
SCASY Users’ Guide∗

Release 1.0

Robert Granat and Bo K̊agström1

September 1, 2009.

Abstract

We present the functionality, the contents, and the proper usage of the latest release of
the SCASY software library

Keywords: SCASY, parallel software, ScaLAPACK, Sylvester-type matrix equations

1 Introduction

The SCASY library is a high performance software library for solving Sylvester-type matrix
equations on distributed memory platforms. The focus of SCASY is on robustness, speed and
scalability.

2 Algorithms for Sylvester-type matrix equations

In this section, we give a brief overview of the algorithms underlying the implementations
available through SCASY.

The algorithms in SCASY for Sylvester-type matrix equations were presented in [13, 12]
and in the technical reports [10, 11]. Table 1 summarizes the considered Sylvester-type matrix
equations.

The algorithms are based on the classical Bartels–Stewart’s method [4] which utilizes
standard and generalized Schur decompositions (see, e.g., [9]) to reduce the matrix equations
into a triangular form. These reduced matrix equations are solved using combined forward-
and backward substitution techniques. For illustration, consider SYCT:

• Transform A and B to real Schur form (see, e.g., [9]), i.e., compute the factorizations
TA = QT AQ and TB = P T BP , where Q ∈ Rm×m and P ∈ Rn×n are orthogonal and
TA and TB are upper quasi-triangular, i.e., having 1 × 1 and 2 × 2 diagonal blocks
corresponding to real and complex conjugate pairs of eigenvalues, respectively.

1Department of Computing Science and HPC2N, Ume̊a University, SE-901 87 Ume̊a, Sweden. E-mail:
{granat,bokg}@cs.umu.se

∗Technical Report UMINF-09.10. This research was conducted using the resources of the High Performance
Computing Center North (HPC2N). Financial support has been provided by the Swedish Research Council
under grant VR 70625701 and by the Swedish Foundation for Strategic Research under grant A3 02:128.

1



Name Matrix Equation Acronym
Standard CT Sylvester op(A)X ±Xop(B) = sC ∈ Rm×n SYCT
Standard DT Lyapunov op(A)X + Xop(AT ) = sC ∈ Rm×m LYCT
Standard DT Sylvester op(A)Xop(B)±X = sC ∈ Rm×n SYDT
Standard DT Lyapunov op(A)Xop(AT )−X = sC ∈ Rm×m LYDT
Generalized Coupled
Sylvester

{
op(A)X ± Y op(B) = sC ∈ Rm×n

op(D)X ± Y op(E) = sF ∈ Rm×n GCSY

Generalized Sylvester op(A)Xop(B)± op(C)Xop(D) = sE ∈ Rm×n GSYL
Generalized CT Lyapunov op(A)Xop(ET ) + op(E)Xop(AT ) = sC ∈ Rm×m GLYCT
Generalized DT Lyapunov op(A)Xop(AT )− op(E)Xop(ET ) = sC ∈ Rm×m GLYDT

Table 1: Sign and transpose variants of the Sylvester-type matrix equations considered in
SCASY. CT and DT denote the continuous-time and discrete-time variants, respectively.
The scalar s, where 0 < s ≤ 1.0, is a scaling factor used to prevent from overflow in the
solution process.

• Update C with respect to the Schur decompositions by the two-sided transformation
C̃ = QT CP .

• Solve the resulting reduced triangular matrix equation for the intermediate solution
matrix X̃, see below.

• Transform the intermediate solution back to the original coordinate system by a second
two-sided transformation X = QX̃P T .

The triangular matrix equation is solved by several layers of explicit and/or recursive block-
ing, leading to algorithms which are very rich in GEMM-updates in the right hand side(s);
on the leaf nodes of the blocking, we consider small-sized matrix equations in an equivalent
linear systems of equations Zx = y, where Z = In⊗A−BT ⊗ Im is a Kronecker product rep-
resentation of the corresponding Sylvester-type operator. This reformulation is also the key
observation which enables condition estimation using the technique developed in [17, 18, 20].

3 Software

In this section, we present the parallel software that implements the SCASY algorithms.

3.1 Implementation notes

The algorithms in SCASY are implemented using Fortran 90/95 following the coding con-
ventions that are typical for LAPACK [3] and ScaLAPACK [5]. The underlying parallel
computing paradigm is identical to the one used in ScaLAPACK:

• The parallel processes are organized into a rectangular Pr×Pc mesh labelled from (0, 0)
to (Pr − 1, Pc − 1) according to their specific position indices in the mesh.

• The matrices are distributed over the mesh using 2-dimensional (2D) block cyclic map-
ping with the block sizes mb and nb in the row and column dimensions, respectively.

2



The codes in the SCASY package have been tested extensively with the Portland Group
Compiler suite and the Pathscale Compiler suite, and also with the GNU Fortran compiler
as well as the NAG Fortran Compiler.

3.2 Download location

The latest SCASY release is always available via the library homepage [23] in either .zip or
.tar.gz format with the name scasy latest. It can also be retrieved via correspondence
with the authors.

3.3 Library installation

In what follows, we assume that the user works in a Linux-like environment and has down-
loaded the latest SCASY release in the .tar.gz format. (The software package has the same
structure in the .zip format, but the accompanying Makefiles are most likely irrelevant in a
Windows-like environment.)

Note that there is currently no installation routine; after the library has been built, it
should be moved to a proper location (e.g., /usr/local/lib).

3.3.1 A look inside the SCASY tar-ball

To unpack the tar-ball, move to a proper working directory and try

host:~> tar zxvf scasy_latest.tar.gz

to unpack the library. This will reveal the SCASY root directory, which is called scasy[x.y],
where [x.y] denotes the current release and version numbers1. Inside this root directory, the
ls command will reveal the following files and directories:

docs/ lib/ make/ Makefile Make_include README test/.

In what follows, we give an overview of the interior of each item above:

docs/ This directory contains the documentation necessary to understand how to install and
use the SCASY library, e.g., the latest version of this Users’ Guide [14] as well some
material related to the SCASY homepage [23].

lib/ This directory contains all the Fortran source code as .f files (which implies that explicit
pre-processing is necessary, see Section 3.3.2), and a few C (.c) files which are compiled
and attached to the library; these files are used mostly for debugging purposes and most
users can ignore them, as long as a proper C compiler is chosen. The directory also
includes a local Makefile which compiles and builds the library via a call from the root
directory Makefile (which is described below). The library will also be built in this
directory as the archive libscasy.a.

make/ For the user’s convenience, this directory contains template Make include files (see
below) which are specific to each of the following compilers: Portland Group, Pathscale,
GNU Fortran and NAG Fortran Compiler.

1Current release is 1.0.

3



Makefile This Makefile is responsible for building the library and the attached test program
(see below) from the root directory, when called by the user.

Make include In principle, this file is the only one the user needs to modify to build the
library and the attached test program correctly. By using the available templates, see
above, the modification can be carried out easily. Necessary modifications include choice
of Fortran (and C) compilers, the associated Fortran compiler flags (the C compiler only
uses -c), pre-processing options (see below), linking options, paths to external libraries,
etc.

README This file contains some information quite similar to this Users’ Guide, but is much
shorter and serves more like a Quick Start Guide to the library.

test/ This directory contains the Fortran file TESTSCASY.f and another local Makefile,
which is responsible for compiling and linking the test program with the library. We
give more information on the usage of the test program in Section 3.3.3.

3.3.2 Pre-processing options

The following pre-processing options are available for the SCASY library:

USE DYNAMIC When this option is activated, the test program uses dynamic allocation (which
is recommended). If this option is not activated, all allocations are done statically in
the test program.

USE INTEGER8 When this option is activated, the test program uses 8 byte integers to specify
the size of the memory areas to be allocated (recommended, especially in cases when
large matrices are considered).

LOOPGRID When this option is activated, the test program loops through the possible process
grid dimensions specified by its local variables [ACRO] NPROW MIN, [ACRO] NPROW MAX,
[ACRO] NPCOL MIN, [ACRO] NPCOL MAX using the step variables [ACRO] NPROW STEP and
[ACRO] NPCOL STEP. The user is responsible for allocating enough MPI processes when
executing the test program such that

# MPI processes >= [ACRO]_NPROW_MAX*[ACRO]_NPCOL_MAX

otherwise the test program will abort with an error message. If this option is not acti-
vated, the test program ignores the specified process grid dimensions listed above and
simply creates an ”as-square-as-possible” rectangular process grid such that NPROW*NPCOL
is as close to the number of allocated MPI processes as possible.

USE OMP When this option is activated, both the library and the test program expand OpenMP
directives for building an application that may be executed in a distributed memory
environment with multi-threaded nodes. The number of nodes in the process grid is
specified as usual by allocating a number of MPI processes in combination with/without
the LOOPGRID option. The number of threads per node is specified by the environment
variable OMP NUM THREADS.

4



USE NEWPQR When this option is activated, the current ScaLAPACK implementation of the
unsymmetric QR algorithm is replaced with a new preliminary multishift version with
advanced deflation techniques (see [15] for some preliminary results), which should give
the general solvers for the standard equations a considerable speed boost.

USE AED RES When this option is activated together with USE NEWPQR, the new parallel QR
algorithm used in SCASY checks the residual of each Schur decomposition computed
in each stage of aggressive early deflation and saves the maximum results to an output
array. This option is mostly used for debugging purposes, and is not recommended for
non-expert users.

We remark that these pre-processing options are included in the template Make include files
for the convenience of the user.

3.3.3 How to use the attached test program

Detailed instructions on how to use the attached test program are given in the 736 first lines
of the corresponding source file test/TESTSCASY.f. By default, the program is tuned for
testing all driver routines listed in Table 2 in sequence for matrices of size 2048, and when
LOOPGRID is defined it will be using up to 4 MPI processes. As long as the user allocates the
correct number of MPI processes with mpiexec or mpirun (or equivalent), and specifies the
number of available bytes of double precision and integer memory on lines 237–242, the test
program should work fine.

3.3.4 Building the library and the test program

As stated above, the library is most easily built using the Make include file (and the tem-
plates) located in the root directory scasy[x.y]. When Make include has been properly
modified, try

host:~> make all

to build the library in /lib and the test program in /test. To build only the library in the
directory /lib try

host:~> make libscasy

3.3.5 Dependencies on external libraries

To be able to link SCASY with a test program (e.g., the accompanying test program in
/test), the following libraries are needed: LAPACK [21], BLAS [8], ScaLAPACK/PBLAS
[25], BLACS [6] and RECSY [22] (which in turn depends on a few routine in SLICOT [24]).
All these libraries are specified in the used Make include file by their search paths and
their respective names. For the download locations of these libraries, see the references, the
README file or the library homepage [23].

4 Invoking the routines in SCASY

In this section, we describe in detail how the individual driver routines in SCASY are invoked
properly. We also recommend the user to take a look at how the attached test program uses
each specific driver.

5



Routine Functionality
SCASY drivers

PGESYCTD Solve general/triangular SYCT equation
PGELYCTD Solve general/triangular LYCT equation
PGESYDTD Solve general/triangular SYDT equation
PGELYDTD Solve general/triangular LYDT equation
PGEGCSYD Solve general/triangular GCSY equation
PGEGSYLD Solve general/triangular GSYL equation
PGEGLY[C,D]TD Solve general GLY[C,D]T equation

SCASY condition estimators
PSYCTCON Perform condition estimation on SYCT
PLYCTCON Perform condition estimation on LYCT
PSYDTCON Perform condition estimation on SYDT
PLYDTCON Perform condition estimation on LYDT
PGSYLCON Perform condition estimation on GSYL
PGCSYCON Perform condition estimation on GSYL
PGLY[C,D]TCON Perform condition estimation on GLY[C,D]T

Table 2: Summary of available driver and condition estimation routines and their function-
ality.

4.1 Fortran interfaces for matrix equation drivers

In Table 2, we present the available high level driver routines in SCASY with their specific
purposes. SCASY is designed and documented to be integrated in “state-of-the-art” software
libraries like ScaLAPACK [5] and PSLICOT [24, 7]. Below we present the Fortran interfaces
of the matrix equation driver routines. For the available routines, we also refer to the docu-
mentation available in the beginning of each individual source file; following the conventions
of ScaLAPACK, all driver routines include an extensive documentation in the beginning of
each source file. This documentation explains the purpose of each specific routine and how
the routine should be invoked. Users of this package should be familiar with the ScaLA-
PACK philosophy of how to run parallel ScaLAPACK-style programs, see, e.g., Chapter 2
of the ScaLAPACK Users’ Guide [5]. Expert users may also use the low level routines for
convenience.

SCASY is designed to work with submatrices of globally distributed matrices. In the
following, sub(X) denotes a submatrix X(IX:IX+M,JX:JX+N) (using MATLAB notation),
where IX and JX point to the first row and column, and M and N are the number of rows
and columns of the considered submatrix, respectively.

4.1.1 Standard matrix equations

Below, the subroutine headings of our four general driver routines for the unreduced standard
Sylvester-type matrix equations are listed.

• SUBROUTINE PGESYCTD( JOB, ASCHUR, BSCHUR, TRANSA, TRANSB, ISGN, COMM, M,
N, A, IA, JA, DESCA, B, IB, JB, DESCB, C, IC, JC, DESCC, MBNB2, DWORK,
LDWORK, IWORK, LIWORK, NOEXSY, SCALE, INFO )
Solves the general continuous-time Sylvester (SYCT) equation, where sub(A) is M×M ,
sub(B) is N ×N , and sub(C) and sub(X) (which overwrites sub(C)) are M ×N .

6



• SUBROUTINE PGELYCTD( JOB, SYMM, OP, ASCHUR, M, A, IA, JA, DESCA, C, IC,
JC, DESCC, NB2, DWORK, LDWORK, IWORK, LIWORK, NOEXSY, SCALE, INFO )
Solves the general continuous-time Lyapunov (LYCT) equation with general or sym-
metric right hand side C, where sub(A) is M × M , and sub(C) and sub(X) (which
overwrites sub(C)) are M ×M .

• SUBROUTINE PGESYDTD( JOB, ASCHUR, BSCHUR, TRANSA, TRANSB, ISGN, COMM, M,
N, A, IA, JA, DESCA, B, IB, JB, DESCB, C, IC, JC, DESCC, MB2, DWORK,
LDWORK, IWORK, LIWORK, NOEXSY, SCALE, INFO )
Solves the general discrete-time Sylvester (SYDT) equation, where sub(A) is M ×M ,
sub(B) is N ×N , and sub(C) and sub(X) (which overwrites sub(C)) are M ×N .

• SUBROUTINE PGELYDTD( JOB, SYMM, OP, ASCHUR, M, A, IA, JA, DESCA, C, IC,
JC, DESCC, NB2, DWORK, LDWORK, IWORK, LIWORK, NOEXSY, SCALE, INFO )
Solves the general discrete-time Lyapunov equation (LYDT) with general or symmetric
right hand side C, where sub(A) is M ×M , and sub(C) and sub(X) (which overwrites
sub(C)) are M ×M .

The interfaces to the corresponding triangular solvers are not discussed since they are
accessed through the corresponding general solvers by default (see, e.g., ASCHUR and BSCHUR
below). In the following, we briefly describe the different interface arguments associated with
the routines above. A summary of these arguments is listed in Table 3.

4.1.2 Mode parameters

The following mode parameters apply to the standard driver routines:

JOB The character mode parameter JOB, which takes the value ’R’ or ’S’, chooses between
reduction mode and solving mode. For the latter mode, the actual equation is reduced to
triangular form and solved; for the former mode the solver returns after the reduction.
Such a stand-alone reduction is motivated by that it simplifies a subsequent call to the
corresponding condition estimator in case the user does not specify a right hand side.

SCHUR The character mode parameters ASCHUR and BSCHUR, which take the values ’N’ or
’S’, specify whether A and/or B are already in Schur form. For example, ASCHUR=’S’
and BSCHUR=’S’ correspond to a fully reduced triangular problem and no work related
to the reduction will be performed. Expert users may instead call the triangular solver
directly, but will then have to do more error checking in their calling program since
SCASY has almost all error checking in the general routines.

TRANS The character mode parameters TRANSA and TRANSB (SYCT and SYDT) or OP (LYCT
and LYDT), which take the values ’N’ or ’T’, switch between the transpose modes of
the considered equation (see also Table 1).

SYMM For LYCT and LYDT, the character mode parameter SYMM, which takes the values ’N’
or ’S’, switches between the symmetric and nonsymmetric cases. SYMM=’S’ corre-
sponds to symmetric right hand side and solution matrices and halves the number of

7



flops needed for computing the solution. Moreover, with SYMM=’S’ only the lower or
upper part of the right hand side matrix has to contain the symmetric matrix on input
to the routine (see the software documentation for details).

ISGN The integer input parameter ISGN signals the sign (+1 or −1) in the actual equation
(see Table 1).

4.1.3 Input/output arguments

The following input/output arguments apply to the standard driver routines:

COMM The character input/output argument COMM gives the user the opportunity to choose
one out of two communication schemes in the triangular solver, the default on demand
scheme (COMM=’D’) or the non-default matrix block shift scheme (COMM=’S’). Matrix
block shifting cannot be employed for all problems, so the corresponding triangular
solver may switch to the on demand scheme if necessary. For this reason, COMM is also
output from the routines showing which scheme that was actually used in the routine.

M,N The integer input arguments M and N specify the dimensions of the involved submatrices.

A,B,C The input/output two-dimensional double precision arrays A, B and C correspond to
the globally distributed matrices A, B and C stored using column-major layout. On
return from the routines, A and B are in real Schur form and in the solving mode (see
above) C is overwritten with the solution matrix X. Notice that SCASY treats all
matrices as one-dimensional arrays internally in the subroutines.

I ,J The integer input arguments IA, JA, IB, JB, IC and JC specify start rows and columns
for the corresponding submatrices to operate on. These arguments must obey some
alignment requirements to not violate the ScaLAPACK conventions. 2

DESC The input integer descriptor arrays DESC correspond to the ScaLAPACK distributed
matrix descriptors. These arrays consist of nine elements each and describe how the
corresponding matrix is distributed over the process mesh, as follows:

1. DESC (1) contains the descriptor type. For dense matrices, DESC (1) = 1.

2. DESC (2) contains the identity of the corresponding BLACS context, which is very
much like an MPI Communicator, over which the corresponding matrix is dis-
tributed.

3. DESC (3) and DESC (4) contain the total number of rows and columns of the
corresponding globally distributed matrix, respectively. These dimensions should
not be confused with M or N above.

4. DESC (5) and DESC (6) contain the blocking factors MB and NB used in the block-
cyclic data layout of the corresponding globally distributed matrix in the row and
column dimensions, respectively.

2We remark that the current release of SCASY can not work on submatrices for the unreduced matrix
equations because of missing functionality in the routines used in the reduction to triangular form, e.g.,
PDLAHQR from ScaLAPACK.

8



5. DESC (7) and DESC (8) contain the process row and column over which the first
row and column of the corresponding globally distributed matrix is distributed,
respectively.

6. DESC (9) contains the leading dimension of the local part of the corresponding
globally distributed matrix.

The first eight elements of a descriptor must be globally consistent for the corresponding
context. For more information on the descriptor arrays, see, e.g., [5].

MBNB2 The input arguments MBNB2, which is an integer array of size 2, and MB2 and NB2,
which are integer scalars, contain the internal blocking factors used in the multiple
pipelining approach [13, 12] utilized in the corresponding triangular solvers. Multiple
pipelining is turned off by using the same blocking factors for the pipelining as in the
data distribution (i.e., in the matrix descriptors, see above).

4.1.4 Workspace

The following workspace arguments apply to the standard driver routines:

DWORK One-dimensional double precision workspace array

IWORK One-dimensional integer workspace array

LDWORK The length of the array DWORK

LIWORK The length of the array IWORK

4.1.5 Output information

The following output information arguments apply to the standard driver routines:

NOEXSY The triangular solvers handle 2 × 2 blocks shared by multiple data layout blocks
by an implicit redistribution [16] of the involved matrices (matrix pairs). This causes
some subsystems to be of slightly different size and the integer output argument NOEXSY
counts the number of such systems solved during the execution of the corresponding
triangular solver.

SCALE The output double precision argument SCALE is a global scaling factor in the interval
(0, 1] for the right hand side used in the parallel solver to avoid overflow in the solution.
SCALE corresponds to the scalar s in Table 1.

4.1.6 Error handling

The output integer argument INFO gives error messages, including overflow warnings, on
output from the calling routine, as follows:

• If INFO < 0, some of the argument passed to the routine had an illegal value and INFO
is set pointing to that particular argument.

• If INFO = 0, the routine was invoked successfully and returned without any error mes-
sages.

9



• If INFO = 1, there was no valid BLACS context [6] in the call and the call was aborted.

• If INFO = 2, the problem was very ill-conditioned and a perturbed nearly singular
system was used to solve the corresponding matrix equations.

• If INFO = 3, the problem was badly scaled and the right hand side(s) was scaled by a
factor SCALE to avoid overflow in the solution.

• If INFO = 99, the current call was to an empty wrapper to a non-existent reduction rou-
tine, see Section 4.5; no computations were performed and the invoked routine returned
immediately.

4.1.7 Generalized matrix equations

Below, the subroutine headings of our four general driver routines for the unreduced general-
ized Sylvester-type matrix equations are listed.

• SUBROUTINE PGEGCSYD( JOB, TRANZ, ADSCHR, BESCHR, TRANAD, TRANBE, ISGN,
COMM, M, N, A, IA, JA, DESCA, B, IB, JB, DESCB, C, IC, JC, DESCC, D, ID,
JD, DESCD, E, IE, JE, DESCE, F, IF, JF, DESCF, MBNB2, DWORK, LDWORK,
IWORK, LIWORK, NOEXSY, SCALE, INFO )
Solves the unreduced generalized coupled Sylvester (GCSY) equation, where sub(A)
and sub(D) are M ×M , sub(B) and sub(E) are N ×N , and sub(C), sub(X), sub(F )
and sub(Y ) are M ×N . Notice that sub(X) and sub(Y ) overwrite sub(C) and sub(F )
on output.

• SUBROUTINE PGEGSYLD( JOB, ACSCHR, BDSCHR, TRANAC, TRANBD, ISGN, COMM, M,
N, A, IA, JA, DESCA, B, IB, JB, DESCB, C, IC, JC, DESCC, D, ID, JD, DESCD,
E, IE, JE, DESCE, MB2, DWORK, LDWORK, IWORK, LIWORK, NOEXSY, SCALE, INFO )
Solves the unreduced generalized Sylvester (GSYL) equation, where sub(A) and sub(C)
are M ×M , sub(B) and sub(D) are N ×N , and sub(E) and sub(X) (which overwrites
sub(E)) are M ×N .

• SUBROUTINE PGEGLYCTD( JOB, SYMM, OP, AESCHR, M, A, IA, JA, DESCA, E, IE,
JE, DESCE, C, IC, JC, DESCC, NB2, DWORK, LDWORK, IWORK, LIWORK, NOEXSY,
SCALE, INFO )
Solves the unreduced generalized continuous-time Lyapunov (GLYCT) equation, with
general or symmetric right hand side C, where sub(A) and sub(E) are M × M , and
sub(C) and sub(X) (which overwrites sub(C)) are M ×M .

• SUBROUTINE PGEGLYDTD( JOB, SYMM, OP, AESCHR, M, A, IA, JA, DESCA, E, IE,
JE, DESCE, C, IC, JC, DESCC, NB2, DWORK, LDWORK, IWORK, LIWORK, NOEXSY,
SCALE, INFO )
Solves the unreduced generalized discrete-time Lyapunov (GLYDT) equation, with gen-
eral or symmetric right hand side C, where sub(A) and sub(E) are M ×M , and sub(C)
and sub(X) (which overwrites sub(C)) are M ×M .

10



Below, we give a description of the additional arguments that do not exist for the standard
matrix equations. A summary of these is listed in Table 3.

4.1.8 Mode parameters

The following additional mode parameters apply to the generalized driver routines:

SCHR The character mode parameter SCHR, which takes the values ’N’ or ’S’, specifies
whether the corresponding matrix pair is already in generalized Schur form or not3.

TRAN The character mode parameters TRAN and OP, which take the values ’N’ or ’T’, give
the transpose mode for the corresponding matrix pair in the considered equation (see
Table 1). The algorithms in SCASY are limited to the cases where the corresponding
matrix pairs formed by the left and right multiplying matrices (see [13, 12]) have the
same transpose mode.

TRANZ In condition estimation of GCSY, we need to solve transpose variants of the Kronecker
product matrix representation ZGCSY of the generalized coupled Sylvester operator
which can not be expressed by changing the transpose modes of the involved left hand
side coefficient matrices (see [13, 12]). Therefore, the corresponding transpose mode is
specified by the character mode argument TRANZ, which takes the values ’N’ or ’T’, in
the routine PGEGCSYD.

4.1.9 Input/output arguments

The following additional input/output arguments apply to the generalized driver routines:

D,E,F The input/output two-dimensional double precision arrays A, B, C, D, E and F corre-
spond to the matrices A, B, C, D, E and F . On return from the routines, the involved
matrix pairs (excluding the right hand side pair (E,F ) in GCSY) are in generalized real
Schur form. In solving mode (see above), the right hand side matrix (or matrix pair)
is overwritten with the solution matrix (pair). As mentioned before, SCASY treats all
matrices as one-dimensional arrays internally in the subroutines.

I ,J The input integer arguments IA, JA, IB, JB, IC, JC, ID, JD, IE, JE, IF and JF, specify
start rows and columns for the corresponding submatrices of A, B, C, D, E, and F to
operate on. These arguments must obey some alignment requirements to not violate
ScaLAPACK conventions.

4.2 Condition estimators

Parallel implementations of the condition estimators presented in [13, 12] are available in
SCASY as the routines P[ACRO]CON. The Fortran interfaces to the different estimators are
derived from the corresponding solvers. For example, the SYCT condition estimator has the
following Fortran interface:

3In the current release, no reduction to generalized Schur form is performed, see also Section 4.5.

11



Table 3: Parameters to Fortran interfaces
Mode Type Description
parameters
JOB CHARACTER*1 Specifies solving mode (’S’) or reduction mode (’R’).
SYMM CHARACTER*1 Specifies symmetric right hand side (’S’) or not (’N’)).
OP CHARACTER*1 Specifies transpose mode (’N’ or ’T’). Only for

Lyapunov equations.
TRANZ CHARACTER*1 Specifies transpose mode for Kronecker product matrix

representation (’N’ or ’T’). Only applies to GCSY.
SCHUR CHARACTER*1 Specifies if the matrix is in real Schur form (’S’)

or not (’N’). Only for standard matrix equations.
SCHR CHARACTER*1 Specifies if the matrix pair is in generalized real Schur

form (’S’) or not (’N’). Only for generalized matrix
equations.

TRANS CHARACTER*1 Specifies transpose mode for specific matrix
(’N’ or ’T’).

TRAN CHARACTER*1 Specifies transpose mode for specific matrix pair
(’N’ or ’T’).

ISGN INTEGER Specifies the sign variant of the equation (-1 or 1).
Input/Output
arguments
COMM CHARACTER*1 Sets communication scheme used in PTR[ACRO]D.
M,N INTEGER (Sub)matrix dimensions.
A,B,C,D,E,F DOUBLE PRECISION(*) Two-dimensional arrays corresponding to the local

parts of the globally distributed matrices. On output,
each left hand side matrix (pair) is returned in
Schur (generalized Schur) form. On output and in
solving mode, right hand side is overwritten with
the solution. In reduction mode, the right hand side
is not referenced.

IA,IB,IC,ID,IE,IF INTEGER Row starting indices for submatrices to operate on.
JA,JB,JC,JD,JE,JF INTEGER Column starting indices for submatrices to operate on.
DESC INTEGER(*) ScaLAPACK matrix descriptor arrays.
MBNB2 INTEGER(2) Blocking factors for multiple pipelining in one-sided

Sylvester equations.
MB2 INTEGER Blocking factor for multiple pipelining in two-sided

Sylvester equations.
NB2 INTEGER Blocking factor for multiple pipelining in Lyapunov

equations. Currently used for LYCT.
Workspace
DWORK DOUBLE PRECISION(*) Double precision workspace.
LDWORK INTEGER Length of DWORK.
IWORK INTEGER(*) Integer workspace.
LIWORK INTEGER Length of IWORK.
Output
information
NOEXSY INTEGER Counts the number of extended/diminished

subsystems solved in the call to the triangular solver.
SCALE DOUBLE PRECISION Right hand side scaling factor, 0 < SCALE ≤ 1.0.
EST DOUBLE PRECISION A 1-norm based lower bound estimate of

sep−1[ACRO] (condition estimator only).
NOITER INTEGER Number of performed iterations in computing

sep−1[ACRO] (condition estimator only).
Error handling
INFO INTEGER Returns error information to the calling program.

• SUBROUTINE PSYCTCON( TRANSA, TRANSB, ISGN, COMM, M, N, A, IA, JA, DESCA, B,
IB, JB, DESCB, MBNB2, DWORK, LDWORK, IWORK, LIWORK, EST, NOITER, INFO )
Computes a 1-norm based lower bound estimate EST of sep−1(sub(A), sub(B)), where
sub(A) is M ×M and sub(B) is N ×N , using NOITER iterations and calls to PTRSYCTD
(via PGESYCTD with ASCHUR=’S’ and BSCHUR=’S’).

12



The differences from the general SYCT interface are that it is assumed that the matrix
equation is in reduced form, there is no argument for the right hand side C since it is generated
internally by the estimator (ScaLAPACK’s PDLACON), and the two output arguments EST
and NOITER which give the computed estimate and the number of iterations (the number of
triangular matrix equations solved) needed to compute the estimate.

The implemented condition estimators assume that the corresponding matrix equations
are in reduced (triangular) form. If this is not the case, the user must perform the reduction
step by one single call to the corresponding general solver with the mode parameter JOB set
to ’R’.

4.3 Test example generators

SCASY includes two problem generator routines which generate matrices or matrix pairs with
specified standard or generalized eigenvalues, with the following interfaces (see the software
documentation for details regarding the arguments):

• SUBROUTINE P1SQMATGD( DIAG, SDIAG, UPPER, M, A, DESCA, DW, MW, DDIAG,
SUBDIAG, NQTRBL, ASEED, DWORK, LDWORK, INFO )
Generates the M ×M matrix A with eigenvalues specified by DDIAG and SUBDIAG.

• SUBROUTINE P2SQMATGD( ADIAG, ASDIAG, BDIAG, UPPER, M, A, DESCA, ADW,
AMW, ADDIAG, ASUBDIAG, ANQTRBL, ASEED, B, DESCB, BDW, BMW, BDDIAG,
BSEED, DWORK, LDWORK, INFO ).
Generates the M × M matrix pair (A,B) with generalized eigenvalues specified by
ADDIAG, ASUBDIAG and BDDIAG.

P1SQMATGD generates coefficient matrices for the standard matrix equations as follows:
Consider a matrix A ∈ Rm×m in the form A = Q(αADA + βAMA)QT , where DA is block
diagonal with 1 × 1 and 2 × 2 blocks, MA is strictly upper triangular with zeros in the first
superdiagonal where DA has 2× 2 blocks, Q is a random orthogonal matrix and αA and βA

are real scalars. We choose MA as a random matrix with uniformly distributed elements in
the interval [0, 1] and prescribe the eigenvalues of A by specifying the elements of DA, where
the 2× 2 blocks correspond to complex conjugate pairs of eigenvalues.

P2SQMATGD generates test matrix pairs for the generalized matrix equations in a similar
way by specifying the generalized eigenvalues for a given diagonal matrix pair (DA, DB) ∈
R(m×m)×2 (2×2 blocks are only allowed in DA) and performing the equivalence transformation
(A,B) = XT (DA, DB)Y , where X and Y are invertible matrices which are constructed as
follows: we specify their corresponding singular values ΣX = diag(σ1, . . . , σm) and ΣY =
diag(ρ1, . . . , ρm) and generate four random orthogonal matrices U1, U2, V1 and V2 such that
X = U1ΣUV T

1 and Y = U2ΣUV T
2 . In practice, the matrices ΣX and ΣY are not generated

explicitly, but the singular values are used to scale the corresponding rows and columns in
the congruence transformations above. The conditioning of X and Y are controlled by ΣX

and ΣY .
In the current release, the matrix generation routines do only support fully distributed

testmatrices (and not submatrices of a global matrix).

13



Figure 1: Subroutine call graph of SCASY.

4.4 Software hierarchy

In total, the current release of the SCASY library consists of over 70 routines whose design
depends on the functionality of a number of external libraries. The call graph in Figure 1
shows the subroutine hierarchy in SCASY. The six types of software included in the call graph
are presented in detail in [12].

4.5 Parallel QR/QZ prototypes

The reduction to standard Schur form in the non-generalized matrix equations are in the
current release performed using existing ScaLAPACK software. However, as pointed out and
demonstrated in [13], the current QR algorithm in ScaLAPACK represents a time-consuming
bottleneck of the reduction step in the standard driver routines. A proposed revision of
the parallel QR algorithm with level 3 node performance and advanced deflation techniques
is presented in [15]. Preliminary versions of these algorithms are attached to the software
package, and are accessed though wrappers to the existing ScaLAPACK wrappers, provided
the pre-processing option USE NEWPQR is defined on compile time (see also Section 3.3.2). The
following is the assumed Fortran interface of the improved standard Schur reduction algorithm
in case of a direct call:

• SUBROUTINE PDHSEQR( JOB, COMPZ, N, ILO, IHI, H, DESCH, WR, WI, Z, DESCZ,
WORK, LWORK, IWORK, LIWORK, INFO )
Computes the eigenvalues of the Hessenberg matrix H and, optionally, the matrices T
and Z from the Schur decomposition T = ZT HZ, where T is the Schur form and Z is
the orthogonal matrix of Schur vectors.

14



The reduction of the involved matrix pairs to generalized real Schur form is performed
by linking with and invoking the new prototype ScaLAPACK-style implementations of the
Hessenberg-triangular reduction and the parallel multi-shift QZ algorithm presented in [1, 2].
Presently, all associated QZ routines are provided as empty wrappers which when invoked
immediately return with the error code INFO=99, signalling that no computations were per-
formed. The following are the assumed Fortran interfaces of the generalized Schur reduction
algorithms:

• SUBROUTINE PDGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, DESCA, B, DESCB, Q,
DESCQ, Z, DESCZ, WORK, LWORK, INFO )
Computes the Hessenberg-triangular form (H, T ) by the orthogonal equivalence trans-
formation (H, T ) = QT (A,B)Z, where the matrix pair (A,B) is regular and B is as-
sumed to be upper triangular by an initial QR factorization.

• SUBROUTINE PDHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, A, DESCA, B, DESCB,
ALPHAR, ALPHAI, BETA, Q, DESCQ, Z, DESCZ, ILOQ, IHIQ, ILOZ, IHIZ, MXBLGS,
WORK, LWORK, INFO )
Computes the generalized eigenvalues of the regular Hessenberg-triangular matrix pair
(H,T ) and, optionally, the matrix pairs (S, T ) and (Q,Z) from the generalized Schur
decomposition (S, T ) = QT (H,T )Z, where (S, T ) is the generalized Schur form and Q
and Z are orthogonal matrices of generalized Schur vectors.

These Schur reduction algorithms are still under development and are not a part of the
current SCASY contribution, which is emphasized using dashes line in the subroutine hierar-
chy in Figure 1. When production software for this software is available they will be included
in future SCASY releases. For an explanation of the arguments of these Fortran interfaces,
we refer to the software documentation, which follows the standard (Sca)LAPACK source
documentation style.

5 Terms of usage

The library is copyrighted and freely available for academic (non-commercial) use, and is
provided on an ”as is” basis. Any use of the SCASY library should be acknowledged by
citing the corresponding papers [13, 12] and the SCASY webpage [23].

6 Conclusions and future work

We have presented the 1.0 release of the high performance software library SCASY. The
latest version of the library along with updated information and documentation is always
available for download from the SCASY website [23]. We welcome bug-reports, comments
and suggestions from users.

Acknowledgments

The authors are grateful to the support staff of HPC2N [19] for help with preparing the codes
for this release.

15



SCASY’s main contributors are Robert Granat and Bo K̊agström, Department of Comput-
ing Science and HPC2N, Ume̊a University, Sweden. Collaborators and secondary (indirect)
contributors have been Björn Adlerborn, Isak Jonsson and Daniel Kressner.

References

[1] B. Adlerborn, K. Dackland, and B. K̊agström. Parallel and blocked algorithms for reduction of
a regular matrix pair to Hessenberg-triangular and generalized Schur forms. In J. Fagerholm
and et al., editors, Applied Parallel Computing PARA 2002, volume 2367 of Lecture Notes in
Computer Science, pages 319–328. Springer-Verlag, 2002.

[2] B. Adlerborn, D. Kressner, and B. K̊agström. Parallel Variants of the Multishift QZ Algorithm
with Advanced Deflation Techniques . In PARA’06 - State of the Art in Scientific and Parallel
Computing, volume 4699, 2006. Lecture Notes in Computer Science, Springer, 2007 (to appear).

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, third edition, 1999.

[4] R. H. Bartels and G. W. Stewart. Algorithm 432: The Solution of the Matrix Equation AX −
BX = C. Communications of the ACM, 8:820–826, 1972.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon, J. J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. SIAM, Philadelphia, PA, 1997.

[6] BLACS - Basic Linear Algebra Communication Subprograms. See http://www.netlib.org/
blacs/index.html.

[7] I. Blanquer, D. Guerrero, V. Hernandez, E. Quintana-Orti, and P. Ruiz. Parallel-SLICOT imple-
mentation and documentation standards, 1998.

[8] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Software, 16:1–17, 1990.

[9] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, third edition, 1996.

[10] R. Granat and B. K̊agström. Parallel Solvers for Sylvester-type Matrix Equations with Appli-
cations in Condition Estimation, Part I: Theory and Algorithms. Report UMINF-07.15, Dept.
Computing Science, Ume̊a University, Sweden, 2007. Revised January and August 2009.

[11] R. Granat and B. K̊agström. Parallel Solvers for Sylvester-type Matrix Equations with Appli-
cations in Condition Estimation, Part II: The SCASY Software. Report UMINF-07.16, Dept.
Computing Science, Ume̊a University, Sweden, 2007. Revised January and August 2009.

[12] R. Granat and B. K̊agström. ALGORITHM XXX: The SCASY Software Library – Parallel
Solvers for Sylvester-type Matrix Equations with Applications in Condition Estimation, Part II.
2009. ACM Transactions on Mathematical Software (submitted July 2007, revised January and
August 2009).

[13] R. Granat and B. K̊agström. Parallel Solvers for Sylvester-type Matrix Equations with Appli-
cations in Condition Estimation, Part I: Theory and Algorithms. 2009. ACM Transactions on
Mathematical Software (submitted July 2007, revised January and August 2009).

[14] R. Granat and B. K̊agström. SCASY Users’ Guide. Report UMINF-09.10, Dept. Computing
Science, Ume̊a University, Sweden, 2009.

16



[15] R. Granat, B. K̊agström, and D. Kressner. A novel parallel QR algorithm for hybrid distributed
memory HPC systems. Submitted to SIAM Journal on Scientific Computing, 2009. From Tech-
nical report UMINF-09.06, also as LAPACK Working note #216.

[16] R. Granat, B. K̊agström, and P. Poromaa. Parallel ScaLAPACK-style Algorithms for Solving
Continuous-Time Sylvester Equations. In H. Kosch and et al, editors, Euro-Par 2003 Parallel
Processing, volume 2790 of Lecture Notes in Computer Science, pages 800–809. Springer, 2003.

[17] W.W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., (3):311–316, 1984.

[18] N. J. Higham. Fortran codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation. ACM Trans. of Math. Software, 14(4):381–396, 1988.

[19] HPC2N - High Performance Computing Center North. See http://www.hpc2n.umu.se.

[20] B. K̊agström and P. Poromaa. Distributed and shared memory block algorithms for the triangular
Sylvester equation with sep−1 estimators. SIAM J. Matrix Anal. Appl., 13(1):90–101, 1992.

[21] LAPACK - Linear Algebra Package. See http://www.netlib.org/lapack/.

[22] RECSY - High Performance library for Sylvester-type matrix equations. See http://www.cs.
umu.se/research/parallel/recsy.

[23] SCASY - ScaLAPACK-style solvers for Sylvester-type matrix equations. See http://www.cs.
umu.se/research/parallel/scasy.

[24] SLICOT Library In The Numerics In Control Network (Niconet). See http://www.win.tue.nl/
niconet/index.html.

[25] ScaLAPACK Users’ Guide. See http://www.netlib.org/scalapack/slug/.

17


