
BLOCKED AND SCALABLE MATRIX COMPUTATIONS –
PACKED CHOLESKY, IN-PLACE TRANSPOSITION,
AND TWO-SIDED TRANSFORMATIONS

Lars Karlsson

LICENTIATE THESIS, APRIL 2009

DEPARTMENT OF COMPUTING SCIENCE
SE-901 87 UMEÅ

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

larsk@cs.umu.se

Copyright c© 2009 by Lars Karlsson
Except Paper I, c© Springer-Verlag, 2007

Paper II, c© ACM, Inc., 2009

ISBN 978-91-7264-788-6
ISSN 0348-0542
UMINF 09.11

Printed by Print & Media, Umeå University, 2009

Abstract

Dense linear algebra algorithms are often regular and have a high arithmetic intensity.
This allows them to achieve performance close to the peak performance even on the
largest computing systems in the world. Factors that affect the performance of an im-
plementation include the presence of a deep memory hierarchy, pipelines, SIMD units,
and multiple processing cores. On a larger scale, several processors and memories
are physically distributed and communicates over a high speed network. Techniques
such as blocking, vectorization, and asynchronous communication are used in state-
of-the-art implementations. One aim of the research in this area is to develop portable
software libraries with high performance implementations of scalable algorithms.

High level linear algebra algorithms can be built on top of a relatively small set of
fundamental operations, such as matrix multiplication, that perform the majority of the
floating point operations. These operations, once tuned to a particular machine, pro-
vide portable performance to the higher level algorithms. This observation led to the
standardization of an interface to three levels of operations known as the Basic Linear
Algebra Subprograms (BLAS) and eventually to software libraries such as LAPACK
and ScaLAPACK.

One topic studied in this thesis is alternative schemes for packed storage of sym-
metric or triangular matrices in a distributed memory environment. In particular, sev-
eral implementations of the Cholesky factorization of dense matrices were designed
and evaluated. Related to this topic is how to convert a matrix stored in a canoni-
cal row- or column-major storage format to a block format. A prototype library for
conversion based on in-place matrix transposition is developed in connection with an
evaluation of several known algorithms for the closely connected problem of in-place
transposition.

This thesis also investigates ways of moving beyond the limitations of extracting
parallelism at the BLAS levels of abstraction. One of our Cholesky algorithms inter-
leaves computation with a complex communication algorithm and thereby eliminates
the distinct boundaries between computation and communication that is common in
synchronous parallel algorithms.

Two-sided transformations offer further challenges due to their often much smaller
degree of concurrency. This thesis explores how priority-based dynamic scheduling on
each node of a distributed memory system can be used to achieve a faster execution
by eliminating synchronization overhead. The advantages of being able to express
diverse and complex schedules within a sequential node program are clear, but the
inherent overheads and limitations are topics for further research.

iii

iv

Sammanfattning

Algoritmer inom tät linjär algebra är ofta reguljära med en hög aritmetisk inten-
sitet. Detta medger en prestandanivå som ligger mycket nära den maximala prestan-
dan även på världens största datorsystem. Faktorer som påverkar en implementa-
tions prestanda innefattar djupa minneshierarkier, pipelines, SIMD-enheter, och flera
beräkningskärnor. I större skala är flera processorer och minnen ihopkopplade med
ett högpresterande nätverk. Programmeringstekniker såsom blockning, vektoriser-
ing, och asynkron kommunikation används i moderna implementationer. Ett mål
med forskningen inom detta område är att utveckla portabla programbibliotek med
högpresterande implementationer av skalbara algoritmer.

Linjär algebra-algoritmer kan byggas utifrån en relativt liten mängd grundläggande
operationer, såsom matrismultiplikation, som utför majoriteten av flyttalsoperationerna.
Dessa enklare operationer ger portabel prestanda åt komplexa algoritmer när de väl
har optimerats för ett specifikt datorsystem. Denna observation ledde till standardis-
eringen av ett gränssnitt känt som Basic Linear Algebra Subprograms (BLAS) och så
småningom till mjukvarubibliotek som LAPACK och ScaLAPACK.

En frågeställning som studeras i denna uppsats är alternativa packade lagringsfor-
mat för symmetriska eller triangulära matriser i en miljö med distribuerat minne. Flera
implementationer av Cholesky-faktorisering av täta matriser designades och utvärder-
ades. En relaterad frågeställning är hur konvertering in situ mellan kanoniska lagrings-
format och block-format kan implementeras. Ett programbibliotek för sådan konvert-
ering har utvecklats. Det baseras på kända algoritmer för matristransponering in situ.

Ytterligare ett ämne som studeras i denna uppsats är olika sätt att överbrygga de
begränsningar som uppstår när parallellitet uttrycks på BLAS-nivå. En av Cholesky-
algoritmerna väver samman beräkningar med en komplex kommunikationsalgoritm
och på så sätt elimineras den tydliga gräns mellan kommunikation och beräkningar
som är vanlig i synkrona parallella algoritmer.

Två-sidiga transformationer ställer större krav på schemaläggning av deluppgifter
på grund av en låg grad av parallellitet. Vi har studerat hur dynamisk prioritetsbaserad
schemaläggning på varje nod i ett system med distribuerat minne kan användas för
att ge snabbare exekvering genom att eliminera synkroniseringskostnader. Fördelarna
med att uttrycka vitt skilda och komplexa scheman från ett sekventiellt nodprogram
är tydliga, men de inneboende kostnader och begränsningar som metoden innebär är
föremål för framtida forskning.

v

vi

Preface

This Licentiate Thesis consists of an introduction and the following four papers.

Paper I F. G. Gustavson, L. Karlsson, and B. Kågström. Three Algorithms for
Cholesky Factorization on Distributed Memory using Packed Storage1.
In Applied Parallel Computing: State of the Art in Scientific Computing,
Lecture Notes in Computer Science, LNCS4699, pp. 550-559. Springer-
Verlag, 2007.

Paper II F. G. Gustavson, L. Karlsson, and B. Kågström. Distributed SBP Cholesky
Factorization Algorithms with Near-Optimal Scheduling2. ACM Transac-
tions on Mathematical Software, Vol. 36, No. 2, 2009.

Paper III L. Karlsson. Blocked In-Place Transposition with Application to Storage
Format Conversion. UMINF 09.01, Department of Computing Science,
Umeå University, Sweden, 2009.

Paper IV L. Karlsson and B. Kågström. A Framework for Dynamic Node-Scheduling
of Two-Sided Blocked Matrix Computations. In Proceedings of PARA’08,
accepted for publication, 2008.

1 Reprinted by permission of Springer-Verlag.
2 Reprinted by permission of ACM, Inc.

vii

viii

Acknowledgements

I am grateful for the kind support offered by my supervisor Bo Kågström. Bo, thank
you for your thorough reading of this thesis and your encouraging and constructive
advice over the past couple of years. I look forward to further collaboration in the
years to come. Bo is a co-author of Papers I, II, and IV, as well as a major contributor
to Paper III.

I would like to thank Fred Gustavson for detailed technical discussions and for
introducing me to some of the research topics in this thesis. Thank you for carefully
reading our drafts, particularly all of the figures, tables, and algorithms. Several subtle
mistakes and ambiguous statements would have gone unnoticed without your help.
Fred is a co-author of Papers I-II.

Thanks to all the colleagues at the Department of Computing Science. Besides
providing me with an excellent education you have also created an interesting and
open working place with excellent technical and administrative support.

Privately, I want to thank my parents Kjell and Berit for giving me not only a
healthy upbringing but never ending support in all aspects of life and throughout the
years. I also want to thank my siblings John and Linnea for all the happy moments we
have experienced together.

A special thanks goes to Hannah, my dearest friend and partner in life. Thank you
for all the joy you bring!

This research was conducted using the resources of High Performance Computing
Center North (HPC2N), and supported in part by the Faculty of Science and Technol-
ogy, Umeå University, by the Swedish Research Council under grant VR 70625701,
and by the Swedish Foundation for Strategic Research under the frame program grant
A3 02:18.

Thank You!

Umeå, April 2009

Lars Karlsson

ix

x

Contents

1 High Performance Dense Linear Algebra Research 1
1.1 Algorithms 1
1.2 Multicore Processors 2
1.3 Hybrid and Heterogeneous Distributed Memory Architectures 3
1.4 Matrix Storage Formats 3
1.5 Automatic Code Generation and Tuning 5
1.6 Programming Models 5

2 Summary of the Papers 7
2.1 Paper I 7
2.2 Paper II 7
2.3 Paper III 8
2.4 Paper IV 8

3 Future Work 11

Paper I 19

Paper II 33

Paper III 61

Paper IV 95

xi

xii

Chapter 1

High Performance Dense
Linear Algebra Research

High Performance Computing (HPC) has expanded in recent years to include
not only its traditional scientific and engineering applications but also search
engines, databases, online multiplayer gaming, and more. In large part, this
expansion has been made possible by the rise of the Internet, global communi-
cation, and the massive digitalization of information. Underlying many HPC
applications is a small set of performance critical kernels, usually implemented
as portable libraries which are tuned for specific architectures.

In this thesis, we consider a specific set of such kernels: namely dense linear
algebra operations. Libraries such as BLAS [7], LAPACK [2], and ScaLAPACK
[6] provide portable high performance for a large class of operations on both
shared memory and distributed memory architectures. We first give a brief
account to some major aspects of the research in this area with a focus on
implementation issues. We then summarize the four papers that constitute
this thesis. They concern various topics such as matrix storage formats and
conversion, scheduling of two-sided matrix computations, and packed Cholesky
factorization on distributed memory architectures.

1.1 Algorithms
The numerical algorithms offered by HPC libraries should be efficient as well as
robust and numerically stable. This enables high accuracy and reliability to be
obtained as fast as possible. Numerical analysts have developed mathematical
theories that establish the numerical properties of many algorithms, see [21]
for a collection of key results.

The numerically critical operations are typically localized to a small sub-
set of the algorithm such as the pivoting in LU factorization and the deflation
detection in eigenvalue computations. These parts require careful engineering

1

to avoid numerical problems such as underflow/overflow and severe cancella-
tion. However, most of the computations can be expressed as highly parallel
and numerically simpler operations such as matrix multiplication and back
substitution. From a numerical viewpoint, high performance implementations
are often adaptations of sequential algorithms rather than completely different.
Experience with high performance implementations has resulted in the devel-
opment of concepts such as blocked and recursive blocked algorithms (e.g., see
[2, 32, 34]), communication minimization, schedule optimization, alternative
storage formats (e.g., see [25, 12, 28]), automatic tuning (e.g., see [5, 42, 40, 20]),
asynchronous execution (e.g., see [10, 11, 30]), etc. These concepts are general
enough to apply to many different algorithms and careful studies have furthered
our understanding of their impact on performance.

There is a continuous development of new and increasingly sophisticated
numerical algorithms, such as the MRRR algorithm for the symmetric tridi-
agonal eigenvalue problem [16], Jacobi SVD for highly accurate singular value
decomposition [17, 18], a QR algorithm with aggressive early deflation and
level 3 performance for the nonsymmetric eigenvalue problem [9], and a QZ
algorithm which applies similar ideas to the generalized eigenvalue problem
[31, 1]. Other recent novel parallel algorithms include reordering of eigenval-
ues in computed Schur forms [23] and the solution of matrix equations [22].
Even though new algorithms such as the ones above represent major advances
in capability, many need further development before they can efficiently take
advantage of the available parallel hardware.

1.2 Multicore Processors
The tremendous increase in processor performance has been linked with Moore’s
Law, which famously predicts an exponential increase in the number of tran-
sistors per chip. However, translating transistor count into performance has
required a lot of research and innovation. Pipelines, SIMD units, superscalar
and out-of-order execution have provided a large boost in performance. The
clock frequency has steadily increased and with it the power consumption. Hier-
archies of fast but expensive cache memories have been put in place to partially
overcome the increasing gap between processor performance and memory band-
width and latency. All of these technologies suffer from diminishing returns.
Therefore, processor manufacturers have all embraced a so called multicore ar-
chitecture where several independent processing units, or cores, are placed on
the same chip. A multicore architecture has traditionally been reserved for
special purpose hardware such as graphics cards, routers, and high-end servers.
Today, this type of architecture is widely viewed as the most viable option to
continue on the exponential performance development curve in the near future
[3].

The HPC community is currently investigating how best to harness the
power of multicore architectures and other closely related technologies such

2

as graphics processing units and numerical accelerators. The most immediate
problem is to find algorithms that can reach near peak performance on these
architectures. Then comes the problem of producing and maintaining large
libraries with hundreds of different algorithms and variants. The program-
ming cost required to implement one such algorithm must be brought down
to manageable levels before such a task can be undertaken. This will likely
require adding abstraction layers and/or adopting new programming models
[14, 36, 37].

1.3 Hybrid and Heterogeneous Distributed Mem-
ory Architectures

A supercomputer typically exploits parallelism on all levels of architecture de-
sign from pipelines, SIMD units, and multicore processors, up to high perfor-
mance networks with large bisectional bandwidths. The memory in such a large
system is necessarily physically distributed. However, the nodes connected by
the network often have a shared memory architecture built from one or more
multicore processors. We say that such a system has a hybrid architecture.

The high performance offered by graphics cards and numerical accelera-
tors makes it economically attractive to build heterogeneous HPC systems by
connecting general purpose processors to accelerators.

To attain optimal performance it is necessary to take into account the pri-
mary features of the underlying hardware. The two de-facto standard parallel
programming environments are OpenMP [37] and MPI [35] which are designed
for the shared memory and distributed memory architecture models, respec-
tively. Since most HPC systems are actually hybrid architectures, several efforts
have been made to combine MPI with OpenMP to improve performance, with
varying results and conclusions.

The recent shift to multicore processors and the improved programmability
of graphics cards have sparked renewed interest in programming models for
hybrid and heterogeneous architectures. Several papers address issues related
to dense linear algebra algorithms, see for example [10, 11, 41, 15].

1.4 Matrix Storage Formats
Amatrix can be stored in computer memory in many different ways. The way in
which a matrix is stored, i.e., how each element is mapped to a unique memory
address, is called a matrix storage format (or data layout). The standard
row-major (RM) and column-major (CM) formats, typically used by compilers
to store multi-dimensional arrays, are preferred for their simplicity and low
overhead in both direct and incremental index calculations.

The memory hierarchy designs favor locality of reference in two ways. First,
since cache memories have a limited capacity, data that has not been recently

3

used has a high probability of being evicted from the cache. Thus, temporal
locality of reference increases the likelihood that the referenced data is in the
cache. Second, since cache memories transfer memory in blocks (so called cache
lines), typically of the order of 64 to 128 bytes long, spatial locality of reference
increases the likelihood that the referenced data is found in the cache. HPC
algorithms must be carefully designed to exhibit high levels of both temporal
and spatial locality of reference in order to use the memory hierarchy efficiently.
Algorithms that fail to do so will be memory bound and hence unable to utilize
the full potential of the processor.

There is maximum spatial locality when a column-major matrix is accessed
column-wise, but (for a large enough matrix) the poor spatial locality observed
when the matrix is accessed row-wise may result in no cache reuse at all. The
performance difference can be as large as an order of magnitude. Many al-
ternative matrix storage formats have been proposed to alleviate this problem.
These improve the spatial data locality by matching the access patterns of some
particular class of algorithms. For example, block storage formats arrange sub-
matrices (so called blocks) so that they are stored contiguously. Thus, a block
can be accessed with perfect spatial locality and block formats therefore match
blocked matrix algorithms well [25, 38, 19].

Recursive storage formats have also been intensively studied due to their
theoretical locality-preserving properties. Recursive formats are related to
space-filling curves and hence they tend to borrow their names. Examples
include the U-Morton, Z-Morton, X-Morton, Hilbert, and Peano orderings
[12, 4, 19]. One drawback of recursive formats is the indexing overhead, espe-
cially if the recursion is carried down to the element level. Therefore, practical
recursive storage formats are hybrid and the recursion stops when the subma-
trices (blocks) are small enough and these are then stored in a conventional
storage format.

There are recursive blocked algorithms for several important linear algebra
operations (see the review in [19]). The ever smaller submatrix accesses that
are generated by such algorithms amounts to a multi-level blocking with the
ability to automatically adapt to deep memory hierarchies [24]. The primary
benefit of recursive algorithms is an increased temporal data locality.

There are also various storage formats for band, triangular, and symmetric
matrices. These have received attention due to the possibly large reduction
in the required amount of memory. Packed storage formats for symmetric or
triangular matrices do not store all of the redundant/zero elements. One way
to store a lower triangular matrix is to store the relevant portion of each column
one after the other. This format is similar to column-major and is used in the
LAPACK library. However, the lack of support for this format in the level
3 BLAS has meant that packed LAPACK routines perform much worse than
their full storage equivalents. Alternative storage formats such as the Square
Block Packed (SBP) [27] and Rectangular Full Packed (RFP) [28] formats allow
packed routines to reach level 3 performance. The RFP format has recently
been included in the LAPACK library [2].

4

1.5 Automatic Code Generation and Tuning
Optimizing performance critical kernels for specific architectures is a difficult
and time consuming task. The frequent introduction of new processors and
compilers results in a continuous demand for optimization. However, the time
and skill required to do the optimizations are prohibitive for all but experts.
As a result, there is usally a substantial delay between the introduction of a
new architecture and the availability of optimized kernels. Furthermore, the
code has likely been optimized for general use and not for a user’s particular
needs.

These issues motivate research into automatic optimization [5, 42]. The
research on compiler optimization is extensive. However, when faced with
complex algorithms such as matrix computations, typical compiler optimiza-
tions do not come close to the best manually tuned implementations. There
are many reasons for this, such as limited information about the code, and time
restrictions; few users would tolerate a compiler that spends minutes or hours
optimizing three nested loops.

A popular complement to compiler optimization, which is typically based on
models and heuristics, is empirical optimization based on automatic code gen-
eration and tuning. In empirical optimization, several functionally equivalent
implementations are automatically generated and empirically evaluated. Cer-
tain classes of implementations can be readily generalized to a code template
from which automatic code generation can produce a multitude of variants.
A search space is constructed from code generators and manually tuned im-
plementations. Sophisticated search algorithms are required when the search
space is too large to allow for an exhaustive search [42]. Examples of projects
that employ automatic code generation and tuning include the PHiPAC [5] and
ATLAS [42] projects (both inspired by the GEMM-based approach [33, 32]) for
linear algebra operations, and Spiral [40] and FFTW [20] for signal processing
and fast Fourier transforms.

Automatic tuning is useful even without code generation. Many high-level
algorithms have parameters such as block sizes, thresholds, machine parame-
ters, etc that affect performance. By automatically tuning these parameters,
e.g., during installation [42] or at runtime [20], a library can adapt to different
architectures and users.

1.6 Programming Models
Programming models provide a hardware abstraction layer that enables the
programmer to write programs without knowing all the hardware details. The
Fortran programming language is widely used in numerical applications. It
provides a high level of abstraction and a sequential program execution seman-
tics. However, extracting parallelism from a sequential program is a difficult
problem indeed. Parallel programming models let the programmer specify par-

5

allelism by exposing parallel loops, independent subtasks, and other typical
parallel patterns.

Graphics cards and hybrid architectures have motivated the development
of new programming models such as CUDA [14] and OpenCL [36] to name just
two. Many programming models have been proposed througout the years, and
many more are likely to follow in the coming years due to the focus on multicore
architectures. Many models target parallel programming on shared memory
architectures [39, 8]. Some efforts specifically target linear algebra libraries,
and many of these use some form of dynamic scheduling, see for example [41,
11, 10, 30]. The ultimate goal is to support efficient implementations on hybrid
distributed memory architectures.

6

Chapter 2

Summary of the Papers

2.1 Paper I
Paper I [26] investigates various algorithms for packed storage Cholesky fac-
torization on distributed memory architectures. The Rectangular Full Packed
(RFP) format [28] allows reuse of existing ScaLAPACK routines [13, 6] but the
performance turns out to be suboptimal for several reasons, which are high-
lighted in the paper. Two Cholesky factorization algorithms for matrices stored
in Square Block Packed (SBP) format are also presented and evaluated. One of
the implementations is similar to the right-looking algorithm used by ScaLA-
PACK insofar as it proceeds in stages of parallel computation and communi-
cation that do not overlap. Therefore, this algorithm, while performing better
than the RFP algorithm, has similar performance problems as the ScaLAPACK
full storage routine. The third algorithm (also designed for SBP) addresses this
issue by using one level of lookahead to overlap communication with computa-
tion. The computational experiments indicate that the algorithm for SBP with
lookahead outperforms the other considered algorithms. The RFP algorithm
did not perform as well as the others but its simple Cholesky factorization
implementation based on code reuse makes it attractive.

2.2 Paper II
In the second paper [27], we elaborate on the two SBP Cholesky factorization
algorithms first presented in Paper I and focus on the variant with lookahead.
We go into more detail on how to perform communication and computation con-
currently, using asynchronous communication functions available in the Mes-
sage Passing Interface (MPI) [35]. The paper emphasizes the need to use both
asynchronous sends and receives in order to hide communication overhead on
both ends of the communication. The global schedule was also improved by
rearranging the node computations to interleave the panel factorization with

7

the update phase. A few types of local scheduling inefficiencies were discovered
by trace analysis. These inefficiencies appeared to be difficult to avoid in any
static schedule and so we considered a limited dynamic scheduling. However,
although the local inefficiencies could now be avoided, the global schedule was
not substantially improved. This led to the development of simulations that
ignored communication overhead and therefore just considered the schedule.
These simulations indicate that the static schedule is near optimal in the sense
that one processor is busy during virtually the entire computation while the
2D block cyclic data distribution ensures an acceptable load balance. Profiling
of the implementation showed that this carries over into practice. The primary
consequence of the near-optimality is that further substantial improvements to
the schedule must include a different distribution of work to the nodes of the
cluster. The effectiveness of the static schedule also explains why the dynamic
scheduling did not give an improved global schedule.

2.3 Paper III
Paper III [29] takes a closer look at block storage formats (of which SBP is a
special case), blocked in-place transposition, and its application to in-place con-
version between storage formats. Although the paper does not contribute much
to the theory of neither in-place transposition nor conversion, it does provide
algorithm evaluations and comparisons. Matrix transposition and permuta-
tions in general can be expressed in many different ways. The paper connects
some of them, such as in-place permutation, mixed radix digit permutation,
and Kronecker product factorizations of the permutation matrix. The paper
argues that a mixed radix number representation is an effective way to rea-
son about blocked in-place transposition algorithms and it has direct practical
applications as a useful abstraction in implementations.

2.4 Paper IV
The fourth paper [30] describes a framework for node-scheduling of distributed
memory algorithms. The paper considers a model algorithm inspired by the
bulge-chasing part of blocked Hessenberg QR algorithms for the nonsymmetric
eigenvalue problem. The algorithms perform two-sided transformations which
result in both limited parallelism and complex dependencies. We show that a
straightforward implementation scales poorly and argue that this is due to a
poor schedule rather than an inherent problem. The paper describes a dual
wavefront algorithm that is capable of activating all processors during most
of the computation, thus resulting in a more scalable algorithm. However, a
key point is that implementing the dual wavefront algorithm manually as a set
of nested loops with sycnhronized communication is practically infeasible. By
using dynamic priority-based node-scheduling of both computation and com-
munication on each node (which in the paper consists of a single uni-processor)

8

the non-scalable straightforward implementation is transformed by relatively
small modifications to a scalable dynamic implementation (i.e., the dual wave-
front algorithm). Not addressed by the paper is the specific issues related to
hybrid architectures. The paper argues that dynamic scheduling is suitable for
multicore architectures, as evidenced by for example [8, 39, 11].

9

10

Chapter 3

Future Work

There are several interesting research topics related to Papers III and IV that
we plan to investigate further. We will implement parallel versions of some al-
gorithms discussed in Paper III [29] on both traditional and specialized shared
memory architectures. There is also a large literature on parallel transposition
algorithms and some of the proposed algorithms might be incorporated in our
evaluation. The ultimate goal is a high performance portable library for con-
version between different (block) matrix data layouts. Based on our results in
[29], it is likely that we need to use automatic tuning and dynamic algorithm
selection to reach this goal.

Paper IV is the first step in our on-going investigation of the usefulness
and limits of dynamic node-scheduling on hybrid architectures. The ability to
obtain radically different schedules from a sequential program is valuable, as
shown in Paper IV [30] where the scalability of an algorithm is significantly en-
hanced by altering the schedule on each node. There are many details to work
out before we are in a position to implement a high performance framework
that offers enough functionality to cover a majority of the algorithmic patterns
encounterd in dense linear algebra algorithms. The impact on performance
of locality of reference, load balance, dependency analysis, and communica-
tion can not be ignored. The problem sizes are potentially so large that it
is infeasible to do an a priori construction and/or analysis of the task graph.
Furthermore, since some algorithms are nondeterministic, such a construction
might even be impossible. The overhead associated with the dynamic schedul-
ing is critical; if it costs too much to dynamically schedule the operations, then
a pure MPI approach or MPI coupled with OpenMP or threaded BLAS would
be superior. We plan to address the various issues and implement a minimalis-
tic framework. This will allow us to estimate the inherent overheads associated
with dynamic node-scheduling. There are many past and present efforts that
aim to provide high level parallel programming models. Our research is orthog-
onal to these as it addresses the specific problems related to the implementation
of a high performance runtime for dynamic node-scheduling.

11

12

Bibliography

[1] B. Adlerborn, B. Kågström, and D. Kressner. Parallel Variants of the
Multishift QZ Algorithm with Advanced Deflation Techniques. In Applied
Parallel Computing: State of the Art in Scientific Computing, Lecture
Notes in Computer Science, LNCS 4699, pages 117–126. Springer, 2007.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. J. Don-
garra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and
D Sorensen. LAPACK User’s Guide (3rd ed.). Society for Industrial and
Applied Mathematics, 1999.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report UCB/EECS-2006-183, EECS De-
partment, University of California, Berkeley, December 2006.

[4] M. Bader and C. Zenger. Cache Oblivious Matrix Multiplication Using
an Element Ordering Based on a Peano Curve. Linear Algebra and its
Applications, 417(2–3):301–313, 2006.

[5] J. Bilmes, K. Asanovic, C. W. Chin, and J. Demmel. Optimizing Matrix
Multiply using PHiPAC: A Portable High-Performance ANSI C Method-
ology. In Proceedings of the International Conference on Supercomputing,
pages 340–347, Vienna, 1997.

[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK User’s Guide. Society for Industrial and
Applied Mathematics, 1997.

[7] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Reming-
ton, and R. C. Whaley. An Updated Set of Basic Linear Algebra Subpro-
grams (BLAS). ACM Trans. Math. Software, 28(2):135–151, 2002.

13

[8] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. Journal of the ACM, 46(5):720–748, September
1999.

[9] K. Braman, R. Byers, and R. Mathias. The Multishift QR Algorithm.
Part I: Maintaining Well-Focused Shifts and Level 3 Performance. SIAM
J. Matrix Anal. Appl., 23:929–947, 2001.

[10] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A Class of Parallel
Tiled Linear Algebra Algorithms for Multicore Architectures. Technical
Report UT-CS-07-600, Innovative Computing Laboratory, University of
Tennessee, September 2007.

[11] E. Chan, E. S. Quintana-Ortí, G. Quintana-Ortí, and R. van de Geijn.
SuperMatrix Out-of-Order Scheduling of Matrix Operations for SMP and
Multi-Core Architectures. In SPAA ’07: Proceedings of the 19th ACM
Symposium on Parallelism in Algorithms and Architectures, pages 116–
125, San Diego, CA, USA, June 2007.

[12] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recursive
Array Layouts and Fast Parallel Matrix Multiplication. In Proceedings of
the Eleventh Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 222–231. ACM, 1999.

[13] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and
R. C. Whaley. Design and Implementation of the ScaLAPACK LU, QR,
and Cholesky Factorization Routines. Scientific Programming, 5(3):173–
184, 1996.

[14] CUDA Zone – The Resource for CUDA Developers.
http://www.nvidia.com/object/cuda_home.html. (January, 2009).

[15] J. Demmel and V. Volkov. LU, QR and Cholesky Factorizations using Vec-
tor Capabilities of GPUs. Technical Report UCB/EECS-2008-49, EECS
Department, University of California, Berkeley, May 2008.

[16] I. S. Dhillon, B. N. Parlett, and C. Vömel. The Design and Implementation
of the MRRR Algorithm. ACM Trans. Math. Software, 32(4):533–560,
2006.

[17] Z. Drmac and K. Veselic. New Fast and Accurate Jacobi SVD Algorithm:
I. SIAM J. Matrix Anal. Appl., 29(4):1322–1342, 2007.

[18] Z. Drmac and K. Veselic. New Fast and Accurate Jacobi SVD Algorithm:
II. SIAM J. Matrix Anal. Appl., 29(4):1343–1362, 2007.

[19] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. Recursive Blocked
Algorithms and Hybrid Data Structures for Dense Matrix Library Soft-
ware. SIAM Review, 46(1):3–45, 2004.

14

[20] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3.
Proceedings of the IEEE, special issue on “Program Generation, Optimiza-
tion, and Adaptation”, 93(2):216–231, 2005.

[21] G. H. Golub and C. F. van Loan. Matrix Computations (3rd ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[22] R. Granat, I. Jonsson, and B. Kågström. RECSY and SCASY Library
Software: Recursive Blocked and Parallel Algorithms for Sylvester-Type
Matrix Equations with Some Applications. In R. Ciegis et al., editor, Par-
allel Scientific Computing–Advances and Applications, volume 27, pages
3–24. Springer Optimization and Its Applications, 2009.

[23] R. Granat, B. Kågström, and D. Kressner. Parallel Eigenvalue Reorder-
ing in Real Schur Forms. Concurrency and Computation: Practice and
Experience (to appear), 2009.

[24] F. G. Gustavson. Recursion Leads to Automatic Variable Blocking for
Dense Linear Algebra Algorithms. IBM Journal of Research and Devel-
opment, 41, 1997.

[25] F. G. Gustavson, A. Henriksson, I. Jonsson, B. Kågström, and P. Ling.
Recursive Blocked Data Formats and BLAS’s for Dense Linear Algebra
Algorithms. In Applied Parallel Computing, PARA’98, Lecture Notes in
Computer Science, LNCS 1541, pages 195–206. Springer, 1998.

[26] F. G. Gustavson, L. Karlsson, and B. Kågström. Three Algorithms for
Cholesky Factorization on Distributed Memory Using Packed Storage. In
Applied Parallel Computing: State of the Art in Scientific Computing,
Lecture Notes in Computer Science, LNCS 4699, pages 550–559. Springer,
2007.

[27] F. G. Gustavson, L. Karlsson, and B. Kågström. Distributed SBP
Cholesky Factorization Algorithms with Near-Optimal Scheduling. ACM
Trans. Math. Software, 36(2), 2009.

[28] F. G. Gustavson and J. Wasniewski. Rectangular Full Packed Format for
LAPACK Algorithms Timings on Several Computers. In Applied Parallel
Computing: State of the Art in Scientific Computing, Lecture Notes in
Computer Science, LNCS 4699, pages 570–579. Springer, 2007.

[29] L. Karlsson. Blocked In-Place Transposition with Application to Stor-
age Format Conversion. Technical Report UMINF 09.01, Department of
Computing Science, Umeå University, SE-901 87 Umeå, Sweden, January
2009.

[30] L. Karlsson and B. Kågström. A Framework for Dynamic Node-Scheduling
of Two-Sided Blocked Matrix Computations. In Proceedings of PARA ’08,
Lecture Notes in Computer Science. Springer, accepted 2008.

15

[31] B. Kågström and D. Kressner. Multishift Variants of the QZ Algorithm
with Aggressive Early Deflation. SIAM J. Matrix Anal. Appl., 29(1):199–
227, 2006.

[32] B. Kågström, P. Ling, and C. Van Loan. Algorithm 784: GEMM-Based
Level 3 BLAS: Portability and Optimization Issues. ACM Trans. Math.
Software, 24(3):303–316, 1998.

[33] B. Kågström, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS:
High Performance Model Implementations and Performance Evaluation
Benchmark. ACM Trans. Math. Software, 24:268–302, 1998.

[34] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The Cache Performance and
Optimizations of Blocked Algorithms. SIGARCH Computer Architecture
News, 19(2):63–74, 1991.

[35] Message Passing Interface (MPI) Forum. http://www.mpi-forum.org/.
(January, 2009).

[36] OpenCL. http://www.khronos.org/opencl/. (January, 2009).

[37] OpenMP.org. http://openmp.org/wp/. (January, 2009).

[38] N. Park, B. Hong, and V. K. Prasanna. Tiling, Block Data Layout, and
Memory Hierarchy Performance. IEEE Transactions on Parallel and Dis-
tributed Systems, 14(7):640–654, 2003.

[39] J. M. Perez, R. M. Badia, and J. Labarta. A Flexible and Portable Pro-
gramming Model for SMP and Multi-cores. Technical Report 03/2007,
Barcelona Supercomputing Center, 2007.

[40] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, T. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo. SPIRAL: Code Generation for DSP Transforms. Proceed-
ings of the IEEE, special issue on “Program Generation, Optimization,
and Adaptation”, 93(2):232–275, 2005.

[41] G. Quintana-Ortí, F. D. Igual, E. S. Quintana-Ortí, and R. van de Geijn.
Solving Dense Linear Algebra Problems on Platforms with Multiple Hard-
ware Accelerators. In Proceedings of the 2009 ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, Raleigh, North Car-
olina, February 2009. To appear.

[42] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated Empirical Opti-
mization of Software and the ATLAS Project. Parallel Computing, 27(1–
2):3–35, 2001.

16

I

Paper I

Three Algorithms for Cholesky Factorization on
Distributed Memory using Packed Storage∗

Fred G. Gustavson2, Lars Karlsson1, and Bo Kågström1

1Department of Computing Science and HPC2N, Umeå University
SE-901 87 Umeå, Sweden
{larsk, bokg}@cs.umu.se

2IBM T. J. Watson Research Center,
Yorktown Heights, NY 10598, USA.

Abstract: We present three algorithms for Cholesky factorization using minimum
block storage for a distributed memory (DM) environment. One of the distributed
square block packed (SBP) format algorithms performs similar to ScaLAPACK’s full
storage routine PDPOTRF, and our algorithm with iteration overlapping typically out-
performs it by 15–50% for small and medium sized matrices. By storing the blocks
contiguously, we get better performing BLAS operations. Our DM algorithms are
not sensitive to cache conflicts and thus give smooth and predictable performance.
We also investigate the intricacies of using rectangular full packed (RFP) format with
ScaLAPACK routines and point out some advantages and drawbacks.

Key words: Cholesky factorization, distributed memory, packed storage, square
block packed, rectangular full packed.

∗ Copyright 2007 of Springer-Verlag. Reprinted with permission. All rights reserved.

19

20

Three Algorithms for Cholesky Factorization on
Distributed Memory using Packed Storage

Fred G. Gustavson1,2, Lars Karlsson2, and Bo Kågström2

1 IBM’s T. J. Watson Research Center,
Yorktown Heights, NY 10598, USA, fg2@us.ibm.com

2 Department of Computing Science and HPC2N, Umeå University,
S-901 87 Umeå, Sweden, {larsk, bokg}@cs.umu.se

Abstract. We present three algorithms for Cholesky factorization us-
ing minimum block storage for a distributed memory (DM) environment.
One of the distributed square block packed (SBP) format algorithms per-
forms similar to ScaLAPACK PDPOTRF, and our algorithm with iteration
overlapping typically outperforms it by 15–50% for small and medium
sized matrices. By storing the blocks contiguously, we get better per-
forming BLAS operations. Our DM algorithms are not sensitive to cache
conflicts and thus give smooth and predictable performance. We also in-
vestigate the intricacies of using rectangular full packed (RFP) format
with ScaLAPACK routines and point out some advantages and draw-
backs.

1 Introduction

Dense linear algebra routines that are implemented in a distributed memory en-
vironment typically use a 2D block cyclic layout (BCL), with ScaLAPACK being
one example of a library that uses BCL for all routines [3]. A BCL can provide
effective load balance for many algorithms. The mapping of matrix elements to
processors does not prescribe how they are later stored on each processor. The
approach taken by the ScaLAPACK library is to store each elementary block as
a submatrix of a column major 2D array (standard Fortran array) [3]. Another
approach is to store each elementary block contiguously, for example as a column
major block 2D array.

Storing elementary blocks contiguously has at least three advantages. They
will map very well into L1 cache and level 3 operations involving such blocks
will therefore tend to achieve high performance and minimize memory traffic.
Another benefit is that moving a block can be done by one contiguous memory
transfer. In this contribution we use square elementary blocks (called a square
block, or SB) to store the local matrix. Furthermore, we store only the trian-
gular part of the block matrix to achieve minimum block storage for symmetric
matrices. We call this square block packed (SBP) format.

We identify an inefficiency in straightforward data parallel implementations,
e.g., the implementation of the Cholesky factorization in ScaLAPACK (routine
PDPOTRF) and develop an iteration overlapping data parallel implementation
which removes much of the idling and thus decreases execution time.

21

2 Near Minimal Storage in a Serial Environment

A recently proposed format for storing triangular or symmetric matrices is called
rectangular full packed (RFP) (see [8] for details). This format takes many slightly
different forms. Figure 1 illustrates a lower triangular matrix. The matrix is

BT

B

A A

RFPFull Storage

Fig. 1. Illustration of rectangular full packed format

partitioned into two submatrices A and B. The triangular matrix BT is merged
along the diagonal with A. As can be seen, this new matrix can be stored as a
standard full format rectangular array with no waste of memory.

Another format for near minimal storage is a generalization of a standard
column major format. The matrix is divided into square blocks and the format
is based on storing each such block in a contiguous memory area. The blocks can
then be stored for example in either a row or column major ordering. Figure 2

SB layout

Fig. 2. Illustration of square block packed format

illustrates the square blocks. The elements above the diagonal of the diagonal
blocks are wasted storage. By picking the block size to one, we see that we get
either the standard row or column major format. For details on this format
see [7].

22

3 Minimum Block Storage in a Distributed Environment

In this section we describe how RFP and SBP can be used in a distributed
memory environment. We show how both approaches give a nearly minimum
block storage.

3.1 A Distributed SBP Algorithm for Cholesky Factorization

In this contribution we consider the blocked algorithmic variant of Cholesky
factorization described in Algorithm 1. We note that this algorithmic variant is
used in ScaLAPACK [4]. In a distributed environment with a 2D block cyclic

Algorithm 1 Standard blocked Cholesky factorization
1: for each panel left to right do

2: Partition A =

[
A11

A21 A22

]
, where A11 is NB×NB

3: Factorize A11 = LLT using unblocked algorithm
4: Update panel A21 := A21L

−T using triangular solver
5: Update trailing matrix A22 := A22 −A21A

T
21 using symmetric rank-k update

6: Continue with A = A22

7: end for

layout with block size NB×NB, block A11 resides on one processor, block A21

on one processor column, and A22 generally resides on all processors. By using
parallel triangular solve and symmetric rank-k update routines Algorithm 1 will
achieve scalable performance due to good load balance and because most of the
computation is in step 5 which is easy to parallelize. However, steps 3 and 4 do
not utilize all processors effectively. One variant of this algorithm is to start the
next iteration before the current iteration has finished step 5 (see [7] for more
details). This is possible by noting that the first updated column panel of the
new pivot from step 5 will be used as the only input for step 3 and 4 of the next
iteration.

A major problem with a straightforward parallel implementation of Algo-
rithm 1 is the idle time introduced when processors implicitly synchronize after
each iteration. This idle time is caused both by slight load imbalances and the
work in steps 3 and 4 that are not performed on all processors. By using the
iteration overlapping algorithm this idle time will be eliminated if the communi-
cation of data between steps 3 and 4 can be carried out while still doing useful
work in updates.

The data dependencies in Algorithm 1 are simple. Output from step 3 is input
for step 4 whose output in turn is input for step 5. As for the first dependency a
column broadcast is all that is needed. The second dependency requires a some-
what more complicated communication pattern and is now described briefly. All
subblocks of A21 are broadcasted along the processor rows. Once a subblock of

23

A21 reaches the processor holding the diagonal block of that row it is broad-
casted along its processor column. One can show that after this, each processor
holds the blocks of A21 and AT

21 that it needs for step 5. In our implementation
these blocks are stored in two block buffer vectors W and S, where W (for West
border vector) holds blocks of A21 and S (for South border vector) holds blocks
of AT

21.
We have studied how overlapping two successive pivot steps can affect the

performance of our parallel implementation. Our implementation is described
in Algorithm 2. The overlapping in Algorithm 2 happens during the execution

Algorithm 2 Cholesky with iteration overlap
1: for each panel left to right do

2: Partition global A =

[
A11

A21 A22

]
, where A11 is NB×NB

3: if process holds A11 then
4: Factorize A11 = LLT using serial algorithm
5: Column broadcast the block L
6: end if
7: if process column holds A21 then
8: Receive the block L
9: Partition S1 =

[
SA SB

]
, where SA is NB×NB

10: Update A21 := A21 −W1SA

11: Scale A21 := A21L
−T

12: Start communication of A21 using buffers W2 and S2 (sender)
13: Update A22 := A22 −W1SB

14: else {all other process columns}
15: Start communication of A21 using buffers W2 and S2 (receiver)
16: Update A := A−W1S1

17: end if
18: Move (symbolically) W1 := W2 and S1 := S2 {there is no data movement}
19: end for

of steps 10 to 13. Taken together, steps 10 and 13 perform a complete update.
The execution order of the straightforward algorithm would put steps 10 and
13 together, and step 11 after both. Executing step 11 before 13 allows the
communication needed for the subsequent update to take place during the update
in step 13 (and while the other processors execute step 16).

In Figure 3, we illustrate by example how our local matrices are stored in
practice. The blocks are stored columnwise in a one-dimensional block vector
indexed by a column pointer (CP) array. The entries in CP are pointers to the
first block of each block column.

Figure 4 shows how the two sets of buffers are used in Algorithm 2. The light
shaded blocks are those used for the update of iteration i. The darker shaded
blocks are those computed during iteration i for use in iteration i + 1. After the
panel factorization the communication algorithm is started and it will broadcast

24

SBP Storage
Logical view

CP(0)

CP(1)

CP(2)

SBP Storage
Physical viewFull storage

Global symmetric
or triangular matrix

Globally On processor p(0, 0)

 = Wasted

Fig. 3. Illustration of how a 7×7 block global matrix is laid out on a 2×3 mesh in SBP
format and addressed with its column pointer (CP) array. The full size of the global
matrix is 7NB×7NB.

S i+1
 i

i i+1

W

S
 i
 i+1

W

i i+1

Panel i+1

Process to the right of Panel i+1Process owning Panel i+1

Fig. 4. Data layout for the SBP with double sets of W and S border vectors.

the panel and its transpose to all processors with this data stored in the second
set of buffers. While this communication takes place, the first set of buffers is
used to finish the update of iteration i.

3.2 A Distributed RFP Algorithm for Cholesky Factorization

Because of the good performance achievable with RFP format in a serial envi-
ronment (see [9]) we investigated its extension to parallel environments via using
ScaLAPACK and PBLAS. Algorithm 3 gives the details of the RFP Cholesky
algorithm. The limitations of PBLAS and ScaLAPACK do not generally allow
matrices to begin inside an elementary block; each submatrix must be block
aligned. Therefore, we use the RFP format on the block level, introducing some
wasted storage and thus achieve minimum block storage while still being able to
use RFP with existing routines.

The RFP format could be used with an algorithm similar to the one we used
with SBP. Such an RFP algorithm would probably achieve similar performance
to the SBP algorithm so we did not develop any implementation of it.

25

Algorithm 3 RFP Cholesky with ScaLAPACK/PBLAS routines

1: Matrix A is in RFP format: A =

[
A11\AT

22

A21

]

2: Factor A11 = LLT using ScaLAPACK routine PDPOTRF
3: Update panel A21 := A21L

−T using PBLAS routine PDTRSM
4: Update trailing matrix A22 := A22 −A21A

T
21 using PBLAS routine PDSYRK

5: Factor A22 = LLT using ScaLAPACK routine PDPOTRF

4 Related Work on DM Cholesky Factorization

We briefly discuss other packed storage schemes for DM environments.
D’Azevedo and Dongarra suggested in 1997 a storage scheme where the ele-

mentary blocks are mapped to the same processor as in the full storage case, but
only the non-redundant blocks are stored [6]. Each block column is stored as a
submatrix the same way as it would in full storage. The result is that each block
column is a regular ScaLAPACK matrix and can be used as such. Note that the
blocks will be mapped to the same processors as the SBP format, but the local
processor storage layout is different. Benefits include routine reuse via PBLAS
and ScaLAPACK routines. However, some new PBLAS routines seem to be re-
quired to handle the packed storage [6]. Furthermore, their results indicate that
the performance varies wildly with input, making performance extrapolation
difficult.

Recently, Marc Baboulin et al. presented a storage scheme which uses rela-
tively large square blocks consisting of at least LCM(p, q)3 elementary blocks [2].
This format also supports code reuse via PBLAS and ScaLAPACK. The gran-
ularity is limited to the distributed block size, which means less possibility to
save memory. For the Cholesky factorization routines, the chosen block sizes for
performance measurements were between 1024 and 10240. This resulted in a de-
parture from their minimum storage by as much as 7–13%. Using their minimum
allowed distributed block size would bring this percentage down to about 1–3%
but at the cost of longer execution times.

5 Performance Results and Comparison

In this section we give some performance related results. We compare RFP, SBP
and ScaLAPACK routines and analyze the differences that we observed.

All tests were performed on the Sarek cluster at HPC2N. It consists of 190
HP DL145 nodes, with dual AMD Opteron 248 (2.2GHz) processor and 8 GB
memory per node. The AMD Opteron 248 processor has a 64 kB instruction
and 64 kB data L1 Cache (2-way associative) and a 1024 kB unified L2 Cache
(16-way associative). The cluster’s operating system is Debian GNU/Linux 3.1
and we used Goto BLAS 0.94 throughout.
3 The least common multiple of the integers a and b (written LCM(a, b)) is the smallest

integer that is a multiple of both a and b.

26

Table 1. Execution times for PDPOTRF and the SBP algorithm with iteration overlap
for various square grid sizes. The block size NB is set to 100.

N 2x2 3x3 4x4 5x5 6x6 7x7
4000 2.13/0.86 1.48/0.63 1.04/0.66 0.79/0.68 0.63/0.64 0.57/0.65
8000 14.80/0.92 8.29/0.80 5.33/0.79 3.97/0.77 3.15/0.71 2.64/0.73

12000 25.20/0.83 16.30/0.80 10.90/0.84 8.27/0.80 7.11/0.78
16000 57.30/0.84 34.50/0.85 24.00/0.85 18.30/0.80 13.90/0.85
20000 65.00/0.85 43.90/0.86 33.00/0.81 25.90/0.84
24000 53.90/0.84 42.30/0.85

Table 1 shows selected times for both PDPOTRF and the SBP algorithm with
iteration overlap. Each cell has the form X/y, where X is the time (in seconds)
of the PDPOTRF routine and y = Y/X, where Y is the time for the SBP algo-
rithm. The same block size was used for both implementations. We identify two
trends. First of all, the relative gain by overlapping increases with the number
of processors since the idle time is introduced on the entire mesh. The bigger
the mesh the more idle time we can remove by overlapping. Second, the relative
gain decreases with increasing problem sizes. This is expected because the dom-
inant operation is the trailing matrix update (with O

(
N3

)
flops) whereas the

operations causing idle time (the panel factorization) make up for only O
(
N2

)

flops.

Table 2. Execution time for PDPOTRF and the RFP algorithm using ScaLAPACK
routines for various grid sizes.

N 2x2 3x3 4x4 5x5 6x6 7x7
4000 2.13/1.26 1.48/1.16 1.04/1.18 0.79/1.44 0.63/1.42 0.58/1.34
8000 14.80/1.48 8.29/1.25 5.33/1.23 3.97/1.37 3.15/1.33 2.64/1.33

12000 25.20/1.41 16.30/1.14 10.90/1.34 8.27/1.33 7.11/1.29
16000 57.30/1.16 34.50/1.34 24.00/1.28 18.30/1.20 13.90/1.34
20000 65.00/1.13 43.90/1.40 33.00/1.22 25.90/1.25

Table 2 is similar to Table 1 but shows selected times for PDPOTRF and our
RFP algorithm which uses four calls to ScaLAPACK/PBLAS routines. Each cell
has the form X/y, where X is the time (in seconds) of the PDPOTRF routine and
y = Y/X, where Y is the time for the RFP algorithm. As can be seen from
this table the RFP algorithm has typically a 10–30% longer execution time.
By tracing the execution of the algorithm we found two substantial causes for
this overhead. The performance of the BLAS operations issued by the RFP
algorithm was less efficient than was typical for the other algorithms we tested.
Moreover, there are more synchronization points in the RFP algorithm due to
the two ScaLAPACK and two PBLAS calls on problems half the size. This
amplifies the communication overhead and load imbalance. Taken together, this
would probably explain most of the time differences we observed. One interesting

27

detail to note in Table 2 is that when the local matrix dimension is 4000 the RFP
algorithm experienced a dramatic loss in performance (emphasized by italics in
Table 2). This is caused by a cache effect because the leading dimension is
actually 4100 which is close to 212 = 4096; also the L1 cache on Sarek is only
2-way set associative.

The block size mainly affects performance of the BLAS operations and the
load balance. Larger blocks tend to give good BLAS performance but less load
balance. For the SBP algorithm the block size is intimately related to BLAS
performance because then all GEMM calls are on matrices of order NB. The ScaLA-
PACK algorithm is less dependent on the block size because of the fewer and
larger PBLAS operations. Table 3 gives an idea of how the block size relates to

Table 3. Impact of block size on performance (measured in Gflops/s per processor)
for ScaLAPACK PDPOTRF and our overlapping SBP algorithm.

NB PDPOTRF Overlapping
25 2.08 1.91
50 2.12 2.57
75 2.09 2.75
100 2.15 3.04
125 2.24 3.06
150 2.13 3.04

performance for both of these algorithms. The processor mesh was 2×3 and the
order of the matrix was N=6000. On Sarek we see that when we approach a block
size of 100 we get close to optimal performance, whereas the block size does not
matter much for the ScaLAPACK routine. The gap in performance between the
two routines is mainly due to less idling in the overlapping routine.

Finally, we note that our overlapping SBP algorithm could be modified so
that it updates first and factorizes the next panel afterwards. This makes the
algorithm essentially equal to the straightforward implementation but with a dif-
ferent data format. We implemented this variant too and found that as expected
it gave performance nearly identical to the ScaLAPACK algorithm.

6 Future Work

We outline some future directions of development. Our overlapping algorithm
relies on the idea that the task of trailing matrix update can be divided into two
tasks: the first panel on the column of processors holding the pivot and the rest
of the panels on all processors. This allows us to have two iterations on the same
processor, but three is not possible. A solution is to further divide the tasks.
The trailing matrix update could for example be divided into one task for each
block column. Instead of waiting for data it now becomes attractive to do smaller
tasks instead. The order of the tasks thus becomes non-deterministic because it

28

would depend on processor interactions. To get a clean implementation it might
be necessary to use a style reminiscent of a work pool.

The overlapping algorithm relies heavily on the interleaving of communica-
tion and updates. One consequence of the overlapping is that more workspace is
needed. In general each ongoing iteration will require its own W and S buffer.
It is preferable to have many iterations ongoing because in that way more work
is kept at each processor and chances for idling will get reduced. The concept of
lookahead in factorization algorithms has been addressed several times (cf. [1,
5, 7]) and recently in [10]. The emphasis of the latter contribution is that a dy-
namic lookahead is most appropriate. A large lookahead is not feasible in a DM
environment because of the large workspace required. Setting a fixed cap (or
dynamic relative to a fixed workspace) on the number of iterations may be a
feasible solution.

Our work provides an argument for the inclusion of nonblocking collective
communication routines in communication libraries. The de-facto industry stan-
dard MPI has substantial support for nonblocking point-to-point communica-
tion but collectives are all blocking. Our implementation emulates nonblocking
collectives by repeatedly testing for individual completion of nonblocking point-
to-point operations. This complicates the code and probably comes at a higher
cost than would have been the case if nonblocking collectives existed as part of
the library.

7 Conclusion

We have implemented and compared three algorithms and data formats for min-
imum block storage in distributed memory environments using a 2D block cyclic
data layout.

In a serial environment, the RFP format is an attractive choice [9]. However,
the straightforward generalization of serial RFP algorithms has some weaknesses.

The SBP format was implemented and tested with two algorithm variants.
One resembles ScaLAPACK’s PDPOTRF but makes no use of PBLAS or ScaLA-
PACK routines, and one overlaps iterations. We have demonstrated that per-
formance at least as good as the ScaLAPACK algorithm is attainable, and for
the overlapping variant far better performance, especially for small and medium
sized matrices, was achieved.

The ideas that we explored in this work can be applied to many other algo-
rithms as well. Two examples very similar to the Cholesky factorization are the
LU and QR factorizations.

Acknowledgements. This research was conducted using the resources of the
High Performance Computing Center North (HPC2N). Financial support has
been provided by the Swedish Research Council under grant VR 621-2001-3284
and by the Swedish Foundation for Strategic Research under grant A3 02:128.

29

References

1. R. C. Agarwal and F. G. Gustavson. A parallel implementation of matrix mul-
tiplication and LU factorization on the IBM 3090. In M. Wright, editor, Aspects
of Computation on Asynchronous and Parallel Processors, pages 217–221. IFIP,
North-Holland, Amsterdam, 1989.

2. M. Baboulin, L. Giraud, S. Gratton, and J. Langou. A distributed packed stor-
age for large parallel calculations. Technical Report TR/PA/05/30, CERFACS,
Toulouse, France, 2005.

3. L. S. Blackford et al. ScaLAPACK user’s guide. SIAM Publications, 1997.
4. J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C.

Whaley. Design and implementation of the ScaLAPACK LU, QR, and Cholesky
factorization routines. Scientific Programming, 5(3):173–184, Fall 1996.

5. K. Dackland, E. Elmroth, and B. Kågström. A ring–oriented approach for block
matrix factorizations on shared and distributed memory architectures. In R.F. Sin-
covec et al, editor, SIAM Conference on Parallel Processing for Scientific Comput-
ing, pages 330–338. SIAM Publications, 1993.

6. E. D’Azevedo and J. Dongarra. Packed storage extension for ScaLAPACK. Tech-
nical Report UT-CS-98-385, 1998.

7. F. Gustavson. Algorithm compiler architecture interaction relative to dense linear
algebra. Technical Report RC 23715, IBM Thomas J. Watson Research Center,
September 2005.

8. F. Gustavson. New generalized data structures for matrices lead to a variety of
high performance dense linear algebra algorithms. In J. Dongarra, K. Madsen,
and J. Wasniewski, editors, PARA 2004, Applied Parallel Computing, State of the
Art in Scientific Computing, volume 3752 of Lecture Notes in Computer Science
(LNCS), pages 11–20. Springer, 2006.

9. F. Gustavson and J. Wasniewski. LAPACK Cholesky routines in rectangular full
packed format. In PARA 2006, Workshop on State-of-the-Art in Scientific and
Parallel Computing, Lecture Notes in Computer Science (LNCS). Springer, 2006.
To Appear.

10. J. Kurzak and J. J. Dongarra. Pipelined shared memory implementation of linear
algebra routines with arbitrary lookahead – LU, Cholesky, QR. In PARA 2006,
Workshop on State-of-the-Art in Scientific and Parallel Computing, Lecture Notes
in Computer Science (LNCS). Springer, 2006. To Appear.

30

II

Paper II

Distributed SBP Cholesky Factorization Algorithms
with Near-Optimal Scheduling∗

Fred G. Gustavson2, Lars Karlsson1, and Bo Kågström1

1Department of Computing Science and HPC2N, Umeå University
SE-901 87 Umeå, Sweden
{larsk, bokg}@cs.umu.se

2IBM T. J. Watson Research Center,
Yorktown Heights, NY 10598, USA.

Abstract: The minimal block storage Distributed Square Block Packed (DSBP) for-
mat for distributed memory computing on symmetric and triangular matrices is pre-
sented. Three algorithm variants (Basic, Static, and Dynamic) of the blocked right-
looking Cholesky factorization are designed for the DSBP format, implemented, and
evaluated. On our target machine, all variants outperform standard full storage imple-
mentations while saving almost half the storage. Communication overhead is shown
to be virtually eliminated by the Static and Dynamic variants, both of which take ad-
vantage of hardware parallelism to hide communication costs. The Basic variant is
shown to yield comparable or slightly better performance than full storage ScaLA-
PACK routine PDPOTRF while clearly outperformed by both Static and Dynamic.
Models of execution assuming zero communication costs and overhead are devel-
oped. For medium and larger sized problems the Static schedule is near-optimal on
our target machine based on comparisons with these models and measurements of
synchronization overhead.

Key words: Cholesky factorization, distributed memory, packed storage, square
block packed.

∗ Copyright 2009 of ACM, Inc. Reprinted with permission. All rights reserved.

33

34

Distributed SBP Cholesky Factorization
Algorithms with Near-Optimal Scheduling

FRED G. GUSTAVSON
IBM T.J. Watson Research Center and Umeå University
and
LARS KARLSSON and BO KÅGSTRÖM
Umeå University

The minimal block storage Distributed Square Block Packed (DSBP) format for distributed mem-
ory computing on symmetric and triangular matrices is presented. Three algorithm variants
(Basic, Static, and Dynamic) of the blocked right-looking Cholesky factorization are designed
for the DSBP format, implemented, and evaluated. On our target machine, all variants outper-
form standard full-storage implementations while saving almost half the storage. Communication
overhead is shown to be virtually eliminated by the Static and Dynamic variants, both of which
take advantage of hardware parallelism to hide communication costs. The Basic variant is shown
to yield comparable or slightly better performance than the full-storage ScaLAPACK routine
PDPOTRF while clearly outperformed by both Static and Dynamic. Models of execution assuming
zero communication costs and overhead are developed. For medium- and larger-sized problems,
the Static schedule is near optimal on our target machine based on comparisons with these models
and measurements of synchronization overhead.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithm and Problems—Computations on matrices; G1.3 [Numerical Anal-
ysis]: Numerical Linear Algebra—Linear Systems (direct and iterative methods); G.4 [Mathe-
matical Software]: Algorithm design and analysis, reliability and robustness

General Terms: Algorithms, Performance
Additional Key Words and Phrases: Real symmetric matrices, positive definite matrices, Cholesky
factorization, distributed square block format, packed storage, parallel computing, parallel algo-
rithms

This research was conducted using the resources of the High Performance Computing Center
North (HPC2N). Financial support was provided by the Swedish Research Council under grant
VR 621-2001-3284 and by the Swedish Foundation for Strategic Research under grant A3 02:128.
Authors’ addresses: F. G. Gustavson, IBM T.J. Watson Research Center, Yorktown Heights, NY
10598, USA; email: fg2935@hotmail.com; L. Karlsson and B. Kågström, Department of Comput-
ing Science and HPC2N, Umeå University, SE-901 87, UMEÅ; email: {larsk,bokg}@cs.umu.se.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
©2009 ACM 0098-3500/2009/03-ART11$5.00
DOI 10.1145/1499096.1499100 http://doi.acm.org/ 10.1145/1499096.1499100

ACM Transactions on Mathematical Software, Vol. 36, No. 2, March 2009.

35

1. INTRODUCTION

Cholesky factorization is a special case of Gaussian elimination for symmetric pos-
itive definite matrices. Algorithms for Cholesky factorization can save roughly half
of the floating point operations, use half of the memory, and since A is positive
definite there is no need for pivoting [Golub and van Loan 1996]. In the literature
there has been a great deal of interest in sparse parallel Cholesky algorithms but
here we only consider dense matrices. Although not as ubiquitous as large sparse
Cholesky factorization, there are applications of large dense Cholesky factorization,
for example when solving linear least squares problems with the method of normal
equations [Baboulin et al. 2005a].

A number of different parallel dense Cholesky factorization algorithms have been
designed and implemented on a wide range of computer architectures. Three of the
earliest ones are on use of systolic arrays [Brent and Luk 1982], data-flow [O’Leary
and Stewart 1985] and distributed memory [Geist and Heath 1985]. In regard to
scheduling, [Gerasoulis and Nelken 1989] considers parallel Cholesky factorization
on MIMD architectures. Today, distributed memory (DM) computing with message
passing through the MPI interface is the de-facto standard for parallel large-scale
computations. Scalable, portable routines for Cholesky factorization adapted to
DM architectures can be found in ScaLAPACK [Choi et al. 1996] and PLAPACK
[van de Geijn 1997] to name but two.

However, few attempts have been made at storing the symmetric matrix in a
packed format. Previous approaches have often looked at packed routines as special
cases and have not been able to deliver the same level of performance as full storage
routines. Here, we present the Distributed Square Block Packed (DSBP) format
which generalizes both standard packed and full storage [Gustavson et al. 2007a].
This format allows a unification of packed and full storage routines into a single
high performance implementation.

In [Gustavson et al. 2007b], we first examined the feasibility of the DSBP for-
mat. We demonstrated that performance better than the ScaLAPACK full stor-
age Cholesky factorization routine PDPOTRF ([Choi et al. 1996]) is achievable for
a packed storage routine. In this contribution, three DSBP algorithm variants of
parallel packed Cholesky factorization are developed. The first variant (Basic) is a
right-looking Cholesky factorization algorithm and it is comparable with PDPOTRF
but operates on a matrix in DSBP format. The second variant (Static) takes ad-
vantage of hardware parallelism to overlap communication with computation via
use of look-ahead and non-blocking communication primitives. The third variant
(Dynamic) uses a more flexible scheduling on DM nodes and is important on hy-
brid systems with SMP or multi-core nodes. Our goal is to reach an optimal task
schedule on the nodes and perfect overlap between communication and computation
(see [Agarwal et al. 1994] for earlier such results for parallel matrix multiplication).
We do this by a technique called algorithmic look-ahead [Agarwal and Gustavson
1988; 1989; Dackland et al. 1992; Dackland et al. 1993; Strazdins 1998] which re-
orders the outer loop to perform the next panel factorization before the current
trailing matrix update is complete.

Earlier contributions on packed distributed storage of symmetric matrices include
work by [D’Azevedo and Dongarra 1998] where a packed lower triangular matrix

36

is represented as a collection of block columns, each using standard column major
storage format. Their main focus is to encapsulate the packed storage within the
abstraction framework of the ScaLAPACK building blocks such as the PBLAS.
Performance figures are presented which show respectable but slightly worse per-
formance compared with full storage ScaLAPACK routines.

In [Baboulin et al. 2005b], a secondary blocking level is introduced. An elemen-
tary block corresponds to a distribution block of a two-dimensional square block-
cyclic distribution. A grid block is a Pr × Pc block matrix of elementary blocks.
A distributed block is a square matrix of elementary blocks. Each dimension of a
distributed block consists of an integral multiple of lcm(Pr, Pc) elementary blocks.
Thus, a distributed block is made up of a set of complete grid blocks and as a re-
sult the elementary blocks are perfectly distributed and all distributed blocks have
the same distribution. The packed Cholesky implementation reuses ScaLAPACK
and PBLAS on the level of distributed blocks. Performance is for the most part
slightly worse than for the full storage ScaLAPACK routine, possibly due to extra
communication, library overhead, and a reduced degree of concurrency. We remark
that the storage requirement is larger than that of the DSBP format.

2. ORGANIZATION AND NOTATION

The rest of the paper is organized as follows. Section 3 describes the DSBP for-
mat for memory efficient storage and high-performance DM implementations. In
Section 4, the three Cholesky algorithm variants are described along with a brief
discussion of the details of the communication algorithms. The MPI interface pro-
vides the possibility to express overlap of communication with computation at the
application level, but to what extent overlap is actually exploited is highly machine
and software specific. In Section 5, we therefore present an evaluation of the target
machine’s overlap capabilities. This is crucial for interpreting the performance re-
sults given in Section 6. Scalability is examined in Section 7. Finally, we conclude
with a summary of our major findings and outline future work in Section 8.

Processors are arranged in a logical Pr × Pc mesh with each processor having
2-dimensional coordinates (p, q) with p ∈ {0, . . . , Pr − 1} and q ∈ {0, . . . , Pc − 1}.
The matrix A being factored is of size N ×N . It is partitioned into

Nb =
⌈

N

nb

⌉

submatrices of order nb with padding of the possibly incomplete last block row and
column. Padding simplifies the DSBP addressing scheme; see Section 3 below.

The following LAPACK/BLAS names are used in the text:

—POTRF: computes the Cholesky factorization A = LLT .
—TRSM: solves a triangular system of equations with multiple right-hand sides.
—GEMM: performs a matrix multiply and add update.
—SYRK: performs a symmetric rank-k update.

It is important to distinguish the different notions of blocking in DM comput-
ing. A block cyclic layout (BCL) has a distribution block size, which, in our case,
is square. A blocked algorithm usually has one, and sometimes more, algorithmic

37

block sizes. For the combination of a BCL and a blocked algorithm it is common
to use the same block size for both the distribution and the algorithm (typified
by ScaLAPACK) and referred to as distribution blocking. However, a more general
approach decouples the two block sizes and this is often called algorithmic block-
ing. This allows for better computational load balance since the distribution block
size can be reduced. Processor interactions are often more frequent when using
algorithmic blocking. For example, the diagonal block factorization (see Section 4)
is a local operation when using distribution blocking while it is a collective oper-
ation when using algorithmic blocking. We do not consider algorithmic blocking
in conjunction with DSBP since they may have contradicting goals (improved load
balance versus reduced data movement).

3. DISTRIBUTED SQUARE BLOCK PACKED FORMAT

In this section, we give a self-contained discussion on the Square Block Packed
(SBP) and Distributed Square Block Packed (DSBP) storage formats. Much of the
discussion on SBP have appeared in earlier publications but is summarized here for
completeness.

The motivation for looking at other packed storage formats than the standard
stacked column format used in BLAS and LAPACK is that there is no efficient
way to use level-3 BLAS in combination with the latter format. High performance
implementations of the BLAS at IBM and elsewhere have for a long time inter-
nally transformed the input into architecture-aware formats, for example the Square
Block (SB) format. A block in SB format is stored contiguously and therefore it
maps optimally into all levels of the memory hierarchy. The SBP format for packed
storage is a convention on how to store a symmetric or triangular matrix as a set
of contiguous square blocks.

Researchers at IBM have demonstrated that implementing Cholesky factorization
on SBP input on a sequential architecture may not only be faster than standard
packed Cholesky but also faster than standard full storage Cholesky. The difference
between Cholesky on full storage and on SBP is claimed to be due to a better
utilization of the memory hierarchy brought about by the contiguous block storage
in SBP. Another benefit of SBP is that the Cholesky code can directly call BLAS
kernels that do less data copying and internal transformations since the data is
already in a suitable format. Further improvements can be made by storing the
blocks themselves in some architecture-aware format, e.g., to better match memory
streams or contiguous SIMD register loads. A block stored in a non-canonical
format is referred to as a non-simple block [Gustavson et al. 2007a].

DSBP is a DM generalization of SBP that maps the blocks to processors by a 2D
block-cyclic distribution. Implementations using the DSBP format may also reduce
memory traffic when sending and receiving messages by avoiding message packing.

3.1 Description of the DSBP Format

An Nb ×Nb block matrix (with square blocks of order nb) is distributed according
to a two-dimensional BCL with the first block stored on processor (0, 0). The last

38

local block column index on processor column q is

jlast(q) =
⌊

(Nb − 1)− q

Pc

⌋
.

Similarly for the last local block row index on processor row p:

ilast(p) =
⌊

(Nb − 1)− p

Pr

⌋
.

On each processor we construct an integer array cp (short for Column Pointer)
with one component per local block column to speed up address calculation to a
constant-time operation. The jth component of cp is defined by

cp[j] =
j∑

k=0

(
ilast(p)−

⌈
(q + kPc)− p

Pr

⌉
+ 1

)
− 1.

The expression in the sum calculates the number of local blocks on local block
column k.

To each block we associate a block offset to index the block vector which stores
the blocks. The block offset of local block (i, j) is

blockoffset(i, j) = cp[j]− (ilast(p)− i).

Figure 1 shows a detailed example of a block matrix in DSBP format.

(0, 2)

0

1

2 6

3 7 A

4 8 B

5 9 C D

0

2

4

6

8

A

0

1

2

3

4

5

0 3 6 9
0 1 2 3

G
lobal

L
ocal

Global
Local

0

1

2 5

3 6 8

4 7 9

0

2

4

6

8

A

0

1

2

3

4

5

5 8 B2
0 1 2 3

0

1 6

2 7

3 8 B

4 9 C E

5 A D F

0 3 6 9
0 1 2 3

0

1

62

3 7 A

4 8 B

5 9 C D

1 4 7 A
0 1 2 3

0

1 5

2 6

3 7 9

4 8 A B

5 8 B2
0 1 2 3

0

1

2

3

4

5

6

7

8

9

A B

1 4 7 A
0 1 2 3

0

2

4

6

8

A

0

1

2

3

4

5

1

3

5

7

9

B

0

1

2

3

4

5

1

3

5

7

9

B

0

1

2

3

4

5

1

3

5

7

9

B

0

1

2

3

4

5

0 1 2

0

1

(0, 0) (0, 1)

(1, 1)(1, 0) (1, 2)

Fig. 1. Detailed example of a 12 × 12 block matrix distributed on a 2 × 3 mesh from the pro-
cessors’ viewpoint. Hexadecimal numbers indicate the local block offsets and circled block offsets
correspond to the values in the column pointer array. Dotted blocks emphasize the typical full
storage requirements.

Notice how the addressing scheme is based on the last block of a column and
a negative offset depending on the local block row index. Thus, the addressing
scheme is not dependent on whether the blocks are stored in a block packed or
block full storage matrix. For full storage the column pointer array on all processors

39

in Figure 1 contain (5, 11, 17, 23) and the same addressing scheme and Cholesky
algorithms can be used. In this case the column pointer array reduces to

cp[j] =
j∑

k=0

(ilast(p) + 1)− 1 = (j + 1)ilast(p) + j.

There is a strong connection between the local storage format of DSBP and the
Block Compressed Column Storage (BCCS) used for sparse blocked matrices. The
column pointer array plays a similar role as the column pointer array in BCCS
(hence the same name). Because there is a regular pattern when the matrix is
dense the row index array in BCCS does not need to be stored explicitly and the
block offset is instead calculated directly from the column pointer array and the
row index.

3.2 Properties of the DSBP Format

3.2.1 Reduced Memory Requirements. The storage required by the DSBP for-
mat is roughly half that of full storage. In case there are incomplete blocks, the last
block row and column are padded. The storage requirement of the DSBP format
in number of words is thus

Nbn
2
b(Nb + 1)

2
=

⌈
N
nb

⌉
n2

b

(⌈
N
nb

⌉
+ 1

)

2
.

3.2.2 Less Data Movement in BLAS Operations. Memory streams, vector reg-
isters, and other hardware features typically require register blocking. In order
to effectively utilize such advanced hardware features, state-of-the-art kernels for
BLAS routines such as GEMM usually reformat all or some of their operands [Goto
and van de Geijn 2007; Gustavson et al. 2007a]. In [Gustavson et al. 2007a] it is
shown that the amount of data copying performed in dense matrix factorization is
O

(
N3

)
but could potentially be reduced to O

(
N2

)
by using SBP with non-simple

storage formats for the blocks together with special kernel routines that operate on
the non-simple blocks.

The four kernels in our Cholesky variants (POTRF, TRSM, GEMM, and SYRK) take
as input one (POTRF), two (TRSM, SYRK) or three (GEMM) blocks, all of which are
contiguous on account of the DSBP format. All operands will thus map into all
levels of the memory hierarchy without conflict misses (assuming the cache capacity
is sufficient to hold the operands and that the caches are at least three-way set
associative). Combined with non-simple formats and special kernels this would
provide an ideal situation for optimal kernel performance.

3.2.3 Less Data Movement in Communication. The message passing library (in
this case an implementation of MPI) must pack and unpack messages when sending
and receiving. This is more expensive for non-contiguous messages. An m × n
submatrix in column major format generally consists of n contiguous vectors of
length m, each separated by LDA ≥ m elements. On the other hand, our Cholesky
variants send and receive contiguous square blocks.

40

4. DSBP ALGORITHM VARIANTS OF THE CHOLESKY FACTORIZATION

There are various ways to implement Cholesky factorization, such as left/right-
looking and a symmetric version of Crout’s method. We have chosen the vari-
ant commonly called blocked right-looking Cholesky factorization [Dongarra et al.
1998]. Algorithm 1 describes this variant on a high level.

Algorithm 1 High-Level Right-Looking Cholesky
1: while N , order of A 6= 0 do
2: Choose block size b = min(nb, N).

3: Partition A =

(
A11 AT

21

A21 A22

)
where A11 has size b× b.

4: Compute the Cholesky factorization A11 = L11L
T
11 in-place.

5: Scale A21 ← A21L
−T
11 .

6: Update the trailing matrix A22 ← A22 −A21A
T
21.

7: Continue with A = A22.
8: end while

4.1 Buffers

We begin by describing the use of buffers in our parallel implementations. Be-
cause some data is remote we use explicit communication into local buffers. In the
algorithms that we present there are three types of buffers:

—R (short for Reciprocal) contains a factored diagonal block used as input for
scaling (TRSM) operations. Each R is generated by the pivot process and commu-
nicated to a separate replicated R residing on processor column.

—W (short for West) stores the scaled blocks of a panel used as input for up-
dates (SYRK and GEMM). The West buffer is distributed along mesh columns and
replicated along mesh rows.

—S (short for South) stores the block transpose of W (i.e., it is a row block vector
and each block remains untransposed) used as input for GEMM updates. The South
buffer is distributed along mesh rows and communicated along mesh columns to
each processor.

In Basic, we only need one set of local buffers so W (j) and S(j) refer to these
local West and South buffers, respectively. In Static and Dynamic, where two
iterations are active at the same time, we use two sets of local buffers to reduce
data dependencies and enhance performance. In these algorithms, W (j) and S(j)
are instead to be read as the local West buffer j mod 2 and the local South buffer
j mod 2, respectively. Subscripts i and k in Wi(j−1) and Sk(j−1), see Algorithm 3,
refer to blocks i and k, respectively.

4.2 Basic Variant

The high-level blocked right-looking Cholesky factorization is adapted to DSBP in
Algorithm 2. The distribution of computation follows the owner-computes rule,
which states that the owner of an affected block is also the process that performs
the computation. The details of the communication are left until Section 4.5 since

41

Algorithm 2 Basic
1: for j = 0, Nb − 1 do
2: % Panel factorization
3: Cholesky(Ajj), (POTRF)
4: R← Ajj

5: Start to replicate R (Algorithm 5)
6: Wait for R
7: for i = j + 1, Nb − 1 do
8: Aij ← AijR

−T , (TRSM)
9: Wi(j)← Aij

10: Start to replicate Wi(j) and Si(j) (Algorithm 4)
11: end for
12: % Trailing matrix update
13: Wait for all W∗(j) and S∗(j)
14: for k = j + 1, Nb − 1 do
15: Akk ← Akk −Wk(j)Wk(j)T , (SYRK)
16: for i = k + 1, Nb − 1 do
17: Aik ← Aik −Wi(j)Sk(j)T , (GEMM)
18: end for
19: end for
20: end for

they are common to all three variants. Also, communication is intermixed with the
computation in both Static and Dynamic variants.

4.3 Static Variant

Basic (Algorithm 2) is divided into distinct communication and computation phases
and is therefore unable to effectively overlap communication with computation. By
algorithmic look-ahead we mean that a processor begins to factor a panel before all
of its preceeding trailing matrix updates have completed on that processor. The
number of extra iterations that can be active in this way on any processor is the
depth of the look-ahead. With this definition, Basic has look-ahead depth zero (no
look-ahead), Static and Dynamic both have look-ahead depth one.

Static (Algorithm 3) is our look-ahead depth one variant with aggressively early
scheduling of panel factorization suboperations. This scheduling is derived by fol-
lowing the critical path of the Cholesky factorization algorithm.

Figure 2 is a pictorial representation of the non-start-up part of Algorithm 3
(lines 12–37). The left part illustrates the algorithmic look-ahead for fused panel
update and factorization (lines 14–18) and fused panel update and scaling (lines 20–
28). The right half explains the trailing matrix update (lines 30–36).

4.4 Dynamic Variant

A careful examination of Algorithm 3 using a Gantt-chart of its execution reveals
two situations where a processor becomes idle although it still has work to do. We
call these situations spurious synchronizations since they could have been avoided,
at least in the short term, by scheduling another available operation. These are:

(1) Updates become available in random order (see Figure 3) due to the non-
deterministic order in which messages arrive. The static schedule enforces a

42

Algorithm 3 Static
1: % First panel factorization
2: Cholesky(A00), (POTRF)
3: R← A00

4: Start to replicate R (Algorithm 5)
5: Wait for R
6: for i = 1, Nb − 1 do
7: Ai0 ← Ai0R

−T , (TRSM)
8: Wi(0)← Ai0

9: Start to replicate Wi(0) and Si(0) (Algorithm 4)
10: end for
11: % Loop over remaining panels
12: for j = 1, Nb − 1 do
13: % Update and factor diagonal block
14: Wait for Wj(j − 1)
15: Ajj ← Ajj −Wj(j − 1)Wj(j − 1)T , (SYRK)
16: Cholesky(Ajj), (POTRF)
17: R← Ajj

18: Start to replicate R (Algorithm 5)
19: % Update and scale panel
20: Wait for Sj(j − 1)
21: Wait for R
22: for i = j + 1, Nb − 1 do
23: Wait for Wi(j − 1)
24: Aij ← Aij −Wi(j − 1)Sj(j − 1)T , (GEMM)
25: Aij ← AijR

−T , (TRSM)
26: Wi(j)← Aij

27: Start to replicate Wi(j) and Si(j) (Algorithm 4)
28: end for
29: % Update non-panel part of trailing matrix
30: for k = j + 1, Nb − 1 do
31: Wait for Sk(j − 1)
32: Akk ← Akk −Wk(j − 1)Wk(j − 1)T , (SYRK)
33: for i = k + 1, Nb − 1 do
34: Aik ← Aik −Wi(j − 1)Sk(j − 1)T , (GEMM)
35: end for
36: end for
37: end for

strict order on the independent kernel operations that form a trailing matrix
update.

(2) Scaling is scheduled early (line 25) in order to maximize the overlap possibilities.
However, the updates on lines 24 and 30–36 might be possible to partially
perform prior to the scaling. The static schedule waits for R (line 21) before any
of the updates are performed and thus enforces a strict order on the operations.

In both cases, the static schedule causes spurious synchronizations to occur and it
should be clear that any static schedule would have similar problems.

The first type of synchronization is described in Figure 3. It depicts a 12 × 12
block matrix distributed on a 2 × 3 mesh with details for processor (0, 1). To the

43

R

PANEL FACTORIZATION

LEGEND

NOT REFERENCED

READ

WRITTEN

SYRK+POTRF GEMM+TRSM SYRK GEMM

TRAILING MATRIX UPDATE
W0 W1

S1

S0

Fig. 2. The two tasks of fused panel factorization and trailing matrix update broken down into
series of kernel operations with information on how the buffers are used.

left is a West buffer and below is a South buffer. Remote blocks and buffers have
a dotted outline. For a block update to be available the corresponding West and
South buffer blocks must both have received their data. The order in which buffer
blocks become available is random and therefore it is impossible to optimally match
by any static schedule.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Unavailable update

Performed update

Available update

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Arrived

Pending

���
���
���
���

Not used

��
��
��

��
��
��

Fig. 3. Availability of updates is determined by the arrival of blocks in both West and South
buffers.

An example of the second type of synchronization (obtained from an execution of
Static) is illustrated in Figure 4. Note that the figure provides only partial timelines
for two of the four processors and that time flows from left to right. The updates
on processor (0, 1) labeled A depend only on operations prior to the ones labeled

44

Fig. 4. A partial view of the timelines for the second processor column of a 2× 2 mesh executing
the Static variant on a 16×16 block matrix. Black boxes are diagonal block factorizations (POTRF),
dark gray boxes are TRSM operations, and the light gray boxes are the SYRK and GEMM operations.
The Static schedule introduces a gap on the (0, 1) processor although any of the updates labeled
A (rotated) could be scheduled there.

B and can therefore be executed before B. The second group of updates labeled
B are the updates following the panel factorization partially performed in the first
group labeled B. The gap before B could be filled by operations in A although the
optimal number and selection of operations will depend on many factors, including
the iteration number. It is impractical, if not impossible, to construct a static
schedule which would fill such gaps.

A dynamic scheduling of tasks on the nodes would be more flexible and allow
local avoidance of spurious synchronizations. In order to investigate if removing
these spurious synchronizations reduces overall execution time, we designed and
implemented a scheduling mechanism which addresses these issues. We give a brief
description of the dynamic scheduling mechanism which we refer to as the Dynamic
variant. At the start of each iteration a list is created with information about all
the kernel operations (the tasks) that will execute in that iteration. The tasks are
ordered in the list in exactly the same order as they would be executed by the
Static variant. A pointer to the first unexecuted task is kept. The list is scanned
sequentially for the first ready task, starting from the first unexecuted task. Figure 5
visualizes an example task list (acronyms used in the figure: TRSM, SYRK, and
GEMM). One sees that the next task to execute would be the first ready GEMM task

S G G S . . .

First unexecuted task

G GT T G T

Done Ready Ready Ready Ready Ready

Fig. 5. Data structure for efficient dynamic scheduling.

since the data for the first TRSM task is unavailable.

4.5 Node Communication

Since all blocks are square they can be communicated as atomic units. In the
algorithms described below, all messages have size n2

b and are nb-by-nb submatrices.
Algorithm 4 shows how a single panel block (scaled block Aij) is communicated to
all its replicas in the remote West and South buffers. Communication starts at the

45

Algorithm 4 Communicate Wi(j) and Si(j) from iteration j

1: Let processor (pi, qj) be the processor that holds block Aij

2: if I am on row pi and need Wi(j) for some update then
3: if I am processor (pi, qj) then
4: Wi(j)← Aij

5: else
6: receive(Wi(j), WEST)
7: end if
8: send(Wi(j), EAST) if needed for some update on EAST neighbour
9: end if

10: Let processor (pi, qi) be the processor that holds block Aii

11: if I am on column qi and need Si(j) for some update then
12: if I am processor (pi, qi) then
13: Si(j)←Wi(j)
14: else
15: receive(Si(j), NORTH)
16: end if
17: send(Si(j), SOUTH) if needed for some update on SOUTH neighbour
18: end if

root process (pi, qj) that owns the scaled panel block Aij . The block is passed on
from west to east until it reaches process (pi, qi) that owns the diagonal block Aii.
This process then splits the communication into a north to south transfer to fill the
replicas of the South buffer. Both communications continue in parallel. At the end
of this procedure, processors (pi, ∗) have their copy of Wi(j) and processors (∗, qi)
have their copy of Si(j).

All communication is performed using non-blocking MPI routines. The algorithm
is executed for all the blocks of W and S concurrently and asynchronously. MPI
polling is used to discover transfer completion and to resume the corresponding
algorithm instance.

Algorithm 5 Communicate R from iteration j

1: Let processor (pj , qj) be the processor that holds block Ajj

2: if I am on column qj and need R for some scaling operation then
3: if I am processor (pj , qj) then
4: R← Ajj

5: else
6: receive(R, NORTH)
7: end if
8: send(R, SOUTH) if needed for some scaling operation on SOUTH neighbour
9: end if

Communication of the R buffer is similar (Algorithm 5). The root process (pj , qj)
that owns the factored diagonal block Ajj starts a north to south transfer to build
the replicas of R on processors (∗, qj).

46

4.6 Considerations for Hybrid Systems

If the nodes of the DM system are shared memory (e.g. SMP or multi-core), an
additional level of scheduling is required if message passing within a node is to be
avoided. We use the term node-level scheduling to refer to the scheduling of the
tasks of an MPI process onto the processor cores of a DM node. One technique
to solve the node-level scheduling problem is to use multi-threaded BLAS on each
node and map only one MPI process to each node. This is one way the node-level
scheduling problem can be addressed in LAPACK and ScaLAPACK.

For the variants presented here it is probably not efficient to parallelize the ker-
nels, especially if nb is small. Dynamic scheduling of atomic kernel operations is
one way to expose parallelism to many threads. This strategy has been successfully
tested recently, by both the PLASMA and FLAME projects [Buttari et al. 2007;
Chan et al. 2007] in pure shared memory environments.

Even though several threads are computing there need not be more than one
thread that calls MPI routines. In fact, for the Cell BE it might be advisable
to let the PPE handle all MPI calls and delegate all computations to the SPEs.
Therefore, it is not necessary to have a thread-safe implementation of MPI in order
to use algorithms and methods discussed here.

5. COMPUTATION-COMMUNICATION OVERLAP EVALUATION

In what follows, we assume the reader is familiar with concepts such as blocking/non-
blocking, send/receive requests, and other basic MPI terminology. For definitions
see the MPI standard documents ([MPI Forum 1995]).

On many systems there is separate hardware for communication and computation
that execute concurrently. The extent to which this parallelism can be exploited
is highly dependent on the machine and system software. We therefore present an
evaluation of the overlap capabilities of our target machine in this section.

With MPI, overlap is enabled by using non-blocking primitives for point-to-point
communication (the MPI standard interface does not define any non-blocking col-
lective operations). When the network controller detects an incoming message it
must know where to store it. If a process has posted a receive the MPI library
could instruct the network controller to place the message directly into the buffer
supplied by the user. If the process has not yet posted a receive when an incoming
message is detected then either the message transfer must be delayed or some tem-
porary buffer must be allocated. These two options result in two different types of
message transfer protocols:

(1) The eager protocol: allocate a temporary buffer into which the message is
received, and copy from the temporary buffer to the receive buffer when the re-
ceive is posted. The eager protocol is used to improve latency of small messages
at the cost of reduced bandwidth due to the extra memory copy operations.

(2) The rendezvous protocol: the sender and receiver handshake to make sure a
receive buffer is available. Transfer of data directly into the receive buffer
can thus be guaranteed and this protocol is used for large, bandwidth limited
messages.

The eager protocol allows for hardware parallelism but costs at least one extra

47

memory copy. The rendezvous protocol allows overlap on the sending side but not
on the receiving side unless the receive is non-blocking too. We therefore conclude
that the use of non-blocking send and receive is critical as only then is overlap
practically possible on both sides of the communication.

An important feature of an MPI implementation is independent progress [Brightwell
and Underwood 2004], which gives an MPI implementation the capability of per-
forming communication while the user process is not executing an MPI routine.
An MPI implementation that supports independent progress can actually overlap
communication with computation and such an implementation is thus preferred.

5.1 Micro-Benchmarks

We designed two micro-benchmarks on our target machine to investigate which type
of protocol is used in what situation and also to measure the amount of speedup
that we can realistically achieve.

In both benchmarks we combine the execution of one or several GEMM updates
with the transmission of a message. In all cases we used two processes on separate
nodes and the computation of a GEMM update with the chosen parameters took
approximately Tcompute = 544µs. We denote the time to send a message of any
particular size Tcommunicate.

T
im

e

Receive

SendSend

Wait Receive

Eager

Wait Wait

C
om

pu
te

C
om

pu
te

C
om

pu
te

C
om

pu
te

C
om

pu
te

C
om

pu
te

Transfer

Handshake

T
im

e

Fig. 6. Two micro-benchmarks to evaluate the MPI library overlap capabilities. Left: a test for
the use of an eager protocol. Right: a test for independent progress.

5.1.1 Benchmark A: Eager versus Rendezvous. This benchmark is designed to
identify which type of protocol is used depending on the message size and it is visu-
ally described in Figure 6 (left). Two processes, sender and receiver, each compute
one GEMM update. The sender starts a non-blocking send prior to starting a GEMM
computation and waits for it to complete after its GEMM computation completes. The
receiver starts a blocking receive at the end of its GEMM computation. If an eager
protocol is used, we would expect the time for both processes to be approximately

max(Tcompute, Tcommunicate)

since the communication would be concurrent with the computation. This expected
execution time is marked with a dashed curve in Figure 7. In the same figure, the
solid curve marks the measured time. Clearly, up to about 32 KB the total time
is just above the time to compute, whereas for larger messages it is closer to the

48

0 20 40 60 80 100 120 140 160
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Sender

Message size (KB)

T
im

e
(m

s)

Compute + Wait
Theoretical

0 20 40 60 80 100 120 140 160
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Receiver

Message size (KB)

T
im

e
(m

s)

Compute + Wait
Theoretical

Fig. 7. Results for Benchmark A.

sum of the compute and communicate times. We can be sure, based only on these
results, that for messages up to 32 KB the system uses an eager protocol. For larger
messages a rendezvous protocol is probably used. However, the increased execution
time could also be explained by a lack of independent progress.

5.1.2 Benchmark B: Independent Progress and Speedup. This benchmark is de-
signed to discover if the MPI implementation supports independent progress and
also allows us to assess the practically achievable speedup of overlapping commu-
nication with computation (see Figure 6 (right) for description). Both processes
now compute a GEMM twice and the receiver starts the receive between the two
computations and waits for it to complete after the second computation. If a ren-
dezvous type protocol is used, then the time for both processes in the presence of
independent progress is expected to be

Tcompute + max(Tcompute, Tcommunicate).

This is marked with a dashed curve in Figure 8. As with the previous benchmark,

0 20 40 60 80 100 120 140 160
1.05

1.1

1.15

1.2

1.25

1.3
Sender

Message size (KB)

T
im

e
(m

s)

Compute + Wait
Theoretical

0 20 40 60 80 100 120 140 160
1.05

1.1

1.15

1.2

1.25

1.3
Receiver

Message size (KB)

T
im

e
(m

s)

Compute + Wait
Theoretical

Fig. 8. Results for Benchmark B.

49

the measured times are marked with a solid curve. There are no major deviations
from the expected times and the difference on the expected flat part indicates that
overlap slightly affects computation time. This indicates that 90 − 95% of the
communication overhead is eliminated on both sides of the communication.

6. PERFORMANCE RESULTS

The performance and scalability of the three algorithm variants were evaluated on
the Sarek cluster at the High-Performance Computing Center North (HPC2N) in
Umeå, Sweden. The Sarek cluster has 192 nodes with dual AMD Opteron 248
(2.2 GHz) processors. The nodes are connected with a Myrinet 2000 high speed
interconnect with the MPI library MPICH-MX version 1.2.7 capable of point-to-
point communication with roughly 230 MB/s bandwidth. Each node has 8 GB
of memory and the BLAS library we used was GotoBLAS version r1.12. All the
tests were performed with a distribution and algorithmic block size of nb = 100.
The Dynamic variant executed nearly identically as fast as the Static variant. For
this reason, we omit reporting on the performance and scalability of the Dynamic
variant.

For large problems the time spent in GEMM operations completely dominate the
time spent in all other operations as well as the idle time and communication
overhead. Therefore, if two algorithms have different GEMM performance the one with
the highest performance will eventually outperform the other. Hence, we focus our
attention on small and medium sized problems to highlight the differences amongst
our DSBP algorithms and their relation to PDPOTRF in ScaLAPACK. However, large
scale problems are also tested to make sure performance does not degrade.

Below, the performance of each kernel is examined. In addition, the communi-
cation system’s characteristics are determined and discussed. The section ends by
comparing our measured performance to our models of execution showing that the
Static variant has a near-optimal scheduling of tasks on the nodes for medium and
larger sized problems.

6.1 Kernel Performance

Since the operands to each of the four kernels are stored as contiguous blocks
of a known size, the execution time of these kernel routines can be accurately
approximated by a simple benchmark. There is little variability in the performance
of a kernel routine except for where in the memory hierarchy the operands are at
the time of the invocation.

To get a fair estimate of the performance of each kernel under a realistic scenario
(e.g., the operands are not optimally placed in the memory hierarchy), the time
spent in each kernel during the execution of Basic was measured and averaged over
the total number of their invocations. The results of these tests are reported in
Table I. Note the relatively poor performance of POTRF. The reason for this is that
LAPACK uses a level 2 kernel factorization routine POTF2. Furthermore, the early
flattening of the performance is indicative of a mismatch between the blocksize
and/or algorithm with the BLAS implementation.

We have not optimized the kernels to take advantage of non-simple block storage
formats. In all measurements we used LAPACK and BLAS routines. It is therefore
important for us to investigate the performance of each of the these four employed

50

Kernel flops Time (µs) Gflops/s
POTRF n3

b/3 192 1.74
TRSM n3

b 350 2.86
SYRK n3

b + n2
b 318 3.18

GEMM 2n3
b 565 3.54

Table I. Kernel performance figures (nb = 100).

20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

Block Size NB

P
er

fo
rm

an
ce

 (
G

flo
ps

/s
)

GEMM
SYRK
TRSM
POTRF

Fig. 9. Performance of kernels with respect to block size.

routines (see Figure 9). It also justifies the choice of nb = 100 for the other tests,
because at this block size the performance of the GEMM routine is almost flat.

6.2 Communication Performance

An important characteristic of a DM machine is its message passing performance.
In our case, it is the MPI implementation MPICH-MX that we benchmark. We use
the communication model

ts + twm

for an m-word message and estimate the parameters ts and tw by experimentation.
The startup cost (ts) and inverse bandwidth (tw) were determined by fitting this
model to a ping-pong benchmark (see Table II for results). Note that the latency

ts 29.6 µs
tw 34.6 ns

Table II. The communication parameters for the Sarek cluster.

is almost 1000 times higher than the inverse bandwidth. Even so, for the chosen
block size of nb = 100 the block transmission time will be approximately 10 times
the latency.

51

6.3 Absolute Performance

We tested Basic and Static as well as the ScaLAPACK full storage PDPOTRF routine
on various mesh and problem sizes. The largest test was on a 12× 12 mesh and a
matrix of order 110000. In Figure 10, we report the performance per processor on
the 12× 12 mesh.

10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

2.5

3

3.5

4

N (x1000)

G
flo

ps
/s

 p
er

 p
ro

ce
ss

pr
Absolute performance on a 12−by−12 mesh

Static
Basic
ScaLAPACK

Fig. 10. Absolute performance per processor of Basic, Static, and PDPOTRF on 12 × 12 mesh for
various problem sizes.

6.4 Modeled Versus Measured Performance

In this section, we model the execution of Basic and Static to support our claim of
the near-optimality of the Static schedule.

6.4.1 Models of Basic and Static. Inter-node data dependencies are handled via
message passing and intra-node data dependencies by the ordering of the operations.
The execution time is determined by the speed of the kernels, the communication
overhead, and the inter-node dependencies. Since the kernels are assumed to be
optimized, a parallel algorithm should minimize the impact of the communication
and other overheads. Therefore, we model the performance of Basic and Static
by simulations to see if our algorithms meet this expectation. We do not model
communication overhead or other overheads besides computation since we wish to
compare our performance with an ideal machine where overhead is not an issue.
This is one way to quantify the otherwise so elusive overhead component in parallel
algorithms.

6.4.2 Comparisons. In Figure 11, a comparison on 36 processors (6 × 6 mesh)
is presented. The measured performance for Static is very close to the simulated
performance for medium to large problems. However, Basic is not close to its simu-
lated performance showing that communication overhead is a significantly limiting
factor for this less efficient algorithm.

52

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

2.5

3

3.5

N

G
flo

ps
/s

 p
er

 p
ro

ce
ss

or

Static
Basic
Static (sim)
Basic (sim)

Fig. 11. Comparisons between the simulated performance and the measured performance for Basic
and Static on 36 processors arranged in a 6× 6 mesh.

Let T denote the parallel execution time (assumed equal for all Pr ·Pc processors
due to synchronization). The execution time can be partitioned into four compo-
nents for each processor k (0 ≤ k < Pr · Pc):

T = T k
computation + T k

communication + T k
idle + T k

overhead.

Typically, the components of T differ for separate processors (hence the super-
script k). All three variants (Basic, Static, and Dynamic) use the same kernels
and the same distribution of computational work. They are instances of a big-
ger class of algorithm variants with the same kernels and distribution of work. If
T k

communication = T k
overhead = 0, a lower bound for the execution time is

max
k

T k
computation = T −min

k
T k

idle.

This quantity can be accurately estimated by the Static model since these conditions
hold by design.

In Table III, we illustrate the minimum simulated idle times on a 4 × 4 mesh.
Similar negligible idle times for the Static model have been observed for other
meshes as well. These negligible simulated idle times show that the Static schedule

Basic Static
N T mink T k

idle T mink T k
idle

5000 1.0 0.1135 0.9 0.0012
10000 6.8 0.4409 6.4 0.0015
15000 21.9 0.9822 20.9 0.0012
20000 50.7 1.7380 48.9 0.0015
25000 97.5 2.7110 94.8 0.0012
30000 166.9 3.9000 163.0 0.0015

Table III. Simulated execution time and minimum simulated idle time (both in seconds) for the
Basic and Static variants.

is near-optimal in theory. We now discuss our empirical evidence.

53

6.4.3 Empirical Evidence of Negligible Idle Times. Simulations of execution
strongly indicated that with no communication or other overhead the minimum
idle time observed over all processors is close to zero. The comparisons presented
in Section 6.4.2 predict that this should be observable in practice. The code was
instrumented to accumulate the time spent in synchronizing MPI calls. Table IV
shows that at least one processor has a small idle time component, i.e., it is active
almost all the time. A further reduction in parallel execution time would either re-
quire faster kernel execution, moving work between nodes, or reducing the number
of nodes and re-balancing the data layout. Such efficiencies are beyond the scope
of this paper.

Pr × Pc 4× 4 8× 8 12× 12

N T min Twait T min Twait T min Twait

10000 6.554 0.076 1.956 0.116 1.116 0.195
20000 49.719 0.289 13.354 0.092 6.520 0.155
30000 164.880 0.343 43.053 0.107 20.221 0.161
40000 392.612 0.923 100.500 0.109 45.948 0.160
50000 763.795 0.276 194.252 0.311 89.033 0.172
60000 1303.342 0.142 334.360 0.130 150.797 0.211
70000 521.126 0.138 237.592 0.266
80000 783.428 0.147 356.522 1.080
90000 1123.918 0.119 503.045 1.117
100000 692.181 0.400
110000 921.571 0.199

Table IV. Measured time in synchronizing code (e.g., MPI wait routines). The columns labeled
min Twait contain the smallest measured waiting time over all the processors.

The results in Table IV demonstrate why the Dynamic variant did not outperform
the Static variant. Reducing idle time is the primary benefit of a dynamic schedule,
but since the Static variant is near optimal in this regard only small improvements,
if any, are possible.

7. SCALABILITY

Fixed size scaling (strong scalability) examines how performance degrades when
more processors are used to solve a problem of fixed size. The performance per
processor should ideally remain constant but in practice it will decrease as a conse-
quence of increased overhead. Based on Figure 12 we conclude that Static is more
scalable than Basic. The advantage of overlapping iterations is more apparent when
a large number of processors solve a small problem.

Under memory constrained scaling the amount of available memory is assumed
to scale linearly with the number of processors and the problem size is scaled so
that the consumed memory is kept constant per processor. An algorithm has a
good memory constrained scalability if it can maintain a constant performance
per processor. For Cholesky factorization, which operates on O

(
N2

)
memory, the

problem size N must be scaled with a factor
√

p2/p1 when the number of processors
scales from p1 to p2 (see Figure 13). The memory constrained scalability of all tested
algorithms was excellent.

54

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
Fixed Size Scaling Comparison with N = 10,000

of processors

G
flo

ps
/s

 p
er

 p
ro

ce
ss

or

Static
Basic
Static (sim)

Fig. 12. Performance on various mesh sizes for a fixed problem size.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
Memory constrained scaling (~429 MB/process)

of processors

G
flo

ps
/s

 p
er

 p
ro

ce
ss

or

Static
Basic
ScaLAPACK

N = 90000N = 60000N = 30000

Fig. 13. Memory constrained scaling (with full storage requiring ≈ 429 MB per process).

The isoefficiency function [Grama et al. 1993] maps the number of processors to
problem size. It tells how much the problem size must be scaled up to maintain
a constant efficiency. In Figure 14, we show curves which are similar to the iso-
efficiency curves but instead of comparing parallel execution time with the best
serial implementation we measure efficiency as performance per processor. With
this metric, we conclude that Static is far more scalable than Basic.

8. CONCLUSIONS AND FUTURE WORK

We presented the Distributed SBP format and showed that it is possible to achieve
the same or better performance for packed storage Cholesky factorization compared
to full storage. The Static variant has a 5−55% higher performance than the Basic
variant for matrices of size N between 5000 and 10000 on 4–49 processors. In
addition, the Static variant is significantly more scalable than the Basic algorithm

55

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20
Fixed Performance Scaling with 2.7 Gflops/s per Processor

of processors

N
 (

x1
,0

00
)

Static
Basic
Static (sim)

Fig. 14. Problem size required to achieve a fixed performance per processor of 2.7 Gflops/s.

for fixed problem sizes and is also much better to maintain a constant FPU efficiency
as the number of processors increase.

Models of execution that assume no parallel overhead except processor idling
support that the Static variant is close to the optimum schedule on our target DM
machine. Based on these models we also conjecture that the Static variant is capable
of nearly completely overlapping the communication with computation. Important
characteristics of our target machine include its ability to reach near peak perfor-
mance on small Level 3 BLAS operations and a low overhead MPI implementation
capable of asynchronous communication with independent progress. The presented
algorithms should perform well on other machines with similar characteristics.

Since the Static and Dynamic variants give similar performance, the simpler
Static variant is sufficient. A dynamic scheduling similar to the Dynamic variant
could provide efficient scheduling on hybrid systems with SMP or multi-core nodes.

There is frequent polling of the MPI layer in order for the communication al-
gorithm to detect the completion of requests. This overhead would be avoided if
the MPI interface and various MPI implementations supported callbacks when a
request completes.

The scheduling of tasks in the Basic variant is described by an outer control loop
and inner loops to traverse the blocks of the matrix. The Static variant is more
complicated with a necessary preamble (see lines 1–10 of Algorithm 3) before the
main control loop. The Dynamic variant is yet more complicated, with a dynamic
rearrangement of the control loop body of the Static variant. An optimal schedule
is likely to require a rearrangement across several iterations of the control loop. It
is difficult to imagine there is any practical way of coding such an optimal schedule
without using dynamic scheduling.

REFERENCES

Agarwal, R. C. and Gustavson, F. G. 1988. A parallel implementation of matrix multiplica-
tion and LU factorization on the IBM 3090. In Aspects of Computation on Asynchronous and
Parallel Processors, M. Wright, Ed. IFIP, North-Holland, Amsterdam, 217–221.

Agarwal, R. C. and Gustavson, F. G. 1989. Vector and Parallel Algorithms for Cholesky

56

Factorization on IBM 3090. In Supercomputing ’89: Proceedings of the 1989 ACM/IEEE con-
ference on Supercomputing. ACM Press, New York, NY, USA, 225–233.

Agarwal, R. C., Gustavson, F. G., and Zubair, M. 1994. A High Performance Matrix
Multiplication Algorithm on a Distributed Memory Parallel Machine Using Overlapped Com-
munication. IBM Journal of Research and Development 38, 6 (November), 673–681.

Baboulin, M., Giraud, L., and Gratton, S. 2005a. A Parallel Distributed Solver for Large
Dense Symmetric Systems: Applications to Geodesy and Electromagnetism Problems. Inter-
nation Journal of High Performance Computing Applications 19, 353–363.

Baboulin, M., Giraud, L., Gratton, S., and Langou, J. 2005b. A distributed packed storage
for large parallel calculations. Tech. Rep. TR/PA/05/30, CERFACS, Toulouse, France.

Brent, R. P. and Luk, F. T. 1982. Computing the Cholesky Factorization Using a Systolic
Architecture. Tech. Rep. TR 82–H521, Department of Computer Science, Cornell University,
Upson Hall, Cornell University, Ithaca, New York 14853. September.

Brightwell, R. and Underwood, K. D. 2004. An analysis of the impact of MPI overlap and
independent progress. In ICS ’04: Proceedings of the 18th annual international conference on
Supercomputing. ACM Press, New York, NY, USA, 298–305.

Buttari, A., Langou, J., Kurzak, J., and Dongarra, J. 2007. A Class of Parallel Tiled
Linear Algebra Algorithms for Multicore Architectures. Tech. Rep. UT-CS-07-600.

Chan, E., Quintana-Ortí, E. S., Quintana-Ortí, G., and van de Geijn, R. 2007. Super-
Matrix Out-of-Order Scheduling of Matrix Operations for SMP and Multi-Core Architectures.
In SPAA ’07: Proceedings of the Nineteenth ACM Symposium on Parallelism in Algorithms
and Architectures. San Diego, CA, USA, 116–125.

Choi, J., Dongarra, J. J., Ostrouchov, S., Petitet, A. P., Walker, D. W., and Wha-
ley, R. C. 1996. Design and implementation of the ScaLAPACK LU, QR, and Cholesky
factorization routines. Scientific Programming 5, 3 (Fall), 173–184.

Dackland, K., Elmroth, E., Kågström, B., and Van Loan, C. 1992. Parallel Block Fac-
torizations on the Shared Memory Multiprocessor IBM 3090 VF/600J. Int. J. Supercomputer
Applications 6.1, 69–97.

Dackland, K., Elmroth, E., and Kågström, B. 1993. A ring–oriented approach for block
matrix factorizations on shared and distributed memory architectures. In SIAM Conference
on Parallel Processing for Scientific Computing, R. S. et al, Ed. SIAM Publications, 330–338.

D’Azevedo, E. and Dongarra, J. 1998. Packed storage extension for ScaLAPACK. Tech.
Rep. UT-CS-98-385.

Dongarra, J. J., Duff, I. S., Sorenson, D. C., and van der Vorst, H. A. 1998. Numerical
Linear Algebra on High-Performance Computers. SIAM.

Geist, G. A. and Heath, M. T. 1985. Parallel Cholesky factorization on a hypercube multi-
processor. Tech. Rep. ORNL–6190, Oak Ridge National Lab., TN (USA). August.

Gerasoulis, A. and Nelken, I. 1989. Scheduling Linear Algebra Parallel Algorithms on MIMD
Architectures. In Parallel Processing for Scientific Computing. 68–95.

Golub, G. H. and van Loan, C. F. 1996. Matrix Computations, third ed. Johns Hopkins
University Press.

Goto, K. and van de Geijn, R. A. 2007. Anatomy of High-Performance Matrix Multiplication.
Accepted for publication in ACM Transactions on Mathematical Software.

Grama, A. Y., Gupta, A., and Kumar, V. 1993. Isoefficiency: measuring the scalability of
parallel algorithms and architectures. IEEE Parallel and Distributed Technology: Systems and
Applications 1, 3, 12–21.

Gustavson, F. G., Gunnels, J. A., and Sexton, J. C. 2007a. Minimal Data Copy for Dense
Linear Algebra Factorization. In PARA 2006: State of the Art in Scientific and Parallel
Computing, B. Kågström et al., Eds. Lecture Notes in Computer Science, LNCS 4699. Springer,
540–549.

Gustavson, F. G., Karlsson, L., and Kågström, B. 2007b. Three Algorithms for Cholesky
Factorization on Distributed Memory Using Packed Storage. In PARA 2006: State of the Art
in Scientific and Parallel Computing, B. Kågström et al., Eds. Lecture Notes in Computer
Science, LNCS 4699. Springer, 550–559. Also as IBM Technical Report RC24137.

57

MPI Forum 1995. MPI: A Message Passing Interface Standard. http://www.mpi-forum.org/.
O’Leary, D. P. and Stewart, G. W. 1985. Data-flow algorithms for parallel matrix compu-

tation. Communications of the ACM 28, 840–853.
Strazdins, P. 1998. A Comparison of Lookahead and Algorithmic Blocking Techniques for

Parallel Matrix Factorization. Tech. Rep. TR-CS-98-07, Canberra 0200 ACT, Australia.
van de Geijn, R. A. 1997. Using PLAPACK. MIT Press.

58

III

Paper III

Blocked In-Place Transposition with Application to
Storage Format Conversion

Lars Karlsson1

1Department of Computing Science and HPC2N, Umeå University
SE-901 87 Umeå, Sweden

larsk@cs.umu.se

Abstract: We develop a prototype library for in-place (dense) matrix storage for-
mat conversion between the canonical row and column-major formats and the four
canonical block data layouts. Many of the fastest linear algebra routines operate on
matrices in a block data layout. In-place storage format conversion enables support
for input/output of large matrices in the canonical row and column-major formats.
The library uses algorithms associated with in-place transposition as building blocks.
We investigate previous work on the subject of (in-place) transposition and the most
promising algorithms are implemented and evaluated. Our results indicate that the
Three-Stage Algorithm which only requires a small constant amount of additional
memory performs well and is easy to tune. Murray Dow’s V5 algorithm, which is a
two-stage semi-in-place algorithm that requires a small amount of additional memory
is sometimes a better choice. The write-allocate strategy of most cache-based com-
puter architectures appears to be the cause of an observed performance problem for
large matrices.

Key words: In-place transposition, storage format conversion, blocked storage for-
mats.

61

62

Blocked In-Place Transposition with
Application to Storage Format Conversion∗

Lars Karlsson†

larsk@cs.umu.se

UMINF 09.01

Department of Computing Science
Umeå University and HPC2N

S-901 87 Umeå, Sweden

January 26, 2009

Abstract

We develop a prototype library for in-place (dense) matrix storage for-
mat conversion between the canonical row and column-major formats and
the four canonical block data layouts. Many of the fastest linear algebra
routines operate on matrices in a block data layout. In-place storage for-
mat conversion enables support for input/output of large matrices in the
canonical row and column-major formats. The library uses algorithms
associated with in-place transposition as building blocks. We investigate
previous work on the subject of (in-place) transposition and the most
promising algorithms are implemented and evaluated. Our results indi-
cate that the Three-Stage Algorithm which only requires a small constant
amount of additional memory performs well and is easy to tune. Murray
Dow’s V5 algorithm, which is a two-stage semi-in-place algorithm that re-
quires a small amount of additional memory is sometimes a better choice.
The write-allocate strategy of most cache-based computer architectures
appears to be the cause of an observed performance problem for large
matrices.

∗This research was conducted using the resources of High Performance Computing Center
North (HPC2N).

†Funded in part by the VR grant 70625701. The work is also a part within an IBM Shared
University Research (SUR) grant.

63

Contents
1 Introduction 65

2 Matrix Storage Formats 66
2.1 Canonical Formats . 66
2.2 Block Formats . 66

3 Basics of In-Place Transposition 67
3.1 Algorithms for Square Matrices 67

3.1.1 Basic Algorithm . 68
3.1.2 Pad Transpose . 68
3.1.3 Cut Transpose . 68

3.2 Algorithms that Follow Cycles 69
3.3 Variants of Eklundh’s Algorithm 71
3.4 Other Algorithms . 72

4 Transposition as Matrix-Vector Multiplication 72

5 Blocked Transposition 73
5.1 In-Place Blocked Transposition 74

6 Matrix Storage Format Conversions 77

7 Three-Stage Algorithm for Transposition 77

8 Software 79

9 Computational Experiments 80
9.1 Machines . 80
9.2 Qualitative Study of Cycle-Following Algorithms 82
9.3 Evaluation of the Three-Stage Algorithm 83

9.3.1 Block Size . 83
9.3.2 Cutting and Other Overhead 84

9.4 An Evaluation of Transposition Algorithms 84

10 Conclusions and Future Work 88

A Reformulated Algorithms 90

64

1 Introduction
We develop a library for in-place matrix storage format conversion based on in-
place transposition algorithms. In-place transposition is a well-studied problem
[1, 15, 5, 4, 3, 2, 6, 14, 11]. Nonetheless, the growing gap between CPU process-
ing speed and memory bandwidth/latency unfortunately means that most of
the early algorithms for pure in-place transposition take one or more orders of
magnitude longer to execute than an out-of-place algorithm. The main reason is
that these in-place algorithms move individual elements that are not contiguous
in memory, thereby severely stressing the memory hierarchy. Several algorithms
address these issues [1, 5, 6, 14] but some are only semi-in-place and require a
relatively small but still non-constant amount of additional memory.

In-place transposition has applications in FFT algorithms [9, 8] and to con-
vert between the Column-Major (CM) and Row-Major (RM) canonical matrix
storage formats. However, our main motivation is to provide a software package
for fast in-place conversion between the canonical CM and RM formats and
various block data layouts (see Sections 2 and 6). Such block formats are of-
ten used instead of CM/RM in linear algebra kernels to improve data locality.
Conversion is required in order to support the familiar storage formats at the
interface level while internally working with block data layouts.

The paper is structured as follows. In Section 2, we recall the canonical
storage formats (CM/RM) and four canonical block storage formats. After
discussing storage formats, we continue by recalling some of the previously pub-
lished techniques for in-place transposition in Section 3. We focus on algorithms
that require only a few sweeps through the matrix since memory bandwidth is
the limiting factor. The connection to matrix-vector multiplication and Kro-
necker products is reviewed in Section 4, and in Section 5, we illustrate how
some types of permutations can be implemented using in-place transposition
algorithms. Implementations of these permutations are used as building blocks
for our storage format conversion library. Conversion between storage formats is
further discussed in Section 6 followed by a detailed description of the so-called
Three-Stage Algorithm for in-place transposition in Section 7. The Three-Stage
Algorithm has been previously mentioned in the literature [10, 14], but to our
knowledge it has not been carefully compared with other algorithms. We intro-
duce the conversion library in Section 8, followed by computational experiments
in Section 9 and conclusions in Section 10. Finally, in Appendix A we give de-
tails on how to re-formulate some previously published algorithms using the
notation developed in this paper.

We consistently use a zero-origin indexing convention, meaning that an m×n
matrix has m rows numbered 0, . . . ,m−1 and n columns numbered 0, . . . , n−1.
The top left element of the matrix is consequently A(0, 0) and the first storage
location is 0. We interchangeably use (storage) format and data layout to denote
the scheme by which a matrix is stored in memory.

65

2 Matrix Storage Formats

2.1 Canonical Formats
The two canonical storage formats typically used by compilers are the Row-
Major (RM) and Column-Major (CM) data layouts. Using either of these for-
mats, element A(i, j) of the m× n matrix A is stored at location

i + jm (CM), or
in + j (RM).

Figure 1 is an example of a 9 × 6 matrix in CM format. The elements are

1 10 19 28 37 46

2 11 20 29 38 47

3 12 21 30 39 48

4 13 22 31 40 49

5 14 23 32 41

6 15

50

24 33 42 51

7 16 25 34 43 52

8 17 26 35 44

0 9 18 27 36 45

53

Figure 1: A 9× 6 matrix in CM format.

numbered according to their location in memory. We use a polyline to highlight
the storage order of the elements. In all examples, the start of the sequence is in
the top left corner and the end is in the bottom right corner. In this particular
example, the sequence begins with 0, 1, . . . and ends with . . . , 52, 53.

There is a strong connection between the CM/RM formats and matrix trans-
position. For example, if A is stored in RM format it is indistinguishable from
AT stored in CM format. Hence, transposing A in CM format is the same as
converting it into RM format and vice versa.

2.2 Block Formats
It has long been understood that the CM and RM formats are suboptimal
for a large class of algorithms, including most of linear algebra, FFT, image
analysis, and more. The reason is that spatial data locality is only maintained
within columns (CM) or rows (RM), whereas many algorithms need locality in
both dimensions. For example, element A(i, j) and A(i + 1, j) are close in CM
(stride 1) but A(i, j) and A(i, j + 1) are far apart (stride m). Block formats
bring elements within certain submatrices (known as blocks) closer together.
Accessing a submatrix in a block format typically provides more spatial data
locality than accessing the same submatrix in CM or RM format [17].

Among the many proposed hybrid data layouts, the canonical block formats
have most of the benefits of hybrid data layouts (e.g., see [7, 17]) while keeping a
simple mapping from element to storage location (the so called storage mapping).
Assume that an m× n matrix is partitioned into an M ×N block matrix with

66

blocks of size mb × nb and that each block is stored contiguously in memory.
Typically, m = Mmb and n = Nnb. We call such a data layout a block format
and by choosing CM or RM as the storage format for the blocks and CM or RM
as the storage format for the elements inside each block we get the four canonical
block formats: CCRB, CRRB, RCRB, and RRRB. The suffix RB is an acronym
for Rectangular Block, the first letter indicates the storage format used for the
blocks and the second letter indicates the storage format for elements inside a
block. For example, the RCRB format stores the blocks in RM format while
the elements inside each block are stored in CM format.

The element Ai1,j1(i2, j2) of the block matrix

A =




A0,0 · · · A0,N−1

...
. . .

...
AM−1,0 · · · AM−1,N−1




denotes the (i2, j2)-element of the (i1, j1)-block. It is the same as A(i1mb +
i2, j1nb + j2) and is stored at one of the following locations:

(j1M + i1)nbmb + (j2mb + i2) (CCRB)
(j1M + i1)mbnb + (i2nb + j2) (CRRB)
(i1N + j1)nbmb + (j2mb + i2) (RCRB)
(i1N + j1)mbnb + (i2nb + j2) (RRRB)

Figure 2 illustrates a 9 × 6 matrix (the same matrix as in Figure 1) stored in
CCRB format with blocks of size 3× 2.

1 10 19 28 37 46

2 11 20 29 38 47

3 12 21 30 39 48

4 13 22 31 40 49

5 14 23 32 41

6 15

50

24 33 42 51

7 16 25 34 43 52

8 17 26 35 44 53

0 9 18 27 36 45

Figure 2: A 9× 6 matrix in CCRB format.

3 Basics of In-Place Transposition

3.1 Algorithms for Square Matrices
Square n×n matrices are easier to transpose in-place than rectangular matrices.
We describe some well-known techniques related to square in-place transposition
[5].

67

3.1.1 Basic Algorithm

Element A(i, j) of a square n× n matrix in CM format is moved from location
i+ jn to location in+ j. Similarly, element A(j, i) moves from location in+ j to
location i + jn. Therefore, the diagonal elements are not moved at all, whereas
the off-diagonal elements A(i, j) and A(j, i) are swapped. Cache blocking must
be used to get good performance since in a naive implementation at least one
matrix is accessed with a large stride.

3.1.2 Pad Transpose

If a matrix is nearly square, we can pad the matrix so that it becomes square
and apply any square in-place transposition algorithm [5]. This is only practical
if we can use |m−n| ·max(m,n) storage locations directly following the matrix
in memory (something which is impossible in many codes).

Algorithm: PACK

for j = n−1 downto 1
 for i = m−1 downto 0
 [i+(j+x)*m] = [i+j*m]

Algorithm: UNPACK

for j = 1 to n−1
 for i = 0 to m−1
 [i+j*m] = [i+(j+x)*m]

Figure 3: Illustration of the PACK and UNPACK algorithms used to implement
pad and cut transposes.

The notation [x] in Figure 3 refers to the element at storage location x.

• If m > n, pad with x = m− n columns. After transposition, the padded
elements make up the x last rows of the matrix and are hence scattered in
memory. By applying the PACK algorithm (Figure 3) the padded elements
are removed and only the transposed original matrix remains.

• If instead n > m, pad with x = n − m rows by applying the UNPACK
algorithm (Figure 3). After transposition, the padded elements make up
the x last columns of the matrix and can be safely ignored.

Besides having to transpose a slightly larger matrix, the pad transpose also
requires an additional sweep through the matrix.

3.1.3 Cut Transpose

By removing instead of adding elements, the requirement on additional storage
directly following the matrix is not mandatory. This technique is called a cut
transpose [5].

• If m > n, cut away x = m− n rows by applying the PACK algorithm (first
making sure to save the cut-off elements). After transposition, the cut-off
elements make up the x last columns and can be copied back to their
correct locations.

68

• If instead n > m, cut away x = n − m columns and save the cut-off
elements. After transposition, the cut-off elements make up the x last rows
and room for them is created by the UNPACK algorithm. After unpacking,
the cut-off elements can be copied back to their correct locations.

The primary cost of a cut transpose is the extra sweep through the matrix.

3.2 Algorithms that Follow Cycles
Element A(i, j) is stored at location k = i + jm and after transposition it has
moved to location k̄ = in + j. There is a simple form for the mapping from k
to k̄:

k̄ = P (k) =
{

kn mod M if 0 ≤ k < M ,
M if k = M , (1)

where M = mn− 1 [3, 4]. The inverse mapping turns out to be more useful in
practice and it can be shown that

k = P−1(k̄) =
{

k̄m mod M if 0 ≤ k̄ < M ,
M if k̄ = M . (2)

Transposition is a permutation and every permutation can be factored into
a product of disjoint cycles. Due to the special structure of P−1 a cycle starting
at s has a companion cycle (or sometimes dual cycle) starting at M − s [3]. In
some cases, the two cycles coincide and s is said to be self-dual. A cycle leader is
any unique representative of a cycle (e.g., its minimum element). For example,
the cycle factorization of P−1 for the 5× 3 transposition problem is

(0)(1 5 11 13 9 3)(7)(2 10 8 12 4 6)(14).

The cycle leaders (the minimum elements) are 0, 1, 2, 7, and 14. There are
three singleton cycles: 0, 7, and 14 = M and two self-dual cycles. The first
cycle has leader s1 = 1 and companion leader M − s1 = 13, while the other
cycle has leader s2 = 2 and companion leader M − s2 = 12. Cycle-following
algorithms shift the elements of each cycle and previous research has focused
on how to reduce the overhead of finding the cycle leaders. There is basically
no spatial data locality when shifting a cycle, a fact that can be partly appreci-
ated by observing that the definition of P−1 is similar to that of a Park-Miller
linear congruential random number generator. Therefore, previously published
cycle-following algorithms are of little practical interest on today’s computer
architectures with deep memory hierarchies.

A single cycle is shifted efficiently by Algorithm 1 which uses the inverse
mapping P−1. The notation [x]y is used to denote the vector of y contiguous
elements starting at memory location xy (compare with Figure 3).

It turns out that self-dual cycles always meet in the middle [4, Theorem 7].
In other words, if one starts at s and M − s and simultaneously traverses both
cycles, then one will arrive at M − s outgoing from s at the same step that
one arrives at s outgoing from M − s. If the cycles are not self-dual, then one
will complete their cycles at the same step since they have the same length.
This symmetry result has been used in [3, 4, 11] to efficiently shift both cycles
simultaneously. See Algorithm 2 for an implementation.

69

Algorithm 1 Cycle Shifting
Input: The cycle leader s and the vector length L.
1: a1 := s
2: t := [a1]L
3: a2 := P−1(a1)
4: while a2 6= s do
5: [a1]L := [a2]L
6: a1 := a2

7: a2 := P−1(a1)
8: end while
9: [a1]L := t

Algorithm 2 Simultaneous Cycle and Companion Cycle Shifting
Input: The cycle leader s, M = mn− 1, and the vector length L.
1: a1 := s

â1 := M − s
2: t := [a1]L

t̂ := [â1]L
3: a2 := P−1(a1)

â2 := M − a2

4: loop
5: if a2 = s then
6: The cycle and its companion are distinct.
7: [a1]L = t

[â1]L = t̂
8: break
9: end if

10: if â2 = s then
11: The cycle is self-dual.
12: [a1]L = t̂

[â1]L = t
13: break
14: end if
15: [a1]L := [a2]

[â1]L := [â2]
16: a1 := a2

â1 := â2

17: a2 := P−1(a1)
â2 := M − a2

18: end loop

70

One approach to finding the cycle leaders is to scan through the elements
and use a boolean table with mn entries to record which elements have been
moved. The cycle leader test reduces to a table lookup. This approach is
memory intensive for floating point matrices unless the table can be embedded
into an unused bit in each element.

An approach which does not require any additional memory uses the mini-
mum element as the cycle leader. For each possible cycle leader s in the sequence
0, . . . mn− 1, traverse its cycle until either t < s is encountered (in which case s
is rejected) or s is encountered again, completing the cycle and showing that s
is the minimum element in its cycle. The computational cost of this approach is
significant and makes this approach impractical. However, the idea to traverse
the cycle to find its minimum element is useful and is called the general cycle
test in what follows.

Brenner [3] used number theory results to study the transposition permu-
tation. He showed that all elements in a cycle starting at s are divisible by
d = gcd(s,M) and not divisible by any other larger divisor of M [3, Theo-
rem 1]. We associate all φ(M/d) such elements with d, where φ is Euler’s phi
function. For each divisor d of M , successively larger multiples of d are con-
sidered as possible cycle leaders until all φ(M/d) elements associated with d
have been shifted. Experience has showed that Brenner’s algorithm can greatly
reduce the overhead of finding cycle leaders. We have adopted Brenner’s results
as the basis for our implementation.

In practice, cycle-following algorithms are hybrid methods that use a boolean
table of limited size, typically with only (m+n)/2 entries. The table covers the
first few possible cycle leaders. For larger candidates the general test is used.
Experience indicates that the transposition often completes before the table is
overrun.

ACM Algorithm 302 [2] can also be categorized as a cycle-following algo-
rithm. However, it uses a fundamentally different algorithm for shifting cycles.
The algorithm does not appear to be as efficient as either ACM Algorithm 467
or ACM Algorithm 513 [4].

3.3 Variants of Eklundh’s Algorithm
Eklundh [6] developed an algorithm for transposing large square 2n×2n matrices
out-of-core. His method uses only a small amount of additional in-core memory.
The general idea starts with a 2× 2 block partitioning:

A =
(

A11 A12

A21 A22

)
.

After transposing each block in-place recursively the storage contains the matrix
(

AT
11 AT

12

AT
21 AT

22

)
.

To complete the transposition the blocks AT
12 and AT

21 are swapped. Eklundh
pointed out that the entire process can be performed from the simple building
block of reading two rows into core memory, swapping some elements, and writ-
ing the two rows back in the same place. He combined this simple operation with

71

some intricate index manipulations and arrived at an ingenious non-recursive
implementation.

Eklundh’s algorithm has since been extended to rectangular matrices and
more general composite dimensions in [18]. Variants of Eklundh’s algorithm
appear to require a larger number of sweeps than cycle-following algorithms and
is therefore unlikely to be competitive when the matrix fits in main memory.
See [14] for more variants of Eklundh’s algorithm.

3.4 Other Algorithms
Murray Dow reviewed several transposition techniques in [5], including the pad
and cut transposes. Two block algorithms suitable for vector computers were
also presented. The first algorithm (V4), which Dow attributes to Markus
Hegland, applies when m = Mmb. The matrix is partitioned into an M × n
block matrix with blocks of size mb×1. The blocks are first transposed and then
their elements are reordered to complete the transposition. For an example, see
[5, Algorithm V4] or Appendix A.

Dow’s second block algorithm (V5) partitions both dimensions and applies
when D ≡ gcd(m,n) > 1 [5, Algorithm V5]. The dimensions are factored into
m = Dmb and n = Dnb and partitions the matrix into a square D ×D block
matrix with blocks of size mb×nb. The first step of the algorithm transposes each
block. This is reported to require mnb additional memory locations. The second
step transposes the block matrix using a square in-place transpose algorithm
requiring no additional storage.

A three-stage transposition algorithm is presented by Alltop in [1]. It also
factors m = Dmb and n = Dnb and partitions the matrix into a D ×D block
matrix with blocks of size mb × nb. The first step transposes the square D×D
block matrix. The second and third steps taken together transpose the individ-
ual blocks and are implemented by out-of-place rectangular transpositions using
Dnbmb = nmb and Dnb = n additional elements, respectively.

4 Transposition as Matrix-Vector Multiplication
The Kronecker product A ⊗ B of the m × n matrix A and the p × q matrix B
is an mp×nq matrix with aijB as its (i, j)-th element. The vec operator forms
a vector by stacking the columns of a matrix underneath eachother [12]. Thus
with a•j denoting the j-th column of the matrix A

vec A =




a•0
...

a•n−1


 .

The order of the elements corresponds to the layout in memory when A is
stored in CM format. Transposing A amounts to permuting vec A into vec AT

by multiplication with a permutation matrix

vec AT = Ln·m
m vec A.

The so-called vec-permutation matrix Ln·m
m is nm × nm and permutes an nm-

vector by taking every m-th element of the vector starting with the first, then

72

every m-th element starting with the second, and so on. An alternative defini-
tion of Ln·m

m is as the permutation matrix which verifies

Ln·m
m (en

j ⊗ em
i) = em

i ⊗ en
j ,

where, for example, en
i denotes the i-th unit vector (counting from zero) of

length m. Yet another definition is constructive:

Ln·m
m =

m−1∑

i=0

n−1∑

j=0

em
i (en

j)T ⊗ en
j (em

i)T .

The vec-permutation matrix L5·3
3 is illustrated in Figure 4. For a review of




1 · · · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · ·
· · · · · · 1 · · · · · · · ·
· · · · · · · · · 1 · · · · ·
· · · · · · · · · · · · 1 · ·
· 1 · · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · ·
· · · · · · · 1 · · · · · · ·
· · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · · 1 ·
· · 1 · · · · · · · · · · · ·
· · · · · 1 · · · · · · · · ·
· · · · · · · · 1 · · · · · ·
· · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · · 1




Figure 4: The vec-permutation matrix L5·3
3 . The dot-elements are zeroes.

the history and properties of the Kronecker product and the vec-permutation
matrix in particular see [12].

5 Blocked Transposition
With blocked transposition we consider algorithms that primarily read and write
contiguous storage locations. In this section, we explain how certain permuta-
tions can be implemented with in-place transposition algorithms (adapted to
move contiguous vectors) as building blocks.

We follow the approach of Fraser [8] and others and view storage locations
in a mixed-radix number system and consider digit permutations. We use the
notation [r1, r0](d1, d0) to specify the radices r1 and r0 as well as the digits d1

and d0 in a mixed-radix number system. Another way to specify mixed-radix
numbers is to subscript each digit with its radix. We stick to the former notation
since it separates radices from digits.

For numbers with four positions, which is primarily what we are using, the
definition of a mixed-radix number is

[r3, r2, r1, r0](d3, d2, d1, d0) = d3r2r1r0 + d2r1r0 + d1r0 + d0, (3)

73

where the radices are greater than one (ri > 1) and di ∈ {0, . . . , ri − 1}. With
these conditions, every decimal number x ∈ {0, . . . , r3r2r1r0 − 1} has a unique
representation. Note that r3 = r2 = r1 = r0 = 10 corresponds to our deci-
mal number system. The example below also illustrates an alternative way of
presenting mixed-radix numbers using subscripted radices:

[4, 6, 5, 7](2, 5, 3, 4) = 24563547 = 2 · (6 · 5 · 7) + 5 · (5 · 7) + 3 · (7) + 4 = 620.

Consider again the block matrix

A =




A0,0 · · · A0,N−1

...
. . .

...
AM−1,0 · · · AM−1,N−1




where each block is of size mb×nb. The element Ai1,j1(i2, j2) is stored (assuming
CM format) in the storage location with the mixed-radix number representation

[N,nb,M,mb](j1, j2, i1, i2) = (j1nb + j2)Mmb + (i1mb + i2). (4)

If the same element instead was stored at the location

[N,M,nb,mb](j1, i1, j2, i2) = (j1M + i1)nbmb + (j2mb + i2), (5)

then the matrix A would have been stored in the CCRB storage format.
There is a connection between mixed-radix numbers and certain vectors

built by Kronecker products. The number in (4) gives the position of the only
non-zero element in the vector

eN
j1 ⊗ enb

j2
⊗ eM

i1 ⊗ emb
i2

. (6)

Multiplying (6) with a particular permutation matrix

(IN ⊗ Lnb·M
M ⊗ Imb

)(eN
j1 ⊗ enb

j2
⊗ eM

i1 ⊗ emb
i2

) = eN
j1 ⊗ eM

i1 ⊗ enb
j2
⊗ emb

i2

commutes the two vectors in the middle of the Kronecker product (6) and the
position of the only non-zero element of the resulting vector is now given by the
number in (5).

Many algorithms can be expressed in terms of factorizations of the vec-
permutation Ln·m

m , including most algorithms discussed in this paper. See [14]
(and also [13]) for an extensive study on the subject with many existing and some
new algorithms and their relations to factorizations of the vec-permutation.

5.1 In-Place Blocked Transposition
In this section, we investigate three classes of permutations and their implemen-
tation with in-place transposition algorithms as building blocks. We show that
swapping two adjacent digits can be implemented by a set of independent in-
place transpositions that move contiguous vectors. Furthermore, we also show
that swapping two non-adjacent digits can be implemented by a set of inde-
pendent square in-place transpositions if the radices of the two digits are equal.
Finally, we show how to fuse two adjacent digit swaps together provided they

74

operate on different digits. This allows for an implementation which sweeps
through the matrix once instead of two times.

We start by looking at swapping two adjacent digits dk in (3). To indicate
which digits we intend to swap we will make use of a so-called transposition
pattern. The pattern (j, i, ·, ·), for example, simply indicates that we intend to
swap the third and fourth digits. A pattern for swapping two adjacent digits
is called regular. Without loss of generality we apply the pattern (·, j, i, ·) to
storage locations expressed in the mixed-radix number system

[r3, r2, r1, r0](d3, j, i, d0). (7)

All elements addressed by i ∈ {0, . . . , r1− 1} and j ∈ {0, . . . , r2− 1} (keeping d3

and d0 fixed) are interpreted as an embedded matrix of size r1 × r2. There are
d3d0 such embedded matrices in the example above, one for each choice of d3

and d0. We use this interpretation to highlight that swapping two digits can be
implemented by transposing all of the embedded matrices in-place.

In the example above, we wish to permute the elements so that the element
at location (7) is moved to location

[r3, r1, r2, r0](d3, i, j, d0). (8)

Equation (7), which is the storage location before permutation, expands to

d3r2r1r0 + d0 + (jr1 + i)r0, (9)

and (8), the storage location after permutation, expands to

d3r2r1r0 + d0 + (ir2 + j)r0. (10)

The only difference is in the parenthesized expressions. Notice the connection
between the parenthesized expressions and the CM storage mapping of the as-
sociated r1 × r2 embedded matrix (call it B). The expression (jr1 + i) in (9)
is the location of B(i, j) prior to transposition and the expression (ir2 + j) in
(10) is the location of the same element after transposition. The key point is
that we can implement an adjacent digit swap by adapting the memory refer-
ences of any (in-place or out-of-place) transposition algorithm and repeat the
algorithm for every choice of the digits d3 and d0. Moreover, from (10) we make
the following observation. With d3, i, and j given, the elements corresponding
to all choices of d0 are contiguous and maintain their relative order after the
permutation. Therefore, we can move all r0 such contiguous elements at once.
Figure 5 is an illustration of an embedded matrix associated with the regular
pattern (·, j, i, ·) when we interpret the matrix as being block-partitioned and
in CM format. In summary, swapping two adjacent digits amounts to a set of
independent (in-place) transpositions that move contiguous elements.

A pattern associated with swapping two non-adjacent digits is called sepa-
rated. An example of a separated pattern is (·, j, ·, i) which swaps the first and
the third digits. We use the mixed-radix number representation

[r3, r2, r1, r0](d3, j, d1, i)

and expand the storage location before the permutation to

d3r2r1r0 + d1r0 + (jr1r0 + i) (11)

75

2,1

0,0 0,1

1,0 1,1

2,0

Figure 5: An illustration of the 3 × 2 embedded matrix (inside a 9 × 8 block-
partitioned matrix) associated with [3, 2, 3, 3](1, j, i, d0), d0 = 0. Each shaded
vector of length three groups together the contiguous elements obtained by
varying the choice of d0 between 0 and r0 − 1 = 2.

and the storage location after the permutation to

d3r2r1r0 + d1r2 + (ir2r1 + j). (12)

The embedded matrices are r0 × r2. Note that the underlined term is slightly
changed. This implies that if r0 6= r2, then the first storage locations (i = j = 0)
differ before and after the permutation is applied. Therefore, it is impossible to
independently tranpose each embedded matrix in such cases. However, if the
embedded matrices are indeed square (i.e., r0 = r2 in the example) then the
two underlined terms are equal and it is easy to verify that independent in-place
transpositions of each embedded matrix is possible. We remark that swapping
two non-adjacent digits can be performed by a sequence of adjacent digit swaps
and that a Kronecker product factorization of the permutation matrix can be
used to express the same result. In summary, swapping two non-adjacent digits
(i.e., applying a separated transposition pattern) is possible to implement us-
ing square in-place transposition of the embedded matrices assuming they are
square.

The final type of transposition pattern that we have identified is the fused
pattern (j, i, j, i). The double set of indices indicate that there are two sets of
embedded matrices and the fused pattern is indeed just a combination of the
two regular patterns (j, i, ·, ·) and (·, ·, j, i). Each contiguous set of elements in
the former pattern corresponds to an embedded matrix in the latter pattern.
Hence, an implementation of the fused pattern could perform the transpositions
associated with the latter pattern (·, ·, j, i) while moving elements as a part of
the former pattern (j, i, ·, ·). The cost would essentially be half that of applying
the two patterns individually since each element is fetched from memory only
once. In Kronecker product notation, the idea of a fused pattern stems from

(Lr3·r2
r2

⊗ Ir1r0︸ ︷︷ ︸
(j,i,·,·)

)(Ir3r2 ⊗ Lr1·r0
r0︸ ︷︷ ︸

(·,·,j,i)

) = Lr3·r2
r2

⊗ Lr1·r0
r0︸ ︷︷ ︸

(j,i,j,i)

.

The table below summarizes the seven possible transposition patterns.

76

Pattern Comment Name
(·, ·, j, i) Pointwise
(·, j, i, ·) Regular
(j, i, ·, ·)
(·, j, ·, i) r2 = r0

(j, ·, ·, i) r3 = r0 Separated
(j, ·, i, ·) r3 = r1

(j, i, j, i) r1r0 is small Fused

We remark that the separated pattern (·, j, ·, i) can be implemented with lim-
ited additional memory as a sequence of out-of-place transpositions even if the
embedded matrix is not square. This fact is used in, for instance, Dow’s V5
algorithm.

6 Matrix Storage Format Conversions
All six of the storage formats reviewed in Section 2 can be succinctly described
by a mixed-radix number system as in Section 5 using a block-partitioned matrix
(i.e., m = Mmb and n = Nnb). The ability to permute the digits is therefore all
we need to do in-place conversion between each pair of formats. The six storage
formats and some of the permutations that convert between them are shown in
Figure 6. The following permutations are referred to in the diagram:

1 regular pattern (·, j, i, ·),

2 regular pattern (j, i, ·, ·),

3 regular pattern (·, ·, j, i).

The diagonal arrows in the middle of the diagram represent the fused pattern
(j, i, j, i) which is the combination of 2 and 3.

Conversion between two block formats with mismatching block sizes can be
implemented by first converting to CM/RM (whichever is closer in the lattice)
and from there to the output format. This is the strategy we use in our con-
version software. It is an open question whether special relationships between
mismatching block sizes (such as the output block size being a multiple of the
input block size) can be exploited to improve performance.

7 Three-Stage Algorithm for Transposition
Below we describe an interesting algorithm for in-place transposition, which was
mentioned already in [14] and brought to our attention by Fred Gustavson [10].
Bold radices and digits indicate which digits that are about to be swapped.

[N , nb , M , mb](j1, j2, i1, i2) Stage A
[N , M , nb , mb](j1, i1, j2, i2) Stage B1
[M, N , nb ,mb](i1 , j1, j2, i2) Stage B2
[M, N ,mb, nb](i1 , j1, i2, j2) Stage C
[M, mb, N , nb](i1 , i2 , j1, j2)

77

CM

2 2

1

3

(N, M, n, m)
CCRB

(N, M, m, n)
CRRB

32

(M, N, n, m)
RCRB

3
(M, N, m, n)

RRRB

1

(M, m, N, n)
RM

(N, n, M, m)

Figure 6: Conversion lattice showing six storage formats, their radices in a
mixed-radix number system, and some of the permutations (circled numbers)
that convert between them.

78

Assuming that mb and nb are reasonably large, say between 50 and 100 (see
Section 9.3.1), then the following item list includes some of the reasons to why
this algorithm can be expected to be efficient.

• Stage A results in N embedded matrices with vector length mb.

• Stage B1 results in one embedded matrix with vector length mbnb.

• Stage B2 results in MN embedded matrices that are small enough (mbnb

elements) to be transposed out-of-place.

• Stage C results in M embedded matrices with vector length nb (compare
with Stage A).

• Stages B1 and B2 can be fused, reducing the number of sweeps through
the matrix from four to three.

• Small cuts on the rows and/or columns can be used to ensure that the
block sizes mb and nb are suitable (neither too small nor too large).

• As few as three sweeps (no cuts) and at most five sweeps (cuts of both
rows and columns) through the matrix are required.

Note that all stages result in in-place transposition problems that are substan-
tially smaller than the original m× n problem.

The algorithm is easily understood with the help of the conversion lattice in
Figure 6. Stage A implements a conversion from CM to CCRB format, Stage B
converts from CCRB to RRRB, and finally Stage C converts from RRRB to
RM format (i.e., the matrix has been transposed). Take a 9 × 6 matrix with
blocks of size 3×2 as an example (Figure 1). Stage A converts to CCRB format
(Figure 2). Stages B converts from CCRB to RRRB (Figure 7). Finally, Stage C

10 11 12

6

13 14 15

7 8

16 17

19 20 21

28 29 30

22 23 24

31 32 33

25

34

26

35

37 38 39

47 48

40 42

49 50 51 52

43 44

53

41

46

543210

9

18

27

36

45

Figure 7: Configuration of a 9 × 6 matrix after Stage B. The matrix is now
transposed but in CCRB format (i.e., the original matrix is in RRRB format).

converts from RRRB to RM (Figure 8).

8 Software
We have developed a software package written in C99 for the purpose of provid-
ing fast in-place transposition of large rectangular matrices and in-place con-
version between storage formats. Some of the features of the package are listed
below.

79

2 3

11 12

4 5 6

13 14 15

7 8

16 17

20 21

29 30

22 23 24

31 32 33

25

34

26

35

38 39

47 48

40 42

49 50 51 52

43 44

53

41

10

19

28

37

46

0

9

18

27

36

45

1

Figure 8: Configuration of a 9 × 6 matrix after Stage C. The matrix is now
transposed and in CM format (i.e., the original matrix is in RM format).

• Portable since it is written in C99.

• Uses the Three-Stage Algorithm for transposition and cycle-following al-
gorithms for in-place permutation.

• Uses the ideas of Brenner [3] to prune the search for cycle leaders.

• Exploits square transposition algorithms when any intermediate matrix is
square.

• Automatically selects suitable block sizes mb and nb by finding the largest
divisor of m such that blow ≤ mb ≤ bhigh and similarly for nb.

• The parameters blow and bhigh enable tuning to a particular machine.

• Uses small cuts of rows and columns to give improved performance when
no appropriate block sizes can be chosen (for example, when m and/or n
are prime).

• Driver routines for in-place conversion back and forth between all 15 pairs
of these storage formats:

– CM/RM
– CCRB/CRRB
– RCRB/RRRB

9 Computational Experiments
Extensive experiments have been carried out on two different architectures. On
each machine, all cores of a node were reserved for the application and only
one core was actually used during each test. We present performance figures for
the Three-Stage Algorithm together with comparisons with Dow’s V5 algorithm,
Alltop’s three-stage algorithm, and out-of-place transposition. We also present a
qualitative study of various cycle-following algorithms on a large set of problems.

9.1 Machines
We have performed our experiments using two different machines at the HPC2N
facility in Umeå, Sweden. Since the execution of matrix transposition is ulti-
mately memory bound we have benchmarked both systems using two bench-
marks that are inspired by the STREAM benchmark [16]:

80

• Copy measures the time it takes to copy a large vector of double precision
numbers (y ← x).

• Scale measures the in-place scaling of a double precision vector (x← α·x).
The multiplication with a scalar is merely to hinder the compiler from
optimizing away the entire loop body. There should be plenty of spare
clock cycles available to hide the overhead of the multiplication.

It is important to notice that the benchmarks are not intended to measure the
peak hardware memory bandwidth but to establish the practical peak band-
width obtainable by our particular combination of hardware, compiler, and
compiler optimizations. Both benchmarks are implemented as one-statement
for-loops in C99 and verification of the assembler output shows that the compiler
does unrolling and vectorization. In contrast with the STREAM benchmark,
our code uses dynamically allocated memory and the vector size is determined
at runtime. This makes the benchmark more similar to a typical usage pattern.

We chose these two benchmarks to capture two fundamentally different usage
patterns. In an out-of-place transposition, the matrix is copied from one memory
area to another and then copied back. If the matrix is large, then the memory
written to does not reside in the cache. This usage pattern is captured by the
Copy benchmark. A cycle-following in-place transposition, on the other hand,
moves data around cycles. The memory that is written to was recently read
and hence is likely to be found in the cache. This usage pattern is similar to
that in the Scale benchmark.

Some characteristics of the two machines are given in Table 1. The bench-

Name Akka Sarek
Processor Dual Intel Xeon QC L5420 Dual AMD Opteron 248
Frequency 2.5 GHz 2.2 GHz

Memory 16 GB 8 GB
Compiler PathScale 3.1 PathScale 3.1
Switches -O3 -march=auto -O3 -march=auto

BM: Copy (tcopy) 4.845 ns (3098 MB/s) 6.731 ns (2265 MB/s)
BM: Scale (tscale) 3.067 ns (4925 MB/s) 4.708 ns (3240 MB/s)

Table 1: Characteristics of the HPC2N machines used for the experiments.

mark figures are the time divided by the length of the vectors. The Copy bench-
mark is roughly 58% slower than the Scale benchmark on Akka and roughly 43%
slower on Sarek.

Many cache-based systems use a write-allocate strategy when writing to
memory that is not cached. The write-allocate strategy means that the hard-
ware reads the cache line into cache prior to the write. This has the side-effect
that a write to uncached memory requires twice the memory bandwidth com-
pared to a memory read or a cached write. The vector extension SSE (used
on our machines) provides special instructions to write directly to memory (so-
called non-temporal instructions). Nonetheless, the Copy and Scale benchmarks
indicate that a dramatic difference can be observed.

81

9.2 Qualitative Study of Cycle-Following Algorithms
The general cycle test employed by many cycle-following algorithms (recall Sec-
tion 3) is one of the largest sources of overhead in such algorithms. To get
an idea of how significant this overhead may be and how it can be reduced
by using a hybrid method with a limited lookup table, we experimented with
three different algorithms using three different table sizes on all of the 61752
rectangular matrices m × n with m,n ∈ {2, . . . , 250}. We counted the number
of times (α) that P−1 was evaluated during a general cycle test. The number α
varies considerably between problems, so to get an overview we computed two
statistical quantities:

max
(α

mn

)
and avg

(α

mn

)
.

The maximum and average are taken across all 61752 problems. The ideal
scenario is for both of these to be close to zero. An average of one means that
we expect to calculate P−1 approximately twice as many times as necessary
(roughly half of them during the cycle shifting and the other half during the
general tests).

The algorithms we considered were ACM Algorithm 467 [3] (A467), ACM
Algorithm 513 [4] (A513), and a simplified variant of ACM Algorithm 467 that
does not take advantage of companion cycles (A467s). For each of these algo-
rithms the table sizes 0, (m+n)/2, and 100 were used. The results are reported
in Table 2. The worst case for A467 was 2.19 without any table, which is not

Algorithm A513 A467 A467s
Table Size 0 m+n

2 100 0 m+n
2 100 0 m+n

2 100

max
(

α
mn

)
6.89 2.77 3.40 2.19 1.46 1.58 4.28 3.14 3.31

avg
(

α
mn

)
1.79 0.72 0.78 0.42 0.07 0.07 1.24 0.24 0.27

Table 2: Comparison of the number of times that P−1 is evaluated as part of
general cycle tests for three hybrid cycle-following in-place transposition algo-
rithms using three different table sizes.

so alarming since evaluating P−1 is not so expensive. Looking at the average
values, going from no table to a table of size m+n

2 does bring a substantial re-
duction. For A467 the average is reduced by a factor of 6.0, for A467s the factor
is 5.17, while for A513 it is only 2.49. The range of problems studied above is
relevant in our context since the Three-Stage Algorithm with mb = nb = 50
requires the solution of transposition problems that are within the considered
range for all m,n ∈ {1, . . . , 12500}.

We also measured the number of cycles (β) for each of the problems. This is
an interesting problem characteristic which also varies considerably across the
problem space. We found that

max
(

β

mn

)
≈ 0.33 and avg

(
β

mn

)
≈ 0.01.

Thus, the average cycle length is approximately mn
0.01mn = 100.

82

9.3 Evaluation of the Three-Stage Algorithm
The performance of pointwise cycle-following algorithms is very poor due to
high overhead per element and a seemingly random memory access pattern.
Our experiments indicate that the execution time is typically between 5 to 10
times longer compared to the Three-Stage Algorithm. Therefore, we instead
compare with an out-of-place transposition and implementations of Dow’s V5
algorithm and Alltop’s three-stage algorithm.

We begin by evaluating different aspects of the Three-Stage Algorithm before
moving on to algorithm comparisons in Section 9.4.

9.3.1 Block Size

The block size can not be chosen freely since the possible block sizes depend on
the problem size. However, cuts can be applied to alter the problem size. It is
important to understand how the problem size impacts performance in order to
determine when it is economical to pay for the overhead of cutting. We designed
an experiment where we modified a fixed problem size so that both dimensions
are divisible by some common factor (the block size). By doing this for all block
sizes from 1 to 200 we get results for a collection of almost equally large problems
for a range of block sizes. By comparing the time per element (T

mn) instead of
actual execution time we reduce the impact of the different problem sizes. The
results on Akka displayed in Figure 9 show the total time as well as the time
for each of the three stages. The results on Sarek are qualitatively similar to
the results on Akka. There is a peak at mb = nb = 128 in Stage B which is

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 20 40 60 80 100 120 140 160 180 200

T
im

e
pe

r
el

em
en

t [
s]

Block size (mb = nb)

Matrix size: 5000x4800 (PathScale)

Stage A
Stage B
Stage C

Total

Figure 9: Performance breakdown on Akka of the Three-Stage algorithm on a
fixed problem (5000×4800) for all block sizes (mb = nb) in the range 1, . . . , 200.

likely caused by cache thrashing in the small out-of-place transpositions. Other
than that, a block size larger than 30 gives good performance whereas smaller
block sizes should be avoided, mainly due to the performance of Stage B which
eventually turns into a pointwise cycle-following algorithm when mb = nb = 1.

83

9.3.2 Cutting and Other Overhead

Cuts require an additional sweep over the matrix and will therefore impact
performance. Similar to our experiment with different block sizes we started
from a fixed problem size and a fixed block size and modified the problem size
to induce cuts of size 1 to 99 in both rows and columns. The performance of
the pre- and post-processing steps (the cuts) on Akka are reported in Figure 10
(the results on Sarek are qualitatively similar). Note that the performance is

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 10 20 30 40 50 60 70 80 90

T
im

e
pe

r
el

em
en

t [
s]

Cut size

Matrix size: 5000x4800, block size: 100 (PathScale)

Pre
Post

Figure 10: Performance on Akka of the pre- and post-processing steps during a
symmetric cut on a fixed problem (5000× 4800).

comparable to the three stages as reported in Section 9.3.1 and the introduction
of a cut costs alot whereas a large cut does not cost significantly more than a
small cut.

An interesting aspect of the implementation is the observed overhead in
the cycle-following part of the algorithm. We measured the time spent in cycle
shifting in addition to the total time and Figure 11 shows the results on Akka for
various block sizes. For larger block sizes the overhead is insignificant whereas
for smaller block sizes the implementation might be improved by introducing a
lookup table.

9.4 An Evaluation of Transposition Algorithms
There are many parameters that affect the performance of transposition algo-
rithms. Examples include the implementation of an algorithm, choice of com-
piler and settings, different optimizations and machine characteristics. The
problem size and the shape of the matrix also affect performance. Some prob-
lem sizes might require cuts or cause severe cache thrashing. Some algorithms
have additional tuning parameters such as block sizes and thresholds.

We compare the Three-Stage Algorithm, Murray Dow’s V5 algorithm, All-
top’s algorithm, and two implementations of out-of-place transposition: one
naive implementation and one tuned cache-blocked algorithm. We have per-

84

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 20 40 60 80 100 120 140 160 180 200

T
im

e
pe

r
el

em
en

t [
s]

Block size (mb = nb)

Matrix size: 5000x4800 (PathScale)

Shifting
Total

Figure 11: Performance breakdown on Akka of Stage A in the Three-Stage
algorithm on a fixed problem (5000× 4800). The time to do the actual shifting
is shown together with the total time, which includes finding the cycle leaders.
For larger block sizes the overhead is negligible but for some small block sizes
the overheads are significant.

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

1800x7200

2500x5100

3200x4000

3900x3300

5100x2500

7200x1800

T
im

e
pe

r
el

em
en

t [
s]

Matrix size

Memory: 100 MB (PathScale)

Three-stage
Alltop

Dow V5
Out-of-place

Tuned Out-of-place

Figure 12: Performance comparison on Akka using matrices of different shapes
that all require roughly 100 MB of memory.

85

formed many experiments on both machines to investigate and capture the
behaviour of each algorithm. We have selected representative data that cap-
ture most of what we found during experimentation. In the listing below, we
summarize some facts about our experiments.

• The block size for the Three-Stage Algorithm was set to mb = nb = 100 (a
suitable block size based on the results in Section 9.3.1) and all problem
sizes were multiples of 100. Thus, no cuts were required and a block size
of 100 was used for all executions.

• The common divisor D in Alltop’s algorithm and Dow’s V5 algorithm was
chosen optimally for each problem size.

• All experiments were repeated five times and only the best result was kept
in order to minimize the noise from system activities.

• The out-of-place algorithm was optimized by the compiler, which is capa-
ble of cache-blocking transformations.

• The tuned out-of-place algorithm is an automatically tuned implementa-
tion of a blocked transposition where different block traversal schemes and
cache block sizes were taken into account. We chose the best performing
implementation on a 1200 × 1800 test problem and that implementation
traverses the blocks and elements in row-major order and has a block size
of 16× 16.

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

5700x22800

8000x16100

10200x12800

12500x10400

16100x8000

22800x5700

T
im

e
pe

r
el

em
en

t [
s]

Matrix size

Memory: 1000 MB (PathScale)

Three-stage
Alltop

Dow V5
Out-of-place

Tuned Out-of-place

Figure 13: Performance comparison on Akka using matrices of different shapes
that each require roughly 1000 MB of memory.

We observed that the memory footprint and the shape of the matrix affected
performance significantly. We therefore performed experiments on matrices of
different shapes having roughly the same memory footprint. For matrices re-
quiring around 100 MB, the results on Akka are displayed in Figure 12. For

86

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 3.5e-08

 4e-08

 4.5e-08

5700x22800

8000x16100

10200x12800

12500x10400

16100x8000

22800x5700

T
im

e
pe

r
el

em
en

t [
s]

Matrix size

Memory: 1000 MB (PathScale)

Three-stage
Alltop

Dow V5
Out-of-place

Tuned Out-of-place

Figure 14: Performance comparison on Sarek using matrices of different shapes
that each require roughly 1000 MB of memory.

larger matrices of around 1000 MB, the results on Akka are shown in Figure 13
and the corresponding results on Sarek are in Figure 14.

Dow’s V5 algorithm is sometimes considerably faster than any of the other
algorithms, especially for smaller matrices. The Three-Stage Algorithm has a
relatively predictable performance (partly due to the fixed block size of mb =
nb = 100) and is among the fastest, especially for large matrices. Alltop’s
algorithm appears to be rather inefficient for large matrices (see Figures 13 and
14).

The performance of Dow’s V5 algorithm differs alot between small and large
matrices and also for different shapes of large matrices. We think that this
is partly due to data locality issues but also due to the worse performance of
out-of-place transformations in general. In Table 3, we show two simple models
of the execution time for each of the algorithms. The Three-Stage Algorithm

Algorithm Optimistic Pessimistic
Three-Stage 3mn · tscale —
Dow’s V5 mn · tscale + mn · tscale mn · tscale + 2mn · tcopy

Alltop 2mn · tscale + mn · tscale 2mn · tscale + 2mn · tcopy

Out-of-place 2mn · tcopy —

Table 3: Models of the execution time under both an optimistic and a pessimistic
scenario.

consists of three stages that are in-place (i.e., similar to Scale). The out-of-place
algorithms have two stages that are both out-of-place (i.e., similar to Copy).
The remaining algorithms have different models depending on the problem size.
Dow’s V5 algorithm has a first stage of in-place character and a second stage
which is an out-of-place transformation of Dmbnb = mnb elements at a time.
If the cache is large enough to retain the buffer until it is copied back, then

87

the usage pattern is similar to the Scale benchmark in that the written memory
resides in cache. This is the optimistic scenario. On the other hand, if the cache
is not large enough, then the second stage consists of two operations similar
to the situation in the Copy benchmark. This requires much more bandwidth
(more than twice since tcopy > tscale) and is the pessimistic scenario. A similar
analysis has been done for Alltop’s algorithm and all models are summarized in
Table 3. Note that a multilevel cache hierarchy means that a transition from
an optimistic to a pessimistic scenario will be gradual.

These models match the data pretty well. For example, most cases where
Dow’s V5 algorithm is considerably faster than the others are of the optimistic
type whereas the other cases tend to be of the pessimistic type. Table 4 shows
the prediction of each model on both machines. The figures in that table are
for comparison with Figures 12, 13, and 14.

Akka Sarek
Algorithm Optimistic Pessimistic Optimistic Pessimistic
Three-Stage 0.920 — 1.412 —
Dow’s V5 0.613 1.276 0.942 1.817

Alltop 0.920 1.582 1.412 2.288
Out-of-place 0.969 — 1.346 —

Table 4: Model predictions on both machines (all figures should be multiplied
by 10−8). These figures are for comparison with Figures 12, 13, and 14.

10 Conclusions and Future Work
We have demonstrated that it is possible to develop cache-efficient in-place
transposition algorithms based on generalized versions of previously known
cycle-following algorithms. The performance of such algorithms rivals the best
known semi-in-place algorithms by Alltop and Dow as well as out-of-place trans-
position. The write-allocate strategy of cache-based computer architectures,
although in theory partly alleviated with non-temporal instructions, can be a
performance problem in practice.

Conversion between the CM, RM, and the four block formats CCRB, CRRB,
RCRB, and RRRB can be performed in-place using our software package which
is based upon the techniques discussed in this paper. The implementation uses
the cut transpose technique to give reasonable performance for cases when m
and/or n do not enable a suitable choice of block size.

Evidence suggests that a hybrid implementation of the cycle-following kernel
could be used instead of the pure implementation we currently have in order to
reduce overhead.

Thread parallelization of independent subproblems and/or cycle shifts might
improve performance on multicore architectures. The best algorithm for a par-
ticular problem depends on many parameters and there is no single best algo-
rithm.

88

Acknowledgements
I would like to acknowledge Fred Gustavson for introducing me to the subject of
in-place transposition and storage format conversions. He pointed out the merits
of the Three-Stage Algorithm and together with Tadeusz Swirszcz he recently
published improvements to cycle-following algorithms [11]. I also acknowledge
Bo Kågström for his kind support, references to and comments on the subject,
and constructive criticism on drafts of this manuscript.

References
[1] W. O. Alltop. A Computer Algorithm for Transposing Nonsquare Matrices.

IEEE Transactions on Computers, 24(10):1038–1040, 1975.

[2] J. Boothroyd. Algorithm 302: Transpose Vector Stored Array. Communi-
cations of the ACM, 10(5):292–293, 1967.

[3] N. Brenner. Algorithm 467: Matrix Transposition in Place. Communica-
tions of the ACM, 16(11):692–694, 1973.

[4] E. G. Cate and D. W. Twigg. Algorithm 513: Analysis of In-Situ Transpo-
sition. ACM Transactions on Mathematical Software, 3(1):104–110, 1977.

[5] M. Dow. Transposing a Matrix on a Vector Computer. Parallel Computing,
21(12):1997–2005, 1995.

[6] J. O. Eklundh. A Fast Computer Method for Matrix Transposing. IEEE
Transactions on Computers, 21(7):801–803, 1972.

[7] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. Recursive Blocked
Algorithms and Hybrid Data Structures for Dense Matrix Library Software.
SIAM Review, 46(1):3–45, 2004.

[8] D. Fraser. Array Permutation by Index-Digit Permutation. Journal of the
ACM, 23:298–309, 1976.

[9] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005.

[10] F. G. Gustavson. The Relevance of New Data Structure Approaches for
Dense Linear Algebra in the New Multicore/Manycore Environments. Tech-
nical Report RC24599, IBM Research, 2008. (Also submitted to PARA’08).

[11] F. G. Gustavson and T. Swirszcz. In-Place Transposition of Rectangular
Matrices. In B. Kågström et al., editors, Applied Parallel Computing. State
of the Art in Scientific Computing, PARA 2006. Lecture Notes in Computer
Science, Vol. 4699, pages 560–569. Springer, 2007.

[12] H. V. Henderson and S. R. Searle. The vec-Permutation Matrix, the vec
Operator and Kronecker Products: a Review. Linear and Multilinear Al-
gebra, 9:271–288, 1981.

89

[13] J. R. Johnson. Matrix Transposition. Department of Mathematics
and Computer Science, Drexel University, Philadelphia, PA 19104, 1995.
(Manuscript).

[14] S. D. Kaushik, C. H. Huang, J. R. Johnson, R. W. Johnson, and P. Sadayap-
pan. Efficient Transposition Algorithms for Large Matrices. In Proceedings
of Supercomputing ’93, pages 656–665, 1993.

[15] S. Laflin and M. A. Brebner. Algorithm 380: In-situ Transposition of a
Rectangular Matrix. Communications of the ACM, 13(5):324–326, 1970.

[16] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current High
Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, December 1995.

[17] N. Park, B. Hong, and V. K. Prasanna. Tiling, Block Data Layout, and
Memory Hierarchy Performance. IEEE Transactions on Parallel and Dis-
tributed Systems, 14(7):640–654, 2003.

[18] H. K. Ramapriyan. A Generalization of Eklundh’s Algorithm for Transpos-
ing Large Matrices. IEEE Transactions on Computers, 24(12):1221–1226,
1975.

A Reformulated Algorithms
Below is the V4 algorithm by Murray Dow [5, Algorithm V4] expressed in our
notation:

[n , M , mb](j , i1, i2)
[M, n ,mb](i1, j , i2)
[M, mb, n](i1, i2, j)

The algorithm applies when m = Mmb with mb being the block size. The final
representation is correct since the memory location is

i1mbn + i2n + j = (i1mb + i2)n + j = in + j

which agrees with the memory location of the matrix in RM format. Both steps
can be performed in-place (regular transposition patterns).

Dow’s V5 algorithm [5, Algorithm V5], which applies when m = Dmb and
n = Dnb, can be expressed as:

[D, nb , D,mb](j1, j2, i1 , i2)
[D, mb,D, nb](j1, i2, i1, j2)
[D, mb, D, nb](i1 , i2, j1, j2)

The first step can not be performed in-place since nb and mb are different (or
otherwise the matrix would be square) and hence the embedded matrices are
rectangular. The second step can be performed in-place since the embedded
matrices are square.

90

The three-stage algorithm by Alltop [1], which applies when m = Dmb and
n = Dnb is expressed below:

[D, nb , D , mb](j1, j2, i1, i2) Stage A
[D, nb , D ,mb](i1, j2, j1, i2) Stage B1
[D, nb ,mb, D](i1, j2, i2, j1) Stage B2
[D, mb, nb , D](i1, i2 , j2, j1) Stage C
[D, mb, D , nb](i1, i2 , j1, j2)

Stage A has a separated pattern but since it is square it can be performed in-
place. Stages B1 and B2 together is actually just an adjacent digit swap in
another mixed-radix number system, namely

[D,nbD,mb](i1, j2D + j1, i2).

Stages B and C are also possible to perform in-place but Alltop suggested using
out-of-place transposition without mentioning the possibility of in-place trans-
position. The additional memory required is nbDmb for Stage B and only nbD
for Stage C.

91

92

IV

Paper IV

A Framework for Dynamic Node-Scheduling of
Two-Sided Blocked Matrix Computations

Lars Karlsson1 and Bo Kågström1

1Department of Computing Science and HPC2N, Umeå University
SE-901 87 Umeå, Sweden
{larsk, bokg}@cs.umu.se

Abstract: Blocked matrix algorithms are characterized by a high utilization of float-
ing point units. Memory bandwidth is not a critical issue due to the surface-to-volume
effect of level 3 algorithms. Factors limiting the performance of distributed algorithms
include communication overhead and spurious synchronizations. Load balance can be
achieved by using a 2D Block Cyclic Layout. To reduce communication overhead and
synchronizations, a node algorithm is often rearranged into an efficient but more com-
plicated variant. Frameworks for dynamic scheduling of node programs promise to
remove much of the complexities while producing performance improvements. We
present a design of a minimalistic framework for dynamic scheduling specifically tar-
geting two-sided blocked matrix computations. A model algorithm, nonscalable in its
straightforward implementation and with applications in modern algorithms for the
nonsymmetric eigenvalue problem is shown to be scalable in practice. The scalability
is enabled by the framework, specifically by the priority-based scheduling mechanism.

Key words: Distributed memory, dynamic scheduling, blocked matrix computations,
priority-based scheduling, wavefront algorithm.

95

96

A Framework for Dynamic Node-Scheduling
of Two-Sided Blocked Matrix Computations

Lars Karlsson and Bo Kågström

Department of Computing Science and HPC2N, Umeå University,
S-901 87 Umeå, Sweden, {larsk,bokg}@cs.umu.se

Abstract. Blocked matrix algorithms are characterized by a high uti-
lization of floating point units. Memory bandwidth is not a critical issue
due to the surface-to-volume effect of level 3 algorithms. Factors lim-
iting the performance of distributed algorithms include communication
overhead and spurious synchronizations. Load balance can be achieved
by using a 2D Block Cyclic Layout. To reduce communication overhead
and synchronizations, a node algorithm is often rearranged into an effi-
cient but more complicated variant. Frameworks for dynamic scheduling
of node programs promise to remove much of the complexities while
producing performance improvements. We present a design of a min-
imalistic framework for dynamic scheduling specifically targeting two-
sided blocked matrix computations. A model algorithm, nonscalable in
its straightforward implementation and with applications in modern al-
gorithms for the nonsymmetric eigenvalue problem is shown to be scal-
able in practice. The scalability is enabled by the framework, specifically
by the priority-based scheduling mechanism.

1 Introduction

Blocked matrix algorithms on possibly hybrid distributed memory machines (the
nodes themselves may be shared address space parallel computers) usually utilize
a large fraction of the machine’s peak performance [8]. The main limiting factors
are communication overhead and spurious synchronizations, both between and
within nodes. Communication overhead can often be reduced by rearranging the
node algorithm to expose overlap possibilities via nonblocking communication.
The overlap is then exploited in hardware via network interfaces with Direct
Memory Access (DMA) which ultimately reduces the communication overhead
[5]. Spurious synchronizations are handled similarly; by rearranging the node
algorithm, spurious synchronizations can be removed.

The added complexity increases the likelihood of programming errors. For
some algorithms it is also difficult to find an almost optimal schedule, which
typically depends on machine parameters, problem and block sizes.

To remove most of the extra complexity one may use dynamic scheduling.
In such dynamic implementations the execution order of different portions of
the node program (its tasks) is non-deterministic. Some recent work on dynamic
scheduling on shared address space and multicore architectures are [6,7,3,2].

97

Typically, a new bookkeeping overhead is introduced and some programmer as-
sistance in decomposing the program into tasks as well as guidance on enforcing
dependencies is required. A dynamic scheduling approach mainly benefits pro-
grammer productivity, maintainability, quality assurance, and portability. Per-
formance for particular problems may often be suboptimal due to unexploited
problem-specific optimizations.

In this contribution, we present a design of a minimalistic and efficient dy-
namic scheduling framework. The design is intended for blocked matrix com-
putations on hybrid distributed memory machines. The tasks are statically dis-
tributed to processes and dynamic scheduling is applied only on the nodes.

We introduce a model algorithm which appears as the computationally dom-
inant part in several algorithms related to the nonsymmetric eigenvalue problem
[4,10,9,1]. A straightforward parallelization on a 2D Block Cyclic Layout (BCL)
is nonscalable. This is not caused by load imbalance but rather by a suboptimal
execution order that introduces spurious synchronizations. We take advantage
of the priority-based scheduling in our framework to impose more efficient exe-
cution orders. The structure of an algorithm expressed in our framework retains
its overall sequential appearance.

2 Framework Design

Our framework design consists of four major parts:

1. An API to express a node program in a familiar sequential style while al-
lowing it to be executed by multiple threads.

2. An efficient algorithm and API that at runtime identifies data dependencies
from programmer declarations of read and write accesses to matrix blocks.

3. A scheduling and dependency tracking mechanism.
4. An API and scheduling mechanism for asynchronous matrix-based commu-

nication built on top of MPI [11].

2.1 Application Programming Interface

The main API of the framework is used to annotate a correct sequential node
program so that during execution it constructs a correct Directed Acyclic Graph
(DAG) representation of the program. The DAG is then scheduled onto a team
of threads consisting of one master thread (the thread that builds the DAG)
and w ≥ 0 worker threads. So far, in all experiments we have used w = 0
to demonstrate that the node-schedule greatly affects overall performance. The
master thread handles all calls to MPI functions which means that the MPI
implementation does not need to be thread-safe.

The framework considers two types of tasks: computation tasks (user-defined)
and communication tasks (fully integrated).

Computation tasks are constructed from a sequence of API function calls.
First a DAG node and its payload (user-defined task-specific information) are

98

created, then all task dependencies are constructed, and finally the node is com-
mitted to the scheduler.

The scheduling and execution of communication tasks is fully integrated
within the framework. Communication tasks are constructed using a separate
API for matrix-based communication. The structure of task creation is the same
as for computation tasks.

Data dependencies for a particular task are identified at runtime by the
method described in Section 2.2. During task construction a sequence of API
calls is used to specify read and write accesses to one or more matrix blocks.

2.2 Runtime Data Dependence Analysis

Due to the surface-to-volume effect in level 3 blocked matrix computations the
number of floating point operations is often far greater than the number of mem-
ory references. The difference is even greater between floating point operations
and matrix block references. This holds for the entire computation as well as
for all of its level 3 subcomputations (such as GEMM updates, recursive panel
factorizations, etc.) and is at the heart of the method described in this section.

Data dependencies may tightly couple otherwise independent parts of a large
program. Manual analysis could therefore be prohibitively difficult. Approxima-
tion of data dependencies at runtime using matrix blocks as the unit of memory
reference effectively solves the problem of coupling.

A task may request read-only access (read request) or read/write access
(write request) to a block. Concurrent reads are allowed but writes serializes.
Artificial DAG nodes (so called join nodes) are constructed to collect dependen-

d)

W W

R

W

RR

J

W

R R

J

W

a) b) c)

Fig. 1. Example showing how dependencies on a matrix block are efficiently con-
structed from a sequence of read and write requests (in this case: Write, Read, Read,
Write). Double outlines denote nodes which may get new arcs and are hence retained
as a part of the algorithm state. Bold arcs are the new dependencies that are added
during the current step of the algorithm.

cies from concurrent reads to a single block in anticipation of a write request.
This process is illustrated by example in Figure 1 and it allows the amount of
memory required by the algorithm to remain constant.

99

3 Application Example

A model algorithm (Algorithm 1: Sweep) with applications in the nonsymmet-
ric eigenvalue problem is described and analyzed in this section. We use our
node-scheduling framework to effectively turn the straightforward implementa-
tion of Sweep into an efficient, scalable implementation which has two antidiag-
onal wavefronts running through the matrix.

3.1 Model Algorithm: Sweep

Algorithm 1 details the distributed algorithm from a global perspective. We use a
special notation to specify which process or group of processes that are involved
in each operation. With P(i,j) we mean the process that owns element A(i,j).
The notation P(i,*) refers to the process row that owns the matrix row A(i,:)
and similarly P(*,j) refers to the process column that owns the matrix column
A(:,j). In each iteration, a diagonal block of size nb × nb is used to compute
an nb × nb orthogonal matrix Q and is modified in the process by applying QT

from the left and Q from the right. The iteration step is half the block size
(the distribution block size is nb) and the algorithm is assumed to start aligned
with a block. At every other iteration the diagonal submatrix is local to one
process (a local iteration, lines 7–15), whereas during the remaining iterations it
is distributed onto four processes (a cross-border iteration, lines 17–37).

After the orthogonal matrix Q has been computed and applied to the diag-
onal block (line 8 or 18) the corresponding block row and column must also be
updated in order to complete the orthogonal similarity transformation. Figure 2
shows the affected portions of the matrix during two iterations of the loop (one
local and one cross-border).

Fig. 2. Illustration of the model algorithm on a sample block matrix with N = 6nb.
Solid lines mark the region affected by iteration i = 1 + 2nb. The diagonal block is
used to compute Q and the corresponding block row and column are modified by the
subsequent updates. Dashed lines show the half-block step taken to the next iteration
(i = 1 + 2.5nb) and is also an example of a cross-border iteration.

All of the block row and column operations (copy, update, and send/receive)
are partitioned into independent suboperations at block boundaries. Each sub-

100

Algorithm 1 Sweep: Distributed Memory Model Algorithm. A is N × N and
is paritioned into an Nb ×Nb block matrix with blocks of size nb × nb.
1: local = true
2: for i = 1 to N-nb+1 step nb/2
3: a = i
4: b = i + nb - 1
5: c = i + nb/2 - 1
6: if local then
7: Copy A(a:b, a:b) to C on P(a, a)
8: Compute Q from C on P(a, a)
9: Copy C to A(a:b, a:b) on P(a, a)
10: Broadcast Q to P(a, *) from P(a, a)
11: Broadcast Q to P(*, a) from P(a, a)
12: Copy A(1:a-1, a:b) to W on P(*, a)
13: Copy A(a:b, b+1:N) to S on P(a, *)
14: Update A(1:a-1, a:b) = W*Q on P(*, a)
15: Update A(a:b, b+1:N) = Q’*S on P(a, *)
16: else
17: Gather A(a:b, a:b) to C on P(a, a)
18: Compute Q from C on P(a, a)
19: Scatter C to A(a:b, a:b) from P(a, a)
20: Partition Q into two column blocks: Q = [Q1, Q2]
21: Send Q2 from P(a, a) to P(b, b)
22: Broadcast Q1 to P(a, *) and P(*, a) from P(a, a)
23: Broadcast Q2 to P(b, *) and P(*, b) from P(b, b)
24: Partition W into two equal column blocks: W = [W1, W2]
25: Partition S into two equal row blocks: S = [S1; S2]
26: Copy A(1:a-1, a:c) to W1 on P(*, a)
27: Send A(1:a-1, a:c) to W1 on P(*, b) from P(*, a)
28; Copy A(1:a-1, c+1:b) to W2 on P(*, b)
29: Send A(1:a-1, c+1:b) to W2 on P(*, a) from P(*, b)
30: Copy A(a:c, b+1:N) to S1 on P(a, *)
31: Send A(a:c, b+1:N) to S1 on P(b, *) from P(a, *)
32: Copy A(c+1:b, b+1:N) to S2 on P(b, *)
33: Send A(c+1:b, b+1:N) to S2 on P(a, *) from P(b, *)
34: Update A(1:a-1, a:c) = W*Q1 on P(*, a)
35: Update A(1:a-1, c+1:b) = W*Q2 on P(*, b)
36: Update A(a:c, b+1:N) = Q1’*S on P(a, *)
37: Update A(c+1:b, b+1:N) = Q2’*S on P(b, *)
38: end if
39: local = not local
40: end for

101

operation is regarded as an atomic unit of computation (copy and update) or
communication (send/receive) and maps to one task.

We illustrate the general programming pattern of specifying a task and de-
pendencies for a left update on the local block A(il,jl) (see line 15). We have
abstracted from the details of the actual implementation to shorten the example
and make its structure more clear.

task = AllocateComputationalTask()
ProcessReadRequest(task, Q)
ProcessWriteRequest(task, A(il,jl))
// Fill in task payload...
SetTaskPriority(task, myrow+il*Pr + mycol+jl*Pc)
CommitTask(task)

3.2 Analysis

We derive an approximate upper bound on the efficiency of the straightforward
implementation. We assume that Q can be computed for free, that all updates
perform at a fixed performance of α flops/s. Communication and other sources
of overhead are not taken into consideration.

To perform all local block row updates (lines 14–15) over the course of the
algorithm sequentially requires

Tlocal ≈
Nbn

3
b(Nb − 1)

α

seconds. Similarly, to perform all cross-border block row updates (lines 34–37)
over the course of the algorithm sequentially requires

Tcross ≈
Nbn

3
b(Nb − 2) + n3

b

α

seconds. The same timing models hold for block column updates.
When the algorithm executes in parallel on a Pr × Pc mesh the updates

are assumed to be perfectly load balanced across the involved processes. This
means that local block row and column updates are parallelized over Pc and Pr

processes, respectively. The cross-border block row and column updates are par-
allelized onto 2Pc and 2Pr processes, respectively. Since, in every iteration, one
process has to participate in both a block row and a block column update these
two operations are effectively serialized. The estimate of the parallel execution
time of the straightforward implementation is therefore approximated by

Tp ≈
Tlocal

Pc
+

Tlocal

Pr
+

Tcross

2Pc
+

Tcross

2Pr
≤ 3Tlocal

2
Pr + Pc

PrPc
.

The sequential execution time is Ts = 2Tlocal + 2Tcross ≤ 4Tlocal which gives
the following approximate bound on the efficiency,

Ep ≤
8

3(Pr + Pc)
.

102

3.3 Dual Wavefront Implementation

In order to appreciate the number of allowed schedules we look at a single block
column of the matrix and consider a sequence of updates from the left. During
the first iteration, i=1 and the block column is updated on rows 1:nb. Dur-
ing the second iteration, i=1+nb/2 and the block column is updated on rows
1+nb/2:3*nb/2. The affected rows overlap and there is a true data dependence
that serializes the updates. The key thing to notice is that, while serialized on a
particular block column, all block columns are independent. The same reasoning
holds for the updates from the right, replacing block column with block row.

This allows for an algorithm where the number of applied updates differ be-
tween each block column/row at any given time. The dual antidiagonal wavefront
implementation described visually in Figure 3 is an example where different pri-
orities change the behavior and performance of the algorithm. Since all tasks

left updates
Wavefront of

Progress of
window

Direction of
progress

right updates
Wavefront of

possible updates
Boundaries of

Fig. 3. The two antidiagonal wavefronts (the upper one corresponds to updates from
the right, the lower one to updates from the left). The grey areas represent the parts
of the matrix that have pending updates at this point.

affect a single block in the matrix we use the global upper left coordinates (i, j)
of that block as input to the priority calculation. To obtain the dual antidiagonal
wavefront behavior we used the following priorities: computing Q has priority 0
(highest priority), an update from the left has priority i + j, and an update from
the right has priority i+j+N/2. Note that i+j is constant along an antidiagonal.

3.4 Some Computational Results

In this section, we present measurements of execution time in the form of parallel
efficiency. The Sarek cluster at HPC2N, used for our experiments, consists of 190

103

nodes with dual AMD Opteron 248 (2.2GHz) processors connected with Myrinet
2000, and 8GB of memory per node. We used MPICH MPI, one MPI process
per socket and only one thread per process (w = 0) since the processors have a
single core. We do not yet have an equivalent sequential implementation of the
Sweep algorithm but as an estimate of the sequential cost we accumulated the
time spent in kernel computations (copy and update) in each process. In Figure 4
and Figure 5, we present results for the straightforward implementation and the
dual antidiagonal wavefront implementation, respectively. In these figures, the

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
4 processes

N (x1000)

%

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
9 processes

N (x1000)

%

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
16 processes

N (x1000)

%

Efficiency
Bound on Efficiency
Minimum Wait
Overhead

Efficiency
Bound on Efficiency
Minimum Wait
Overhead

Efficiency
Bound on Efficiency
Minimum Wait
Overhead

Fig. 4. Efficiency, upper bound on efficiency, overhead, and minimum synchronization
overhead (Minimum Wait) for the straightforward implementation of Sweep (nb = 100).

following information is displayed.

– Efficiency. Serial execution time is estimated by summing the time spent in
kernel routines. To be precise, the efficiency is estimated by

Ep =
∑PrPc

i=1 T
(i)
kernel

PrPcTp
.

– Bound on efficiency. The bound on Ep from Section 3.2,

8
3(Pr + Pc)

,

104

– Minimum wait. On process i, the time spent in blocking MPI functions is
T

(i)
wait. The minimum wait is

mini T
(i)
wait

Tp
,

which approximates the impact of synchronization overhead.
– Overhead. This estimates the overhead due to the dynamic scheduling, such

as constructing the DAGs, MPI polling, etc. The overhead curve shows the
overhead as a percentage of the processor-time product (PrPcTp).

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
16 processes

N (x1000)

%

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
36 processes

N (x1000)

%

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
64 processes

N (x1000)

%

Efficiency
Minimum Wait
Overhead

Efficiency
Minimum Wait
Overhead

Efficiency
Minimum Wait
Overhead

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
100 processes

N (x1000)

%

Efficiency
Minimum Wait
Overhead

Fig. 5. Efficiency, overhead, and minimum synchronization overhead (Minimum Wait)
for the more efficient dual wavefront implementation of Sweep (nb = 100).

In Figure 4 (straightforward implementation), the relative efficiency comes close
to the theoretical upper bound. The overhead is a few percent and the minimum
wait is almost constant but still very significant. The straightforward implemen-
tation is not scalable and the reason is synchronization overhead. In Figure 5
(dual wavefront implementation), the relative efficiency peaks at around 70–80%.
A strong correlation between the minimum wait and the efficiency shows that
synchronization overhead is virtually eliminated by the dual wavefront algorithm
for large enough problems.

105

4 Conclusions

We have presented a design of a framework for dynamic node-scheduling of
blocked matrix computations on hybrid distributed memory machines. The frame-
work uses an efficient runtime data dependence analysis method. Priority-based
scheduling has been shown to extract much more of the available parallelism
than standard FIFO scheduling. For example, comparing the timings in Fig-
ures 4 and 5 for 16 processes and N = 20000 (the largest problem solved on 16
processes), we get a speedup of 2.75 in favor for the wavefront implementation
of Sweep. Going from 16 to 64 processes in Figure 5, we get another speedup of
3.32. We also see that N = 20000 is not large enough to reach practical peak on
64 processes.

References

1. B. Adlerborn, B. Kågström, and D. Kressner. Parallel Variants of the Multishift
QZ Algorithm with Advanced Deflation Techniques . In B. Kågström et al., editors,
Applied Parallel Computing: State of the Art in Scientific Computing, PARA 2006,
Lecture Notes in Computer Science, LNCS 4699, pages 117–126. Springer, 2007.

2. P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: a Programming Model
for the Cell BE Architecture. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, New York, NY, USA, 2006. ACM.

3. R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720–748, September 1999.

4. K. Braman, R. Byers, and R. Mathias. The Multishift QR Algorithm. Part I:
Maintaining Well-Focused Shifts and Level 3 Performance. SIAM J. Matrix Anal.
Applics., 23:929–947, 2001.

5. R. Brightwell and K. D. Underwood. An analysis of the impact of MPI overlap and
independent progress. In ICS ’04: Proc. of the 18th annual international conference
on Supercomputing, pages 298–305, New York, NY, USA, 2004. ACM Press.

6. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A Class of Parallel Tiled Linear
Algebra Algorithms for Multicore Architectures. Technical Report UT-CS-07-600,
University of Tennessee at Knoxville, 2007. Also as LAPACK Working Note 191.

7. E. Chan, E. S. Quintana-Ortí, G. Quintana-Ortí, and R. van de Geijn. Super-
Matrix Out-of-Order Scheduling of Matrix Operations for SMP and Multi-Core
Architectures. In SPAA ’07: Proceedings of the Nineteenth ACM Symposium on
Parallelism in Algorithms and Architectures, pages 116–125, San Diego, CA, USA,
June 9-11 2007.

8. G. H. Golub and C. F. Van Loan. Matrix Computations (3rd ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

9. R. Granat, D. Kressner, and B. Kågström. Parallel Eigenvalue Reordering in Real
Schur Forms. Concurrency and Computation: Practice and Experience, accepted
2008. Also as LAPACK Working Note 192.

10. B. Kågström and D. Kressner. Multishift Variants of the QZ Algorithm with
Aggressive Early Deflation. SIAM J. Matrix Anal. Applics., 29:199–227, 2006.

11. MPI: A Message Passing Interface Standard. http://www.mpi-forum.org/, 1995.

106

