction . 62
7.2 Definitions . 64
7.3 The Algorithm . 65
7.4 Example of Execution . 68
7.5 Algorithm Analysis . 71
7.6 Related Work . 72
7.7 Discussion . 73
7.8 References . 75
7.A All Results from Step 1 . 76

Ola Ågren

CONTENTS xv

Paper III 77

8 CHI C: A Fast Concept HIerarchy Constructor for. . . 79
8.1 Introduction . 80
8.2 Background . 81
8.3 Definitions . 83
8.4 The Algorithm . 84
8.5 Example of Execution . 92
8.6 Algorithm Analysis . 96
8.7 Related Work . 99
8.8 Discussion . 100
8.9 Experiences . 101
8.10 References . 102

Paper IV 103

9 Propagation of Meta Data over the World Wide Web 105
9.1 Introduction . 106
9.2 Propagation Algorithm . 107
9.3 Definitions . 110
9.4 A Monotone Data Flow System on Meta Data 111
9.5 Related Work . 114
9.6 Discussion . 114
9.7 References . 115

Paper V 117

10 Assessment of WWW-Based Ranking Systems for Smaller Web Sites 119
10.1 Introduction . 120
10.2 Methods and Materials . 124
10.3 Results . 128
10.4 Discussion and Conclusions . 132
10.5 Acknowledgements . 134
10.6 References . 135
10.A Test Database . 136
10.B Keywords . 136
10.C Confidence Intervals per Keyword 137
10.D Kolmogorov-Smirnov Results 137

Finding, Extracting and Exploiting Structure in Text and Hypertext

xvi CONTENTS

Paper VI 141

11 S2ProT: Rank Allocation by Superpositioned Propagation of Topic-
Relevance 143
11.1 Introduction . 145
11.2 Preliminaries . 147
11.3 Related Works . 150
11.4 Propagation of Topic-relevance 152
11.5 Comparison of Algorithm Behaviours 160
11.6 Empirical Results . 166
11.7 Discussion . 177
11.8 References . 179
11.A Theorems and Proofs . 181
11.B Search Terms for the Assessment 184

Appendices 185

A Users’ Guide to CHI C 187
A.1 Introduction . 188
A.2 Using thewords Program . 188
A.3 Using thechic Program . 190
A.4 Contents of Each Data Base File 192
A.5 An Example Data Base . 192
A.6 References . 196

Index 197

Colophon 201

Ola Ågren

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Each year more and more data is generated in various forms, currently in the mul-
tiple Exabytes per year range. Most of this data is in some type of raw format that
must be refined before it can be used and understood. Moreover, a lot of this data
is stored on magnetic media of some sort for later retrieval.

To give some sense of scale, we will look at the Internet as an example of
how much information is available. Figure 1.1 on the following page displays
the number of hosts (registered host names) available on theInternet over the last
25 years. Moreover, the figure shows that the data traffic overthe Internet has
increased even faster. In fact, the sheer volume of data added each week is so large
that no one would be able to read all the information within a lifetime. This means
that tools must be used to help find interesting information,or even go so far as to
draw conclusions from the available data.

The tools might be simple or complex, but they can only work with the data
they are given. The simplest tools available can only searchfor records containing
exact matches of the keywords given in the query. Having moreinformation about
each document means that we can use more complex tools for that data-set. Two
very important attributes here are how structured the data-set is and whether there
is additional meta-data for each record.

If the data exist in a database or other forms of formally defined data-set, usu-
ally calledstructured data, it can easily be searched and used by software. The
so called Deep Web is built up of rich information and databases accessible using
forms or other software, and is usually seen as being much larger than the static
web [100].

A bigger problem exists if the data has no apparent structureor has only a
minimal inherent structure. General text files tend to have no structure outside of
those on the syntactical level, and are often seen as a type ofunstructured data.

Finding, Extracting and Exploiting Structure in Text and Hypertext

2

102

103

104

105

106

107

108

109

82 85 88 91 94 97 00 03 06 09

Year

Number of hosts
Traffic volume, GB/month

Figure 1.1: The number of hosts on the Internet 1982–2008 [73] and traffic through
AMS-IX (the largest Internet exchange point) during 2002–2008 [9].

Some form of natural language processing is usually required to use such data-sets
efficiently as soon as something more complex than a pure keyword search has to
be done.

There is also the middle ground between structured and unstructured data called
semi-structured data. A lot of the file types currently found on the Internet (such
as HTML and PDF) allow a number of structural parts such as headings and hyper-
links pointing to other documents. This is the type of data that we have focused on,
even though our indexing works on unstructured data as well.

It is also possible to use descriptive information about thedata rather than the
actual contents of the data. Such information is calledmeta-dataand usually con-
tains information about elements and attributes, records and structures, and prove-
nance of the data. Typical examples of meta-data include thename, size, data type
and length of each field available in the data-set, as well as where it is located,
its association to other data, ownership of the data, etc. Meta-data can sometimes
be seen as a model of the original data, thereby allowing applications and users to
search and browse the available meta-data rather than the original data-set. As an
example, the abstract of a book is together with the CIP record1 supposed to give a

1A Cataloging in Publication record is a bibliographic record prepared by the American Library
of Congress for a book that has not yet been published. When the book is published, the publisher

Ola Ågren

CHAPTER 1. INTRODUCTION 3

selling but objective sampling of the content of a book without going into details.
This can be seen as a case where meta-data is used to enhance the usefulness of
the data it describes [101]. An analogue would be to use thumbnails to provide
an overview of all available pictures in a gallery rather than using the full pictures
directly.

This thesis collects the results from three different projects dealing with semi-
structured data or meta-data. The first one, called ALGEXT, extracts meta-data
from source code. The second one, called CHIC, finds structure within large sets
of discrete meta-data. The last, and most important, one is the PROT project. It
uses structural as well as textual elements from semi-structured documents in order
to rank them, and is by far the most complex of the three projects.

1.1 Research Questions

The main questions that the research in this thesis tries to answer are:

• How can we find and extract structural information or embedded data from
discrete data-sets?

• How can we find and rank web-pages in a topic-sensitive way by algorithms
that are more efficient (at least in practice) than the currently known ones?

includes the CIP data on the copyright page. This makes book processing easier for both libraries
and book dealers [8].

Finding, Extracting and Exploiting Structure in Text and Hypertext

4 1.1. RESEARCH QUESTIONS

Ola Ågren

CHAPTER 2. DATA MINING 5

Chapter 2

Data Mining

Data mining is a collective term that stands for a number of different procedures
and methods for finding interesting information in large amounts of data. Other
names used for the concept include deductive learning, exploratory data analysis,
and data driven discovery [47].

While data mining can be applied to any type of data-set, it has been used
extensively in business systems. Data mining tools usuallydo not work directly on
a “live” database that contains day to day transactions, butoperate on a modified
and summarised database called adata warehouse. A data warehouse contains
aggregated and cleaned information from the “live” databases, i.e. ideally no false
or extraneous data [47, 71, 133].

Another difference between a regular database system and a data mining sys-
tem is in their operation. The user of a database system expects a crisp answer to
each query, for example, is a seat available on a certain flight. The answer given by
a data mining system could be in the form of possibly interesting patterns or meta-
data describing something in the database, for example, every user that bought
articlea also bought articleb [47].

Data mining approaches are usually grouped into either predictive or descrip-
tive systems, according to the taxonomy in Figure 2.1.

Data mining

Predictive Descriptive

Classification Regression
Time series

analysis
Prediction Clustering Summarisation

Association
rule discovery

Sequence
discovery

Figure 2.1: Data mining taxonomy [47].

Finding, Extracting and Exploiting Structure in Text and Hypertext

6

A predictivesystem makes some sort of a prediction for new values based on
already known values in the data-set. Predictive approaches include classification,
regression, time series analysis and prediction systems.

• A classificationsystem maps each object into one of a number of predefined
classes.
• A regressionsystem finds some sort of function that as closely as possible

matches the given data. One of the the attributes of the data is modelled by
the other attributes using the function.
• Time series analysisexamines the behaviour of a value over time.
• A predictionsystem tries to foresee a future state given current and previous

states. These systems are often used to give early warning for natural phe-
nomena, like earthquakes and flooding, as well as other semi-unpredictable
systems like speech recognition and pattern recognition [47].

A descriptivesystem tries to find relationships in data, e.g. patterns. Most of
the time it is not used to predict future values, but can be used to analyse different
attributes in the data. Descriptive approaches include clustering, summarisation,
association rule discovery and sequence discovery.

• Clustering is related to classification, but creates the classes by using the
existing data.
• Summarisationdiminishes the amount of data, while retaining as much sig-

nificant information as possible about the initial data set.
• Association rule discoverytries to find associations between different items

in the database.
• Sequence discoverylooks for patterns where one event leads to another event.

Most of our work has been on different descriptive approaches, including in-
formation extraction (see Section 2.1), clustering (see Section 2.2), mining for as-
sociation rules (see Section 2.3) and web-based data mining(see Chapter 3).

Ola Ågren

CHAPTER 2. DATA MINING 7

2.1 Information Extraction

Information extraction is the process of extracting, computing and compiling in-
formation from the text of a large corpus using machine learning [61]. Information
extraction systems are generally used to extract information about a page, storing
it in a form that makes queries and retrieval of the data as easy and efficient as
possible. Typical examples of information extraction systems include RSV [53]
and WHISK/CRYSTAL [125, 126].

2.2 Clustering

One widely used form of descriptive data mining isclustering. Clustering is related
to classification, but uses the existing data to automatically generate the classes.
Clustering is also calledunsupervised learningor segmentation. A very important
notion in clustering issimilarity, i.e. how closely related two (or more) items are to
each other. Clustering works by automatically grouping together smaller clusters
(i.e. data points with similar values) until either each cluster is “sufficiently” large
or a certain (predefined) number of clusters have been reached.

Clustering can be seen as finding groups of facts not previously known in large
data. There are numerous ways of clustering data-sets, depending on, for example,
type and distribution of data. An excellent review of the state of the art in data
clustering was published by Jain et al. in 1999 [76].

2.3 Mining for Association Rules

Mining for association rules is looking for patterns according to which one item is
connected to another item. There are many different applications available support-
ing mining for association rules. Most of them fall into two different categories,
unsupervised and supervised mining (see Sections 2.3.1 and2.3.2, respectively).

The rules found are usually in the form of an implicationX ⇒ Y. Each rule
found is marked with the quality attributes called support and confidence. A formal
definition is included in order to introduce the notation andterminology used later
in this text.

Finding, Extracting and Exploiting Structure in Text and Hypertext

8 2.3. MINING FOR ASSOCIATION RULES

DEFINITION 2.1 LetI = {I1, I2, . . . , Im} be a set ofitemsor anitemset. LetD be
a set oftransactions, where each transactionT is a set of items,T ⊆ I . We say
that a transactionT contains Xif X ∈ T. The fraction of transactions containing
X is called thefrequencyof X. An association ruleis an implication in the form
Y⇒ Z, whereY,Z ⊆ I , andY∩Z = ∅. This rule holds in the transaction setD
with confidenceα if the fraction of the transactions containingY that also contain
Z is at leastα. The rule hassupport sin the transaction setD if the fraction of the
transactions inD that containY∪Z is at leasts [47].

EXAMPLE 2.1 Given a database with three itemsI = {i1, i2, i3} and five transac-
tions D = {{i1},{i1, i2},{i1, i2, i3},{i2, i3},{i2}}, we can say that the support for
i1⇒ i2 is s(i1⇒ i2) = 2

5 = 40% and the confidence isα(i1⇒ i2) = 2
3 ≈ 67%. We

can also see thats(i2⇒ i3) = 2
5 = 40% andα(i2⇒ i3) = 2

4 = 50%, soi1⇒ i2 has
more confidence thani2⇒ i3 while they have equal support.

2.3.1 Unsupervised Mining for Association Rules

Unsupervised association rule mining systems automatically searchD to discover
association rules having high confidence and support, without being guided by
input from the user. The most commonly used algorithm is calledApriori [47, 129].

Apriori builds upon the fact that only subsets of large sets can be large, and
the assumption that only large subsets can give new information that is potentially
important. This means that the possible solution space can be pruned quickly while
checking the combination of all itemsets that differ in onlyone member. A support
parameters is used in Apriori to decide which itemsets are considered large. This
means that the algorithm will ignore rules with high confidence if the support is
too small [47, 64, 129].

Example 2.2 on the facing page shows how Apriori would prune the solution
space using already found information. Unsupervised data mining will not be dis-
cussed further in this thesis, since it is not the focus of thework described here.

Ola Ågren

CHAPTER 2. DATA MINING 9

EXAMPLE 2.2 Suppose we are given a data-set with three items (A,B andC), and
two of these (A andB) appear frequently while the last one (C) does not. Com-
bining itemC with eitherA or B results in an itemset that is not frequent enough,
thus indicating that these can safely be ignored from further calculations by Apri-
ori. This implies that only the intersection ofA andB (denoted{A,B}) can be a
frequent itemset when combining these itemsets. This is illustrated in the lattice in
Figure 2.2.

∅

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}

Figure 2.2: Lattice of itemsets for Example 2.2, withfrequent andinfrequent item-
sets. Dotted lines can safely be ignored by Apriori, since atleast one of its parents
are infrequent.

Finding, Extracting and Exploiting Structure in Text and Hypertext

10 2.3. MINING FOR ASSOCIATION RULES

2.3.2 Supervised Mining for Association Rules

Supervised mining for association rules is often performedon a data warehouse,
where the available data is already somewhat summarised andcleaned. The data
that is operated upon is usually described not only by a value, but also by a number
of attributes that describe from whom and where it came [47, 64].

EXAMPLE 2.3 Assume that we have a company that has two branches in Umeå
and one in Stockholm (both cities are in Sweden) as well as onein London, Eng-
land. The company sells electronics (television sets and portable CD players,
among other products) and mirror shades. To improve its operations the company
wants to use the sales data gathered from each branch to make estimates of the
number of units of each product type which need to be preordered. Each branch
of the company has sent in the sales figures for each product type for each day
to the central data warehouse that houses this data in a database. This means that
each data value is marked with a number of attributes, such asdate, location, and
product type.

Each attribute of Example 2.3 can be seen as a hierarchy on itsown, as il-
lustrated in Figure 2.3. Such hierarchies are often referred to asconcept hier-
archies[47, 64]. We have explored automatic generation of concept hierarchies
usingCHiC [140, 141, Papers II–III].

location date product

country

province_or_state

city

street

year

quarter

weekmonth

day

type

maker

family

product

Figure 2.3: Examples of concept hierarchies for Example 2.3.

Ola Ågren

CHAPTER 2. DATA MINING 11

The usual way of looking at the data in a supervised system is in the form of an
n-dimensionaldata cube, such as the one in Figure 2.4. Each side of the data cube
corresponds to the current view level in the hierarchy of theattribute, also called
facet. Another name for a data cube isOn-Line Analytical Processing (OLAP)
cube[47, 64, 129].

2007

Lo
nd

on

S
to

ck
ho

lm

U
m

eå
 N

or
th

U
m

eå
 C

ity

CD players

Television sets

Mirror shades

...

2008

2006

2005

pr
od

uc
t (

typ
e)

da
te

 (
ye

ar
)

location (city)

Figure 2.4: Data cube corresponding to Example 2.3 and the hierarchies (facets)
shown in Figure 2.3 on the facing page.

Each block in the cube corresponds to the chosen hierarchy level of each facet.
It is marked with the aggregated values of all underlying levels in the hierarchy as
well as its support (see Definition 2.1 on page 8). This cube can be changed and
examined by the user to find interesting patterns.

It is up to the user to choose operations (see Table 2.1 on the following page)
in such a way that new information can be deduced from the database. This means
that the output from using supervised mining for association rules will depend on
the user expertise in both the domain and the tools used.

A typical starting point would be to look at highly aggregated values over either
time (e.g. sales data per year) or per product, and then drilling down to find patterns
in the data. This would show variations due to season, locale, or product in our
example.

Finding, Extracting and Exploiting Structure in Text and Hypertext

12 2.4. THESIS CONTRIBUTIONS

Table 2.1: Typical operations that can be performed on a datacube [47, 64].

Operation Result
Transpose Changes the positions of facets with respect to the others
Slice/dice Choose a specific slice in one (or more) dimension
Drill-down Goes to a lower level in the hierarchy of one faceta

Roll-up The opposite of drill-down

aThe data cube in Figure 2.4 on the previous page has already been drilled down to the “city” and
“type” level in the location and product facets, respectively.

2.4 Thesis Contributions

There are two separate subareas within data mining that havebeen studied in the
present thesis. Each of them will be handled in its own subsection below.

2.4.1 Algorithm Extraction

A lot of research has been done to ensure that documentation of software is as
up-to-date as possible, but there are still some open problems. There is usually a
semantic gap between the source code and the documentation for several reasons;
the source code and the documentation are not always writtenat the same time,
different programs are probably used to edit them, etc. Thismeans that whenever
a change is done in one, it needs to be transferred to the other.

Our approach is to extract some parts of the documentation from the software.
This means that the documentation and source share the same file, implying that
there is an increased likelihood that the documentation will be updated whenever a
change is made to the source statements and vice versa; cf. the simplified version
of literate programming seen in c-web [52].

While truly automatic extraction of algorithms has not yet been mastered, it is
at least possible to use comments in order to add to the sourcecode whatever infor-
mation is required. ALGEXT [139, Paper I] is a proof of concept implementation
that extracts allstrategiccomments from ANSI C (see Example 2.4 on the facing
page), retaining the indentation of the source code in the extracted comments.

The main idea is to allow a textual description of the algorithms to be embedded
within the source code, and extract it when required. This works in a similar way
to cextract1, doxygen [134] and Javadoc [54] to extract (part of) the function
comments of the source files, but with less requirements on the comment mark-
up from the tool’s viewpoint; Example 2.4 shows that the comments can be quite

1Source code available fromhttp://dev.w3.org/cvsweb/Amaya/tools/cextract-1.7/.

Ola Ågren

http://dev.w3.org/cvsweb/Amaya/tools/cextract-1.7/

CHAPTER 2. DATA MINING 13

elaborate because of the requirements from other tools, in this case LATEX.

EXAMPLE 2.4 Given the following source code:

/* Function f(x) = x*x*x-x */
int f(int x)
{

/* \begin{equation} \mathcal{Z \rightarrow Z}, f(x) = x^3-x */
return x*x*x-x; /* will not work if x is too large */
/* \label{eq:f} \end{equation} */

}

The LATEX embedded in the tactical comments of the source code above gener-
ates Eq. (2.1).

f:
Z → Z , f (x) = x3−x (2.1)

2.4.2 Structure Extraction

The concept hierarchies used when doing supervised mining for association rules
(see Section 2.3.2) are normally defined at the same time as the database or by
using predefined hierarchies, such as Dublin Core [46] or LOM[72]. This will not
work that well when the data-set consists of free-text termsor free-text meta-data
describing each record. The main problem is that changing the set of records to be
included may yield a different set of terms to use as well. This means that there
has to be an automated process to find the concept hierarchiesgiven by the terms.

The process finds subsumptions, i.e. terms that exist in a record only if another
term exists there as well but not vice versa. These subsumptions are then used to
build up hierarchies that can be used either for semantic searches for documents or
for doing supervised mining for association rules among therecords.

The use of concept hierarchies to increase the number of documents found has
been very successful in information retrieval. A larger setof documents can often
be found by enriching the queries with terms that subsume theoriginal terms in the
hierarchy [30, 120].

At the turn of the century there were no tools available that could generate a
concept hierarchy specifically made for supervised mining for association rules.
It was possible to use decision tree inducers that could generate binary trees by
checking one attribute at a time, using algorithms that werenot optimised for crisp
data-sets.

This was the main motivation for creating the CHIC tool, that is able to induce
a concept hierarchy of terms given keyword based data [140, 141, Papers II–III]. It

Finding, Extracting and Exploiting Structure in Text and Hypertext

14 2.4. THESIS CONTRIBUTIONS

was originally designed to work together with a proprietarydata mining system on
the IRIX platform, but it is easy to adapt the output to most data mining systems.

There have been two upgrades of functionality in the tool from Paper II [140]
to Paper III [141], both being driven by an upgrade of the functionality of the data
mining system. The first upgrade was to allow generation of concept lattices rather
than hierarchies. This means that more than one path to a subsumed keyword
may exist in the resulting data-set. The second upgrade was to allow terms to be
reused in different facets, as long as there is no overlap between the keywords of
the facets. Reusing terms increases the coverage in the later facets. Turning these
options on means an increased amount of work required to generate the results (see
Paper III [141, Sections 8.6.1 to 8.6.2 on pages 96–98]).

The clustering generated by CHIC is not guaranteed to be optimal, since the
algorithm uses local minima to select decision points. Experience shows that it
generates appropriate results in almost all practical cases; We tested thousands of
data-sets and found only three hierarchies that did not quite make sense.

Figure 2.5: Problems with applying Data Mining on sales data.
With permission from PIB Copenhagen A/S 3/2004.

Ola Ågren

CHAPTER 3. WEB SEARCH ENGINES 15

Chapter 3

Web Search Engines

What is currently known as Internet started out as a researchnetwork with packet
switched data called ARPANET. It grew larger and larger as more computers and
networks were added to it over time, and some of the older protocols were replaced
to get more stability and/or throughput.

It was first and foremost used for transmitting text messagesand text files, until
Tim Berners-Lee from CERN in Switzerland created the first working prototype
of what is now known as the World Wide Web. It consisted of a webserver, a
combined browser and editor, and a number of pages that described the project.
Some of the technologies that we now take for granted were first introduced in this
project, e.g. globally unique identifiers (Uniform Resource Identifier).

There were originally very few servers up and running, so it was possible to
keep track of all of them and then manually browse to find the wanted material.
It did, however, not take long until the number of servers wastoo large to keep
track of manually (see Figure 1.1 on page 2). This meant that some sort of look-up
service was required.

Along came the first generations ofweb search engines[20, Section 4.72],
e.g. AltaVista.1 They indexed all pages they could reach and provided their users
with an easy way of doing searches. They usually had no way of ranking the pages,
instead they gave their answers in an unspecified (albeit usually deterministic) or-
der. The key to using these search engines was to add enough search terms (both
positive and negative) to a query to get the right number of pages.

Over the years more and more advanced search engines appeared. These search
engines used various techniques to give better search results. Among the most
successful and prominent ones is the idea to use the links between web pages to

1Their original search engine became operational in 1995 andwas located at
http://www.altavista.com. They have later created far more advanced search engines.

Finding, Extracting and Exploiting Structure in Text and Hypertext

http://www.altavista.com

16 3.1. WEB MINING

derive rankings indicating the relative importance of pages. Approaches based on
this idea will be discussed in this chapter.

3.1 Web Mining

Web mining is data mining using data from the web. Within thisfield, there are the
following five major research areas:

Information extraction Finding, extracting and compiling information from a
large corpus, see Section 2.1 on page 7.

Wrapper induction The process of finding general structural information abouta
set of web pages, and with this in mind extract only the relevant information
from each page [36, 108, 109].

Vector space modelling and (latent) semantic indexingA method for extracting
and representing the similarity between documents and the meaning of words
from the contexts, by applying statistical computations toa large corpus of
text [94, 119, 129].

Web link mining Mining the spatial link structure of the web for information, see
Section 3.2.

Web log mining Mining for knowledge in web logs, otherwise known asclick-
streamdata [25, 48, 103, 137].

Ola Ågren

CHAPTER 3. WEB SEARCH ENGINES 17

3.2 Web Link Mining

The main part of our work concerns web link mining. A lot of research has been
done by exploring the link structure between pages2, especially about algorithms
for very large data-sets such as the entire world wide web. Pages on a specific
subject tend to have links to other pages on the same subject [42, 51, 81]. Neigh-
bouring web pages (when using hyper-links to define distance) can be used to either
deduce or corroborate the contents of a web page. Web link mining systems usu-
ally look at both the quantity and type of links, often removing or decreasing the
effect of local links since these tend to be navigational rather than referential.

The web can be seen as a graph(V,E), where each vertex corresponds to a
web page and each edge corresponds to a hyper-link. By using apredefined or-
der among the vertices we can find a unique adjacency matrix corresponding to
the web. Almost all web link mining algorithms use such an adjacency matrix,
returning one or more eigenvectors corresponding to the eigenvalues of the adja-
cency matrix. Such eigenvectors can be seen as rating functions, giving a ranking
or retrieval order for the corresponding pages.

Most of the research in web link mining has focused on variants of two algo-
rithms called PageRank (see Section 3.2.1) and HITS (see Section 3.2.2).

3.2.1 PageRank

The general idea behind PageRank [26] is that of arandom surferbrowsing the
web, at each time following a random link on the current web page. Given a
sufficiently large number of simultaneous surfers, it wouldbe possible to stop them
at any given time and look at the number of surfers currently looking at each page
and use that number as the relative probability that it is an important page.

There were some problems with this approach3, i.e. what to do when there
are no outgoing links from a page and when two (or more) pages point to each
other without outgoing links from the group (rank sink). The answer to the first
problem was to recursively remove all pages lacking outgoing links from the cal-
culations. The latter problem was countered by adding the possibility of jumping
to any page on the web at a certain probability called adamping factor(1−µ).
The damping factor corresponds to the likelihood that a random surfer would jump
to a random page rather than follow one of the links on currentpage. This value

2This can be seen in the proceedings from IJCAI Text-Mining & Link-Analysis workshop
2003 [62], LinkAnalysis-2005 [63], LinkKDD [3, 4, 5, 44], SIAM Workshop on Link Anal-
ysis, Counterterrorism and Security [13, 41, 124, 130], as well as papers published in other
venues [56, 90, 110, 128, 131].

3Besides getting enough surfers to click at random.

Finding, Extracting and Exploiting Structure in Text and Hypertext

18 3.2. WEB LINK MINING

must be between 0 (inclusive) and 1, and a value of 0.15 was used by the original
authors [112]. The original PageRank algorithm gives a value for each pagej ∈V,
which is obtained by solving Eq. (3.1) withn = |V|, using iteration to find a fixed
point.

PR(j) =
1−µ

n
+(µ)× ∑

(i, j)∈E

PR(i)/outdegree(i) (3.1)

This can also be described by using a matrixP obtained from the column-
normalised adjacency matrixM (with all pages without links removed) of the graph
(V,E) by adding the damping factor:

P =

[

1−µ
n

]

n×n
+µM (3.2)

The rating returned, which is called PageRank, is the dominant eigenvector of
P: Pπ = π,π > 0, ||π||1 = 1. This means that thei-th entry ofπ is the probability
that a surfer visits pagei, or the PageRank of pagei.

Todayn is between 15-20 billions and computing the eigenvectorπ was already
in 2002 called the largest matrix computation problem in theworld [104].

3.2.1.1 Rate of Convergence

It has been proved that the second largest eigenvalue ofP will never be larger
than µ [68], leading to fast convergence when using power iteration to find the
PageRanks.4 It has also been shown that PageRank can achieve a stable state in
O(logn) iterations, wheren is the number of pages in the data-set. While this is
sufficient for most applications, there have been a number ofproposals for speeding
up the calculations so it can be used for ranking large data-sets such as the entire
Internet [10, 27, 39, 65, 66, 74, 82, 83, 84, 95, 114]. Typicalexamples of methods
used for efficiency improvement include Arnoldi [121], Lanczos [60], Jacobi [23]
and Gauss-Seidel [10].

4Because the power method converges at a rate proportional to|λ1/λ2| [60] andP is an irreducible
n-state Markov chain, which means that power iteration will always converge to a stable value [75,
Theorem 5.2].

Ola Ågren

CHAPTER 3. WEB SEARCH ENGINES 19

3.2.1.2 Problems and Variants

There are two main problems with the basic PageRank algorithm. The first problem
is that there are huge computational costs involved in calculating the PageRank val-
ues once (described in the previous section). The second problem is that the values
calculated represent an average random surfer rather than someone interested in
one specific subject, thus potentially leading to an answer set that is not of interest
for all users.

Two variations of PageRank have been widely used to counter the “random-
ness” problem. These are Personalized PageRank [112] and Topic-sensitive Page-
Rank [67]. They both use the same general ideas and algorithmas the original
PageRank, except that the damping factor is not added uniformly. Instead, a damp-
ing is scaled and added to either one starting page (for Personalized PageRank) or
to a set of pages (for Topic-sensitive PageRank) assumed to be about that particular
subject, which indicates that PageRank will have a preference for these pages over
other pages. Personalized PageRank will thus give a view of the Internet from the
viewpoint of one specific starting page.

Topic-sensitive PageRank has been used quite extensively,but suffers from a
major problem when it comes to rate of convergence: Adding the damping factor
to just some entries in the matrix makes it reducible. This means that several eigen-
values of the same magnitude might show up, thereby making the convergence of
power iteration very slow [60]. This can partly be offset by using the approach
of Jeh and Widom [77, 78], namely by creating base vectors forimportant pages.
This corresponds to a partial view of the Internet accordingto each important page,
by using Personalized PageRank with an extreme damping factor. The base vec-
tors are scaled according to the corresponding eigenvaluesand those that belong
to the required set are aggregated and normalised in order toform the final answer
vector. The rather small dampening factor used in PageRank still means that many
iterations are required before a stable answer can be found for each base vector.
Topic-sensitive PageRank is thus better for broader topics, so that each use of the
vector can be seen as amortising the cost to generate it.

Finding, Extracting and Exploiting Structure in Text and Hypertext

20 3.2. WEB LINK MINING

3.2.2 HITS

The basic idea behind HITS is that important pages about a specific subject have
pages with links pointing to them, and pages with good links tend to point out
important pages [88]. The algorithm gives two separate values for each page; how
valuable the contained information is according to the algorithm (calledauthority)
and also how good it is as a link page (calledhub).

Rather than addressing the entire Internet directly it usesa bootstrap data-set,
consisting of pages that are initially assumed to be about a specific subject. This set
is further extended with all pages pointed to by the bootstrap set as well as pages
that point to the bootstrap set. Each page in the entire set isgiven a start value in
the two categories. These values are adjusted by simultaneous iteration over the
equations given in Eq. (3.3), whereηi denotes the hub value for pagei andα j the
authority value for pagej.

ηi = ∑
(i, j)∈E

α j α j = ∑
(i, j)∈E

ηi (3.3)

Eq. (3.3) can also be described in terms of operations on the corresponding
adjacency matrixA:

η = ATα = ATAη α = Aη = AATα. (3.4)

We remark that, in practice, the matrix products in Eq. (3.4)are never computed
explicitly. All eigenvector-based methods only perform matrix-vector multiplica-
tions that make use of the sparse structure of the adjacency matrix A.

One thing to note here is that even though the required results are obtained in
the relative differences between individual values inη andα, it is necessary to keep
these values within(0,1) by using normalisation after each iteration of Eq. (3.4).
These values can otherwise become so large as to cause overflows in calculations.

3.2.2.1 Rate of Convergence

The basic HITS algorithm usually has a very good convergencerate, since it could
be seen as two simultaneous power iterations on symmetric non-negative matri-
ces [60]. Using a bootstrap set also creates a data-set (and corresponding adjacency
matrixA) that ismuchsmaller than the entire Internet, leading to much faster eval-
uation of the hub and authority values.

Ola Ågren

CHAPTER 3. WEB SEARCH ENGINES 21

3.2.2.2 Problems and Variants

HITS suffers from a problem calledtopic drift. Topic drift occurs when pages that
are barely on-topic receive high hub and authority ratings,since these pages are a
part of another close-knit society of pages linking to each other. This means that
if more than one topic can be found within the extended data-set the one with the
largest eigenvalue will be given. Possible solutions to this problem were given in
the CLEVER project [32, 34] as well as the work of Bharat and Henzinger [21].
CLEVER uses different weights on the links depending on the the number of links
and whether they reside on the same server, while Bharat and Henzinger used either
outline filtering or dividing the weight of each link with thetotal number of links
between same two servers.

The numerical stability of the calculations can sometimes be less than ade-
quate, meaning that small changes (such as missing links) inthe input data can
change the focus from one cluster of pages to another. Possible solutions to this
problem were given by Miller et al. [103] and Ng et al. [111]. Miller et al. used
web logs and up to two link steps to generate the adjacency matrix, while Ng et
al. used random walks in a manner similar to PageRank.

Another problem is that many different meanings of the same word can ap-
pear within the data-set. It is often the case that these meanings can be found by
checking more than the first eigenvalues for the combination, using what is called
spectral graph theory [92, 111].

Finding, Extracting and Exploiting Structure in Text and Hypertext

22 3.3. THESIS CONTRIBUTIONS

3.3 Thesis Contributions

We have used two major approaches to obtain a web search system that is stable,
fast and, according to the users, returns good answer vectors.

3.3.1 Monotone Data Flow System

The first approach is to puttrust levels5 on the meta-data belonging to a page and
then propagating it along links. The propagation is controlled by

• hyper-links (either given explicitly in the web pages or implied by the paths
of the URLs),

• the trust level given to each page,

• whether the data was perceived as pervasive, i.e. should propagate more than
one link, and

• a function that calculates the resulting meta-data using the incoming values
from each link.

This corresponds to a weighted Topic-sensitive PageRank where each non-pervasive
value can be propagated just one step along the links, and alllinks have weight.
The approach builds on the work done by Kam and Ullman [80], with an updated
propagation step to fit the requirements of our model.

The prototype is quite slow and requires inside knowledge tobe used success-
fully; well-defined trust rules as well as a relatively smallinput data-set are essen-
tial. Experiments with the prototype gave very positive results, even though both
the model and the resulting search engine are more of a theoretical and academic,
rather than a practical, nature [142, Paper IV].

5How much trust we put in that page regarding each piece of meta-data.

Ola Ågren

CHAPTER 3. WEB SEARCH ENGINES 23

3.3.2 Propagation of Topic-Relevance

The Propagation of Topic-Relevance6 (ProT) algorithm is a close relative to Topic-
sensitive PageRank, but with a major change. All links used in the calculations
potentially have the same strength; the value to propagate is divided by thedecay
factor (ξ) rather than dividing the value to propagate among the outgoing links
as in PageRank. This means that the propagation step requires a little less work,
but it does require both a very carefully chosenξ and normalisation after each
iteration [144, Paper VI].

Given an initial scoreϖ(j,0) = 1 (100%) for pages that are assumed to be on-
topic and zero otherwise, and usingk as the iteration count as well as settingξ to an
appropriate value (i.e. just above the dominant eigenvalueof the adjacency matrix)
we can apply the following algorithm:

ϖ(j,k) =
1
ξ ∑

(i, j)∈E

ϖ(i,k−1)+

{

ϖ(j,k−1) if j is on-topic

0 otherwise.
(3.5)

The final answer is given after normalisation of thek:th ϖ vector.
This means that the final answer depends on both the links of the web and

which pages are on-topic, controlled by the choice ofξ. This corresponds to chang-
ing the value of the damping factor of Topic-sensitive PageRank, albeit using a
value for the damping factor that is far away from the usual choices.

6The name was originally Propagation of Trust [143, Paper V].

Finding, Extracting and Exploiting Structure in Text and Hypertext

24 3.3. THESIS CONTRIBUTIONS

3.3.2.1 Problems and Variants

The matrix that ProT operates on is a composition of the adjacency matrix of the
original web and self-referential links for all pages that are on-topic. The prob-
lem with this matrix is that it is reducible, meaning that thematrix might have
several eigenvalues of the same magnitude. This leads tovery slow convergence
when using the power method to find the dominant eigenvalue (and corresponding
eigenvector) of the matrix. The convergence rate of ProT is on the same order of
magnitude as for the original Topic-sensitive PageRank, aswe have shown [144,
Paper VI, Section 11.5.1].

Our solution to this problem is to look at one starting page ata time, then adding
up all resulting vectors (calledbasic vectors) to generate a final result vector (after
normalisation). This also has the advantage that larger values ofξ can be chosen,
leading to even faster convergence. We call this versionSuperpositioned Singleton
Propagation of Topic-Relevance(S2ProT) [144, Paper VI, Section 11.4.4].

Another solution is theHybrid Superpositioned Singleton Propagation of Topic-
Relevance(HyS2ProT) algorithm, using the same general idea as S2ProT but di-
minishing each propagated value further by dividing the value with the number of
outgoing links, in the same manner as in PageRank [144, PaperVI, Section 11.7.2].
The main advantage of this approach is that the matrix has a dominant eigenvalue
of 1, since it uses a normalised matrix in the same way as PageRank (see Sec-
tion 3.2.1 on pages 17–18). This also means that an even larger value ofξ must be
chosen, since the starting values will otherwise propagatefurther along the links.

Ola Ågren

CHAPTER 3. WEB SEARCH ENGINES 25

3.3.3 Evaluation of Empirical Result

We have used three different ways of evaluating the algorithms:

• Empirical assessment of result relevance using human graders. In Paper V
[143] we took the top pages given by each algorithm and added them to a
questionnaire for each chosen search term. Volunteer graders graded each
page according to its perceived relevance with respect to the search term.
The average of all valid answers7 of pages belonging to the top pages of each
algorithm was calculated, and compared with the results from the others.

This assessment method was reused with minor changes in Paper VI8. All
results indicate that our algorithms (especially S2ProT) yield good answer
sets according to the graders [144, Paper VI, Section 11.6.1.4].

• Experimental assessment of algorithm stability.

– The stability of each algorithm when removing pages from theset of
on-topic pages were tested. The results indicated that S2ProT were
more stable than Topic-sensitive PageRank, which in turn was more
stable than ProT [144, Paper VI, Section 11.6.2.1].

– The stability of each algorithm when removing links from thedata-
set was tested. The results show that our algorithms are verystable;
the ranking order between the algorithms varies slightly depending on
which measurement we use [144, Paper VI, Section 11.6.2.2].

7Ignoring grades of “Don’t know” [143, Paper V, Section 10.2.2 on page 126].
8See Section 11.6.1.3 on page 168.

Finding, Extracting and Exploiting Structure in Text and Hypertext

26 3.4. SUMMARY

3.4 Summary

We have made extensive qualitative studies in various aspects of the algorithms
described in this chapter, presented in Table 3.1 on the nextpage. Some of the
results were discussed in Section 3.3.3 on the preceding page and have already
been published [144, Paper VI, Sections 11.5 to 11.6], whileothers (specifically
some of the HITS data) are based on data found in other sources[88, 103, 111].

We have graded each algorithm on a relative scale from ‘+’ to ‘++++’ with
regards to scalability, stability, and relevance. More plus signs correspond to a
higher grade. We remark that this grading reflects a qualitative assessment of the
figures revealed by our tests, but that the plus signs are not directly comparable
between columns. This means that one should not compare the algorithms by
adding up all the plus signs directly.

Forscalability, we have compared the cost of using larger input data-sets [144,
Paper VI, Section 11.5]. It reflects both the rate of convergence and the memory re-
quirements. The most scalable algorithms are PageRank9 and S2ProT, followed by
HyS2ProT, and then the others. One could argue that HITS should have a slightly
higher grade because of its diminished data-set, but actualdata does not agree with
that; The data-set must not only be generated from the largerset but the generated
set will sometimes have several eigenvalues of the same magnitude as well, which
indicates that we could not give it a higher grade. Using the algorithm upgrade of
Jeh and Widom [77, 78] would take Topic-sensitive PageRank up to the same level
as HyS2ProT.

Stability indicates how much the results are affected by removal of links and
decreased sets of starting pages [144, Paper VI, Section 11.6.2]. We have also
performed the same tests using HITS, and the results agree with the data reported
by Ng et al. [111], i.e. HITS is quite unstable.

Assessment of perceivedrelevancehas been one of the major parts of our work
in both Paper V and Paper VI. We have chosen to group algorithms with similar
results (see [143, Paper V] and [144, Paper VI, Section 11.6.1]) to the same grade,
although there are minor differences within the groups. Thehigher the perceived
relevance, the more plus signs are given.

Our conclusion is that the S2ProT algorithm is among the best in all categories.

9But recall, unlike the other algorithms in the table, PageRank is not topic-sensitive.

Ola Ågren

CHAPTER 3. WEB SEARCH ENGINES 27

Table 3.1: The scalability, stability and relevance of eachalgorithm on a scale from
‘+’ to ‘++++’.

Algorithm Scalability Stability Relevance

PageRank ++++ ++++ +++
Personalized PageRank ++ ++++ +
Topic-sensitive PageRank ++ +++ ++++

HITSa ++ + +++

ProT ++ ++ +++
S2ProT ++++ ++++ ++++
HyS2ProT +++ ++++ ++++

aBased partly on the results from other sources.

Finding, Extracting and Exploiting Structure in Text and Hypertext

28 3.4. SUMMARY

Figure 3.1: The problem with ambiguous search terms.
With permission from Krishna M. Sadasivam.

Ola Ågren

CHAPTER 4. FINAL REMARKS 29

Chapter 4

Final Remarks

The work described in this thesis can be seen as a set of algorithms and their im-
plementations that all operate on large quantities of discrete and textual data. The
general idea is that the information is sampled, extracted,compiled and stored in a
central data base that can be accessed by all tools that require the information.

Figure 4.1 on the next page illustrates our view of how such a set of tools should
be interconnected. Documents to be included in the data baseare processed to ex-
tract relevant information and possibly meta-data. Data propagation or implication
can be performed if some documents lack sufficient data, e.g.[142, Paper IV].

Another possible source of data is a label bureau that provides clients with
meta-data information about documents [14, 91, 102, 118, 138].

Multiple back-ends exist for the system as we envision it, one being a data min-
ing system that mines for association rules. It uses CHiC [140, 141, Papers II–III]
as the first step to create concept hierarchies, used in laterassociation rule mining.

Another available back-end tool is a search engine that usesthe topic-specific
vectors created by our search engine algorithms [144, PaperVI] in order to fa-
cilitate searching. A prototype of a complete web-based search engine has been
created and tested.

All in all, the algorithms and tools described in this thesiswork together to
provide answers that each of them would not be able to answer on their own. Most
of the individual tools in Figure 4.1 on the following page already exist, but they
have not been integrated into a framework or system.

Finding, Extracting and Exploiting Structure in Text and Hypertext

30

Original Documents

Selected Documents

Searching for
Documents

Data Extraction/Propagation

Other Applications Label Bureau

Search Engine

Data Mining System

a f

j

d

i l

j

h

e

c

l

dimension 1 dimension 2

b

g

h k
11

CHiC

User

query/
result

Association Rules

Concept
Hierarchies

Figure 4.1: Overview of the application environment of our view of a data mining
and management system for discrete and textual data.

Ola Ågren

CHAPTER 5. BIBLIOGRAPHY 31

Chapter 5

Bibliography

[1] A BDULJALEEL , N., AND QU, Y. Domain term extraction and structuring via link analysis.
In Grobelnik et al. [63].

[2] ACHARYYA , S., AND GHOSH, J. A maximum entropy framework for higher order link
analysis on directed graphs. In Donoho et al. [44].

[3] A DIBI , J., CHALUPSKY, H., GROBELNIK, M., M ILIC -FRAYLING , N., AND MLADENIC ,
D., Eds. Workshop on Link Analysis and Group Detection (LinkKDD2004) (Seattle, WA,
USA, Aug. 22, 2004). See [6, 22, 33, 37, 57, 79, 97, 106, 115, 116, 117].

[4] A DIBI , J., GROBELNIK, M., M ILIC -FRAYLING , N., MLADENIC , D., AND PANTEL , P.,
Eds. Workshop on Link Analysis: Dynamics and Static of Large Networks (LinkKDD2006)
(Philadelphia, PA, USA, Aug. 20, 2006). See [11, 16, 40, 70, 87, 123].

[5] A DIBI , J., GROBELNIK, M., MLADENIC , D., AND PANTEL , P., Eds.Workshop on Link Dis-
covery: Issues, Approaches and Applications (LinkKDD2005) (Chicago, IL, USA, Aug. 21,
2005). See [12, 29, 50, 69, 98, 122, 127, 135].

[6] A DIBI , J., MORRISON, C. M., AND COHEN, P. R. Measuring confidence intervals in link
discovery: A bootstrap approach. In Adibi et al. [3].

[7] A L HASAN, M., CHAOJI, V., SALEM , S.,AND ZAKI , M. Link prediction using supervised
learning. In Teredesai and Carley [130].

[8] A MERICAN L IBRARY OF CONGRESS. Electronic CIP: Cataloging in publication program.
Web site, Oct. 06, 2008. Date visited given,http://cip.loc.gov/.

[9] A MSTERDAM INTERNET EXCHANGE. AMS-IX. Web site, Sept. 26, 2008. Date visited
given,http://www.ams-ix.net/.

[10] ARASU, A., NOVAK , J., TOMKINS, A., AND TOMLIN , J. PageRank computation and the
structure of the web: Experiments and algorithms. Tech. rep., IBM Almaden Research Center,
Nov. 2001.

[11] ASUR, S., PARTHASARATHY, S., AND UCAR, D. An ensemble approach for clustering
scale-free graphs. In Adibi et al. [4].

[12] BADIA , A., AND KANTARDZIC , M. Graph building as a mining activity: Finding links in
the small. In Adibi et al. [5].

Finding, Extracting and Exploiting Structure in Text and Hypertext

http://cip.loc.gov/
http://www.ams-ix.net/

32

[13] BADIA , A., AND SKILLICORN , D., Eds.Workshop on Link Analysis, Counterterrorism and
Security (Adversarial Data Analysis)(2008). See [17, 105].

[14] BAIRD-SMITH , A. Jigsaw: An object oriented server. The World Wide Web Consortium,
Cambridge, Massachusetts, Feb. 1997.

[15] BATAGELJ, V., AND MRVAR, A. Density based approaches to network analysis: Analysisof
reuters terror news network. In Donoho et al. [44].

[16] BECCHETTI, L., CASTILLO , C., DONATO, D., AND FAZZONE, A. Comparison of sampling
techniques for web graph characterization. In Adibi et al. [4].

[17] BEER, E. A., PRIEBE, C. E.,AND SCHEINERMAN, E. R. Torus graph inference for detection
of localized activity. In Badia and Skillicorn [13].

[18] BEN-DOV, M., WU, W., FELDMAN , R., AND CAIRNS, P. A. Improving knowledge discov-
ery by combining text-mining & link analysis techniques. InCybenko and Srivastava [41].

[19] BERRY, M. W., AND BROWNE, M. Email surveillance using nonnegative matrix factoriza-
tion. In Skillicorn and Carley [124], pp. 45–54.

[20] BERTINO, E., CATANIA , B., AND ZARRI, G. P. Intelligent Database Systems. Pearson
Education, 2001.

[21] BHARAT, K., AND HENZINGER, M. R. Improved algorithms for topic distillation in a hy-
perlinked environment. InSIGIR ’98: Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval (New York, NY,
USA, 1998), ACM Press, pp. 104–111.

[22] BHATTACHARYA , I., AND GETOOR, L. Deduplication and group detection using links. In
Adibi et al. [3].

[23] BIANCHINI , M., GORI, M., AND SCARSELLI, F. Inside PageRank.ACM Trans. Inter. Tech.
5, 1 (2005), 92–128.

[24] BLOEDORN, E., ROTHLEDER, N. J., DEBARR, D., AND ROSEN, L. Relational graph anal-
ysis with real-world constraints: An application in irs taxfraud detection. In Grobelnik et al.
[63].

[25] BORGES, J.,AND LEVENE, M. Ranking pages by topology and popularity within web sites.
World Wide Web 9, 3 (2006), 301–316.

[26] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30, 1–7 (1998), 107–117.

[27] BRODER, A. Z., LEMPEL, R., MAGHOUL, F., AND PEDERSEN, J. Efficient PageRank
approximation via graph aggregation.Information Retrieval 9, 2 (Mar. 2006), 123–138.

[28] BUNTINE, W., LÖFSTRÖM, J., PERTTU, S.,AND VALTONEN, K. Topic-specific link analy-
sis using independent components for information retrieval. In Grobelnik et al. [63].

[29] CAI , D., SHAO, Z., HE, X., YAN , X., AND HAN , J. Mining hidden community in hetero-
geneous social networks. In Adibi et al. [5].

[30] CARACCIOLO, C., DE RIJKE, M., AND K IRCZ, J. Towards scientific information disclosure
through concept hierarchies. InProceedings ELPUB 2002(2002).

[31] CHAKRABARTI , D., ZHAN , Y., BLANDFORD, D., FALOUTSOS, C., AND BLELLOCH, G.
NetMine: mining tools for large graphs. In Cybenko and Srivastava [41].

[32] CHAKRABARTI , S. Integrating the document object model with hyperlinks for enhanced topic
distillation and information extraction. InWWW ’01: Proceedings of the 10th international
conference on World Wide Web(New York, NY, USA, 2001), ACM Press, pp. 211–220.

Ola Ågren

CHAPTER 5. BIBLIOGRAPHY 33

[33] CHAKRABARTI , S. Discovering links between lexical and surface featuresin questions and
answers. In Adibi et al. [3].

[34] CHAKRABARTI , S., DOM, B. E., AND INDYK , P. Enhanced hypertext categorization using
hyperlinks. InProceedings of SIGMOD-98, ACM International Conference onManagement
of Data (Seattle, US, 1998), L. M. Haas and A. Tiwary, Eds., ACM Press, New York, US,
pp. 307–318.

[35] CHAPANOND, A., KRISHNAMOORTHY, M. S.,AND YENER, B. Graph theoretic and spectral
analysis of enron email data. In Skillicorn and Carley [124], pp. 15–22.

[36] CHIDLOVSKII , B., RAGETLI , J., AND DE RIJKE, M. Wrapper generation via grammar
induction. InProceedings European Conference on Machine Learning (ECML’2000) (2000),
LNCS, Springer.

[37] CHKLOVSKI , T., AND PANTEL , P. Path analysis for refining verb relations. In Adibi et al.
[3].

[38] CLÉROT, F.,AND NGUYEN, Q. A social network approach for the ranking of the autonomous
systems of the internet. In Grobelnik et al. [63].

[39] CORSO, G. M. D., GULLI , A., AND ROMANI , F. Fast PageRank computation via a sparse
linear system. InProceedings of Third Workshop on Algorithms and Models for the Web-
Graph (WAW 2004)(Rome, Italy, Oct. 16, 2004).

[40] CREAMER, G., AND STOLFO, S. A link mining algorithm for earnings forecast using boost-
ing. In Adibi et al. [4].

[41] CYBENKO, G. V., AND SRIVASTAVA , J., Eds.Workshop on Link Analysis, Counterterrorism
and Security(2004). See [18, 31, 49].

[42] DAVISON, B. D. Topical locality in the web. InProceedings of the 23rd annual interna-
tional ACM SIGIR conference on Research and development in information retrieval(Athens,
Greece, 2000), ACM Press, pp. 272–279.

[43] DAVISON, B. D. Unifying text and link analysis. In Grobelnik et al. [62].

[44] DONOHO, S., DYBALA , T., GROBELNIK, M., M ILIC -FRAYLING , N., AND MLADENIC , D.,
Eds.Proceedings of the 2003 Link Analysis for Detecting ComplexBehavior (LinkKDD2003)
Workshop(Washington, DC, USA, Aug. 27, 2003). See [2, 15, 58, 85, 132].

[45] DUAN , Y., WANG, J., KAM , M., AND CANNY, J. A secure online algorithm for link analysis
on weighted graph. In Skillicorn and Carley [124], pp. 71–81.

[46] DUBLIN CORE METADATA INITIATIVE . The Dublin Core Metadata Element Set. ISO Stan-
dard 15836 (2003) and ANSI/NISO Standard Z39.85-2007.

[47] DUNHAM , M. H. Data Mining, Introductory and Advanced Topics. Prentice Hall, inc.,
Englewood Cliffs, New Jersey, 2003.

[48] FAGNI , T., PEREGO, R., SILVESTRI, F., AND ORLANDO, S. Boosting the performance
of web search engines: Caching and prefetching query results by exploiting historical usage
data.ACM Trans. Inf. Syst. 24, 1 (2006), 51–78.

[49] FALOUTSOS, C., MCCURLEY, K. S., AND TOMKINS, A. Connection subgraphs in social
networks. In Cybenko and Srivastava [41].

[50] FISSAHA ADAFRE, S.,AND DE RIJKE, M. Discovering missing links in wikipedia. In Adibi
et al. [5].

Finding, Extracting and Exploiting Structure in Text and Hypertext

34

[51] FISSAHA ADAFRE, S., JIJKOUN, V., AND DE RIJKE, M. Link-based vs. content-based
retrieval for question answering using wikipedia. InEvaluation of Multilingual and Multi-
modal Information Retrieval(2007), pp. 537–540.

[52] FOX, J. Webless Literate Programming.TUGboat 11, 4 (Nov. 1990).

[53] FREITAG, D. Information extraction from HTML: Application of a general machine learning
approach. InAAAI/IAAI (1998), pp. 517–523.

[54] FRIENDLY, L. The Design of Distributed Hyperlinked Programming Documentation. In
Proceedings of the 1995 International Workshop on Hypermedia Design(June 1995).

[55] GANIZ , M. C., POTTENGER, W. M., AND YANG, X. Link analysis of higher-order paths in
supervised learning datasets. In Teredesai and Carley [130].

[56] GETOOR, L. Link mining: a new data mining challenge.SIGKDD Explor. Newsl. 5, 1 (2003),
84–89.

[57] GILBERT, A. C., AND LEVCHENKO, K. Compressing network graphs. In Adibi et al. [3].

[58] GOLDENBERG, A., KUBICA , J., AND KOMAREK, P. A comparison of statistical and ma-
chine learning algorithms on the task of link completion. InDonoho et al. [44].

[59] GOLDENBERG, A., AND MOORE, A. Empirical bayes screening for link analysis. In Gro-
belnik et al. [62].

[60] GOLUB, G. H., AND VAN LOAN, C. F. Matrix computations (3rd ed.). Johns Hopkins
University Press, 1996.

[61] GREGG, D. G., AND WALCZAK , S. Adaptive web information extraction.Commun. ACM
49, 5 (2006), 78–84.

[62] GROBELNIK, M., M ILIC -FRAYLING , N., AND MLADENIC , D., Eds. Proceedings of the
2003 IJCAI Text-Mining & Link-Analysis Workshop(Acapulco, Mexico, Aug. 9, 2003).
See [43, 59, 93, 99].

[63] GROBELNIK, M., M ILIC -FRAYLING , N., AND MLADENIC , D., Eds. The AAAI-05 Work-
shop on Link Analysis (LinkAnalysis-2005)(July 10 2005). See [1, 24, 28, 38, 107, 113, 136].

[64] HAN , J., AND KAMBER, M. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, Inc., San Francisco, California, 2001.

[65] HAVELIWALA , T., KAMVAR , S., KLEIN , D., MANNING , C., AND GOLUB, G. Computing
PageRank using power extrapolation. Tech. rep., Stanford University, CA, USA, Oct. 18,
2003.

[66] HAVELIWALA , T. H. Efficient computation of PageRank. Tech. Rep. 1999-31, Stanford
University Database Group, Oct. 18, 1999.

[67] HAVELIWALA , T. H. Topic-sensitive PageRank. InProceedings of the eleventh international
conference on World Wide Web(2002), ACM Press, pp. 517–526.

[68] HAVELIWALA , T. H., AND KAMVAR , S. D. The second eigenvalue of the google matrix.
Tech. rep., Stanford University, Mar. 2003.

[69] HILL , S., AGARWAL , D., BELL , R.,AND VOLINSKY, C. Tuning representations of dynamic
network data. In Adibi et al. [5].

[70] HUANG, Z. Link prediction based on graph topology: The predictivevalue of generalized
clustering coefficient. In Adibi et al. [4].

[71] HUMPHRIES, M., HAWKINS , M. W., AND DY, M. C. Data Warehousing: Architecture and
Implementation. Prentice Hall PTC, Upper Saddle River, New Jersey, 1999.

Ola Ågren

CHAPTER 5. BIBLIOGRAPHY 35

[72] IEEE LEARNING TECHNOLOGY STANDARDS COMMITTEE. IEEE 1484.12.1-2002 Stan-
dard for Learning Object Metadata, 2002.

[73] INTERNET SYSTEMS CONSORTIUM, INC. ISC Domain Survey: Number of Internet Hosts.
Web page, Sept. 25, 2008. Date visited given,
http://www.isc.org/index.pl?/ops/ds/host-count-history.php.

[74] IPSEN, I. C. F.,AND K IRKLAND , S. Convergence analysis of a PageRank updating algorithm
by Langville and Meyer.SIAM J. Matrix Anal. Appl. 27, 4 (2006), 952–967.

[75] IPSEN, I. C. F., AND MEYER, C. D. Uniform stability of markov chains.SIAM J. Matrix
Anal. Appl. 15, 4 (1994), 1061–1074.

[76] JAIN , A. K., MURTY, M. N., AND FLYNN , P. J. Data Clustering: A Review.ACM Comput-
ing Surveys (CSUR) 31, 3 (Sept. 1999), 264–323.

[77] JEH, G., AND WIDOM , J. Scaling personalized web search. Tech. Rep. 2002-12, Stanford
University Database Group, 2002.

[78] JEH, G.,AND WIDOM , J. Scaling personalized web search. InWWW ’03: Proceedings of the
12th international conference on World Wide Web(New York, NY, USA, 2003), ACM Press,
pp. 271–279.

[79] JONES, R. Semisupervised learning on small worlds. In Adibi et al.[3].

[80] KAM , J. B.,AND ULLMAN , J. D. Global data flow analysis and iterative algorithms.Journal
of the ACM (JACM) 23, 1 (1976), 158–171.

[81] KAMPS, J., MONZ, C., DE RIJKE, M., AND SIGURBJÖRNSSON, B. Approaches to robust
and web retrieval. InProceedings TREC 2003(2004), pp. 594–600.

[82] KAMVAR , S. D., HAVELIWALA , T. H., AND GOLUB, G. H. Adaptive methods for the
computation of PageRank. Tech. rep., Stanford University,CA, USA, Apr. 2003.

[83] KAMVAR , S. D., HAVELIWALA , T. H., MANNING , C. D., AND GOLUB, G. H. Exploiting
the block structure of the web for computing PageRank. Tech.rep., Stanford University, CA,
USA, Mar. 4, 2003.

[84] KAMVAR , S. D., HAVELIWALA , T. H., MANNING , C. D., AND GOLUB, G. H. Extrapola-
tion methods for accelerating PageRank computations. InProceedings of the Twelfth Interna-
tional World Wide Web Conference(2003).

[85] KARGUPTA, H., LIU , K., DATTA , S., RYAN , J., AND SIVAKUMAR , K. Link analysis,
privacy preservation, and random perturbations. In Donohoet al. [44].

[86] KEILA , P. S.,AND SKILLICORN , D. B. Structure in the enron email dataset. In Skillicorn
and Carley [124], pp. 55–64.

[87] KETKAR, N. S., HOLDER, L. B., AND COOK, D. J. Mining in the proximity of subgraphs.
In Adibi et al. [4].

[88] KLEINBERG, J. Authoritative sources in a hyperlinked environment. InProc. of ACM-SIAM
Symposium on Discrete Algorithms(1998), pp. 668–677.

[89] KOLDA , T., AND BADER, B. The TOPHITS model for higher-order web link analysis. In
Teredesai and Carley [130].

[90] KOSALA, AND BLOCKEEL. Web mining research: A survey.SIGKDD: SIGKDD Explo-
rations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data
Mining, ACM 2(2000).

Finding, Extracting and Exploiting Structure in Text and Hypertext

http://www.isc.org/index.pl?/ops/ds/host-count-history.php

36

[91] KRAUSKOPF, T., MILLER , J., RESNICK, P., AND TREESE, W. REC-PICS-labels-961031:
PICS Label Distribution Label Syntax and Communication Protocols. The World Wide Web
Consortium, Cambridge, Massachusetts, Oct. 31, 1996.

[92] KROEKER, K. L. Finding diamonds in the rough.Communcations of the ACM 51, 9 (Sept.
2008), 11–13.

[93] KUBICA , J., MOORE, A., COHN, D., AND SCHNEIDER, J. cGraph: A fast graph-based
method for link analysis and queries. In Grobelnik et al. [62].

[94] LANDAUER, T. K., FOLTZ, P. W.,AND LAHAM , D. Introduction to latent semantic analysis.
Discourse Processes 25(1998), 259–284.

[95] LANGVILLE , A. N., AND MEYER, C. D. Updating PageRank using the group inverse and
stochastic complementation. Tech. Rep. CRSC-TR02-32, Center for Research in Scientific
Computation, North Carolina State University, Raleigh, NC, USA, Nov. 2002.

[96] LEHMANN , S. Live and dead nodes. In Skillicorn and Carley [124], pp. 65–70.

[97] LESKOVEC, J., GROBELNIK, M., AND M ILIC -FRAYLING , N. Learning sub-structures of
document semantic graphs for document summarization. In Adibi et al. [3].

[98] L ICAMELE , L., BILGIC , M., GETOOR, L., AND ROUSSOPOULOS, N. Capital and benefit in
social networks. In Adibi et al. [5].

[99] LU, Q., AND GETOOR, L. Link-based text classification. In Grobelnik et al. [62].

[100] MADHAVAN , J., KO, D., KOT, Ł., GANAPATHY, V., RASMUSSEN, A., AND HALEVY, A.
Google’s deep web crawl.Proc. VLDB Endow. 1, 2 (2008), 1241–1252.

[101] MARSHALL , C. C. Making metadata: a study of metadata creation for a mixed physical-
digital collection. InDL ’98: Proceedings of the third ACM conference on Digital libraries
(New York, NY, USA, 1998), ACM Press, pp. 162–171.

[102] MILLER , J., RESNICK, P., AND SINGER, D. REC-PICS-services-961031: Rating Services
and Rating Systems (and Their Machine Readable Descriptions). The World Wide Web Con-
sortium, Cambridge, Massachusetts, Oct. 31, 1996.

[103] MILLER , J. C., RAE, G., SCHAEFER, F., WARD, L. A., LOFARO, T., AND FARAHAT,
A. Modifications of Kleinberg’s HITS algorithm using matrixexponentiation and web log
records. InProceedings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval(New Orleans, Louisiana, United States, 2001),
ACM Press, pp. 444–445.

[104] MOLER, C. B. Cleve’s corner: The world’s largest matrix computation: Google’s pagerank is
an eigenvector of a matrix of order 2.7 billion. Technical note, The MathWorks, Inc., 3 Apple
Hill Drive, Natick, MA 01760-2098, USA, Oct. 2002.

[105] MOON, I.-C., CARLEY, K. M., AND LEVIS, A. H. Vulnerability assessment on adversarial
organization: Unifying command and control structure analysis and social network analysis.
In Badia and Skillicorn [13].

[106] MUKHERJEE, M., AND HOLDER, L. B. Graph-based data mining on social networks. In
Adibi et al. [3].

[107] MURRAY, K., HARRISON, I., LOWRANCE, J., RODRIGUEZ, A., THOMERE, J., AND

WOLVERTON, M. Pherl: An emerging representation language for patterns and hypothe-
ses and evidence. In Grobelnik et al. [63].

Ola Ågren

CHAPTER 5. BIBLIOGRAPHY 37

[108] MUSLEA, I., M INTON, S., AND KNOBLOCK, C. A. Hierarchical wrapper induction for
semistructured information sources.Autonomous Agents and Multi-Agent Systems 4, 1/2
(2001), 93–114.

[109] NESTOROV, S., ABITEBOUL, S., AND MOTWANI , R. Extracting schema from semistruc-
tured data. InSIGMOD ’98: Proceedings of the 1998 ACM SIGMOD international conference
on Management of data(New York, NY, USA, 1998), ACM Press, pp. 295–306.

[110] NG, A. Y., ZHENG, A. X., AND JORDAN, M. Link analysis, eigenvectors, and stability.
In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI-01)(2001).

[111] NG, A. Y., ZHENG, A. X., AND JORDAN, M. Stable algorithms for link analysis. In
Proceedings of the Twenty-fourth Annual International ACMSIGIR Conference on Research
and Development in Information Retrieval(Sept. 2001).

[112] PAGE, L., BRIN, S., MOTWANI , R., AND WINOGRAD, T. The PageRank citation ranking:
Bringing order to the web. Tech. rep., Stanford Digital Library Technologies Project, 1998.

[113] PAPERNICK, N., AND HAUPTMANN , A. G. Summarization of broadcast news video through
link analysis of named entities. In Grobelnik et al. [63].

[114] PARREIRA, J. X., CASTILLO , C., DONATO, D., MICHEL, S., AND WEIKUM , G. The
Juxtaposed approximate PageRank method for robust PageRank approximation in a peer-to-
peer web search network.The International Journal on Very Large Data Bases 17, 2 (Mar.
2008), 291–313.

[115] PIOCH, N. J., HUNTER, D., WHITE, J. V., KAO, A., BOSTWICK, D., AND JONES, E. K.
Multi-hypothesis abductive reasoning for link discovery.In Adibi et al. [3].

[116] RAGHAVAN , H., ALLAN , J.,AND MCCALLUM , A. An exploration of entity models, collec-
tive classification and relation description. In Adibi et al. [3].

[117] RESIG, J., DAWARA , S., HOMAN , C. M., AND TEREDESAI, A. Extracting social networks
from instant messaging populations. In Adibi et al. [3].

[118] RESNICK, P., AND M ILLER , J. PICS: Internet Access Controls Without Censorship.Com-
munications of the ACM 39, 10 (1996), 87–93.

[119] SALTON , G., WONG, A., AND YANG, C. S. A vector space model for automatic indexing.
Communications of the ACM 18, 11 (Nov. 1975), 613–620.

[120] SANDERSON, M., AND CROFT, B. Deriving concept hierarchies from text. InProceedings
of the 22nd annual international ACM SIGIR conference on Research and development in
information retrieval(Berkeley, California, United States, 1999), ACM Press, pp. 206–213.

[121] SCOTT, J. A. An Arnoldi code for computing selected eigenvalues ofsparse, real, unsym-
metric matrices.ACM Trans. Math. Softw. 21, 4 (1995), 432–475.

[122] SHETTY, J.,AND ADIBI , J. Discovering important nodes through graph entropy - thecase of
enron email database. In Adibi et al. [5].

[123] SIDIROPOULOS, A., KATSAROS, D., AND MANOLOPOULOS, Y. Generalized h-index for
revealing latent facts in social networks of citations. In Adibi et al. [4].

[124] SKILLICORN , D., AND CARLEY, K., Eds.Workshop on Link Analysis, Counterterrorism and
Security(2005). See [19, 35, 45, 86, 96].

[125] SODERLAND, S. Learning information extraction rules for semi-structured and free text.
Machine Learning 34, 1-3 (1999), 233–272.

Finding, Extracting and Exploiting Structure in Text and Hypertext

38

[126] SODERLAND, S., FISHER, D., ASELTINE, J., AND LEHNERT, W. CRYSTAL: Inducing a
conceptual dictionary. InProceedings of the Fourteenth International Joint Conference on
Artificial Intelligence(San Francisco, 1995), C. Mellish, Ed., Morgan Kaufmann, pp. 1314–
1319.

[127] STOILOVA , L., HOLLOWAY, T., MARKINES, B., MAGUITMAN , A., AND MENCZER, F.
Givealink: Mining a semantic network of bookmarks for web search and recommendation. In
Adibi et al. [5].

[128] TAN , P.-N., AND KUMAR , V. Mining indirect associations in web data. InProceedings
of the 2002 Mining Log Data Across All Customer TouchPoints (WebKDD2001) Workshop
(Aug. 2001).

[129] TAN , P.-N., STEINBACH, M., AND KUMAR , V. Introduction to Data Mining. Addison-Wes-
ley, Reading, Massachusetts, 2006.

[130] TEREDESAI, A., AND CARLEY, K., Eds.Workshop on Link Analysis, Counterterrorism and
Security(2006). See [7, 55, 89].

[131] TIAN , Y., HUANG, T., AND GAO, W. A web site mining algorithm using the multiscale tree
representation model. InProceedings of the 2003 Webmining as a Premise to Effective and
Intelligent Web Applications (WebKDD’2003) Workshop(Aug. 2003), pp. 83–92.

[132] TIAN , Y., MEI, Z., HUANG, T., AND GAO, W. Incremental learning for interaction dynamics
with the influence model. In Donoho et al. [44].

[133] TWO CROWSCORPORATION. Introduction to Data Mining and Knowledge Discovery, Third
Edition. Potomac, MD, USA, 2005.

[134] VAN HEESCH, D. doxygen: Manual for version 1.5.7.1, 2008. Available for download from
ftp://ftp.stack.nl/pub/users/dimitri/doxygen_manual-1.5.7.1.pdf.zip.

[135] WANG, X., MOHANTY, N., AND MCCALLUM , A. Group and topic discovery from relations
and text. In Adibi et al. [5].

[136] WOLVERTON, M., AND THOMERE, J. The role of higher-order constructs in the inexact
matching of semantic graphs. In Grobelnik et al. [63].

[137] XIAO , Y., AND DUNHAM , M. H. Efficient mining of traversal pattern.Data and Knowledge
Engineering 39, 2 (Nov. 2001), 191–214.

[138] ÅGREN, O. Reuse via the World Wide Web: How to Find the Software Required for Reuse.
Master’s thesis, Umeå University, Umeå, Sweden, Dec. 1998.UMNAD 242.98.

[139] ÅGREN, O. ALGEXT - an ALGorithm EXTractor for C Programs. Tech. rep., Umeå Univer-
sity, Umeå, Sweden, May 2001. UMINF 01.11, ISSN 0348-0542, Paper I on page 41.

[140] ÅGREN, O. Automatic Generation of Concept Hierarchies for a Discrete Data Mining System.
In Proceedings of the International Conference on Information and Knowledge Engineering
(IKE ’02) (Las Vegas, Nevada, USA, June 24-27, 2002), pp. 287–293. Paper II on page 59.

[141] ÅGREN, O. CHIC: A Fast Concept HIerarchy Constructor for Discrete or Mixed Mode
Databases. InProceedings of the Fifteenth International Conference on Software Engineering
and Knowledge Engineering (SEKE’03)(San Francisco, California, USA, July 1-3, 2003),
pp. 250–258. Paper III on page 77.

[142] ÅGREN, O. Propagation of Meta Data over the World Wide Web. InProceedings of the
International Conference on Internet Computing (IC ’03)(Las Vegas, Nevada, USA, June 23-
26, 2003), vol. 2, pp. 670–676. Paper IV on page 103.

Ola Ågren

ftp://ftp.stack.nl/pub/users/dimitri/doxygen_manual-1.5.7.1.pdf.zip

CHAPTER 5. BIBLIOGRAPHY 39

[143] ÅGREN, O. Assessment of WWW-Based Ranking Systems for Smaller WebSites. INFO-
COMP Journal of Computer Science 5, 2 (June 2006), 45–55. Paper V on page 117.

[144] ÅGREN, O. S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance.
International Journal of Web Information Systems 4, 4 (2008), 416–440. Paper VI on
page 141.

Finding, Extracting and Exploiting Structure in Text and Hypertext

40

Ola Ågren

I

41

42

Ola Ågren

ALG EXT 43

Chapter 6

ALG EXT — an ALGorithm
EXT ractor for C Programs

Ola Ågren

May 30, 2001

UMINF 01.11
ISSN-0348-05422

Finding, Extracting and Exploiting Structure in Text and Hypertext

44 ALG EXT

Abstract

ALGEXT is a program that extracts strategic/block comments from C source
files to improve maintainability and to keep documentation consistent with
source code. This is done by writing the comments in the source code in
what we callextractable algorithms, describing the algorithm used in the
functions.

ALGEXT recognizes different kinds of comments:

• Strategic comments are comments that proceed a block of code, with
only whitespace preceding it on the line,

• Tactical comments are comments that describes the code thatprecedes
it on the same line,

• Function comments are comments immediately preceding a function
definition, describing the function,

• File comments are comments at the head of the file, before any decla-
rations of functions and variables, and finally

• Global comments are comments within the global scope, but not asso-
ciated with a function.

Only strategic comment are used as basis for algorithm extraction in ALG-
EXT.

The paper discusses the rationale forALGEXT and describes its implemen-
tation and usage. Examples are presented for clarification of what can be
done withALGEXT.

Our experience shows that students who useALGEXT for preparing their
assignments tend to write about 66% more comments than non-ALGEXT

users.

Ola Ågren

ALG EXT 45

6.1 Introduction

One common problem in the software industry is to keep the documentation up-to-
date with the source code, especially when using evolutionary prototyping [6, 7, 8]
or extreme programming [1]. A number of approaches for handling the problem
have been proposed, including literate programming [5] andprocesses that require
the documentation to be done before coding. In this report wepropose another
approach, that of extractable algorithms contained withina program.

An extractable algorithmis a description of the algorithm in one form or an-
other, contained within the source code. It must not interfere in any way with the
compiler/interpreter when compiling/running the program. It must also be easily
extractable from within the program, in order to update the documentation after
each update of the source code.

The idea to keep both the source and documentation in the sameplace is not
new. A number of approaches to keep source and documentationconceptionally as
close as possible have been devised.

Literate programming [4] requires that both source code anddocumentation
are contained in a special type of file called a Web1 source document. A set of
programs calledtangle andweave are then used to extract source code for the
compiler and the typesetting environment, respectively.

A simplified version of literate programming is c-web [2]. It requires no ex-
ternal program, since the source code is the same for both theC compiler and the
TEX/LATEX typesetting environment.

Another approach that has been used (in e.g., theEXCO word text editor) is
the hierarchical approach. The source code is added as the bottom-most level of
the documentation, and a special program extracts that level before compiling the
program.

Other related works are those that extract information fromthe source code
directly, e.g.

• cextract2 by Adam Bryant extracts function comments, function signa-
tures and optionally file comments (see Section 6.2) from a set of C files.
Furthermore,cextract can transform this into C header files, pure text (e.g.
Figure 6.8 on page 54) ornroff/troff/groff input.

• Javadoc [3] is a tool that parses the declarations and documentation com-
ments in a set of Java source files. Its output is a set of HTML pages describ-
ing the classes, inner classes, interfaces, constructors,methods, and fields.

1Not to be mistaken for the WWW.
2Source code available fromhttp://dev.w3.org/cvsweb/Amaya/tools/cextract-1.7/.

Finding, Extracting and Exploiting Structure in Text and Hypertext

http://dev.w3.org/cvsweb/Amaya/tools/cextract-1.7/

46 6.2. CONTENTS OF A C FILE

Javadoc requires a special set of tags within the comments, otherwise it ex-
tracts very sparse documentation.

Our approach to extractable algorithms can be used with any type of mark-up
language (see examples in Section 6.5), as long as it can be embedded in the com-
ments of the programming language in use. The current implementation handles
ANSI C with some minor restrictions (see Section 6.3) with respect to source code
formatting.

6.2 Contents of a C File

A normal C file is just an ordered set of comments, declarations and function def-
initions. For a C compiler, a comment is something that can beremoved from the
code since it doesn’t contain syntactic or semantic elements to be used when trans-
lating the C source code into object code. This means that a user can add any type
of textual information in the comments, so that the any user of the source code3

can more easily grasp what the code does.
All of the comments within a source file can be classified into five different

types, mainly depending on their placement in the source file.

• File commentsare comments at the head of the file, before any declarations
of functions and variables. File comments usually contain information that
is true for the entire file, e.g., name, description of content, author name and
change history.

• Function commentsare comments immediately preceding a function defi-
nition, describing the function. Function comments usually contain infor-
mation about the immediately following function, e.g. name, description of
functionality, parameter descriptions, return values, etc.

• Global commentsare comments within the global scope, but not associated
with a function.

• Strategic commentsare comments within a function just before a block of
code, with only whitespace preceding it on the line. Strategic comments
describes the block of comment that follows and are therefore also called
block comments. This is the only type of comment extracted by ALGEXT.

• Tactical commentsare comments within a function that describe the code
that precedes it on the same line.

The different types of comments can be seen in Figure 6.1 on the facing page.

3Other users or the original author at a later time.

Ola Ågren

ALG EXT 47

Figure 6.1: Sample code showing the different comment typesavailable.

/* This is a file comment. */

/* This is a global comment. */
typedef int rettype;

/* This is a function comment. */
rettype main()
{

/* This is a strategic comment */
return 0; /* This is a tactical comment */

}

Finding, Extracting and Exploiting Structure in Text and Hypertext

48 6.3. SOURCE CODE REQUIREMENTS

6.3 Source Code Requirements

The current implementation of ALGEXT does not contain a full parser for the C
language (in much the same way ascextract andcflow4), which puts some re-
strictions on the code that is to be handled:

• There must be no whitespace between the function name and theparenthesis
that surrounds the formal arguments. As an example,

int main(int argc, char **argv)

will be parsed correctly, while

int main (int argc, char **argv)

will not be recognized as a function header. We do not see thisas a major
problem, since the use of whitespace between the function name and the
opening parenthesis is not that common.

• C++ style comments (’//. . . ’) are not handled, only the old style of C com-
ments (’/* . . .*/’) are accepted. A future version of ALGEXT will handle
these as well.

• Lines cannot be more than 1023 characters long. This is controlled by a
constant in the source code and thus easily changed.

6.4 Implementation

The functionality of ALGEXT can be described in one sentence:

If a comment starts in a function with nothing but whitespacepreced-
ing it on the line, write the entire comment (with preceding whites-
pace, but without the comment tokens) to standard output together
with all function names.

ALGEXT is written in ANSI C, using only POSIX-compliant input/output func-
tions to be portable to any platform. It is written with the intent of being usable
as a filter in a UNIX command pipeline. It read its input from standard input and
writes on standard output. This makes it easy to use from within shell scripts, and
we normally call it using the Bourne shell script in Figure 6.6 on page 53.

4cflow generates a C flow graph. It analyses a collection of C, YACC, LEX, assembler, and
object files, and attempts to build a graph charting the external references.cflow is available on
most platforms.

Ola Ågren

ALG EXT 49

6.5 Examples

ALGEXT can be used to extract any type of textual information. The most basic
type of information that can be extracted is normal ASCII text, as in Section 6.5.1.
A somewhat more elaborate algorithm description can be found in Section 6.5.2,
using LATEX comments directly in the text.

6.5.1 Basic comments

Given the program in Figure 6.2, ALGEXT will produce the output in Figure 6.3.

Figure 6.2: Sample C code with basic comments.

int fac(int n)
{

/* fac(n) = */
if (n > 0)

/* n * fac(n - 1), if n > 0 */
return n * fac(n - 1);

else
/* 1, otherwise */
return 1;

}

Figure 6.3: Sample algorithm extracted using ALGEXT.

fac:
fac(n) =

n * fac(n - 1), if n > 0
1, otherwise

Finding, Extracting and Exploiting Structure in Text and Hypertext

50 6.5. EXAMPLES

6.5.2 LATEX comments

The same file could just as easily be commented using a slightly more elaborate
scheme, e.g. LATEX code. Given the program in Figure 6.4, ALGEXT will produce
the output in Figure 6.5.

Figure 6.4: Sample C code with LATEX-style comments.

int fac(int n)
{

/* \begin{equation} \text{fac}(n) = \begin{cases} */
if (n > 0)

/* n * \text{fac}(n - 1) & \text{if $n > 0$}, \\ */
return n * fac(n - 1);

else
/* 1 & \text{otherwise} */
return 1;

/* \end{cases} \label{fac} \end{equation} */
}

Figure 6.5: LATEX style algorithm extracted using ALGEXT.

fac:
\begin{equation} \text{fac}(n) = \begin{cases}

n * \text{fac}(n - 1) & \text{if $n > 0$}, \\
1 & \text{otherwise}

\end{cases} \label{fac} \end{equation}

This will (typeset by LATEX) yield the algorithm description for fac as seen in
equation 6.1.

fac:

fac(n) =

{

n∗ fac(n−1) if n > 0,

1 otherwise
(6.1)

Ola Ågren

ALG EXT 51

6.6 Discussion

ALGEXT has been used extensively since 1996 primarily by students at the De-
partment of Computing Science, Umeå University. It has beenused to document
algorithms for both course assignments (see Appendix 6.C) and bigger projects
(most notably thesawit web server [9]). Almost all comments have been pos-
itive. Most requests for updates have been in the form of support for additional
languages.

We have found that users of ALGEXT tend to write more lines with comments
in their functions than non-users (approximately 66% more,see Appendix 6.C).
We see this as an indication that the ALGEXT users tend (on average) to put more
thought into commenting their code.

When comparing ALGEXT with other programs, we see that:

• cextract and Javadoc [3] work on another abstraction level, that of file/class
overview rather than function view. Algorithms can be addedin function
comments, but it increases the distance between algorithm and source code.

• Literate programming [5, 2] forces the user into a certain programming model
— one file equals one document equals one source file. Moreover, documen-
tation generated by literate programs (rather than c-web) tend to be broken
up into small fragments of code with links between them that are not that
easy to follow.

• The hierarchical approach forces the user to use a special set of tools in order
to edit their code, instead of their favorite editor.

We have moreover found that theconceptual distance5 between code and al-
gorithm has a great impact on documentation. The larger the conceptual distance
between source code and documentation, the higher the possibility of discrepancy
between them. This means that if the documentation resides on another system
it takes an effort to change to that system in order to update the documentation,
while documentation that is within the same logical scope asthe source code do
not require as much effort to keep up to date. Using ALGEXT will shorten the
conceptual distance between source code and documentation, since both resides in
the same logical space as seen by the user.

5Conceptual distance is how far the two logical scopes involved are from each other. The more
that have to be changed (language, viewpoint, formality, system, etc.) the larger the conceptual
distance between the two.

Finding, Extracting and Exploiting Structure in Text and Hypertext

52 6.7. REFERENCES

6.7 References
[1] BECK, K. Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading,

Massachusetts, Oct. 15, 1999.

[2] FOX, J. Webless Literate Programming.TUGboat 11, 4 (Nov. 1990).

[3] FRIENDLY, L. The Design of Distributed Hyperlinked Programming Documentation. InPro-
ceedings of the 1995 International Workshop on Hypermedia Design(June 1995).

[4] K NUTH, D. E. Literate Programming.The Computer Journal, 27 (1984).

[5] K NUTH, D. E. Literate Programming. No. 27 in CSLI Lecture Notes. Center for the Study of
Language and Information, Stanford, CA, 1992.

[6] PREECE, J., ET AL . Human-computer interaction. Addison-Wesley, Reading, Massachusetts,
1994.

[7] PRESSMAN, R. S. Software Engineering, A Practitioner’s Approach, european adaption,
third ed. McGraw-Hill, London, England, 1994.

[8] SOMMERVILLE , I. Software Engineering, fourth ed. Addison-Wesley, Reading, Massachusetts,
1992.

[9] ÅGREN, O. Reuse via the World Wide Web: How to Find the Software Required for Reuse.
Master’s thesis, Umeå University, Umeå, Sweden, Dec. 1998.UMNAD 242.98.

Ola Ågren

ALG EXT 53

6.A Users’ Guide

Since ALGEXT uses only POSIX-compliant input/output and is written entirely in
ANSI C it should be portable to any operating system that contains an ANSI C
compiler or the GNU C compiler. The source code to parse is read from standard
input and the extracted comments are presented on standard output, which makes
ALGEXT suitable as a filter in a UNIX command pipeline.

The extracted comments are given in the form below.

Function name:
extracted comments, indented as in source code

Most users of ALGEXT call it indirectly using the Bourne shell script given in
Figure 6.6.

Figure 6.6: Sample Borne-shell wrapper for ALGEXT.

#!/bin/sh
if [! -x /Home/staff/ola/bin/‘arch‘/algext]
then

echo "Failed to find algorithm extractor for " ‘arch‘
exit 1;

fi

for i in $*
do

name=‘echo $i | sed ’s/\.c/.alg/’‘
echo "Extracting $i to $name"
/Home/staff/ola/bin/‘arch‘/algext < $i > $name

done

Figure 6.7: The call graph of ALGEXT.

main −→ printComment

Finding, Extracting and Exploiting Structure in Text and Hypertext

54 6.B. SYSTEM DOCUMENTATION

6.B System Documentation

6.B.1 System Description

The call graph of ALGEXT is seen in Figure 6.7 on the preceding page and the
function description is given in Figure 6.8. The functionaldescription is extracted
using thecextract program.

Figure 6.8: The function description of ALGEXT.

Function: main
File: algext.c

/*
* main:
* This program extracts the names of routines and
* all block comments inside the routines
* arguments: argc is the number of arguments
* argv is a list of the arguments
* returns: 0 if all went OK, 1 otherwise
* calls: printComment, ERR
*/

int main (int argc, char *argv[]);

Function: printComment
File: algext.c

/*
* printComment:
* This routine handles one comment
* argument: i is the position on the line
* print is if we are to print the comment
* returns: the next position on the line
* calls: ERR
*/

int printComment (int i, int print);

Ola Ågren

ALG EXT 55

6.B.2 Algorithms

The algorithms of ALGEXT is given in algorithms 6.1 and 6.2 on the next page.
These algorithms are extracted from the source code of ALGEXT, by ALGEXT.

ALGORITHM 6.1 (MAIN)
Input — a C source file
Output — the extracted comments
proc main()≡
p foreach line ∈ input do

foreach character∈ line do
if characteris . . .

“ \” ∨ “"” then while¬ end of character/string constantdo
while character∈ constantdo

if character = “\” then Skip
Skip

done
if EndOfLinewithout EndOfConstantthen

if character = “\”
then Continue on next line
elseGive error message and quit

done
“{” then

Go to higher level of blocks
if at start of a function

then Present function name
“}” then if inside a block

then Go to lower level of blocks
elseGive error message and quit

“/” then if start of comment
then Handle this comment
elseIgnore

“(” then Stop adding characters to function name
otherwiseif ¬ whitespace

then if adding characters to a name of a function
then Add character

elseEmpty name of function
done

done
x Tell invocator that we are finished

Finding, Extracting and Exploiting Structure in Text and Hypertext

56 6.B. SYSTEM DOCUMENTATION

ALGORITHM 6.2 (PRINTCOMMENT)
Input — a C source comment(/line)
Output — the extracted comments
proc printComment()≡
p if this comment is to be printed

then Present all characters up to the start of the comment
while ¬ EndOfCommentdo

while ¬ (EndOfLine∨ EndOfComment)do
if this comment is to be printed

then Print this character
done
if the comment terminates before EndOfLine

then if this comment is to be printed
then Print an EndOfLine

Continue with next character
The comment was not ended on this line, continue with next

x done

Table 6.1: Strategic comments of student source code.

Number of strategic comment lines per function Value
Minimum (xmin) 1
Median (xmedian) 2
Mean (x) 3.8362
Maximum (xmax) 26
Standard deviation (σ) 4.2078
Variance (σ2) 17.7059

Ola Ågren

ALG EXT 57

6.C Comment Comparison Between Users and Non-Users
of ALG EXT

Users of ALGEXT tend to write approximately 66% more comment lines per func-
tion than the other students (see tables 6.1 on the facing page and 6.2). These
numbers are generated from the source code written by students of the course in
Operating Systems at the Department of Computing Science, University of Umeå
anno 1998. We believe that the increase is mainly due to the extra planning done
when writing the comments.

In fact, some students have reported that they write the entire algorithm as
comments within the function before adding any code.

We must also report that the highest number of comment lines per function by
the non-ALGEXT users is a function that has only 30 lines of statements, so these
comments are more tactical than strategic in their nature. The statistics would show
even more discrepancy if this function is removed.

Table 6.2: Strategic comments of source code by students using extractable algo-
rithms.

Number of strategic comment lines per function Value
Minimum (xmin) 2
Median (xmedian) 5.5
Mean (x) 6.3571
Maximum (xmax) 16
Standard deviation (σ) 3.5433
Variance (σ2) 12.5549

Figure 6.9 on the following page contains examples of extracted algorithms.
They are extracted from the source code of a process tracer written by a student.
The program shows the same information about a traced process as doesps and
(s)trace.

Finding, Extracting and Exploiting Structure in Text and Hypertext

58 6.C. COMMENT COMPARISON VIS-À-VIS ALGEXT

Figure 6.9: The algorithm description for a process tracer,extracted from source
code made by a student.

openFile:
Generate correct name of file to open and return it

Failed to open with full authority, try minimal version

traceProc:
Forever do the following

Check if we are to change process to trace
We are, do we have a file to read from?
If yes, read file and change process
If not, continue tracing the old process

Read process status
If status has changed since last loop ...
Send to other process

printTrace:
Print header line
Forever do the following ...

Get one information record from tracing process
If data has changes since last time we checked ...
Print information including possible system call

sigHandler:
If signal is ...

SIGHUP:
Make sure that the meta proc file is read

SIGPIPE:
We’d better die, since we have lost connection to the other process

main:
Parse argument line
Get pid for process to work with
Open proc file
Prepare for IPC
Set up signal handler
Create another process

This is parent, remove READ end in pipe
Redirect all output to child and follow process

This is child, remove WRITE end in pipe
Read from parent and present in standard format

End execution here and now

Ola Ågren

II

59

60

Ola Ågren

Automatic Generation of Concept Hierarchies 61

Chapter 7

Automatic Generation of Concept
Hierarchies for a Discrete Data
Mining System

Paper appears with kind permission from CSREA Press.

Abstract

In this paper we propose an algorithm for automatic creationof concept
hierarchies from discrete databases and datasets. The reason for doing this is
to accommodate later data mining operations on the same set of data without
having an expert create these hierachies by hand.

We will go through the algorithm thoroughly and show the results from each
step of the algorithm using a (small) example. We will also give actual exe-
cution times for our prototype for non-trivial example datasets and estimates
of the complexity of the algorithm in terms of the number of records and the
number of distinct data values in the data set.

Keywords: Data Mining, Data Preprocessing, Hierarchy Generation

Finding, Extracting and Exploiting Structure in Text and Hypertext

62 7.1. INTRODUCTION

7.1 Introduction

Concept hierarchies are descriptors over data sets, in sucha way that all records
in the corresponding data sets can be described by the hierarchies. Concept hier-
archies are typically used in retrieval systems [14, 13, 3] and for data mining [6].
Each facet or aspect of the records has a corresponding hierarchy, often in the form
of a tree. An example of such a hierarchy that describes a C source code could be
Imperative→C→ ANSI for the language facet andOrdered→ Tree→ Binary
for the data type facet. Creating a concept hierarchy manually is very time consum-
ing and relies on the understanding of the actual data at hand. Creation of concept
hierarchies can be automated (as in this work). There are unfortunately still some
doubts about the soundness of the generated facets/dimensions, especially since no
exact rules for what is a good concept hierarchy exists today.

There exists a large number of techniques for gathering information from large
sets of data. These techniques include such diverse methodsas machine learning,
decision trees [16], fuzzy sets/neural networks [5], and data mining [6]. All but the
last one have been used successfully to propose class membership of each record
if given new data. Most of them have found their own niche eventhough the tech-
niques are meant to be of general use, e.g. fuzzy sets/neuralnetworks are often used
in medical diagnostics systems, for example to indicate existence/non-existence of
a medical syndrome [8].

Data mining has some special properties. The main goal of a data mining sys-
tem is to find and extract correlations between different properties or aspects of
records in given data. Such systems have been especially good at finding data that
are closely related in a large set of data, so called clustering [7]. A data mining
system will report and/or visualize all relationships found so that the user can un-
derstand and make use of the extracted information. Typicaluses of data mining
includes finding patterns in sales data in the form ofbuyers of product A tend to
buy product B as wellor buyers under X years of age with an income of at least
Y tend to buy C, so that it is possible to pinpoint whom to direct an advertisement
to [6].

A crusial part of a data mining system is the concept hierarchy that describes
all aspects of the data in a number of layers, where lower levels correspond to
a low data abstraction and higher levels correspond to a higher abstraction level,
i.e. a more generalized and summarized data. Generating a concept hierarchy for
a dataset is a time consuming task, especially if the nature of the dataset is not
known beforehand. In this paper we describe an algorithm forautomatic creation
of concept hierarchies for discrete datasets (e.g. each data record contains one or
more of a certain number of keywords/tokens). An example of such a discrete
dataset is given in Figure 7.1 on the next page.

Ola Ågren

A
utom

atic
G

eneration
ofC

onceptH
ierarchies

6
3

01 Makefile: make commands text
02 clean: Bourne shell script text
03 combinator: ELF 32-bit MSB executable, SPARC, version 1, dynamically linked, not stripped
04 db: directory
05 fest.txt: International language text
06 fil.aux: LaTeX auxiliary file
07 fil.dot: ASCII text
08 fil.eps: PostScript document text conforming at level 2.0
09 fil.log: TeX transcript text
10 fil.tex: LaTeX 2e document text
11 input: English text
12 lex.yy.c: C program text
13 main.c: C program text
14 main.o: ELF 32-bit MSB relocatable, SPARC, version 1, not stripped
15 words.l: lex description text
16 words.o: ELF 32-bit MSB relocatable, SPARC, version 1, not stripped

F
igure

7.1:
A

short
exam

ple
ofdiscrete

m
eta-data,

in
this

ca
se

output
ofthe

“file”
com

m
and.

F
inding,E

xtracting
and

E
xploiting

S
tructure

in
Textand

H
y

pertext

64 7.2. DEFINITIONS

7.2 Definitions

Givenki ∈ {keywords} (the keywords in the system) andσ[ki] ∈ P{records} (the
set of records in the database that contain keywordki), we can define the concepts
used in this work.

Two or more keywords that always appear together arekeyword equivalent,
i.e.

ki =k k j ⇐⇒ σ[ki] = σ[k j], whereki 6= k j . (7.1)

This implies that they may befolded into one keyword, i.e. the name of the
latter is added as a synonym of the first and all references to the latter are removed
or ignored. Such removed keywords are said to belong tokis family , i.e.

ki =k k j =⇒ ki ,k j ∈ fami, fami ∈ P{keywords}. (7.2)

Formally, subsumption is defined as an implicit subset/superset relationship
between the interpretations of the two concepts [2]. This means that if a keyword
ki never appears in a record withoutk j appearing, but not vice versa, thenki is
subsumedby k j .

ki <k k j ⇐⇒ σ[ki]⊂ σ[k j] (7.3)

A keywordki that is not subsumed by another keyword is said to be avector,
and is used as the bases in the concept hierarchies.

Ola Ågren

Automatic Generation of Concept Hierarchies 65

7.3 The Algorithm

The algorithm given here is straight forward, although someof the implementation
details can be anything but trivial to implement. The only requirement is that the
keywords must have a consistent enumeration order, but the different parts of the
algorithm are independent of different implementations ofsets, etc.

Further information about each part of the algorithm, including cost estima-
tions based on code complexity, are given in Section 7.5.

0. Create database and index;

This step has to be done, but is beyond the scope of this article.

1. Read index data;

proc ReadInvertedFiles() ≡
p foreach k∈ {keywords} do

σ[k]← read inverted DB Filek;
x od.

ReadInvertedFiles reads the index/inverted data files [10]from the disc, or
must generate them (at some run time cost) if they do not exist. In this
algorithm description (and in the cost estimation in Section 7.5.1) we expect
them to be on disc before execution.

2. Find and fold keyword families;

proc FindAndFoldFamilies() ≡
p while ∃ki,k j ∈ {keywords}• i < j ∧σ[ki] = σ[k j] do

fami ← fami ∪ famj ; (k j is always a member offamj)
remove kj from computations;

x od.

FindAndFoldFamilies finds keywords that are keyword equivalent, adds the
latter to the formers family and removes the latter (according to the keyword
enumeration order) from further computations.

Finding, Extracting and Exploiting Structure in Text and Hypertext

66 7.3. THE ALGORITHM

3. Find all subsets and subsumptions;

proc FindSubsets() ≡
p while ∃ki ,k j ∈ {keywords}•σ[ki]⊂ σ[k j] do

ki <k k j ;
x od.

FindSubsets finds all cases where one keyword is subsumed by another,
while ignoring folded keywords altogether.

The reason for performing family folding before finding subsets is to prune
the solution space as quickly as possible, since all keywords in a family will
subsume/be subsumed by exactly the same keywords.

4. Find all vector nodes;

proc FindVectorNodes() ≡
p vectors← empty array; (Sorted in decreasing| k | order)

foreach k∈ {keywords} do
if ∄k j •k <k k j

then Insertk in vectors;
fi

x od.

FindVectorNodes finds all vector keywords in the set of keywords. The vec-
tor keywords are those that are not subsumed by any other keyword.

All found vector keywords will be added to an array in a decreasing order
according to the cardinality of the keywords. The order is important for the
heuristics of step 5 on the facing page.

Ola Ågren

Automatic Generation of Concept Hierarchies 67

5. Group vectors into different dimensions/facets;

proc ColourVectorNodes() ≡
p dim← 0;

while vectors6= empty arraydo
dim← dim+1;
while ∃k∈ vectors•σ[k]∩S

i∈vectorsdim
σ[i] = ∅ do

Removek from vectors;
Add k to vectorsdim;

od
od

x maxDimension← dim.

ColourVectorNodes is a heuristics based greedy algorithm.We have found
that it will yield concept hierarchies that are quite good, even though it some-
times takes a keyword that would logically fit better in a later dimension.

6. Fill out the concept hierarchies according to the subsumptions found in step 3
on the preceding page;

proc GenerateDimensions() ≡
p for i← 1 to maxDimensiondo

Ni← vectorsi;
foreach ki ∈ vectorsi do

Ni ← Ni ∪{∀k j ∈ {keywords}•k j <k ki};
od
Ei←{∀ki ,k j ∈ {Ni,Ni}•ki <k k j | (k j ,ki)};
Perform topological sort onEi;

x od.

GenerateDimensions generates the concept hierarchies foreach dimension
(see Figure 7.3 on page 70 for an example), i.e. the desired output for later
data mining on the data.

Finding, Extracting and Exploiting Structure in Text and Hypertext

68 7.4. EXAMPLE OF EXECUTION

7.4 Example of Execution

If we take the dataset in Figure 7.1 as input to our algorithm we will get the fol-
lowing results:

1. Reading inverted files yields (this is subset of the results, full results are
given in Table 7.2 on page 76 in Appendix 7.A):

σ[make] = {01}
σ[text] = {01,02,05,07−13,15}

σ[ELF] = {03,14,16}
σ[MSB] = {03,14,16}
σ[executable] = {03}

2. The following non-trivial keyword families are found in the data:

family folded keywords
make commands
Bourne shell, script
ELF 32-bit, MSB, SPARC, version, 1, not, stripped
executable dynamically, linked
International language
auxiliary file
PostScript conforming, at, level, 2.0
TEX transcript
C program
lex description

3. Subsumptions found are:

2e<k document
2e<k text
2e<k LATEX
ASCII<k text
Bourne<k text
C <k text

English<k text
International<k text
PostScript<k document
PostScript<k text
TEX <k text
auxiliary <k LATEX

document<k text
executable<k ELF
lex<k text
make<k text
relocatable<k ELF

The results of steps 2 and 3 can be seen in Figure 7.2 on the facing page.

Ola Ågren

A
utom

atic
G

eneration
ofC

onceptH
ierarchies

6
9

text

make
commands

bourne
shell
script

international
language

ascii document
tex

transcript
english

c
program

lex
description

postscript
conforming

at
level
2.0

2e

elf
32-bit
msb
sparc

version
1

not
stripped

executable
dynamically

linked
relocatable

directorylatex

auxiliary
file

F
igure

7.2:
S

ubsum
ption

and
fam

ily
graph

of
the

exam
ple

data
in

F
igure

7.1
on

page
63.

F
inding,E

xtracting
and

E
xploiting

S
tructure

in
Textand

H
y

pertext

7
0

7.4.
E

X
A

M
P

LE
O

F
E

X
E

C
U

T
IO

N

Dimension 01

text

elf
32-bit
msb
sparc

version
1

not
stripped

directory

make
commands

bourne
shell
script

international
language

ascii document
tex

transcript
english

c
program

lex
description

executable
dynamically

linked
relocatable

Dimension 02

latex

postscript
conforming

at
level
2.0

2e

auxiliary
file

F
igure

7.3:
T

he
concepthierarchy

generated
from

the
data

in
F

igure
7.1

on
page

63.

O
la

Å
gren

Automatic Generation of Concept Hierarchies 71

4. The vector families in the sample aretext, ELF, LATEX anddirectorywith 11,
3, 2 and 1 instances respectively.

5. The first dimension consists of the vectorstext, ELF anddirectory, while the
second dimension has only one vector,LATEX.

6. Only 2 edges are removed in the topological sorting of thissmall dataset,
(text,PostScript)and (text,2e). The end result of running the algorithm is
seen in Figure 7.3 on the preceding page.

7.5 Algorithm Analysis

The algorithm given in Section 7.3 is a step by step description of what should
be done in order to get a consistent concept hierarchy for later data mining. The
steps are to be performed one after another and some of the steps can easily be
broken down in parts to be executed in parallel (e.g. all dimensions can be handled
simultaneously in Step 6 on page 67).

Two things have to be considered though, and that is the maximal cost of run-
ning the algorithm and the actual running times on real data.The complexity of
the algorithm is calculated in Section 7.5.1 and the runningtime of the prototype
is given in Section 7.5.2.

7.5.1 Cost Estimation

Givenm (number of records) andn (number of keywords), we can give the follow-
ing upper bounds of the algorithmic complexities:

proc ReadInvertedFiles() ≡O(mn).
proc FindAndFoldFamilies() ≡O(mn2).
proc FindSubsets() ≡O(mn2).
proc FindVectorNodes() ≡O(mn2).
proc ColourVectorNodes() ≡O(mn2).
proc GenerateDimensions() ≡O(mn+n2).
total≡O(mn2).

This includes the cost of set operations that we estimate to be linear to the
number of possible elements in a set, e.g.O(m) or O(n).

Finding, Extracting and Exploiting Structure in Text and Hypertext

72 7.6. RELATED WORK

7.5.2 Actual Execution Times

The execution times of the prototype as given in Table 7.1 areon a single processor
of a Sun Ultra Enterprise 450 server with 4 UltraSPARC-II processors, 4 MB level
2 cache and 4 GB of memory.

Table 7.1: Execution times for some sample datasets.

Dataset # records # keywords User time (s)
1 12492 634 5.93
2 12492 780 10.36
3 256388 7182 16513.28

7.6 Related Work

Semantic and knowledge indexing has been a widely spread research area that in-
cludes such diverse topics as finding keywords for hierarchical summarization [11],
knowledge acquisition tools [4] and automatic indexing of system commands based
on their manual pages on a UNIX system [17].

Conceptual clustering systems [18] are also quite closely related to this work,
but from the viewpoint of the data mining system rather than at the preprocessing
stage.

Automatic generation of concept hierarchies [15] is related but works on a
probabalistic, rather than a discrete, view of the data. It will therefore throw away
some of the relevant subsumptions in the data and that is not an option for a data
mining system.

The concept hierarchies generated by our algorithm have strong resemblances
to the feature-oriented classification trees used by Salton[14], Prieto-Díaz [13]
and Börstler [3]. We believe that this is not a coincident, and that such structures
evolve naturally when working with closely related pieces of data like keywords or
software assets.

The OPTICS system [1] finds critical points in a large database, points that can
be used as basis for later clustering. These points should beviewed as “hot-spots”
where interesting information resides (see 2e in Figure 7.3 on page 70 for such a
“hot-spot” found by our algorithm).

Ola Ågren

Automatic Generation of Concept Hierarchies 73

7.7 Discussion

There exists one method of speeding up theaveragecase while keeping the worst
case the same. Sorting the keywords in decreasing cardinality order in Step 1 on
page 65 will speed the algorithm up for the average case, since keyword equality
implies the same cardinality and subset a lower cardinality. This implies that the
number of keywords to be checked in Steps 2 on page 65 & 3 on page66 can be
decreased significantly (with factors of approximately 1/ log(n) and at least 1/2,
respectively).

The grouping of vectors into dimensions is currently sub-optimal, since it uses
a heuristic algorithm rather than a best fit or even backtrackbased graph colouring
algorithm [12, 9]. We first believed such to be too expensive in computing time,
but since all of our test datasets have had a relatively smallnumber of vectors (144
keywords in the case of our largest dataset with 256388 records) it is feasible.

Some of the non-vector keywords are subsumed by more than onevector,
thereby generating a lattice structure with rather complexproperties. This is both
a weakness and a strength; A weakness since it will generate the same set of ver-
tices more than once and a strength since such keywords are excellent candidates
for finding correlations and interesting data points in later Data Mining operations.
It is trivial to exclude keywords after they have been used for the first time in a
dimension if that would fit a certain problem.

Another somewhat harder problem with our implementation isthat it will yield
a conceptual hierarchy for each dimension even though the data would actually
indicate that a lattice would be expected or more fitting (seeFigure 7.4 on the
following page for examples of both). The reason for this is the topological sorting
done in the last step of GenerateDimensions (Step 6 on page 67). Removing the
correct vertices from the set to generate a lattice is not that hard; Subsumption is
a transitive function, e.g. if keyworda subsumes bothb andc while b subsumesc
then the vertex(a,c) can safely be removed from the resulting set. This technique
would be very useful (especially if sorting in decreasing cardinality order as in the
first paragraph of the discussion has already been done) eventhough the cost would
rise fromO(mn+n2) to O(mn2) for Step 6 on page 67.

The time required for generating the concept hierarchy for our biggest dataset
seems rather high (just over 4.5 hours of computation, see Section 7.5.2), but since
this is done once for each dataset before doing data mining webelieve it to be
satisfactory anyway. One way of speeding this up is to createan extra dataset
that contains no duplicate records and use this dataset whencreating the concept
hierarchy. The time for concept hierarchy generation on ourlarge dataset (with
38187 unique records) falls to around 40 minutes execution time. Data mining
are often done on static databases, e.g. data warehouses, sothe cost of concept

Finding, Extracting and Exploiting Structure in Text and Hypertext

74 7.7. DISCUSSION

(a) (b)

country

province_or_state

city

street

year

quarter

weekmonth

day

Figure 7.4: Hierarchical (a) and lattice (b) structures of attributes.

hierarchy generation should generally be amortized over the number of times that
the resulting data is later used. Our approach should probably not be used in a
constantly evolving database with major upgrades going on simultaneously.

Concluding Remarks and Future Work

All work so far on the prototype have been fruitful in the formof data relations
both directly from concept hierarchy generation and also from later data mining.
The concept hierarchies generated have generally been of good quality (with some
minor glitches) and we hope to see future use of our algorithmin the works of
others.

One thing that has to be further studied is the impact of the spanning in each
dimension, e.g. it might not always be true that it is better to have one completely
and one 50% spanned dimension rather than two dimensions with 75% spanning.

We are currently considering an upgraded version of the prototype that includes
another algorithm for dimension generation and modifications in order to find lat-
tice structures in the generated dimensions.

Ola Ågren

Automatic Generation of Concept Hierarchies 75

7.8 References
[1] A NKERST, M., BREUNIG, M. M., KRIEGEL, H.-P., AND SANDER, J. OPTICS: ordering

points to identify the clustering structure.ACM SIGMOD Record 28, 2 (June 1999), 49–60.

[2] BORGIDA, A. Description Logics in Data Management.IEEE Trans. Knowledge and Data
Engineering 7, 5 (Oct. 1995), 671–682.

[3] BÖRSTLER, J. FOCS: A Classification System for Software Reuse. InProceedings of the 11th
Pacific Northwest Software Quality Conference(PNSQC, Beaverton, OR, June 22-24, 1993),
pp. 201–211.

[4] FUJIHARA, H., SIMMONS, D. B., ELLIS , N. C., AND SHANNON, R. E. Knowledge Con-
ceptualization Tool. IEEE Trans. Knowledge and Data Engineering 9, 2 (Mar.–Apr. 1997),
209–220.

[5] FULLÉR, R. Neural Fuzzy Systems. Tech. Rep. A:443, Institute for Advanced Management
Systems Research, Åbo, Finland, 1995.

[6] HAN , J., AND KAMBER, M. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, Inc., San Francisco, California, 2001.

[7] JAIN , A. K., MURTY, M. N., AND FLYNN , P. J. Data Clustering: A Review.ACM Computing
Surveys (CSUR) 31, 3 (Sept. 1999), 264–323.

[8] K ALLIN , L. Applied Neural Logic. Licentiate thesis, Umeå University, Umeå, Sweden, 1998.

[9] K NUTH, D. E. Estimating the efficiency of backtrack programs.Mathematics of Computation
29 (1975), 121–136.

[10] KNUTH, D. E. The Art of Computer Programming: Vol 3, Sorting and Searching, second ed.
Addison-Wesley, Reading, Massachusetts, 1998.

[11] LAWRIE, D., CROFT, W. B., AND ROSENBERG, A. Finding topic words for hierarchical
summarization. InProceedings of the 24th ACM/SIGIR International Conference on Research
and Development in Information Retrieval(Sept. 9-12, 2001), pp. 349–357.

[12] MANBER, U. Introduction to algorithms. Addison-Wesley, Reading, Massachusetts, 1989.

[13] PRIETO-DÍAZ , R. Implementing Faceted Classification for Software Reuse. Communications
of the ACM 34, 5 (May 1991), 88–97.

[14] SALTON , G. Manipulation of trees in information retrieval.Communications of the ACM 5, 2
(Feb. 1962), 103–114.

[15] SANDERSON, M., AND CROFT, B. Deriving concept hierarchies from text. InProceedings of
the 22nd annual international ACM SIGIR conference on Research and development in infor-
mation retrieval(Berkeley, California, United States, 1999), ACM Press, pp. 206–213.

[16] WITTEN, I. H., AND FRANK , E. Data Mining. Morgan Kaufmann Publishers, Inc., San
Francisco, California, 2000.

[17] YE, H., AND LO, B. W. N. Towards a self-structuring software library.IEE Proc. Soft. 148, 2
(Apr. 2001), 45–55.

[18] YOO, J. P., PETTEY, C. C., AND YOO, S. A hybrid conceptual clustering system. InPro-
ceedings of the 1996 ACM 24th annual conference on Computer science(Philadelphia, Penn-
sylvania, United States, 1996), ACM Press, pp. 105–114.

Finding, Extracting and Exploiting Structure in Text and Hypertext

76 7.A. ALL RESULTS FROM STEP 1

7.A All Results from Step One in Section 7.4

Table 7.2 contains all results given by step one of the algorithm when running it
on the sample data in Figure 7.1 on page 63. The record numbersin the table are
those used in Figure 7.1 on page 63.

Table 7.2: All keywords found and the corresponding record numbers.

ki σ[ki] ki σ[ki]
make 01 LATEX 06, 10
commands 01 auxiliary 06
text 01, 02, 05, 07 – 13, 15 file 06
Bourne 02 ASCII 07
shell 02 PostScript 08
script 02 document 08, 10
ELF 03, 14, 16 conforming 08
32-bit 03, 14, 16 at 08
MSB 03, 14, 16 level 08
executable 03 2.0 08
SPARC 03, 14, 16 TEX 09
version 03, 14, 16 transcript 09
1 03, 14, 16 2e 10
dynamically 03 English 11
linked 03 C 12, 13
not 03, 14, 16 program 12, 13
stripped 03, 14, 16 relocatable 14, 16
directory 04 lex 15
International 05 description 15
language 05

Ola Ågren

III

77

78

Ola Ågren

CH I C: A Fast Concept HIerarchy Constructor 79

Chapter 8

CH I C: A Fast Concept
H Ierarchy Constructor for
Discrete or Mixed Mode
Databases

Paper appears with kind permission from the Knowledge Systems Institute.

Abstract

In this paper we propose an algorithm that automatically creates concept
hierarchies or lattices for discrete databases and datasets. The reason for
doing this is to accommodate later data mining operations onthe same sets
of data without having an expert create these hierarchies byhand.

Each step of the algorithm will be examined; We will show inputs and output
for each step using a small example. The theoretical upper bound of the
complexity for each part of the algorithm will be presented,as well as real
time measurements for a number of databases. We will finally present a time
model of the algorithm in terms of a number of attributes of the databases.

Keywords: Data Mining, Data Preprocessing, Hierarchy Generation, Lattice
Generation

Finding, Extracting and Exploiting Structure in Text and Hypertext

80 8.1. INTRODUCTION

8.1 Introduction

Data mining in large sets of data is not a trivial occupation.Choosing one type
of algorithm over another for a certain problem can mean the difference between
getting good (for some definition of good) or no, or even inconclusive, results.
Almost all of the methods used today in data mining require either structured data
(so that clustering can easily be performed) or a concept hierarchy that envisions
the inner structure of the data [6, 4, 16, 5].

Concept hierarchies are descriptors over data sets, in sucha way that all records
in the corresponding data sets can be described by the hierarchies. Concept hier-
archies are typically used in retrieval systems [12, 11, 2] and for data mining [5].
Each facet or aspect of the records has a corresponding hierarchy, often in the form
of a tree. An example of such a hierarchy that describes a C source code could be
Imperative→C→ ANSI for the language facet andOrdered→ Tree→ Binary
for the data type facet. Constructing a concept hierarchy manually is very time
consuming and relies on a thorough understanding of the actual data at hand.
Construction of concept hierarchies can be automated (as inthis work). How-
ever, there are still some doubts about the soundness of automatically generated
facets/dimensions, especially since no exact rules for what is a “good” concept
hierarchy exist today.

The remainder of the paper is organized as follows; The second section is the
background to the work. The third section gives the definitions necessary for under-
standing the later parts of this paper. The fourth section isthe algorithm, while the
fifth contains an example of running the algorithm. The sixthsection contains an
analysis of the algorithm and the seventh shows relationships with previous work.
The last two sections contains the discussion and the experiences that we have had
with CHIC, respectively.

Ola Ågren

CH I C: A Fast Concept HIerarchy Constructor 81

8.2 Background

A few years ago we were faced with a large data set consisting of two parts; One
relational and one consisting of a set of keywords. Feeding only the relational part
of the data set into data mining systems revealed no new information about it. We
realized that the only way of getting more information from the data set was to
use the given set of keywords as means of additional clustering. We were unable
to find any already published algorithm for finding structures in discrete data, so
we had to create one ourselves. The result of our work was a concept hierarchy
constructor, called CHiC.

CHiC will automatically find concept hierarchies (or lattices, as the case might
be) in sets of discrete data. Our definition of discrete data is either keyword based
or otherwise enumerated data, e.g. the sample data in Figure8.1 on the following
page. Our algorithm knows nothing about differences between numbers, whether
integer or floating point, so it cannot be used to cluster numeric or continuous data.

CHIC has been used by major divisions of at least two multinational companies
to generate concept hierarchies from their mixed mode databases.

Finding, Extracting and Exploiting Structure in Text and Hypertext

8
2

8.2.
B

A
C

K
G

R
O

U
N

D

01 Makefile: make commands text
02 clean: Bourne shell script text
03 combinator: ELF 32-bit MSB executable, SPARC, version 1, dynamically linked, not stripped
04 db: directory
05 fest.txt: International language text
06 fil.aux: LaTeX auxiliary file
07 fil.dot: ASCII text
08 fil.eps: PostScript document text conforming at level 2.0
09 fil.log: TeX transcript text
10 fil.tex: LaTeX 2e document text
11 input: English text
12 lex.yy.c: C program text
13 main.c: C program text
14 main.o: ELF 32-bit MSB relocatable, SPARC, version 1, not stripped
15 words.l: lex description text
16 words.o: ELF 32-bit MSB relocatable, SPARC, version 1, not stripped

F
igure

8.1:
A

short
exam

ple
ofdiscrete

m
eta-data,

in
this

ca
se

output
ofthe

“file”
com

m
and.

O
la

Å
gren

CH I C: A Fast Concept HIerarchy Constructor 83

8.3 Definitions

Given ki ∈ keywords(the keywords in the system) andσki ∈ Precords(the set of
records in the database that contain keywordki), we can define the concepts used
in this work.

A bucket is a placeholder for a set of keywords.
Two or more keywords that always appear together arekeyword equivalent,

i.e.
ki =k k j ⇐⇒ σki = σkj , whereki 6= k j . (8.1)

This implies that they may befolded into one keyword, i.e. the name of the
latter is added as a synonym of the first and all references to the latter are removed
or ignored. Such removed keywords are said to belong tokis family , i.e.

ki =k k j =⇒ ki ,k j ∈ f ami, f ami ∈ Pkeywords. (8.2)

Formally, subsumption is defined as an implicit subset/superset relationship
between the interpretations of the two concepts [1]. This means that if a keyword
ki never appears in a record withoutk j appearing, but not vice versa, thenki is
subsumedby k j .

ki <k k j ⇐⇒ σki ⊂ σkj (8.3)

A keywordki that is not subsumed by another keyword is said to be avector.
Vectors are used as the bases of the concept hierarchies.

Finding, Extracting and Exploiting Structure in Text and Hypertext

84 8.4. THE ALGORITHM

8.4 The Algorithm

y

record index

read index data
(see Algorithm 1)

database

y

record index

find and fold keyword families
(see Algorithm 2)

buckets of inverted indexes

a c d f

e

g h i

kj

l

b

find all subsets and subsumptions
(see Algorithm 3)

buckets of inverted indexes

a f

j

d

i l

j

h

e

c

l

dimension 1 dimension 2

b

g

h k

a c d f

find all vector nodes
(see Algorithm 4)

graph of subsumptions

[a d] [c f]

group vectors into different dimensions
(see Algorithm 5)

vector list

fill out the concept hierarchies
(see Algorithms 6 & 7)

vectors per dimension

generated dimensions

Figure 8.2: Each step of the algorithm and all intermediate results.

Ola Ågren

CH I C: A Fast Concept HIerarchy Constructor 85

The algorithm (as outlined in Figure 8.2 on the preceding page) given here is
straight forward, although some of the implementation details can be anything but
trivial to implement. The only requirements are that the keywords must have a
consistent enumeration order (as given in Equation 8.4) andthat the database has
already been created. The different parts of the algorithm are otherwise indepen-
dent of different implementations of sets, etc.

∀x,y∈ keywords•x 6= y−→ ordx 6= ordy (8.4)

Further information about each part of the algorithm are given in Section 8.4.7
(correctness of the algorithms) and Section 8.6 (cost estimations based on code
complexity).

8.4.1 Read Index Data

All keywords should be given an enumeration order and the inverted file (see [8])
corresponding to each keyword is read from disk. The following must hold after
the step in the algorithm has been executed:

∀x∈ keywords•σx = inverted DB filex (8.5)

∀x∈ keywords• |σx|= y−→ x∈ buckety (8.6)

ALGORITHM 8.1 (READINVERTEDFILES) This step of the algorithm reads the
index/inverted data files from the disc, or must generate them (at some run time
cost) if they do not exist. In this algorithm description (and in the cost estimation
in Section 8.6.1) we expect them to be on disc before execution.

proc ReadInvertedFiles()≡
p Empty all buckets;

foreach x∈ keywordsdo
σx← inverted DB Filex;
y← |σx|;
buckety← buckety∪{x};

x done

Finding, Extracting and Exploiting Structure in Text and Hypertext

86 8.4. THE ALGORITHM

8.4.2 Find and Fold Keyword Families

The second step of the algorithm finds keywords that are keyword equivalent, adds
the latter to the formers family and removes the latter (according to the keyword
enumeration order) from further computations.

The following must always hold true for the algorithm used:

∀x,y∈ keywords•ordx < ordy∧σx = σy−→ x =k y (8.7)

wherey should be excluded from further computations.

ALGORITHM 8.2 (FINDANDFOLDFAMILIES) This step of the algorithm compares
each keyword in a bucket with all other keywords with a later enumeration order
in the same bucket, removing the latter if the two are keywordequivalent.

proc FindAndFoldFamilies()≡
p foreach bucket∈ {buckets} do

while ∃x,y∈ bucket•ordx < ordy∧σx = σy do
f amx← f amx∪ f amy;
bucket← bucket\ f amy;
keywords← keywords\ f amy;

done
x done

Ola Ågren

CH I C: A Fast Concept HIerarchy Constructor 87

8.4.3 Find All Subsets and Subsumptions

This step of the algorithm finds where one keyword is subsumedby another, while
ignoring folded keywords altogether. The effect of this step can be summarized as:

∀x,y∈ keywords•x 6= y∧σx⊂ σy−→ x <k y (8.8)

ALGORITHM 8.3 (FINDSUBSETS) This step of the algorithm will find all sub-
sumptions in the database.CHIC works in decreasing bucket size order to further
optimize the algorithm.

proc FindSubsets()≡
p foreach x∈ keywordsdo

foreach y∈ keywords• |σy|< |σx|} do
if σx⊂ σy then x <k y;

done
x done

The reason for performing family folding before finding subsets is to prune
the solution space as quickly as possible, since all keywords in a family will sub-
sume/be subsumed by exactly the same keywords.

8.4.4 Find All Vector Nodes

The goal of the next step is to find all vectors (keywords that are not subsumed by
any other keyword) in the given dataset, i.e.:

vectors= {x∈ keywords| ∄y∈ keywords•x <k y} (8.9)

ALGORITHM 8.4 (FINDVECTORNODES) This step of the algorithm will add all
found vectors in an array, sorted in decreasing cardinalityorder. The order is
important for the heuristics of the next step.

proc FindVectorNodes()≡
p vectors← empty array;

foreach x∈ keywordsdo
if ∄y•y∈ keywords∧x <k y

then insert k in vectors;
x done

Finding, Extracting and Exploiting Structure in Text and Hypertext

88 8.4. THE ALGORITHM

8.4.5 Group Vectors into Different Dimensions/Facets

Partition the set of vectors into as few partitions (vectorsi) as possible, while main-
taining:

∀x,y∈ vectorsi •x 6= y∧σx∩σy = ∅ (8.10)

ALGORITHM 8.5 (COLOURVECTORNODES) The algorithm is a greedy imple-
mentation based on heuristics that maintains Equation 8.10. CHIC contains two
different versions of keyword selection; The first version chooses the keyword with
the highest cardinality that fits and the second selects the keyword that has the
highest number of conflicts with other keywords first. The latter version is much
more costly in terms of CPU time as can be seen in Section 8.6.1.

proc ColourVectorNodes()≡
p dim← 0;

while vectors6= empty arraydo
dim← dim+1;
while ∃k∈ vectors•σk∩

S

y∈vectorsdim
σy = ∅ do

Remove k from vectors;
Add k to vectorsdim;

done
done

x maxDimension← dim;

There exists yet another option to CHIC that changes the behavior of this step
slightly. It is possible to ask the program to fill the dimensions as much as possible
by reusing vectors from one dimension in later dimensions ifthere is no conflict
with vectors already added in that dimension. The easiest way to do this is to mark
vectors with no conflict with any remaining vector invectorsto be used in current
dimension and all that follows it. It is also very easy to go back and check already
used vectors for conflicts when setting up latter dimensions.

The reason for using a heuristics based approach rather thantrying all possi-
ble combinations is the extreme processing cost that it would incur. Finding the
optimal colouring for even a small data base of, e.g., 36 vectors and 6 dimensions
would yield 635 combinations1. Given a computer system that would test 50,000
combinations per second that would take in the order of 3.44∗ 1022 seconds, or
roughly 1015 years. Our system yields an answer in a fraction of a second for
the same data base, but we can not conclusively say that it is an optimal solution
(neither in the number of dimensions, nor in the spanning of each dimension).

1One vector locked in the first dimension and with many permutations of combinations occurring
more than once but in different dimensions.

Ola Ågren

CH I C: A Fast Concept HIerarchy Constructor 89

8.4.6 Fill Out the Concept Hierarchies/Lattices Accordingto the Sub-
sumptions Found in Step 8.4.3 on page 87

This step generates a number of graphsGi = (Ni,Ei) where the nodes and the edges
are given by equations 8.11 and 8.12.

Ni = {x∈ keywords| x∈ vectorsi ∨∃y∈ vectorsi •x <k y} (8.11)

Ei = {(y,x) | x,y∈ keywords∧x <k y∧∄z• (x<k z∧z<k y)} (8.12)

ALGORITHM 8.6 (GENERATEDIMENSIONS, HIERARCHY VERSION) This algo-
rithm generates concept hierarchies for each dimension (see Figure 8.4 on page 95
for an example), i.e. the desired output for later data mining on the data.

proc GenerateDimensions()≡
p for i← 1 to maxDimensiondo

Ni ← vectorsi ;
foreach x∈ vectorsi do

Ni← Ni ∪{y∈ keywords| y <k x};
done
Ei ←{(y,x) | ∀x,y∈Ni •x <k y};
Perform topological sort on Ei;

x done

Finding, Extracting and Exploiting Structure in Text and Hypertext

90 8.4. THE ALGORITHM

ALGORITHM 8.7 (GENERATEDIMENSIONS, LATTICE VERSION) This step of the
algorithm generates concept lattices for each dimension. This means that there
might be more than one path between a vector and a given node further down in
the graph.

proc GenerateDimensions()≡
p for i← 1 to maxDimensiondo

Ni← vectorsi ;
foreach x∈ vectorsi do

Ni← Ni ∪{y∈ keywords| y <k x};
done

done
foreach x∈ keywordsdo

foreach y∈ keywords•y <k x do
foreach z∈ keywords•z<k y do

Remove z<k x
done

done
done
for i← 1 to maxDimensiondo

Ei←{(y,x) | ∀x,y∈ Ni •x <k y};
x done

8.4.7 Correctness of the Algorithm

Equation 8.4 on page 85 implies that each keyword should havean unique order
number. This number is used when selecting which keyword to fold and which to
keep in Algorithm 8.2 on page 86, and it is also used by CHIC to prune the solution
space in Algorithm 8.3 on page 87. Our solution to the ordering number is to give
each keyword a number from 1024 and up in the order that they were seen when
generating the database, which implies that a keyword cannot be subsumed by a
keyword with a higher number unless they appeared for the first time in the same
record.

Equation 8.5 on page 85 is trivial. The implication of this equation is that the
values have to be available at later stages, but how these aremade available is not
important for the algorithm.

Equation 8.6 on page 85 shows the bucket sorting stage of the algorithm. The
algorithm will work even if the sorting stage is removed, butat a much higher
computational cost (see [17]).

Ola Ågren

CH I C: A Fast Concept HIerarchy Constructor 91

The slightly rewritten form of Algorithm 8.1 on page 85 seen below shows that
it does indeed fulfill Equations 8.5 and 8.6 on page 85.

proc ReadInvertedFiles()≡
p ∀x∈ keywords•σx← inverted DB Filex;
x ∀x∈ keywords•bucket|σx|← bucket|σx|∪{x};

Equation 8.7 on page 86 is a combination of Definitions 8.2 and8.3 on page 83.
The implication of the equation is that only one of each pair of keyword equiva-
lent keywords should be used in later computation; The latter keyword is used as
yet another name on the syntactic rather than semantic levelof the keyword still
remaining. Proving that Algorithm 8.2 on page 86 fulfills Equation 8.7 on page 86
is trivial, since it follows directly from Definitions 8.2 and 8.3 on page 83 together
with Equation 8.4 on page 85.

Equation 8.8 on page 87 follows directly from Definition 8.3 on page 83. Algo-
rithm 8.3 on page 87 is a rewriting of the equation to ignore some of the impossible
solutions (i.e., checking if the keywordx subsumes the keywordy iff |σx| > |σy|),
thereby making it more efficient.

Equation 8.9 on page 87 is the definition ofvector and Algorithm 8.4 on
page 87 is just an extension of that equation.

Equation 8.10 on page 88 is the minimal requirements for step8.5 on page 88,
but it does not specify how it it achieved. Algorithm 8.5 on page 88 is written is
such a way that it complies with Equation 8.10 on page 88, but the critical part
in this step is the selection algorithm in the inner while loop. CHiC contains two
different selection algorithms, as mentioned in Section 8.4.5.

Equation 8.11 on page 89 makes sure that only those keywords that can be
reached from the vectors in a given dimension is added to thatdimension.

Equation 8.12 on page 89 yields the edges (subsumptions) that are between
keywords belonging to that dimension, as per Equation 8.11 on page 89.

Algorithm 8.7 on the facing page follows Equations 8.11 and 8.12 on page 89,
while Algorithm 8.6 on page 89 has the added rule that there must exist at most
one path between a vector and any given keyword of that dimension. This is the
difference between generating a hierarchy and a lattice.

Finding, Extracting and Exploiting Structure in Text and Hypertext

92 8.5. EXAMPLE OF EXECUTION

8.5 Example of Execution

If we take the dataset in Figure 8.1 on page 82 as input to our algorithm we will
get the following results:

1. Reading inverted files yields:

ki σ[ki] ki σ[ki]
make 01 LATEX 06, 10
commands 01 auxiliary 06
text 01, 02, 05, 07 – 13, 15 file 06
Bourne 02 ASCII 07
shell 02 PostScript 08
script 02 document 08, 10
ELF 03, 14, 16 conforming 08
32-bit 03, 14, 16 at 08
MSB 03, 14, 16 level 08
executable 03 2.0 08
SPARC 03, 14, 16 TEX 09
version 03, 14, 16 transcript 09
1 03, 14, 16 2e 10
dynamically 03 English 11
linked 03 C 12, 13
not 03, 14, 16 program 12, 13
stripped 03, 14, 16 relocatable 14, 16
directory 04 lex 15
International 05 description 15
language 05

The buckets are also filled in with the following contents:

bucket # Content
1 make, commands, Bourne, shell, script, executable,

dynamically, linked, directory, International, language,
auxiliary, file, ASCII, PostScript, conforming, at, level,
2.0, TEX, transcript, 2e, English, lex, description

2 LATEX, document, C, program, relocatable
3 ELF, 32-bit, MSB, SPARC, version, 1, not, stripped
11 text

Ola Ågren

C
H

IC
:A

F
astC

onceptH
Ierarchy

C
onstructor

9
3

text

make
commands

bourne
shell
script

international
language

ascii document
tex

transcript
english

c
program

lex
description

postscript
conforming

at
level
2.0

2e

elf
32-bit
msb
sparc

version
1

not
stripped

executable
dynamically

linked
relocatable

directorylatex

auxiliary
file

F
igure

8.3:
S

ubsum
ption

and
fam

ily
graph

ofthe
exam

ple
data
in

F
igure

8.1.

F
inding,E

xtracting
and

E
xploiting

S
tructure

in
Textand

H
y

pertext

94 8.5. EXAMPLE OF EXECUTION

2. The following non-trivial keyword families are found in the data:

family folded keywords
make commands
Bourne shell, script
ELF 32-bit, MSB, SPARC, version, 1, not, stripped
executable dynamically, linked
International language
auxiliary file
PostScript conforming, at, level, 2.0
TEX transcript
C program
lex description

3. Subsumptions found are:

2e<k document
2e<k text
2e<k LATEX
ASCII<k text
Bourne<k text
C <k text

English<k text
International<k text
PostScript<k document
PostScript<k text
TEX <k text
auxiliary <k LATEX

document<k text
executable<k ELF
lex<k text
make<k text
relocatable<k ELF

The results of steps 2 and 3 can be seen in Figure 8.3 on the preceding page.

4. The vector families in the sample aretext, ELF, LATEX anddirectorywith 11,
3, 2 and 1 instances respectively.

5. The first dimension consists of the vectorstext, ELF anddirectory, while the
second dimension has only one vector,LATEX.

6. Only 2 edges are removed in the topological sorting of thissmall dataset,
(text,PostScript)and (text,2e). The end result of running the algorithm is
seen in Figure 8.4 on the next page.

Ola Ågren

C
H

IC
:A

F
astC

onceptH
Ierarchy

C
onstructor

9
5

Dimension 01

text

elf
32-bit
msb
sparc

version
1

not
stripped

directory

make
commands

bourne
shell
script

international
language

ascii document
tex

transcript
english

c
program

lex
description

executable
dynamically

linked
relocatable

Dimension 02

latex

postscript
conforming

at
level
2.0

2e

auxiliary
file

F
igure

8.4:
T

he
concepthierarchy

generated
from

the
data

in
F

igure
8.1.

F
inding,E

xtracting
and

E
xploiting

S
tructure

in
Textand

H
y

pertext

96 8.6. ALGORITHM ANALYSIS

8.6 Algorithm Analysis

The algorithm given in Section 8.4 is a step by step description of what should
be done in order to get a consistent concept hierarchy for later data mining. The
steps are to be performed one after another and some of the steps can easily be
broken down in parts to be executed in parallel (e.g. all dimensions can be handled
simultaneously in steps 8.6 on page 89 and 8.7 on page 90).

Two things have to be considered though, and that is the maximal cost of run-
ning the algorithm and the actual running times on real data.The complexity of
the algorithm is calculated in Section 8.6.1 and the runningtime of the prototype
is given in Section 8.6.2.

8.6.1 Cost Estimation

Givenm (number of records) andn (number of keywords), we can give the follow-
ing upper bounds of the algorithmic complexities:

proc ReadInvertedFiles()≡O(mn)

proc FindAndFoldFamilies()≡O(mn2)

proc FindSubsets()≡O(mn2)

proc FindVectorNodes()≡O(mn2)

proc ColourVectorNodes()≡O(mn2) or O(mn2.5)

proc GenerateDimensions()≡O(mn+n2) or O(mn2)

total≡O(mn2) or O(mn2.5).

This includes the cost of set operations that we estimate to be linear to the
number of possible elements in a set, e.g.O(m) or O(n).

Ola Ågren

CH I C: A Fast Concept HIerarchy Constructor 97

Table 8.1: Descriptions of the test data bases.

Set records (m) keywords (n) vectors(n′) subsets(m′)

1 12492 634 36 2409
2 12492 780 63 3850
3 256388 7182 114 49631
4 9480 5042 2458 6781
5 7496 3204 1400 4357

8.6.2 Actual Execution Times

Some of the data bases used for testing the algorithm are summarized in Table 8.1.
The first three are prototypical for the discrete databases that we have encountered
elsewhere. The last two are more academic in their nature, since they have unusu-
ally high number of keywords and vectors for their size.

The execution times of the prototype as given in Table 8.2 on the next page are
from a Sun Blade-1000 workstation with a 750 MHz UltraSPARC-III processor, 8
MB level 2 cache and 512 MB of memory. CHIC was compiled using gcc version
2.95.2.

Modeling the execution time in terms of the values given in Table 8.1 and the
time values in Table 8.2 on the next page (together with multiple other data sets)
yielded a simple model for each step. We have not modeled the extra time added
in step 5a/5b if reusing of vectors in later dimensions is used (as per Section 8.4.5),
but since it is in the order of 0.2% of the execution time (for all but the smallest of
our data bases, where it increases the time 0.7%) it is almostnegligible.

Finding, Extracting and Exploiting Structure in Text and Hypertext

98 8.6. ALGORITHM ANALYSIS

Table 8.2: Average execution times per step in seconds (rounded to three decimals).

Set 1 2 3 and 4 5a 5b 6a 6b fill+6a

1 0.287 0.363 0.869 0.012 0.081 0.329 0.116 0.437
2 0.442 0.382 1.574 0.041 0.397 0.516 0.230 0.654
3 34.931 1732.080 3047.250 5.060 6.678 64.088 23.861 67.413
4 2.274 8.436 42.454 36.407 1012.340 5.241 5.952 48.582
5 1.206 2.410 12.409 9.662 266.126 2.002 2.375 14.383

t1≈ 1.77∗10−8mn+3.19∗10−4n (8.13)

t2≈ 1.31∗10−10mn2 (8.14)

t3&4 ≈ 2.30∗10−10mn2 (8.15)

t5a ≈ 6.40∗10−10mn′2 (8.16)

t5b ≈ 1.36∗10−6 ln(m)n′2.333 (8.17)

t6≈ 1.77∗10−7m′n (8.18)

tfill+6≈ 2.44∗10−11m′n2 +3.51∗10−6nn′ (8.19)

t7≈ 4.04∗10−8m′n+1.79∗10−7n2 (8.20)

The number of vectors and subsets can often be hard to guess before calcula-
tions have been done, but we have found thatn′ ≈ n2/m andm′ ≈√mnare useful
approximations. They will usually yield results within 25%from the correct value
for almost all data bases2.

2Set three in Table 8.2 is one such exception, since it overestimatesn′ by 76%.

Ola Ågren

CH I C: A Fast Concept HIerarchy Constructor 99

8.7 Related Work

The work reported in this article is closely related to semantic and knowledge in-
dexing. It is a widely spread research area that includes such diverse topics as find-
ing keywords for hierarchical summarization [9], knowledge acquisition tools [3]
and automatic indexing of system commands based on their manual pages on a
UNIX system [14].

Conceptual clustering systems [15] are also quite closely related to this work,
but from the viewpoint of the data mining system rather than at the preprocessing
stage.

Automatic generation of concept hierarchies as defined in [13] is related but
works on a probabilistic, rather than a discrete, view of thedata. The rule used to
find subsumptions in that work is thatx would subsumey if P(x|y)≥ 0.8,P(y|x) <
1. This means that transitivity will not work for subsumptions; Given three key-
words (x, y andz) such thatP(x|y) ≥ 0.8,P(y|x) < 1, P(y|z) ≥ 0.8,P(z|y) < 1 and
P(x|z) � 0.8,P(z|x) < 1 would yield a very problematic state sincez is subsumed
by y which in turn is subsumed byx but z is not subsumed byx. Whether this is
acceptable or not is up to the user of the system.

The concept hierarchies generated by our algorithm have strong resemblances
to the feature-oriented classification trees used by Salton[12], Prieto-Díaz [11] and
Börstler [2]. We believe that this is not a coincident, and that such structures evolve
naturally when working with closely related pieces of data like software assets.

Finding, Extracting and Exploiting Structure in Text and Hypertext

100 8.8. DISCUSSION

8.8 Discussion

One method of speeding up theaveragecase while keeping the worst case the same
has been used in a newer version of CHIC. The keywords are sorted (using bucket
sort) in decreasing cardinality order in step 8.1. This speeds up the algorithm con-
siderably for the average case, since keyword equality implies the same cardinality
and subset a lower cardinality. This implies that the numberof keywords to be
checked in steps 8.2 & 8.3 on page 87 was decreased significantly (with factors of
approximately 1/ log(n) and at least 1/2, respectively).

The grouping of vectors into dimensions uses a heuristic algorithm rather than
a best fit or even backtrack based graph colouring algorithm [10, 7]. We have
experimented with multiple versions of backtracking algorithms, but were not able
to find any that were both fast enough and gave sufficiently better results than our
heuristic algorithm.

Some of the non-vector keywords are subsumed by more than onevector,
thereby generating a lattice structure with rather complexproperties. This is both a
weakness and a strength; A weakness since it will generate the same set of vertices
more than once and a strength since such keywords are excellent candidates for
finding correlations and interesting data points in later Data Mining operations. It
would be rather simple to update CHIC so that it excludes all keywords after they
have been used for the first time in a dimension if that would fita certain problem.

Previous version of CHIC generated a conceptual hierarchy for each dimension
even though the data indicated that a lattice would be more fitting (see Figure 8.5
on the facing page for examples of both). The reason for this was the topological
sorting done in the last step of GenerateDimensions (Algorithm 8.6 on page 89).
Removing the correct vertices from the set to generate a lattice was fortunately
not that hard (see Algorithm 8.7 on page 90); Subsumption is atransitive function,
e.g. if keyworda subsumes bothb andc while b subsumesc then the vertex(a,c)
can safely be removed from the resulting set. This techniqueproved to be very
useful (especially when the keywords are already in decreasing cardinality order
after Algorithm 8.1 on page 85 is done), but requires that thechosen Data Mining
system can handle lattices rather than hierarchies.

The time required for generating the concept hierarchy for our biggest dataset
seems rather high (just over 80 minutes of computation, see Section 8.6.2), but
since this is done only once for each dataset before doing data mining we believe
it to be satisfactory anyway. One way of speeding this up is tocreate an extra
dataset that contains no duplicate records and use this dataset when constructing
the concept hierarchy. The time for concept hierarchy generation on our large
dataset (with 38187 unique records) falls to around 11 minutes execution time.
Data mining is often done on static databases, e.g. data warehouses, so the cost

Ola Ågren

CH I C: A Fast Concept HIerarchy Constructor 101

(a) (b)

country

province_or_state

city

street

year

quarter

weekmonth

day

Figure 8.5: Hierarchical (a) and lattice (b) structures of attributes.

of concept hierarchy generation should generally be amortized over the number of
times that the resulting data is later used. Our approach should probably not be used
in a constantly evolving database with major upgrades goingon simultaneously.

8.9 Experiences

All work so far on the prototype have been fruitful in the formof data relations both
directly from concept hierarchy generation and also from later data mining. The
concept hierarchies generated have generally been of good quality (i.e. logically
connected keywords tend to be in the same dimension or even subsumed, etc.)
with some minor glitches and we hope to see future use of our algorithm in the
works of others.

The divisions of two multinational companies that have usedCHIC have been
very pleased with the results obtained from the program, andhave found other,
more novel, uses for it as well. One of the comments that we have received is
that “The only other option [available to us] would have been to hire a very ex-
pensive expert in the field, and she would probably have come up with something
remarkably similar to what we get fromCHIC.”

Finding, Extracting and Exploiting Structure in Text and Hypertext

102 8.10. REFERENCES

8.10 References
[1] BORGIDA, A. Description Logics in Data Management.IEEE Trans. Knowledge and Data

Engineering 7, 5 (Oct. 1995), 671–682.

[2] BÖRSTLER, J. FOCS: A Classification System for Software Reuse. InProceedings of the 11th
Pacific Northwest Software Quality Conference(PNSQC, Beaverton, OR, June 22-24, 1993),
pp. 201–211.

[3] FUJIHARA, H., SIMMONS, D. B., ELLIS , N. C., AND SHANNON, R. E. Knowledge Con-
ceptualization Tool. IEEE Trans. Knowledge and Data Engineering 9, 2 (Mar.–Apr. 1997),
209–220.

[4] HAN , J., CAI , Y., AND CERCONE, N. Data-driven discovery of quantitative rules in relational
databases.IEEE Transactions on Knowledge and Data Engineering 5, 1 (Feb. 1993), 29–40.

[5] HAN , J., AND KAMBER, M. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, Inc., San Francisco, California, 2001.

[6] JAIN , A. K., MURTY, M. N., AND FLYNN , P. J. Data Clustering: A Review.ACM Computing
Surveys (CSUR) 31, 3 (Sept. 1999), 264–323.

[7] K NUTH, D. E. Estimating the efficiency of backtrack programs.Mathematics of Computation
29 (1975), 121–136.

[8] K NUTH, D. E. The Art of Computer Programming: Vol 3, Sorting and Searching, second ed.
Addison-Wesley, Reading, Massachusetts, 1998.

[9] L AWRIE, D., CROFT, W. B., AND ROSENBERG, A. Finding topic words for hierarchical
summarization. InProceedings of the 24th ACM/SIGIR International Conference on Research
and Development in Information Retrieval(Sept. 9-12, 2001), pp. 349–357.

[10] MANBER, U. Introduction to algorithms. Addison-Wesley, Reading, Massachusetts, 1989.

[11] PRIETO-DÍAZ , R. Implementing Faceted Classification for Software Reuse. Communications
of the ACM 34, 5 (May 1991), 88–97.

[12] SALTON , G. Manipulation of trees in information retrieval.Communications of the ACM 5, 2
(Feb. 1962), 103–114.

[13] SANDERSON, M., AND CROFT, B. Deriving concept hierarchies from text. InProceedings of
the 22nd annual international ACM SIGIR conference on Research and development in infor-
mation retrieval(Berkeley, California, United States, 1999), ACM Press, pp. 206–213.

[14] YE, H., AND LO, B. W. N. Towards a self-structuring software library.IEE Proc. Soft. 148, 2
(Apr. 2001), 45–55.

[15] YOO, J. P., PETTEY, C. C., AND YOO, S. A hybrid conceptual clustering system. InPro-
ceedings of the 1996 ACM 24th annual conference on Computer science(Philadelphia, Penn-
sylvania, United States, 1996), ACM Press, pp. 105–114.

[16] YOON, S. C., SONG, I. Y., AND PARK , E. K. Intensional query processing using data mining
approaches. InProceedings of the Sixth International Conference on Information and Knowl-
edge Management(Las Vegas, Nevada, United States, 1997), ACM Press, pp. 201–208.

[17] ÅGREN, O. Automatic Generation of Concept Hierarchies for a Discrete Data Mining System.
In Proceedings of the International Conference on Information and Knowledge Engineering
(IKE ’02) (Las Vegas, Nevada, USA, June 24-27, 2002), pp. 287–293. Paper II on page 59.

Ola Ågren

IV

103

104

Ola Ågren

Propagation of Meta Data over the World Wide Web 105

Chapter 9

Propagation of Meta Data over
the World Wide Web

Paper appears with kind permission from CSREA Press.

Abstract

In this paper we propose a distribution and propagation algorithm for meta
data. The main purpose of this is to tentatively allocate or derive meta data
for nodes (in our case sites and/or web pages) for which no meta data exists.

We propose an algorithm that depends on 1) meta data given to anode, site
and/or web page, 2) how pervasive we percieve this meta data,and 3) the
trust that we give to this meta data. We will also show that PICS labels can
be used to hold the meta data even for distant web pages and sites.

Keywords: meta data, automatic propagation, PICS, spatial linking

Finding, Extracting and Exploiting Structure in Text and Hypertext

106 9.1. INTRODUCTION

9.1 Introduction

Meta data embedded in web pages are one of the most reliable means of acquiring
meta data for web pages. Web developers have however a tendency to omit meta
data in their pages. Those that do add meta data tend to eitherput in very sparse
meta data or everything thatmight occur further down in the web hierarchy that
they control. In this work we propose a way to use the meta dataalready available
in hierarchies of web pages to automatically propagate saidinformation to other
web pages.

Meta data that has been well thought out can be used to infer content domain
(and in some cases sub-domain) for web pages. Some of the embedded meta data
that we have found while looking at a large number of web pagescan indeed be
used as substitute for the content of the web page when doing searches.

We postulate that searching and browsing can be performed onthe meta data
level directly first. We have furthermore found that the connection between web
pages and meta data can be viewed in the same way as PICS labels(i.e. meta data
is either bound to a specific web page or to an entire (sub) hierarchy of the web).

9.1.1 PICS

W3C has devised a protocol calledPlatform for Internet Content Selection(PICS),
with which organizations and companies can provide filters that allow only suitable
pages to be presented. The PICS standard does not say how a rating shall be done,
nor how it should be used or presented. That is completely up to the software
providers and this has led to an abundance of different rating systems, none of
which are compatible with the others. The good part with thisis that a user of
these systems can choose not only among suitable ratings butalso which services
to trust [9, 10, 4].

There are few providers of rating services that use PICS. Allof them use it for
client side blocking. That means that the browser first asks the service provider
for its rating of a certain page, and if that rating is within predefined boundaries it
starts to down-load the actual web page. Parents, teachers and/or employers can
choose which rating service to trust and what levels of the ratings are suitable for
down-loading. Providers of these types of services includeNetNanny, Cybersitter,
Cyber Patrol, and Surf Watch [13, 14, 17].

Ola Ågren

Propagation of Meta Data over the World Wide Web 107

9.1.2 Web-Based Meta Data

PICS labels can be used to store any kind of textual meta-information about an
Uniform Resource Identifier (URI). One way to use a PICS labelbureau (an off-site
provider of PICS labels) is as a meta data repository/warehouse. This data can then
be searched much more effectively than searching through all the corresponding
web pages [4, 19].

The PICS based labels are either for a specific web page (e.g.http://www.com/-
users.html) or for a web path and everything beneath it (e.g.http://www.com/).
If we have a label bureau set up and a request comes for information pertaining to
a specific web page/address (e.g.http://www.com/research/users.html) the
bureau must first try to locate information using the exact web address given, and
if that fails try with each path that is a prefix of the web address (e.g. first for the
http://www.com/research/ path and thenhttp://www.com/) until the required
data is found [9] (see Figure 9.1).

http://www.com/

research/ sales/ users.html

users.html projects.html users.html

Figure 9.1: A small sample of a web hierarchy.

9.2 Propagation Algorithm

Looking at the web as a collection of nodes (web pages) and edges (links) yields
the graph corresponding to the part of the WWW that we want to model. The nodes
in the graph are further augmented with meta data for the corresponding web page.
This graph can be used to generate meta data for web pages lacking actual meta
data using the algorithms given later in this paper.

Finding, Extracting and Exploiting Structure in Text and Hypertext

108 9.2. PROPAGATION ALGORITHM

Meta data propagation is controlled by the trust level and pervasiveness that we
attribute to a each node in the graph. Pervasive meta data might propagate further
than one step. Propagation will stop when reaching nodes with higher trust levels.

We propose the following rules for meta data extraction and propagation:

1. If we have meta data extracted from a web page we would retain this data
for the corresponding node (possibly reformatted and altered).

2. If meta data exists for a path that is a prefix of the requested web page then
it is used for the node instead.

3. Depending on how much we trust the meta data from a certain node we have
different ways of propagating the meta data given: The higher trust we put in
the meta data of a node, the higher the probability that it will be propagated
to those nodes that there are edges to. We have found that theintersection
of all meta data represented in those web pages that have a edge to a node
(looking at only those that have the highest trust level among the incoming
links) will yield a system that is consistent and well behaved.

The different trust levels are not defined here. We view trustlevels as an
enumerated value ranging from “no trust” to “full trust”. Conversion to and
from these values must be defined in the domain that they are tobe used
depending on the requirements of the surrounding systems.

4. Moreover, some sites may be marked as pervasive, meaning that meta data
from that site will propagate recursively to nodes further than one link away.
It is held in check by pages already marked in the steps 1 or 2 ofthis algo-
rithm, and will not propagate to pages marked in 3 unless the new meta data
has a higher trust than already given.

We donotadvocate setting all meta data systems to pervasive and fully trusted.
Pervasive propagation should only be used when the propagation can be controlled
in some other way. Uncontrolled propagation would yield an increasing amount of
data to propagate to all nodes in the graph, diminishing the value and truthfulness
of the meta data. The resulting graph from using pervasive classification of all
instances of given meta data will yield a graph where all nodes will be marked
with (possible diluted and/or wrong) meta data. The main reason for this is that
everything that one can find a link chain to without data givenby rules 1 or 2 will
be set to the meta data of the source.

Ola Ågren

Propagation of Meta Data over the World Wide Web 109

Given the small example in Figure 9.2 we can show the differences between
trust levels, i.e. meta data propagation using rules 3 and 4.If B is marked as a low
trust system we can find the following propagations:

• D will be marked withx.

• If A is more trusted thanC thenE would be marked withx.

• If C is more trusted thanA thenE would be marked withy.

• If A andC are equally trusted thenE would be marked with the intersection
of x andy.

• If A is marked as pervasive and has at least the same trust asB thenF would
be marked withx, since the value given toD would continue to propagate.

It would not propagate ifB is more trusted thanA, sinceD would get the
meta data fromB rather thanA. Just becauseA andB have the same meta
data is not sufficient reason for further propagation of the meta data toF.1

A
x

C
y

D

E

B
x

F

Figure 9.2: Sample graph with nodes (A. . .F) marked with meta data (x. . .y).

1This might seem counterintuitive (since both A and B agree onthe evidence) but our algorithm
uses only the highest level of trust.

Finding, Extracting and Exploiting Structure in Text and Hypertext

110 9.3. DEFINITIONS

9.3 Definitions

The following definitions are the ones typically found in works about compilers,
e.g. [6, 18, 2], but adapted to the needs of this paper.

DEFINITION 9.1 Asemilattice is a setL with a binarymeetoperation∧ such that
for all a,b,c∈ L:

1. a∧a = a (idempotent)

2. a∧b = b∧a (commutative)

3. a∧ (b∧c) = (a∧b)∧c (associative)

DEFINITION 9.2 A semilattice has azero element 0iff a∧0= 0 for everya∈ L.
L has aone element 1iff a∧1 = a for everya∈ L.

COROLLARY 9.1 If 0 exists, then it is unique. This holds true for1 as well.

DEFINITION 9.3 If (L,∧) is a semilattice anda andb are arbitrary elementsL then
we can define a relation6 in L:

a6 b⇐⇒ a∧b= a

The<, > and> relations can be defined in a similar way.

COROLLARY 9.2 Let(L,∧) denote a semilattice and6 the relation introduced in
Definition 9.3. Then6 is a partial order onL.

DEFINITION 9.4 A chain is a sequencea1,a2, . . . of elements from a semilattice
L iff ai > ai+1 for all i = 1,2, . . .

DEFINITION 9.5 A semilatticeL is bounded iff for every a ∈ L there exists a
ca ∈ N such that the length of every chain beginning witha is at mostca.

DEFINITION 9.6 A total function f : L → L is monotonic iff for all a,b ∈ L :
f (a∧b)6 f (a)∧ f (b).

Ola Ågren

Propagation of Meta Data over the World Wide Web 111

DEFINITION 9.7 A monotone data flow system(MDS) is a tuple
Ω = (L,∧,F,G,FM), where:

1. (L,∧) is a bounded semilattice with0 and1.

2. F is a monotonic function space forL.

3. G = (N,E) is a directed graph modelling the web, with web pages as nodes
and the links between the web pages as edges. This would normally also
contain a start nodes, but since the WWW is not a totally connected graph
we will ignore start nodes and ordering between nodes in the system.

4. FM : N→ F is a total function overN.

9.4 A Monotone Data Flow System on Meta Data over
Web Pages

We can now look at the web as a directed graphG = (N,E), with web pages and
paths as the nodesN and the links represented by the edgesE. There are a few
basic rules that must apply in order to get a functioning and stable system:

1. Nodes that contains meta data that is valid for a path (including an entire
web server) and everything beneath it in the site tree must beseen as highly
trusted systems and have links toat leastthe web pages beneath it in the tree.

2. The meta data directly attributed to a specific noden in the system must be
marked as such, and will not be changed later on by the algorithm.

Furthermore, all meta data must be marked with the trust given to it and how per-
vasive it is. The data to be distributed over the graph is the meta data given to the
system at start-up. In our system we have:

(L,∧) = (P(meta data),∩),

0 = ∅ and

1 = meta data.

The definitions in Section 9.3 can then be used to model our webof meta data
and web pages using algorithm 9.1 on the following page and 9.2 on page 113 (a
heavily rewrittengeneral iterative algorithm[6]).

The result of the algorithms are found intrust (only used as an intermediate
result between the two algorithms) andINF. INF is meant to supersede the given
value ofFM in the final MDS.

Finding, Extracting and Exploiting Structure in Text and Hypertext

112 9.4. A MONOTONE DATA FLOW SYSTEM ON META DATA

ALGORITHM 9.1 (HANDLES ALL NON-PERVASIVE DATA)
Input: An MDSΩ = (L,∧,F,G,FM) with G= (N,E)

INF(n) : The actual meta data associated with node n. Given by
rules 1 or 2, otherwise undefined.

stabled(n) : Array of booleans marking that this node got its value by
rules 1 or 2

trust(n) : The trust level of the meta data given to the current node,
enumeration or other values

pervasive(n) : The data of this node is pervasive
Output: INF(n) : See above, but updated by the algorithm

trust(n) : See above, but updated by the algorithm
Variables:n∈ N : The node that we are currently looking at

new(t) : Possible meta data for current node, per trust level
N′ ∈ PN : Stable but not pervasive nodes
t,hi : Temporary variables of trust levels

begin
Initialize
foreachn∈ N•undefined(INF(n)) do

INF(n)← 0;
trust(n)← no trust;

od
N′← {n∈ N | stabled(n)∧¬pervasive(n)};
Handle all non-pervasive meta data once
foreachn∈ N•¬stabled(n) do

Initialize required data
foreach t ∈ trust levelsdo

new(t)← 0;
od
hi← no trust;
Find intersection of incoming links with highest trust
foreachn′ ∈ N′ • (n′,n) ∈ E do

t← trust(n′);
new(t)← new(t)

T

INF(n′);
if t > hi then hi← t; fi

od
Update INF if a change has been found
if t > no trust

then INF(n)← new(t); trust(n)← t;
fi

od
end

Ola Ågren

Propagation of Meta Data over the World Wide Web 113

ALGORITHM 9.2 (MODIFIED ITERATIVE ALGORITHM)
Input: An MDSΩ = (L,∧,F,G,FM) with G= (N,E)

INF(n),
trust(n) : As given by algorithm 9.1 on the facing page
stabled(n),
pervasive(n) : As in algorithm 9.1 on the preceding page

Output: INF : N→ L, A total function
Variables:n, t, hi, new(t) : As in algorithm 9.1 on the facing page

N′ ∈ PN : Pervasive nodes
stable∈ Boolean: Have we reached a stable state?

begin
Repeat data propagation until stable
stable← false;
while ¬stabledo

stable← true;
N′←{n∈N | pervasive(n)};
Check for incoming meta data
foreachn∈ N•¬stabled(n) do

Initialize required data
foreacht ∈ trust levelsdo

new(t)← 0;
od
hi← no trust;
foreachn′ ∈ N′ • (n′,n) ∈ E do

t← trust(n′);
new(t)← new(t)

T |INF |(n′);
if t > hi then hi← t; fi

od foreach n’
if hi = trust(n)

then new(hi)← new(hi)
T

INF(n);
fi
if hi≥ trust(n)
then

INF(n)← new(hi);
trust(n)← hi;
pervasive(n)← true;
stable← false;

fi
od foreach n

od while¬stable
end

Finding, Extracting and Exploiting Structure in Text and Hypertext

114 9.5. RELATED WORK

9.5 Related Work

This work builds on all previous forms of web mining [8] of semi-structured (i.e.
HTML) data. Typical examples of this includes wrapper induction like STALKER [11],
and information extraction like RSV [5] or WHISK/CRYSTAL [15, 16].

Extracting the information from the web was however only thefirst step; we are
more interested in how meta data can be viewed outside of the web. The extracted
data can either be seen as a data base over the web [12] or as a source for web
structure mining such as HITS [7], Clever [3], PageRank and Google [1].

9.6 Discussion

We have used the algorithms described in this paper to model the web structure (and
meta data content) of Umeå University. The university is a medium sized university
in northern Sweden with approximately 25,300 undergraduate and 1,300 graduate
students. Its web structure contains less than 100 official web servers with a total
of more than 200,000 static web pages (counting only HTML pages, not pictures
and other binary data).

Very reliable results from this data set has been obtained when none of the
meta data has been marked pervasive. Trust levels were set, in decreasing order,
according to 1) individual web pages containing meta data, 2) meta data for a sub-
tree in a hierarchy, and 3) for the corresponding server.

We have checked the validity of the given meta data. Most (approximately
95%) of the checked individually marked web pages had correct meta data set.
Almost all sub-trees had correct meta data (less than 1% contained errors) and the
meta data given on the server level were 100% correct.

Looking at this data set we find that≈ 3% of the pages contain embedded meta
data keywords. Applying rule 1 in Section 9.2 makes this value jump to≈ 55%
and rule 2 increases this even further to≈ 67%. Setting some of the nodes/web
pages pervasive might yield an even higher percentage, depending on which nodes
are marked pervasive.

Ola Ågren

Propagation of Meta Data over the World Wide Web 115

9.7 References
[1] BRIN, S.,AND PAGE, L. The anatomy of a large-scale hypertextual web search engine. Com-

puter Networks and ISDN Systems 30, 1–7 (1998), 107–117.

[2] BURKE, M. An interval-based approach to exhaustive and incremental interprocedural data-
flow analysis. ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 3
(1990), 341–395.

[3] CHAKRABARTI , S., DOM, B. E., AND INDYK , P. Enhanced hypertext categorization using
hyperlinks. InProceedings of SIGMOD-98, ACM International Conference onManagement
of Data (Seattle, US, 1998), L. M. Haas and A. Tiwary, Eds., ACM Press, New York, US,
pp. 307–318.

[4] EVANS, C., FEATHER, C. D., HOPMANN, A., PRESLER-MARSHALL , M., AND RESNICK,
P. REC-PICSRules-971229: PICSRules 1.1. The World Wide Web Consortium, Cambridge,
Massachusetts, Dec. 29, 1997.

[5] FREITAG, D. Information extraction from HTML: Application of a general machine learning
approach. InAAAI/IAAI (1998), pp. 517–523.

[6] K AM , J. B.,AND ULLMAN , J. D. Global data flow analysis and iterative algorithms.Journal
of the ACM (JACM) 23, 1 (1976), 158–171.

[7] K LEINBERG, J. Authoritative sources in a hyperlinked environment. InProc. of ACM-SIAM
Symposium on Discrete Algorithms(1998), pp. 668–677.

[8] K OSALA, AND BLOCKEEL. Web mining research: A survey.SIGKDD: SIGKDD Explo-
rations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Min-
ing, ACM 2(2000).

[9] K RAUSKOPF, T., MILLER , J., RESNICK, P., AND TREESE, W. REC-PICS-labels-961031:
PICS Label Distribution Label Syntax and Communication Protocols. The World Wide Web
Consortium, Cambridge, Massachusetts, Oct. 31, 1996.

[10] M ILLER , J., RESNICK, P., AND SINGER, D. REC-PICS-services-961031: Rating Services
and Rating Systems (and Their Machine Readable Descriptions). The World Wide Web Con-
sortium, Cambridge, Massachusetts, Oct. 31, 1996.

[11] MUSLEA, I., M INTON, S., AND KNOBLOCK, C. A. Hierarchical wrapper induction for
semistructured information sources.Autonomous Agents and Multi-Agent Systems 4, 1/2
(2001), 93–114.

[12] NESTOROV, S., ABITEBOUL, S.,AND MOTWANI , R. Extracting schema from semistructured
data. InSIGMOD ’98: Proceedings of the 1998 ACM SIGMOD international conference on
Management of data(New York, NY, USA, 1998), ACM Press, pp. 295–306.

[13] RESNICK, P. Filtering Information on the Internet.Scientific American(Mar. 1997), 106–108.

[14] RESNICK, P.,AND M ILLER , J. PICS: Internet Access Controls Without Censorship.Commu-
nications of the ACM 39, 10 (1996), 87–93.

[15] SODERLAND, S. Learning information extraction rules for semi-structured and free text.Ma-
chine Learning 34, 1-3 (1999), 233–272.

[16] SODERLAND, S., FISHER, D., ASELTINE, J., AND LEHNERT, W. CRYSTAL: Inducing a
conceptual dictionary. InProceedings of the Fourteenth International Joint Conference on
Artificial Intelligence(San Francisco, 1995), C. Mellish, Ed., Morgan Kaufmann, pp. 1314–
1319.

Finding, Extracting and Exploiting Structure in Text and Hypertext

116 9.7. REFERENCES

[17] WEINBERG, J. Rating the Net.Hasting Communications and Entertainment Law Journal 19,
2 (1997), 453–482.

[18] ZIMA , H., AND CHAPMAN , B. Supercompilers for Parallel and Vector Computers. Addison-
Wesley, Reading, Massachusetts, 1990.

[19] ÅGREN, O. Reuse via the World Wide Web: How to Find the Software Required for Reuse.
Master’s thesis, Umeå University, Umeå, Sweden, Dec. 1998.UMNAD 242.98.

Ola Ågren

V

117

118

Ola Ågren

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 119

Chapter 10

Assessment of WWW-Based
Ranking Systems for Smaller
Web Sites

Abstract

A comparison between a number of search engines from three different fam-
ilies (HITS, PageRank, and Propagation of Trust) is presented for a small
web server with respect to perceived relevance. A total of 307 individual
tests have been done and the results from these were disseminated to the al-
gorithms, and then handled using confidence intervals, Kolmogorov-Smirnov
and ANOVA. We show that the results can be grouped according to algorithm
family, and also that the algorithms (or at least families) can be partially or-
dered in order of relevance.

Keywords: Assessment, search engines, HITS, PageRank, Propagation of
Trust, and eigenvectors

Received January 26, 2006, and accepted for publication on March 14, 2006, in
INFOCOMP Journal of Computer Science.

Finding, Extracting and Exploiting Structure in Text and Hypertext

120 10.1. INTRODUCTION

10.1 Introduction

Finding the required information on the WWW is not a trivial task. Currently
used search engines will usually give good advice on pages tolook at, but are there
more personalised tools that can be used instead? We will in this work compare the
relative strength of some of the algorithms usable in a user defined personalisation
environment, in order to find out how they behave over smallernetworks (such as
a single web server).

Two things that these algorithms have in common is that they operate on a
connection matrix (or adjacency matrix), and they all use a set of pages that are
known to be about a specific topic (calledknown pages) as the starting point. The
algorithms belong to three different families:

Hypertext-Induced Topic Selection (HITS [8]) This family of algorithms does
not work on the entire connection matrix, but will instead use a subset of this
matrix calledH. It includes the known pages together with pages pointing
at one or more pages among the known pages as well as the pages pointed
out by them. Each page in the entire set is given a start value in two cate-
gories, “hub” (denoting an important link page) and “authority” (denoting a
page with valuable information on the given subject). Thesevalues are ad-
justed by iteration and normalisation over the simultaneous equations given
in Eq. (10.1).

hi = ∑
(i, j)∈E

a j a j = ∑
(i, j)∈E

hi (10.1)

The basic idea behind HITS is to use the inherent strength of the connection
matrix. The starting point is to give a value to all pages in the known set, and
then calculate the final result by propagating these values first in the forward
direction ofH (giving a partial result of the authority pages), then back into
the hub value until the calculations are stable.

Ola Ågren

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 121

The two algorithms of the HITS family that we will use are the original
HITS [8] algorithm as well as theRandomized HITS[11] algorithm, where
some of the hub/authority value given to each page is dissapated to all pages
in the set. There are other versions in this family, including:

Subspace HITS [11], where all stable eigenvectors found are multiplied
with their relative eigenvalue strength and these are then superposi-
tioned,

Clever [5], where the connection matrix is slightly changed by weighting
according to the number of incoming/outgoing hyper-links as well as
whether the pages resided on the same site or not1,

MHITS [10], where the connection matrix is generated using web logs as
well as more than one link away from the original starting page,

BHITS [1], where two things are used in order to make HITS more stable;
outliers are filtered out and the weight of links between two servers are
one divided by the number of links, and

Stochastic Approach to Link Structure Analysis (SALSA) [9], whereH
andH ′ are updated in order to get stochastic matrices (by dividingeach
value in a row with the number of values in the row). The main reason
for doing this is to get a sound and stable system, but the finaloutcome
is that for systems without dangling nodes (or weights) we get a result
directly related to the in- (for authority value) and out-degree (for hub
value). This can be computed much faster with other techniques.

Clever and BHITS were ruled out since all pages resided on oneweb server
and Subspace HITS were removed since our search engine framework was
unfortunately not able to support them fully. No web logs were available,
thus ruling out MHITS, and SALSA did not give sufficiently fine-grained
results for weighted disseminations. This left us with HITSand Randomized
HITS from this family.

1A later version of Clever breaks up pages with a vast amount ofoutgoing links into micro-pages,
each with its own fine-grained hub value [3]. These micro-pages are not seen as entirely separate
entities, and a secondary aggregate hub/authority value can be calculated for them as well.

Finding, Extracting and Exploiting Structure in Text and Hypertext

122 10.1. INTRODUCTION

PageRank This is the main algorithm of Google [2], and is used to give a query
independent importance number (called arank value) to each web page ac-
cording to the structure of hyper-links between web pages.

PageRank uses a random surfing model over the Internet. This means that it
models the behaviour of a web surfer that follows one randomly chosen link
in the current page, every once in a while this web surfer getsbored with the
current chain of pages and skips to a random page on the Internet (called the
damping factor). Each visit to a page would in theory indicate that a page
gets slightly more interesting than before. Rather than letting a simulator
mark each visited page a number of times, there are much more effective
ways of simulating and calculating these values.

The probability that the web surfer will visit pagew j is given in Eq. (10.2),
using (1− µ) < 1 as the dampening factor, the graphG = (V,E) whereV
is the set of pages andE is the set of hyper-links,n = |V|, andd(wi) is the
out-degree of pagewi .

PR(w j) =
1−µ

n
+µ ∑

(i, j)∈E

PR(wi)

d(wi)
(10.2)

This is the same thing as using a connection matrix where eachcolumn sums
to 1 modified by adding the dampening factor as can be seen in Eq. (10.3).

P =

[

1−µ
n

]

n×n
+µM (10.3)

The PageRank is the dominating eigenvector ofP: Pπ = π,π> 0, ||π||1 = 1.
This means that thei-th entry ofπ is the probability that a surfer visits page
i, or the PageRank of pagei.

The version that we will use in this work isTopic-Sensitive PageRank[7].
It uses the same general ideas and algorithm as the normal PageRank, except
that skipping will be to one of the known pages; the dampeningfactor is
only added (and scaled accordingly) if the corresponding page is known to
be about that particular subject.

Ola Ågren

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 123

Propagation of Trust This set of algorithms builds on the algorithm found in [12].
The main idea is that the trust of known pages are distributed(and diminished
by 1/ξ, whereξ > 1) over each outgoing link, until the value is too small to
make a difference any more. We will use three different versions of this
algorithm in this work:

Basic Propagation of Trust (ProT) Given an initial scoreϖ(j,0)= 1 (100%)
for pages that are on-topic and zero otherwise, and usingk as the iter-
ation count as well as settingξ to be a value just over the dominant
eigenvalue of the corresponding connection matrix we can apply the
algorithm in Eq. (10.4).

ϖ(j,k) =
1
ξ ∑

(i, j)∈E

ϖ(i,k−1)+

{

ϖ(j,k−1) j is on-topic

0 otherwise.
(10.4)

The final answer is given after normalisation of thek:th ϖ vector.

Superpositioned Singleton Propagation of Trust (S2ProT) This algorithm
is a much faster replacement for ProT. For each page among theknown
pages we calculate a singleton (or basic) vector using ProT,and then
superposition these vectors to form the final answer. Calculating a sin-
gleton is usually much faster than using the set of known pages directly
in ProT.

Hybrid Superpositioned Singleton Propagation of Trust (HyS2ProT) This
is a hybrid version of S2ProT where each outgoing value is further
decreased with the number of outgoing links (i.e. the out-degree of a
page) in the same manner as for PageRank.

Finding, Extracting and Exploiting Structure in Text and Hypertext

124 10.2. METHODS AND MATERIALS

10.1.1 Hypotheses

We have two main hypotheses regarding smaller input sets (see Appendix 10.A on
page 136 for a description of the input data set):

1. These algorithms will for this data set give top five results that are disparate
when comparing different families of algorithms with each other.

2. The Propagation of Trust family gives better sets of top five results (with
regards to relevancy) than any of the others for this data set.

10.2 Methods and Materials

In order to find out whether the algorithms in question yieldsroughly equally rel-
evant results the following experiment was conducted: The top five results from
applying the algorithms was gathered and combined for a number of keywords
(see Section 10.2.1), yielding a total of between nine and 20links per keyword.
These links were manually examined for relevancy with regards to the correspond-
ing keyword by those participating in the experiment, yielding a total of 307 tests of
the ten keywords. The relevances were then propagated back to the corresponding
algorithms as per Section 10.2.2 in order to find out how relevant the mean result
of each algorithm are, both per question and in total. The total relevancy of each
algorithm were then compared using confidence intervals (see Section 10.2.3) and
Kolmogorov-Smirnov (see Section 10.2.4) to show whether there are differences
between each algorithm in terms of relevancy.

Ola Ågren

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 125

10.2.1 Keyword Selection Criterias

The first criteria was that at least eight pages had to containa keyword in order for
it to be eligible for inclusion in this experiment. The reason for this is that there
should be a basis for variability of the top lists of each algorithm. One keyword
that appears in only one page was still kept here, since variation between HITS and
Randomized HITS was apparent with this keyword.

The second criteria was that combining the results from the algorithms should
yield at least nine unique links in the resulting set. Once more, this rule also stems
from the variability of the top lists.

The third criteria was that the pages had to be present duringthe experiment.
Some pages have been removed since the database was gathered, thus preventing
some otherwise fitting keywords from being used.

The fourth criteria was that no student web page should be included in the top
lists, so that no single individual of the student body should feel singled out.

The fifth criteria was that at most 20 links should be given when combining
the results of the algorithms. The reason for this is that theworkload of those
participating in the experiment should be reasonably small.

The sixth and final criteria was that not all pages given by an algorithm should
have exactly the same weight attributed to them, in order to use the weights to find
differences between the data sets.

These criteria yielded a list of a few hundred suitable candidates for inclusion in
the experiment. The final selection was done using two methods — direct selection
of some keywords that we felt were well defined (in this case ‘aagren’, ‘jubo’,
‘kompilatorteknik’, and ‘ola’), while the others were selected at random.

Finding, Extracting and Exploiting Structure in Text and Hypertext

126 10.2. METHODS AND MATERIALS

10.2.2 Dissemination of Result to Algorithms

The relevance checking was done using blind reviews (i.e. noreference was given
as to what or which algorithm(s) produced the link in the top five positions) on
a five-graded scale. The first grade indicated that the reviewer was unable to say
anything about the relevancy of the page regarding the current keyword, and these
values were ignored in all calculations. The second grade corresponded to a com-
plete lack of relevancy, i.e. 0. The third grade was indicative of some relevance,
i.e. 1

3. The fourth grade indicated a moderate amount of relevance,i.e. 2
3. The fifth

and final grade indicated that the page was very relevant, corresponding to 1 (or
100% relevance). This scaling will lead to an underestimation of the true relevance
of the pages, but we are interested in the relative rather than exact relevance here.

10.2.2.1 Original Dissemination

The pages given in the top lists for each algorithm shows which pages should
be included in each dissemination. The values corresponding to each grade were
summed up and then divided by the number of grades that did notbelong to the
first grade, thereby forming a mean relevancy for that keyword and algorithm com-
bination according to that reviewer.

As an example, consider the top-listP containing the five pagesA,B,C,D and
E. These were given the gradesA - grade one,B - grade two, . . . ,E - grade five.
This means that the mean relevancy for top-listP from this grader was

0+1/3+2/3+1
4

= 0.5 or 50%.

10.2.2.2 Weighted Dissemination

The algorithms supply not only the list of pages, but also gives a weight∈ (0,1] for
each page. For all pages with grades higher than the first, addup both the product
of page weight and the corresponding page relevancy and the sum of the weights.
The final number is given by dividing the sum of products with sum of weights.
The rationale here is that the higher weight attributed to them by an algorithm, the
more important that page should be for the final score.

We can continue the example above by saying that the weight corresponding
to pageA is a = 0.6, weight of pageB is b = 0.7, . . . , and weight of page E is
e = 1.0. Given the same grading as in the previous section the weighted relevancy
would be

0.7×0+0.8/3+0.9×2/3+1
0.7+0.8+0.9+1

≈ 0.5490/54.90%.

Ola Ågren

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 127

10.2.3 Confidence Interval Comparisons

The mean result can be used to rank the algorithms according to relevancy. More-
over, by forming a confidence interval around this mean it is possible to show
whether the results from the disseminations are disparate.

10.2.4 Kolmogorov-Smirnov Comparisons

One of the most widely used goodness-of-fit tests available is the Kolmogorov-
Smirnov. It uses the maximum differenceD in y values between two curves plotted
in a cumulative fraction plot, i.e. going in discrete steps of 1/#steps from 0 to 1 from
left to right. This difference is then compared to a number that depends on both
the chosenα level (in our case 0.001) and the number of samples in the set.The
number of samples to use in the comparison is calculated fromthe original number
of samples for each input set (n1 andn2, respectively):

n =
n1×n2

n1 +n2

Finding, Extracting and Exploiting Structure in Text and Hypertext

128 10.3. RESULTS

10.3 Results

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS hRHITS aHITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

original
weighted

Figure 10.1: This graph shows the mean relevance values as well as 95% confi-
dence intervals per algorithm, both unweighted and weighted.

10.3.1 Confidence Interval Comparisons

10.3.1.1 Original

Both the 95% confidence intervals plotted in Figure 10.1 as well as the 99.9%
confidence intervals given in Table 10.1 on the next page leads to the same result;
we can divide the algorithms into four groups. The top group contains HyS2ProT,
S2ProT and ProT, with each confidence interval encompassing the mean value of
the others. The second group contains only one algorithm, Topic-Sensitive Page-
Rank. The third group contains HITS Authority and Randomized HITS Authority,
and (Randomized) HITS Hub is the algorithm that is the sole member of the last
group.

Ola Ågren

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 129

Table 10.1: The mean relevance values and their 99.9% confidence intervals, given
in descending order.

Algorithm Mean 99.9% conf. inter.

HyS2ProT 0.4823 (0.4383,0.5263)
S2ProT 0.4797 (0.4325,0.5270)
ProT 0.4416 (0.3872,0.4959)
Topic-Sensitive PageRank 0.3462 (0.3073,0.3851)
HITS Authority 0.2723 (0.2210,0.3237)
Randomized HITS Authority 0.2465 (0.2057,0.2873)
(Randomized) HITS Hub 0.1719 (0.1344,0.2094)

10.3.1.2 Weighted

The same four groups with overlapping confidence intervals can be found in the
weighted result set as well as can be seen in Figure 10.1 on thefacing page and
Table 10.2. The first group consists of HyS2ProT, S2ProT and ProT, the second
of Topic-Sensitive PageRank, the third of both versions of HITS Authority and the
final group contains (Randomized) HITS Hub.

Table 10.2: The mean weighted relevance values and their 99.9% confidence inter-
vals, given in descending order.

Algorithm Mean 99.9% conf. inter.

ProT 0.5654 (0.5070,0.6237)
HyS2ProT 0.5582 (0.5114,0.6050)
S2ProT 0.5540 (0.5033,0.6047)
Topic-Sensitive PageRank 0.3783 (0.3312,0.4253)
HITS Authority 0.2761 (0.2248,0.3273)
Randomized HITS Authority 0.2761 (0.2248,0.3273)
(Randomized) HITS Hub 0.2034 (0.1569,0.2500)

Finding, Extracting and Exploiting Structure in Text and Hypertext

130 10.3. RESULTS

10.3.2 Kolmogorov-Smirnov Comparisons

For each combination of result lists, we put up the followinghypothesis:

H0 : The distribution of the two lists are equal.

H1 : The distribution of the two lists are not equal.

The Kolmogorov-Smirnov test is then applied to the combination in order to
either reject or acceptH0.

10.3.2.1 Original

The results from these comparisons is that ProT, S2ProT and HyS2ProT have al-
most identical distribution, as does HITS Authority and both Randomized HITS
Authority and (Randomized) HITS Hub. All other combinations are disparate at
the 99.9% certainty level. The corresponding cumulative fraction plot can be seen
in Figure 10.2. For full results see Appendix 10.D.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

Relevance

Cumulative Fraction, Original

(R)HITS auth
(R)HITS hub

PageRank
ProT

S2ProT
HyS2ProT

Figure 10.2: Cumulative fraction of answers that is at a certain level or lower.

Ola Ågren

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 131

10.3.2.2 Weighted

The results from these comparisons is that HITS Authority and Randomized HITS
Authority have almost identical distribution, and S2ProT has a distribution that is
very close to both ProT and HyS2ProT (while these two are disparate). All other
combinations are disparate at the 99.9% certainty level. The corresponding cumu-
lative fraction plot can be seen in Figure 10.3. For full results see Appendix 10.D.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

Relevance

Cumulative Fraction, Weighted

(R)HITS auth
(R)HITS hub

PageRank
ProT

S2ProT
HyS2ProT

Figure 10.3: Weighted cumulative fraction of answers that is at a certain level or
lower.

Finding, Extracting and Exploiting Structure in Text and Hypertext

132 10.4. DISCUSSION AND CONCLUSIONS

10.4 Discussion and Conclusions

Looking back at the two main hypotheses posed in the introduction (Section 10.1.1)
we can see that both of them have been shown to be true with highsignificance:

1. The mean values from each algorithm of each family does neither appear in
the confidence intervals of another (Section 10.3.1), nor will Kolmogorov-
Smirnov retainH0 of comparisons between families (Section 10.3.2) for both
original and weighted values.

2. The values presented by the confidence intervals in Section 10.3.1 shows that
a distinct relevance order can be seen among the algorithm families. The
order is that Propagation of Trust yields better result thanTopic-Sensitive
PageRank, that in turn yields better result than HITS. This is also visible
in Figure 10.2 on page 130 where this order (remember that a lower curve
corresponds to better relevancy) can be clearly seen. This is also true for the
largest part of Figure 10.3 on the previous page, even thoughsome crossing
of the graphs can be seen.

The Hub lists of HITS and Randomized HITS are identical in theunweighted
version, while the weighted version shows some minor differences (D = 0.0749).
A slightly larger difference can be seen when looking at the authority scores, with
difference in distribution of (D = 0.07818) orα = 0.2890.

There is a slightly more complex situation among the algorithms of the Prop-
agation of Trust family. While looking at the original comparisons at the high
significance level we are unable to reject that each mean value could come from
one of the other algorithms. Looking at Figure 10.2 on page 130 and Figure 10.3
on the previous page gives a clear indication that thereis in fact some minor differ-
ences between the algorithms. The only way to show this is to increaseα, and the
α required to show that the distributions are disparate can beseen in Table 10.3.

Table 10.3: This table shows theα that must be chosen in order to show that the
distributions from the algorithms are disparate.

Original Weighted
S2ProT HyS2ProT S2ProT HyS2ProT

ProT 0.0074 0.0024 0.0988 0.0004
S2ProT 0.4526 0.0528

Ola Ågren

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 133

The results given in Section 10.3.1 has been confirmed by using ANOVA tests,
where only tests between algorithms of the same family havep-values of 0.001 or
higher. The relevant tests are between:

• HITS Authority and Randomized HITS Authority (f = 1.6811, p = 0.1953),

• ProT and S2ProT (f = 3.0072, p = 0.0834),

• ProT and HyS2ProT (f = 3.6335, p = 0.0571), and, finally,

• S2ProT and HyS2ProT (f = 0.0169, p = 0.8966).

Our conclusion of this experiment is that not only does the algorithms in the
Propagation of Trust family yield good results even for smaller databases, they
give better results than the competition. The main reason for the lower results of
Topic-Sensitive PageRank is probably the relative lack of links, the more links (and
pages) the better it seems to be working. There are on the other hand two reasons
for the lower than expected results from HITS:

• The first reason is that some pages that came from the hub listsdo not talk
about a subject directly but have lots of links to pages that does.

• The second reason is that HITS suffer from mutually reinforcing relation-
ships between pages among the included pages as well as topicdrift, where
a tight-knit community of pages can take over as the most important pages
for a query.

The scaling could be improved on an intuitive level by using amore sensible
scale (such as ignore, 0%, 50%, 75% and 100%) if more exact relevance number
were required. We have opted to continue with this scaling, since rescaling would
not affect the final result.

One thing that could be done to get even more information per keyword is to
look at more than 5 links per list. This method have the drawback that the number
of links to process for those participating in the experiment increases almost lin-
earily, so that an increase from 5 to 10 links per algorithm yields roughly twice as
many links to check.

Finding, Extracting and Exploiting Structure in Text and Hypertext

134 10.5. ACKNOWLEDGEMENTS

Another test that should be done is to look at a much larger database, pre-
ferrably the entire Internet. Since this data is not available at this time this is hardly
feasible, even though we do have much larger databases to work on (such as the
entire web structure at Umeå University). It would however be much harder to
choose keywords to use, since even more criterias (such as pages on more than one
web server) could be applied.

Hiding the true souce of each link rather than comparing eachlist directly was
first seen in [6] (comparing Clever and Yahoo), since they found a distinct problem
in their earlier comparisons that showed the entire result lists from each search en-
gine/algorithm [4]. One set of the included result lists in the older test contained
annotations and one-line summaries, thus yielding better information for the classi-
fier to use when assessing relevancy. We must agree that usingblind examinations
for relevancy yields an objectively better result and should be used in future studies.

10.5 Acknowledgements

Many thanks to Leif Nilsson, Helena Lewandowska, and MårtenForsmark for
valuable comments and suggestions that were useful for improving the quality of
this paper, as well as to the approximately 80 participants of the assessment.

Ola Ågren

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 135

10.6 References
[1] BHARAT, K., AND HENZINGER, M. R. Improved algorithms for topic distillation in a hyper-

linked environment. InSIGIR ’98: Proceedings of the 21st annual international ACMSIGIR
conference on Research and development in information retrieval (New York, NY, USA, 1998),
ACM Press, pp. 104–111.

[2] BRIN, S.,AND PAGE, L. The anatomy of a large-scale hypertextual web search engine. Com-
puter Networks and ISDN Systems 30, 1–7 (1998), 107–117.

[3] CHAKRABARTI , S. Integrating the document object model with hyperlinks for enhanced topic
distillation and information extraction. InWWW ’01: Proceedings of the 10th international
conference on World Wide Web(New York, NY, USA, 2001), ACM Press, pp. 211–220.

[4] CHAKRABARTI , S., DOM, B., RAGHAVAN , P., RAJAGOPALAN, S., GIBSON, D., AND

KLEINBERG, J. Automatic resource compilation by analyzing hyperlinkstructure and as-
sociated text. InWWW7: Proceedings of the seventh international conferenceon World Wide
Web 7(Amsterdam, The Netherlands, 1998), Elsevier Science Publishers B. V., pp. 65–74.

[5] CHAKRABARTI , S., DOM, B. E., AND INDYK , P. Enhanced hypertext categorization using
hyperlinks. InProceedings of SIGMOD-98, ACM International Conference onManagement
of Data (Seattle, US, 1998), L. M. Haas and A. Tiwary, Eds., ACM Press, New York, US,
pp. 307–318.

[6] CHAKRABARTI , S., DOM, B. E., KUMAR , S. R., RAGHAVAN , P., RAJAGOPALAN, S.,
TOMKINS, A., GIBSON, D., AND KLEINBERG, J. Mining the web’s link structure.Com-
puter 32, 8 (1999), 60–67.

[7] HAVELIWALA , T. H. Topic-sensitive PageRank. InProceedings of the eleventh international
conference on World Wide Web(2002), ACM Press, pp. 517–526.

[8] K LEINBERG, J. Authoritative sources in a hyperlinked environment. InProc. of ACM-SIAM
Symposium on Discrete Algorithms(1998), pp. 668–677.

[9] L EMPEL, R., AND MORAN, S. SALSA: The stochastic approach for link-structure analysis.
ACM Trans. Inf. Syst. 19, 2 (2001), 131–160.

[10] M ILLER , J. C., RAE, G., SCHAEFER, F., WARD, L. A., LOFARO, T., AND FARAHAT, A.
Modifications of Kleinberg’s HITS algorithm using matrix exponentiation and web log records.
In Proceedings of the 24th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval(New Orleans, Louisiana, United States, 2001), ACM Press,
pp. 444–445.

[11] NG, A. Y., ZHENG, A. X., AND JORDAN, M. Stable algorithms for link analysis. InPro-
ceedings of the Twenty-fourth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval(Sept. 2001).

[12] ÅGREN, O. Propagation of Meta Data over the World Wide Web. InProceedings of the
International Conference on Internet Computing (IC ’03)(Las Vegas, Nevada, USA, June 23-
26, 2003), vol. 2, pp. 670–676. Paper IV on page 103.

Finding, Extracting and Exploiting Structure in Text and Hypertext

136 10.A. TEST DATABASE

10.A Test Database

The database used in this experiment contains a subset of allthe pages available
at www.cs.umu.se, the web site of the Department of Computing Science, Umeå
University. This database was collected in January 2003.

The database contains 7312 pages, of which 2728 are HTML pages with out-
going links. There are a total of 22970 hyper-links, yielding an average of approx-
imately 8.42 outgoing hyper-links per HTML page and just over 3.14 incoming
links per page.

A total of 57823 keywords are present at least once in the entire set of pages.
These keywords are present in on average 9.87 pages, for a total of 570870 page
occurrences. 33854 of these keywords appear in the same set of pages as another
keyword, so that only 23969 unique ranking lists are required for the entire set per
algorithm.

Looking at the web site as a undirected graph we find that it contains 130
components, with 6885 pages in the largest component.

10.B Keywords

The keywords used in the assessment can be seen in Table 10.4.

Table 10.4: The keywords used in the tests.
Keyword English #pages in DB #pages in test #tests

aagren Ågrena 227 17 34
choklad chocolate 15 17 33
exempelrapport sample report 1b 9 34
jubo Jürgen Börstlera 110 19 30
kallin Kallina 161 19 37
kompilatorteknik compiler construction/- 23 18 31

techniques
konstant constant 18 16 26
matrismultiplik matrix multiplicc 8 16 19
ola Olaa 251 17 37
relation relation 17 14 26

Sum: 307

aProper name.
bBreaks the first selection criteria, but was included since all other criterias were met and it

manifested a real difference between the authority lists ofHITS and Randomized HITS.
cThis keyword has been truncated by stemming.

Ola Ågren

http://www.cs.umu.se

Assessment of WWW-Based Ranking Systems for Smaller Web Sites 137

10.C Confidence Intervals per Keyword

The 95% confidence intervals for each keyword given in Appendix 10.B on the
preceding page (and Table 10.4 on the facing page) can be seenin Figure 10.4 and
Figure 10.5 on the following page.

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS h(R)HITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - aagren

original
weighted

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS h(R)HITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - choklad

original
weighted

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS hRHITS aHITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - exempelrapport

original
weighted

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS h(R)HITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - jubo

original
weighted

Figure 10.4: Mean relevance and 95% confidence intervals forthe first four key-
words.

10.D Full Kolmogorov-Smirnov Results from
Comparisons

Table 10.5 on page 139 contains all results from applying Kolmogorov-Smirnovs
tests on each of the 21 possible combinations of algorithms (counting the results
from HITS Hub and Randomized HITS Hub values as equal). Thesevalues are
given for both the original and for the weighted Kolmogorov-Smirnov tests.

Finding, Extracting and Exploiting Structure in Text and Hypertext

138 10.D. KOLMOGOROV-SMIRNOV RESULTS

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS h(R)HITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - kallin

original
weighted

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS h(R)HITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - kompilatorteknik

original
weighted

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS h(R)HITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - konstant

original
weighted

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS h(R)HITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - matrismultiplik

original
weighted

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS h(R)HITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - ola

original
weighted

 0

 20

 40

 60

 80

 100

HyS2ProTS2ProTProTPageRank(R)HITS h(R)HITS a

R
el

ev
an

ce
 P

er
ce

nt
ag

e

95% confidence interval - relation

original
weighted

Figure 10.5: Mean relevance and 95% confidence intervals forthe last six key-
words.

Ola Ågren

A
ssessm

entofW
W

W
-B

ased
R

anking
S

ystem
s

forS
m

aller
W

eb
S

it
es

1
3

9

Table
10.5:

T
he

fullresults
from

the
K

olm
ogorov-S

m
irnovs

t
ests.

B
oth

tables
use

a
cut-offof0.157

(n
=

154,α
=

0.001)
.

Original
Randomized HITS
Authority

(Randomized) HITS
Hub

Topic-Sensitive Page-
Rank ProT S2ProT HyS2ProT

HITS Authority
D = 0.0782 < 0.157,
H0 accepted

D = 0.2704 > 0.157,
H0 rejected

D = 0.2704 > 0.157,
H0 rejected

D = 0.3290 > 0.157,
H0 rejected

D = 0.4235 > 0.157,
H0 rejected

D = 0.4625 > 0.157,
H0 rejected

Randomized HITS Authority
D = 0.2704 > 0.157,
H0 rejected

D = 0.2736 > 0.157,
H0 rejected

D = 0.3322 > 0.157,
H0 rejected

D = 0.4267 > 0.157,
H0 rejected

D = 0.4658 > 0.157,
H0 rejected

(Randomized) HITS Hub
D = 0.4267 > 0.157,
H0 rejected

D = 0.4560 > 0.157,
H0 rejected

D = 0.5700 > 0.157,
H0 rejected

D = 0.5733 > 0.157,
H0 rejected

Topic-Sensitive PageRank
D = 0.2052 > 0.157,
H0 rejected

D = 0.2606 > 0.157,
H0 rejected

D = 0.3029 > 0.157,
H0 rejected

ProT
D = 0.1336 < 0.157,
H0 accepted

D = 0.1466 < 0.157,
H0 accepted

S2ProT
D = 0.0684 < 0.157,
H0 accepted

Weighted
Randomized HITS
Authority

(Randomized) HITS
Hub

Topic-Sensitive Page-
Rank ProT S2ProT HyS2ProT

HITS Authority
D = 0.0782 < 0.157,
H0 accepted

D = 0.2932 > 0.157,
H0 rejected

D = 0.3225 > 0.157,
H0 rejected

D = 0.4951 > 0.157,
H0 rejected

D = 0.5244 > 0.157,
H0 rejected

D = 0.5505 > 0.157,
H0 rejected

Randomized HITS Authority
D = 0.2932 > 0.157,
H0 rejected

D = 0.3225 > 0.157,
H0 rejected

D = 0.4951 > 0.157,
H0 rejected

D = 0.5244 > 0.157,
H0 rejected

D = 0.5505 > 0.157,
H0 rejected

(Randomized) HITS Hub
D = 0.3550 > 0.157,
H0 rejected

D = 0.5342 > 0.157,
H0 rejected

D = 0.5700 > 0.157,
H0 rejected

D = 0.5831 > 0.157,
H0 rejected

Topic-Sensitive PageRank
D = 0.2899 > 0.157,
H0 rejected

D = 0.2410 > 0.157,
H0 rejected

D = 0.3062 > 0.157,
H0 rejected

ProT
D = 0.0977 < 0.157,
H0 accepted

D = 0.1629 > 0.157,
H0 rejected

S2ProT
D = 0.1075 < 0.157,
H0 accepted

F
inding,E

xtracting
and

E
xploiting

S
tructure

in
Textand

H
y

pertext

140 10.D. KOLMOGOROV-SMIRNOV RESULTS

Ola Ågren

VI

141

142

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 143

Chapter 11

S2ProT: Rank Allocation by
Superpositioned Propagation of
Topic-Relevance

Received February 19, 2008, was revised and accepted on May 29, 2008 for publi-
cation inInternational Journal of Web Information Systems.

Paper appears with kind permission from Emerald Group Publishing.

Finding, Extracting and Exploiting Structure in Text and Hypertext

144 S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance

Purpose - The purpose of this paper is to assign topic-specific ranks to web
pages.

Methodology/Approach - The paper uses power iteration to assign topic-
specific rating values (calledrelevance) to web pages, creating a rank-
ing or partial order among these pages for each topic. Our approach
depends on a set of pages that are initially assumed to be relevant for
a specific topic, the spatial link structure of the web pages,and a net-
specific decay factor designatedξ.

Findings - The paper finds that this approach exhibits desirable properties
such as fast convergence, stability and yields relevant answer sets. The
first property will be shown using theoretical proofs, whilethe others
are evaluated through stability experiments and assessments of real
world data in comparison with already established algorithms.

Research limitations/implications - In the assessment, all pages that a web
spider was able to find in the Nordic countries were used. It isalso im-
portant to note that entities that use domains outside the Nordic coun-
tries (e.g., .com or .org) are not present in the paper’s datasets even
though they reside logically within one or more of the Nordiccoun-
tries. This is quite a large dataset, but still small in comparison with
the entire World Wide Web. Moreover, the execution speed of some of
the algorithms unfortunately prohibited the use of our large test dataset
in the stability tests.

Practical implications - It is not only possible, but also reasonable, to per-
form ranking of web pages without using Markov chain approaches.
This means that the work of generating answer sets for complex ques-
tions could (at least in theory) be divided into smaller parts that are
later summed up to give the final answer.

Originality/value - This paper contributes to the research on Internet Search
Engines.

Keywords World wide web, Information retrieval, Spatial data structures,
Search engines

Paper type Research paper

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 145

11.1 Introduction

Web search is normally performed using search engines that process text queries,
where each query is built up by a combination of terms (calledtopicsin this paper).
Since the web has grown to such an enormous size, we can expectthe number of
pages matching each text query to be huge as well. This means that there should
be some way of deciding the order (orranking) of the resulting pages as a support
for the user. While many different methods of ranking pages on the internet exist,
some have been more prolific than others. Probably the most important method
relies on the fact that people tend to put in links to pages that they find interesting
on roughly the same topics as their own pages, e.g. pages on table tennis tend to
have links to other pages and sites on table tennis [10]. These links can be used
in different ways to calculate relevance values. We see two major approaches for
computing relevance values based on the structure of links between pages; topic-
independent and topic-specific.

Topic-independent approaches generates one set of rankings, and then uses a
subset of this to answer each query. This means that answering a question about
pages that contain a specific search term boils down to looking up the ranking
for the pages that contain that term. The challenge is to find aranking order that
says something for each and every topic, since the ranking algorithm does not care
whether a search term is part of the page or not. The most prominent example of
this approach is PageRank [23].

Topic-specific approaches instead generate one (or more) set of rankings for
each topic. The set of rankings is tailor-made to this specific topic by using either
weighting of certain pages or by starting with smaller sets of pages around the
pages containing the search term. While this can often leadsto smaller solutions
sets, the challenge is still to create sets of rankings for a sufficiently large number
of topics because the computational cost of generating eachtopic-specific ranking
is usually quite large. Typical examples of this approach are Topic-sensitive Page-
Rank [13] and HITS [16].

We propose a new approach for generating topic-specific rankings. The main
idea of our approach is to start with an initial setΘ of pages that are assumed to
be relevant for the topic. For instance,Θ may be the set of all pages containing
a specific keyword. Each page inΘ is initially assigned a certain relevance value
(1 in our tests), whereas all other pages are assigned the relevance value 0. The
relevance values are then propagated and decreased in a controlled fashion over
the network of links at hand (be it a single site, the entire Internet, or anything in
between). This gives a relevance value for each page, that can be used to generate
a ranking for these pages.

Finding, Extracting and Exploiting Structure in Text and Hypertext

146 11.1. INTRODUCTION

We have implemented a number of different algorithms based on our approach.
Two of these will be described in detail and another in a cursory manner in this
paper.

One thing that is important for all ranking algorithms is that they should prefer-
ably give roughly the same answer even if small perturbations such as missed links
occur. The less susceptible to perturbations a given algorithm is, the more stable it
is said to be. Our results show that our algorithms are very stable, yielding good
results even when operating on small, site-specific data sets. We will show the sta-
bility using statistics from actual data. The more advancedversion of the algorithm
is also very fast and scalable as we will show.

Disadvantages of our approach are that it requires an initial setΘ of pages, and
depends on a parameter that we denote byξ. The former can be found by using,
e.g. web directories such as Yahoo or by checking the contentof a web page word
by word (which is the method we used in our tests). The parameterξ is an algorithm
dependent decay factor; our basic algorithm requiresξ to be a close approximation
of the dominant eigenvalue of the underlying network while the advanced version
works better and faster when larger values ofξ are chosen, i.e. four or five times
larger than the dominant eigenvalue.

11.1.1 Layout of this paper

Section 11.2 contains background material and definitions that are essential for
the technical details of (but not central to) this paper. Section 11.3 describes re-
lated work. The section following it, Section 11.4, describes our algorithms in
detail. The behaviour patterns of each algorithm are discussed in Section 11.5.
Section 11.6 contains empirical results from running the algorithms, as well as
comparisons of these results with PageRank and Topic-sensitive PageRank. The
last section, Section 11.7, contains a discussion and some concluding remarks.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 147

11.2 Preliminaries

This section sets up notations and terminology that are required for the article, even
though it is not central to the work described herein.

11.2.1 Webs as Graphs

Throughout this paper, we will identify a web with a graph (asfar as its link struc-
ture is concerned). For this, letV be the set of web pages andE be the set of
hyper-links (and thus directed edges) between them. The pair (V,E) denotes the
unweighted1 directed graph over these web pages. A hyper-link from pagei ∈V to
j ∈V is a pair(i, j) ∈ E. Please note that we remove all self-referential links from
this graph, i.e.∀i ∈V : (i, i) /∈ E.

The adjacency matrix of this graph is obtained as usual, based on an arbitrary
but fixed ordering of the setV.

11.2.2 Nomenclature

We use the following naming conventions in order to minimisemisunderstandings:

Data type Form Example
Matrices Italic upper case letters A
Vectors and parameters Greek lower case lettersτ
Constants Italic lower case letters m

Let A be a square matrix. The transpose ofA is denotedA′. Its dominant
eigenvalue is denoted byλ1(A) and the second largest eigenvalue byλ2(A), etc.
The corresponding eigenvectors are denoted byπ1(A),π2(A), etc. The spectrum of
A is the setΛ(A) = {λ1(A), λ2(A), . . .}.

DEFINITION 11.1 (RATING) A rating function is a total functionρ : V → [0,1].
For each individual pagei ∈V, the valueρ(i) is called therating of i.

As output, all algorithms in this paper yield rating functions.

DEFINITION 11.2 (RANKING) A rankingis a partial order of pages according to a
rating function, where pages with rating values larger thana certain cut-off valueε
are ordered in decreasing order with respect to their rating.

1This is a simplification used in this paper, our algorithms works with weighted graphs as well,
e.g. from multiplicity of links.

Finding, Extracting and Exploiting Structure in Text and Hypertext

148 11.2. PRELIMINARIES

Note that a ranking does not need to contain all elements inV, as only pages
with large enough rating are included. We have usedε = 10−6 when nothing else
is said in this paper.

DEFINITION 11.3 (RANKING ORDER) A ranking orderassigns to each pagei the
indexσi of that page within a ranking, whereσi = 1 for the highest ranked page. If
the range is restricted, then the ranking order is adapted accordingly, e.g. removing
pageb from {σa = 3,σb = 2,σc = 1} yields{σa = 2, σc = 1}.

Ties because of equal ratings have been handled by using the fixed ordering
among the elements of the setV (see Section 11.2.1 on the preceding page).

11.2.3 Metrics

We use four different measurements when comparing the algorithms:

DEFINITION 11.4 (n-VALUE) Given n = |Θ| pages that are initially assumed to
be relevant for a topic, then-valueis the percentage of these appearing in then top
elements in the output ranking.

An n-value corresponds to both a recall and a precision value, and is usually
calledR-Precwhen using exact rather than assumed number of relevant pages [4].

DEFINITION 11.5 (TOTAL-VALUE) Thetotal-valueis the percentage of the pages
in the given input set that received a value larger thanε after running an algorithm.

DEFINITION 11.6 (SFD) TheSpearman Footrule Distance[29, 30, 11] shows
how different rankings are. This value is between 0 (identical ranking orders) and
1 (inverted or heavily permuted ranking orders) with 0.5 meaning totally random
orders with no correlation. It is defined as follows: Given two ranking ordersσ and
τ with selements in common,

SFD(σ,τ) =
2
s2

s

∑
i=1

|σi− τi|.

DEFINITION 11.7 (ORDER %) Given two rankings, theorder %is the probability
that two pages that are consecutive in the first ranking will have the same relative
order in the other, considering only pages that are common toboth rankings.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 149

11.2.4 Small Test Dataset

The first database used in our experiments consists of a subset of the pages avail-
able at:http://www.cs.umu.se/, the web site of the Department of Computing
Science, Umeå University. This dataset was collected in January 2003.

The database contains 7,312 pages, of which 2,728 are HTML pages with out-
going links. A total of 4,486 of the pages contain text. Thereare a total of 22,970
hyper-links, yielding an average of approximately 8.42 outgoing hyper-links per
HTML page and just over 3.14 incoming links per page. The corresponding un-
weighted adjacency matrix has a dominant eigenvalue ofλ1≈ 25.813242.

A total of 57,823 distinct stemmed words are present in the entire set of pages.
These words are present in on average 9.87 pages, for a total of 570,870 page
occurrences. Among these words, 33,854 appear in the same set of pages as another
word. Thus, only 23,969 unique rankings per algorithm are required for the entire
dataset.

11.2.5 Large Test Dataset

The dataset used in the assessment consists of all web pages found within the
Nordic countries, i.e. Denmark, Finland, Iceland, Norway,and Sweden, by us-
ing a web spider. It was collected in January and February 2007. This dataset was
chosen since these countries have had access to the Internetfor a long time, they
contain a mix of old and new, academic and commercial, web servers, and provide
fast access from our location.

This database contains 3,087,531 web addresses, of which 478,985 contain
hyper-links that point to another server. It contains 37,245,054 hyper-links, of
which 3,889,216 are non-local. The corresponding unweighted non-local adja-
cency matrix has a dominant eigenvalue ofλ1≈ 49.135476.

All in all, 8,054,200 stemmed words of at least four characters appear
221,259,520 times in 727,757 of the pages, leading to an average of just over 304
unique words per page in that set.

11.2.6 Performance Details

All running times reported throughout this paper have been measured while run-
ning the algorithms on a 1.7 GHz Pentium M laptop with 1.5 GB RAM. While
this is a quite modest machine, given the newest machines available in the market
(especially stationary machines with 64 bit processors), it will still give a rough
estimate of the time required to run the algorithms.

Finding, Extracting and Exploiting Structure in Text and Hypertext

http://www.cs.umu.se/

150 11.3. RELATED WORKS

11.3 Related Works

Web link mining is the discovery of useful knowledge from thestructure of hyper-
links. This link structure has been exploited in several techniques to say something
about the importance of different web pages, such as in HITS [16], CLEVER [6],
PageRank and Google [3], cGraph [17], the Intelligent Surfer [26], as well as [25]
and [22]. The strength of using links in this way is that neighbouring web pages
(when using hyper-links to define distance) can be used to either deduce or corrob-
orate information about a web page.

Almost all of these techniques use a (modified) connection matrix correspond-
ing to the graph that they are working on. Each algorithm yields one or more
eigenvector(s) corresponding to the eigenvalue(s) of the connection matrix. Such
eigenvectors can be seen as a tuple of values that define a rating for the correspond-
ing pages.

The algorithms, as well as their underlying methodologies differ considerably
between various approaches within this domain. Most of the link mining systems
available today are based on either PageRank or HITS. Both ofthese families of
algorithms use a connection matrix, but in quite different ways.

The PageRank algorithms first performs normalisation on thematrix in order to
get a zero-sum propagation of data when multiplying with a random vector whose
values form a Markov chain [3]. This matrix has to be updated further, since cross
referrals would accumulate more and more of the value in eachiteration. The way
this is handled in PageRank is to simulate a jump to a random page with a certain
probability, also known as thedamping factor. This also fulfils the requirement on
a Markov chain, that each page must have both incoming and outgoing links. The
final answer appears when the changes between two iterationsof the algorithm
have become small enough, and corresponds intuitively to the probability that a
random user would look at the corresponding web page. This iscalled thePage-
Rank. We will also use a version of PageRank whose random jumps only lead to
a starting set of pages, called Topic-sensitive PageRank [13]. Using 1−µ as the
damping factor andn is the number of pages, we can define PageRank as:

PR(j) =
1−µ

n
+(µ)× ∑

(i, j)∈E

PR(i)/out-degree(i) (11.1)

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 151

The HITS algorithms, on the other hand, yield not one value, but two; Author-
ity – indicating how interesting the information on the pagerelative to the given
query is, and Hub – indicating how good the pointers from the page are [16]. These
numbers are obtained by multiplying the connection matrix with the Hub values –
yielding the new set of Authority values – followed by a multiplication of the trans-
pose of the connection matrix with the Authority values – resulting in a new set of
Hub values – and finally a normalisation of both Authority andHub values so that
they remain within a reasonable interval. We will not compare our algorithms with
the HITS algorithms in this paper, since our algorithms are more similar to the
PageRank family.

For more information on ranking systems see [18].

Finding, Extracting and Exploiting Structure in Text and Hypertext

152 11.4. PROPAGATION OF TOPIC-RELEVANCE

11.4 Propagation of Topic-relevance

The basic idea of the algorithms proposed in this paper is that each page is assigned
a relevance value for each topic. This relevance value propagates along hyper-
links, while decreasing for each link travelled. This decrease is controlled using a
parameterξ, called thedecay factor. Therefore, the method is calledPropagation
of Topic-relevance(ProT). The method is quite similar tospreading activation[24,
7, 8, 1], but uses multiplicative rather than additive activation in each iteration.

To implement this idea, we use an iterative approach similarto the algorithms
described in Section 11.3. Starting with an initial assignment of relevance values,
iterated updates and normalisations are made until a fixed point is reached (or,
more precisely, until the changes are smaller than a certainthreshold that we call
cut-off). Let ϖk

j be the relevance value for pagej ∈V in iterationk> 0. The initial
values depend on the set of pages initially assumed to be on-topic, i.e. the setΘ:

ϖ0
j =

{

1 if j ∈Θ
0 otherwise.

(11.2)

The ProT algorithm is then given by normalisation of

ϖk
j =

(

1
ξ ∑

(i, j)∈E

ϖk−1
i

)

+

{

ϖk−1
j if j ∈Θ

0 otherwise.
(11.3)

This is the same thing as using the wide-spread power method [12] on a matrix
Â, consisting of a standard adjacency matrixA divided byξ with the addition that
diagonal elements corresponding to pages in the setΘ are set to 1 (and using the
values in the diagonal as the starting vector). Each iteration computes the next
answer vectorϖ1, ϖ2, etc. The final result is given after a suitably large number of
iterations (i.e. lim

k→∞
ϖk = π1(Â)), but the algorithm usually converges quite quickly

as long as normalisation is done after each iteration (see Section 11.4.1 and the
more advanced version of the algorithm given in Section 11.4.4).

NOTATION 11.1 LetDΘ denote the diagonal matrix where the only non-zero po-
sitions are the diagonal elements corresponding to a memberin Θ; these elements
are set to one.

OBSERVATION 11.1 (EIGENVALUES OF A DIAGONAL MATRIX) Given that|Θ|=
k, then

Λ(DΘ) = {λ1(DΘ) = . . . = λk(DΘ) = 1,λk+1(DΘ) = . . . = λ|V|(DΘ) = 0}. (11.4)

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 153

11.4.1 Resulting Values

Using Eq. (11.3) without normalisation leads to valuesϖk
i much larger than 1, as

soon as,

• there exists a path from one on-topic page to another, and/or,

• the sum of predecessor values for a pagei is larger thanξ.

Even though we are interested in relative (rather than absolute) values, we need
to keep these numbers in check, since they will accumulate over each iteration per-
formed. These values can otherwise become arbitrarily large until they no longer
can be represented in floating point format (see also HITS [16, 6]). The easiest
way to handle this is by using normalisation after applying Eq. (11.3) once to all
pages (or one iteration of the power method, as the case mightbe). Normalisation
will, moreover, make it easier to test if changes compared with previous results are
below the cut-off.

This leads to a rather interesting question, namely which normalisation to use.
Since we are using relevance values and we want to consider atleast one page as
relevant, it seems natural to assign full relevance (i.e. 100%) to the most relevant
pages. This indicates that a normalisation using|| · ||∞ = max(·) should be used,
leading to Algorithm 11.1.

ALGORITHM 11.1 (PROT)

Parameters: A,ξ,DΘ (as defined previously)

Â =
A
ξ

+DΘ

∀i ∈V : ϖ0
i = Â(i,i)

for k = 1,2, . . .

ϖk = Âϖk−1

ϖk = ϖk/||ϖk||∞
if ||ϖk−ϖk−1||< ε, stop

end for

This algorithm will converge, as long as the two largest eigenvalues ofÂ are
not equal [12].

Finding, Extracting and Exploiting Structure in Text and Hypertext

154 11.4. PROPAGATION OF TOPIC-RELEVANCE

11.4.2 Expected Results

The intuitive view is that the results given by the algorithmshould correspond to
two authoritative sources:Θ and the links of the web. If an appropriate setΘ
was chosen, all pages that belong toΘ should appear fairly early in the resulting
rankings. Moreover, pages that are pointed to from many of the pages inΘ should
be given a high relevance value as well. Ifξ is increased, this should intuitively
strengthen the relative effect of ‘+DΘ’.

There is always the trade-off between these mutually conflicting expectations.
As will be seen below, we can tune the tendencies towards the different expecta-
tions by setting the decay factorξ. The largerξ, the closer the results go towards
pages inΘ, and vice versa.

11.4.3 The Size ofξ

There is a rather complex relationship between the parameter ξ and the behaviour
of ProT, as we will show. In general:

• If ξ is too small (e.g. zero) then the primary eigenvector of the original matrix
is given, regardless ofΘ. This often leads to the situation where none of the
pages inΘ are given as a result for a search term.

• Increasingξ strengthens certain eigenvectors ofÂ. While this is a desired
effect, it may lead to very slow convergence ifξ gets too large.

Let us explain this in more detail. While the eigenvalues of amatrix are given
by the matrix, their behaviours are complex when the matrix is changed. Increasing
multiple values in the diagonal might result in an increase of multiple eigenvalues,
thereby inhibiting the convergence of ProT (see Conjecture11.1 on page 181).

Values added to diagonal positions in the adjacency matrix that do not belong
to the eigenvectors of the non-zero eigenvalues results in the creation of an eigen-
vector with this element as its only member. The corresponding eigenvalue is equal
to the value added in the diagonal, see Theorem 11.1 on page 181.

All other diagonal additions result in the increase of at least one eigenvalue,
and possibly shifting (and resizing) of others so that all eigenvalues will continue
to be linearly independent of each other.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 155

11.4.3.1 Using Too Smallξ

Let B be the sum ofDΘ multiplied byξ and the adjacency matrixA:

B = ξDΘ +A. (11.5)

B is after normalisation identical in all respects (except the absolute size of the
eigenvalues) to the matrix̂A used elsewhere in this paper, except atξ = 0 orξ = ∞.

It is obvious thatλ1(B) = λ1(A) whenξ = 0. What happens whenξ is increased
is more complex. It depends on both the layout of the web and the number as well
as the position of elements inΘ.

However, if one or more of the pages inΘ coincide with the non-zero elements
of the dominant eigenvectorπ1(B), enlargingξ will strengthen the corresponding
eigenvalue (while shifting the eigenvectors slightly toward these pages). Unless
another eigenvector gets an even stronger boost from multiple pages inΘ, this will
continue to be the strongest eigenvector.

On the other hand, if some other eigenvector is strengthenedto the point where
its eigenvalue is equal to the (possibly increased) dominant eigenvalue ofA, they
will compete for position as the strongest eigenvalue. We call the ξ where this hap-
pen thepeak value, since it corresponds to a distinct local maximum in the number
of iterations required to reach a stable value (see Figure 11.3(b) in Section 11.5.1
for typical examples from the test database).

The exact value required to reach the peak value is somewherein (0,λ1(A)],
depending onA andΘ. We are currently not able to predict exactly where the peak
values are.

A typical behaviour of ProT when given too small values forξ can be seen in
Figure 11.1 on the following page. Whenξ is smaller than the peak value, the dom-
inant eigenvector of the connection matrix is given. The strengthened eigenvalue
competes with the dominant eigenvalue of the original connection matrix, and then
takes over (15.26 ξ6 19.1). Multiple eigenvalues are increased at the same time,
resulting in slower convergence, as can be seen in right halfof Figure 11.1 on the
next page whenξ is increased above 19.1.

Finding, Extracting and Exploiting Structure in Text and Hypertext

156 11.4. PROPAGATION OF TOPIC-RELEVANCE

0

100

200

300

400

500

600

700

0 20 40 60 80 100

Ite
ra

tio
ns

R
eq

ui
re

d

Decay factor (ξ)

Figure 11.1: This figure shows the relationship between decay factor and minimum
number of iterations required to reach a stable result for ProT. The vertical line
corresponds to the dominant eigenvector of the adjacency matrix.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 157

11.4.3.2 Using Too Largeξ

The situation is quite different whenξ is large and|Θ| > 1. Multiple eigenvectors
will be affected by the values in the diagonal, indicating that it will be very hard
to find the correct eigenvectors using the power method. Thisleads us to Observa-
tion 11.2.

OBSERVATION 11.2 (TOO LARGE ξ) Using a very largeξ in ProT will prohibit
convergence of the power method.

Let the matrixÂξ,Θ be the sum of the adjacency matrixA divided byξ andDΘ.
This gives, per definition, that

lim
ξ→∞

Âξ,Θ = lim
ξ→∞

1
ξ

A+DΘ = DΘ. (11.6)

This means that the|Θ| largest eigenvalues in the spectrum ofÂ∞,Θ are equal to 1.
The convergence rate of the power method is linear to|λ2/λ1| [12] and here we

have
∣

∣

∣

λ2(Â∞,Θ)

λ1(Â∞,Θ)

∣

∣

∣
= 1 leading to no convergence at all.

One observation that can be made here is that this is not true when |Θ| = 1,
since there is only one non-zero eigenvalue whenξ→ ∞. This leads us to the
version of our algorithm as described in Section 11.4.4.

11.4.3.3 Selection ofξ

A moderate solution is to useξ = ⌊λ1(A)+1⌋. This is large enough to be over the
peak value, since the peak value appears in(0,λ1(A)]. This value is still not so high
that slow convergence is a problem for smaller web sites. Examples of this can be
seen in Figure 11.1 on the preceding page.

Finding, Extracting and Exploiting Structure in Text and Hypertext

158 11.4. PROPAGATION OF TOPIC-RELEVANCE

11.4.4 Superpositioned Singleton Propagation of Topic-relevance
(S2ProT)

A further development of the ProT algorithm using the same general idea but a
slightly different approach is the S2ProT algorithm. Instead of trying to generate
the entire eigenvector at once, it creates one vector for each page inΘ and then
performs additive superpositioning of these followed by normalisation, thus result-
ing in the vector that yields the returned rating. The rationale for this is that even
though many different calculations need to be performed, this is offset by much
faster convergence for each subproblem and reuse of vectorswhenever a page is
on-topic for more than one topic.

The reason for the fast propagation is that each such vector calculation can be
viewed as a propagation with decreasing strength, i.e. a topological ordering with
minor changes because of back links.

DEFINITION 11.8 (SINGLETON MATRIX) Let S(i) be theV×V matrix with a sin-
gle non-zero value equal to 1 in the diagonal. This corresponds to a self-reference
of the pagei ∈V. Such a matrix is called asingleton matrixand satisfies,

Λ(S(i)) = {1,0, . . . ,0}.

ALGORITHM 11.2 (S2PROT)

Parameters: A,ξ,Θ (as defined previously)
∀i ∈ Θ : ratingi = ProT(A,ξ,S(i))
rating = ∑

i∈Θ
ratingi

return rating/||rating||∞

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 159

Note that, when computing ratings for setsΘ1, . . . ,Θk, we only need to com-
pute ratingi once, for eachi ∈ ∪16 j6kΘ j . In practise, this will be very useful
as it allows one to consider a large collection of topics. Moreover, S2ProT has
excellent convergence rate whenξ > λ1, proportional toξ/λ1, and will finish in

log(ε)
log(λ1(A))− log(ξ)

iterations or less (see Theorems 11.3 on page 182 and 11.4

on page 183, respectively).
This means that each individual page ratingratingi can be calculated in just a

few iterations. PageRank (usingµ = 0.852) requires approximately 114 iterations
to yield an eigenvector with a maximum error of less than 10−8, while each S2ProT
calculation (usingξ = 2×λ1(A)) will get the same margin of error in at most 26
iterations. Using an even largerξ will yield stable results even faster, as can be seen
in Theorem 11.4 and Figure 11.4 on page 164 (e.g.ξ = 4×λ1(A) 14 iterations
andξ = 10×λ1(A) 8 iterations).

Almost as important is the fact that we do not need to concern ourselves with
pages further away from a starting node than the maximum number of iterations
required. This means that we can speed up S2ProT very effectively by increasing
ξ, leading to calculations on a small subset of the original web with only a few
iterations required. The downside of using large decay factors is that fewer pages
not in Θ will be included in the answer, and they will be given later inthe ranking
order.

2The value ofµ recommended by the PageRank authors, whereµ corresponds to the non-
dampened part of the PageRank calculation (which plays a somewhat similar role as ourξ).

Finding, Extracting and Exploiting Structure in Text and Hypertext

160 11.5. COMPARISON OF ALGORITHM BEHAVIOURS

11.5 Comparison of Algorithm Behaviours

In this section we describe the general behaviour of our algorithms when applied
to our small test database, using the well-known Topic-sensitive PageRank as a
basis of comparison. We look at the number of non-zero elements in the rating
functions, scalability, execution times, and similarities between our algorithms and
Topic-sensitive PageRank.

Our algorithms have very different behaviours regarding how they are affected
by the input data size (handled below) and their different decay factors (Figure 11.2).
The number of non-zero elements in the rating functions is important when assess-
ing relevance; the precision (see Eq. (11.7) in Section 11.6) goes down drastically
when too many pages are given in the results.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 10 100 1000 10000

|A
ns

w
er

 v
ec

to
r|

Decay factor

ProT
S2ProT

(a) ProT and S2ProT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.2 0.4 0.6 0.8 1

|A
ns

w
er

 v
ec

to
r|

Damping factor

(b) Topic-sensitive PageRank

Figure 11.2: Typical relationships between input parameters (ξ andµ, respectively)
and number of non-zero elements in the resulting vectors using actual data. Topic-
sensitive PageRank added for comparison.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 161

ProT The basic ProT algorithm yields reasonable results, but hasa number of
disadvantages when it comes to efficiency. For a large web, the number of
iterations required to reach a stable state is typically in the same range as
for Topic-sensitive PageRank. Thus, ProT does not scale well. Choosing an
appropriate decay factor is imperative; too small and the result is misleading
at best, and too large and no answer will be given in due time (if ever).
The number of non-zero elements in the resulting vectors depends on the
decay factor, as can be seen in Figure 11.2(a) on the facing page. The rather
complex behaviour of the basic algorithm with respect to thedecay factor
can be seen in Figure 11.3(b) on the next page.

S2ProT This version scales well, and yields reasonable results as long as the de-
cay factor is high enough, i.e. larger than the dominant eigenvalue of the
adjacency matrix. The larger the decay factor, the smaller the resulting set
and the faster the convergence, as can be seen in Figure 11.2(a) on the facing
page and Figure 11.3(c) on the next page.

Topic-sensitive PageRankWe implemented Topic-sensitive PageRank [13] and
tested it on the same data as ProT and S2ProT. It turns out that this algorithm
has roughly the same scalability as ProT. The number of non-zero elements
in the resulting vector is very large when using the recommended values of
µ (0.7–0.85). Moreover, it requires a lot of iterations to reach a stable state,
as can be seen in Figure 11.3(a).

Applying the approach of Jeh and Widom [15, 14] would requirefewer it-
erations, but still much more than for S2ProT. The main problem with their
approach is that the choice of hub nodes to use in the calculation is critical.

Finding, Extracting and Exploiting Structure in Text and Hypertext

162 11.5. COMPARISON OF ALGORITHM BEHAVIOURS

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.2 0.4 0.6 0.8 1

Ite
ra

tio
ns

 r
eq

ui
re

d

Damping factor

’ola’
’jubo’

(a) Topic-sensitive PageRank

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

Ite
ra

tio
ns

 r
eq

ui
re

d

Decay factor

’ola’
’jubo’

(b) ProT

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

Ite
ra

tio
ns

 r
eq

ui
re

d

Decay factor

’ola’
’jubo’

(c) S2ProT

Figure 11.3: Typical relationships between input parameters (µ andξ, respectively)
and total number of iterations required to reach a stable state for each algorithm.
One thing to note here is that, even though the total number ofiterations required
for the superpositioned algorithm might seem a bit high, thework done pays off,
because the individual page ratings (denotedratingi in Section 11.4.4 on page 158)
can be reused for other queries (see the discussion in Section 11.4.4 on page 158).
A total of 251 individual page ratings are created for the search term ’ola’ and 110
for ’jubo’ by S2ProT.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 163

11.5.1 Execution Time

Using the small test database, we found the execution time ofthe various algo-
rithms (Table 11.1 and Figure 11.3 on the preceding page). Each individual word
available within any of these pages constitutes its own query, e.g. the word “ladok”
exists on 23 pages and these 23 pages belong to theΘ of the query for “ladok”. The
cut-off for termination was set toε = 10−6 for all algorithms. Table 11.1 shows the
total number of iterations and the total CPU time required tocompute all queries.

Table 11.1: Actual number of iterations and CPU time required for our small
database per algorithm.

Algorithm Iterations CPU time

Topic-Sensitive PageRank115 051 531 7.5 days
ProT 557 646 907 10 days
S2ProT 87 825 158 secs

11.5.1.1 Topic-Sensitive PageRank

A total of 115 M iterations were required for an average of just under 4,700 iter-
ations per search term usingµ = 0.85. The maximum required number of itera-
tions for a single query is just over 4 M. Calculating the answer set for all queries
amounts to approximately 7.5 d on the test computer with onlyminimal optimisa-
tion done on the code. A typical behaviour of this algorithm with respect to the
damping factor can be seen in Figure 11.3(a) on the precedingpage.

11.5.1.2 ProT

A total of 557 M iterations were required for an average of approximately 23,200
iterations per search term withξ = 26. The maximum required number of itera-
tions for a single query is just over 7 M. Calculating the answer set for all queries
amounts to 10 d on the test computer with only minimal optimisation done on the
code. The behaviour of the basic algorithm depends heavily on the decay factor
(including the unstable peaks at 15-20), as can be seen in Figure 11.3(b) on the
facing page.

11.5.1.3 S2ProT

A total of almost 88 k iterations were used to create the complete set of individual
page ratings for the 4,486 pages with text when the decay factor was set to 26.
This amounts to an average of 19.6 iterations per page, with amaximum of 1586

Finding, Extracting and Exploiting Structure in Text and Hypertext

164 11.5. COMPARISON OF ALGORITHM BEHAVIOURS

iterations for one page. This corresponds to a total of 1.52 iterations/search term,
since already computed page ratings can be reused for other queries, as discussed
earlier.

Calculating the answer vectors for all questions takes a total of 158 s of user
time on the test computer, including superpositioning and all overheads and with
no optimisation made.

Figure 11.3(c) on page 162 shows the typical behaviour pattern for this algo-
rithm with respect to the decay factor. Please note the peak values when the decay
factor is between 10 and 20, i.e. just underλ1.

Figure 11.4 shows that the number of iterations is well belowthe upper bound
as given in Section 11.4.4 on page 158, specifically Theorem 11.4 on page 183.

0

5

10

15

20

25

10 100 1000

Ite
ra

tio
ns

re
qu

ire
d

Relative decay(ξ/λ1(A))

actual, S2ProT
upper bound

Figure 11.4: The relationship betweenξ/λ1(A) and the number of iterations re-
quired to reach a stable state, looking at both practical values as well as upper
bound (as given in Theorem 11.4 on page 183) using a cut-off of10−6.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 165

11.5.2 Summary

In this section, we compared the execution behaviour of ProTand S2ProT to that
of Topic-sensitive PageRank. Specifically:

• In the beginning of Section 11.5, we showed that the number ofnon-zero
elements in the resulting vector depends onµ (for Topic-sensitive PageRank)
or ξ (for ProT/S2ProT). We also discussed the scalability of each algorithm
in terms of CPU usage, with S2ProT being the most scalable of the three.

• In Section 11.5.1 we showed that the ProT algorithm is roughly compara-
ble to Topic-sensitive PageRank when it comes to execution speed, while
S2ProT ismuchfaster. The practical rate of convergence for S2ProT was also
shown to be well below the theoretical upper bound for our test database.

This means that S2ProT will yield results in a timely fashion, making it suitable
even for very large web systems. This is especially true for query systems with
many search terms, since page ratings can be reused for all terms for which this
page occurs as a starting page, i.e. is inΘ.

Finding, Extracting and Exploiting Structure in Text and Hypertext

166 11.6. EMPIRICAL RESULTS

11.6 Empirical Results

In the previous section we evaluated the general behaviour of our algorithms com-
pared to Topic-sensitive PageRank for a small (but real) example database. In this
section we evaluate the quality of the resulting ratings andthe stability of our algo-
rithms compared to PageRank and Topic-sensitive PageRank,based on perceived
relevance and stability.

This is the second study of the ProT algorithm. The first studywas done on a
single web server and was reported in a resent paper [31], while the one reported
here used all web pages our web spider was able to find in the Nordic countries
(see Section 11.2.4 on page 149 and Section 11.2.5 on page 149, respectively).

11.6.1 Assessment

The relevance assessment was done on the large dataset (see Section 11.2.5 on
page 149). In particular, the web considered in this assessment did not consist
of pages mainly taken from the academic environment as in [31], but covered
commercial, private, and public service sites as well. The three algorithms that
were considered in this assessment were PageRank, Topic-sensitive PageRank and
S2ProT.

11.6.1.1 Relevance

One of the most important factors of a search engine is how relevant the result-
ing sets of pages are, especially the pages given early. The two measurements
typically used to judge web search and Information Retrieval systems are called
precisionandrecall, as defined in equations 11.7 and 11.8. These cannot always
be computed, since the set of relevant items is not always given in such a system.
High precision indicates that most of the items retrieved are relevant, while high
recall indicates that most of the available relevant records in the database have been
retrieved.

Precision =
|Retrieved Relevant Items|
|Retrieved Items| (11.7)

Recall =
|Retrieved Relevant Items|

|Relevant Items| (11.8)

In the assessment we will instead use perceived relevance, i.e. how relevant
and appropriate each page was for the given search term, as judged by a group of
people making individual assessments.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 167

11.6.1.2 Choice of Search Terms

The search terms were chosen according to the following selection criteria:

1. At least 20 pages had to contain the search term;

2. The tenth result given by each algorithm had to be above thebase level (1−µ
n

for PageRank, etc.);

3. At least three different rating values had to exist in eachtop ten list;

4. The search terms should be spread over a wide range of topics; and

5. There should be no risk that the search terms could be considered offensive
by the participants.

The reason behind the first criterion was to get enough variability. The next two
criteria ensured that the rankings from the algorithms would determine the result,
rather than the alphabetical order. The last two criteria ensured that the assessment
would be as fair and free of bias as possible.

There was a very large set of possible search terms in this experiment, so the
final choice came down to whether a search term was well definedand had a clear
cut-off around the tenth or eleventh element in the top listsof Topic-sensitive Page-
Rank and S2ProT. The latter was used to assure that the alphabetical order that we
used as arbitration between pages with equal ranking would not affect the result
one way or the other. This resulted in a list of 85 search terms. The complete list
is given in Appendix 11.B on page 184.

Finding, Extracting and Exploiting Structure in Text and Hypertext

168 11.6. EMPIRICAL RESULTS

11.6.1.3 Setup of the Assessment

The basic setup of the assessment was that participants assessed the subjective
relevance of each given page with respect to each search term. These pages were
given in alphabetical order without any marking as to what algorithm or which
algorithms yielded the page in the top list. There were five different grades among
which the test subjects were asked to choose the most appropriate one for each
page:

• The first grade indicated that the reviewer was unable to say anything about
the relevance of the page regarding the current keyword. These assessments
were ignored in all calculations.

• The second grade corresponded to a complete lack of relevance.

• The third grade was indicative of some relevance.

• The fourth grade indicated a moderate amount of relevance.

• The fifth and final grade indicated that the page was very relevant, corre-
sponding to 100% relevance.

The second, third, fourth, and fifth grades were assigned thenumerical values
0, 0.5, 0.8, and 1, respectively. This scaling was used to avoid an underestimation
of the true relevance of the pages, since we were using terms for the grades that
intuitively should have had a higher relevance, e.g. “relevant” for the fourth grade
(was 2

3 in [31] compared to 0.8 in this paper). The relevance numbers were then
disseminated back to each algorithm by averaging the gradesthat were given by
the graders. This leads to a system where the subjective perceived relevance values
can be computed for the results from each algorithm.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 169

11.6.1.4 Results

A total of 587 valid assessments (i.e. with at least one grading being from grades
two to four) resulted in between 577 and 581 answer sets per algorithm or approx-
imately 7.6 answer sets per search term.3 The participants showed a preference
for the results of S2ProT over Topic-sensitive PageRank and for Topic-sensitive
PageRank over PageRank, as can be seen in Figure 11.5 and Figure 11.6 on the
following page.

19 2 55

PageRank Topic-sensitive PageRank

15 1 60

PageRank S2ProT

21 9 46

Topic-sensitive PageRank S2ProT

Figure 11.5: Preference of relevance per search term using pairwise algorithm com-
parisons. Thus, e.g. for 19 search terms, the graders preferred the rankings returned
by PageRank over the one returned by Topic-sensitive PageRank. For 55 search
terms, Topic-sensitive PageRank was preferred over PageRank, and the remaining
two search terms resulted in a tie.

The resulting values were then compared using ANOVA tests. The results
showed that the S2ProT algorithm gives better relevance results than Topic-sensitive
PageRank with statistical significance (p< 0.05), that in turn had higher relevance
than PageRank with very high statistical significance (p< 0.001). The average
values for the entire test as well as the 95% confidence intervals can be seen in
Figure 11.6 on the next page, and the ANOVA answers are given in Table 11.2 on
the following page.

376 of the search terms had at least one assessment.

Finding, Extracting and Exploiting Structure in Text and Hypertext

170 11.6. EMPIRICAL RESULTS

46

48

50

52

54

56

58

60

PageRank Topic-sensitive PageRank S2ProT

R
el

ev
an

ce
P

er
ce

n
ta

g
e

Figure 11.6: The average 95 percent confidence intervals foreach algorithm for
the assessment.

Table 11.2: ANOVA test results from the assessment.

Compared results F-value p-value

All three F(2,1733) = 17.6475 p = 2.5870×10−8

PR - TsPR F(1,1153) = 14.0671 p = 0.00018516
PR - S2ProT F(1,1157) = 34.1410 p = 6.6571×10−9

TsPR - S2ProT F(1,1156) = 4.3672 p = 0.036855

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 171

11.6.2 Stability

Another really important aspect of a web search engine is that the results should
not change too much even if small changes are applied to the underlying web. The
users are expecting valid results even if some information is not available to the
search engine when generating answer vectors. Since all of the algorithms that we
talk about in this paper work on graphs and most of them use a set Θ of starting
pages, we can find two different ways in which we can disturb the system in order
to check its stability:

1. removal of pages fromΘ (thus affecting the starting sets per topic), and

2. removal of links (affecting the graph).

We will show empirical results from both types of perturbations in this section.

11.6.2.1 Missing Pages inΘ

Using our small test data set, it was possible to remove a number of pages and still
get a valid number of remaining pages (between 20% and 30% of the originalΘ
removed) for 16,681 of the 57,823 words.

By running our algorithms as well as Topic-sensitive PageRank on the dimin-
ished dataset, we found some interesting measurements whenwe compared the
results of the different algorithms. In each case we compared the results from us-
ing the diminished dataset with the original input dataset,given in n-value and
total-value (see Section 11.2.3 on page 148).

The results from applying each algorithm to the diminished data sets can be
seen in Table 11.3 and (for S2ProT) Figure 11.7 on the next page.

Table 11.3: Recall values for various algorithms using a diminished data set as
basis.

Algorithm n-value total-value

Topic-sensitive PageRank 53.95 91.96
ProT 37.81 93.42
S2ProT (usingξ = 30) 77.90 91.00

Finding, Extracting and Exploiting Structure in Text and Hypertext

172 11.6. EMPIRICAL RESULTS

Both then-value and the total-value are quite high for Topic-sensitive Page-
Rank. The total-value in particular indicates that the results are relevant even when
some pages have not yet been indexed.

ProT does not have as good ann-value as Topic-sensitive PageRank. It does,
however, have a better total-value even though it on averagereturns only 594.5
pages per search term while Topic-sensitive PageRank returns on average 2024.53
pages (a factor of over 3.4 times as many pages for Topic-sensitive PageRank).

76

78

80

82

84

86

88

90

92

10 100 1000 10000

R
ec

al
l

Decay factor (ξ)

n-value S2ProT
total-value S2ProT

Figure 11.7: Recall values for the topn results and in all values given from the
S2ProT algorithm using the diminished sets with regard to the original Θ sets.
S2ProT values are not valid unless the decay factor is larger than the dominant
eigenvalue of the matrix, in this case≈ 25.813242.

The precision (and recall) over the firstn values of S2ProT are much higher
than for the other algorithms. The total-value recall is only slightly lower than
Topic-sensitive PageRank and ProT. It does, however, depend heavily on the cho-
sen decay factor, as is clearly visible in Figure 11.7. Usinga largerξ means faster
results but fewer pages in the resulting sets.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 173

11.6.2.2 Link Removal

One of the major concerns for some of the other approaches to searching has been
their partial lack of stability if links are missing [21, 20]. Our approach is very
stable: the resulting ranking order is almost identical even when 10% of the links
have been dropped at random. In test databases with between 5000 and 15000
web pages, we have found an average SFD of less than 0.1 when 10% of the links
were dropped. That means that our algorithms are in the same order of stability
as Topic-sensitive PageRank as far as missing links are concerned. Table 11.4
shows the results from applying each algorithm to the small test database, and the
stability is shown when just over one in ten (10.2%) of the links have been removed
randomly.

It is unfortunately not that easy to compare the results fromthese algorithms,
since their stability varies considerably depending on howit is measured. The
Spearman footrule distance indicates that ProT is the most stable algorithm, fol-
lowed by Topic-sensitive PageRank, and, finally, S2ProT. Order % on the other
hand gives a different picture, according to which S2ProT is the most stable algo-
rithm, followed by ProT, and, finally, Topic-sensitive PageRank.

Table 11.4: Stability of the algorithms when removing 10.2%of the links on the
small test dataset, showing the Spearman footrule distanceand order % (including
their variance), as well as the average number of pages givenper search term.

Algorithm avg SFD σ2 order % σ2 avg #pages

ProT 0.05831 0.01387 89.833 0.03035 568.5530
S2ProT 0.08865 0.00647 94.523 0.01079 914.1436
Topic-sensitive PageRank 0.08279 0.01307 84.295 0.03655 1448.3610

Finding, Extracting and Exploiting Structure in Text and Hypertext

174 11.6. EMPIRICAL RESULTS

We have tested the link removal stability of each algorithm for 10 of our queries
in the two test databases. The total scatter plots as well as least squares best fit cor-
relations for 320 different link removals are shown in Figure 11.8 and Figure 11.9
on the next page, respectively. Even though all of the algorithms are somewhat
sensitive to link removals, both Topic-sensitive PageRankand S2ProT give average
ranking orders, in the form of Spearman Footrule Distance, lower than the removal
rate for these datasets. S2ProT increases in stability as the number of pages inΘ
are increased.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.02 0.04 0.06 0.08 0.1

S
pe

ar
m

an
F

oo
tr

ul
e

D
is

ta
nc

e

Link removal fraction

Topic-sensitive PageRank
S2ProT

Figure 11.8: Stability of some of the mentioned algorithms on the smaller test
database when removing a certain amount of links, given as average Spearman
Footrule Distance from ten search terms with various removals as well as least-
squares best fit ofa×xb for each algorithm.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 175

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.02 0.04 0.06 0.08 0.1

S
pe

ar
m

an
F

oo
tr

ul
e

D
is

ta
nc

e

Link removal fraction

Topic-sensitive PageRank
S2ProT

Figure 11.9: Stability of some of the mentioned algorithms on the larger test
database when removing a certain amount of links, given as average Spearman
Footrule Distance from ten search terms with various removals as well as least-
squares best fit ofa×xb for each algorithm.

Finding, Extracting and Exploiting Structure in Text and Hypertext

176 11.6. EMPIRICAL RESULTS

11.6.3 Summary

In this section, we compared the perceived relevance and stability using actual
queries on actual datasets. Our results show that our algorithms compare well with
algorithms in use today. Specifically:

• In Section 11.6.1, we showed that the results given by S2ProT are good on
a typical larger dataset, by comparing it to PageRank and Topic-sensitive
PageRank.

• The stability of our algorithms was studied in Section 11.6.2, specifically:

– In Section 11.6.2.1, we showed that our algorithms are stable whenΘ is
diminished. This indicates that our algorithms can be used even if some
pages have not yet been indexed or have been incorrectly indexed.

– In Section 11.6.2.2, we showed that our algorithms give moreor less
the same result even if some of the links are removed from the datasets.
This indicates that our algorithms are useful even if some ofthe links
are missing from the database or some of the pages have not yetbeen
traversed.

This means that our algorithms will yield good results even when applied to
datasets containing small errors and omissions. As can be expected, the more
errors in the input, the less good the results will be.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 177

11.7 Discussion

11.7.1 Efficient Implementation

Using a value of one in the starting vector at the positions corresponding to the
elements ofΘ ensures that the resulting vector will always be non-zero, as this
value is always non-zero in the dominant eigenvector. Moreover, it is for S2ProT
usually very close to the direction of the dominant eigenvector, thus leading to even
faster convergence.

Another way of speeding up the calculation of ProT or S2ProT is to keep a list
of currently reached pagesR⊂ V, i.e. i ∈ R in iterationk indicates thatϖk

i > 0.
This means that only the important pages are used in the calculations, reducing the
number of elements to calculate to a bare minimum. The downside of doing this
is that a stride of larger than 1 will be used when going through the database, thus
increasing the likelihood of cache misses and possibly evenpage faults for large
databases. This can be diminished by using a storage order that as much as possible
is derived from the link structure. This is, however, not trivial to implement since
most webs have a lot of circular structures and back links.

Using S2ProT on a parallel computer or in a distributed environment is straight-
forward. The individual page ratings can be calculated at the same time, since they
do not depend on each other. The precalculated topic vectorscan also be stored
efficiently, as was shown in [26].

11.7.2 Hybrid S2ProT

Another version that we have tried is what was called theHybrid Superpositioned
Singleton Propagation of Topic-relevance(HyS2ProT) in [31]. It uses singletons as
in S2ProT (see Section 11.4.4), but each outgoing value is further decreased with
the number of outgoing links (i.e. the out-degree of a page) in the same manner as
in PageRank (hence the name). It turns out to be slightly morestable than S2ProT
when missing links are concerned and works with a matrix having a fixed dominant
eigenvalue of less than or equal to one, but is otherwise inferior to S2ProT.

Finding, Extracting and Exploiting Structure in Text and Hypertext

178 11.7. DISCUSSION

11.7.3 Future Work

We are currently developing a complete search system based on our algorithms.
The system is supposed to handle everything from the initialretrieval of the data to
the actual searching, using a user-friendly web interface.

A number of open questions remain:

• The exact decay value required to overcome the dominant eigenvector of the
original matrix when using ProT depends on both the underlying matrix and
the setΘ used (how many pages as well as their position in the dataset).
Further study regarding the most suitable choice ofξ would be interesting.

• The results and stability of ProT are promising, but using power iteration is
often too CPU intensive on even moderately large webs to be practically us-
able. Better methods could be explored, such as Arnoldi iteration [28]. This
problem does not exist when using S2ProT, as can be seen in Section 11.4.4.

• Our algorithms should be compared to some new development using spatial
link structures, such as [5].

• It is possible to have the same relevance value for many pagesin the result-
ing set when running these algorithms, thus resulting only in a partial order
among the pages. Some possible ways to discriminate among these pages
could be to use weighing according to the term frequency [27]or the corre-
sponding eigenvalue when carrying out the superpositioning. This was not a
major issue in our datasets, so this has not been pursued further at this time.

11.7.4 Conclusions

We have shown that topic-specific answer sets can be generated very quickly using
S2ProT (Section 11.4.4 and Section 11.5) and that the results are both relevant
and stable (Section 11.6). This indicates that our algorithms are very useful for
generating relevance values and rankings for web pages in a topic-sensitive manner.

ACKNOWLEDGMENTS

We thank the referees for their valuable comments that have led to numerous
improvements on the structure and content of the paper. We also thank all the
participants of the assessment.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 179

11.8 References
[1] A SWATH, D., AHMED, S. T., D’CUNHA, J., AND DAVULCU , H. Boosting Item Keyword

Search with Spreading Activation. InWeb Intelligence(2005), A. Skowron, R. Agrawal,
M. Luck, T. Yamaguchi, P. Morizet-Mahoudeaux, J. Liu, and N.Zhong, Eds., IEEE Computer
Society, pp. 704–707.

[2] BERMAN, A., AND PLEMMONS, R. J. Nonnegative Matrices in the Mathematical Sciences.
SIAM, Philadelphia, PA, 1994.

[3] BRIN, S., AND PAGE, L. The Anatomy of a Large-scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems 30, 1–7 (1998), 107–117.

[4] BUCKLEY, C., AND VOORHEES, E. M. Evaluating evaluation measure stability. InSIGIR
’00: Proceedings of the 23rd annual international ACM SIGIRconference on Research and
development in information retrieval(New York, NY, USA, 2000), ACM, pp. 33–40.

[5] CHAKRABARTI , S. Dynamic personalized pagerank in entity-relation graphs. InWWW ’07:
Proceedings of the 16th international conference on World Wide Web(New York, NY, USA,
2007), ACM, pp. 571–580.

[6] CHAKRABARTI , S., DOM, B. E., AND INDYK , P. Enhanced hypertext categorization using
hyperlinks. InProceedings of SIGMOD-98, ACM International Conference onManagement
of Data (Seattle, US, 1998), L. M. Haas and A. Tiwary, Eds., ACM Press, New York, US,
pp. 307–318.

[7] CRESTANI, F. Application of Spreading Activation Techniques in Information Retrieval.Artif.
Intell. Rev. 11, 6 (1997), 453–482.

[8] CRESTANI, F.,AND LEE, P. L. WebSCSA: Web Search by Constrained Spreading Activation.
In IEEE Forum on Research and Technology Advances in Digital Libraries (ADL ’99)(1999),
pp. 163–170.

[9] CVETKOVI Ć, D., ROWLINSON, P.,AND SIMI Ć, S. Eigenspaces of Graphs. Cambridge Uni-
versity Press, 1997.

[10] DAVISON, B. D. Topical locality in the web. InProceedings of the 23rd annual international
ACM SIGIR conference on Research and development in information retrieval(Athens, Greece,
2000), ACM Press, pp. 272–279.

[11] DWORK, C., KUMAR , R., NAOR, M., AND SIVAKUMAR , D. Rank aggregation methods for
the web. InWWW ’01: Proceedings of the 10th international conference on World Wide Web
(New York, NY, USA, 2001), ACM Press, pp. 613–622.

[12] GOLUB, G. H., AND VAN LOAN, C. F. Matrix computations (3rd ed.). Johns Hopkins
University Press, 1996.

[13] HAVELIWALA , T. H. Topic-sensitive PageRank. InProceedings of the eleventh international
conference on World Wide Web(2002), ACM Press, pp. 517–526.

[14] JEH, G., AND WIDOM , J. Scaling personalized web search. Tech. Rep. 2002-12, Stanford
University Database Group, 2002.

[15] JEH, G.,AND WIDOM , J. Scaling Personalized Web Search. InWWW ’03: Proceedings of the
12th international conference on World Wide Web(New York, NY, USA, 2003), ACM Press,
pp. 271–279.

[16] KLEINBERG, J. M. Authoritative sources in a hyperlinked environment.J. ACM 46, 5 (1999),
604–632.

Finding, Extracting and Exploiting Structure in Text and Hypertext

180 11.8. REFERENCES

[17] KUBICA , J., MOORE, A., COHN, D., AND SCHNEIDER, J. cGraph: A fast graph-based
method for link analysis and queries. InProceedings of the 2003 IJCAI Text-Mining & Link-
Analysis Workshop(Acapulco, Mexico, Aug. 9, 2003).

[18] LANGVILLE , A. N., AND MEYER, C. D. A Survey of Eigenvector Methods of Web Informa-
tion Retrieval.The SIAM Review 47, 1 (2005).

[19] M INC, H. Nonnegative matrices. John Wiley and Sons, New York, 1988.

[20] NG, A. Y., ZHENG, A. X., AND JORDAN, M. Link analysis, eigenvectors, and stability.
In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI-01)(2001).

[21] NG, A. Y., ZHENG, A. X., AND JORDAN, M. Stable algorithms for link analysis. InPro-
ceedings of the Twenty-fourth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval(Sept. 2001).

[22] NIE, L., DAVISON, B. D., AND QI , X. Topical link analysis for Web search. InSIGIR(2006),
E. N. Efthimiadis, S. T. Dumais, D. Hawking, and K. Järvelin,Eds., ACM, pp. 91–98.

[23] PAGE, L., BRIN, S., MOTWANI , R., AND WINOGRAD, T. The PageRank citation ranking:
Bringing order to the web. Tech. rep., Stanford Digital Library Technologies Project, 1998.

[24] PIROLLI , P., PITKOW, J. E.,AND RAO, R. Silk from a Sow’s Ear: Extracting Usable Struc-
tures from the Web. InCHI (1996), pp. 118–125.

[25] RAFIEI , D., AND MENDELZON, A. O. What is this page known for? computing Web page
reputations.Computer Networks 33, 1-6 (2000), 823–835.

[26] RICHARDSON, M., AND DOMINGOS, P. The Intelligent Surfer: Probabilistic Combination of
Link and Content Information in PageRank. InNIPS(2001), T. G. Dietterich, S. Becker, and
Z. Ghahramani, Eds., MIT Press, pp. 1441–1448.

[27] SALTON , G., AND YANG, C. S. On the specification of term values in automatic indexing.
Journal of Documentation 29, 4 (Dec. 1973), 351–372.

[28] SCOTT, J. A. An Arnoldi code for computing selected eigenvalues ofsparse, real, unsymmetric
matrices.ACM Trans. Math. Softw. 21, 4 (1995), 432–475.

[29] SPEARMAN, C. The proof and measurement of association between two things. American
Journal of Psychology 15(Jan. 1904), 72–101.

[30] SPEARMAN, C. ‘Footrule’ for measuring correlations.British Journal of Psychology 2(June
1906), 89–108.

[31] ÅGREN, O. Assessment of WWW-Based Ranking Systems for Smaller WebSites. INFO-
COMP Journal of Computer Science 5, 2 (June 2006), 45–55.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 181

11.A Theorems and Proofs

DEFINITION 11.9 (PROPER EIGENVECTOR) An eigenvector corresponding to a
non-zero eigenvalue is called a proper eigenvector.

THEOREM 11.1 (ADDING A NEW EIGENVALUE TO THE SPECTRA OF AMATRIX)
Adding a value to a diagonal element that does not belong to a proper eigenvector
of an adjacency matrix with zero diagonal results in the creation of a new eigen-
vector that contains at least that element. The corresponding eigenvalue will be as
large as the value added to the diagonal.

PROOF. That an elementa belongs to a cycle within the matrix (i.e. there is a
nontrivial path froma back toa) or on a direct path from such a cycle implies that
a belongs to a proper eigenvector, and vice versa [2, Chapter 2, Theorem 3.20].

An elementa that does not belong to a proper eigenvector has zero value for
all nonzero eigenvectors of the matrix. Adding the diagonalelement creates a new
local cycle that contains at leasta.

None of the other eigenvalues are affected and the sum of the eigenvalues is
equal to the trace of the matrix, indicating that the eigenvalue corresponding to the
newly added eigenvector is equal to the value added in the diagonal.

THEOREM 11.2 (INCREASING ONEEIGENVALUE OF A MATRIX) Adding a value
to a diagonal element that belongs to a proper eigenvector ofan adjacency matrix
with zero diagonal results in the increase of the nonnegative eigenvalue of that
eigenvector of at least the added value.

PROOF. There is no connection between components of a graph in the correspond-
ing matrix and updates of the diagonal of the matrix do not change this, so we can
consider only this component without loss of generality.

The result follows from the fact that only one eigenvalue canbe increased by
the addition and that∑i∈n λi(A) = tr(A). The corresponding eigenvector is non-
negative [19, Chapter 1, Theorem 4.2], and this is the eigenvector/eigenvalue pair
found when using the power method, if the starting vector is nonnegative and
nonzero.

CONJECTURE11.1 (INCREASING MULTIPLE EIGENVECTORS) Adding multiple
values in the diagonal of a nonnegative matrixA increases the eigenvalue of the cor-
responding component (or nonnegative eigenvector of that principal submatrix [9,
Theorem 2.1.5]) that each element belongs to.

Worst case scenario is that multiple eigenvalues are increased to the same size.
This yields a spectrum with dominating real eigenvalues of multiplicity higher than

Finding, Extracting and Exploiting Structure in Text and Hypertext

182 11.A. THEOREMS AND PROOFS

one, with corresponding nonnegative eigenvectors. The result of this is that the
power method will not converge at all. This situation is fortunately not that com-
mon, but should not be ignored when using ProT.

THEOREM 11.3 (RATE OF CONVERGENCE OFS2PROT) The rate of convergence
of S2ProT depends onλ1/ξ (as long asξ > λ1). The smaller this number the faster
the convergence.

PROOF. Let A be the adjacency matrixA (with zeroes in the diagonal) divided by
ξ > λ1. This matrix has a spectrum of

Λ(A) =
1
ξ

Λ(A) = {λ1(A)/ξ,λ2(A)/ξ, . . .}.

Let S(i) be a singleton matrix with a spectrum ofΛ(S(i)) = {1,0, . . . ,0}.
The composition of these two matrices results in the matrixÂ(i) = A+ S(i),

which is formed by ProT for each call from the definition of S2ProT. There are two
distinct possibilities for this matrix:

1. If the pagei is not found in any of the proper eigenvectors ofA (and thusA),
thenΛ(Â(i)) = {1,λ1(A)/ξ, . . .} as per Theorem 11.1 on the preceding page.

2. In all other casesλ1(Â(i)) > 1 andλ2(Â(i)) 6 λ1(A)/ξ, since the addition of
S(i) will increase the strength of one of the eigenvalues ofA that it coincides
with (see Theorem 11.2 on the previous page). All other eigenvalues of this
component might be adjusted (and possibly diminished) to still be linearly
independent of this new dominant eigenvector.

Recall that the rate of convergence of the power method depends on the relative
size of the two largest eigenvalues, i.e. the smaller|λ2/λ1|, the faster the conver-
gence [12]. ForÂ(i) this corresponds to at mostλ1(A)/ξ

1 = λ1(A)/ξ. This factor
corresponds to the relative diminishing effect of applyingeach power iteration on
all eigenvalues exceptλ1(Â(i)). Thus: the largerξ is, the faster the convergence.

Ola Ågren

S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance 183

THEOREM 11.4 (MAXIMUM NUMBER OF ITERATIONS REQUIRED FORS2PROT)
Given a pagei ∈V, a starting vector that is not orthogonal to the dominant eigen-
vector of the matrixπ1(Â) (formed by the adjacency matrixAusingÂ= A/ξ+S(i)),
and a maximum cut-off ofε, ProT(Â) yields a stable result within

Imax=
log(ε)

log(λ1(A))− log(ξ)
iterations.

PROOF. The relative strength of an eigenvectorπi(Â) (where i > 1) will be de-
creased with a factor ofλi(Â)/λ1(Â) relative to the strength ofπ1(Â) in each itera-
tion of the power method. Afterk iterations this means that the relative strength of
πi(Â) is

s=

∣

∣

∣

∣

λi(Â)

λ1(Â)

∣

∣

∣

∣

k

.

(11.9)

We are interested in the number of iterations required to letthe relative strength
of π2(Â) drops below the cut-off (ε), and this happens when

ε =

∣

∣

∣

∣

λ2(Â)

λ1(Â)

∣

∣

∣

∣

Imax

.

(11.10)

We have already established thatλ2(Â)

λ1(Â)
6 λ1(A)/ξ, and this together with Eq. (11.10)

yields

ε = (λ1(A)/ξ)Imax (11.11)

log(ε) = Imax(log(λ1(A))− log(ξ)) (11.12)

Imax=
log(ε)

log(λ1(A))− log(ξ)
(11.13)

Q.E.D.

Finding, Extracting and Exploiting Structure in Text and Hypertext

184 11.B. SEARCH TERMS FOR THE ASSESSMENT

11.B Search Terms for the Assessment

Search terms that received no assessments are given initalic.

Danish: Boghandler, musikvidenskab, rigsarkivet,uddannelse,and under-
visningsministeriet.

English: Helicopter, infection, juboa, railway & station, swegrid, table & tennis,
and trout & fish.

Finnish: Aineisto, elämä, ihminen, jakelu, korkeakoulu, osaaminen, tietoa,
tietokone, toimitusjohtaja, and vastuu.

Icelandic: Áhersla, bókasafn,bókmenntir,greinar,háskóla,heilbrigði, kennara,
landafræði, pappír, smiði,stærðfræði, andtölva.

Norwegian: Akershus, datamaskin, fartsprøve, forbrukerombudet, karrieresenter,
kringkastingssjef, and nasjonalbiblioteket.

Swedish: Ågren, ansökningshandlingar, arkitekturmuseet, arkivcentrum,
centrumbildningar, civilingenjör, datatermgruppen, dataveten-
skap, doktorandhandbok, energimyndigheten, fakultetsnämnden,
forskningsdatabas, forskningsområden, genusforskning,geoveten-
skap, grundskolor, hemvärnet, humlab, idéskolor, idrottshögskolan,
informationsteknik, källkritik, kammarkollegiet, lammstek, styr-
mekanism, kommunikationsteknik, länsbiblioteket, lärarutbildning,
marklära, matematikdidaktik, miljöanalys, minoritetsspråk, natur-
vetenskaplig, överprövning, punktskriftsböcker, rymdfysik, sök-
motoroptimering, and språkverkstaden.

Nordish: Billedkunst, Kaspersen, kulturstudier, science& fiction, Sturlasson,
and universitet.

aThis is the nick name of Jürgen Börstler, an associate professor and director of studies at the
Department of Computing Science at Umeå University, Sweden.

Ola Ågren

A

185

186

Ola Ågren

Users’ Guide to CHI C 187

Appendix A

Users’ Guide to CHI C

Abstract

This appendix outlines how to use programs in theCHIC system, as well as
input, output and data base format used. For information about the algo-
rithms used byCHIC, see [3, Paper II] and [5, Paper III]. It uses sets of
natural numbers in the same manner as described in [4].

Keywords: CHIC, data base, inverted index, format

Finding, Extracting and Exploiting Structure in Text and Hypertext

188 A.1. INTRODUCTION

A.1 Introduction

The Concept HIerarchy Constructor (CHIC) is a system for automatic generation
of concept hierarchies from large discrete databases. The system contains two
programs: One that takes an input file of a specific format and creates a database,
and one that uses the information in the database to create the hierarchies. These
programs are calledwords andchic.

A.2 Using thewords Program

The program for data import is calledwords. This program does not use any
command line parameters. It reads each input line from standard input and adds it
to the database.

A.2.1 Input Format

Each line of the input data corresponds to one record in the database. There are
three different fields on each line:

Record name — a number of characters, may not contain the sepa-
rator.

Separator — marks the end of the record and start of the list of key-
words. Default value forwords is ’:’. Changes must be done in
the file calledwords.l before recompilation of the program.

List of keywords — Each keyword contains a number of characters
or numbers, but never a space.

A typical example of such input data is given in Figure A.1 on the facing page.

A.2.2 Creating and Populating a Data Base

Make sure that the current working directory is where the newdata base should
have its root, usingcd to get to the right place in the file system. Create the data
base directory by executing the command

mkdir db

If the information in Figure A.1 on the next page was stored inthe file called
“example.in” it could be added to the database using the command

words < example.in

The result should be a database that matches what is described in Section A.4.

Ola Ågren

U
sers’G

uide
to

C
H

IC
1

8
9

Makefile: make commands text
clean: Bourne shell script text
combinator: ELF 32-bit MSB executable, SPARC, version 1, dynamically linked, not stripped
db: directory
fest.txt: International language text
fil.aux: LaTeX auxiliary file
fil.dot: ASCII text
fil.eps: PostScript document text conforming at level 2.0
fil.log: TeX transcript text
fil.tex: LaTeX 2e document text
input: English text
lex.yy.c: C program text
main.c: C program text
main.o: ELF 32-bit MSB relocatable, SPARC, version 1, not stripped
words.l: lex description text
words.o: ELF 32-bit MSB relocatable, SPARC, version 1, not stripped

F
igure

A
.1:

A
shortexam

ple
ofdiscrete

m
eta-data,in

this
ca

se
outputofthe

“file”
com

m
and.

F
inding,E

xtracting
and

E
xploiting

S
tructure

in
Textand

H
y

pertext

190 A.3. USING THE CHIC PROGRAM

A.2.3 Known Bugs

The program can unfortunately not add more information to anexisting database,
it must currently start from a clean state. This will probably be fixed in a later
version.

A.3 Using thechic Program

CHiC is a terminal based program that implements all algorithms given in [5]. It
reads a database with the layout and format given in Section A.4.

A.3.1 Usage

chic [-bdfltx] [-c <cut off depth>] [-C <cut off>] [-o <filename>]

The command line parameters have the following meaning:

-b — block order, pick the keyword with as the highest number of
neighbours as possible among the vectors.

-d — turn on debug output. Warning, can be very verbose.

-f — filling, try to reuse vectors from earlier dimensions if possible.

-l — generate a lattice, rather than a normal strict hierarchy.

-t — timed execution of each step, mostly for debugging and testing
purposes.

-x — generatedot format output, see Section A.3.2 for a description
of the format.

-c <cut off depth> — cut everything beneath a certain depth from
the hierarchy/lattice.

-C <cut off> — remove all keywords that appears in less than<cut
off> % of the records in the database.

-o <filename> — redirect the output to the file given as argument.

The source code forCHiC is written in such a way that it should be easy to add
routines for other databases and output formats.

Ola Ågren

Users’ Guide to CHI C 191

A.3.2 Dot Format (as Generated byCHiC)

The standard output format ofCHiC is the directed graph input format used bydot
anddotty [2, 1].

The generated output file will contain some extraneous code lines as soon as
the vectors cannot fit in one dimension. These lines are very easy to remove, de-
pending on whether information is required for the entire graph as a whole or each
dimension on its own.

A.3.2.1 Basics

The top level graph of the dot format isdigraph name{ statement-list}.
The important statements include:

n0 [name0=val0,name1=val1, . . .]; Adds the node n0 (unless already
created) and sets the its attributes according to the optional list.

n0 -> n1 -> . . . -> nn [name0=val0,name1=val1,. . .] ; Creates edges
between nodes n0, n1, . . . nn and sets their attributes according to
the optional list. Creates nodes as necessary.

label=text sets the label of a node to the text field given, where text
may include escaped newlines\n, \l, or \r for centre, left, and
right justified lines. This is the only attribute generated by CHiC.

Comments are in either/*C-style*/ or in //C++-style.
For more information aboutdot anddotty input format see either [2, 1] or the

manual page fordot.

A.3.2.2 CHiC Dot Output Specifics

The number used for each node is the decimal representation of the corresponding
keyword within the database, see Section A.4.

The extraneous lines generated byCHiC contain specific comments to simplify
usage of the output file.

If a complete graph with all dimension in one picture is wanted, then remove
all lines in the output file that contain the comment/* INTERNAL */.

If a specific dimensionnn is required, then remove all lines before the comment
line containing/* Start Dimensionnn */ and after/* Stop Dimensionnn */.

Both options yield validdot input files.

Finding, Extracting and Exploiting Structure in Text and Hypertext

192 A.4. CONTENTS OF EACH DATA BASE FILE

A.4 Contents of Each Data Base File

The database is stored in a directory calleddb. This directory contains a number of
files when the data has been added to the database. The examples given in the text
below are when the input as given in Figure A.1 on page 189 has been processed.

DB This file contains the keywords in the order of their first appearance in the
input file, one per line. The first keyword is the one enumerated with 1024,
the second 1025, etc. See Figure A.2 on the next page for an example.

names The names of each record in the input file is stored in this file,one line per
record. See Figure A.3 on the facing page.

stdin This file contains the relationships of the database, one line of enumerated
numbers per record. Between each hexadecimal number of the line is a space
character, and the numbers are in the order of the keywords asgiven. See
Figure A.4 on page 194.

400 upwards Each file corresponds to the inverted indices for the keywordwith
that enumerated number, i.e., those given in DB. Some of the inverted indices
can be seen in Figure A.5 on page 194.

The information in these files can be accumulated into a adjacency matrix,
i.e. Table A.1 on page 195. This is however not feasible when the data base size in-
creases, since the size of the table is number of records times number of keywords.
Test data base three described in Table 8.1 on page 97 in PaperIII [5] would need
a table with 1,841,378,616 squares in it, but very sparsely filled in.

A.5 An Example Data Base

We will be using the same example as the one found in [3, 5], i.e. Figure A.1 on
page 189.

A.5.1 Creating a Data Base

Given a database created by following the steps in Section A.2.2 we will find that
each keyword in the input file is assigned an enumerated valuestarting with 1024
(hexadecimal 400). The reason for starting the enumerationat 1024 was to retain
space for single characters and important words.

Ola Ågren

Users’ Guide to CHI C 193

A.5.2 Content of the Data Base

The contents of each file in the data base will be:

DB As in Figure A.2, but please remember that it will in reality be a file with 39
lines with one word per line.

names As in Figure A.3, with one record name per line.

stdin Exactly as in Figure A.4 on the following page.

400–426Figure A.5 on the next page contains some of the inverted indices. It
would take up too much space to add all of them to this document.

Table A.1 on page 195 contains a adjacency matrix for this database.

make
commands
text
bourne
shell
script
elf
32-bit
msb
executable

sparc
version
1
dynamically
linked
not
stripped
directory
international
language

latex
auxiliary
file
ascii
postscript
document
conforming
at
level
2.0

tex
transcript
2e
english
c
program
relocatable
lex
description

Figure A.2: Keyword file (db/DB).

Makefile
clean
combinator
db

fest.txt
fil.aux
fil.dot
fil.eps

fil.log
fil.tex
input
lex.yy.c

main.c
main.o
words.l
words.o

Figure A.3: Name file (db/names).

Finding, Extracting and Exploiting Structure in Text and Hypertext

194 A.5. AN EXAMPLE DATA BASE

400 401 402
403 404 405 402
406 407 408 409 40a 40b 40c 40d 40e 40f 410
411
412 413 402
414 415 416
417 402
418 419 402 41a 41b 41c 41d
41e 41f 402
414 420 419 402
421 402
422 423 402
422 423 402
406 407 408 424 40a 40b 40c 40f 410
425 426 402
406 407 408 424 40a 40b 40c 40f 410

Figure A.4: Relation file (db/stdin).

1
2
5
7
8
9
a
b
c
d
f

(a) text (db/402)

1
(b) make (db/400)

3
(c) executable (db/409)

3
e
10

(d) elf (db/406)

3
e
10

(e) msb (db/408)

f
(f) lex (db/425)

6
a

(g) latex (db/414)

Figure A.5: Sample inverted indices.

Ola Ågren

Users’ Guide to CHI C 195

Table A.1: Adjacency matrix between rows in database and keywords. Each row
can be seen as the inverted file for that keyword and each column represents each
file record in sorted order.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
make ×
commands ×
text × × × × × × × × × × ×
bourne ×
shell ×
script ×
elf × × ×
32-bit × × ×
msb × × ×
executable ×
sparc × × ×
version × × ×
1 × × ×
dynamically ×
linked ×
not × × ×
stripped × × ×
directory ×
international ×
language ×
latex × ×
auxiliary ×
file ×
ascii ×
postscript ×
document × ×
conforming ×
at ×
level ×
2.0 ×
tex ×
transcript ×
2e ×
english ×
c × ×
program × ×
relocatable × ×
lex ×
description ×

Finding, Extracting and Exploiting Structure in Text and Hypertext

196 A.6. REFERENCES

A.6 References
[1] GANSNER, E. R.,AND NORTH, S. C. An open graph visualization system and its applications

to software engineering.Software: Practice and Experience 30, 11 (2000).

[2] NORTH, S. C.,AND KOUTSOFIOS, E. Applications of Graph Visualization. InGraphics Inter-
face ’94(Banff, Alberta, Canada, May 1994), pp. 235–245.

[3] ÅGREN, O. Automatic Generation of Concept Hierarchies for a Discrete Data Mining System.
In Proceedings of the International Conference on Information and Knowledge Engineering
(IKE ’02) (Las Vegas, Nevada, USA, June 24-27, 2002), pp. 287–293. Paper II on page 59.

[4] ÅGREN, O. BITSET: Implementing Sets of Natural Numbers Using Packed Bits. Tech. rep.,
Umeå University, Umeå, Sweden, Oct. 2002. UMINF 02.10, ISSN0348-0542.

[5] ÅGREN, O. CHIC: A Fast Concept HIerarchy Constructor for Discrete or Mixed Mode
Databases. InProceedings of the Fifteenth International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE’03)(San Francisco, California, USA, July 1-3, 2003),
pp. 250–258. Paper III on page 77.

Ola Ågren

INDEX 197

Index
<k, 64, 66, 68,83, 87, 89, 94
=k, 64, 65,83, 86
Λ, 147, 152, 158, 182
Ω, 111, 112, 113
Θ, 145, 146, 148, 152–155, 157–159,

163, 165, 171, 172, 174, 176–178
ε, 147, 148, 153, 159, 163
λ, 147, 149, 152, 155, 157, 159, 164,

181–183,see alsoeigenvalue
6, 110
µ, 18,150, 159–163, 165, 167
π, 18,147, see alsoeigenvector
ϖ, 152, 153, 177
∧, 110, 111
ξ, 23, 24, 144,146, 152–160, 162–165,

171, 172, 178, 182, 183
size of, 146, 154–157

0, 110
1, 110

adjacency matrix, 17, 18, 20, 21, 24,
147, 149, 152–157, 161, 181–183,
192, 193, 195

AlgExt, 43–57
AlgExt extraction algorithm,55
algorithm

AlgExt, 55, 56
CHIC, 84–90
extractable,45, 46
HyS2ProT, 123,177
ProT, 23, 123,153
S2ProT, 123,158

ANOVA, 133, 169, 170
ANSI C, 46, 48, 53, 62, 80
approximation, 98
Apriori, 8, 9
association rule,7, 8

discovery,6, 7
authority,20, 21, 121, 151

awk script, 201

backtrack approach, 100
best fit, 100
BIBTEX, 201
bounded semilattice,110
Bourne shell script, 48, 53, 201
bucket,83, 85–87, 91, 92, 100

c-web,seecnoweb
call graph, 54
cardinality, 85, 88, 91, 100
cextract, 45, 48, 51, 54
cflow, 48
cGraph, 150
chain,110
CHIC, 79, 80–101, 188–196
classification,6
CLEVER, 150
clustering, 6,7
cnoweb, 12, 45, 51
ColourVectorNodes,67, 71,88, 96
comment

ASCII, 49
file, 46
function,46
global,46
LATEX, 50
strategic,46
tactical,46

concept hierarchies, 10,62, 61–74,80,
79–101

concept lattices, 10, 90
conceptual distance,51
confidence,8
confidence interval, 124, 127–129, 132,

137, 138, 169, 170
connection matrix,seeadjacency ma-

trix
cut-off, 147,152, 153, 163, 164, 167

Finding, Extracting and Exploiting Structure in Text and Hypertext

198 INDEX

damping factor, 150
data

cube,11
discrete,81
enumerated, 81
flow system, monotone,111
inverted file,65, 85, 91, 92
keyword, 81
mining,5, 6–14, 62, 67, 71–74, 80,
81, 89, 96, 99–101

semi-structured, 2
structured, 1
unstructured, 1
warehouse, 5, 10

decay factor, 23, 146,152, 154, 156,
159–164, 172, 178

dimension, 71, 88, 91, 94, 100
filling, 88

discrete data,81
dot, 190, 191, 201
dvips, 201

edge, 89, 91, 111
eigenvalue, 17–19, 21, 23, 24, 26, 147,

150, 153–155, 157, 178, 181, 182,
see alsoλ

dominant, 146, 147, 149, 155, 161,
172, 177

eigenvector, 147, 150, 154, 155, 157–
159, 181–183,see alsoπ

dominant, 18, 122, 155, 156, 177,
178

proper,181
element

one,110
zero,110

execution time, 72, 97
extractable algorithm,45, 46

facet, 88
family, 64, 65, 68, 69, 71,83, 87, 94

graph, 93
file comment,46
FindAndFoldFamilies,65, 71,86, 96
FindSubsets,66, 71,87, 96

FindVectorNodes,66, 71,87, 96
folded,64, 68,83, 94
frequency, 8
function

comment,46
total,110, 111–113

general iterative algorithm, 111
GenerateDimensions,67, 71, 96

Hierarchy,89
Lattice,90

global comment,46
gnuplot, 201
Google, 122
graph, 89, 111

family, 93
greedy algorithm, 88
groff, 45

heuristic approach, 88, 100
HITS, 20, 120, 145, 150,151, 153
HTML, 45, 114
hub,20, 21, 121, 151
Hybrid Superpositioned Singleton Prop-

agation of Topic-relevance,seeHyS2ProT
hyper-link, 2, 17, 22, 121, 122, 136,

147, 149, 150, 152
HyS2ProT,123, 177

implication, 8
index, 65
information extraction,7
intelligent surfer, 150
Internet, 122
intersection, 108, 109, 112
inverted

data file,65, 68,85, 91, 92
indices, 192–194

item,8
itemset,8, 9

Javadoc, 12, 45, 51

keyword, 62, 64, 65, 76, 83, 86–89, 91,
94, 97, 192

selection,88

Ola Ågren

INDEX 199

keyword equivalent,64, 65,83, 91
Kolmogorov-Smirnov,124, 127, 130, 132,

137, 139

label bureau, 29,107
LATEX, 45, 49, 50, 201
lattice, 73, 74, 100, 101
learning

supervised, 10, 11
unsupervised,7, 8, 9

literate programming, 45, 51

make, 201
makeindex, 201
matrix

adjacency, 17, 18, 20, 21, 24, 147,
149, 152–157, 161, 181–183, 192,
193, 195

singleton,158, 182
max, 153
MDS, 111, 112, 113
meet,see∧
meta-data, 1, 2,2, 3, 5, 13, 22, 29, 106–

109, 111–114
repository, 107

mining
data,5, 6–14, 62, 67, 71–74, 80,
81, 89, 96, 99–101

descriptive,6
predictive,6

web, 16
web links, 17

Modified Iterative Algorithm,113
monotone data flow system,111

n-value,148, 171, 172
node, 89, 111
Non-Pervasive Data Handler,112
normalisation, 152, 153
nroff, 45

OLAP cube,seedata cube
one element,110
order %,148, 173
ordx, 85, 86

PageRank,18, 122, 145,150
Personalized, 19
Topic-sensitive, 19, 145, 146, 150,
160–162, 165–167, 169, 171–174,
176

path
web,107

peak value,155, 157, 164
perceived relevance, 166
Perl shell script, 201
Personalized

PageRank, 19
pervasive, 108, 109, 111, 112, 114
PICS,107, 106–107
Platform for Internet Content Selection,

seePICS
POSIX, 48, 53
power method, 18
precision,166
prediction,6
printComment,56
Propagation of Topic-relevance,seeProT
proper eigenvector,181
ProT,23, 123, 153, 152–178
pruning, 66, 87
ps2pdf, 201

R-Prec, 148
ranking, 145, 146,147, 148, 149, 151,

154, 167, 169, 178
order,148, 159, 173, 174

rating, 147, 148, 150, 158–160, 162–
167, 177

ReadInvertedFiles,65, 71,85, 96
recall,166
record, 62, 64, 83, 97
recursion,seerecursion
regression,6
relevance

perceived, 166
repository, 107
reusing vectors, 88

S2ProT,123, 158, 159–178
segmentation,7

Finding, Extracting and Exploiting Structure in Text and Hypertext

200 INDEX

semi-structured,2, 114
semilattice,110, 111

bounded,110
sequence discovery,6
set, 110
SFD,seeSpearman footrule distance
shell script

awk, 201
Bourne, 48, 53, 201
Perl, 201

similarity, 7
singleton matrix,158, 182
sorting

topological, 67, 71, 73, 89, 94, 100
Spearman footrule distance,148, 173–

175
spreading activation, 152
strategic comment,46
structured data, 1
subsets, 97
subsumed,64, 83, 87, 99, 100
subsumption,64, 68, 69,83, 87, 91, 93,

94, 99, 100
summarisation,6
Superpositioned Singleton Propagation

of Topic-relevance,seeS2ProT
supervised learning, 10, 11
support,8

tactical comment,46
TEX, 45, 201
time series analysis,6
topic,145

drift, 21
Topic-sensitive PageRank, 19, 145, 146,

150, 160–162, 165–167, 169, 171–
174, 176

topological sorting, 67, 71, 73, 89, 94,
100

total function,110, 111–113
total-value,148, 171, 172
transaction,8
transitive, 99, 100
troff, 45
trust level, 108, 109, 112, 113

Uniform Resource Identifier,seeURI
UNIX, 48, 53, 72, 99, 201
unstructured data, 1
unsupervised learning,7, 8, 9
URI, 107

variance, 173
vector,64, 66, 67, 71, 73,83, 87, 89,

91, 94, 97, 100
reusing, 88

warehouse, 107
web

link mining, 17
mining, 16, 114
pages, 16, 17, 106, 107, 122, 150

static, 114
Web source document, 45

xfig, 201

zero element,110

Ola Ågren

Colophon 201

Colophon
Typesetting of this thesis was done using the LATEX2ε macro system by Leslie Lam-
port on top of the TEX formatting engine by Donald E. Knuth. Times New Roman is
the main font face found in the thesis, with the rare exceptions of some characters
in equations and small/rotated pictures (where Computer Modern and Helvetica
have been used, respectively).

A total of 28 LATEX macro packages were directly imported. In reality, this
number increases to 43 style files, seven definition files and four configuration files
because of internal transitivity. Despite all these macro files, I made 47 definitions,
created three new and reconfigured three old environments, created 18 new com-
mands and reconfigured 15 others. I did, however, have the help of such wonderful
tools asaspell, BIBTEX andmakeindex.

The figures were created usingdot from theGraphVizcollection of tools (for
directed graphs),gnuplot (for all plottable graphs), orxfig. I used a ton of small
shell scripts written in Bourne, awk or Perl together with larger programs in either
MATLAB /Octave or R for calculations and statistics. The software of A LGEXT,
CHIC and PROT are, however, written in C. All of this text as well as all programs
have been written usingvi(m), still the fastest and best text editor out there.

All of this was of course controlled by a large number of makefiles. In fact,
make had to first run LATEX, then BIBTEX eight1 times, then LATEX, then make-
index, then LATEX again, and, finally,dvips whenever I wanted a new PostScript
version of the thesis. This file was then converted to PDF using ps2pdf when
required.

One thing has not changed, while at the same time changing rapidly, over the
years; all of the work except the final submission of Paper VI were done on a
computer using some sort of UNIX or UNIX-clone. The specificshave changed
considerably, since I’ve had the pleasure of using SGI Irix,Sun Solaris, and GNU
Linux (e.g. Debian and Ubuntu). They have all worked for me, rather than against
me.

1BIBTEX runs once on each paper, once for the front matter and once for the Appendix.

Finding, Extracting and Exploiting Structure in Text and Hypertext

	Introduction
	Research Questions

	Data Mining
	Information Extraction
	Clustering
	Mining for Association Rules
	Thesis Contributions

	Web Search Engines
	Web Mining
	Web Link Mining
	Thesis Contributions
	Summary

	Final Remarks
	Bibliography
	Paper I
	AlgExt --- an Algorithm Extractor for C Programs
	Introduction
	Contents of a C File
	Source Code Requirements
	Implementation
	Examples
	Discussion
	References
	Users' Guide
	System Documentation
	Comment Comparison vis-à-vis AlgExt

	Paper II
	Automatic Generation of Concept Hierarchies for…
	Introduction
	Definitions
	The Algorithm
	Example of Execution
	Algorithm Analysis
	Related Work
	Discussion
	References
	All Results from Step 1

	Paper III
	CHiC: A Fast Concept Hierarchy Constructor for…
	Introduction
	Background
	Definitions
	The Algorithm
	Example of Execution
	Algorithm Analysis
	Related Work
	Discussion
	Experiences
	References

	Paper IV
	Propagation of Meta Data over the World Wide Web
	Introduction
	Propagation Algorithm
	Definitions
	A Monotone Data Flow System on Meta Data
	Related Work
	Discussion
	References

	Paper V
	Assessment of WWW-Based Ranking Systems for Smaller Web Sites
	Introduction
	Methods and Materials
	Results
	Discussion and Conclusions
	Acknowledgements
	References
	Test Database
	Keywords
	Confidence Intervals per Keyword
	Kolmogorov-Smirnov Results

	Paper VI
	S2ProT: Rank Allocation by Superpositioned Propagation of Topic-Relevance
	Introduction
	Preliminaries
	Related Works
	Propagation of Topic-relevance
	Comparison of Algorithm Behaviours
	Empirical Results
	Discussion

	Acknowledgments
	References
	Theorems and Proofs
	Search Terms for the Assessment

	Appendices
	Users' Guide to CHiC
	Introduction
	Using the words Program
	Using the chic Program
	Contents of Each Data Base File
	An Example Data Base
	References

	Index
	Colophon

