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Abstract

The emergence of Grid computing infrastructures enables researchers to share re-
sources and collaborate in more efficient ways than before, despite belonging to dif-
ferent organizations and being geographically distributed. While the Grid computing
paradigm offers new opportunities, it also gives rise to new difficulties. This thesis
investigates methods, architectures, and algorithms for a range of topics in the area
of Grid resource management. One studied topic is how to automate and improve re-
source selection, despite heterogeneity in Grid hardware, software, availability, own-
ership, and usage policies. Algorithmical difficulties for this are, e.g., characterization
of jobs and resources, prediction of resource performance, and data placement con-
siderations. Investigated Quality of Service aspects of resource selection include how
to guarantee job start and/or completion times as well as how to synchronize multiple
resources for coordinated use through coallocation. Another explored research topic
is architectural considerations for frameworks that simplify and automate submission,
monitoring, and fault handling for large amounts of jobs. This thesis also investigates
suitable Grid interaction patterns for scientific workflows, studies programming mod-
els that enable data parallelism for such workflows, as well as analyzes how workflow
composition tools should be designed to increase flexibility and expressiveness.

We today have the somewhat paradoxical situation where Grids, originally aimed
to federate resources and overcome interoperability problems between different com-
puting platforms, themselves struggle with interoperability problems caused by the
wide range of interfaces, protocols, and data formats that are used in different envi-
ronments. This thesis demonstrates how proof-of-concept software tools for Grid re-
source management can, by using (proposed) standard formats and protocols as well
as leveraging state-of-the-art principles from service-oriented architectures, be made
independent of current Grid infrastructures. Further interoperability contributions in-
clude an in-depth study that surveys issues related to the use of Grid resources in sci-
entific workflows. This study improves our understanding of interoperability among
scientific workflow systems by viewing this topic from three different perspectives:
model of computation, workflow language, and execution environment.

A final contribution in this thesis is the investigation of how the design of Grid
middleware tools can adopt principles and concepts from software engineering in or-
der to improve, e.g., adaptability and interoperability.
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Sammanfattning

Dagens Grid-infrastruktur gör det möjligt för forskare att dela vetenskaplig utrust-
ning såsom högpresterande datorer och dyrbara instrument och därmed samarbeta
mer effektivt än tidigare, trots att de tillhör olika organisationer och är geografiskt
åtskilda. Grid-tekniken erbjuder nya möjligheter, men ger även upphov till nya prob-
lemställningar. Denna avhandling studerar en rad frågeställningar inom Grid, med
särskilt fokus på metoder, arkitekturer och algoritmer för resurshantering. Ett bidrag
är en studie av hur matchning av jobb och resurser kan automatiseras och förbättras,
trots heterogenitet i hårdvara, programvaror och användningspolicyer i de maskiner
som finns tillgängliga i en Grid. Algoritmiska aspekter av detta problem inkluderar
karaktärisering av jobb och maskiner, prestandaprediktion samt konsekvenser av plac-
eringen av in- och utdatafiler. Vidare studeras kvalitetsgarantier (Quality of Service),
i detta fall vilka mekanismer som krävs för att garantera start- och/eller sluttider för
jobb. Ett relaterat problem är hur man bäst samallokerar flera resurser för koordinerad
användning. Ett annat bidrag är en studie av lämpliga arkitekturer för automatiserad
hantering av stora mängder jobb. Avhandlingen behandlar även hur man på bästa sätt
integrerar Grid-resurser i vetenskapliga arbetsflöden (workflows), vilka programmer-
ingsmodeller som lämper sig bäst för dataparallellism för workflows, samt hur verktyg
för att definiera workflows bör konstrueras för ökad flexiblitet.

Vi har idag en något paradoxal situation där Grid-teknik, som delvis designats med
målet att integrera heterogena plattformar och överbrygga kompatibilitetsproblem, i
sig ger upphov till en ny nivå av kompabilitetsproblem, mellan olika Grid-plattformar.
Dessa problem beror på stora skillnader i såväl de gränssnitt, protokoll och datafor-
mat som används i dagens infrastrukturer som i deras övergripande arkitektur. Denna
avhandling demonstrerar hur programvara för resurshantering kan göras oberoende av
nuvarande Grid-plattformar genom att utnyttja (föreslagna) standardformat och pro-
tokoll såväl som principer från service-orienterade arkitekturer. Andra bidrag inklud-
erar en fördjupad studie om hur Grid-resurser bäst integreras i workflows. Denna
studie analyserar skillnader mellan befintliga workflow-system och belyser interoper-
abilitet mellan dessa ur tre aspekter: beräkningsmodell, språk för att beskriva work-
flows samt exekveringsplattform.

Avslutningsvis studeras i denna avhandling hur resultat av forskning inom program-
varuteknik (software engineering) kan användas för att förbättra designen av Grid-
programvaror, bland annat för att öka interoperabilitet och anpassningsbarhet.
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Chapter 1

Introduction

1.1 Background

During the late 1980’s and early 1990’s, the rapid development of network ca-
pacity made it feasible to interconnect remotely located parallel computers,
in order to tackle larger-than-supercomputer problems. The resulting infras-
tructures were referred to as meta-computers. The earliest meta-computing
platforms were constructed with experiment-specific protocols. The I-WAY
project [78] developed the first general-purpose toolkit and was successfully
used by more than 50 applications, demonstrating the feasibility of intercon-
necting resources such as supercomputers, instruments and storage. The term
Grid computing was coined to describe the interconnection of more general
types of resources. The choice of name reflects the vision of computing made
available as a utility, in analogy with how electricity is available from the power
grid. In addition to the possibility to tackle larger-than-supercomputer prob-
lems, early motivating factors for the construction of Grids were improved col-
laboration and the possibility to remotely access scarce and expensive scientific
instruments.

Perhaps the most well known Grid middleware is the Globus Toolkit [90], a
further development of the I-WAY software, with greater focus on protocols for
fundamental tasks such as resource discovery, job submission and data trans-
fer. Later versions of the Globus Toolkit are used as building blocks in many
of todays Grids. Another early general-purpose Grid toolkit is Legion [98]
that models and controls remote resources in an object-oriented manner. Fur-
ther examples of early Grid projects include the Storage Resource Broker [22]
that enables uniform access to heterogeneous storage resources; AppLeS [35]
and NetSolve [34], both application-level schedulers; and Cactus [11], a pro-
gramming environment for parallel high performance computing on various
platforms, including Grids. An in-depth description of early Grid comput-
ing projects is beyond the scope of this thesis, and can be found in overview
books [77, 27].
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1.2 Characteristics of Grid Computing

Early Grid computing efforts focused on uniform, efficient and secure access to
computational resources, despite heterogeneity in ownership, security mecha-
nisms, and policies. An early definition states that Grid computing is “Coor-
dinated resource sharing and problem solving in dynamic, multi-institutional
virtual organizations” [82]. In Grid computing, the term Virtual Organization
(VO) is used to describe the parties sharing resources. The formation of a VO
is motivated by a scenario where “a number of mutually distrustful participants
with varying degrees of prior knowledge (perhaps none at all) want to share
resources in order to perform some task” [82].

One commonly used definition is the three point check list [74] by Foster
that defines a Grid as a system that:

1. coordinates resources that are not subject to centralized control,

2. uses standard, open, general-purpose protocols and interfaces,

3. delivers nontrivial Qualities of Service.

A more recent definition is given in the Open Grid Services Architecture
(OGSA) glossary of terms by the Open Grid Forum (OGF). Here, a Grid is
defined as “A system that is concerned with the integration, virtualization, and
management of services and resources in a distributed, heterogeneous environ-
ment that supports collections of users and resources (virtual organizations)
across traditional administrative and organizational domains (real organiza-
tions)” [59]. Although this definition is in large in harmony with the one by
Foster, a few things are worth noting. First, there is a clear focus on exposing
the capabilities of the Grid as services. This is a result of the recent trend of
usage of service-oriented architectures in Grid computing, a topic further dis-
cussed in Section 6.1. The use of virtualization in the OGF definition should
not be confused with virtualization by use of virtual machines (further explored
in Section 8.2), but is rather the process of hiding differences in properties and
operations of a set of similar resources and making these available for view
and/or manipulation through a set of common interfaces [59].

Another recent Grid definition comes from the CoreGRID network of excel-
lence that describes a Grid as a “fully distributed, dynamically reconfigurable,
scalable and autonomous infrastructure to provide location independent, per-
vasive, reliable, secure and efficient access to a coordinated set of services en-
capsulating and virtualizing resources (computing power, storage, instruments,
data, etc.) in order to generate knowledge” [47]. In the CoreGRID definition,
the quality of service requirements (e.g., scalability, security, reliability) are
made more explicit. Furthermore, the goal of the architecture has a clear focus
on generation of knowledge, clearly inspired by the emergence of the e-Science
discipline.

John Taylor defines e-Science as follows: “e-Science is about global collab-
oration in key areas of science and the next generation of infrastructure that
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will enable it” [199]. In e-Science, there is an inherent focus on scientific data.
Large amounts of data are processed and analyzed in a collaborative fashion
by distributed teams of scientists. This requires access to high-end computing
resources, distributed data storage, and visualization equipment, as well as the
software tools required by the scientists to cope with exponentially growing
amounts of data. Grid computing can hence be seen as an enabling technology
for e-Science [103].

The research presented in this thesis is well aligned with the above defi-
nitions of Grid computing. The Grid scenarios addressed stress that resource
management tasks must be performed despite lack of global control. One main
objective is to demonstrate how open, standard protocols and interfaces can
be used to achieve interoperability between different Grids. The thesis also
investigates various issues for Quality of Service (QoS), with particular focus
on deadline constraints.

1.3 Fundamental Grid Capabilities

Many of the existing Grid infrastructures have fundamental differences in pur-
pose, architecture, and type of resources that they interconnect. However,
almost all Grids have: a model to describe resource capabilities, mechanisms
to discover available resources and monitor known ones, resource allocation
interfaces, data management functionality, and a security infrastructure. Gen-
eral discussions of Grid capabilities are found, e.g., in [84, 193]. The following
descriptions focus on capabilities required by resource selection and job man-
agement systems. Most Grid infrastructures provide the discussed capabilities,
although the used protocols, interfaces, and software components sometimes
have fundamental differences.

1.3.1 Modeling, Discovery, and Monitoring of Resources

In all Grids, there is a need to describe the characteristics of the available
resources using a general and extensible mechanism. Up to date information
with sufficient level of detail is key to determine whether a given resource ful-
fills the requirements of a user. With a common information model in place,
end user tools can focus on further information management issues such as to
discover what resources are available and to monitor known resources. Discov-
ery of available resources is normally performed by contacting an information
index. Complete information about resources can either be aggregated into
the index, or kept in a local information service on the resource itself. In the
latter case, the index contains information about how to contact the local in-
formation service on the resource. In a typical resource discovery scenario, a
client retrieves information about the set of currently available resources from
an index, queries the most interesting resources for more detailed information,
and selects which resource to use based on the retrieved information. A naive
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way to perform monitoring is to periodically query the monitored resources for
new information. Mechanisms to asynchronously notify interested parties with
information updates are however preferred. Such notification mechanisms can
reduce the number of messages significantly, allowing clients to retrieve updates
as these are generated without resorting to extensive polling. While discovery
includes the retrieval of both static and dynamic information, monitoring is
exclusively used for dynamic resource information. A typical use case for re-
source monitoring is a client that supervises the progress of a task performed
by a resource. The potentially very large number of users and resources in a
Grid makes scalability and responsiveness important criteria for information
management systems. For discovery, scalability is the main issue, as an index
may have to serve a large number of clients. Responsiveness is more important
for monitoring than for discovery, as up-to-date information is vital in some
monitoring scenarios, e.g., fault detection.

Information management in Grids is complicated by the fact that infor-
mation is more or less always old as the state of a Grid resource may change
rapidly. The asynchronous communication mode of the general purpose In-
ternet typically used to interconnect Grid resources makes it impossible to
maintain an updated view of state in remote resources. Resource availability
also varies, as resources at any time may join, or due to policy reasons or un-
foreseen events, disappear from, the Grid. To avoid stale index entries from
no longer available resources, information indices should be self-cleaning via
soft-state registrations. In addition to always being old, information is often
incomplete, as resource owners are free to choose what resource information
they publish for public access in a Grid. Resource information is hence not
to be trusted blindly, as the presence of information about a resource in an
index neither guarantees the availability of the resource, nor guarantees that a
particular user is authorized to use it.

The existence of several VOs in a Grid results in a variable grouping of
information with multiple, overlapping indices instead of one well-structured,
hierarchical index structure containing all available information. Most indices
contain general information about a subset of the resources in a VO, although
specialized indices can be used, e.g., for keeping track of available storage lo-
cations and the amount of free space on each. Specialized indices can help to
reduce the load on general purpose ones. It is however hard to anticipate every
type of client information request, and it is not feasible to construct a large
number of special-purpose indices. For performance reasons, users and other
information consumers should instead be able to specify and limit the infor-
mation they are interested in retrieving, e.g, through a query language such as
XPath [45] or SQL [112].

1.3.2 Resource Allocation

In order to use a given Grid resource efficiently, mechanisms are needed to al-
locate the resource, to control and monitor the usage of it, and once done, to
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release the allocated resource. As computational resources are the ones most
commonly used in Grids, the rest of this section focuses on these, and the
computational tasks (henceforth called jobs) that they execute. The described
scenario focuses on the basic capability to execute a job on a predefined re-
source. Higher-level tasks, such as selection of which resource to run the job
on, are discussed in Chapter 2.

There are many problems that need to be solved in order to provide high-
quality job management mechanisms, both from a user and resource owner
perspective. Users want a simple, secure, and efficient interface to initiate,
monitor, and control jobs on a remote resource. Most existing Grid toolkits
offer a set of basic functionalities that (partly) fulfills these requirements. A
job description language allows users to express job configuration, e.g., the
executable to run, job input and output files, as well as requirements on the
resource executing the job, e.g., hardware architecture, amount of memory, and
operating system. Job execution mechanisms typically provide an abstraction
layer that hides the heterogeneity of the underlying execution platform. Batch
system schedulers such as LoadLeveler [115], LSF [222], and PBS/Torque [110]
are examples of such platforms. Other used execution backends include Con-
dor [200], a loosely connected pool of machines available to Grid jobs when
otherwise idle, and execution of the job on the frontend machine itself through
the POSIX “Fork” command. Most job management mechanisms also define
a state model for a computational job. Typical job states include “pending”,
“running”, “finished”, and “failed”.

From a resource owner perspective, authentication and authorization mech-
anisms are needed to be able to control which users that may access the re-
sources. Resource owners also want to control the environment a Grid job is
executed in, e.g., via sandboxing techniques1. Other resource owner require-
ments include functionality for auditing and accounting, i.e., tracking who is
using the resource, for what, at what time, and in what quantities.

More intricate aspects of resource (job) allocation such as interoperability
of job submission systems and the associated standardization process, as well
as negotiation of terms of use are discussed in Chapter 5 and Section 2.2.2,
respectively.

1.3.3 Data Management

Many Grid applications require secure and efficient access to data that is stored
distributed across a Grid. The GridFTP [61] protocol is the de-facto standard
for transfer of data. GridFTP extends FTP, e.g., with authentication on both
the data channel and the control channel, based either on the Grid Security
Infrastructure [217] or Kerberos [152]. GridFTP contains several performance

1Sandboxing mechanisms provide a limited and secure execution environment for a not
fully trusted application, in this case a Grid job. According to Thain et al. [200], sandboxing
techniques must provide both the box, i.e., the protection mechanisms, and the sand, i.e., an
execution environment as suitable as possible for the requirements of the application.
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improvements over the original FTP protocol, including parallel transfers, i.e.,
the usage of multiple TCP data streams between two endpoints, and striped
transfers, i.e., usage of data streams from different endpoints, both on the
sender and receiver side. Other functionality improvements are restartable
transfers and transfers of partial files. Third-party transfers (server-to-server
transfers) allow a client to transfer files between two servers without acting as
an intermediate proxy for the data channel. GridFTP also specifies both an
option for automatic TCP buffer size negotiation and protocol messages for
explicitly setting the buffer size.

In addition to the actual transfer of data, current Grid infrastructures typ-
ically contain higher-level data management capabilities. Reliable transfer of
files is achieved by tracking progress of transfers and restarting these upon
failure, as done e.g., by Globus RFT [8] and Stork [121]. The motive behind
data virtualization is to decouple the file identity (the logical file name) from
the location(s) of a file (the physical file name(s)). This is typically achieved
by the usage of a catalogue, e.g., CASTOR [38] or Globus RLS [42], where
mappings between logical and physical file names are stored. Virtualization
of data enables replication [39, 64, 124], i.e., distribution of multiple physical
copies of the same logical file across the Grid. Replication can improve both
performance [120, 172] and fault tolerance [125, 130].

1.3.4 Security

As the resources used in a Grid typically are valuable and the data transferred
between the resources may be confidential, security is an important aspect
of Grid computing. New challenges arise in Grid security as the interactions
between user tools and resources are more complex than the traditional client-
server model. Grid security is further complicated by the fact that resources
that belong to different administrative domains (trust domains) interact, each
domain having different security policies and using different mechanisms to
implement the respective policies.

Most Grid security scenarios are covered by three fundamental computer
security concepts, often abbreviated AAA [212]: Authentication establishes the
identity of other entity, in the Grid case, typically a user or a resource; Autho-
rization concerns the privileges (access rights) to a particular entity (resource);
and Accounting includes the control, monitoring, and metering (potentially
including billing) of resource consumption.

From a user perspective, ease of use is key for a Grid security toolkit. A
single sign-on mechanism allows users to authenticate themselves only once,
instead of having to manually repeat the authentication procedure for each
resource they interact with. The requirement for delegation of access rights
arises from the often complex interaction pattern between users and resources.
Through delegation, a user can grant a resource the permission to perform
operations on behalf of the user. For resource owners it is vital that the Grid
security mechanisms are easy to integrate with the local security infrastructure
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used within the administrative domain. Resource owners also need mechanisms
to track access to the resource, i.e., metering and accounting. Flexibility is the
key issue for Grid application developers. A versatile API for authentication,
delegation and similar tasks enables developers to cope with the complexity of
the interactions between applications and Grid resources.

A commonly used security mechanism is the Grid Security Infrastructure
(GSI) [81, 217]. GSI uses a public key infrastructure with X.509 certificates [105]
and supports TLS (SSL) [57] for secure communication. Delegation and single
sign-on are handled through proxy certificates [206], often simply referred to
as proxies. A proxy certificate is valid for a short period of time only, typically
a few hours.

1.3.5 A Basic Job Submission Scenario

A typical interaction between a user client and a set of Grid resources is illus-
trated in Figure 1. In this scenario, the user initially sends a query to the index
to discover what resources are available. As described in Section 1.3.1, the con-
figuration of the index determines whether the user retrieves all information
available about the registered resources, or only references to other information
sources that describe the resources in more detail. In the latter case, the user
has to perform subsequent queries to find out more detailed information about
the resources. After retrieving resource information, the user selects which re-
source to use and then submits the job to the selected resource by one of the
job execution mechanisms described in Section 1.3.2. Finally, the user ensures
that the job input files (including the executable) are transferred to the selected
resource. This last task is either performed from the user client host via di-
rect transfer, or, as illustrated in Figure 1, by the resource through third-party
transfer. The presence of higher-level data management capabilities such as
reliable file transfers and replication can improve both the performance and
the fault tolerance of this part of the job submission process. Security mecha-
nisms can be involved in all of the these tasks, including authentication of the
user by the resource, authorization of the user’s permission to execute the job,
and delegation of the user’s credentials to enable the resource to download job
input files.

1.4 Outline

As described in Section 1.3.5 and illustrated in Figure 1, the basic Grid capa-
bilities for management of information, jobs, data, and security, all provided by
contemporary toolkits, can be used to perform most tasks in a basic job sub-
mission scenario. However, real-life Grid usage scenarios require capabilities
beyond the fundamental ones described in Section 1.3. This thesis investigates
topics that extend on the basic job submission scenario. The outline of the
rest of this introduction is as follows. Chapter 2 describes architectural models
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Index

Computational
resource

Storage
resource

User
client

(i) discover (iii) submit
(iv) transfer

data

(ii) select

Figure 1: Component interactions in a basic job submission scenario.

and algorithmic considerations for resource selection, topics studied in papers
I, II, and III. In Chapter 3, issues related to submission, monitoring, and fault
handling of large numbers of independent jobs are studied. Frameworks for
such job management capabilities is the topic of Paper IV. Chapter 4 describes
workflows, i.e., sets of jobs with internal execution order dependencies. Chap-
ter 4 also discusses issues related to composition of workflows, resource selection
for jobs in a workflow, and workflow execution. Papers V, VI, and VII study
a wide range of topics related to the composition, scheduling, and execution of
Grid workflows. Chapter 5 describes interoperability problems in current Grid
infrastructures and the related standardization efforts. This thesis addresses
interoperability problems at several levels, e.g., at job submission level in pa-
pers I and II, job management level in paper IV, workflow execution level in
paper V, and also from a more conceptual perspective for workflows in paper
VII. Some design considerations for Grid software are given in Chapter 6, in-
cluding discussions of service-oriented architectures, Web services, and design
heuristics. A more in-depth analysis of these topics is found in Paper VIII.
The final part of this introduction consists of a summary of the papers in the
thesis (Chapter 7), an outline of potential future work (Chapter 8), and a
bibliography, respectively.
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Chapter 2

Grid Resource Brokering

The selection of which Grid resource(s) to use for a specific application is
unfeasible even for the educated user due to the large number of resources,
their fluctuating availability, differences in resource hardware, software, access
policies, etc. A resource broker is a tool that automates and improves resource
selection, or more commonly, the whole job submission process, for the user. A
Grid resource broker is sometimes referred to as a meta-scheduler, as it selects
which local scheduler (which local resource) to interact with.

2.1 Brokering Scenarios

There are two main Grid resource brokering scenarios. In the centralized sce-
nario, all access to Grid resources is controlled by one broker. A centralized
broker has good knowledge of, and control over, all submitted jobs and can,
via load balancing techniques, produce good schedules. One obvious drawback
of this type of broker is the potential performance and scalability bottleneck
and that a centralized broker is a single point of failure. Another shortcoming
of the centralized brokering approach is that it is hard to introduce dynamic
policies, e.g., user-specified resource selection algorithms, in a centralized sys-
tem. Furthermore, despite having complete knowledge about all the Grid jobs,
a centralized broker cannot produce completely reliable schedules as the ulti-
mate control over the resources remains in the hands of their respective owners.

The alternative approach is a decentralized (distributed) brokering archi-
tecture, where individual users have their own resource brokers. This type of
broker typically manages only a fraction of the total number of jobs submitted
to the Grid, and can hence not (alone) perform load balancing. Advantages of
the distributed brokering approach include scalability and fault tolerance. A
decentralized brokering architecture also enables customization, as each indi-
vidual broker can be tailored to the specific requirements of an certain user or
application. Centralized and distributed brokers, as well as hybrid brokering
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approaches with a hierarchies of brokers, are further discussed in [122].
A centralized broker is typically used to schedule jobs to a specific set

of resources, often belonging to the same VO. A decentralized broker on the
other hand, is most often not tied to certain resources, but allows the user to
specify for each job request which resources the broker should consider. There
is however no fixed hierarchy of resources as some resources may be accessible
to users from different VOs, possible even through different Grid middlewares.
Such resources can be seen as belonging to multiple Grids.

The scheduling policy used by a resource broker can be either system-
oriented or user-oriented [122]. The goal expressed in a system-oriented schedul-
ing policy can be to maximize resource utilization, load balance, fairness, or a
combination of these. System-oriented scheduling policies are commonly used
by centralized brokers. A distributed broker most often strives to maximize a
user-oriented scheduling policy, typically by improving the throughput or re-
sponse time for jobs submitted by the individual user, regardless of the impact
on the overall Grid performance and at the expense of competing users.

This thesis investigates the decentralized Grid brokering problem. The
varying characteristics of different applications make resource selection a prob-
lem that must be solved on a per application basis. The problem is further
complicated by heterogeneity in resource hardware, software and usage poli-
cies. Since a decentralized broker operates without global control, it must base
all its decisions on information about, and negotiation with, the resources, and
not on control over them. As discussed in Section 1.3.1, information gath-
ered about the state of the available resources is often incomplete, as resources
may limit the published information due to misconfiguration or policy reasons.
Information is typically also outdated, as the current load of a resource may
change at any time, making Grid resource brokering an online scheduling [166]
problem. A decentralized broker may serve more than one user, but typically
handles every user in isolation in such a scenario, in effect giving each user a
personal broker. Users of a decentralized broker have to compete for resources
with other users of the same broker, with users of other Grid brokers, and, as
most resources are not dedicated to Grid use exclusively, with users accessing
the resources through local, non-Grid interfaces.

All attempts to perform Grid resource brokering should consider the de-
gree of transparency. Users want transparent access to the resources, but some
issues, such as the resource selection criteria, typically requires some user in-
volvement. A flexible mechanism that enables users to express their different
resource requirements is of particular importance for a decentralized broker
with a user-oriented scheduling policy, as user satisfaction is the main goal for
this type of broker. A user’s typical resource requirements for a computational
job include hardware architecture and the number of CPUs of the resource, as
well as the amount of main memory and secondary storage available to the job.
Further resource requirements include operating system; installed software, in-
cluding availability of licences for commercial software toolkits; capacity of the
network connecting the resource to the Grid; and available QoS guarantees,
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such as job start and/or completion time.

2.1.1 Approaches to Brokering

Figure 2 illustrates a decentralized brokering scenario with a set of computa-
tional Grid resources. Each resource uses a local batch system scheduler to
plan and manage the execution of jobs submitted to that resource. The lo-
cal schedulers control the backends that execute the jobs, see Section 1.3.2
for more details. Also shown in Figure 2 are two indices that store Grid re-
source information. The dotted arrows in the figure illustrate how resources
register information about themselves in the indices. Resource information
queries from brokers to the indices are shown as dashed arrows. For clarity,
the two information indices aggregates all available resource information and
no information queries are hence sent from the brokers to the resources. The
two rectangularly shaped brokers in Figure 2 each serves a small set of users.
The other type of broker, illustrated as Broker/Client in the right-hand side
of the figure, is integrated into an application and is hence used by the user(s)
of that application only. The solid arrows in Figure 2 illustrate job requests,
either sent from the users to the brokers, or from a broker to a resource. Data
transfers are omitted from the figure for clarity.

ResourceResource
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Client

Client

Broker

Client

Client

Broker/
Client

Client

Resource

   Job
queues

Local
scheduler

...

Compute
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Index Index

Figure 2: Overview of components and interactions in a decentralized brokering
scenario.

General brokering discussions in the literature include “Ten actions when
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Grid scheduling” [181], where Schopf discusses the eleven (!) steps in the job
submission process. Pugliese et al. [168] analyze the requirements of Grid
resource management and classify schedulers according to scheduling policy as
well as the type and scope of resources they manage. Work by Vázquez-Poletti
et al. [209] compares the centralized scheduling paradigm of EGEE WMS [63]
with the decentralized one of GridWay [109].

Examples of resource broker software include EMPEROR [4], a meta-scheduler
with a framework for implementing performance (prediction) based scheduling
criteria. EMPEROR utilizes time series analysis to predict, e.g., job execution
time and resource utilization. The composable ICENI [228] Grid scheduling
architecture supports multiple scheduling algorithms, including random, sim-
ulated annealing, best of n random, and a game theoretic approach. The
eNANOS Grid resource broker [176] supports submission and monitoring of
Grid jobs and enables users to customize resource selection by weighting the
importance of resource attributes such as CPU frequency and main memory
size. Chapman et al. [40] present a Grid scheduling framework that uses pre-
diction theory, in particular Kalman filters, to minimize response time for Grid
jobs. A theoretical study of the Grid scheduling problem and a comparison
to methods applied in multiprocessor systems is given by Schwiegelshohn et
al. [182].

An alternative approach to resource selection is taken in market-based
Grids, where participants trade resource shares in artificial markets. Claimed
advantages of the marked-based approach are increased resource utilization
and better load balancing, both a result of the supply and demand equilibrium
that is predicted to occur in an economic system [221]. Users can furthermore
assign priorities to their jobs by adjusting the budget allocated to each job.
Examples of market-based mechanisms for Grid computing include prealloca-
tion of artificial Grid credits [87] and systems where resource consumption is
based on real economic compensation [12, 107]. The pricing mechanism in a
market-based Grid is often implemented either as a commodity market or as
an auction. Additional models for market-based resource allocation exist and
a taxonomy of these as well as a discussion of market-based systems can be
found in the work by Yeo et al. [225].

Although the market-based approach may seem fundamentally different
from resource selection algorithms used in other Grid systems, the task of
a Grid resource broker remains much the same. The broker still has to iden-
tify, characterize, negotiate, select, etc. resources to solve the decentralized
Grid brokering problem. The additional constraint in a market-based Grid is
that the resource selection algorithm also has to consider price as a parameter.
Instead of requesting the “best” resource, a user may prefer to use the best re-
source that fulfills certain budget constraints, i.e., resource selection becomes a
tradeoff between cost and performance. This issue and other resource selection
considerations are further discussed by Yahyapour [223].
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2.2 Tasks of a Grid Resource Broker

As outlined in Section 1.3.5, the tasks performed by a Grid resource broker are
discovery of available resources, selection of which resource to use, invocation
of the job request operation of the chosen resource, and transfer of the job
input files to the resource. Whereas most of these tasks are straight-forward,
resource selection is a complicated process. In overview, resource selection con-
sists of three phases. First, the list of discovered resources is filtered. In this
step, resources are removed if they do not fulfill the user’s requirements for
hardware, software, etc, or if the user is not allowed to use them. After the
initial filtering follows two dependent and often interleaved tasks, prediction of
resource performance and negotiation of terms of use. Performance prediction
includes estimating the characteristics of both the application and the resources
considered. Resource heterogeneity results not only in performance differences
between Grid resources, but also means that the relative performance charac-
teristics may vary for different applications. This complicates predictions of
job performance. Nevertheless, good performance estimates are of great value,
e.g., during negotiation of terms of use. Such a negotiation of QoS terms result,
when successful, in the creation of a Service Level Agreement (SLA) between
the broker and the selected resource. Accurate performance predictions are
also useful in cases when no performance guarantees are available. Various
perspectives of performance prediction and SLA negotiation are discussed in
the following sections.

Optional tasks for a broker include to monitor the job during execution and
job clean up tasks. Jobs may also be migrated, e.g., for performance reasons,
and resubmitted to alternative resources upon failure. Other commonly used
features include management of sets of individual jobs and coordination of jobs
with internal dependencies, the latter also known as workflows. Job manage-
ment and workflows are further discussed in chapters 3 and 4, respectively.

2.2.1 Performance Predictions

An accurate estimate of job performance serves multiple purposes. During SLA
negotiations, knowledge of application performance helps avoiding requesting
more resource capacity than required, and can hence reduce response time,
cost, and/or other scheduling criteria. Performance prediction techniques are
also useful when no SLA negotiation occurs between a resource broker and Grid
resources. In this case, job placement decisions are based exclusively on the
(predicted) performance of jobs on the considered resources.

Research on performance prediction often focus on models for estimating
various parts of the job lifecycle, including execution time and time spent wait-
ing in a batch queue for access to the resource. This is a well studied problem
for traditional batch system scheduling [187, 204]. In Grid environments, per-
formance prediction is complicated by the existence of multiple heterogeneous
machines, and the fact that the considered job need not have executed on all
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of these before. One way of classifying performance prediction methods is to
divide them into statistical methods that uses data gathered from previous
executions [6, 116, 127, 187, 204] and heuristics-based methods that take into
account job and resource characteristics [99, 128, 216].

Krauter et al. [122], divide performance prediction methods into predictive
and non-predictive ones. The predictive methods, which include pricing mod-
els and machine learning, take historical use in consideration. Non-predictive
methods include probability distributions that do not make use of historical
data. In the taxonomy by Krauter et al., heuristical methods can be either pre-
dictive or non-predictive. Alternative classifications of performance prediction
methods include work by Smith [185] that discusses statistical and analytical
models. The statistical models are based on analysis of previously completed
applications and equations are used to model execution time. The analytical
ones are either derived by hand or by automatic code analysis or instrumenta-
tion [185]. Smith further describes two statistical run time prediction methods,
investigates how to predict batch queue waiting time, and discusses scheduling
methods that utilize run time predictions.

Ali et al. [7] analyze how to model execution time on heterogeneous com-
puting systems and discuss the minimization of performance metrics such as
job start time and job completion time. They present a model for expected
execution time that takes into account heterogeneity of machines and tasks,
as well as consistency, the latter defined as whether a given machine is faster
than another one for all types of tasks. In [91], Goyeneche et al. evaluate
the accuracy of current data mining and statistical methods for performance
prediction based on application similarity classifications. Based on their find-
ings, they propose a prediction mechanism with weighted templates that, after
initialization, prediction, and incorporation of historical information, gives run
time predictions with corresponding confidence intervals [91].

Smith [185] describes two techniques for batch queue wait time prediction.
The first is based on run time predictions and simulates commonly used batch
scheduling algorithms to transform the run time prediction problem into a
queue time prediction one. The second method by Smith is history-based and
uses application similarity categorization techniques to classify the scheduler
and the application. Li et al. [127] apply local learning techniques [18] to
queue time predictions. Evaluations using workflow traces from large clusters
demonstrate that the local training techniques by Li et al. are more efficient
than global and adaptive ones.

A prediction method that takes into account file transfer times, batch queue
waiting time, and application execution time is suggested and evaluated by
Smith [186]. The proposed method uses instance-based learning and is based
on historical information.
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2.2.2 Negotiation of QoS Terms

The term QoS refers to guarantees (beyond best effort) for the performance
of a service. This covers virtually all aspects of service delivery (in this case
job execution), including availability of the service, amount of resources allo-
cated to the service request, compensation for the consumed resources, agreed
levels of security, risk of failure, response time, throughput, etc. The essen-
tial mechanism to guarantee QoS terms is a priority mechanism that enables
differentiation between consumers of a service. To support QoS in a general in-
frastructure, the following components are needed: a language to describe QoS
terms, a protocol that consumers can use to negotiate a SLA with a provider,
a mechanism to model the agreed upon SLA, and functionality to monitor the
SLA for violations.

A language for describing QoS terms is by necessity domain dependent,
e.g., bandwidth for networks, as defined by the Resource ReSerVation Protocol
(RSVP) [31]. For computational jobs, typical QoS terms include amount of
memory allocated to the job and number of CPUs, as well as job start and/or
completion time. It is also useful to be able to express under what restrictions
the terms apply, e.g., a resource will promise to complete a job before a certain
deadline only if the user submits the job within a given time.

Various types of negotiation protocols have been studied within the area
of agent-based computing. A framework for auction protocols is suggested
by Chard and Bubendorfer [41]. Bai et al. [21] propose a three actor model
with providers, brokers, and consumers. They evaluate an economic broker-
ing algorithm with respect to resource utilization, consumer satisfaction and
provider revenue. A game-theoretic approach is suggested by Khan et al. [207].
This work studies utilization, fairness, completion time, and request rejection
rate for various cooperative and non-cooperative resource allocation methods.
Venugapol et al. [210] propose a bilateral negotiation mechanism that, in ad-
dition to accept and reject messages, also allows the negotiating parties to
express counter offers. Simulations confirm that this approach is beneficial for
brokers that accept reservation start time delays. In context of the NextGRID
project [46], Hasselmeyer et al. [101] discuss how to negotiate SLAs based on
business-level objectives instead of details of the hardware used to deliver the
service. For example, a user can select, e.g., from the “gold”, “silver”, and
“bronze” service levels instead of specifying detailed XML descriptions of the
requested resources.

A proposed standard that has received attention the last few years is WS-
Agreement [14] that defines mechanisms to model and monitor agreements
between a (Web service based) agreement provider and an agreement initiator.
Seidel et al. [183] survey Grid resource management projects that utilizes WS-
Agreement to model SLAs, typically to implement start time guarantees. A
WS-Agreement-based negotiation protocol is proposed by Siddiqui et al. [184].
Here, resource allocation is modelled as a strip packing problem. The negoti-
ation protocol is based on a three-layered approach, with allocators for single
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requests, coallocators that coordinate requests from the same application, and
coordinators that resolve conflicts between coallocators.

Advance reservations. Of particular interest for this thesis is response time
related QoS aspects. In the batch system schedulers used in current Grid infras-
tructures, advance reservations is the only mechanism available to guarantee
job start and/or completion times. An advance reservation is an assurance for
the consumption of a certain amount of resources at a specified time in the
future. However, such a guarantee may be cancelled due to resource failure
or policy reasons, such as when a higher priority activity (typically another
reservation) causes the reservation to be preempted. As advance reservations
most often are given very high priority, the latter case is unlikely to occur.
There are multiple uses for advance reservations, including time-critical tasks
that must meet a deadline, which would be impossible without a start time
guarantee. Further examples include reducing job start time uncertainty [141],
demonstration purposes, debugging, and other interactive use, when access to
the resource at a known time is critical.

Advance reservations also enable the job to be synchronized with other
activities, which is essential for coallocation and workflows. The usage of ad-
vance reservations for computational resources however reduces resource uti-
lization [138, 188, 189]. This reduction can be explained by increased frag-
mentation of batch queues that in turn reduces the efficiency of the backfilling
scheduling algorithms used in current batch systems. Castillo et al. [37] use
methods from computational geometry to tackle fragmentation. Another pos-
sibility to achieve good performance despite the use of reservations is to allow a
certain degree of laxity in reservation start times [71]. However, current batch
system schedulers lack the mechanisms required to implement such reservation
rearrangements [134]. Qu describes an architecture [169] where advance reser-
vations can be offered to Grid jobs regardless of whether they are supported at
the local batch system level. This is achieved by adding a reservation manage-
ment layer in the Grid scheduler. However, this solution assumes that no jobs
are submitted to resources through non-Grid interfaces or by other resource
brokers.

Coallocation. Another QoS related topic studied in this thesis is coalloca-
tion, i.e., the coordinated allocation of a set of resources to be used together for
solving a problem. A typical use case for coallocation is when multiple parallel
computers are used to execute a job that communicates not only between the
CPUs in one cluster, but also across different machines, using e.g., the Message
Passing Interface (MPI) [145]. A more complex scenario is the concurrent us-
age of instruments and computers to in real-time gather, analyze, and possibly
visualize, scientific data from an experiment.

In order to provide a coallocation mechanism, a resource broker must solve
two problems. The first problem is the selection of which set of resources to
use. This is a non-trivial selection procedure as the set of resources suitable
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for the subjobs forming the coallocated job may overlap, as happens, e.g., in
the MPI-scenario where multiple instances of an application must execute on a
set of (binary compatible) machines. The second problem is to ensure that the
selected resources have a coordinated (most often common) start time. This
is typically guaranteed through the use of advance reservations. In addition
to the two problems related to the selection and allocation of the resources,
a coallocation scenario also requires initialization and synchronization of the
coallocated subjobs. For many applications, e.g., jobs that use cross-cluster
MPI, each subjob must be aware of, and able to communicate with, the other
subjobs. Preferably, this functionality should be as transparent as possible to
the application. For the MPI scenario, Coti et al. [48] suggest a solution that
uses connectivity services to hide the complexity of communication.

The work by Czajkowski et al. [50] addresses the application initialization
problem by defining a library for initiating and controlling coallocation re-
quests and another library for application synchronization. By compiling an
application that requires coallocation with the application library, the subjob
instances can be instructed to wait for eachother at a barrier prior to commenc-
ing execution. A similar project is the Globus Architecture for Reservation and
Allocation (GARA) [80] that provides a programming interface to simplify the
construction of application-level coallocators. GARA can perform both imme-
diate reservations (allocations) and advance reservations of networks, comput-
ers, and storage.

Attempts to solve the second coallocation problem, start time coordination,
include the KOALA system [147] that uses a mechanism for implementing coal-
location without using advance reservations. This is achieved by requesting
longer execution times than required by the jobs, and delaying the start of
each job until all allocated jobs are ready to start executing. Another contri-
bution where coallocation is achieved without the use of advance reservations
is [19], where Azzedin et al. propose an algorithm based on synchronous queue-
ing. MacLaren [135] treats coallocation as a transaction problem and uses the
PAXOS commit protocol to ensure consistency. This protocol is based on mes-
sages that create, modify, and cancel reservations. Mateescu [139] defines an
architecture for coallocation based on Globus Toolkit 2. The suggested coal-
location algorithm uses a window of acceptable job start times and tries to
reserve all required resources at predefined positions in this start time window.
Decker et al. [51] describe another window-based coallocation algorithm that
by considering the execution and communication times of a set of dependent
tasks tries to minimize the overall completion time. The coallocation algorithm
suggested Wäldrich et al. [215] models reservations using the WS-Agreement
framework and uses a concept of coallocation iterations. In each iteration of
the algorithm, a list of free time slots is requested from each local scheduler.
Next, an off-line matching of the time slots with the resource requests is per-
formed. If the complete coallocation request can be mapped onto some set of
resources, reservations are requested for the selected slots. Röblitz et al. [175]
describe a coreservation architecture where resources are matched to coreserva-
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tion requests in a off-line style similar to the algorithm by Wäldrich et al. [215].
The coreservation algorithm by Röblitz et al. can handle both temporal and
spatial dependencies between requested resources. Netto et al. [151] discuss a
coallocation algorithm based on malleable (flexible) reservations and processor
remapping. In this work, coallocation requests can be moldable, i.e., the num-
ber of requested resources can change. Individual resource requests can also
change in terms of request size and/or start time, all in order to achieve the
earliest possible start time. The actual assignment of resources to requests is
performed with an off-line matching algorithm. A coscheduling (coallocation)
mechanism inspired by the coordinating tasks performed by a travel agent to
guarantee the availability of a multi-resource itinenary is suggested by Yoshi-
moto et al. [227]. In ASKALON [184], coallocation is modelled as a constraint-
satisfaction-problem. An on-line coallocation algorithm described by Castillo
in her PhD thesis [36] makes use of tree structures to handle free time slots at
the resources and decides which resources to reserve by traversing the trees.

2.3 Non-goals of a Decentralized Broker

In the discussion of the tasks of a decentralized broker, it is useful to explicitly
state some related tasks not performed by this type of broker, and discuss why
these tasks are best handled by other components.

A good distribution of the load over the resources in a Grid is important
for both achieving good performance and utilizing the resources efficiently. A
decentralized resource broker that only handles a small fraction of the total
number of submitted jobs cannot alone achieve good load balance. However,
as decentralized brokers typically seek to minimize job response time, each
broker contributes to the overall load balance of the Grid by avoiding the most
heavily loaded resources.

One capacity allocation mechanism commonly used in scientific collabora-
tive Grids is policy-driven preallocation of resource shares based on scientific
impact. Fairness in this type of Grid can for a given user be described as the
difference between the user’s historical, and possible also current, resource us-
age and the preallocated amount of resources the user is entitled to [66]. A
decentralized resource broker does not necessarily try to enforce fairness. On
the contrary, the broker could be considered successful if it manages to allocate
more resources than the user is entitled to. Fairness should hence be enforced
on the resource side [66], not by throttling mechanisms in the broker. A topic
related to fairness is accounting [87], i.e., book keeping the amount of resources
consumed by a user. As fairness, possible payment, etc. typically are deter-
mined from accounting information, accounting should be the responsibility of
the resource provider, not the consumer (i.e., the broker). A user trying to
circumvent accounting (and hence also payment and fairness) could otherwise
use an alternative broker that does not report resource consumption truthfully.
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2.4 Contributions to Grid Resource Brokering

The results related to resource brokering in this thesis is the definition of the to-
tal time to delivery for a Grid job and an associated unified model for resource
selection that can utilize, but do not depend on, a wide range of prediction tech-
niques as well as SLA negotiation mechanisms. This work also demonstrates
how advance reservations can be used both to meet hard deadline constraints
and reduce uncertainty in resource selection. Algorithmical contributions in
the thesis include advances to the state-of-the-art in coallocation.
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Chapter 3

Grid Job Management

Although a Grid resource broker handles the perhaps most cumbersome opera-
tion - resource selection, it is not a complete turnkey solution for Grid enabling
an application. Other capabilities typically required by Grid application de-
velopers include monitoring of submitted jobs, resubmission of failed jobs, and
potentially also migration of jobs from slowly or non-responding resources.
Complex applications such as computational steering and interactive visualiza-
tion need, in addition to job monitoring, also the ability to interactively steer
the job during its execution.

One common problem type that is particular suitable to Grid environments
is the parameter sweep study, where large numbers of jobs without internal
dependencies are executed, typically to study a problem for different input
parameters. Parameter sweep applications require tools that simplify the man-
agement, and execution (as well as reexecution) of large groups of jobs. Perfor-
mance critical applications may need performance-aware job monitoring, and
also a framework that automatically detects performance anomalies and takes
appropriate actions, e.g., submits the job to an alternative resource, or, if pos-
sible, migrates the running job. Performance aware job migration requires
both a checkpointing mechanism and a method to communicate application-
specific performance metrics from the application to the Grid middleware. As
both checkpointing and performance metric reporting necessitate application
modification, some users are reluctant to use these features.

Some resource-demanding users use the Grid as their daily production en-
vironment for running very large numbers of computationally intensive appli-
cations. These users would benefit from having their own personal job queues,
where jobs can be added for later submission to the Grid. To avoid overloading
the Grid resources, user job queues typically include some sort of backoff func-
tionality. Ideally, such functionality should not be required. However, the job
submission pattern of some users shows a temporal and spatial burstiness [129],
and jobs failure due to resource overload is hence not uncommon [129]. Per-
sonal job queues also enable inter-job priorities for jobs that belong to the same
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user. This allows users, to some extent, to control the order in which their jobs
are executed. The exact job execution order is however determined by batch
system scheduling algorithms and the user can hence not control the internal
execution order of jobs after they are submitted to batch queues.

3.1 The Role of Job Management Frameworks

Many Grid application developers implement their own set of tools for the above
described functionalities. This approach may at a glance seem attractive as it
potentially can save time if only trivial job management functionality is needed,
but typically results in non-reusable software due to too strong coupling to the
application. Furthermore, the built-in heterogeneity of Grid infrastructures and
their error-prone nature necessitate middleware-independent job management
tools and robust fault tolerance mechanisms that are non-trivial to design and
implement. Preferably, resource brokering and job management capabilities as
those described here should be gathered in well defined APIs, or as argued in
Section 6.1, exposed as services.

3.2 Contemporary Job Management Tools

The construction of general toolkits for Grid job management is a large area of
active research. Casanova et al. [35] describe a user-level middleware with an
integrated scheduler (resource broker) that simplifies the execution of param-
eter sweeps on a Grid. The scheduling algorithm used combines Gant charts
with various heuristics for estimating and minimizing completion times of jobs
as well as of file transfers. The Nimrod-G [2] resource broker consists of a
task farming engine, a scheduler (for resource discovery, trading, and schedul-
ing), dispatchers and actuators (for interfacing different Grid middlewares),
and agents for managing job execution, e.g., setting up the job environment
on resources. Nimrod-G supports parameter sweeps and master-worker style
applications. The goal of the GridWay [109] framework is simplified and more
efficient job execution in a “submit and forget” fashion. The GridWay resource
selection algorithms strive to minimize the job completion time. In GridWay,
a Grid-aware application contains both a performance profile and a restart file,
the latter used for user-level checkpointing. GridWay supports job resubmis-
sion, which can be initiated by failures, user requests, or performance declines.
The last two scenarios are enabled by the checkpointing mechanism. Users of
GridWay have their own personal submission agents (job queues).

The GridLab Grid Application Toolkit (GAT) [9] aims to provide a sim-
ple and robust environment for developing applications that exploit the Grid.
GAT provides a layered view of the available functionality, ranging (bottom
up) from a core layer, a service layer, a GAT API layer, and finally an appli-
cation layer. The GridLab Resource Management System (GRMS) resides at
the service layer. It provides services for job management, and management of
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infrastructure elements such as information, data, networks, and accounting.
Job management capabilities include a Job receiver (job queue) and services
for resource discovery, job requirement prediction, resource performance esti-
mation, and brokering, as well as mechanisms for negotiating QoS terms and
performing advance reservations. The GridSAM [144] job submission pipeline
is based on the principle of a staged event-driven architecture [218]. Instead
of treating each job submission in isolation, the event-driven job submission
pipeline is divided into stages, allowing the processing load of each stage to
be controlled by adjusting the size of a thread pool serving it, thus increasing
fairness under high load. Steps in the GridSAM pipeline include file stage-in,
job description generation, job submission, job monitoring, file stage-out, and
cleanup.

One main focus of the P-GRADE project [114] is to run parallel applica-
tions, i.e., jobs using MPI or PVM, on the Grid. P-Grade provides a graph-
ical environment to design, execute, and monitor applications. The design of
message passing applications is facilitated through a graphical language that
enables also non-expert users to define the communication pattern between the
processes. In P-Grade, checkpointing (and hence also migration) is supported
for PVM applications. The focus of the Falkon system [170] is to improve
performance for large numbers of submitted jobs. In Falkon, a provisioner
creates and destroys executors. These executors are placed on available Grid
resources and can accept jobs submitted by the user. This model provides for
good performance and is particularly well suited for fine-grained jobs as the
non-neglectable overhead for submitting a task to a Grid resource is done only
once for each executor, instead of once for each job. Moltó et al. [148] discuss
how to model and implement a resource brokering architecture using the Web
Services Resource Framework (further discussed in Section 6.1). Their archi-
tecture is divided into three layers, information management, job submission,
and metascheduling of multiple tasks.

Closely related to Grid job management is the process of enabling a certain
application to execute on the Grid. By wrapping legacy code applications as
Grid services, GEMLCA [56] provides submission, monitoring and result re-
trieval of jobs that execute legacy codes. The GEMLCA approach to wrapping
the applications is non-invasive, as it does not require access to, or modifica-
tion of, the application source code. Users can deploy new applications into the
GEMLCA hosting environment through a Web portal and also manage jobs
executing these applications. Mateos et al. [140] discuss various approaches to
gridify, i.e., Grid-enable, applications. In their work, a set of existing frame-
works are compared with respect to job granularity and ease of gridification,
the latter including aspects such as whether the application source code needs
to be recompiled.
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3.3 Contributions to Grid Job Management

The main contribution to Grid job management in this thesis is the investiga-
tion of suitable architectures for job management tools. Our study proposes
a multi-layered architecture in order to improve abstraction and flexibility.
A proof-of-concept implementation demonstrates the feasibility of this model
from a performance point of view.
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Chapter 4

Grid Workflows

A workflow is a set of coordinated activities that combined solve a complex
problem. The tasks that constitute a workflow are typically arranged as nodes
in a directed graph where the links represent dependencies between tasks.
These graphs are typically acyclical (so-called DAGs), although some work-
flow systems use graphs with cycles in order to model iterations.

The edges in the workflow graph can denote a control flow that explicitly
dictates the execution order of the workflow tasks. This model of computa-
tion shares many characteristics with sequential programming languages and
can hence easily be understood by programmers. Alternatively, the workflow
graph edges can specify a data flow that implicitly defines a partial execu-
tion order of the workflow tasks. In the data flow model, a workflow can be
thought of as a flow of data, where the nodes (tasks) merely are functions
that transform the data as it flows through the graph. Although perhaps less
straight-forward to most programmers, the data flow model has proven useful
for non-programmers and application scientists [162]. Other Grid workflow ap-
proaches [104] use Petri nets as model of computation. Petri nets are a Turing
complete formalism commonly used for modeling and analyzing systems that
are concurrent, asynchronous, and non-deterministic.

Workflows are not exclusive to Grid computing, research on these started
long before Grids existed. The emergence of Grid computing enables com-
putational workflows to leverage powerful Grid resources for computationally
intensive tasks. Such Grid workflows typically consist of a combination of com-
putational jobs and file transfers between the machines that execute the jobs.
A broad introduction to Grid workflows as well as a in-depth description of con-
temporary workflow systems is found in the book by Taylor et al. [196]. Van der
Aalst et al. [208] discuss commonly used patterns in workflows. Taxonomies of
workflow capabilities include [53, 230]. For a wide overview of current research
in scientific (Grid) workflows, see e.g., [25, 55, 85, 133, 196].
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4.1 Workflow Management Capabilities

The typical tasks in the scientific workflow process include composition of a
new workflow, scheduling of the workflow, workflow enactment (execution), and
analysis of the results, the latter including recording of enactment metadata
for reproducibility purposes.

4.1.1 Workflow Composition

Important aspects when composing a new workflow include the language used
to encode the workflow, the tools available to design a particular workflow, and
to what extend reuse of existing workflows are possible.

The composition of a scientific workflow is simplified if the workflow lan-
guage has expressive power equivalent to that of a (Turing complete) program-
ming language. However, there is disagreement within the workflow community
about whether workflow languages should be simpler and more restricted than
programming languages [52], or whether constructs such as iterations and con-
ditions are essential to encode complex scientific problems [20].

As most workflow systems use a textual, often XML-based, representation
of the workflow tasks and their dependencies, design of a new workflow can be
performed by encoding the workflow description manually. This can however
be error-prone even for expert users, and the usage of a drag-and-drop style
GUI client for defining the workflow graph is common.

Workflow composition is greatly simplified if existing workflows can be
reused in parts or in full. This is exemplified by the Taverna [158] tool, where
more than 3000 bioinformatics services can be utilized in new workflows. The
myExperiment project [179] allows scientists to find, share, modify, and reuse
workflows, as well as build communities and collaborate with colleagues in a
manner inspired by social networking Web sites.

4.1.2 Workflow Scheduling

Workflow scheduling is the transformation of an abstract workflow with only
tasks specified, to a concrete workflow, where resources have been assigned to
each task. As a Grid workflow consists of a combination of computational
tasks and file transfers, all considerations that apply for the brokering and
management of individual jobs (as discussed in chapters 2 and 3) are also valid
for workflow scheduling. The main difference between workflow scheduling and
management of independent jobs, is to what extent workflow scheduling system
should take dependency constraints among the tasks in the workflow into ac-
count. One method is full-ahead planning, where resources are assigned to each
task at the start of the workflow execution. The completely opposite approach
is just-in-time workflow scheduling, where each task is scheduled as its preced-
ing task(s) complete. Hybrid solutions also exist, where the workflow is divided
into subgraphs that are planned as execution of previous subgraphs complete.
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Full-ahead planning techniques typically involves determining the critical path
of the workflow, that is, the path of subsequent tasks in the workflow graph
with the longest estimated total execution time. By giving higher priority to
the tasks along this path, critical path workflow scheduling algorithms aims
to minimize the workflow completion time, the so called makespan. However,
just-in-time scheduling may also reduce the makespan, as this technique can
leverage the dynamic nature of the Grid, and benefit from appearance of new
resources and/or changed load on known ones. To minimize execution time,
the workflow scheduling system can also rewrite the workflow graph, e.g., to
group tasks for increased data reuse.

The Pegasus workflow management system [54], is an example of a workflow
scheduler that reorganizes the DAG during the mapping process. In Pegasus,
the final concrete DAG is produced in a format interpretable by an enactment
engine such as Condor DAGMan [200]. Pegasus supports the use of placeholder
jobs that in advance are submitted to Grid resources for execution. Once run-
ning, a placeholder job can execute one or more tasks in the workflow. When
combined with task clustering, placeholder jobs can improve the workflow per-
formance considerably, especially for fine-grained tasks [54]. Huang et al. [108]
propose a simplified workflow scheduling algorithm that takes into account
neither resource information nor task information beyond intertask dependen-
cies. In this work, resources are grouped by heterogeneity and connectivity.
A performance evaluation confirms that their proposed method gives shorter
makespans than critical path algorithms.

Before the emergence of Grid workflows, the problem of scheduling of a set
of dependent tasks, typically expressed as a DAG, on a set of heterogeneous
processors, has been studied extensively. Examples of algorithms include Het-
erogeneous Earlist-Finish-Time (HEFT) [203], that also has been evaluated in
the context of Grid workflow scheduling [219]. Rotithor’s taxonomy [178] of dy-
namic task scheduling schemes is based on a separation of state estimation (i.e.,
resource load and/or performance prediction) and decision making. Alhusaini
et al. [5] describe a DAG scheduling algorithm to minimize the makespan that
operates on one layer of the DAG at the time. In this work, various heuristics
for scheduling of tasks from a given layer are evaluated, including min-finish-
time and max-finish-time. In the work by Canon et al. [33], 20 DAG scheduling
heuristics are evaluated, focusing on makespan and robustness of the heuris-
tics, the latter considering to what extent they are affected by unpredictable
run-time changes.

4.1.3 Workflow Enactment

Grid workflow enactment can be performed using different levels of abstrac-
tions. For job-based workflows, some systems interact directly with batch sys-
tem schedulers, whereas others use a Grid middleware, or even a toolkit that
abstracts over multiple middlewares, to manage the workflow tasks. Alterna-
tively, if the workflow is composed of a set of orchestrated services, workflow
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enactment is the process of invoking the services in the specified order. As fail-
ures are frequent in Grid environments, fault tolerance is an important aspect
of workflow enactment. This can be achieved on a per-task basis, e.g., by re-
executing a failed task on an alternative resource or restarting an interrupted
file transfer with a replica of the transferred file. These task-level fault recovery
mechanisms are in the literature described as implicit fault management [104].
Workflow-level fault tolerance is another possibility, where an alternative path
of enactment in the workflow graph is taken upon failure. However, the latter
approach requires that the workflow language supports conditions and/or ex-
ceptions. A comparison of fault tolerance techniques in contemporary workflow
systems is provided by Plankensteiner et al. [167]. As only concrete workflows
can be enacted, there is a strong coupling between tools for workflow schedul-
ing and workflow enactment, especially if workflow scheduling is performed in
a just-in-time fashion (as opposed to full-ahead planning).

One commonly used workflow engine (workflow enactment system) is the
control flow based Condor directed acyclic graph manager (DAGMan) [200].
In DAGMan, a workflow graph consists of computational tasks (Condors jobs)
along with pre and post scripts, that can be used e.g., for data transfers. DAG-
Man is used as enactment engine, e.g., by Pegasus [54] and P-GRADE [89, 114].
The goal of the MOTEUR workflow engine [88] is to combine ease of use
through simplified iterations (parameter sweeps) with flexible data composition
mechanisms and efficient parallel execution. The data composition strategies
in MOTEUR enables users, through the Scufl language of Taverna, to express
nested dot and cross products over data sets.

4.1.4 Workflow Reproducibility Concerns

Reproducibility is key in the scientific process. In order to verify and repeat
experiments, scientific workflow systems need to store information about input
data sets, used Grid resources, versions of softwares and libraries, etc. This
provenance metadata enables, when properly recorded, the workflow execution
to be reproduced. Ideally, the workflow provenance information should not
only capture the computational steps of the Grid workflow, but rather be a
complete description of the greater, scientific process of generating new knowl-
edge. Simmhan et al. [226] discuss various provenance issues as well as survey
provenance systems and workflow management tools that support provenance.

4.2 Contemporary Grid Workflow Systems

Well-known scientific workflow systems include the ASKALON Grid applica-
tion development and computing environment [69, 70]. The ASKALON ar-
chitecture includes a Scheduler for placement decisions, a Resource Manager
that performs resource discovery and related tasks, and an Enactment Engine
for reliable and fault tolerant execution of tasks. The UML-based AGWL lan-
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guage used to define workflows supports both control and data flow, as well
as conditions and iterations. In ASKALON, placement decisions are based
on a combination of advance reservations and performance predictions. The
ASKALON scheduling process is divided into refinement (workflow rewriting),
mapping (resource to task matching), and, upon failures or similar events,
rescheduling. The used scheduling algorithms include HEFT.

Taverna [157] is an extensive workflow environment for the life science com-
munity. Workflows in Taverna are expressed in the Scufl language that supports
both data flow and control flow. Taverna users benefit from being able to reuse
a large set of predefined workflow services. Notably, as users only select among
services hosted at predefined locations, no workflow scheduling is performed in
Taverna.

The Kepler [132] workflow management system defines a data flow model
where actors modify the data. Data transformation actors can fine-tune the
data streams using, e.g. XSLT [58] or XQueury [29]. Kepler supports a wide
range of control and data flow enactment styles, including synchronous commu-
nication, publish-subscribe notifications, and continuous time feedback loops.
In Kepler, parameter sweeps are implemented using higher-order functions.

Triana [44, 197] is fundamentally a data flow system, but supports control
flow through trigger tokens. Triana uses a component-based execution model,
similar to that of the Common Component Architecture (CCA) [73]. Compo-
nents can either be job-based or service-based. The job-based workflows exe-
cute on the Grid through the GridLab Grid Application Toolkit (GAT) [10],
with bindings to the Globus GRAM, GridFTP, etc. Such workflows can be
scheduled using the GRMS [123] described in Chapter 3. Triana supports
service-based workflows by orchestrating services using the GAP toolkit [198].
There are no iterations or condition constructs in the Triana language, these
are instead embedded in custom components. Triana decouples the GUI for
workflow design from the workflow enactment system.

The P-GRADE [114, 89] Web portal allows users to define and manage
workflows. Similar to Triana, the P-Grade portal supports (through DAG-
Man [200]) enactment of workflows composed of tasks, or of services, the latter
through MOTEUR [88]. Nodes in a P-GRADE workflow graph can either be
jobs or GEMLCA legacy code services. P-GRADE allows the use of resources
from multiple Grids, and uses MyProxy [23] to enable the use of multiple cer-
tificates for the same user. Parameter sweeps are supported through parameter
spaces that are mapped into data segments and further on to tasks (DAGMan
jobs or MOTEUR service invocations) in the workflow manager. This mapping
can either be dot or cross product.

Karajan [213], the workflow component of the Globus Java CoG kit, is based
on earlier work on GridAnt, a Grid extension to the ant build system [17]. The
Karajan system supports job execution and file transfers, as well as monitoring
and checkpointing of workflows. In Karajan, a declarative control flow language
is used, with constructs for expressing sequential and parallel tasks as well as
conditions and iterations, where the latter can be either sequential or parallel.
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Construction of large workflows is simplified by the support for user-defined
procedures that enable custom extensions to the Karajan language.

The Imperial College e-Science Networked Environment (ICENI) [141, 142]
workflow pipeline consists of the three phases: specification, realization, and
execution. ICENI provides a pluggable scheduling framework that easily can
incorporate new algorithms. Rapid completion of time critical tasks is ensured
either by advance reservations or by placeholder jobs, the latter a mechanism
also used by Pegasus [54] and Falkon [170].

4.3 Contributions to Grid Workflows

This thesis includes studies of suitable abstractions, techniques, and tools for
integrating local and Grid resources in scientific workflows. One result is the
investigation of suitable programming models for parameter sweeps and tools
that enable the binding of workflow task parameters to be delayed until en-
actment time. We also survey workflow interoperability, albeit with a different
approach than the standards-adoption one taken for resources brokering and
job management. Our interoperability study has a theoretical perspective with
particular focus on differences between Grid workflows and locally executing
ones. This study builds on research within the areas of theory of computation,
compiler optimization, and visual programming languages.
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Chapter 5

Grid Interoperability and
Standardization

There is today a somewhat paradoxical situation where Grids, partly being
developed to increase interoperability between different computing platforms,
themselves to high extent have interoperability problems. Although the reasons
are obvious, expected, and almost impossible to circumvent (as the task of
defining appropriate standards, models, and best practices must be preceded by
basic research and real-world experiments), it makes development of portable
Grid applications hard. The current situation with isolated islands of Grid
infrastructures unable to interoperate with eachother is partly due to the many
Grid projects that focus on infrastructures tailored for specific application areas
despite only slightly different use cases. These projects have resulted in the
creation of a number of Grid middlewares with similar functionality but without
the ability to interoperate. The problem of achieving interoperability is however
not only a technical one, but also a policy (political) issue. Lack of coordination
among Grid projects and the related research communities have resulted in
fragmented infrastructures without a clear structure. There is furthermore
large overlaps in existing virtual organizations. A user can belong to multiple
VOs, and be identified by different certificates in these VOs.

Although interoperability intuitively can be understood from a high-level
perspective, the concept has no single agreed upon definition. IEEE defines
interoperability as “The ability of two or more systems or components to ex-
change information and to use the information that has been exchanged” [111].
This definition captures the intuitive understanding that the interoperable sys-
tems must be able to communicate in a meaningful way. Another definition,
by ISO, describes interoperability as “The capability to communicate, execute
programs, or transfer data among various functional units in a manner that
requires the user to have little or no knowledge of the unique characteristics
of those units” [72]. One important aspect of this definition is that the use
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Figure 3: Different approaches to interoperability through user transparency.

(i.e., communication, execution, data transfer etc.) of two interoperable sys-
tems should be transparent to the client, be it a human operator or another
system. For this second definition, there are (at least) two possible approaches
to achieve the envisioned transparency. In the gateway approach, illustrated in
Figure 3(a), one or both systems are modified to communicate with the other.
The end user invokes the original system through its native interface, and re-
quests are transparently forwarded to the second system. This transparency
increases usability, but can on the other hand be seen as intrusive, as the gate-
way approach necessitates modification of both systems. The second option,
shown in Figure 3(b), is to add an additional layer (a proxy) on top of the two
systems that hides the differences in operation. With this approach, the end
user interacts with the proxy layer, instead of with the individual systems. The
benefits of this is that no modifications are required to the existing systems,
which both simplifies implementation and reduces intrusiveness. However, the
wrapping layer may appear different to the user than the native system inter-
faces, and can hence be more difficult to use.

In achieving interoperability for Grid middleware, the proxy approach is
more feasible as it can be implemented on the client side. The gateway approach
necessitates modification to software running on the resource side. This is
impractical, and potentially also problematic from a policy point of view, as
resource owners not necessarily agree that their machines need modifications
and/or reconfigurations.

5.1 A Layered View on Interoperability

One well-proven method to achieve interoperability is to agree on standardized
protocols, interfaces, and data formats. Standardization of lower-level proto-
cols and data formats enables the definition of other ones with a higher level of
abstraction. This can be exemplified by the successful Internet network stack,
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where higher-level protocols such as HTTP and FTP are constructed on top of
lower-level ones such as Ethernet and IP. A data format example of this prin-
ciple is SOAP that leverages XML and XML schema. This idea of hierarchical
reuse can be observed also in Grid computing. Within the data management
area, the GridFTP protocol, further discussed in Section 1.3.3, greatly sim-
plifies the construction of higher-level data services such as Stork [121] and
RFT [136].

Unlike the GridFTP case, where a well-proven standard (the FTP proto-
col) existed, early Grid job management functionality was developed as a dis-
tributed extension to non-standardized batch system interfaces. These batch
system interfaces were much later standardized through OGF DRMAA [171].
One commonly used early job management protocol is the Globus GRAM [76],
which later was redesigned with Web service tools and renamed WS-GRAM.
Although adopted by many projects as foundation for higher-level job man-
agement components, the GRAM interface never became a standard, and al-
ternative implementations of the offered functionality exists, as illustrated by
the NorduGrid/ARC middleware [65] that performs job management through
GridFTP. The OGF has recently promoted two specifications that are impor-
tant for standardization of job management functionality, JSDL [16], a lan-
guage to describe job requests, and an interface to the job submission system,
OGSA-BES [79]. Although rather new, both of these have gained widespread
support [143].

In both the data management and job management cases, one can observe
that standardization only occurs up to the point when there no longer exists
a broad agreement on the required functionality and/or semantics. For data
management, agreement exist on the transport level (GridFTP), but consensus
has yet to be established, e.g., for replication and fault-tolerant transfers. Par-
ticipants within the job management community agree on the language (JSDL)
and the basic submission mechanism (OGSA-BES), but still struggle to define
higher level services such as negotiation and resource selection. Some concep-
tual ideas are specified in the OGSA Resource Selection Services RSS [83],
where the Candidate Set Generator (CSG) identifies resources where a job can
execute, whereas the higher level Execution Planning Service (EPS) decides
where a job should execute. The complete interfaces of these services, as well
as their exact semantics remain to be defined.

The interoperability problems within contemporary Grid environments are
the motivation behind substantial efforts from both research and infrastructure
projects. These efforts can be divided into two classes, short-term solutions to
provide interoperation between existing infrastructures and more sustainable
approaches based on adoption of standard data formats and interfaces. The
focus of the Grid Interoperability Now (GIN) project (later renamed Grid In-
teroperation Now) [96] is to provide increased interoperation among existing
Grid infrastructures. Examples of software tools that interoperate with mul-
tiple middlewares include GridWay [109], which interfaces resources running
one of GT2, GT4, and LCG. Venugopal et al. [211] share their experiences
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in designing a broker that interoperates with various batch systems as well as
multiple Grid middlewares. In an approach suggested by Kertész et al. [118],
interoperability is achieved on a resource broker level instead of a Grid middle-
ware level. Rather than interfacing resources directly, their software interacts
with the respective resource brokers of the used middlewares. Kertész et al.
also define a language for communicating broker capabilities [119]. A similar
approach is suggested by Rodero et al. [177] that argue in favor of a meta-
broker based on their experiences from the HPCEuropa project. The proposed
meta-broker would have unified mechanisms for all tasks in the job manage-
ment process and interact with Grid-specific brokers. Rodero et al. also survey
to what extent existing and proposed standards fulfill the requirements of the
meta-broker. Bobroff et al. [30] discuss different architectures for interopera-
ble metascheduling and present a hybrid approach that combines hierarchical
and peer-to-peer architectures. The contribution by Peirantoni et al. [165] uti-
lizes WSRF-based Metagrid services as a bridge between users and different
Grids. Set theory is used to formally describe the Metagrid services and their
interactions.

Notable examples of projects that focus on standardization include the Gen-
esis II [150] Grid system. Genesis II supports a wide range or OGSA standards,
including JSDL, OGSA-BES, OGSA Resource Namespace Service (RNS) [164],
and OGSA-ByteIO [149]. A strong focus on usability allows users to interact
with Genesis II resources through a set of common shell commands such as,
e.g., cat, cp, and ls. An OGF report [143] shares implementation and interop-
erability experiences of JSDL and surveys projects that adopt this standard.
An OGF report [153] by Newhouse et al. discuss five scenarios related to
the execution of applications on a cluster from an interoperability perspective.
This report further illustrates how these scenarios can be realized using OGSA
standards such as JSDL (with proposed extensions), OGSA-BES, the GLUE 2
information model [13], RNS, and DRMAA.

The purpose of an ongoing collaboration between the European Telecom-
munications Standards Institute (ETSI) [68] and the OGF is to ensure that the
standards for communication within the Grid are based on requirements from
both industry and research. The Open Middleware Infrastructure Institute
(OMII) Europe [159] targets to make components for job management (OGSA-
BES), data integration, and accounting available for multiple platforms, e.g.,
gLite [62], Globus [75], and UNICORE [195]. The UniGrids project [174] fo-
cuses on developing an OGSA-compliant infrastructure on top of the UNI-
CORE software. Grimme et al. [97] analyze the teikoku scheduling framework
in the light of standards-compliance, and investigates the gaps between this
framework and the proposed OGF Grid scheduling architecture.
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5.2 Contributions to Interoperability

This thesis demonstrates how standard protocols and data formats contribute
to middleware independent architectures for resource brokering, job manage-
ment, and workflow enactment. A related contribution is the evaluation of
proposed standards through an investigation of how these can be applied in
practice. We describe some of the first results related to the usage of WSRF,
JSDL, WS-Agreement, and the GLUE information model in software for Grid
resource management. Furthermore, our proof-of-concept software tools pro-
vide easy integration with multiple middlewares.
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Chapter 6

Design Considerations for
Grid Software

This chapter discusses selected topics related to the development of Grid soft-
ware, including the adoption of technologies associated with Service Oriented
Architectures (SOAs). Also included is a description of the rationale behind
the design choices taken during development of the software described in this
thesis.

6.1 Service-Oriented Architectures

In a Grid middleware, it should be easy to add support for new types of re-
sources such as sensors, instruments and alternative data sources. The con-
struction of client tools is simplified if basic tasks such as allocation, invoca-
tion, notifications, and termination can be performed in a uniform manner,
independent of the type of resource the client interacts with. The first genera-
tions of Grid software failed to fulfill these requirements, as illustrated by the
early versions of the Globus toolkit that used resource type specific protocols,
e.g., LDAP [60] for resource discovery, GridFTP [61] for data transfer, and
GRAM [76] for job management. New resource types could only be integrated
by the introduction of additional protocols, further adding to the protocol het-
erogeneity of the toolkit. More recently, many Grid projects have adopted
principles from SOAs to overcome these limitations.

A SOA is “a paradigm for organizing and utilizing distributed capabilities
that may be under the control of different ownership domains. It provides a uni-
form means to offer, discover, interact with and use capabilities to produce de-
sired effects consistent with measurable preconditions and expectations” [156].
A key observation in SOAs is that a capability required by one entity (a person
or an organization) often is offered by other entities. Needs and capabilities in
a SOA are brought together by services. A service is described as the capability
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to perform work for another, the specification of the capability, and the offer to
perform the work [156]. All services in a SOA are described in a uniform man-
ner through service interfaces. A service interface is a visibility mechanism that
enables potential service consumers to decide if a particular service provider
fulfills their requirements. Invocation of a service is transparent to both service
location and the respective platforms of the service provider and the service
consumer. With this transparency, services have the potential to increase reuse
beyond that offered by software libraries as the latter are restricted to specific
programming languages and/or platforms.

Figure 4 gives an overview of a SOA and illustrates the commonly applied
publish-find-bind pattern. In the figure, a service provider publishes infor-
mation about the capabilities offered by its service(s) in an index. A service
consumer that requires some capability queries the index and locates a suitable
service. In the last step, the service consumer binds to the service provider,
and requests the capability.

Index

Service
consumer

Service
provider

publishfind

bind

Figure 4: Publish-find-bind in a Service Oriented Architecture.

6.2 Web Services

Web services is a technology that can be used for realizing a SOA. The World
Wide Web Consortium describes a Web service as a software system designed
to support interoperable machine-to machine interaction over a network [214].
Web services are described using the Web Services Description Language (WSDL) [43]
and communicate using SOAP [100], typically with HTTP as transport pro-
tocol. For Web services, an Universal Description, Discovery, and Integration
(UDDI) [106] server can have the role of the index in the publish-find-bind
scenario. Despite being a general architecture, Web services have some short-
comings when applied to Grid computing. Web services are stateless, i.e., there
is no standard mechanism to store state information in a service between in-
vocations and session management is thus complicated. Web services are also
persistent and cannot be created and destroyed dynamically. Furthermore, the
UDDI is designed for persistent services and can hence not handle [26] the
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volatile nature of the Grid, where services may be available for limited periods
of time only. The infeasibility of using pure Web services for Grid computing
was the prime motivation for the design of the by now obsolete Open Grid
Services Infrastructure (OGSI) [205]. The OGSI defines Grid services as an
extension to the Web service concept. Grid services do, as opposed to Web
services, have state and a limited lifetime. Lifetime management mechanisms
allow Grid Services to be created and destroyed, the latter occurring either im-
mediately or at a specified time. Furthermore, the OGSI specifies a mechanism
for asynchronously notifying clients about changes in service state. An OGSI
ServiceGroup uses soft-state registration of entries, making it more suitable
than an UDDI server as an index for the Grid.

The OGSI specification did not gain widespread support, and was further-
more criticized by the Web services community, e.g., for being too tightly cou-
pled to object orientation, for having poor support for existing Web service
tools, and for being monolithic. To overcome these issues, OGSI was refac-
tored into the Web Services Resource Framework (WSRF) [155] family of spec-
ifications that does not have the monolithic structure and many of the other
shortcomings of OGSI. In WSRF, Web services are stateless and persistent. A
stateless Web service can however have one or more stateful WS-Resources [94]
associated with it. A client that invokes a WSRF-enabled service can spec-
ify, as part of the service address, which WS-Resource it wants to interact
with. The WS-ResourceProperties [93] specification defines how state is stored
in WS-Resources. WS-ResourceLifetime [192] defines mechanisms for lifecycle
management of WS-Resources, but not of Web services as these are persistent
in WSRF. The basic fault messages defined in the WS-Basefault specifica-
tion [131] are used to increase consistency. In a WS-ServiceGroup [137], Web
services and WS-Resources can be grouped together. Information registered in
a ServiceGroup is, to avoid stale entries, removed unless it is renewed within a
given time. The WS-BaseNotification [92] framework is not part of the WSRF
family of specifications, but uses WSRF mechanisms to deliver asynchronous
updates to interested entities and is often used together with the WSRF. An in-
depth introduction to the areas of SOA and Web Services is beyond the scope
of this thesis, but can be found in books [160, 190]. Joseph et al. [113] discuss
the specifications for stateful Web Services and their impact on architectural
principles of Grid computing.

6.3 Design Heuristics

It is of paramount importance for Grid system developers to study and under-
stand the specific characteristics of Grid environments. These include the lack
of total control over the considered Grid resources as well as the incomplete and
typically outdated information that can be collected from them. Furthermore,
failures occur at a regular basis, not only under rare conditions. One common
misconception is that the Grid gives unlimited access to resources that can
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be used freely if locally available ones become scarce. On the contrary, the
demand for resources typically far exceeds the supply. Fundamental Grid mid-
dleware capabilities (as discussed in Section 1.3) help address heterogeneity in
resource hardware and software. What must not be forgotten however is the
more cumbersome heterogeneity in ownership and usage policies that is left to
the developer of Grid software to handle. Resource availability is bound to vary
over time, due both to faults and policy reasons. Failures in understanding the
characteristics of Grid environments result in architectures and software tools
that are unsuitable for Grid environments. Examples of this includes central-
ized software of omnipotent character that fail to function as expected due to
competition from other, competing software tools.

The software tools constructed as part of this thesis are designed with great
care to comply with the here discussed characteristics. Software is also built
as we envision that it will work, without restricting ourselves to limitations of
current environments. This includes support for functionalities that we foresee
as inevitable for future systems. As an example, the advance reservation man-
agement system supports malleable reservations as this is foreseen as a critical
functionality that most likely will be available in the future, although no con-
temporary batch schedulers support them. However, at the same time, care is
taken to ensure that the tools are easily integrateable into existing infrastruc-
tures, and are fully operational also in environments that do not support the
anticipated extensions. The software is not limited to use within a particular
domain or application, but is rather indented as building blocks to simplify the
construction of higher-level, domain-specific services.

Although there is large number of researchers worldwide that study Grid
technologies and tools, surprisingly few have shared their ideas on topics such
as design processes and software engineering for Grids. There is furthermore
a focus on the application side, few contributions discuss the engineering of
Grid middleware and other fundamental software. Abeti et al. [1] study how
model driven architectures can be exploited in the design of SOAs. Hernández
et al. [102] propose the use of domain-specific modeling to increase reuse when
designing Grid applications. Experiences in using the CCA to build Grid appli-
cations are described by Gannon et al. [86]. In their discussion of the EveryWare
system, Wolski et al. [220] describe a programming model and methodology for
writing Grid programs and discuss some quality attributes. They also describe,
from an application development perspective, how to use a lingua franca (mutu-
ally understood third language) to interface with the EveryWare system. Byun
et al. [32] discuss adaptability, scalability, and reliability as well as demonstrate
a WSRF-based resource provisioning framework with these characteristics.

With the increasing adoption of principles from SOAs by Grid projects,
developers of Grid software would benefit from leveraging the software engi-
neering work performed within the fields of SOAs [154, 194] and service-oriented
computing [126, 161].
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6.4 Contributions

This thesis demonstrates how principles of SOAs can be applied to Grid com-
puting. This includes an investigation of how SOAs can be used to achieve
loose coupling as demonstrated by the job management architecture in Pa-
per IV, as well as improve reuse of workflow tools, the latter illustrated by
papers V and VI. We investigate the characteristics of the future landscape of
service-oriented Grid infrastructures in Paper VIII. This study also gives some
of the first results regarding software engineering aspects of the design process
for Grid middleware tools.
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Chapter 7

Summary of the Papers

7.1 Paper I

Extending on our earlier work [67] in the area, Paper I focuses on algorithms
and principles for the decentralized Grid brokering problem. A prediction of
the Total Time to Delivery (TTD) for a Grid application is used as the main
criteria in resource selection. The TTD includes the time required to perform
the following operations: (i) transfer of the input files and executable to the
selected Grid resource, (ii) wait for resource access, (iii) execute the application,
and (iv) transfer of job output files to their requested location(s).

Paper I also discusses algorithms to estimate each part of the TTD, in-
cluding the usage of bandwidth prediction tools for tasks (i) and (iv), the
prediction of batch queue waiting times using either advance reservations or
an estimate based on current resource load, and a benchmark-based mecha-
nism to predict the application execution time. Paper I describes the imple-
mentation of resource selection algorithms based on prediction of the TTD in
a proof-of-concept job submission tool for the NorduGrid/ARC middleware.
Two approaches for advance reservations are also discussed and compared, one
closely integrated with existing NorduGrid/ARC job submission mechanisms,
the other a general service-based framework for reservation management.

7.2 Paper II

In Paper II, we investigate how principles of SOAs combined with standardiza-
tion can be used to achieve adaptability in resource selection as well as Grid
middleware independence. As a proof-of-concept, a general, service-based Grid
resource brokering architecture is designed and implemented. This job sub-
mission service consists of a set of replaceable modules that each performs a
well-defined task in the job submission process. The concept of replaceability
is used also within some components, e.g., the resource selection algorithms
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can be exchanged for alternative implementations.
The brokering architecture is designed to be as independent as possible of

the Grid middleware used on the resources, and also to support any job descrip-
tion format on the client side. This interoperable design is achieved through
the use of (proposed) standard formats and protocols, including WSRF, JSDL,
GLUE, and WS-Agreement. These are used both internally in the job submis-
sion service and, if possible, in communication with resources. Interaction with
a specific Grid middleware that uses non-standard data formats or protocols
is handled through a set of well-defined integration points. The feasibility of
this approach is demonstrated by the integration of the job submission service
with the NorduGrid/ARC middleware.

Algorithmical contributions in Paper II include further development of the
resource selection algorithms from Paper I, with focus on greater flexibility.
Users may choose to select resources with the objective to achieve the earliest
possible job completion, or the earliest possible job start. Furthermore, users
may fine-tune the resource selection process by including a document with job
preferences when invoking the broker. This document can be used to express
job start time requirements and can also give helpful hints to the broker about
the characteristics of the application.

7.3 Paper III

Paper III provides advances to the state-of-the-art in Grid resource coalloca-
tion, including the design, implementation, and analysis of an algorithm for
arbitrarily coordinated allocations of resources. By viewing coallocation as
a bipartite matching problem, we leverage well-known principles from graph
theory to improve the likelihood of successfully allocating a set of resources.
Paper III also contains a in-depth survey of existing coallocation approaches.
By classifying contemporary coallocation algorithms and comparing these with
methods from transaction management, we contribute to the general under-
standing of the coallocation problem.

The feasibility of the approach proposed in Paper II with a service-based
architecture that enables interoperability through standardization is further
demonstrated by the integration of the job submission service with Globus
Toolkit 4 middleware in addition to the already supported NorduGrid/ARC.
The implementation of integration plugins for a middleware is typically less
than ten percent of the middleware-neutral code. This suggests that a feature-
rich job submission tool for a Grid middleware can, with comparatively little
effort, be obtained by implementing job submission service plugins for that
middleware.

In Paper III, the performance of the job submission service is evaluated in
depth, with focus on service response time and throughput for various Grid con-
figurations. The coallocation algorithm is studied in a series of tests that both
illustrate the performance dependencies of the different parts of the algorithm
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and provide insight in the intrinsic complexity of the coallocation problem.

7.4 Paper IV

Paper IV investigates suitable architectural decompositions for job manage-
ment software. The proof-of-concept Grid Job Management Framework (GJMF)
further elaborates on ideas from papers II and III by extending the resource
brokering software to also include job monitoring and control tools, as well
as mechanisms that simplifies management of large sets of independent jobs.
Another contribution is the study of fault tolerance techniques, through a multi-
layer mechanism for automatic resubmission of failed jobs.

In the GJMF, the job management functionality is decomposed into a set
of services that forms the following layers: the middleware abstraction layer
that performs basic job management regardless of the Grid middleware at the
resource side; the brokered job submission layer that offers resource discovery,
resource selection, and job submission; and the reliable job submission layer
that adds fault tolerance for single jobs or sets of jobs. Just as its predeces-
sor, the GJMF makes use of the Web services, WSRF, and JSDL to promote
standardization and increase interoperability. These aspects are further em-
phasized by implementing the draft resource selection services from OGSA [83]
in the brokered job submission layer.

A performance evaluation demonstrates that the extra functionality offered
by the GJMF services adds little overhead (down to 0.2 seconds per job).
This evaluation suggests that for Grid application developers, multi-tiered job
management frameworks such as the GJMF is an attractive alternative to in-
teracting with the Grid middlewares directly.

7.5 Paper V

Paper V studies how Grid workflow capabilities can be decomposed into a
loosely coupled architecture where capabilities are exposed as a set of workflow
services with clear separation of concerns. By orchestrating these services,
environments tailored to the needs of a certain group of users can be constructed
with much less effort compared to (re)implementation of full-featured workflow
systems. The feasibility of this approach is demonstrated by the design and
implementation of the Grid Workflow Enactment Engine (GWEE). GWEE
is not proposed as a replacement to existing workflow systems, but rather
as a core component for developing new end-user tools and problem solving
environments.

Paper V also demonstrates how workflow enactment can be completely
decoupled from the processing of individual tasks, such as computational jobs
or file transfers. It is further shown how Grid workflows can combine a data flow
model of computation in which data dependencies decides the task execution
order, with a control flow approach where control tokens are communicated to
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initiate subsequent tasks. A contribution to workflow interoperability is the
demonstration of how the GWEE tool can enact both data driven workflows
expressed in the GWEE language and control driven workflows in the Karajan
format.

7.6 Paper VI

Paper VI investigates how to define data flows that transparently integrate local
and Grid workflows. In addition, the benefits of parameter sweep workflows
are examined and a means for describing this type of workflow in an abstract
and concise manner is introduced. Our parameter sweep mechanism extends
the state-of-the-art in the area as it is not restricted to a predefined data
distribution pattern. Both the problem of decoupling data flow from task
specification and that of dynamically configuring workflow tasks during runtime
are addressed by the introduction of a task template mechanism that delays
the binding of task input parameters until workflow execution.

Paper VI further demonstrates the feasibility of the concept of a composable
set of services with fundamental workflow capabilities by illustrating how a
proof-of-concept client tool can be built on top of GWEE. With this client GUI,
users can design, execute, and monitor workflows. The final contribution is a
use case demonstrating how the developed mechanisms are employed to reduce
the complexity of a particular bioinformatics problem - orthology detection
analysis.

7.7 Paper VII

Paper VII is a comprehensive study of topics related to interoperability among
scientific workflow systems. Rather than discussing if these workflow systems
are completely interoperable or not at all, we argue that interoperability must
be considered from three distinct dimensions: model of computation, workflow
language, and workflow execution environment. Paper V illustrates workflow
execution environment interoperability by showing how a workflow enactment
engine can interoperate with multiple Grid middleware. Extending on this
effort, the two most commonly used models of computation, Petri nets and
dataflow networks, are studied with particular focus on how these have been
adapted to fit the execution environment imposed by currently used Grid mid-
dleware.

Paper VII also investigates the minimum language constructs required for
a language to be expressive enough to support scientific workflows. The funda-
mental differences in the respective execution environments of end-user desk-
top machines and the Grid suggest that whereas complex (Turing complete)
languages could be used to describe locally executing workflows, simpler task
coordination languages are preferred for the Grid. Leveraging on earlier re-
sults in the areas of theory of computation, compiler optimization, and visual
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programming languages, Paper VII studies, from a workflow perspective, fun-
damental language constructs such as iterations, conditions, exceptions, and
the implications of having a type system.

7.8 Paper VIII

With a starting point in the characteristics of Grid environments, Paper VIII
describes the vision of a SOA-based ecosystem of Grid software components and
outlines competitive factors for tools to “survive evolution” in such an environ-
ment. From these factors, the paper investigates design heuristics, design pat-
terns, and quality attributes that are central to building software well adapted
to the Grid ecosystem. These are divided into the following five groups. Co-
existence includes aspects relating to decentralization, non-intrusiveness, and
avoidance of resource over-consumption. Concerns for composability include
well-defined interfaces, single-purpose components, and other characteristics
that improve reuse. Ease of installation, configuration and use, as well as
portability related concerns are all aspects of Adoptability. Adaptability and
changeability affect ease of adaption into new or changed environments, and
benefit from separation of policies from mechanisms. The last group is interop-
erability and the corresponding techniques to simplify ease of interaction with
other software systems as well as the related standardization efforts. With a
starting point in these five groups, the characteristics of software developed by
the GIRD [201] team, including JSS (papers II and III), GJMF (Paper IV),
GWEE (papers V, VI, and VII), as well as the SweGrid Accounting System
(SGAS) [87], and FSGrid [66] are reviewed.
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Chapter 8

Future Work

There are several potential directions of future work with a starting point in this
thesis. These are grouped into three broad categories, the first one describing
Grid brokering, job management, workflows, and SLA related topics. The last
two sections of this chapter discuss anticipated extensions into the areas of
virtualization and cloud computing.

8.1 Grid Resource Management

The current architecture for managing advance reservations is based on the
WS-Agreement specification that defines an agreement request protocol mes-
sage, with acceptance or rejection as the only possible answers. This makes
multi-phase negotiation difficult, as experienced in the work with coalloca-
tion. A more general negotiation framework that includes offers and counter-
offers, is described in WS-AgreementNegotiation [15], but this specification
is not yet ready to be used. A full-featured negotiation protocol like WS-
AgreementNegotiation would enable a resource broker to efficiently negotiate
sophisticated agreements and hence meet a wider range of QoS requirements.

The coallocation algorithm introduced in Paper III can be improved, in-
cluding development of better techniques to avoid (or resolve) conflicts that
arise due to the competition for resources between the subjobs in a coallocated
job. The construction of such algorithms would benefit from the development
of theoretical models for the resource selection and coallocation processes. Fur-
ther studies of the respective advantages and shortcomings of off-line and on-
line coallocation algorithms should build on the large body of work on locking
and optimistic concurrency control within the area of transactions. In addi-
tion to these algorithmic aspects, support for coordination of subjobs within
a coallocated job is required. This should include mechanisms for subjobs to
synchronize themselves prior to execution at their respective resources, and
should leverage previous work in the area [28, 48, 50, 95].
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Papers II and III demonstrate the feasibility of integrating the job submis-
sion service with the GT4 and NorduGrid/ARC Grid middlewares. A topic
of current interest is the creation of a scheduling hierarchy, where higher-level
Grid schedulers (brokers) negotiate with lower-level ones [118, 202].

If market-based Grids become increasingly more popular to the extent that
they become the standard mechanism for Grid resource management, the re-
source selection algorithms described in this thesis can be adapted to select
resources taking into account also Grid-economic parameters. This could e.g.,
include design and implementations of mechanisms that allow the user to spec-
ify the acceptable cost-performance tradeoff, as discussed in Section 2.1.

Future work in the workflow area includes investigating the interaction be-
tween workflow enactment and workflow scheduling. More specifically, the
benefits and drawbacks of the respective approaches of preplanning and just-
in-time scheduling, as well as the consequences of these for the design of enact-
ment tools could be studied. Other future directions include the study of how
streaming workflows [163] could extend the previous work on coallocation. Ad-
ditional topics include further efforts in applications areas such as life sciences,
e.g., by extending on the results in Paper VI.

8.2 Virtualization

The concept of logically dividing a physical computer into multiple, virtual ma-
chines has been used since the 1960’s [3, 146]. The last few years, techniques
such as paravirtualization [49] have improved the performance [229] of virtual-
ization technologies and hence made adoption of these more feasible [180] for
performance critical areas such as Grid computing. One motivating scenario
for virtualization in Grids is the application-driven demand for tailored en-
vironments, with certain preinstalled software packages. Currently, one major
obstacle in many production Grids is binary compatibility. It is cumbersome to
use non-trivial (i.e., dynamically linked) applications that also may depend on
external software, and be available for certain platforms only. One approach to
overcome these problems is dynamic deployment, where software environments
are installed and applications compiled as part of the job submission process.
Although studied extensively [24] by, e.g., the OGF, the dynamic deployment
approach has not been adopted to any larger extent. With virtualization tech-
niques, dynamic deployment is greatly simplified as it can be performed by
booting an already installed and configured virtual machine [117]. Another ad-
vantage with virtualization in Grid environments is the enhanced sandboxing
functionality achieved through separation of (virtual) hardware.

Virtualization can also be used to provide checkpointing [191] and to enable
migration of running jobs. Ubiquitous availability of an efficient checkpoint-
ing mechanism would fundamentally change Grid infrastructures and hence
also affect the topics studied in this thesis. For example, resource brokering
algorithms need not consider preemption of jobs upon runtime expiration, as
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jobs can be restarted from a checkpoint. Furthermore, local batch scheduling
algorithms can use aggressive backfilling and still avoid starvation of longer
jobs, resulting in high utilization. Job migration mechanisms would enable job
management tools to continuously monitor the performance of submitted jobs,
and initiate migration upon performance declines. Another use case for check-
pointing is improved fault tolerance, as failed jobs only need to restart from
the last checkpoint. Checkpointing and migration mechanisms can also be used
to improve Grid workflow management, e.g., by improving fault tolerance and
shortening completion times for computational tasks.

8.3 Cloud Computing

Despite early enthusiasm, the Grid has yet not become the ubiquitous gen-
eral purpose cyberinfrastructure used to access all types of resources. Being
mostly focused on sharing of scientific instruments, high-performance comput-
ers and large-scale storage, existing Grid infrastructures do not easily meet the
requirements of business applications and as a consequence, adoption outside
academic environments is slow.

The currently popular vision for a general purpose infrastructure for provid-
ing IT capabilities as services goes under the name of cloud computing. Ideally,
a cloud infrastructure should on demand adapt to changes in client request
load by resizing itself. In order to achieve this adaptability, detailed and up to
date monitoring information about server load and client performance metrics
is required, as well as a (virtualization-powered) mechanism that enables the
efficient migration and/or duplication of servers as needed. Notably, clients
(service consumers) should ideally be unaware of the internal structure of the
cloud and experience no degradation of QoS during server migration. Whereas
the initial motivation for Grids was the interconnection of high-performance
computers and expensive instruments mainly used in academic environments,
the vision of a cloud as an infinitely scalable data center may better suited for
industry needs.

Many problems, including security, accounting, and placement (resource
selection) are similar in cloud and Grid environments. To become successful,
research in cloud technologies should hence leverage the results obtained by the
Grid community. There are however some notable differences between broker-
ing of Grid jobs and provisioning of services in a cloud (i.e., service placement
decisions). Services in a cloud may be hosted until further notice (potentially
for a very long time), whereas Grid jobs typically have a known, finite du-
ration. Performance metrics for service provisioning include minimization of
SLA violations and costs (electricity, cooling etc.), and hence maximization of
provider profit. Batch system scheduling (and also Grid brokering) on the other
hand typically focus on response time, utilization, throughput, fairness, or a
combination of these. These differences impose a series of research problems
in how lessons learned from batch system oriented Grid brokering can be ap-
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plied to service provisioning in time-shared cloud environments. The low-cost
migration operation provided by virtualization technology justifies research on
migration heuristics and cross-domain placement optimization.

8.3.1 RESERVOIR

The Resources and Services Virtualization without Barriers (RESERVOIR)
project [173] is the venue for both ongoing work [224] and planned extensions to
the topics studied in this thesis. The overall goal of RESERVOIR is to support
service-oriented computing, in particular by dynamic provisioning of services
as utilities. The prime motivation for the project is to avoid the costly over-
provisioning currently used by data centers to ensure SLA compliance during
peaks in demand. The RESERVOIR project will provide an open specification
and a reference implementation of an infrastructure for federated clouds, where
Grid and virtualization technologies along with business process management
will enable efficient delivery of services. By resizing services on demand, poten-
tially including migrating (parts of) them to other physical machines or even
other, partnering data centers, a RESERVOIR infrastructure provider (a data
center) will be able to optimize placement and hence minimize costs.

The design of heuristics for cost-aware SLA-compliant cross-site service
placement share many similarities with the resource brokering scenarios in-
vestigated in this thesis. These similarities include complicating issues such as
lack of control over remote sites, limited information about the load on these,
and differences in usage policies. The existence of multiple brokers (place-
ment decision modules) and competition among these for (potentially scarce)
resources are other common characteristics of a federated cloud environment
and a decentralized resource brokering scenario.
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K. Madsen, and J. Waśniewski, editors, Applied Parallel Computing -
State of the Art in Scientific Computing, LNCS 3732, pages 1061–1070,
2006.

[68] European Telecommunications Standards Institute. ETSI GRID.
http://portal.etsi.org/grid, August 2008.

58



[69] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin,
M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek. ASKALON:
A Grid Application Development and Computing Environment. In 6th
International Workshop on Grid Computing, pages 122–131. IEEE, 2005.

[70] T. Fahringer, R. Prodan, R.Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and
M. Wieczorek. ASKALON: A development and Grid computing envi-
ronment for scientific workflows. In I. Taylor et al., editors, Workflows
for e-Science, pages 450–471. Springer-Verlag, 2007.

[71] U. Farooq, S. Majumdar, and E. W. Parsons. Impact of laxity on schedul-
ing with advance reservations in Grids. In MASCOTS ’05: Proceedings
of the 13th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, pages 319–324,
Washington, DC, USA, 2005. IEEE Computer Society.

[72] International Organization for Standardization. ISO/IEC 2382-1 infor-
mation technology - vocabulary - part 1: Fundamental terms, 1993.

[73] The Common Component Architecture Forum. The Common Compo-
nent Architecture forum. http://www.cca-forum.org/, September 2008.

[74] I. Foster. What is the Grid? a three point checklist. www-
fp.mcs.anl.gov/∼foster/Articles/WhatIsTheGrid.pdf, May 2008.

[75] I. Foster. Globus toolkit version 4: Software for service-oriented systems.
In H. Jin et al., editors, IFIP International Conference on Network and
Parallel Computing, LNCS 3779, pages 2–13. Springer-Verlag, 2005.

[76] I. Foster. Globus toolkit version 4: Software for service-oriented systems.
In H. Jin, D. Reed, and W. Jiang, editors, IFIP International Conference
on Network and Parallel Computing, LNCS 3779, pages 2–13, 2006.

[77] I. Foster and C. Kesselman (editors). The GRID: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, Inc., 1999.

[78] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software
infrastructure for the I-WAY high performance distributed computing
experiment. In Proc. 5th IEEE Symposium on High Performance Dis-
tributed Computing, pages 562–571, 1997.

[79] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse,
S. Pickles, D. Pulsipher, C. Smith, and M. Theimer. OGSA c© basic exe-
cution service version 1.0. http://www.ogf.org/documents/GFD.108.pdf,
August 2008.

59



[80] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy.
A distributed resource management architecture that supports advance
reservations and co-allocation. In M. Zitterbart and G. Carle, editors,
7th International Workshop on Quality of Service, pages 27–36. IEEE,
1999.

[81] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture
for computational Grids. In Proc. 5th ACM Conference on Computer and
Communications Security Conference, pages 83–92, 1998.

[82] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: En-
abling scalable virtual organizations. Int. J. Supercomput. Appl., 15(3),
2001.

[83] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Grimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von
Reich. The Open Grid Services Architecture, version 1.5, 2006.
http://www.ogf.org/documents/GFD.80.pdf, October 2007.

[84] I. Foster and S. Tuecke. Describing the elephant: The different faces of
IT as service. ACM Queue, 3(6):26–34, 2005.

[85] Geoffrey C. Fox and Dennis Gannon. Special issue: Workflow in grid sys-
tems. Concurrency Computat.: Pract. Exper., 18(10):1009–1331, 2006.

[86] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrish-
nan, F. Bertrand, K. Chiu, M. Farrellee, M. Govindaraju, S. Krishnan,
L. Ramakrishnan, Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and
N. Rey-Cenvaz. Programming the Grid: Distributed software compo-
nents, P2P and Grid Web Services for scientific applications. Cluster
Computing, 5(3):325–336, 2002.

[87] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm.
Scalable Grid-wide capacity allocation with the SweGrid Accounting Sys-
tem (SGAS). Concurrency Computat.: Pract. Exper., 20(18):2089–2122,
2008.

[88] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec. Flexible and ef-
ficient workflow deployement of data-intensive applications on grids with
MOTEUR. Int. J. High Perf. Comput. Appl., 22(3):347–360, 2008.

[89] T. Glatard, G. Sipos, J. Montagnat, Z. Farkas, and P. Kacsuk. Workflow-
level parametric study support by MOTEUR and the P-GRADE por-
tal. In I. Taylor et al., editors, Workflows for e-Science, pages 279–299.
Springer-Verlag, 2007.

[90] Globus. http://www.globus.org. February 2009.

60



[91] A. Goyeneche, G. Terstyanszky, T. Delaitre, and S. Winter. Improving
Grid computing performance prediction using weighted templates. In
S. Cox, editor, Proceedings of the UK e-Science All Hands Meeting 2007,
pages 361–368, 2007.

[92] S. Graham and B. Murray (editors). Web Services Base Notification 1.2
(WS-BaseNotification). http://docs.oasis-open.org/wsn/2004/06/wsn-
WS-BaseNotification-1.2-draft-03.pdf, June 2008.

[93] S. Graham and J. Treadwell (editors). Web Services Resource Proper-
ties 1.2 (WS-ResourceProperties). http://docs.oasis-open.org/wsrf/wsrf-
ws resource properties-1.2-spec-os.pdf, June 2008.

[94] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, and I. Sedukhin
(editors). Web Services Resource 1.2 (WS-Resource). http://docs.oasis-
open.org/wsrf/wsrf-ws resource-1.2-spec-os.pdf, June 2008.

[95] F. Gregoretti, G. Laccetti, A. Murli, G. Oliva, and U. Scafuri. MGF:
A grid-enabled MPI library. Future Generation Computer Systems,
24(2):158–165, 2008.

[96] Grid Interoperability Now. http://wiki.nesc.ac.uk/read/gin-jobs.
September 2006.

[97] C. Grimme, J. Lepping, A. Papaspyrou, P. Wieder, R. Yahyapour,
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Abstract

We present algorithms, methods, and software for a Grid resource manager, that performs resource brokering and job scheduling in production
Grids. This decentralized broker selects computational resources based on actual job requirements, job characteristics, and information provided
by the resources, with the aim to minimize the total time to delivery for the individual application. The total time to delivery includes the time
for program execution, batch queue waiting, and transfer of executable and input/output data to and from the resource. The main features of the
resource broker include two alternative approaches to advance reservations, resource selection algorithms based on computer benchmark results
and network performance predictions, and a basic adaptation facility. The broker is implemented as a built-in component of a job submission
client for the NorduGrid/ARC middleware.
c© 2008 Published by Elsevier B.V.

Keywords: Resource broker; Grid scheduling; Runtime predictions; Performance-based resource selection; Advance reservations

1. Introduction

The task of a Grid resource broker and scheduler is to
dynamically identify and characterize the available resources,
and to select and allocate the most appropriate resources for a
given job. The resources are typically heterogeneous, locally
administered, and accessible under different local policies.
A decentralized broker, as the one considered here, operates
without global control, and its decisions are entirely based
on the information made available by individual resources
and index servers providing lists of available resources and
aggregated resource information. For an introduction to typical
resource brokering requirements and solutions, see [1–3].

I This work is a revised and extended version of: E. Elmroth, J. Tordsson,
A Grid resource broker supporting advance reservations and benchmark-based
resource selection, in: J. Dongarra, K. Madsen, J. Wasniewski (Eds.), State-of-
the-art in Scientific Computing, in: LNCS, vol. 3732, Springer-Verlag, 2006,
pp. 1061–1070. It has been funded by The Swedish Research Council (VR)
under contracts 343-2003-953 and 621-2005-3667, and it has been conducted
using the resources of High Performance Computing Center North (HPC2N).

E-mail addresses: elmroth@cs.umu.se (E. Elmroth), tordsson@cs.umu.se
(J. Tordsson).

The overall objective of the broker presented here is to select
the resource that gives the shortest time for job completion
for each job, including the time for file staging, batch queue
waiting, and job execution. In order to perform this selection,
the broker needs to predict the times required to perform each
of these tasks for all resources considered, predictions that can
be rather difficult to make due to the heterogeneity and the
dynamic nature of the Grid.

The performance differences between Grid resources and
the fact that their relative performance characteristics may vary
for different applications makes predictions of job execution
time difficult; see, e.g., [4–6]. We address this problem with
a benchmark-based procedure for execution time prediction.
Based on the user’s identification of relevant benchmarks and
an estimated execution time on some specified resource, the
broker estimates the execution time for all resources of interest.
This requires that a relevant set of benchmark results are
available from the resources’ information systems. Notably, the
results do not necessarily have to be for standard computer
benchmarks only. On the contrary, performance results for
real application codes for some test problem are often to
recommend. The time prediction for the staging of executable,

0167-739X/$ - see front matter c© 2008 Published by Elsevier B.V.
doi:10.1016/j.future.2007.06.001
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input and output files are based on network performance
predictions and file size information.

An advance reservation capability in the resource broker is
vital for meeting deadlines for time critical applications and
for enabling co-allocation of resources in highly utilized Grids.
A reservation feature also provides a guaranteed alternative
to predicting batch queue waiting times. Such a feature
naturally depends on the reservation support provided by local
schedulers [7] and the use of advance reservations also has
implications on the utilization of each local resource [8].
For general discussions about resource reservations (and co-
allocation), see, e.g., [9,10].

Our resource brokering software is mainly intended for
the NorduGrid [11] and SweGrid [12] infrastructures. These
are both production environments for 24 hour per day Grid
usage, built on the Globus Toolkit 2-based NorduGrid/ARC
(in the following denoted ARC, which is an abbreviation for
Advanced Resource Connector) middleware [15]. The broker is
implemented as a built-in component of an ARC job submission
client. For an extension of this work towards a service-oriented
framework, see [13,14].

The outline of the paper is as follows. Section 2 gives a
brief introduction to the ARC software and the general resource
brokering problem. The main algorithms and techniques
of our resource broker are presented in Section 3. Minor
extensions to the ARC user interface are presented in Section 4.
Sections 5 and 6 present future work, some concluding remarks
and acknowledgements, respectively, followed by a list of
references.

2. Background and motivation

Our development of resource brokering algorithms and pro-
totype implementations is focused mainly on the infrastructure
and usage scenarios typical for NorduGrid and SweGrid. The
main Grid middleware used is the ARC. The Grid resources
are typically Linux-based clusters (in the rest of this paper, the
word cluster is often used instead of the more general term Grid
resource). NorduGrid includes over 50 clusters, totally compris-
ing over 5000 CPUs, distributed over 13 countries with most of
the clusters located in the Nordic countries. SweGrid currently
consists of six Swedish clusters, each with 100 CPUs.

2.1. The ARC software

The ARC middleware is based on (de facto) standard
protocols and software such as OpenLDAP [16], OpenSSL [17]
and Globus Toolkit version 2 [18,19]. The latter is not
used in full, as some Globus components such as the
GRAM (with the gatekeeper and jobmanager) are replaced
by custom components [15]. Moreover, the Globus GSI (Grid
Security Infrastructure) is used, e.g., for certificate and proxy
management.

The ARC user interface consists of command line tools for
job management. Users can submit jobs, monitor the execution
of their jobs and cancel jobs. The resource broker is an integral
part of the job submission tool, ngsub. Other tools allow, for

example, the user to retrieve results from jobs, obtain a preview
of job output and remove all files generated by the job from
the remote resource. Communication with remote resources is
handled by a GridFTP client module.

Each Grid resource runs an ARC GridFTP server. When
submitting a job, the user invokes the broker that uploads
an xRSL job request to the GridFTP server on the selected
resource. The xRSL is an extended subset of the Resource
Specification Language, originally proposed by the Globus
project. The ARC GridFTP server specifies plug-ins for custom
handling of FTP protocol messages. In ARC, these are used for
Grid access to the local file systems of the resources, to handle
Grid access control lists and, most important, for management
of Grid jobs.

Each resource also runs a Grid manager that manages the
Grid jobs through the various phases of their execution. The
Grid manager periodically searches for new jobs accepted
by the GridFTP server. For each new job, the xRSL job
description is analyzed, and any required input files are staged
to the resource. Then, the job description is translated into the
language of the local scheduler, and the job is submitted to the
batch system. Upon job completion, the Grid manager stages
the output files to the location(s) specified in the job description.
The Grid manager can be configured, at each job state change,
to execute a script that intercepts (and possibly cancels) the
job. These scripts form natural plug-in points for, for example,
accounting [20], and, as demonstrated in Section 3.2.1, for the
authorization of jobs that request advance reservations.

2.2. The resource brokering problem

One way to classify a Grid resource broker is by the scope
of its operations. A centralized broker manages and schedules
all jobs submitted to the Grid, whereas a decentralized
broker typically handles jobs submitted by a single user only.
Centralized brokers have a good knowledge and control of the
jobs and resources and can hence produce good schedules, but
such a broker can easily become a performance bottleneck and
a single point of failure. A decentralized brokering architecture,
on the other hand, scales well and makes the Grid more
fault-tolerant, but the incomplete information available to each
instance of the broker makes the scheduling problem more
difficult.

We can distinguish between two major categories of the
scheduling policies used by Grid resource brokers. System-
oriented brokers often strive to maximize overall system
throughput, average response times, fairness, or a combination
of these, whereas user-oriented scheduling systems try to
optimize the performance for an individual user, typically by
minimizing the response time for each job submitted by that
user. This is done regardless of the impact on the overall
scheduling performance and at the expense of competing
schedulers. A centralized broker typically performs system-
oriented scheduling whereas a decentralized broker often uses a
user-oriented policy. Grid systems utilizing a centralized broker
include, e.g., EMPEROR (user-oriented) [21] and Condor
(system-oriented) [22]. Distributed brokers are implemented
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Fig. 1. Interactions between resources, index servers and brokers.

by, e.g., Nimrod-G (user-oriented) [23] and GridWay (user-
oriented) [24]; the latter can also be deployed as a centralized
broker. For further discussions on classifications of brokers, see,
e.g., [25,26].

Fig. 1 illustrates a Grid with decentralized resource brokers.
Each Grid resource registers itself to one or more index servers,
which in turn can register to higher level index servers, thus
forming an index server hierarchy. All clients accessing the
Grid resources use their own brokers. Each broker, optionally,
contacts one or more index servers to discover what Grid
resources are available. The brokers query individual clusters
for detailed resource information and perform job submission
and job control by communicating directly with the resources.

In the following, we focus on algorithms and software for a
decentralized user-oriented resource broker. Our broker seeks
to fulfill the user’s resource requests by selecting the resources
that best suit the user’s application. In this context, selecting
the most suitable resources means identifying the resources
that provide the shortest Total Time to Delivery (TTD) for the
job. The TTD is the total time elapsed from the user’s job
submission until the output files are stored where requested.
This includes the time required for transferring input files and
executable to the resource, the waiting time, e.g., in a batch
queue, the actual execution time, and the time to transfer the
output files to the requested location(s).

3. Resource brokering algorithms

Our main brokering algorithm performs a series of
tasks, e.g., it processes the xRSL specifications in the job
requests, discovers and characterizes the resources available,
estimates the TTD for each resource of interest, makes
advance reservation of resources, and performs the actual job
submission. Algorithm 1 presents a high-level outline of the
tasks performed.

The input xRSL specification(s) contain one or more job
requests including information about the application to run

(e.g., executable, arguments, input/output files), actual job
requirements (e.g., amount of memory needed, architecture
requirements, execution time required), and optionally, job
characteristics that can be used to improve the resource
selection (e.g., listing of benchmarks with performance
characteristics relevant for the application). The broker input
can also include a request for advance reservations.

In Step 1 of Algorithm 1, the user’s request is processed
and split into individual job requests. In Step 2, the broker
discovers what resources are available by contacting one or
more index servers. The specific characteristics of the resources
found are identified in Step 3, by querying each individual
resource. Each resource may provide static information about
architecture type, memory configuration, CPU clock frequency,
operating system, local scheduling system, etc., and dynamic
information about current load, batch queue status and various
usage policies. Steps 2 and 3 are both performed by LDAP
queries sent from the broker to the index servers and the
resources, respectively. The actual brokering process is mainly
performed in Step 4, which is repeated for each job request. In
Step 5, resources are evaluated according to the requirements
in the job request and only the appropiate resources are kept for
further investigation. Step 6 predicts the performance of each
resource by estimating the TTD, a step that may include the
creation of advance reservations. Then, the currently considered
job is submitted in the loop started at Step 7. The loop is
repeated until either the job is successfully submitted or all
submission attempts fail, the latter causing the job to fail. In
Step 8, the best of the (remaining) clusters is selected for
submission. In Step 9, the actual job submission is performed.
Steps 10 and 11 test if the submission fails, and, if so, the cluster
is discarded and the algorithm retries from Step 7. In Step 14,
after the submission of one job is completed, any non-utilized
reservations are released. Finally, in Step 16, job identifiers
for all successfully submitted jobs are returned. These job
identifiers are obtained from successful execution of Step 9.
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Algorithm 1 Job submission and resource brokering.
Require: xRSL-specification(s) of one or more job requests.
Ensure: Returns job identifier(s) for the submitted job(s).

1: Validate the xRSL specification(s) and create a list of all individual job requests.
2: Contact one or more index servers to obtain a list of available clusters.
3: Query each resource for static and dynamic resource information (hardware and software characteristics, current status and

load, etc).
4: for each job do
5: Filter out clusters that do not fulfill the job requirements on memory, disk space, architecture, etc., and clusters that the user

is not authorized to use.
6: Estimate TTD for each remaining resource (see Section 3.1). If requested, advance reservations are created during this

process.
7: repeat
8: Select the (remaining) cluster with the shortest predicted TTD.
9: Submit the job to the selected resource.

10: if submission fails then
11: Discard the cluster.
12: end if
13: until the job is submitted or no appropriate clusters are left to try.
14: Release any reservations made to non-selected clusters.
15: end for
16: Return the job identifier(s).

Notably, Algorithm 1 does not reorder the individual job
requests internally (when multiple jobs are submitted in a single
invocation). This can possibly be done in order to reduce the
average batch queue waiting time, at least by submitting shorter
jobs before longer ones given that they require the same number
of CPUs. However, in the general case, factors such as local
scheduling algorithms (backfilling) and competing users make
the advantage of job reordering less obvious.

Fig. 2 presents a sequence diagram for the tasks performed
in Algorithm 1. The interactions are between the broker on
the client machine, the Grid resources, and an index server,
each typically running on a separate host. The broker’s different
interactions with a resource are performed with three different
components, for requesting resource information (the index
server), creating an advance reservation (any of the reservation
components presented in Section 3.2), and submitting a job
(the GridFTP server). Note that the steps for requesting
resource information, and possibly also for requesting an
advance reservation, are normally performed for a number of
resources before one is selected for the final job submission.
In the sequence diagram in Fig. 2, the GetInformation and
CreateReservation operations are invoked for all resources of
interest, whereas the SubmitJob request is sent to the selected
resource only.

In the following presentation, we focus on the more intricate
details of performing advance reservations and the algorithms
used to predict the TTD.

3.1. Estimating the total time to delivery

The prediction of the TTD, from the user’s job submission
to the final delivery of output files to the requested storage
location(s) requires that the time to perform the following
operations is estimated:

Fig. 2. Sequence diagram for job submission.

(i) Stage in: transfer of input files and executable to the
resource,

(ii) Waiting, e.g., in a batch queue and for operation (i) to
complete,

(iii) Execution, and,
(iv) Stage out: transfer of output files to the requested

location(s).

Notably, the waiting time is here defined as the maximum of
the time for stage in and all other waiting times before the
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job can actually start to execute. The estimated TTD is given
as the sum of the estimated times for operations (ii), (iii) and
(iv). If the time for stage out cannot be estimated due to lack of
information about output file sizes, that part is simply omitted
from the TTD. Below, we summarize how we make these
estimates.

3.1.1. Benchmark-based execution time predictions
The execution time estimate needs to be based both

on the performance of the resource and the characteristics
of the application, as the relative performance difference
between different computing resources typically varies with the
character of the application. In order to do this, we give the
user the opportunity to specify one or more benchmarks with
performance characteristics similar to those of the application.
This information is given together with an execution time
estimate on a resource with a specified benchmark result.

We remark that what is here referred to as benchmarks do
not exclusively have to be standard computer benchmarks. On
the contrary, for applications commonly used on resources,
the use of real application codes is recommended for this
benchmarking. For example, in Swegrid, benchmarking with
the ATLAS software [27] would be relevant for a large group
of high-energy physics users. An alternative to running the
full application codes for benchmarking is to run small test
programs representative for the application [28].

To run the benchmarking code at the time of each job
submission would impose a significant overhead as one
additional job (the test code) would have to be submitted, and
to wait in the batch queue on each resource of interest, before
submission of the real job. Therefore, our approach is to run the
benchmarks (e.g. test codes) once for each resource and then
have the results published in the information system. As the
current usage of Grid resources typically involves a very large
number of jobs requiring a small number of applications, this
minor extra work, e.g., at the time of the software installation, is
well motivated. In addition, a few standard benchmarks can be
included for general usage, as is currently done in NorduGrid.

Based on the benchmark results published by each individual
resource and the user’s specification of relevant benchmarks for
the application, the broker makes execution time estimates for
all resources of interest. In doing this, we assume linear scaling
of the application in relation to the benchmark, i.e. a resource
with a benchmark result a factor k better is assumed to execute
the application a factor k faster.

The user can specify n benchmarks as triples {bi , ri , ti },
i = 1, . . . , n, where bi is the benchmark name and ri is the
benchmark result on a system where the application requires
the time ti to execute. The broker matches these specifications
with the benchmark results provided by each cluster. For
each requested benchmark that is available for a resource, an
execution time for the application is predicted using linear
scaling of the benchmark result.

If the cluster provides results for some, but not for
all requested benchmarks, the broker compensates for the
uncertainty by taking the corresponding time estimates for
the missing benchmark(s) to be a penalty factor c times the

longest execution time estimated from other benchmarks for
that cluster. The default penalty factor is c = 1.25, but this
can be reconfigured by the user.

The predicted execution time is used twice: as part of the
TTD comparison during resource selection and as the requested
execution time at job submission. For the TTD comparison,
the average of the n execution time estimates is used as it
reflects the overall resource performance with respect to the
user-specified benchmarks. The maximum of the n predicted
values is used as the requested execution time. This gives
an accurate, yet conservative estimate of the execution time.
We remark that a sufficient but short execution time estimate
may lead to an earlier job start due to standard batch system
scheduling algorithms. A good estimate is also more likely to
be not too short, and hence reduces the risk of job cancellation
by the local scheduler.

3.1.2. File transfer time predictions
The time estimation for the stage in and stage out procedures

are based on the actual (known) sizes of input files and the
executable file, user-provided estimates for the sizes of the
output files, and network bandwidth predictions. If any of
the input files are replicated, time estimations are made for
each copy of the file. The current version of the ARC Grid
manager does not, however, use these estimates when selecting
which copy of a replicated file to stage to the resource prior to
execution, but, rather, chooses a random replica.

The network bandwidth predictions are performed using
the Network Weather Service (NWS) [29]. NWS combines
periodic bandwidth measurements with statistical methods to
make short-term predictions for the available bandwidth.

3.1.3. Waiting time estimations
The most accurate method to predict the waiting time is

to create an advance reservation for the job, which gives
a guaranteed start time rather than an estimate. However,
a reservation-based approach to predicting the waiting time
cannot be used if the resource lacks support for advance
reservations (via one of the mechanisms described in
Section 3.2), or if the user chooses not to activate the reservation
feature. In this case, the broker resorts to predicting the waiting
time from the current load of the resource. This alternative
prediction tends to be very coarse due to the complex nature of
batch system scheduling algorithms and the limited information
available to the broker about other queuing jobs.

3.2. Advance resource reservations

The advance reservation feature makes it possible to obtain
a guaranteed start time for a job, giving several advantages.
It makes it possible to meet deadlines for time-critical jobs
and to coordinate the job with other activities. In this section,
we present two alternative approaches for supporting advance
reservations, one implemented as an extension to the ARC
GridFTP server and the other a service-based reservation
framework.



590 E. Elmroth, J. Tordsson / Future Generation Computer Systems 24 (2008) 585–593

The reservation mechanism-based on GridFTP is imple-
mented as an extension to the job management plug-in in the
ARC GridFTP server. The reservation protocol supports two
operations: requesting a reservation and releasing a reserva-
tion. The reservation request contains the start time and re-
quested duration of the reservation and the required number of
CPUs. Upon receiving a reservation request from the broker,
the GridFTP server on the resource authorizes the requestor.
After authorizing the user, the job management plug-in of the
GridFTP server invokes a script to request a reservation from
the local scheduler. If the scheduler accepts the request and cre-
ates the reservation, the GridFTP server returns a unique iden-
tifier and the start time of the reservation to the broker. If no
reservation can be created, a message indicating failure is re-
turned. The GridFTP server saves the reservation identifier and
a copy of the user’s proxy for every successful reservation, en-
abling subsequent authorization of the user who made the reser-
vation. To release a reservation, the broker uploads a release
message containing the reservation identifier and the GridFTP
server confirms that the reservation is released.

The service-based framework for creating and managing
reservations builds on OGSI-compliant Grid services [30,31]
and is implemented using the Globus Toolkit version 3 [32].
The framework consists of two services: the ReservationFac-
tory, for creating reservations and the Reservation, which is
used for controlling and monitoring created reservations. These
services implement the following subset of the functionality de-
scribed in [33]; two-phase reservations, i.e. reservations that
have soft-state and are released shortly after their creation
unless they are confirmed, and a reservation architecture not
locked to a specific resource but supporting reservations of
multiple resource types (computers, networks, disks, etc.). The
implementation provides the resource type independence, but
reservation plug-in components are currently only supported for
computers.

The ReservationFactory is independent of the local
reservation system and uses a set of reservation managers
to handle interactions with the reservation management
system for a specific resource type (computer, network,
etc.). The operation exposed by the ReservationFactory is
createReservation, which takes a set of general and a set of
resource specific parameters as its arguments. The general
parameters include the resource type requested, a start time
window specifying the range of acceptable start times for
the reservation, the time when the reservation should be
released unless it is confirmed, and a flag indicating whether
the reservation is malleable. The start time for a malleable
reservation may be altered by the local scheduler as long as
it is kept within the specified start time window. Resource
utilization typically decreases if advance reservations are used
[8], but this impact can be reduced if the reservations are
malleable [34].

The resource-specific parameters have no fixed type and can
be used to describe any type of requirement, e.g. the number
of CPUs to be reserved on a cluster. The createReservation
operation returns the exact start time of the reservation and a
local reservation identifier. When createReservation is invoked,

the ReservationFactory forwards the incoming request to the
reservation manager of the type specified in the request. For
computer reservations, the actual interaction with the local
reservation manager is performed similarly as in the GridFTP-
based reservation system. Moreover, a copy of the user’s proxy
certificate is stored for later authorization.

One instance of the Reservation service is created for each
reservation. The Reservation service exposes operations for
querying the status of the reservation, confirming a reservation
and cancelling a reservation (destroying the service). The last
operation is reused from its implementation in [32].

Below, we outline a short summary of advantages and
disadvantages of the two approaches to implement advance
reservations.

The GridFTP-based reservation framework is lightweight
and has good performance. It is also easy to deploy, as the ARC
GridFTP server is already installed on the resources and is used
by the broker as described in Section 2.1. On the other hand,
this solution is non-standard and can hence only be used in the
ARC middleware and only to reserve computational resources.
Furthermore, there is no support for two-phase reservations
which causes a waste of resources if the broker for some reason
is unable explicitly to release a created reservation that will
never be used.

The service-based reservation framework is a more general
and flexible solution that is not limited to computational
resources and deployment in ARC. It is also based on
standard Web services technology instead of a custom plug-
in to the ARC GridFTP server, and it supports two-phase
reservations. The disadvantages with the service-based version
include the overhead associated with service invocation and
that the service-based framework requires installation of several
additional software components, on both the Grid resources and
in the client (broker).

3.2.1. Job submission with a reservation
If a reservation is successfully created on the selected

resource, the broker adds the received reservation identifier to
the xRSL job description before submitting the job request to
the resource.

Before the Grid manager submits the job to the local
scheduler, a reservation authorization plug-in script analyzes
the job description and detects the reservation identifier. The
script inspects the saved proxy files and their associated
reservation identifiers to ensure that the specified reservation
exists. Furthermore, the script compares the proxy used to
submit the job with the one used to create the reservation. The
job request is denied unless the specified reservation exists and
is created by the job submitter.

After job completion, the Grid manager may remove the
reservation, allowing the user to run only the requested job.
Alternatively, resources may permit the user to submit more
jobs within the same reservation once the first job is completed.
The configuration of the Grid manager plug-in script and the
local batch system determines the policy to be used.

The advance reservation feature requires that a reservation
capability is provided by the local scheduler. The current



E. Elmroth, J. Tordsson / Future Generation Computer Systems 24 (2008) 585–593 591

implementation supports the Maui scheduler [35], although
any local scheduler may be used (see, e.g., [7]). Support for
other schedulers than Maui can easily be added by adapting the
scripts that create and release reservations from the local batch
system.

3.3. Job queue adaptation

Network load and batch queue sizes may change rapidly
in a Grid. New resources may appear and others become
unavailable. The load predictions used by the broker as
a basis for resource selection can quickly become out-
dated. Nevertheless, more recent information will always be
available as Grid resources periodically advertise their state.
To compensate for this, the broker has functionality to keep
searching for better resources once the initial job submission
is done. If a new resource that is likely to result in an earlier job
completion time is found (taking into account all components
of the TTD, including file restaging and job restart), the broker
cancels the job and resubmits it to the new resource. This
procedure is repeated until the job starts to execute on the
currently selected resource. The job queue adaptation procedure
can be viewed as the simplest form of Grid job migration,
studied by, e.g., [22].

4. User interface extensions

We have extended the standard ARC user interface with
some new options and added some new attributes to the ARC
xRSL, in order to make the new features available to users.

4.1. Benchmarks

In order to make use of the feature of benchmark-
based execution time prediction, the user must provide
relevant benchmark information as described by the following
example. Assume that the user knows that the performance
of the application my app is well characterized by the NAS
benchmarks LU, BT and CG. For each of these benchmarks, the
user can specify a benchmark result and an expected execution
time on a system corresponding to that benchmark result.
Notably, the expected execution time must be specified for each
benchmark, as the benchmark results may be from different
reference computers. This is specified using the new xRSL
attribute benchmarks.

Fig. 3 illustrates how to specify that the application requires
65 min to execute on a cluster where the results for the NAS LU
and BT benchmarks class C are 250 and 200, respectively. The
estimated execution time is 50 min on an (apparently different)
cluster where the CG benchmark result is 90.

In order to use benchmark-based execution time predictions,
the information advertised by each cluster (about hardware,
software, current state, etc.) must be extended with benchmark
results for that cluster. Users cannot, however, know in
advance what benchmarks are advertised by the clusters.
To simplify the usage of benchmark-based execution time
predictions, there is an additional client tool for discovering

Fig. 3. Sample xRSL request including benchmark-based execution time
predictions.

Fig. 4. Sample xRSL request with information required to estimate file transfer
times.

all benchmarks advertised by any of the clusters. This client
performs resource discovery just as the broker, but instead
of submitting a job, the client outputs a list of available
benchmarks. For each benchmark, a list of clusters advertising
the benchmark is printed with the benchmark result for each
machine. From this list, a user can find a reference benchmark
result for a machine where the user’s job has been executed
previously.

4.2. Network transfers

In the example in Fig. 4, the job involves the transfer of
large input and output files. The broker determines the actual
sizes of the input files when estimating the transfer time for
these. The new, optional, xRSL attribute outputfilesizes
enables the user to provide an estimate of the size of the
job output. A typical user runs the same application many
times and will normally, with time, be able to provide very
accurate estimations of job output size. As shown in Fig. 4,
the user does not have to include size estimates for all output
files in the outputfilesizes relation. File size estimates can
be specified in bytes or with any of the suffixes kB, MB or
GB.

4.3. Command line options

In addition to the xRSL extensions, the broker supports some
new command line options. The option -A is used to request the
broker to perform queue adaptation. The reservation feature is
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activated using the option -R. The option -S is used to build a
pipeline between jobs, so that output from one job is used as
input to the next.

5. Future work

Current and future directions of this research include the
development of a service-oriented stand-alone resource broker
and job submission service with the same basic functionality
as the current tool [13,14]. This includes an investigation of
how various (emerging) Grid and Web services standards can
be used to improve the portability and interoperability of the job
submission service, e.g., in order to facilitate cross-middleware
job submission. We also plan to complement the service with
additional general components, e.g., for job monitoring and
control. Additional topics currently being addressed include
the design and analysis of efficient algorithms for resource co-
allocation.

6. Concluding remarks

The presented resource broker is developed with a focus
on the ARC middleware and the NorduGrid and SweGrid
production environments. Some of its brokering algorithms are
currently in production use in both environments. The broker
includes support for making advance resource reservations and
it selects resources based on benchmark-based execution time
estimates and network performance predictions. The broker is a
built-in component of the user’s job submission software, and is
hence a decentralized user-oriented broker acting with no need
for global control, entirely basing its decisions on the dynamic
information provided by the resources.
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Abstract

We present the architecture and implementation of a
Grid resource broker and job submission service, designed
to be as independent as possible of the Grid middleware
used on the resources. The overall architecture comprises
seven general components and a few conversion and in-
tegration points where all middleware-specific issues are
handled. The implementation is based on state-of-the-art
Grid and Web services technology as well as existing and
emerging standards (WSRF, JSDL, GLUE, WS-Agreement).
Features provided by the service include advance reserva-
tions and a resource selection process based on a priori
estimations of the total time to delivery for the applica-
tion, including a benchmark-based prediction of the execu-
tion time. The general service implementation is based on
the Globus Toolkit 4. For test and evaluation, plugins and
format converters are provided for use with the NorduGrid
ARC middleware.

1. Introduction

The resource broker and job submission components are
vital for any Grid computing infrastructure, as their func-
tionality and performance to a large extent determine the
user’s experience of the Grid. In all, these components have
to identify, characterize, evaluate, select, and allocate the
resources best suited for a particular application. The bro-
kering problem is complicated by the heterogeneous and
distributed nature of the Grid as well as the differing char-
acteristics of different applications. To further complicate
matters, the broker typically lacks total control and even
complete knowledge of the state of the resources.

Typically, resource brokers are closely integrated with,
or at least heavily dependent on, some particular Grid mid-
dleware, with popular solutions ranging from brokering
components being part of the job submission client to cen-

tralized Grid-schedulers not that different from traditional
batch system schedulers [16, 7, 20, 15, 5, 13]. Hence, it is
normally non-trivial to migrate a broker from one middle-
ware to another, or to adjust it to simultaneously work with
resources running different middlewares.

This contribution presents an architecture and an imple-
mentation of a general service for Grid resource brokering
and job submission. The service is general in the sense
that it can be used with different Grid middlewares, with
middleware-specific issues concentrated to minor compo-
nents. These components are used for format conversions
in interactions with clients and information systems as well
as for middleware-specific interaction with resources.

The proposed broker and job submission service rely
heavily on Grid and Web services standards, including
JSDL, WSRF, WS-Agreement, and GLUE (see Section 2),
and are implemented using Globus Toolkit 4 (GT4) [10].
Middleware-specific interfaces are provided for the Nor-
duGrid ARC software [8, 14], which is based on the Globus
Toolkit 2 (GT2). Tests and evaluation have been performed
on SweGrid [18] and NorduGrid [14] resources.

The brokering scenario addressed by our solution is a
decentralized broker that acts on behalf of the user in order
to allocate the resources that best fulfill the user’s request.
Hence, the broker does not take any globally controlling
role and works independently of any other broker or job
submission software interfacing the same resources. All de-
cisions made by the broker are based on the user’s requests
and the information (including negotiation) it extracts from
the resources and information services. Notably, the bro-
ker may be used simultaneously by multiple users, but the
brokering scenario remains as described above.

The broker aims at identifying the set of resources that
minimizes the Total Time to Delivery (TTD), or part thereof,
for each individual job submission [9]. In order to do this,
the broker makes an a priori estimation of the whole or
parts of the TTD for all resources of interest before making
the selection. The TTD estimation includes performing a
benchmark-based execution time estimation, estimating file
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transfer times, and performing advance reservations of re-
sources in order to obtain a guaranteed batch-queue waiting
time. For resources not providing all information required
or a reservation capability, less accurate estimations are per-
formed.

The rest of this paper is organized as follows. Section 2
introduces some standards and technologies used, Section 3
gives an in-depth description of the system and Section 4
describes the resource selection algorithms used. Section 5
illustrates the integration of the system with an existing
Grid middleware, whereas sections 6 and 7 contain a per-
formance evaluation and conclusions, respectively.

2. Background and standards used

The presented brokering and job submission architecture
makes extensive use of existing and proposed Grid and Web
service standards not only for interaction with other compo-
nents but also internally. The most important standards used
are briefly presented below.

2.1. JSDL

The Job Submission Description Language (JSDL) pro-
posed by the Global Grid Forum (GGF) describes the con-
figuration of computational jobs and their requirements on
the resources that executes them. It is the result of the JSDL
working group’s attempts to create a standardized job de-
scription language, simplifying interoperability between ex-
isting resource management systems [3].

In our contribution, the JSDL is used to express job re-
quests sent to the job submission module by clients.

2.2. WSRF

The Web Services Resource Framework (WSRF) [11],
defines a relationship between stateful resources and Web
services. This relationship is modelled using a construct
called a WS-Resource. An endpoint reference addresses
a Web service, and may also identify one of the WS-
Resources associated with that service.

The WSRF consists of five specifications, including the
following. WS-ResourceProperties defines the type and
value of the WS-Resource’s state as viewable through a
Web service interface. The WS-ResourceLifetime specifi-
cation defines lifecycle management of WS-Resources, in-
cluding creation and destruction (immediate or scheduled
for later). WS-BaseFault defines a base type for fault han-
dling in Web services, which increases consistency.

In our work, WSRF, and more specifically, WS-
Resources are used to represent jobs and reservations
(agreements). Information about submitted jobs and created
reservations is modelled using WS-ResourceProperties.

The lifetime management mechanisms defined in WS-
ResourceLifetime are used to implement soft-state, two-
phase reservations. WS-BaseFault is used for error mes-
sages.

2.3. WS-Agreement

WS-Agreement is a GGF standard proposal, which
makes it possible for an agreement initiator and an agree-
ment provider to enter an agreement. This agreement spec-
ifies service level objectives associated with the use of one
or more Web services. The WS-Agreement standard does
not specify any domain-specific terms describing the ser-
vice level objectives, but is rather intended for use with any
type of Web service. Service domain-specific terms are ex-
pected to be added in extensions for each service domain of
interest [2].

The basic operation of WS-Agreement is straightfor-
ward. Initially, the agreement initiator retrieves an agree-
ment template (prefilled contract) from the agreement
provider. The initiator fills out the relevant parameters in
the template and sends the resulting agreement offer in a re-
quest to the agreement provider. Upon granting the offer,
the agreement provider creates a WS-Resource represent-
ing the agreement, and returns an endpoint reference to this
WS-Resource to the agreement initiator.

The AgreementFactory porttype stores the agreement
templates and exposes an operation for requesting an agree-
ment. The Agreement porttype exposes no operation, it
only holds the WS-Resources modelling created agree-
ments. A third porttype, the AgreementState, is used to
monitor the fulfillment of the agreement. Notably, WS-
Agreement neither defines a protocol for agreement nego-
tiation, nor states how agreements should be signed.

In our work, WS-Agreement is used to negotiate and rep-
resent advance reservations for batch systems.

2.4. GLUE

The Grid Laboratory Uniform Environment (GLUE)
project [1] defines an information model for describing Grid
resources, targeting core services such as resource discov-
ery and monitoring. Resource discovery services benefit
from an extensive list of resource characteristics. For mon-
itoring, state information describing load and availability is
defined. The GLUE model (version 1.2) describes com-
puting elements, storage elements, and mappings relating
these. The GLUE project targets a model usable by differ-
ent technologies. Current implementations include LDAP
schemas for GT2 and XML schemas for GT4.

In our job submission service, the GLUE format is used
to represent resource information gathered during resource
discovery.
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3. Architecture

The proposed brokering and job submission framework
is based on a general architecture with seven components
and an implementation of the WS-Agreement specification.
The framework is complemented with a job submission
client and some middleware-specific components, currently
available for the NorduGrid ARC middleware.

The job submission service itself is implemented using
GT4 [19, 10], and does, just like GT4, make extensive use
of Axis [4]. Presently, plugins for reservations are imple-
mented for the Maui scheduler [12].

Below we give an architecture overview, followed by
more detailed descriptions of each of the modules, includ-
ing some discussions on design considerations.

3.1. Overview

The job submission module consists of seven compo-
nents: the InformationFinder performs resource discovery
and retrieves resource information; the Broker performs
resource selection; the Reserver negotiates advance reser-
vations; the DataManager handles file transfers; the Dis-
patcher sends job requests to the resource; the Submitter
coordinates the work of the five first modules and finally the
JobSubmissionService which stores information about sub-
mitted jobs and provides a Web service interface to the job
submission module. In addition to these components, there
is a user client for sending job requests to the JobSubmis-
sionService. The system also includes an implementation
of the WS-Agreement specification, hosted on the Grid re-
source.

Figure 1 gives an overview of the modules. Their inter-
actions and main operations are the following. Upon receiv-
ing a job request from the client, the JobSubmissionService
passes the job description along with any optional parame-
ters to the Submitter. The Submitter first invokes the Broker
to validate the job description. Then, the InformationFinder
is used to retrieve a list of available Grid resources. After
receiving this list, the Submitter calls the Broker to filter
out unsuitable resources and to rank the suitable ones. The
ranking procedure may include creating advance reserva-
tions, which is handled by the Reserver. If required, the
DataManager is then invoked to stage input files. Then, the
Submitter uses the Dispatcher to submit the job to the se-
lected resource and returns the obtained job identifier to the
JobSubmissionService.

The JobSubmissionService creates a stateful resource
(WS-Resource) storing information associated with the job.
In the final step, the job identifier is returned to the client.

Job submission module

User

Client

JSDL & GLUE

JSDL

JSDL

GLUE

Grid resource

WSAG

e.g, LDAP

e.g. RSL

e.g. GridFTP

Submitter

InformationFinder

DataManager

Broker

Reserver

JobSubmissionService

Dispatcher

WS-Agreement

Job submission client

JSDL converter

JSDL

JSDL

JSDL

e.g. RSL

Figure 1. Architecture overview showing
components, hosts, and information flow.
The boxes show the modules and the dashed
lines denote the different hosts.

3.2. Modules

This section presents the finer details of the modules in
the system.

JobSubmissionService. The JobSubmissionService is the
only component in the job submission module accessible
by clients. It exposes one operation, SubmitJob, through
its Web service interface. The parameters for this operation
are the JSDL job description, and optionally, a document
describing the user’s job preferences and/or a list of URLs
of index servers, e.g., GT2 GIISes or GT4 Index Services,
to contact during resource discovery.

Notably, the JobSubmissionService does not expose any
other operation than job submission. Further job manage-
ment, such as job monitoring and control are beyond the
scope of this service. The JobSubmissionService stores
stateful information about each submitted job, including the
job identifier, the job description and, if applicable, infor-
mation about an advance reservation created for the job.

A WS-Resource is created for each successfully submit-
ted job, with job information stored as resource properties.
By querying the resource properties, other job management
tools can retrieve the job identifier in order to monitor and
control the execution of the job.

As the JobSubmissionService typically is invoked by a
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user, a job submission client is provided. The arguments
to the client include those passed in a job request to the
JobSubmissionService, i.e., the mandatory job description
and the optional job preferences document and index server
URLs. In addition to these parameters, a user can spec-
ify which JobSubmissionService to contact. The client sup-
ports a plugin structure enabling translations to JSDL from
any native job description language preferred by the user.

InformationFinder. The purpose of the InformationFinder
is to discover what Grid resources are available and to re-
trieve more detailed information about each resource. The
input to this module is a list of index server URLs.

The InformationFinder first performs resource discov-
ery by querying each index server, which due to their hi-
erarchical organization may require some recursive invoca-
tions. Then, each identified resource is queried in more de-
tail. Both static and dynamic information about the resource
is retrieved, including hardware and software configuration
and current load. The InformationFinder also retrieves us-
age policies, allowing it to discard resources where the user
is not authorized to submit jobs.

Unless the information retrieved in the detailed queries
follows the GLUE format, it is converted by the Informa-
tionFinder before being returned to the Submitter. To im-
prove performance, the resource discovery, the information
retrieval, and the conversion to GLUE format are each per-
formed in parallel. A fixed size thread pool is used to con-
trol the degree of parallelism, thus avoiding overloading
the hosting environment. In order to reduce the resource
discovery overhead in situations where the same resources
are repeatedly queried during a short period of time, the
retrieved resource information is stored in a time-limited
cache.

Broker. The Broker strives to select the best resource for
each incoming job request. What makes a resource the “best
resource” depends on the characteristics of the job and the
resources, as well as on the user’s preferences.

The Broker provides three operations. Validation of job
description ensures that the description contains all required
attributes, e.g., the application to run. Resource filtering
guarantees that only resources fulfilling the job’s require-
ments on architecture, disk, memory etc. are considered for
submission. The most complex operation, resource ranking,
ranks the resources according to their suitability for execut-
ing the job and reorders the resource list accordingly. Two
interfaces are defined to facilitate this operation.

The predictor interface is used for the estimation of how
long time a certain task associated with the job would re-
quire if performed by a certain resource. The four tasks
considered for time estimation are: staging input files to the
resource; waiting for resource access, e.g., in a batch queue;
executing the job on the resource; and staging output files.

These four tasks make up the Total Time to Delivery (TTD)
for the Grid job. The algorithms used for TTD estimations
are presented in [9] and reviewed in Section 4.

The selector interface is used for the actual ranking of
the resources. The ranking is done using some, possibly all,
of the predictors. Currently, the Broker contains two selec-
tors. The earliest start selector ranks resources based on the
stage in and wait predictors, in order to achieve an as early
job start as possible. In contrast, the earliest completion
selector tries to minimize the TTD, and hence achieve the
earliest possible job completion.

Resource ranking may include the time-consuming task
of negotiating advance reservations. To improve perfor-
mance, resources are ranked in parallel, using a thread pool
similar to the one in the InformationFinder.

DataManager. The DataManager is responsible for all data
management tasks that relate to job submission. The mod-
ule defines an interface for staging of files to and from Grid
resources. This interface also defines the resolution of phys-
ical location(s) of replicated files, which is useful if the
Grid middleware supports file replication. Another opera-
tion defines the prediction of the duration of file transfers,
which can be implemented if the underlying infrastructure
supports either network reservations or bandwidth perfor-
mance predictions. The DataManager also implements an
operation for determining the sizes of physical files. This
operation is used as a last resort for predicting the duration
of file transfers when none of the more sophisticated mech-
anisms mentioned above are available.

Reserver. The Reserver includes a client API for reserving
CPUs at computational resources in advance. These CPUs
are reserved for a certain duration and with either a fixed
start time or an interval of allowed start times.

The three operations defined in the Reserver API are cre-
ation of a temporary reservation, confirmation of a tem-
porary reservation, and cancellation of a reservation (tem-
porary or confirmed). Temporary reservations are re-
leased shortly after their creation unless they are confirmed.
These operations are implemented using calls to the WS-
Agreement module.

The Reserver also contains a repository of created reser-
vations. After a job is successfully submitted to a resource,
the Submitter examines the repository and confirms the
reservation on the selected resource and cancels any other
reservation created for the job.

WS-Agreement. This module includes implementations of
the AgreementFactory and Agreement porttypes defined by
the WS-Agreement specification. Unlike the other mod-
ules, which are hosted on the machine running the JobSub-
missionService, WS-Agreement is deployed on the Grid re-
source.
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Note that our current implementation does not include
the AgreementState porttype. For our target domain, ad-
vance reservations of CPUs, monitoring the state makes lit-
tle sense. A created reservation will, short of resource fail-
ure, fulfill the guarantees specified in the agreement.

Two interfaces are defined in order to guarantee that the
WS-Agreement implementation is agnostic of the service
domain for which the agreements are created. Both inter-
faces must be implemented when using WS-Agreement for
a specific service, and any service-specific operation has to
be placed within the implementations of these interfaces.

The AgreementDecisionMaker interface determines
whether to grant or deny an agreement offer, returning an
AgreementDecision, which, in addition to the actual deci-
sion, contains any domain specific context associated with
the created agreement. The AgreementDecisionMaker con-
cept first appeared in Cremona [6].

The AgreementResourceHelper constructs domain spe-
cific agreement terms for inclusion in the resource property
document of the WS-Resource representing the agreement.

To the best of our knowledge, there exists no earlier
work using WS-Agreement to model batch queue reserva-
tions. For this reason, a language for describing reservations
against computational resources is defined. Each agreement
offer (reservation request) contains the duration of the reser-
vation and the requested number of CPUs. Furthermore, a
start time window specifying earliest and latest allowed job
start is included. A flag named flexible specifies whether the
start time of the reservation may be moved within the start
time window by the local batch system. If allowing this,
backfilling can be performed more efficiently, resulting in
increased utilization [17].

The AgreementFactoryService passes an incoming
agreement offer to the ReservationDecisionMaker, which
executes a plugin creating the earliest possible reserva-
tion within the start time window specified in the offer.
If no reservation can be created within this window, the
offer is denied. After the ReservationDecisionMaker has
granted the offer, the AgreementFactoryService creates a
WS-Resource and invokes the ReservationResourceHelper
to create resource properties for this WS-Resource. The re-
source properties include an identifier for the reservation,
the exact reservation start time and the parameters in the
agreement offer. Finally, the endpoint reference to the WS-
Resource is returned to the agreement initiator (the Re-
server). Figure 2 shows the interactions between the Re-
server and the WS-Agreement services.

Dispatcher. The Dispatcher is responsible for sending the
job request to the selected resource. While this task may
seem trivial, the job description may first have to be trans-
lated (back) from JSDL to the job description language un-
derstood by the resource. Furthermore, the mechanism used
for sending the job request to the resource depends on the

AgremeentInitiator
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Reservation-

ResourceHelper

AgreementService

Reservation-
specific
components

Domain-
independent
components

Client WS-Agreement module on Grid resource
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Agreement-
Resource

Agreement-
Resource

AgreementFactoryService

Figure 2. Interactions between general WS-
Agreement components and the reservation
specific modules.

Grid middleware used on the resource. Possible approaches
include invocation of a Web service, as used by Globus WS-
GRAM, and interaction with a GridFTP server, which is the
mechanism used by NorduGrid ARC. Due to these signifi-
cant differences, the Dispatcher contains no code common
for all middlewares, but rather defines a general interface for
dispatching jobs. This interface includes the job dispatch
operation, which takes three arguments, the GLUE infor-
mation about the selected resource, the job description (in
JSDL format), and optionally, information about an advance
reservation created for the job. The interface also defines the
translation of job descriptions from JSDL to the native job
description language of the used Grid middleware.

Submitter. The Submitter coordinates the job submission
process. When a job request is passed from the JobSubmis-
sionService, the Submitter invokes the Broker to validate
the job description. If the description is valid, the Submit-
ter calls the InformationFinder to retrieve an updated list of
resource information. Once the resource list is updated, the
Broker is invoked twice by the Submitter. First for filtering
out inadequate resources, then for reordering the remain-
ing ones after their suitability for executing the job. This
second step may include requesting advance reservations, a
task handled by the Reserver. Unless the Grid middleware
performs file staging, the Submitter next invokes the Data-
Manager to stage input files. It then calls the Dispatcher to
send the job request to the most suitable resource. If one of
these two operations fails, the Submitter retries with the sec-
ond most suitable resource etc., until the job either is suc-
cessfully submitted or all submission attempts fail, the latter
causing an error message to be returned to the client. After
completing these tasks, the Submitter returns a middleware-
specific job identifier to the JobSubmissionService.

It may seem superfluous to separate the Submitter and
the JobSubmissionService into two layers. We do however
believe that the separation of the job submission process
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handled by the Submitter and the management of stateful
resources performed by the JobSubmissionService is ben-
eficial. This allows the construction of alternative Submit-
ters, e.g., for coallocation or workflow scheduling.

4. Resource Brokering Algorithms

The resource broker selects the resources that gives the
minimum predicted TTD (or part thereof) for the applica-
tion. The algorithms for predicting the TTD depend on the
support provided by the resources and the optional informa-
tion supplied by the user. Below, we review the algorithms
used for predicting the TTD, originally presented in [9], and
describe what optional information a user can provide in or-
der to improve the brokering process.

4.1. A priori estimation of TTD

The TTD for a Grid job includes the times for (1) staging
in the executable and the input files to the resource, (2) wait-
ing in the batch queue, (3) executing the application, and (4)
staging output files to their requested location(s). The Bro-
ker presented in Section 3 makes use of one predictor for
each of these tasks. The two provided selectors make use of
the first two and all four predictors, respectively.

If the DataManager provides support for predicting file
transfer times or for resolving physical file locations and de-
termining file sizes (see Section 3), these features are used
by the predictors of (1) and (4) for estimating file staging
times. If no such support is available, e.g., depending on the
information provided by the Grid middleware used, these
predictors make use of the file transfer times optionally pro-
vided by the user. Notably, the time estimate for stage in is
important not only for predicting the TTD but also for co-
ordinating the start of the execution with the arrival of the
executable and the input files if an advance reservation is
performed.

The most accurate prediction of the batch queue waiting
time (2) is obtained by using advance reservations, which
gives a guaranteed job start time. If the resource does not
support advance reservations or the user chooses to deac-
tivate this feature, less accurate estimates are made from
the information provided by the resource about current load.
This estimation, however, does not take into account the ac-
tual scheduling algorithm used by the batch system.

The prediction of (3) is performed through a benchmark-
based estimation of execution time that takes into account
both the performance of the resources and the characteris-
tics of the application. This estimation requires that the user
provides the following information for one or more bench-
marks with performance characteristics similar to that of
the application: the name of the benchmark, the benchmark

performance for some system, and the application’s (pre-
dicted) execution time on that system. Using this informa-
tion, the application’s execution time is estimated on other
resources assuming that the performance of the application
is proportional to that of the benchmarks. For more infor-
mation, e.g., how information about multiple benchmarks is
used, see [9].

4.2. Optional input for brokering

In addition to the JSDL document describing the job,
a user may include a job preferences document in the job
request sent to the JobSubmissionService. This document
contains both job requirements and additional information
that may improve the resource selection process.

The job requirements are the preferred job objective,
which can be either earliest job completion or earliest job
start. The job start offset enables users to request that the
job starts after a certain time, which can be expressed ei-
ther as an absolute time or a relative offset from now. This
feature can be used e.g., for debugging, demonstrations and
coallocation purposes. Users can also specify a latest al-
lowed job start, ensuring that the job either starts in time or
is not submitted at all. Users with no strong requirements
on the start or completion times of their jobs can specify
that no reservation should be created for the job. Such jobs
receive best-effort job start times, which facilitate improved
resource utilization [17].

The job preferences document is also where a user may
provide the additional information mentioned above, that
allows the broker to improve the resource selection. This
includes the predicted times for file staging and information
used for benchmark-based execution time estimation.

Just as the job preferences document itself is an op-
tional parameter in the job request message, all parts of the
job preferences document are optional. However, by mak-
ing use of this feature, expert users can benefit from their
knowledge of the job characteristics.

An example of a user preference document is shown in
Figure 3. In this document, a user specifies two bench-
marks, nas-lu-c and specFP2000, as characteristic for the
performance of the job. The user specifies the (possibly
predicted) application execution times 60 and 45 minutes
on machines where the results of these benchmarks are 450
and 750, respectively. The file stage out time is estimated to
10 minutes. Notably, file staging predictions are normally
very inexact as the resource which to stage files to and from
actually is unknown. Still, a rough approximation may of-
ten provide additional value in situations where the broker
has no other information about network performance.

In the job requirement part, the user specifies the earliest
allowed job start, and also states that the job may start no
more than 30 minutes later than the earliest allowed start
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time. The job objective is an as early job completion as
possible.

<JobPreferences>
<SchedulingHints>

<Benchmark name="nas-lu-c"
result="450" time="60"/>

<Benchmark name="specFP2000"
result="1750" time="45"/>

<FileTransfers>
<StageOutTime>10</StageOutTime>

</FileTransfers>
</SchedulingHints>
<JobRequirement>

<EarliestAbsoluteStart>
2005-08-11T10:00:00Z

</EarliestAbsoluteStart>
<LatestRelativeStart>

30
</LatestRelativeStart>
<JobObjective>

EarliestJobCompletion
</JobObjective>

</JobRequirement>
</JobPreferences>

Figure 3. Example of a user job preferences
document.

5 Configuration and Middleware Integration

The integration of the general job submission module
with a particular Grid middleware requires some configu-
ration and some customized components. Below we sum-
marize what needs to be done, including the set up of the
Submitter to interact with a specific middleware and how
to configure the WS-Agreement module to support reserva-
tions of computational resources. Finally, we illustrate this
by the steps taken in our integration with the NorduGrid
ARC [14, 8].

The basic operation of the JobSubmissionService is con-
trolled by the configuration of the Submitter. This config-
uration decides which plugin modules are used by the In-
formationFinder for discovering resources, for querying re-
sources, and if needed, for converting the information re-
trieved to the GLUE format. The configuration file also
controls which Dispatcher to use. These settings do, i.e.,
determine which Grid middleware to use when communi-
cating with the Grid resources. As resource discovery can
be rather time-consuming, it is possible to specify a timeout
to use when discovering and querying resources. Further
tuning of the performance of the InformationFinder can be
done by adjusting the maximum number of threads to use in
the thread pool. The configuration file also includes URLs
to one or more default index servers, which are used in the
resource discovery phase unless the user includes URL(s)
to index server(s) in the job request. A configuration file
containing the above described parameters is passed to the

JobSubmissionService upon service startup.
The configuration of the WS-Agreement services deter-

mines which agreement template(s) to store in the Agree-
mentFactoryService. Also included in the configuration
is the DecisionMaker to use when determining whether to
grant an agreement or not. The configuration file may also
include a list of DecisionMaker initialization parameters. In
the reservation scenario, these parameters are used to spec-
ify plugin scripts that invoke the local scheduler when cre-
ating and cancelling reservations. Support for other sched-
ulers than the currently supported Maui scheduler can easily
be implemented by creating new reservation plugin scripts
and reconfiguring the AgreementFactoryService. The con-
figuration file also specifies which ResourceHelper to use.

5.1. Integration with NorduGrid ARC

Here, we illustrate the integration of the brokering and
job submission service with NorduGrid ARC, a middle-
ware based on GT2 with some GT2-components replaced
or modified.

A major difference between ARC and GT2 is the job
management. In ARC, the server-side GT2 GRAM compo-
nents (gatekeeper and job manager) are replaced by custom
components, a GridFTP server and a Grid Manager, respec-
tively [8]. Another difference is that even though ARC uses
the GT2 MDS, this is done with customized schemas. In-
formation advertised by a ARC GRIS describes users, jobs
and resources (clusters and their job queues).

For integrating the job submission module with ARC,
plugins are required for the Dispatcher and the Information-
Finder. Furthermore, a few server-side scripts are required
for managing the advance reservations created by the WS-
Agreement components.

The hierarchal MDS structure used in ARC makes the
resource discovery plugin in the InformationFinder straight-
forward. Starting from the list of GIISes provided on input,
all GIISes are recursively queried for resources, each by a
separate thread, without calling any GIIS more than once.
Then, the resource query plugin requests information about
the cluster and its queues, using LDAP. The result of these
queries is objects providing an ARC-specific description of
the resources, which are converted to the GLUE format by
the converter plugin.

An ARC job submission client procedure includes up-
loading any locally stored input files to the resource (the
Grid Manager handles stage in of non-local input files) be-
fore sending the job description to the GridFTP server of the
resource. The ARC dispatcher plugin converts the JSDL job
description to the GT2-style RSL used by ARC, and then
modifies the job description to ensure that also local input
files are staged by the Grid Manager. If an advance reserva-
tion is created for the job, the identifier of the reservation is
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added to the job description before it is uploaded.
The implementation of WS-Agreement and the local

scripts used by the ReservationDecisionMaker operates in-
dependently of ARC. However, a mechanism is required
to associate the user creating the reservation with the one
submitting the job. This is done by ensuring that the job
submission and the creation of the reservation both are per-
formed using proxies that originate from the same certifi-
cate.

A general infrastructure such as the job submission mod-
ule can normally not capture all the features available in
every single middleware, e.g., ARC. However, for use with
ARC, the only noticeable shortcoming is that in ARC, files
accessible through the Globus Replica Location Service
(RLS) can serve as job input and output, whereas the job
submission module currently only handles locally stored
files and files stored at (Grid)FTP servers. Support for RLS
may however be added in future versions of the job submis-
sion module.

6. Performance evaluation

The job submission module has been evaluated with re-
spect to the service response time, i.e., the time required
to submit a job, and the service throughput, i.e., number of
jobs submitted to resources per minute.

The evaluation has been performed with the client and
job submission module each running on a system equipped
with one 2.8 GHz Intel P4 processor with 1 GB memory,
Debian Linux Sarge and Globus Toolkit version 4.0.0. The
WS-Agreement services were deployed on a system with
a 667 MHz Intel P3 processor, 384 MB memory, Debian
Linux Sarge, Globus Toolkit 4.0.0, Maui 3.2.6 and Torque
1.1.0. The Grid infrastructure used is a subset of NorduGrid
and SweGrid, with in total 12 resources ranging from four
to 388 CPUs (including the six 100 CPU clusters in Swe-
Grid). These resources used the NorduGrid ARC middle-
ware and were indexed by four GIISes, with one serving
as higher level GIIS for the others. The LDAP information
gathered from the resources was valid for 30 seconds, which
hence became the cache expiration time. A timeout of 15
seconds was used for all InformationFinder connections and
a maximum of eight threads were used in all threadpools.

In order to evaluate the service response time, a client
submitted a series of jobs, waiting with the submission of
the next one until the submission of the previous job was
completed. Hence, the time measured includes the broker’s
processing of one single job and all waiting times associated
with the resource selection and job submission of that job.

As negotiation of advance reservations is rather time-
consuming, tests were performed both with and without
reservations. The job response times were grouped into five
classes depending on the time required, as shown in tables

1 and 2. The tables summarize five sets of 200 jobs each,
showing the average, the minimum and the maximum per-
centage of job submissions in each interval for each set.

Table 1. Job run time distribution without
reservations.

<2 s 2-5 s 5-8 s 8-11 s >=11 s
average 9.4% 66.1% 15.4% 3.9% 5.2%
min 7.5% 64% 12% 2% 2.5%
max 12.5% 68.5% 19.5% 7% 8.5%

Table 2. Job run time distribution with reser-
vations.

<7 s 7-10 s 10-13 s 13-16 s >=16 s
average 11.4% 37.4% 33.3% 12.4% 5.5%
min 8.5% 32.5% 30% 6.5% 2.5%
max 16.5% 51% 38% 15.5% 10.5%

For jobs submitted without reservations (Table 1), the
majority of the submissions take 2–5 seconds, and around
75% of them take less than 5 seconds. This corresponds
to jobs where the broker can take advantage of cached re-
source information and no resource has any exceptionally
long response time for job submission. Around 15% of
the jobs take 5–8 seconds, corresponding to jobs where
the cached information has expired and additional resource
queries therefor are performed. The last two categories, i.e.,
jobs that take more than 8 seconds, include jobs for which
additional delays were encountered. These delays were due
to an overloaded Grid infrastructure and resulted in two is-
sues: increased time for resource discovery and, more time-
consuming, slower dispatch of the job to the selected re-
source. The latter operation was particularly slow if many
jobs recently had been submitted to the same resource.

In the results for submissions performed with advance
reservations in Table 2, we basically see the same pattern
but with around 5 seconds longer times. One side effect of
these longer times is that fewer jobs can benefit from the
cached resource information, explaining the smaller num-
ber of submissions falling into categories 1–2.

For the throughput tests, jobs were submitted concur-
rently from many clients, in order to put a high load on the
job submission module. To reduce the overhead associated
with the first invocation of a Web service, each client sub-
mitted a number of jobs. The results show up to 40 success-
fully handled job submissions per minute, even though the
performance varied due to load variations on the Grid in-
frastructure, resulting in the same anomalies as for the first
test. We conclude, however, that for submissions up to at
least 40 jobs per minute by the job submission module, it
is rather the resources than the broker and job submission
service that are the bottleneck.
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7 Conclusions

We have presented the design and implementation of a
general framework for Grid job submission and resource
brokering. The framework is intended to be as middleware
independent as possible, and it is therefore to a large extent
based on (proposed) Grid and Web services standards. We
have demonstrated how the general framework can be inte-
grated in the NorduGrid ARC middleware. In an evaluation
of the framework integrated in an environment with ARC
resources, we conclude that most jobs can be submitted in
less than 5 seconds (less than 13 seconds if using advance
reservations), and that the job submission module is capable
of achieving a throughput of at least 40 submitted jobs per
minute.

The integration requires some effort, in particular when
translating the job description language used in ARC back
and forth to JSDL, and when converting information re-
trieved from ARC resources to GLUE. The time spent de-
veloping the ARC plugins was however only a fraction of
the time required to implement the complete framework, il-
lustrating that implementing plugins for an additional mid-
dleware is a feasible method of constructing a feature-rich
job submission client for that middleware.

The strive for interoperability often boils down to find-
ing the lowest common denominator between the various
systems. In this case, we have been able to adopt the ARC
formats to the various standard formats used in our system
without losing much of the original ARC features.

Future directions in this work include implementing plu-
gins for additional Grid middlewares. Current efforts focus
on support for GT4 and gLite. The future plans also in-
clude extending the framework to support coallocation of
resources. This will mainly require the development of an
alternative submitter module as all the other modules basi-
cally have the functionality required.
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ing the response time for each job submitted. The algorithms in our implementation
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2 E. ELMROTH AND J. TORDSSON

1. INTRODUCTION

The emergence of Grid infrastructures facilitates interoperability between heterogeneous resources.
Following this development, it is somewhat contradictory that a new level of portability problems
has been introduced, namely between different Grid middlewares. Although the reasons are obvious,
expected, and almost impossible to circumvent (as the task of defining appropriate standards, models,
and best practices must be preceded by basic research and real-world experiments), it makes
development of portable Grid applications hard. In practice, the usage of largely different tools
and interfaces for basic job management in different middlewares forces application developers to
implement custom solutions for each and every middleware. By continued or increased focus on
standardization issues, we expect this problem to decreaseover time, but we also foresee that it will
take long time before the problem can be considered solved, if at all. Hence, we see both a need to more
rapidly improve the conditions for Grid application development, and for gaining further experience in
designing and building general and standards-based Grid software.

We argue that the conditions for developing portable Grid applications can be drastically improved
by providing unified interfaces and robust implementationsfor a small set of basic job management
tools. As a contribution to such a set of job management tools, we here focus on the design,
implementation, and analysis of a feature-rich, standards-based tool for resource brokering. This job
submission service, designed with focus on generality and flexibility, relies heavily on emerging Grid
and Web services standards both for the various formats usedto describe resources, jobs, requirements,
agreements, etc, and for the implementation of the service itself.

The service is also designed for all-to-all cross-middleware job submission, which means that it takes
the input format of any supported middleware and (independently of which input format) submits the
jobs to resources running any supported middleware. Currently supported middlewares are the Globus
Toolkit 4 (GT4) [30] and NorduGrid/ARC [15]. The service itself is designed in compliance with the
Web Services Resource Framework (WSRF) [25] and its implementation is based on GT4 Java WS
Core.

The architecture of the service includes a set of general components. To emphasize separation of
concerns, each component is designed to perform one specifictask in the job submission process. The
inter-component interaction is supported by the use of (proposed) standard formats, which increases the
flexibility by facilitating the replacement of individual components. The service can be integrated for
use with a specific middleware by the implementation of a few minor plugins at well-defined integration
points.

The flexible architecture enables partial or complete replacement of the resource selection algorithms
with custom implementations. By default, the service uses adecentralized brokering policy, working on
behalf of the user [19, 41]. The existing algorithms strive to optimize the performance for an individual
user by minimizing the response time for each job submitted.Resource selection is based on resource
information as opposed to resource control, and is done regardless of the impact on the overall (Grid-
wide) scheduling performance. The resource selection algorithms include performing time predictions
for file transfers and a benchmarks-based procedure for predicting the execution time on each resource
considered. For enhanced Quality of Service (QoS), the broker also includes features for performing
advance resource reservations and coallocation of multiple resources.

The job submission service presented here represents the final version of a second generation job
submission tool. For resource allocation algorithms, it partly extends on the algorithms for single job
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GRID RESOURCE BROKERING 3

submissions in the NorduGrid/ARC-specific resource brokerpresented in [19]. With the development
of the second generation tools, principles of SOAs were adapted. Early work on this WSRF-based job
submission tool is presented in [18]. The current contribution completes that work and extends it in a
number of ways. Hence, one major result of the current article is the completion of the WSRF-based
tool into a production quality job submission software.

In summary, our contributions are the following:

• A demonstration of how standard formats and interfaces can be used to support interoperability
in terms of all-to-all cross middleware job submission, without restricting functionality to the
lowest common denominator. A thorough analysis shows that this can be done with far better
performance than required in the envisioned usage scenarios.

• A flexible and portable architecture that allows both customization and replacement of arbitrary
components for well-defined subtasks in the the job submission process.

• Resource selection algorithms that can utilize, but do not depend on, sophisticated mechanisms
for predicting job and resource performance.

• A standards-based advance reservations framework and its applications in supporting end user
QoS.

• Advances to the state-of-the-art in Grid resource coallocation, including the design,
implementation, and analysis of an algorithm for arbitrarily coordinated allocations of resources.

The outline of the rest of the paper is organized as follows. The overall system architecture is
presented in Section 2. The resource brokering algorithms used in this implementation are described
in Section 3, including some further discussions on the intricate issues of resource coallocation and
advance reservations. Section 4 illustrates how to design the custom components required to allow
job submission to and from additional middlewares, by summarizing the steps required for integration
with GT4 and NorduGrid/ARC. The performance of the system isanalyzed in Section 5, followed by
a presentation of related work in Section 6. Section 7 contains some concluding remarks, including a
discussion of our scientific contributions. Information about how to retrieve the presented software is
given in Section 8.

2. A STANDARDS-BASED GRID BROKERING ARCHITECTURE

The overall architecture of the job submission and resourcebrokering service is developed with focus
on flexibility and generality at multiple levels. The service itself is made independent of any particular
middleware and uses (proposed) standard formats in all interactions with clients, resources, and
information systems. It is composed of a set of components that each performs a well-defined task in the
overall job submission process. Also in the interaction between these components, (proposed) standard
formats are used whenever available and appropriate. This principle increases the overall flexibility
and facilitates replacement of individual components by alternative implementations. Moreover, some
of these components are themselves designed in a similar way, e.g., making it possible to replace the
resource selection algorithm inside the resource brokering component.

The service is implemented using the GT4 (Java WS Core) Web service development framework
[24]. This framework combines WSRF functionality with the Axis Web service engine [8]. As the
service itself is made independent of any particular middleware, all middleware-specific issues are
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4 E. ELMROTH AND J. TORDSSON
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Figure 1. Logical view of interoperability in the job submission service.

handled by a few, well-defined, plugins. Currently such plugins are available for the GT4 and ARC
middlewares. A typical set of middleware plugins constitutes less than ten percent of the general
code. Descriptions of the middleware-specific components,including a short discussion about their
differences, are found in Section 4.

The service supports job submission to and from any middleware with an X.509 certificate based
security framework for which plugins are implemented. Thisalso includes cross-middleware job
submission, as illustrated in Figure 1. The figure shows how job requests in the respective job
description languages of GT4, ARC or any other supported middleware, are sent to the job submission
service (denoted JSS in the figure), which can dispatch the job to a resource that runs any (supported)
middleware. This proxy [28] pattern achieves interoperability in the sense of end user transparency,
which is in harmony with the ISO definition of interoperability [23]. In contrast to alternative
approaches [31, 54], that are based on interoperation through resource side middleware extensions,
our solution is non-intrusive as it requires no modifications to the Grid middleware of the resources.
However, with our solution, end users must change their job submission software (but can still reuse
existing job descriptions), whereas the alternative approaches allow the continued use of middleware-
native job submission tools.

In addition to the main job submission and resource brokering service, the framework includes user
clients, and an optional advance reservation component that can be installed on the Grid resources
for improved QoS. All components are briefly described in sections 2.1–2.3 and their interactions are
illustrated in Figure 2.

2.1. Job submission clients

The client module contains two user clients, for standard job submission and for submission of jobs that
require coallocation, respectively. The module also includes a plugin for job description translations.
An implementation of this plugin converts a job descriptionfrom the native format specified as input
by the user to the Job Submission Description Language (JSDL) [7], a standardized job description
format proposed by the Open Grid Forum (OGF) [55]. Users can of course also specify their job
requests directly in JSDL.
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11. Input file staging.
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description translation.
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Figure 2. An architecture overview that shows components, hosts, and information flow. The dashed lines denote
different hosts. The boxes show the components, the solid ones are part of the job submission service, whereas the
dashed ones illustrate other services it interacts with. A chronological outline of the job submission processes is

shown to the right. In this outline, italic font specifies optional tasks.

The job description languages used in various Grid middlewares are very similar in terms of job
configuration, e.g., executable to run, arguments, input and output files, execution environment etc.,
and resource requirements, e.g., number of requested CPUs,required disk space, architecture, available
disk, memory, etc. These attributes are straight-forward to translate. However, not all attributes can be
translated into JSDL. Each Grid job description language typically contains a few attributes custom
to a specific Grid middleware or job submission tool, e.g., instructions to a specific Grid resource
broker. Such attributes are not translated in the job submission service as it does not implement all
the different scheduling policies of existing Grid resource brokers. Furthermore, attributes specific for
one Grid middleware would not be useful when submitting the job to a resource that runs some other
middleware. An alternative approach, taken by Kertész et al. [39], is to add all custom attributes as

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2009;00:1–38
Prepared usingcpeauth.cls



6 E. ELMROTH AND J. TORDSSON

JSDL extensions. This is a reasonable approach for Kertészet al. as their resource broker forwards
job requests to middleware-specific resource brokers, whereas the service described in this paper
communicates directly with the resources. However, users of the job submission service can specify
custom requirements for their jobs, but through the optional job preferences document described in
Section 2.4, instead of through middleware-specific mechanisms. A few finer details about the the
translations to JSDL from the job description languages of GT4 and ARC are discussed in sections 4.1
and 4.2, respectively.

The job submission clients can be configured to transfer job input files stored locally at the client
host. This file staging is required if the local files neither can be accessed directly by the job submission
service nor by the Grid resource.

2.2. Job submission service

The clients send their JSDL job requests to theJobSubmissionServicethat exposes a Web service
interface to the functionality offered by the broker, namely submission of a single job or coallocation
of a set of jobs. As part of this invocation, the clients delegate user security credentials (i.e., proxy
certificates) to the JobSubmissionService, for later use ininteraction with resources. The service
forwards incoming requests either to theSubmitteror theCoallocator, depending on the type of the
request. For each successfully submitted (or coallocated)job, the JobSubmissionService creates a WS-
Resource, with information about the job exposed as WS-ResourceProperties. This mechanism for
storing state information in Web services is specified by theWSRF [25].

The Submitter (or the Coallocator) coordinates the job submission process, which includes to
discover the available Grid resources, gather detailed resource information, select the most suitable
resource(s) for the job, and to send the job request to the selected resource. The main difference
between the two components is that the Coallocator performsa more complex resource selection and
reservation procedure in order allocate multiple resources for coordinated use. The algorithms used by
these two components are presented in sections 3.1 and 3.2, respectively.

Resource discovery is handled by theInformationFinder. Due to differences in the both
communication protocols and Grid information formats usedby the various Grid middlewares,
the InformationFinder consists of three parts each having amiddleware-specific plugin. The
ResourceFindercontacts a higher level index service to retrieve a list of available Grid resources.
Its plugin determines which protocol to use and what query tosend to the index service. The
InformationFetcherqueries a single Grid resource for detailed information, such as hardware and
software configuration and current load. TheInformationConverterconverts the information retrieved
from a Grid resource from the native information format to the format specified by the Grid Laboratory
Uniform Environment (GLUE) [4]. The GLUE format defines an information model for describing
computational and storage resources in a Grid. To improve the performance of the InformationFinder,
threadpools are used for all of these three tasks. For additional performance improvements, the retrieved
resource information is cached for a short period of time, which significantly decreases the number of
information queries sent to Grid resources during high service load. In order to avoid stale cache entries,
resource information is renewed when more recent one becomes available. Metadata included with the
resource information specifies how long the retrieved information is valid.

The Broker module initially validates incoming job requests, to ensure that a request includes all
required attributes, such as the executable to run. Later inthe submission process, the Broker is used
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by the Submitter (or Coallocator) to rank the resources found by the InformationFinder. The Broker
first filters out resources that fail to fulfill the hardware and software requirements specified in the job
description, then it ranks the remaining resources after their suitability to execute the job. The resource
ranking algorithms may include requesting advance reservations using theReserver, which can create,
modify, cancel, and confirm advance reservations using a protocol based on WS-Agreement [5]. The
details of the advance reservation protocol and the resource ranking algorithms are given in sections
2.3 and 3.1, respectively. When the ranking is done, the Broker returns a list of the approved resources,
ordered by their rank.

The Broker may also use theDataManagerduring resource ranking, a module that performs job
submission related data management tasks. This module provides the Broker with estimates of file
transfer times, which are predicted from the size and location of each job input and output file.
Alternatively, if the Grid middleware supports data replication and/or network performance predictions,
the DataManager can use these capabilities to provide better estimates of file transfer times. The
DataManager can also stage job input files, unless this task is handled by the client or by the Grid
resource executing the job.

The last module used by the Submitter (or Coallocator) is theDispatcher, which sends the job
request to the selected resource. As part of this process, the Dispatcher, if required, translates the job
description from JSDL to a format understood by the Grid middleware of the resource. The Dispatcher
also selects the appropriate mechanism to use to contact theresource. A plugin structure that combines
the Chain of Responsibility and Adapter design patterns [28] enables the Dispatcher to perform these
tasks without any a priori knowledge of the middleware used by the resource.

2.3. Advance reservations with WS-Agreement

As part of the job submission framework, we have made an implementation of the WS-Agreement
specification [5], to be used for negotiating and agreeing onresource reservation contracts. The WS-
Agreement module includes an implementation of the AgreementFactory and the Agreement porttypes.
However, the Agreement state porttype (which is also part ofthe WS-Agreement specification) has
been left out from the implementation since monitoring the state is not of interest for this type
of agreements. It should be remarked that the WS-Agreement implementation itself is completely
independent of the service domain (resource reservations)for which it is to be used. We refer to [18]
for further details. The WS-Agreement services are the onlycomponents that need to be installed on
the Grid resource. They enable a client, e.g., the Reserver in the job submission module, to request an
advance reservation for a job at the resource.

It should be stressed that it is a priori not known if a reservation can be created on a resource at a
given time. The reservation request sent from a client to theAgreementFactory specifies the number of
requested CPUs, the requested reservation duration, and the earliest and latest acceptable reservation
start times, the latter two forming a window of acceptable start times. Three replies are possible:

1. <granted> - request granted.
2. <rejected> - request rejected and never possible.
3. <rejected,T next> - request rejected, but may be granted at a later time,T next.

Reply number 1 confirms that a reservation has been successfully created according to the request.
Reply number 2 typically indicates that the requested resource does not meet the requirements of the
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request, or that the resource rejects the request due to policy reasons. Reply number 3 also indicates a
failure, but suggests that a new reservation request, identical to the rejected one, but specifying a later
reservation start time (T next or later), may be granted.

An Agreement client can include an optional flag,flexible, in the reservation request to specify that
the local scheduler may alter the reservation start time within the start time window after the reservation
is created. By allowing such a malleable reservation, the local scheduler is given the possibility to
rearrange the local schedule. This may improve the resourceutilization and partly compensate for the
performance penalty imposed by the usage of advance reservations [22].

For advance reservations, two plugin scripts are required at the resource side. The first plugin
negotiates reservations with the local scheduler. It is currently implemented for the Maui scheduler
[47], but can easily be adopted to work with any local scheduler that supports advance reservations.
The second plugin performs admission control of a job that requests to make use of a previously created
reservation. This plugin needs to be integrated with the jobmanagement mechanism deployed at the
Grid resource. The details of the integration of this plugininto existing Grid middlewares are discussed
in sections 4.1 and 4.2.

Notably, the job submission service can also handle resources that do not have a reservation capable
scheduler and the WS-Agreement services installed, but then, of course, without possibility to make
use of the advance reservation feature.

2.4. The optional job preferences document

In addition to the job description, specified either in a middleware-specific format or in JSDL, the
job submission framework allows a client to include an optional job preferences document in a job
request. For example, this document can be used to choose brokering objective. The user can, e.g.,
choose between optimizing for an early job start or an early job completion, and can also specify
absolute or relative times for the earliest or latest acceptable job start.

The job preferences document may also include information that can improve the brokering
decisions, e.g., specification of benchmarks relevant for the application and information about job
input and output files. This information is used to improve the resource selection process as described
in Section 3.1. Just as it is optional to provide the job preferences document itself, all parameters in the
document are optional.

3. ALGORITHMS FOR RESOURCE (CO)ALLOCATION

The general problem of resource brokering is complex, and the design of algorithms is highly
dependent on the scheduling objectives, the type of jobs considered, the users’ understanding of the
application requirements, etc. For a general introductionto these issues, see e.g., [62, 76].

In order to facilitate the use of custom brokering algorithms, the job submission service architecture
presented in Section 2 is designed for easy modification or replacement of brokering algorithms. The
predefined algorithms provided for single job submission and for submission of jobs requiring resource
coallocation are presented below in sections 3.1 and 3.2, respectively.
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3.1. Resource ranking algorithms

The algorithm for submitting single jobs, implemented in the Submitter module, strives to identify the
resource that best fulfills the brokering objective selected by the user. The two alternative brokering
objectives are to find the resource that gives the earliest job completion time or the one the gives the
earliest job start time. Notably, these two objectives givethe same result if all resources are identical
and jobs do not transfer any output data. This is however an unlikely scenario in Grid environments.

In order to identify the most suitable resource, the Broker makes a prediction of either theTotal
Time to Delivery(TTD) or theTotal Time to Start(TTS), respectively, using two differentSelectors.
These predictions are based on time estimation algorithms originally presented in [19]. In order to
estimate the TTS, the broker needs to, for each resource considered, predict the time required for
staging of the executable and the input files, and the time thejob must wait in the batch queue. In
addition, the estimation of the TTD also requires predictions of the job execution time and of the time
required for staging the output files. The time predictions for these four tasks are performed by four
differentPredictors. Notably, by modifying the Selectors and/or Predictors, orby defining new ones,
customization of the brokering algorithm is rather straightforward. The existing Predictions have basic
functionality as follows.

Time predictions for file staging.If the DataManager provides support for predicting network
bandwidth, for resolving physical locations of replicatedfiles, or for determining file sizes (see Section
2), these features are used by the stage in predictor for estimating file transfer times. If no such support
is available, e.g., depending on the information provided by the Grid middleware used, the predictor
makes use of the file transfer times optionally provided by the user. Notably, the time estimate for stage
in is important not only for predicting the TTD but also for coordinating the start of the execution with
the arrival of the executable and the input files if an advancereservation is created for the job. The
stage out predictor only considers the optional input provided by the user, as it is impossible to predict
the size of the job output and hence also the stage out time without user input.

Time predictions for batch queue waiting.The most accurate prediction of the batch queue waiting
time is obtained by using advance reservations, which givesa guaranteed job start time. If the resource
does not support advance reservations or the user chooses not to activate this feature, a less accurate
prediction is made from the information provided by the resource about current load. This rough
estimate does however not take into account the actual scheduling algorithm used by the batch system.

Time predictions for application execution.The prediction of the time required for the actual
job execution is performed through a benchmark-based estimation that takes into account both the
performance of the resources and the characteristics of theapplication. This estimation requires that the
user provides the following information for one or more benchmarks with performance characteristics
similar to that of the application: the name of the benchmark, the benchmark performance for some
system, and the application’s (predicted) execution time on that system. Using this information, the
application’s execution time is estimated on other resources assuming that the performance of the
application is proportional to that of the benchmark. If multiple benchmarks are specified by the user,
this procedure is repeated for all benchmarks and then the average result is used as a prediction of the
execution time. In order to handle situations where resources do not provide all requested benchmarks,
the prediction algorithm includes a customizable procedure for making conservative predictions. We
remark that it is the responsibility of the user to ensure that performance characteristics of the selected
benchmarks are representative for the application. A benchmark need however not at all be formal
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10 E. ELMROTH AND J. TORDSSON

or well-established. It may equally well be a performance number of the actual application code for
some predefined problem. The requirement for an (estimate ofthe) application execution time should
furthermore be easy to fulfill as users typically submit the same application multiple times.

Grid application runtime prediction consists of two separate problems. The first is to predict the
performance of an application with fixed parameters on a set of machines, given the performance for
the application (with the same set of parameters) on a known machine. The second problem is to,
on a known machine, estimate the performance of an application for varying parameters based on
knowledge of the performance of the application for a given set of parameters. The TTD and TTS
algorithms address the first problem. The second problem is not specific to Grid jobs and have been
studied extensively [21, 53, 64].

The TTD (and TTS) application performance models can be usedto accurately predict the behavior
of a wide range of applications, including compute and/or data intensive jobs. By considering input and
output data transfers, resource access wait time and actualapplication execution, these performance
models take into account and combine previous models such asLeastLoaded[59] andDataPresent
[59] as well as the application-specific computational performance of the resource.

The implementations of the TTD and TTS models are carefully designed to predict higher
performance for resources for which more detailed information and more accurate performance
estimation mechanisms are available. From a resource selection perspective, it is however important to
use the same metric (TTD or TTS) for comparison of all the resources of interest. This necessitates the
use of coarse-grained prediction methods, e.g., estimating the queue waiting time from current resource
load, when no better mechanism is available.

3.2. Coallocation

A coallocation mechanism is required in order to start a Gridjob that makes coordinated use of more
than one resource. The algorithm used for performing coallocation is implemented in the Coallocator
module (see Section 2), which makes use of the same underlying components as the Submitter that
allocates resources for single jobs.

The coallocation algorithm presented here share some characteristics with an algorithm by Mateescu
[46]. Both these algorithms perform coallocation in anon-line style, i.e., the set of resources to
coallocate is determined (and reserved) incrementally. The algorithm described in this paper is based
on the advance reservation protocol outlined in Section 2.3and does hence assume that it not known a
priori whether a resource can be reserved at a given time or not. An alternative coallocation algorithm
suggested by Wäldrich et al. [73] can be classified asoff-line coallocation. This algorithm assumes
preknowledge of when resources are available for reservation, determines the set of resources to use
off-line, and creates reservations once a suitable set is found. A more in-depth discussion of the benefits
and drawbacks of the respective approaches can be found in Section 6.

The main algorithm for identifying and allocating suitableresources for coordinated use is described
in Section 3.2.3. The presentation of the overall algorithmis preceded by a more precise definition of
the coallocation problem in Section 3.2.1, and an overview of the main ideas used in the algorithm in
Section 3.2.2. In Section 3.2.4, the algorithm is illustrated by a coallocation scenario that highlights
some of its key features. This is followed by a discussion of some of the more intricate parts of the
algorithm.
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Figure 3. Subjobs and their possible resources viewed as a bipartite graph.

3.2.1. Problem definition

The input to the (on-line) coallocation problem is the following:

1. A set ofn ≥ 2 job requests: Jobs= {J1, J2, . . . , Jn}.
2. A set ofn resource sets, where each of then sets contains the resources that are identified to

have the capabilities required for one of the jobs:
Resources= {R1, R2, . . . , Rn}whereR1 = {R11, R12, . . . , R1m1

}, R2 = {R21, R22, . . . R2m2
},

. . . , Rn = {Rn1, Rn2, . . . , Rnmn
}, |Ri| = mi, are the resources that can be used by

J1, J2, . . . , Jn, respectively, Notably, the same resource may appear in more than oneRi.

A coallocated job requires a matching{J1 → R1j1 , J2 → R2j2 , . . . , Jn → Rnjn
}, Ji ∈ Jobs, Riji

∈
Ri, 1 ≤ i ≤ n, 1 ≤ ji ≤ mi such thatJi has a reservation at resourceRiji

.
For clarity, the coallocation algorithms are described forthe case when all reservations start

simultaneously. The algorithms can however perform any kind of job start time coordination, by
allowing individual job start time offsets from a common start time. Although currently only
implemented for computational jobs, the coallocation algorithms are general enough to allow
coallocation of other resource types, e.g., networks. The only requirement for a resource type to be
coallocated is the existence of an advance reservation mechanism that supports the protocol described
in Section 2.3. The termjob in the following descriptions can hence be read asrequest for resource
(that supports advance reservations).

The jobs and resources forming the input to the coallocationproblem can be expressed as a bipartite
graph as illustrated in Figure 3. An edge between a job and a resource in the graph represents that the
resource has the capabilities required to execute the job. The problem of pairing jobs with resources
(by reserving the resources for the jobs) can hence be viewedas a bipartite graph matching problem. A
matched edge in the graph of jobs and resources represents that a reservation for the job is created at the
resource. In this context, a coallocated job is a complete matching of the jobs to some set of resources.
We note that some resources can execute (or hold reservations for) multiple jobs concurrently, and can
hence be matched with more than one job.
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3.2.2. Algorithm overview

In overview, the coallocation algorithm strives to find the earliest common start time for all jobs within
a job start window[Te, Tl], whereTe andTl are the earliest and latest job start time the user accepts.
The earliest common job start time is achieved by the creation of a set of simultaneously starting
reservations, one for each job. For practical reasons, a somewhat relaxed notion of simultaneous job
start is used, reducing the simultaneous start time constraint to that all jobs must start within the same
(short) period of time, expressed as a time window[te, tl]. We remark that the coallocation requires the
clocks of all resources to be synchronized in the order of[te, tl], using e.g., the Network Time Protocol
(NTP) [49]. Typical values of|[te, tl]| is in the order of a half minute to a few minutes, whereas NTP
can keep clocks synchronized within milliseconds [49]. Even though poorly synchronized clocks do
not cause the coallocation algorithm itself to fail, clock drifts delay the start of the coallocated job,
which in turn may cause batch system preemption as the total execution time of the job is increased.

The coallocation algorithm operates in iterations. Beforethe first iteration, the[te, tl] window is
aligned at the start of the larger[Te, Tl] window. In each iteration, reservations starting simultaneously,
i.e., within the start time window[te, tl], are created for each job. Alternatively, previously created
reservations are modified (moved to a new start time window),or reservations are exchanged between
jobs, all to ensure that each job gets a reservation startingwithin the [te, tl] window. The exchange of
reservations is performed to increase the number of matchedjobs when a critical resource is already
reserved for a job that may use alternative resources. If no reservation can be created for some job
during the[te, tl] window, this window is moved to a later time and the algorithmstarts a new iteration.
This sliding-window process is repeated with additional iterations either until each job has a reservation
(success) or the earliest possible reservation starts too late (failure).

3.2.3. Coallocation algorithms

The main coallocation algorithm is given in Algorithm 1 and the procedure (based onaugmenting
paths) for exchanging reservations between jobs is described in Algorithm 2. Further motivation for
the most important steps of the algorithms and a discussion of their more intricate details are found in
Section 3.3.

The inputs to Algorithm 1 are the set of jobs and the sets of resources capable of executing the jobs
as defined in Section 3.2.1. Additional inputs are the[Te, Tl] window specifying the acceptable start
time interval andǫ, the maximum allowed job start time deviation.

In Step 1 of the algorithm, the currently considered start time window[te, tl] is aligned to the start of
the acceptable start time interval. This[te, tl] window is moved in each iteration of the algorithm, but
its size is alwaysǫ. The main loop, starting at Step 2 is repeated until either all jobs have a reservation
within the [te, tl] window (success) or the[te, tl] window is moved outside[Te, Tl] (failure). In Step 3
of the algorithm, an initially empty setA is created for jobs for which it is neither possible to createa
new reservation starting within[te, tl], nor to modify an existing reservation to start within this window.
Step 4 of the algorithm definesTbest, where in time to align the[te, tl] window if an additional iteration
of the main loop should be required. To ensure termination ofthe main loop in the case when all
reservation requests fail, and no reservation ever will be possible (reply number 2 in the reservation
protocol),Tbest is set to infinity. This variable is assigned a finite value in steps 12 and 18 if any failed
reservation request returns a next possible start time (reply number 3 in the reservation protocol).
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Algorithm 1 Coallocation

Require: A set ofn ≥ 2 resource requests (job requests) Jobs= {J1, J2, . . . , Jn}.
Require: A set of resources with the capabilities required to fulfill these requests. Resources=
{R1, R2, . . . , Rn} whereR1 = {R11, R12, . . . , R1m1

}, R2 = {R21, R22, . . . R2m2
}, . . . Rn =

{Rn1, Rn2, . . . , Rnmn
} are the resources that can be used byJ1, J2, . . . , Jn, respectively.

Require: A start time window[Te, Tl] specifying earliest and latest acceptable job start.
Require: A maximum allowed start time deviationǫ.
Ensure: A setn of simultaneously starting reservations, one for each job in Jobs.

1: Let te ← Te andtl ← Te + ǫ.
2: repeat
3: Let A← ∅ be the set of jobs for which path augmentation should be performed.
4: Let Tbest←∞ be the earliest time later than[te, tl] that some reservation can start.
5: for each jobJi ∈ Jobs,1 ≤ i ≤ n, that does not have a reservation starting within[te, tl] do
6: if Ji already has a reservation starting outside (before)[te, tl] then
7: Modify the existing reservation to start within[te, tl].
8: if Step 7 fails, or ifJi had no reservationthen
9: Create a new reservation starting within[te, tl] for Ji at somer ∈ Ri.

10: if Step 9 failsthen
11: Add Ji to A.
12: Let Tbest← min{Tbest, the earliestT next value returned from Step 9}.
13: if each jobJ ∈ A may be augmentedthen
14: for each jobJ ∈ A do
15: Find an augmenting pathP starting atJ using breadth-first search.
16: Update reservations along the pathP using Algorithm 2.
17: if Step 16 failsthen
18: Let Tbest← min{Tbest, the earliestT next value returned from Step 16}.
19: if some job inJ has no reservation starting within[te, tl] then
20: Let tl ← Tbestandte ← (tl − ǫ).
21: if te > Tl then
22: The algorithm fails.
23: until all jobs have a reservation starting within[te, tl]
24: Return the current set of reservations.

Step 5 is performed for each job that has no reservation within the[te, tl] window. This applies to
all jobs unless the window has been moved less thanǫ since the last iteration, in which case some
previously created reservations still may be valid. In Step6, it is tested whether the job already has
a reservation from a previous iteration, that starts too early for the current[te, tl] window. If so, this
reservation is modified in Step 7 by requesting a later start time (within the new[te, tl] window). The
condition in Step 8 ensures that Step 9 is only executed for jobs that have no reservation, either because
no reservation could be created in the previous iteration ofthe algorithm or because the job has lost
its reservation due to a reservation modification failure. In Step 9, a new reservation is created for the
job by first trying to reserve the resource highest ranked by the broker, and upon failure retry with
the second highest ranked resource etc., until either a reservation is created or all requests have failed.
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In case one or more reservation requests in Step 9 receive reply number 3 in the reservation protocol
(“<rejected, T next>”) the earliest of theseT next values is stored for usage in Step 12.

Step 10 tests if all reservation requests have failed for a job Ji, and if so, this job is included inA
in Step 11 to be considered for path augmentation later. Step12 updatesTbestwith the earliestT next
value obtained in Step 9, if such a value exists. In Step 13, itis tested whether augmentation can be used
for each job inA. This test is done for a jobJ by ensuring that some other jobJ ′ holds a reservation
for a resource thatJ can use. If no such other jobJ ′ exists, there is no reservation to modify to suit job
J and no augmenting path can hence be found. As the goal of the algorithm is to match all jobs, Step
13 ensures that all jobs inA are eligible for augmentation. It is of no use if the current matching can
be extended with some, but not all, unmatched jobs.

If augmentation techniques can be used according to the testin Step 13, the loop in Step 14 is
executed for each job inA. In Step 15, an augmenting path of alternating unmatched andmatched
edges, starting and ending in an unmatched edge, is found using breadth-first search. In Step 16, the
reservations (matchings) along this augmented path are updated using Algorithm 2. The path updating
algorithm includes both modifications of existing reservations and creation of new ones. If any of
these operations fail and return reservation request replynumber 3, the earliestT next value is, in
analogy with Step 9, stored for usage in Step 18. Step 17 testsif the update algorithm failed, and if
so, Step 18 updatesTbest. Step 19 tests whether the main coallocation algorithm willterminate, or if
another iteration is required. In the latter case, the[te, tl] window is updated in Step 20. In order to
move the window as little as possible, i.e., to ensure the earliest possible job start,tl is set toTbestand
te is updated accordingly. Step 21 ensures that the[te, tl] window has not moved beyond the[Te, Tl]
window. If this is the case, the algorithm fails (Step 22). Once the loop in Step 2 terminates without
failure, the coallocation algorithm is successful and the current set of reservations is returned (Step 24).

Algorithm 2 Update augmenting path

Require: An augmenting pathP = {J1, R1, . . . , Jn, Rn}, n ≥ 2 whereRi is reserved forJi+1.
Ensure: An augmenting pathP = {J1, R1, . . . , Jn, Rn}, n ≥ 2 whereRi is reserved forJi.

1: Create a new reservation forJn atRn.
2: if Step 1 failsthen
3: The algorithm fails.
4: for i← (n− 1) downto 1do
5: Modify the existing reservation at resourceRi for job Ji+1 to suit jobJi.
6: if the modification in Step 5 failsthen
7: The algorithm fails.
8: Return.

Algorithm 2 is invoked in Step 16 of Algorithm 1 to modify the reservations along an augmented
path. In Step 1 of Algorithm 2, a new reservation is created for job Jn, as the existing reservation
for this job will be used by jobJn−1. If the creation of the new reservation fails, it is of no use to
modify the existing reservations, and the algorithm fails (Step 3). The loop in Step 4 is performed
for all existing reservations. In Step 5, the reservation currently created for jobJi+1 is modified to
suit the requirements of jobJi. This modification typically includes changing the number of reserved
CPUs and the duration of the reservation, but the reservation start time is never changed. Step 6 tests
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Figure 4. Example execution of the coallocation algorithm.

if the modification fails. If so, it is not meaningful to continue the execution and Step 7 terminates the
algorithm (with failure). Once the loop in Step 4 terminateswithout error and Step 8 is reached, the
algorithm is successful.

Algorithms 1 and 2 describe the simplified coallocation scenario where all subjobs are coallocated
for a concurrent job start. The actual implemented algorithm is more general as it allows each subjob
start time to have an arbitrary offset from a common start time. This general scenario requires two
minor extensions to the described algorithms. First, all comparisons with the[te, tl] window (steps 5,
6, 7, 9, 19, and 23 of Algorithm 1) must take into account the individual subjob’s offset from this
window. Secondly, special care must be taken when exchanging reservations between subjobs, as these
need not have a common start time. For clarity, these extensions are left out from the descriptions of
algorithms 1 and 2.

3.2.4. Example execution

The following example illustrates the execution of the coallocation algorithm. Let the input to the
algorithm be Jobs= {J1, J2, J3} and Resources= {{R1, R3}, {R2, R4}, {R3, R4}}. This scenario
corresponds to the bipartite graph shown in Figure 3. Let thestart time window[Te, Tl] be[0900, 0920]
(20 minutes) and let the maximum allowed start time deviation, ǫ, be 5 minutes. Notably, we have for
clarity kept[Te, Tl] rather small. In practice, its size may vary from a few minutes to several hours or
even days. The sizeǫ of the small start time window[te, tl] is however typically only a few minutes.
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16 E. ELMROTH AND J. TORDSSON

In the first iteration of the algorithm, a reservation is created forJ1 atR1 and one forJ2 atR2. These
reservations are shown as solid triangles in Figure 4(a). However, no reservation starting early enough
can be created forJ3. The earliest possible reservation (atR4), which would start a few minutes too
late, is shown as a dashed triangle in Figure 4(a) . Path augmentation techniques cannot be used forJ3

as there is no other job holding a reservation for a resource thatJ3 can use, i.e., neitherJ1 norJ2 has
a reservation atR3 or R4, which are the only resources that meet the requirements ofJ3.

In next iteration, the[te, tl] window is moved and aligned with the earliest possible reservation start
for J3. A reservation forJ3 is created atR4. The reservation forJ2 atR2 is modified to start within the
new [te, tl] window. These two reservations are represented by the solidtriangles in Figure 4(b). The
reservation forJ1 atR1 can however not be moved to within[te, tl], and is hence implicitly cancelled.
Furthermore, no new reservation can be created forJ1 within [te, tl]. Path augmentation techniques
cannot be used to create an additional reservation as neither J2 norJ3 has reserved one ofR1 andR3.
The earliest possible reservation forJ1 (atR1) is shown as a dashed triangle in Figure 4(b).

In the next iteration,tl is set to the earliest possible start ofJ1 and te is adjusted accordingly.
The reservation that in the previous iteration was possiblefor J1 at R1 is created, illustrated by a
solid triangle in Figure 4(c). The reservation forJ3 at R4 already starts within[te, tl] and requires
no modification. For jobJ2 the existing reservation cannot be moved to within[te, tl] and is hence
cancelled. It is furthermore not possible to create a new reservation forJ2. The path augmentation
algorithm can however be applied. Starting fromJ2 in the bipartite graph in Figure 3, a breadth-first
search is performed according to Step 15 of Algorithm 1. Thissearch finds a resource thatJ2 can use
(R4), which is currently reserved by another job (J3), which in turn can use another resource (R3). The
resulting augmenting path is{J2, R4, J3, R3}. Next, Algorithm 2 is invoked with this path as input.
The algorithm creates a new reservation forJ3 at R3, and modifies the existing reservation forJ3 (at
R4) to suitJ2. The resulting reservations (forJ2 andJ3) are shown as solid triangles in Figure 4(c).
Since each job has a reservation starting within[te, tl] (and inside[Te, Tl]), the coallocation algorithm
terminates and the coallocation request is successful.

3.3. Discussion of Quality of Service issues

We here discuss advance reservations and the properties of the bipartite matching algorithm in more
detail and also motivate the usage of path augmentation techniques.

3.3.1. Regarding the use of advance reservations and coallocation

It should be remarked that how and to what extent advance reservations should be used, partly depends
on the Grid environment. The current algorithms are designed for use in medium-sized Grids, and
with usage patterns where the majority of the jobs do not request advance reservations. In Grids where
hundreds or even thousands of resources are suitable candidates for a user’s job requests, the algorithms
requesting advance reservations should be modified to first select a subset of the resources before
requesting the reservations. In order to allow a majority ofthe Grid jobs to make use of advance
reservations, it is probably necessary to have support for,and make effective usage of, the “flexible”
flag (see Section 2.3) in all local schedulers, in order to maintain an efficient utilization of the resources.
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3.3.2. Modifications of advance reservations

The coallocation algorithm modifies existing reservationsas if the modify operation is atomic, even
though the current implementation actually first releases the existing reservation and then creates a
new one. The reason for this is that the Maui scheduler [47], one of the few batch system schedulers
that support advance reservations, has no mechanism to modify an existing reservation. This means
that the modification operation, in unfortunate situations, may lose the original reservation even if the
new one could not be created. This occurs when the scheduler decides to use the released capacity for
some other job before it can be reclaimed.

We also remark that the WS-Agreement specification [5] does not include an operation for
renegotiation of an existing agreement (reservation). A protocol for managing advance reservations,
including atomic modifications of existing reservations isdiscussed in [61]. To the best of our
knowledge, there exists neither an implementation of this protocol nor a local scheduler with the
reservation mechanisms required to implement it. Atomic reservation modifications may very well be
included in future versions of the WS-Agreement standard (or defined by a higher level service, such
as the currently immature WS-AgreementNegotiation [6]) and supported by new releases of batch
system schedulers. Should this happen, the coallocation algorithm itself needs no modification, and it
furthermore becomes more efficient, as failed reservation modifications causes extra iterations of the
algorithm to be executed.

3.3.3. Properties of the bipartite matching algorithm

In the bipartite graph representing jobs and resources, an edge between a job and a resource represents
that the resource has the capabilities required to execute the job. We can however not know a priori
that the resource actually can be reserved for the job at the time requested. Seen from a graph
theoretic perspective, it is not certain that the edges in this bipartite graph actually exist (e.g., at a
particular time) before we try to use them in a matching. Given the above facts, it is not possible
to completely solve the coallocation problem using a bipartite matching algorithm that precalculates
the matching off-line. Therefore, we use a matching algorithm that (on-line) gradually increases the
size of the current matching (initially containing no matched edges at all), and use path augmentation
techniques to resolve conflicts. A more in-depth discussionof the difference between on-line and off-
line coallocation algorithms is found in Section 6.

3.3.4. Path augmentation considerations

Path augmentation techniques are used when the coallocation algorithm fails to reserve a resource for
a job, but it is possible that this situation can be solved by moving some other reservation (for the same
coallocated job) to another resource. In order to reduce theneed for path augmentation, we strive to
allocate resources in decreasing order of the “size” of their requirements, with the size defined in terms
of the requested number of CPUs, required memory, and requested job runtime. We however remark
that it is in the general case not possible to perfectly definesuch an ordering. For example, if one job
requires two hours run time and one GB memory, and another only one hour but requires two GBs
memory, it is not obvious which of these jobs to first create a reservation for.
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The usage of breadth-first search when finding augmented paths guarantees that the shortest possible
augmented path is found. Both the initial sorting of the job list and the usage of breadth-first search
reduces the number of reservation modifications. This both improves the performance of the algorithm
as the updating of an augmented path is time-consuming (see Section 5 for more details), and reduces
the risk of failures that occur due to the non-atomicity of the update operation as described in
Section 3.3.2.

It should also be noted that the test performed in Step 13 of Algorithm 1 may cause false positives,
as it is assumed that path augmentation is possible before actually performing the advance reservations
required to augment the path. However, no false negatives are possible, i.e., if the test fails to find a job
J ′ with a reservation that can be used to by jobJ , then no augmenting path exists.

4. CONFIGURATION AND MIDDLEWARE INTEGRATION

This section discusses how to configure the job submission service, with focus on the middleware
integration points. We illustrate the integration by describing the custom components required for using
the job submission service with two Grid middlewares, GT4 and ARC. In addition, the configuration
of the WS-Agreement services is briefly covered.

Integration of a Grid middleware in the job submission service is handled through the service
configuration. This configuration determines which plugin(s) to use for each middleware integration
point. Note that the job submission service can have multiple plugins for the same task, enabling
it to simultaneously communicate with resources running different Grid middlewares. Using the
chain-of-responsibility design pattern, the plugins are tried, one after another, until one plugin
succeeds in performing the current task. The configuration file specifies which plugins to use in the
InformationFinder and the Dispatcher. This file also determines connection timeouts, the number of
threads to use in the threadpools, and default index services. The client is configured in a separate file,
allowing multiple users to share a job submission service while customizing their personal clients. The
client configuration file determines which job description translator plugins to use, and also specifies
some settings related to client-side file staging.

The configuration of the WS-Agreement services determines which DecisionMaker(s)to use. A
DecisionMaker is a plugin that grants (or denies) agreementoffers of a certain agreement type.
A DecisionMaker uses two plugin scripts to perform the actions required to create and destroy
agreements. For the advance reservation scenario, these plugin scripts interacts with the local scheduler
in order to request and release reservations.

4.1. Integration with Globus Toolkit 4

The GT4 middleware does, among other things, provide Web service interfaces for fundamental Grid
tasks such as job submission (WS-GRAM), monitoring and discovery (WS-MDS), and, data transfer
(RFT) [24]. The job submission client plugin for GT4 job description translation is straightforward.
The only issue encountered is that job input and output files are specified using the same attribute in
JSDL, whereas the GT4 job description format uses two different attributes for this.

There is no fixed information hierarchy in GT4, any type of information can be propagated between
a pair of WS-MDSindex services. A basic setup (also used in our test environment) is to have one
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index service per cluster, publishing information about the cluster, and one additional index service
that aggregates information from the other ones. Thus, the typical GT4 information hierarchy does
not really fit the infrastructure envisioned by the job submission service, with one or more index
servers storing (only) contact information to clusters. However, by using an XPath query in the GT4
ResourceFinder plugin, it is possible to limit the information returned from the top level index service
to cluster contact information only. This list of cluster addresses is sent to the GT4 InformationFetcher
plugin, that (also using XPath) queries each resource in more detail. Both these plugins communicate
with the Grid resource using Web service invocations. The InformationConverter plugin for GT4 is
trivial as resource information in GT4 is described in the GLUE format.

The GT4 Dispatcher plugin converts the job description fromJSDL to the job description format
used in GT4 and next sends the job request to the GT4 WS-GRAM service running on the resource by
invoking the job request operation of the service. This procedure becomes more complicated if the Grid
resource is to stage (non-local) job input files, in which case the user’s credentials must be delegated
from the GT4 Dispatcher plugin to the resource.

The WS-Agreement services themselves require no middleware-specific configuration. However, job
requests that claim a reservation must be authorized, i.e.,it must be established that the user requesting
the job is the same as the one that previously created the reservation. This is done by comparing the
distinguish names in the X.509 certificate credentials usedfor the two tasks. In GT4, an Axis request
flow chain that intercepts the job request performs this test. Authorization is hence performed in two
steps, first by the custom Axis flow chain, and then by the GT4 gridmap authorization mechanism used
by WS-GRAM.

4.2. Integration with ARC

The ARC middleware is based on Globus Toolkit 2 (GT2), but replaces some GT2 components,
including the GRAM which is substituted by aGridFTP serverthat accepts job requests and aGrid
Managerthat manages accepted Grid jobs through their execution.

The information system in ARC uses GT2 tools, and is organized in a hierarchy where a GIIS
server keeps a list of available GRIS (and GIIS) servers, which periodically announce themselves to
the GIIS. Another configuration, used in some ARC installations, is to aggregate all GRIS information
in the GIIS. The ARC ResourceFinder and InformationFetcherplugins use LDAP to retrieve lists
of available resources and detailed resource information,from the GIIS and GRIS respectively. The
resource information is described using an ARC-specific schema, and must hence be translated to the
GLUE format by the ARC InformationConverter plugin. The ARCand GLUE information models are
not fully compatible, but most attributes relevant to resource brokering, e.g., hardware configuration
and current load, can be translated between the two models.

The ARC Dispatcher plugins converts the JSDL job description to the GT2 RSL-style format used
in ARC and sends the resulting job description to the ARC GridFTP server, i.e., the Dispatcher plugin
is a GridFTP client.

Authorization of job requests claiming a reservation is done similarly as in GT4 (by comparing
distinguished names). A plugin structure in the ARC Grid Manager enables interception of the job
request at a few predefined steps. One such plugin performs the reservation authorization before the
job is sent to the local batch queue.
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5. PERFORMANCE EVALUATION

The following section evaluates the performance of the job submission service, with an exclusive focus
on the service itself, i.e., evaluating how it performs under varying configurations and load.

The resource selection algorithms described in this contribution are based on an estimate of the
time required to execute a job in the Grid, either the TTS or the TTD. The accuracy of the algorithms
varies with the accuracy of the predictions, which in turn depends both on the mechanisms available,
e.g., advance reservations; and input provided by the user,e.g., relevant benchmarks and file transfer
time estimates. Given good enough user input and predictionmechanisms as described above, the
resource selection algorithms can give arbitrarily good predictions. For this reason, no evaluation of
their performance is included in the paper.

There are several factors that affect the performance of thejob submission service, including the
Grid middleware deployed on the resources, the number of resources, the local scheduler used by
the resources, and whether advance reservations are used ornot. In order to evaluate these factors, the
performance analysis includes measuring, for varying load, (1) the response time, i.e., the time required
for a client to submit a job, and (2) the service throughput, i.e., the number of jobs submitted per minute
by the service. In addition, the performance of the coallocation algorithm is analyzed.

5.1. Background and test setup

The performance of the job submission service is evaluated using the DiPerF framework [13]. DiPerF
can be used to test various aspects of service performance, including throughput, load and response
time. A DiPerF test environment consists of onecontroller host, coordinating and collecting output
from a set oftesters(clients). All testers send requests to the service to be tested and report the measured
response times back to the controller. Each tester runs for afixed period of time, and invokes the service
as many times it can (in this case, submits as many jobs as possible) during the test period.

The response time measured by a tester includes the time required to establish secure connections to
the job submission service, to delegate the user’s credential to the service, and to submit the job. The
response time also includes time for service side tasks suchas broker job processing and interactions
with index servers and resources. The throughput is computed in DiPerF by counting the number of
requests served during each minute. This calculation is done off-line when all testers have finished
executing.

GT4 clients developed using Java have an initial overhead inthe order of seconds due to the large
number of libraries loaded upon start up, affecting the performance of the first job submitted by each
client. As a result, a simple request-response Web service call takes approximately five seconds using
a Java client (subsequent calls from the same client are however much faster), whereas a similar call
takes less than half a second for a corresponding C client. Toovercome this obstacle, a basic C job
submission client is used in the performance tests.

The evaluation is performed with resources running either GT4 or ARC. In order to better understand
how eventual bottlenecks in the Grid middleware effect the performance of the job submission service,
each test uses a single Grid middleware on the resource side.We expect cross-middleware submission
and resource brokering in mixed middleware Grids to be slightly slower, as the broker encounters the
union of all bottlenecks in the used middlewares in such a scenario.
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The performance measurements have been performed in a test environment with four small clusters,
each equipped with a 2 GHz AMD Opteron CPU and 2 GB memory, Ubuntu Linux 2.6, Maui 3.2.6
and Torque 2.1.2. Each cluster is configured with 8 (virtual)backend nodes used by the Torque batch
system. The clusters use either GT 4.0.3 or ARC 0.5.56 as Gridmiddleware. For both middleware
configurations, one of the clusters also serve as index server for itself and the other clusters. To enable
advance reservations, the WS-Agreement services are deployed on each of the four clusters.

Two sets of campus computer laboratories were used as the DiPerF testers (clients), all computers
running Debian Linux 3.1. Sixteen of these computers are equipped with AMD Athlon 64 2 GHz dual
core CPUs and 2 GB memory, the other sixteen have 2.8 GHz Pentium 4 CPUs with 1 GB memory
each. The job submission service itself was deployed on a computer with a 2 GHz AMD Opteron CPU
and 2 GB memory, running Debian Linux 3.1. All machines in thetest environment are interconnected
with a 100 Mbit/s network.

The job submission service was configured with a timeout of 15seconds for all interactions with the
information systems of the resources. The Grid middlewaresgenerated updated resource information
every 60 seconds and the information gathered by the broker was hence cached for this amount of time.
Queries about resource information and negotiations of advance reservations were both performed
using four parallel threads.

The use of a relatively small but controlled environment fortests, gives the advantage that we know
that there is no background load on the clusters. Hence, the performance of the job submission service
can be significantly more accurately analyzed than it could have been if evaluated in a large production
Grid (e.g, as performed in [18]).

5.2. Performance results

Tests have been performed with the number of resources varying between one and four, and the number
of clients being{3, 5, 7, 10, 15}. Each test starts with one client, and then another client isadded every
30th second until the selected number of clients is reached.Each client executes for 15 minutes and
submits trivial/bin/true jobs, that do not require any input or output file staging. Hence, also tests
with large number of clients include time periods where smaller number of clients are used. The reason
for this strategy is to better identify the relation betweenservice load and throughput or response time.

In the following presentation, the performance results aregrouped by the Grid middleware used, i.e.,
GT4 and ARC. For each middleware, results are presented separately for tests using the Torque “PBS”
scheduler and POSIX “Fork” as execution backends.

Our results show that the performance varies very little with the number of Grid resources used.
Resource discovery takes longer when more resources are used, but the load distribution of the jobs
across more machines does, on the other hand, give faster response time in the dispatch step. These two
factors seem to compensate each other rather well for one to four resources. Because of this, we here
only present results obtained using four resources. From our tests, we also find it sufficient to present
results for tests using 3, 7, and 15 clients.

For tests using the GT4 middleware, Figure 5 shows how the service throughput (lines marked with
“×”) and response time for the job requests (lines without “×”) vary during the tests. The three figures
present, from top to bottom, the results obtained using 3, 7,and 15 clients. Solid and dashed lines are
used to represent results obtained using Fork and PBS, respectively. Notably, the left-hand scales in the
figures denote response times and the right-hand ones throughputs.

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2009;00:1–38
Prepared usingcpeauth.cls



22 E. ELMROTH AND J. TORDSSON

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  2  4  6  8  10  12  14  16
 0

 20

 40

 60

 80

 100

 120

 140

R
es

po
ns

e 
tim

e 
(s

)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/m
in

)

Time (min)

Performance GT4, 3 clients 4 resources

Response time (Fork)
Throughput (Fork)

Response time (PBS)
Throughput (PBS)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16  18
 0

 50

 100

 150

 200

 250

 300

R
es

po
ns

e 
tim

e 
(s

)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/m
in

)

Time (min)

Performance GT4, 7 clients 4 resources

Response time (Fork)
Throughput (Fork)

Response time (PBS)
Throughput (PBS)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25
 0

 50

 100

 150

 200

 250

R
es

po
ns

e 
tim

e 
(s

)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/m
in

)

Time (min)

Performance GT4, 15 clients 4 resources

Response time (Fork)
Throughput (Fork)

Response time (PBS)
Throughput (PBS)

Figure 5. Performance results for GT4 using 4 resources.
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In the results obtained using three clients (the topmost diagram in Figure 5), we do not see any
particular trend in the results as the number of clients are increased from one to three (recall that in
each test, a new client is started every 30 seconds), which indicates that the service can handle this load
without problems. Notably, the response time for individual jobs is as low as down to under one second
at best. As the number of clients increases to 7 in the middle graph, we observe that both the response
time and the throughput increase as more clients are being started, until it reaches a maximum and
then starts to decrease as the clients finish executing. The increase in response time indicate that some
bottleneck has been found. As the throughput still increases, our interpretation is that the increase in
response time is due to increased waiting for resources to respond, and not due to too high load for the
job submission service itself.

We remark that this is the test for which we see the highest throughput for GT4, with a maximum
of just over 250 jobs per minute for Fork and only slightly lower with PBS. Response times for Fork
vary between one and two seconds, whereas they fluctuate up tothree seconds for PBS. In comparison
to the results for three clients, we see that the throughput doubles for Fork, whereas the increase in
throughput for PBS is somewhat lower. When further increasing the load to 15 clients, we see that the
throughput from the tests with 7 clients is maintained also for heavy load, even though we do not reach
the same peak result. In summary, the tests with GT4 resources show that the job submission service
is capable of handling throughput just over 250 jobs per minute and to achieve individual job response
times down to under one second.

For tests using the ARC middleware, Figure 6 shows the performance using four resources and 3, 7,
and 15 clients, respectively. Here, the throughput increases from 60-70 jobs/minute with three clients
(the top diagram in Figure 6) to approximately 170 jobs per minute with 7 clients (the middle plot
in Figure 6), while keeping response times between two and three seconds per submitted job. When
further increasing the load to 15 clients, we see in the bottom diagram in Figure 6 a slight increase
in throughput, to approximately 200 jobs per minute, whereas the response time increases as well, to
approximately four seconds. This suggests that the maximumthroughput is around 200 jobs per minute
when using ARC.

Notably, in our tests PBS and Fork perform reasonably equal for both middlewares and for
all combinations of different numbers of clients and resources, even though we see slightly more
fluctuating response times using PBS than with Fork. However, if tests are done with jobs that require
substantial computational capacity, the performance obtained using Fork will substantially decrease.
For PBS, we expect the results to be similar also for more demanding jobs, if the clusters make use of
real (and not virtual) back-end nodes.

The slightly more fluctuating response times obtained with PBS can also be explained by the fact
that the information systems used by ARC and GT4 both performextensive parsing of PBS log files to
determine the current load on the resource. During significant load, this may occasionally lead to slow
response times for resource information queries. This doesin turn result in slower response times for
jobs for which the broker can not use cached resource information.

During the period of constant load (while all clients execute), we see a slight decrease in throughput
over time for both ARC and GT4. This decrease is most clearly visible in the tests using 7 and 15
clients. We initially suspected that this performance decline was due to scalability issues in the GT4
delegation service, investigated in [29]. During our performance tests of the delegation service (with a
test setup similar to the job submission service tests) we observed a performance decline during heavy
load. However, as the throughput of the delegation service is around three times higher than that of the
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Figure 6. Performance results for ARC using 4 resources.
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job submission service for similar loads, this performancedecline is negligible. We also noted that the
delegation service response time typically is between 0.3 and 0.8 seconds. This is a substantial part of
the job submission time, especially considering that the job submission service can submit a job in less
than one second, credential delegation included.

5.2.1. Advance reservations

In order to evaluate the impact of advance reservations on the job submission service performance,
tests with jobs requesting reservations are compared to thecorresponding tests performed without
use of reservations. The performance of the job submission service for jobs using reservations are, of
course, expected to be lower. A job submitted with an advancereservation requires two additional round
trips (get agreement template, create agreement) during brokering and one more round trip during job
dispatch (confirm temporary reservation). When each job submission request takes longer to serve,
fewer jobs can utilize cached resource information before the cache expires, which further decreases
performance.

As previous research has demonstrated [22, 66], the usage ofadvance reservations imposes a
performance penalty, and does typically reduce batch system utilization dramatically already when
only 20 percent of all jobs use advance reservations. Our resource brokering algorithms described in
Section 3.1, are able to create reservations for all resources of interest (or a subset thereof), and upon
job submission release all reservations but the one for the selected resource. However, as long as batch
systems do not provide a lightweight reservation mechanism, we argue that this feature should be used
only when needed.

In order to investigate the performance impact of the advance reservation mechanism, we consider
a scenario where exactly one reservation is created for eachsubmitted job. The performance results
for GT4 with reservations (dashed lines) is compared to corresponding results without reservations
(solid lines) in Figure 7. We note that the throughput (marked with “×”) with reservations is about
40 submitted jobs per minute for all three tests. In these tests, the response time increases from about
five seconds (3 clients), to ten seconds (7 clients), and finally to around 20 seconds (15 clients). In
comparison, for jobs submitted without reservations, the throughput increases from around 100 jobs
per minute (3 clients), to around 210 jobs per minute (7 clients), and finally increases a bit more to
around 220 jobs per minute when 15 clients are used. The response times for these jobs are around two
seconds (both 3 and 7 clients) and three seconds for 15 clients.

The performance results for tests of jobs with advance reservations submitted to ARC are very
similar to the corresponding tests with GT4, and graphs for these tests are hence omitted. For jobs
with reservations submitted to ARC, the throughput is around 30 jobs per minute for 3 clients, and 40
jobs per minute for 7 and 15 clients. The response time variesfrom around six seconds for 3 clients,
to ten seconds for 7 clients and 20 seconds for 15 clients. In the reference tests where no jobs used
reservations, the throughput is around 55 jobs per minute for 3 clients, 140 jobs per minute with 7
clients and 160 jobs per minute with 15 clients. In these tests, the response time is around three seconds
for both 3 and 7 clients, and around four seconds for 15 clients.

From the results for GT4 and ARC, we conclude that for jobs submitted with advance reservations,
the job submission service and the WSAG services can serve around 40 submitted jobs per minute and
that the average response time for these jobs is (at best) below five seconds.
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Figure 7. Performance results for advance reservations using GT4 and 1 resource.
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5.2.2. Coallocation

The most time consuming parts of Algorithm 1 are creation of new reservations and modifications
of existing ones, i.e., steps 9 and 7. The update procedure for augmenting paths (Algorithm 2)
performs a series of reservation modifications and it follows from the design that its execution time
increases linearly with the length of the augmenting path. The overall performance of the coallocation
algorithm thus depends on how often these three mechanisms (create new reservation, modify existing
reservation, path augmentation) are used. These numbers increase with the number of iterations of the
algorithm that are executed. The number of iterations in turn depends on multiple factors, including
the number of requested jobs, how many resources that are capable of executing each job, the degree
of overlap in these sets of resources, the current load of each resource (most notably, the fragmentation
of the backfill windows of the local schedulers), etc.

We have performed a series of tests to demonstrate the robustness of the coallocation algorithm, and
illustrate how it performs for a given combination of coallocation request type and Grid infrastructure
configuration. The results from these tests increase the understanding of the characteristics of the
algorithm, but cannot, due to the intrinsic performance dependencies discussed above, be generalized
beyond the particular configuration used in the tests.

The coallocation tests are performed in the test environment described in Section 5.1. In each test,
background loads are created on all machines, a coallocation request is issued, and results from the
coallocation algorithm execution are gathered. In all tests, four jobs are requested to be coallocated
over four machines. The length of the job start time window isfour hours, the maximum allowed job
start time deviation (ǫ) is five minutes and the requested length of each job is one hour. Each machine
has a 20 minutes long reservation as background load that is randomly placed within the four hour job
start time window. Notably, this setup means that it is not always possible, even in theory, to fulfill the
coallocation request.

As the machines in the test environment are identical, the path augmentation procedure is per default
never required for successful coallocation. For this reason, the tests are divided into two sets: tests
where path augmentation is not required, and tests where heterogeneity in the test environment is
simulated to necessitate path augmentation. We refer to these ashomogeneous testsandheterogeneous
tests, respectively. In the homogeneous tests, each of the four requested jobs can make use of all four
resources. The same hold for three of the jobs in the heterogeneous tests, whereas the fourth job in
these tests can execute on only one of the machines.

5.2.2.1. Homogeneous tests.A summary of 1000 homogeneous tests, divided into successful
and failed coallocation requests, is shown in Table I. This table shows the average, minimum and
maximum value for the following metrics: execution time of the coallocation algorithm, the number
of iterations performed, and the usage frequency of the three most time consuming operations (create
new reservation, update existing reservation, and path augmentation). The table is divided into results
for successful invocations of the coallocation algorithm and results for cases where the algorithm does
not manage to obtain a coallocation.

Table I shows that the successful coallocation attempts arefaster to execute than the failed ones. This
is due to the fact that the algorithm stops when a coallocation is found, whereas the failed attempts have
to scan the complete job start time window before concludingthat no coallocation is possible. From
the average values of the execution time and the operation counts, we conclude that the coallocation
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Table I. Results for 1000 homogeneous tests of the coallocation algorithm.
The term AR denotes advance reservation.

Successful coallocations (86.0%)

average min max
execution time (s) 15.02 3.30 38.65
# iterations 3.02 1 7
# new ARs 4.79 4 10
# failed new ARs 19.89 0 59
# modified ARs 4.09 0 12
# failed modified ARs 0.79 0 6
# path augmentations 0 0 0
# failed path augmentations 2.01 0 6

Failed coallocations (14.0%)

average min max
execution time (s) 27.91 13.77 39.92
# iterations 5.04 4 7
# new ARs 6.64 2 10
# failed new ARs 40.64 24 59
# modified ARs 6.71 3 11
# failed modified ARs 3.75 0 7
# path augmentations 0 0 0
# failed path augmentations 5.02 1 7

algorithm is able to perform slightly more than two advance reservation operations (create or modify)
per second. This observation takes into account that a modify request performs two service invocations
(removal of an old reservation and creation of a new one, see Section 3.3.2), and holds both for the
failed and the successful coallocation attempts.

The successful attempts range from trivial solutions whereall jobs are reserved in the first iteration
and in less than four seconds, to complex scenarios where up to seven iterations with more than 60
advance reservation operations performed during 40 seconds are required to coallocate the job. The
failed attempts search through the whole coallocation window, and hence show much less deviations
in performance. The observable deviations are due to differences in the distribution of the background
load.

5.2.2.2. Heterogeneous tests.A summary of 1000 heterogeneous tests is shown in Table II. This
table has both the same division into successful and failed coallocation attempts and the same metrics
as Table I. We note that also for the heterogeneous tests, thesuccessful attempts are faster and the
coallocation algorithm carries out just above two advance reservation operations per second. It follows
from the construction of the coallocation algorithm that, as only one job in the heterogeneous tests
may require path augmentation, the maximum number of successful path augmentations is one. For the
successful attempts, the average number of successful pathaugmentations is 0.81. The reason for this
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Table II. Results for 1000 heterogeneous tests of the coallocation algorithm.
The term AR denotes advance reservation.

Successful coallocations (66.3%)

average min max
execution time (s) 9.21 3.32 22.56
# iterations 1.97 1 4
# new ARs 3.65 3 7
# failed new ARs 7.44 0 27
# modified ARs 1.82 0 7
# failed modified ARs 0.46 0 4
# path augmentations 0.81 0 1
# failed path augmentations 0.67 0 3

Failed coallocations (33.7%)

average min max
execution time (s) 15.71 7.62 23.40
# iterations 3.30 2 4
# new ARs 5.42 1 8
# failed new ARs 16.32 3 32
# modified ARs 3.28 0 7
# failed modified ARs 2.77 0 5
# path augmentations 0 0 0
# failed path augmentations 2.59 0 4

number being less than one is that in some tests, none of the first three jobs reserve the only resource
that the forth job can use, and path augmentation is hence notrequired. Failed path augmentations
occur, when an augmenting path is found and augmentation hence appears possible (Step 15 of
Algorithm 1), but a background load job prevents the new reservation (Step 1 of Algorithm 2) from
being created. We note that all failed coallocation attempts have in common that no path augmentation
operation is successful.

Although results for the homogeneous and the heterogeneoustests are not directly comparable with
each other due to the intrinsic performance dependencies ofthe coallocation algorithm, we observe
that, as the number of potential matchings between jobs and resources are fewer in the heterogeneous
tests, these tests are faster to execute than the homogeneous ones.

Tables I and II list the execution time of the coallocation procedure as described in Algorithm 1. In
a complete job coallocation scenario, tasks such as job submission service invocation, job request
validation, resource discovery and information retrievalmust also be performed. These tasks are
similar to the initial steps executed during submission of individual jobs and, as discussed earlier,
take approximately one to three seconds to execute if new Grid resource information must be retrieved
and a less than a tenth of that time if cached resource information is available.

In addition to the above performance observations, the coallocation evaluation also demonstrates that
the implementation of the coallocation algorithm is robust, as no errors (except for failed coallocation
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attempts, that are not errors per se) occurred during the 2000 tests, that had a total execution time of
more than seven hours.

6. RELATED WORK

We have identified a number of contributions related to our work on Grid resource brokering, including
performance prediction for Grid jobs, the usage of advance reservations and coallocation in Grids, and
Grid interoperability efforts. In the following, we make a brief review of these.

6.1. General resource brokering

The composable ICENI Grid scheduling architecture is presented in [77], together with a performance
comparison between four Grid scheduling algorithms; random, simulated annealing, best ofn random,
and a game theoretic approach. The eNANOS Grid resource broker [60] supports submission and
monitoring of Grid jobs. Features include usage of the GLUE information model [4] and a mechanism
where users can control the resource selection by weightingthe importance of attributes such as CPU
frequency and RAM size.

There are a number of projects that investigate market-based resource brokering approaches. These
approaches may typically have a starting point in barteringagreements, in pre-allocations of artificial
Grid credits or be based on real economical compensation. In such a Grid marketplace, resources
can be sold either at fixed or dynamic prices, e.g., in a strivefor a supply and demand equilibrium
[75]. Claimed advantages of the economic scheduling paradigm include load balancing and increased
resource utilization, both a result of good balance betweensupply and demand for resources [75].
Examples of work on economic brokering include [10, 12, 20, 52]. An alternative to market-based
economies is Grid-wide fairshare scheduling [16] that can be viewed as a planned economy.

6.2. Performance prediction

One method for selecting the submission target for a computational job is to predict the performance
of the job on each resource of interest. These predictions can include the job start time as well as the
job execution time. Techniques for such predictions include (i) applying statistical models to previous
executions [2, 38, 43, 65, 70] and (ii), heuristics based on job and resource characteristics [34, 44, 74].

In our previous work [19], we use a hybrid approach. The performance characteristics of an
application is classified using computer benchmarks relevant for the application, as in method (ii).
When predicting the performance for a Grid resource, the benchmark results for this machine is
compared with those of a reference machine where the application has executed previously. This
comparison with earlier execution of the application reuses techniques from method (i).

A Grid application performance model similar to TTD is described by Ali et al. [1]. In this work,
application execution time and batch queue waiting time areboth predicted using method (i), whereas
file transfer times are estimated from file size and bandwidthinformation.
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6.3. Interoperability efforts

There are several resource brokering projects which targetresources running different Grid
middlewares, e.g., Gridbus [72], which can schedule jobs onresources running, e.g., Globus [30],
UNICORE [68], and Condor [45]. The GridWay project [36] targets resources running both protocol
oriented (GT2) and service-based versions (GT4) of the Globus toolkit as well as LCG [40]. One
difference between our contribution and these projects is that we target the use of any Grid middleware
both on the resource and client side by allowing clients to express their jobs in the native job description
language of their middleware (or directly in JSDL), whereasthe respective job description languages
of Gridbus and GridWay are fixed on the client side.

In the contribution by Pierantoni et al. [57], Metagrid Services are used as a bridge between users
and different Grids. In this architecture, condensed graphs are used to express workflows of jobs.
Interoperability is demonstrated among WebCom (a workflow engine), GT4, and LCG2 [57]. Similar
ideas are explored by Kertész et al. [39], who define an architecture for a meta-broker and a language
for communicating broker requirements in addition to job requirements. Instead of performing resource
selection, such a meta-broker selects the best Grid resource broker and hence creates a hierarchy of
Grid brokers. Common features in our contribution and the work by Kertész et al. is the use of JSDL
and a plugin-based architecture for interaction with specific middlewares. The UniGrids project [71]
specially targets interoperability between the Globus [30] and UNICORE [68] middlewares. The Grid
Interoperability Now (GIN) [31] initiative focuses on establishing islands of interoperation between
existing Grid resources, and growing those islands to achieve an increasing set of interoperable Grids.
The goal of the Open Middleware Infrastructure Institute (OMII) Europe [54] is to make components
for job management, e.g., the OGSA Basic Execution Service [33]; data integration; and accounting
available for multiple platforms, including gLite [14], Globus [24], and UNICORE [68].

There are some projects that have adopted JSDL to describe jobs, e.g., [32, 39, 50].

6.4. Advance reservations

Several contributions conclude that an advance reservation feature is required to meet QoS guarantees
in Grid environments [26, 35, 63]. Unfortunately, the support for reservations in the underlying
infrastructure is currently limited. Qu describes a methodto overcome this shortcoming by adding
a Grid advance reservation manager on top of the local scheduler(s) [58]. Advance reservations can
hence be provided regardless of whether the local schedulersupports them. This reservation approach
however requires that all job requests are passed through the Grid advance reservation manager.

The performance penalty imposed by the usage of advance reservations (typically decreased resource
utilization) has been studied [66, 67]. The work in [22] investigates how performance improvements
can be can be achieved by allowing laxity (flexibility) in advance reservation start times.

Standardization attempts include [61], which defines a protocol for management of advance
reservations. The more recent WS-Agreement [5] standard proposal defines a general architecture
that enables two parties, the agreement provider and the agreement initiator, to enter an agreement.
Although not specifically targeting advance reservations,WS-Agreement can be used to implement
these, as demonstrated e.g. by [18, 48, 73].
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6.5. Coallocation

The work by Czajkowski et.al. [11] describes a library for initiating and controlling coallocation
requests and an application library for synchronization. By compiling an application that requires
coallocation with the application library, the subjob instances can wait for each other at a barrier prior
to commencing execution. This is typically required when setting up an MPI environment distributed
across several machines. The work in [11] does not contain any algorithm for the actual selection of
which resources to coallocate.

The Globus Architecture for Reservation and Allocation (GARA) [26] provides a programming
interface to simplify the construction of application-level coallocators. GARA can perform both
immediate reservations (allocations) and advance reservations. The system furthermore supports
several resource types, including networks, computers andstorage. The GARA project is focused on
the development of a library for coallocation agents and only outlines one possible coallocation agent
[26], targeting the allocation of two computer systems and an interconnection network at a fixed time.
The focus of our work is the implementation of a more general coallocation service able to allocate an
arbitrary number of resources. Our coallocation algorithmalso differs from GARA as our algorithm
allows for a flexible reservation start within a given interval of time.

The authors of the KOALA system [51] propose a mechanism for implementing coallocation without
using advance reservations. Their approach is to request longer execution times than required by the
jobs, and delay the start of the each job until all jobs are ready to start executing.

The work by Mateescu [46] defines an architecture for coallocation based on GT2. Mateescu’s
coallocation algorithm shares some concepts with our algorithm, including the use of a window of
acceptable job start times and iterations in which reservations for all job requests are created. One
difference is that the algorithm by Mateescu only attempts to reserve resources at a few predefined
positions in the start time window, whereas our algorithm uses information included in rejection
messages to dynamically determine where in the start time window to retry to create reservations.
Our algorithm also tries to modify existing reservations when considering a new start time window
and uses a mechanism to exchange reservations between jobs in the coallocated job, which can resolve
conflicts if more than one job requests the same resource(s).

The coallocation algorithm developed by Wäldrich et al. [73] models reservations using the WS-
Agreement framework and uses the concept of coallocation iterations. In each iteration of the algorithm
by Wäldrich et al., a list of free time slots is requested from each local scheduler. Then, an off-line
matching of the time slots with the coallocation request is performed. If the request can be mapped
onto some set of resources, reservations are requested for the selected slots.

Our coallocation algorithm has some fundamental differences from the one described by Wäldrich
et al. Our algorithm selects which resources to coallocate incrementally by matching one resource
at the time (on-line), whereas the algorithm by Wäldrich etal. is based on an off-line calculation of
which resources to use. Furthermore, our coallocation algorithm allows a user-specified fluctuation in
reservation start times, while the algorithm described in [73] uses a fixed notion of reservation start
time.

The advantages of on-line coallocation include fewer requirements on the local scheduler, as on-line
algorithms need not know all available time slots in advance. Not all local schedulers allow users to
see the current backfill-window. Furthermore, in order to beaccessible by a Grid coallocation service,
the backfill-window must be included in the information advertised by the Grid information system.
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Information retrieved from such a system can be both incomplete and outdated. Even if the backfill-
window is available and up-to-date there are possible complications. The existence of a free slot in the
backfill window is not a guarantee that a certain user may reserve this slot. Any reservation request
may, e.g., due to policy reasons be denied. Furthermore, nodes in a cluster can be heterogeneous in
the number of cores, available memory etc. This implies thatinformation about the backfill window is
not enough to (off-line) match a job with specific requirements to some time slot. These complicating
factors suggest, as argued in Section 2.3, that reservations should be created on a trial-and-error basis.
The main benefit of off-line coallocation algorithms is thatthey use fewer reservations and can hence
be seen as more efficient.

The off-line coallocation algorithms use methods resembling optimistic concurrency control for
transactions [42], whereas on-line algorithms can be described as a more pessimistic locking approach.
In the coallocation context, a lock is equivalent to a reservation. Which of the two approaches that is
better from a transaction perspective much depends on the likelihood of (resource reservation) failure.
Further work in the coallocation area should investigate the likelihood of failures and also leverage the
theory developed for distributed transactions.

The GridARS project defines a protocol for advance reservations and coallocation of computational
and network resources [69]. The protocol specifies a two-phase commit and does hence provide safe
transactions for coallocation. There is however no description of the actual algorithm used to select
and coreserve the resources.

The work described in [3] reuses the concept of barriers from[11]. In [3], the coallocator architecture
consists of a selection agent, a request agent, and a barrieragent. A model for multistage coallocation
is developed, where one coallocation service passes a subset of the coallocation request to another
coallocation service, thus forming a hierarchy of coallocators. The barrier functionality developed in
[3] also supports the synchronization of hierarchically coallocated jobs. Our work differs from [3], e.g.,
by using a flat model where a broker negotiates directly with the resources.

Deadlocks and deadlock prevention techniques in a coallocation context are described by Park et
al. [56] whereas other work [9] suggests performance improvements for these deadlock prevention
techniques. We, however, argue that the coallocation algorithm described in this paper does not cause
deadlocks. Deadlocks can only occur when the following fourconditions hold simultaneously: (i)
mutual exclusion, (ii), hold and wait, (iii) no preemption,and (iv), circular wait [37]. Our algorithm
modifies (or releases) reservations for resources wheneverit fails to acquire an additional required
resource. Condition (ii) does hence not hold and no deadlockcan occur.

7. CONCLUSIONS

We have demonstrated how a general Grid job submission service can be designed to enable all-to-
all cross-middleware job submission by leveraging emerging Grid and Web services standards and
technology. The architecture’s ability to manage different middlewares have been demonstrated by
providing plugins for GT4 and NorduGrid/ARC. Hence, job andresource requests can be specified in
any of these two input formats, and independently, the jobs can be submitted to resources running any
of these middlewares.

A modular design facilitates the customizability of the architecture, e.g., for tuning the resource
selection process to a particular set of Grid resources or for a specific resource brokering scenario. The
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current implementation includes resource selection algorithms that can make use of, but do not depend
on, rather sophisticated features for predicting individual job performance on individual resources. It
also provides support for advance resource reservations and coallocation of multiple resources.

Even though the job submission service is designed for decentralized use, i.e., typically to be used
by a single user or a small group of users, the performance analysis demonstrates that it can handle a
quite significant load. In fact, the job submission service itself appears not to be the bottleneck as times
waiting for resources becomes dominating during high load.At best, the job submission service is able
to give individual job response times below one second and toprovide a total throughput of over 250
jobs per minute.

The scientific contributions in this work are mainly in two directions. We conclude that the
current set of Grid and Web service standards enables interoperability between different Grid
middlewares, although only at a fundamental level. We have however demonstrated that cross-
middleware interoperability need not be restricted to the least common denominator of the used
middlewares. Even though middleware specific job description attributes are lost in translation, other
mechanisms, e.g., the job preferences document used in the job submission service, allow users
to express QoS requirements for their jobs. Use of proper infrastructure extensions, e.g., the WS-
Agreement services, enable such requirements to be fulfilled across different middlewares.

The other direction of contributions of this work is the proposed coallocation algorithm that allows
users to perform arbitrarily coordinated allocations of multiple resources. Even though currently only
implemented for computational resources, the algorithm isgeneral enough to be used to coordinate
use of any reservable resource, e.g., network bandwidth. The discussion of the differences between the
on-line and off-line coallocation approaches adds to the understanding of the various problems that
must be addressed in a coallocation scenario.

Future directions for this work include adaptation of the current architecture and interfaces to adhere
to more recent emerging standards such as the OGSA Basic Execution Service [33] and the OGSA
Execution Management Services [27]. An ongoing effort is the integration of the job submission service
with the LCG2/gLite middleware. As the job submission service replaces the LCG2/gLite Resource
Broker component in this scenario, the only involved components are the GT2 GRAM computing
element and the information system, the latter based on the Berkeley Database Information Index
(BDII). The translation of the Condor-styleclassadsused as job description in LCG2/gLite is rather
tedious as classads do not define a schema of valid attributesbut rather allow any value-pair expression.

We also plan to develop a library for job coordination of coallocated jobs, allowing the jobs to
coordinate themselves prior to execution at their respective cluster. This is required, e.g., for setting up
MPI environments for jobs using cross-cluster communication. This work will build on our experiences
from job coallocation and previous work, such as [11]. Basedon our earlier experiences with Grid
workflows [17], we currently investigate how the coallocation algorithm can be used to improve QoS
for job pipelines in a Grid data-flow scenario.

8. SOFTWARE AVAILABILITY

The software described in this paper is available atwww.gird.se/jss. This web page contains the
job submission service software, installation instructions and a user’s guide.
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73. O. Wäldrich, P. Wieder, and W. Ziegler. A meta-scheduling service for co-allocating arbitrary types of resources.In

R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski, editors,Parallel Processing and Applied Mathematics, LNCS
3911, pages 782–791. Springer Verlag, 2005.

74. J. Wang, L-Y. Zhang, and Y-B. Han. Client-centric adaptive scheduling for service-oriented applications.J. Comput. Sci.
and Technol., 21(4):537–546, 2006.

75. R. Wolski, J. Brevik, J. S. Plank, and T. Bryan. Grid resource allocation and control using computational economies.In
F. Berman, G. Fox, and A. Hey, editors,Grid Computing: Making The Global Infrastructure a Reality, chapter 32. John
Wiley & Sons, 2003.

76. R. Yahyapour. Considerations for resource brokerage and scheduling in Grids. In G. R. Joubert, W. E. Nagel, F. J. Peters,
and W. V. Walter, editors,Parallel Computing: Software Technology, Algorithms, Architectures and Applications, PARCO
2003, Dresden, Germany, pages 627–634, 2004.

77. L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling architecture and algorithms within the ICENI Grid
middleware. In S. Cox, editor,Proceedings of the UK e-Science All Hands Meeting, pages 5–12, 2003.

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2009;00:1–38
Prepared usingcpeauth.cls



IV





Paper IV

Designing General, Composable, and
Middleware-independent Grid Infrastructure

Tools for Multi-tiered Job Management∗

E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg
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Abstract: We propose a multi-tiered architecture for middleware-independent Grid
job management. The architecture consists of a number of services for well-defined
tasks in the job management process, offering complete user-level isolation of service
capabilities, multiple layers of abstraction, control, and fault tolerance. The middle-
ware abstraction layer comprises components for targeted job submission, job control
and resource discovery. The brokered job submission layer offers a Grid view on
resources, including functionality for resource brokering and submission of jobs to
selected resources. The reliable job submission layer includes components for fault
tolerant execution of individual jobs and groups of independent jobs, respectively. The
architecture is proposed as a composable set of tools rather than a monolithic solution,
allowing users to select the individual components of interest. The prototype presented
is implemented using the Globus Toolkit 4, integrated with the Globus Toolkit 4 and
NorduGrid/ARC middlewares and based on existing and emerging Grid standards. A
performance evaluation reveals that the overhead for resource discovery, brokering,
middleware-specific format conversions, job monitoring, fault tolerance, and manage-
ment of individual and groups of jobs is sufficiently small to motivate the use of the
framework.
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1. Introduction

We investigate designs for a standards-based, multi-tier job management
framework that facilitates application development in heterogeneous Grid en-
vironments. The work is driven by the need for job managementtools that:

offer multiple levels of functionality abstraction,

offer multiple levels of job control and fault tolerance,

are independent of, and easily integrated with, Grid middlewares,

can be used on a component-wise basis and at the same time offer a
complete framework for more advanced functionality,

An overall objective of this work is to provide understanding of how to
best develop such tools. Among architectural aspects of interest are, e.g., to
what extent job management functionalities should be separated into individ-
ual components or combined into larger, more feature-rich components, taking
into account both functionality and performance. As an integral part of the
project, we also evaluate and contribute to current Grid standardization efforts
for, e.g., data formats, interfaces and architectures. Theevaluation of our ap-
proach will in the long term lead to the establishment of a setof general design
recommendations.

Features of our prototype software include user-level isolation of service
capabilities, a wide range of job management functionalities, such as basic
submission, monitoring, and control of individual jobs; resource brokering; au-
tonomous processing; and atomic management of sets of jobs.All services are
designed to be middleware-independent with middleware integration performed
by plug-ins in lower-level components. This enables both easy integration with
different middlewares and transparent cross-middleware job submission and
control.

The design and implementation of the framework rely on emerging Grid and
Web service standards [3],[9],[2] and build on our own experiences from devel-
oping resource brokers and job submission services [6],[7],[8], Grid scheduling
support systems [5], and the SweGrid Accounting System (SGAS) [10]. The
framework is based on WSRF and implemented using the Globus Toolkit 4.

2. A Model for Multi-Tiered Job Submission Architectures

In order to provide a highly flexible and customizable architecture, a basic
design principle is to develop several small components, each designed to per-
form a single, well-defined task. Moreover, dependencies between components
are kept to a minimum, and are well-defined in order to facilitate the use of al-
ternative components. These principles are adopted with the overall idea that a
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specific middleware, or a specific user, should be able to makeuse of a subset
of the components without having to adopt an entire, monolithic system [11].

We propose to organize the various components according to the following
layered architecture.

Middleware Abstraction Layer. Similar to the hardware abstraction layer of
an operating system, the middleware abstraction layer provides the functionality
of a set of middlewares while encapsulating the details of these. This construct
allows other layers to access resources running different middlewares without
any knowledge of their actual implementation details.

Brokered Job Submission Layer. The brokered job submission layer offers
fundamental capabilities such as resource discovery, resource selection and job
submission, but without any fault tolerance mechanisms.

Reliable Job Submission Layer. The reliable job submission layer provides
a fault tolerant, reliable job submission. In this layer, individual jobs or groups
of jobs are automatically processed according to a customizable protocol, which
by default includes repeated submission and other failure handling mechanisms.

Advanced Job Submission & Application Layers. Above the three pre-
viously mentioned layers, we foresee both anadvanced job submission layer,
comprising, e.g., workflow engines, and anapplication layer, comprising , e.g.,
Grid applications, portals, problem solving environmentsand workflow clients.

3. The Grid Job Management Framework (GJMF)

Here follows a brief introduction to the GJMF, where the individual services
and their respective roles in the framework are described.

The GJMF offers a set of services which combined constitute amulti-tiered
job submission, control and management architecture. A mapping of the GJMF
architecture to the proposed layered architecture is provided in Figure 1.

All services in the GJMF offer a user-level isolation of the service capa-
bilities; a separate service component is instantiated foreach user and only
the owner of a service component is allowed to access the service capabilities.
This means that the whole architecture supports a decentralized job manage-
ment policy, and strives to optimize the performance for theindividual user.

The services in the GJMF also utilize a local call structure,using local Java
calls whenever possible for service-to-service interaction. This optimization is
only possible when the interacting services are hosted in the same container.

The GJMF supports a dynamic one-to-many relationship model, where a
higher-level service can switch between lower-level service instances to im-
prove fault tolerance and performance.
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Figure 1. GJMF components mapped to their respective architectural layers.

As a note on terminology, there are two different types of jobspecifications
used in the GJMF: abstracttaskspecifications and concretejob specifications.
Bothare specified inJSDL [3], but vary in content. A jobspecification includes a
reference to a computational resource to process the job, and therefore contains
all information required to submit the job. A task specification contains all
information required except a computational resource reference. The act of
brokering, the matching of a job specification to a computational resource, thus
transforms a task to a job.

Job Control Service (JCS). The JCS provides a functionality abstraction of
the underlying middleware(s) and offers a platform- and middleware-indepen-
dent job submission and control interface. The JCS operateson jobs and can
submit, query, stop and remove jobs. The JCS also contains customization
points for adding support for new middlewares and exposes information about
jobs it controls through WSRF resource properties, which either can be explic-
itly queried or monitored for asynchronous notifications. Note that this func-
tionality is offered regardless of underlying middleware,i.e., if a middleware
does not support event callbacks the JCS explicitly retrieves the information
required to provide the notifications. Currently, the JCS supports the GT4 and
the ARC middlewares.

Resource Selection Service (RSS). The RSS is a resource selection service
based on the OGSA Execution Management Services (OGSA EMS) [9]. The
OGSA EMS specify a resource selection architecture consisting of two services,
the Candidate Set Generator (CSG) and the Execution Planning Service (EPS).
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The purpose of the CSG is to generate a candidate set, containing machines
where the jobcanexecute, whereas the EPS determines where the jobshould
execute. Upon invocation, the EPS contacts the CSG for a listof candidate ma-
chines, reorders the list according to a previously known orexplicitly provided
set of rules and returns anexecution planto the caller.

The current OGSA EMS specification is incomplete, e.g., the interface of
the CSG is yet to be determined. Due to this, the CSG and the EPSare in
our implementation combined into one service - the RSS. The candidate set
generation is implemented by dynamical discovery of available resources using
a Grid information service, e.g., GT4 WS-MDS, and filtering of the identified
resources against the requirements in the job description.The RSS contains
a caching mechanism for Grid information, which alleviatesthe frequency of
information service queries.

Brokering & Submission Service (BSS). The BSS provides a functionality
abstraction for brokered task submission. It receives a task (i.e., an abstract job
specification) as input and retrieves an execution plan (a prioritized list of jobs)
from the RSS. Next, the BSS uses a JCS to submit the job to the most suitable
resource found in the execution plan. This process is repeated for each resource
in the execution plan until a job submission has succeeded orthe resource list
has been exhausted. A client submitting a task to the BSS receives an EPR to
a job WS-Resource in the JCS as a result. All further interaction with the job,
e.g., status queries and job control is thus performed directly against the JCS.

Task Management Service (TMS). The TMS provides a high-level service
for automated processing of individual tasks, i.e., a user submits a task to the
TMS which repeatedly sends the task to a known BSS until a resulting job
is successfully executed or a maximum number of attempts have been made.
Internally, the TMS contains a per-user job pool from which jobs are selected
for sequential submission. The TMS job pool is of a configurable, limited size
and acts as a task submission throttle. It is designed to limit both the memory
requirements for the TMS and the flow of job submissions to theJCS. The
job submission flow is also regulated via a congestion detection mechanism,
where the TMS implements an incremental back-off behavior to limit BSS load
in situations where the RSS is unable to locate any appropriate computational
resources for the task. The TMS tracks job progress via the JCS and manages a
state machine for each job, allowing it to handle failed jobsin an efficient man-
ner. The TMS also contains customization points where the default behaviors
for task selection, failure handling and state monitoring can be altered via Java
plug-ins.
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Task Group Management Service (TGMS). Like the TMS for individual
tasks, the TGMS provides an automated, reliable submissionsolution for groups
of tasks. The TGMS relies on the TMS for individual task submission and
offers a convenient way to submit groups of independent tasks. Internally, the
TGMS contains two levels of queues for each user. All task groups that contain
unprocessed tasks are placed in a task group queue. Each taskgroup queue, in
turn, contains its own task queue. Tasks are selected for submission in two steps:
first an active task group is selected, then a task from this task group is selected
for submission. By default, tasks are resubmitted until they have reached a
terminal state (i.e., succeeded or failed). A task group reaches a terminal state
once all its tasks are processed. A task group can also be suspended, either
explicitly by the user or implicitly by the service when it isno longer meaningful
to continue to process the task group, e.g., when associateduser credentials have
expired. A suspended task group must be explicitly resumed to become active.
The TGMS contains customization points for changing the default behaviors
for task selection, failure handling and state monitoring.

Client API. The Client API is an integral part of the GJMF; it provides
utility libraries and interfaces for creating tasks and task groups, translating job
descriptions, customizing service behaviors, delegatingcredentials andcontains
service-level APIs for accessing all components in the GJMF. The purpose of
the GJMF Client API is to provide easy-to-use programmable (Java) access to
all parts of the GJMF.

For further information regarding the GJMF, including design documents and
technical documentation of the services, see [12].

4. Performance Evaluation

We evaluate the performance of the TGMS and the TMS by investigating the
total cost imposed by the GJMF services compared to the totalcost of using
the native job submission mechanism of a Grid middleware, GT4 WS-GRAM
(without performing resource discovery, brokering, faultrecovery etc.).

In the reference tests with WS-GRAM, a client sequentially submits a set
of jobs using the WS-GRAM Java API, delaying the submission of a job un-
til the previous one has been successfully submitted. All jobs run the trivial
/bin/true command and are executed on the Grid resources using the POSIX
Fork mechanism. The jobs in a test are distributed evenly among the Grid re-
sources using a round-robin mechanism. The WS-GRAM tests donot include
any WS-MDS interaction. No job input or output files are transferred and no
credentials are delegated to the submitted jobs. In each test, the total wall clock
time is recorded. Tests are performed with selected numbersof jobs, ranging
from 1 to 750.
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Figure 2. GRAM and GJMF job processing performance.

The configuration of the GJMF tests is the same as for the WS-GRAM tests,
with the following additions. For the TGMS tests, user credentials are delegated
from the client to the service for each task group (each test). Delegation is also
performed only once per test in the TMS case, as all jobs in a TMS test reuse
the same delegated credentials. For both the TGMS and the TMStests, the BSS
performs resource discovery using the GT4 WS-MDS Grid information system
and caches retrieved information for 60 seconds. In the TMS and TGMS tests,
all services are co-located in the same container, to enablethe use of local Java
calls between the services, instead of (more costly) Web service invocations.

Test Environment. The test environment includes four identical 2 GHz AMD
Opteron CPU, 2 GB RAM machines, interconnected with a 100 Mbps Ethernet
network, and running Ubuntu Linux 2.6 and Globus Toolkit 4.0.3.

In all tests, one machine runs the GJMF (or the WS-GRAM client) and
the other three act as WS-GRAM/GT4 resources. For the GJMF tests, the
RSS retrieves WS-MDS information from one of the three resources, which
aggregates information about the other two.

Analysis. Figure 2 illustrates the average time required to submit andexecute
a job for different number of jobs in the test. As seen in the figure, the TGMS
offers a more efficient way to submit multiple tasks than the TMS. This is due
to the fact that the TMS client performs one Web service invocation per task
whereas the TGMS client only makes a single, albeit large, call to the TGMS.
The TGMS client requires between 13 (1 task) and 16.6 seconds(750 tasks)
to delegate credentials, invoke the Web service and get a reply. For the TMS,
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the initial Web service call takes roughly 13 seconds (as it is associated with
dynamic class-loading, initialization and delegation of credentials), additional
calls average between 0.4 and 0.6 seconds. For the GRAM client, the initial
Web service invocation takes roughly 12 seconds. The additional TMS Web
service calls quickly become the dominating factor as the number of jobs are
increased. When using Web service calls between the TGMS andthe TMS
this factor is canceled out. Conversely, when co-located with the TMS and
using local Java calls, the TGMS only suffers a negligible overhead penalty for
using the TMS for task submission. In a test with 750 jobs, theaverage job
time is roughly 0.35 seconds for WS-GRAM, and approximately0.51 and 0.57
seconds for the TGMS and TMS, respectively.

As the WS-GRAM client and the JCS use the same GT4 client libraries, the
difference between the WS-GRAM performance and that of the other services
can be used as a direct measure of the GJMF overhead.

In the test cases considered, the time required to submit a job (or a task) can
be divided into three parts.

1 The initialization time for GT4 Java clients. This includes time for class
loading and run-time environment initialization. This time may vary with
the system setup but is considered to be constant for all three test cases.

2 The time required to delegate credentials. This only applies to the GJMF
tests, not the test of WS-GRAM. Even though delegated credentials are
shared between jobs, the TMS is still slightly slower than the TGMS in
terms of credential delegation. The TMS has to retrieve the delegated
credential for each task, whereas the TGMS only retrieves the delegated
credential once per test.

3 The Web service invocation time. This factor grows with thesize of
the messages exchanged and affects the TGMS, as a description of each
individual task is included in the TGMS input message. The invocation
time is constant for the TMS and WS-GRAM tests, as these services
exchange fixed size messages.

Summary. When co-hosted in the same container, the GJMF services allots
an overhead of roughly 0.2 seconds per task for large task groups (containing
750 tasks or more). The main part of this overhead is associated with Java class
loading, delegation of credentials and initial Web serviceinvocation. These
factors result in larger average overheads for smaller taskgroups. For task
groups containing 5 tasks, the average overhead per task is less than 1 second,
and less than 0.5 seconds for 15 tasks. It should also be notedthat, as jobs are
submitted sequentially but executed in parallel, the submission time (including
the GJMF overhead), is masked by the job execution time. Therefore, when
using real world applications with longer job durations than those in the tests,
the impact of the GJMF overhead is reduced.
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5. Related Work

We have identified a number of contributions that relate to this project in
different ways. For example, the Gridbus [16] middleware includes a lay-
ered architecture for platform-independent Grid job management; the GridWay
Metascheduler [13] offers reliable and autonomous execution of jobs; the Grid-
Lab Grid Application Toolkit [1] provides a set of services to simplify Grid
application development; GridSAM [15] offers a Web service-based job sub-
mission pipeline which provides middleware abstraction and uses JSDL job
descriptions; P-GRADE [14] provides reliable, fault-tolerant parallel program
execution on the grid; and GEMLCA [4] offers a layered architecture for run-
ning legacy applications through grid services. These contributions all include
features which partially overlap the functionality available in the GJMF. How-
ever, our work distinguishes itself from these contributions by, in the same
software, providing i) a composable service-based solution, ii) multiple lev-
els of abstraction, iii) middleware-interoperability while building on emerging
Grid service standards.

6. Concluding Remarks

We propose a multi-tiered architecture for building general Grid infrastruc-
ture components and demonstrate the feasibility of the concept by implementing
a prototype job management framework. The GJMF provides a standards-
based, fault-tolerant job management environment where users may use parts
of, or the entire framework, depending on their individual requirements. Fur-
thermore, we demonstrate that the overhead incurred by using the framework is
sufficiently small (approaching 0.2 seconds per job for larger groups of jobs) to
motivate the practical use of such an architecture. Initialtests demonstrate that
by proper methods, including reuse of delegated credentials, caching of Grid
information and local Java invocations of co-located services, it is possible to
implement an efficient service-based multi-tier frameworkfor job management.
Considering the extra functionality offered and the small additional overhead
imposed, the GJMF framework is an attractive alternative toa pure WS-GRAM
client for the submission and management of large numbers ofjobs.
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Abstract. We present a generic and light-weight Grid workflow execu-
tion engine made available as a Grid service. A long-term goal is to fa-
cilitate the rapid development of application-oriented end-user workflow
tools, while providing a high degree of Grid middleware-independence.
The workflow engine is designed for workflow execution, independent
of client tools for workflow definition. A flexible plugin-structure for
middleware-integration provides a strict separation of the workflow exe-
cution and the processing of individual tasks, such as computational jobs
or file transfers. The light-weight design is achieved by focusing on the
generic workflow execution components and by leveraging state-of-the-
art Grid technology, e.g., for state management. The current prototype
is implemented using the Globus Toolkit 4 (GT4) Java WS Core and
has support for executing workflows produced by Karajan. It also in-
cludes plugins for task execution with GT4 as well as a high-level Grid
job management framework.

1 Introduction

Motivated by the tedious work required to develop end-user workflow tools and
the lack of generic tools to facilitate such development, this contribution focus on
a light-weight and Grid-interoperable workflow execution engine made available
as a Grid service. As a point of departure, we identify important and generic
capabilities supported by well-recognized complete workflow systems [18, 15, 9,
14, 1, 10, 2] (e.g., workflow design, workflow repositories, information manage-
ment, workflow execution, workflow scheduling, fault tolerance, and data man-
agement). However, many of these projects provide similar functionality and
much work is overlapping, as the systems have been developed independently
[18].

The tool presented here is not proposed as an alternative to these more
complete workflow systems, but as a core component for developing new end-user
tools and problem solving environments. The aim is to offer a generic workflow

⋆ This research was conducted using the resources of the High Performance Comput-
ing Center North (HPC2N). Financial support has been provided by The Swedish
Research Council (VR) under contract 621-2005-3667.
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execution engine that can be employed for building new high-level tools as well
as to provide support for both processing individual tasks on multiple Grid
middlewares and accepting different workflow languages as input. The engine is
light-weight as it focuses only on workflow execution (i.e., selecting tasks that
are ready to execute) and its corresponding state management.

The engine is developed with a strict focus on Grid resources for task process-
ing and makes efficient use of state-of-the-art Web and Grid services technology.
The current prototype is implemented using the Java WS Core from the Globus
Toolkit 4 (GT4) [7]. The service has support for executing workflows expressed
either in its native workflow language or the Karajan [16] format. It includes
plugins for arbitrary Grid tasks, e.g., for execution of computational tasks in
GT4 and in the high-level Grid Job Management Framework (GJMF) [3, 5], as
well as GridFTP file transfers.

2 System and Design Requirements

The general system requirements follow directly from the aim and motivation for
the proposed workflow engine. As it is developed with a general aim to provide an
efficient and reusable tool for managing workflows in Grid environments, overall
requirements include client and middleware independence, modularity, customiz-
ability, and separation of concerns [4]. A set of high-level design requirements
for Grid workflow systems includes the following.

– The workflow execution should be separated from the workflow definition.
The former must be done by the engine, the latter can be done, e.g., by an
application specific GUI or a Web portal. Furthermore, workflow repositories
and application specific information should not be managed by the service.

– The workflow engine should be independent of the Grid middleware used to
execute the tasks, with middleware-specific interactions performed by plug-
ins. The plugins should in turn be unaware of the context (the workflow) to
which individual Grid jobs belong.

– The design can and should to a large extent leverage state-of-the-art Grid
technology and emerging standards, e.g., by making use of general features of
the Web Services Resource Framework (WSRF) [13] instead of implementing
their workflow-specific counterparts.

– The engine should have a clean separation between the state management
and the handling of task dependencies.

In addition to the high-level design requirements, the following specific system
requirements are highlighted. The workflow system should:

– provide support for executing workflows, managing workflow state, and paus-
ing and resuming execution. This enables restart of partially completed work-
flows stored on disk, and provides a foundation for fault tolerant workflow
execution.
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– provide support for both abstract (resources unspecified) and concrete work-
flows (resources specified on a per-task level) as well as arbitrary nestings of
workflows.

– provide support for dynamic workflows, i.e., making it possible to modify an
already executing workflow, by pausing the execution before modification.

– provide support for workflow monitoring, both synchronously and by asyn-
chronous notifications.

– provide support for notifications of different granularity, e.g., enabling asyn-
chronous status updates on both a per workflow and a per task basis.

These requirements are in agreement with and extend on the requirements
of Grid workflow engines presented in [6]. How the requirements are mapped to
the actual implementation is presented in Section 3.

3 Design and Implementation

The design requirements of customizability and ability for integration with dif-
ferent client tools and middlewares are met by use of appropriate plugin points.
The chain-of-responsibility design pattern allows concurrent usage of multiple
implementations of a particular plugin. The three main responsibilities of the
workflow service, namely management of task dependencies (i.e., deciding the
task execution order), execution of workflow tasks on Grid resources, and man-
agement of workflow state, are each performed by separate modules.

Reuse, in a broad sense, is a key issue in the design. The workflow service
reuses ideas from an architecture for interoperable Grid components [5] and
builds on a framework for managing stateful Web services and notifications [13].
Exploiting the capabilities offered by GT4 Java WS Core (e.g., security and
persistency) also simplifies the design and implementation of the service.

3.1 Modelling Workflows with the WSRF

The workflow engine uses the tools provided by GT4 Java WS Core to make the
engine available as a Grid service and to manage the workflow state. Building
the engine on top of Java WS Core should not be interpreted as built primar-
ily for GT4-based Grids. Integration with different middlewares is provided by
middleware-specific plugins which are independent from the workflow execution.

By careful design, the service can handle arbitrarily many workflows concur-
rently without these interfering with each other. Multiple users can share the
same workflow service, but only the creator of a workflow instance can monitor
and control that workflow. Each workflow is modelled as a WS-Resource and
all information about a workflow, including task descriptions, inter-task depen-
dencies and workflow state, is stored as WS-ResourceProperties. The default
behavior is to store each WS-Resource in a separate file, although alternative
implementations such as persistency via database can be added easily. Reuse of
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the Java WS Core persistency mechanisms makes workflow state handling triv-
ial. Workflow state management enables the control of long-running workflows
and the recovery of workflows, e.g., upon service failures.

The states handled include default, ready, running, and completed, which
apply to both tasks and (sub)workflows. Tasks can also be failed whereas
workflows can be disabled. All newly created tasks and workflows have the
default state. A task/workflow is ready to be started when all tasks on which
it depends are completed. Running tasks are processed by some Grid resource
until they become either completed or failed. A running workflow has at least
one task that is not completed and no failed task, whereas completed workflows
only contain completed tasks/subworkflows. A workflow becomes disabled either
if a task fails or if the user requests the workflow to be paused. No new tasks are
initiated for disabled workflows. A resume request from the user is required to
make a disabled workflow running again. If the workflow becomes disabled due
to task failure, the user must modify the workflow (to correct the failed task)
before issuing the resume request.

3.2 Architecture of the Workflow Engine

The workflow service implements operations to (i) create a new workflow, (ii)
suspend the execution of a workflow, (iii) resume execution of a workflow, (iv)
modify a workflow, and (v) cancel a workflow. The service also supports mon-
itoring of workflows, either by explicit status requests or by asynchronous no-
tifications of updates. To support a wide range of client requirements, different
granularities of notifications are available, ranging from a single message upon
workflow completion to detailed updates every time a task changes its state. As
Java WS Core contains mechanisms for managing WS-Resources (in this case
workflows), the monitoring functionality as well as operations (iv) and (v) are
trivial to implement (using WS-Notifications [8], and WSRF [13], respectively).

The architecture of the workflow engine is shown in Figure 1. User credentials
are delegated from clients to the workflow service to be used when interacting
with Grid resources. This requires the Web service interface to perform authen-
tication and authorization of clients. All incoming requests are forwarded to
the Coordinator, which organizes and manages the execution of tasks (and sub-
workflows) in the workflow and handles workflow state. When a new workflow
is requested, the Coordinator uses the Input Converter plugin(s) to translate
the input workflow description from the native format specified by the client
to the internal workflow language. However, the Input Converters do typically
not translate the individual task descriptions, as these are only to be read by
the Grid Executor plugin(s), which the Coordinator invokes to process one (or
more) tasks.

The Grid Executor interface defines operations to initiate new tasks, to re-
connect to already initiated tasks after service restart, and to cancel tasks, cor-
responding to the create, resume and cancel operations in the Web service inter-
face. There is however no operation to pause a running task, as this functionality
generally is not supported by Grid middlewares. Computational Grid Executors
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Fig. 1. Overview of the workflow service architecture.

also ensure that tasks’ input and output files are transferred in compliance with
the data dependencies in the workflow, but are unaware of the context (the
workflow) to which each task belongs. This type of Grid Executor only requires
a basic job submission mechanism, e.g., WS-GRAM [7], but can also make use
of sophisticated frameworks, e.g., the GJMF [3] for resource brokering and fault
tolerant job execution, should such functionality be available. Scheduling is per-
formed on a per-task basis by the Grid Executors plugins. However, tools for
planning or pre-scheduling of workflows (e.g., Pegasus [2]) can be employed if
such functionalities are required. Moreover, support for abstract and concrete
workflows is granted via the Executor plugins and external tools respectively.

Before the Coordinator can invoke the Grid Executor(s) in order to start
new tasks, the Dependency Manager is used to select which task(s) to execute.
This module keeps track of dependencies between tasks (and subworkflows) in
a workflow, and determines when a task (or subworkflow) is ready to start. The
Coordinator invokes the Dependency Manager to get a list of tasks available for
execution when a new workflow is started, when a task in an existing workflow
completes, and when a paused workflow is resumed.

3.3 Properties of the Workflow Language

In the workflow service, workflows are described in a data flow language, defined
using XML schema. In this language, users specify task dependencies, not task
execution order. This removes the burden of figuring out which tasks can execute
in parallel as this is the responsibility of the Dependency Manager.

The workflow language supports arbitrary nesting of tasks and subworkflows
within a workflow. Each task (or workflow) specifies a set of input and output
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ports. A (sub)workflow contains a set of links, where each link connects an output
port of one task/workflow with an input port of another. The task description
contains a field to specify how to perform the task. By having this field generic,
the usage of multiple Grid task description formats is possible. Different formats
for individual task descriptions may even be used within the same workflow.
This design also enables support for new task types, e.g., database queries and
Web service invocations, to be added by implementing Grid Executor plugins
rather than extending the workflow language.

4 Analysis and Comparison with other Systems

One of the main objectives of this work is to provide independence not only of
Grid middleware but also of input representation, the latter achieved by con-
verters that translate different workflow languages to the service’s internal data
flow language. How difficult these translations are depend on the style of the
original client’s language and the amount and type of information that can be
expressed in that language. Data flow languages with similar input/output port
structure are simple to translate. Control flow languages can also be translated
by specifying ports that represent flow of control rather than data transfers.
For example, the subset of the Karajan language [16] that performs basic inter-
actions with Grid resources (job submissions, file transfers, and sequential and
parallel definition of tasks) has been translated as described above.

Petri net languages pose more difficulties. Places and transitions representing
data flows can easily be translated to the service’s internal data flow language.
However, there is not an equivalent concept for representing loops in the service’s
language. Finally, it can also be hard to translate languages that do not have all
the information encoded in the workflow description but rely on the runtime sys-
tem to obtain the missing information (e.g., a workflow system that dynamically
queries a repository to obtain the input/output structure of workflow tasks).

While several workflow projects have been built to interact with Grid sys-
tems [15, 14, 1], many of them have not been designed for exclusive use of Grid
resources for workflow execution. Nevertheless they are integrated solutions with
sophisticated graphical environments, workflow repositories, and fault manage-
ment mechanisms. Our work does not attempt to replace those systems, but to
provide a means for accessing advanced capabilities offered by multiple Grid
middlewares. These benefits are obtained by the separation of the workflow
execution from its definition and by making use of well-established protocols.
Furthermore, implementing the workflow engine as a stateful WSRF service fa-
cilitates the management and control (including fault recovery) of long-running
workflows which are common in Grid computing.

The P-GRADE portal [12] and Karajan [16] also focus on the use of resources
from different Grids within the same workflow. P-GRADE offers a collaborative
environment in which multiple users define workflows through a client applica-
tion, and control and manage workflows through a portal. The workflows can
access resources from multiple Globus-based virtual organizations. Our work
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goes beyond this functionality by adding the capability of using other middle-
wares besides Globus and also offering independence of input language. Karajan
also provides a level of interoperability between different execution mechanisms
(mainly GT2, GT4, Condor, and the SSH protocol) through the use of providers
that allow selection of middleware at runtime. However, while Karajan has a
stronger focus on the interaction between users and workflows, our work focuses
on handling the workflow state, delegating the interaction with users to clients
that have access to the workflow service.

There are a few projects that are using WSRF to leverage the construction
of workflow services. The Grid Workflow Execution Service (GWES) [11] uses a
Petri net language to define and control Grid workflows. Besides the differences
in workflow language type, the main difference between GWES and our work is
the ability of using multiple input representations offered by our contribution.
The Workflow Enactment Engine Project (WEEP) [17] provides a BPEL engine
for Grid Workflows. The engine is accessible as a WSRF service running in a
GT4 container. However, WEEP is focused on Web service invocations and not
on interfacing with Grid middleware.

5 Concluding Remarks

The goal of this research is to investigate how to design a light-weight workflow
engine that can be reused by different high-level tools. General requirements
for portability and interoperability are supported by the use of an appropriate
plugin-structure for workflow language formats and for interacting with different
Grid middlewares. Scalability is obtained by handling multiple workflows and by
supporting large hierarchical workflows. The workflow service performs monitor-
ing, state management, fault recovery, and it uses appropriate security mecha-
nisms to achieve user isolation. The Executor plugins handle data movement,
job submission, information retrieval, and just-in-time scheduling. External tools
can be employed for planning and pre-scheduling of workflows. We finally note
that much of the supported functionality is obtained with little or no effort by
appropriate use of the WSRF.
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Abstract. We examine some issues that arise when using both local and
Grid resources in scientific workflows. Our previous work addresses and
illustrates the benefits of a light-weight and generic workflow engine that
manages and optimizes Grid resource usage. Extending on this effort, we
here illustrate how a client tool for bioinformatics applications employs
the engine to interface with Grid resources. We also explore how to define
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1 Motivation and Background

To date many available tools (e.g., [1–3]) for scientific workflows have sophis-
ticated functionality that enables, e.g., design, enactment, and scheduling of
workflows, while providing support for data management and fault tolerance.
However, most of these tools have at least one of three shortcomings: (1) the
tool is a monolithic application where the above listed functionality cannot eas-
ily be extracted and reused, (2) the tool targets a specific scientific domain and
to adapt it to new domains is a major, if not impossible, endeavor, and (3) the
tool is focused on workflow execution on client machines ignoring the benefits of
using Grid resources for computationally or data intensive tasks.

In previous work [4, 5] we have discussed these problems and argued in favor
of a loosely coupled design where workflow capabilities are exposed as a compos-
able set of workflow services with clear separation of concerns. By orchestrating
these services, environments tailored to the needs of a certain group of users

⋆ This research was conducted using the resources of the High Performance Comput-
ing Center North (HPC2N). Financial support has been provided by The Swedish
Research Council (VR) under contract 621-2005-3667.
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can be constructed with much less effort compared to a (re)implementation of
a full-featured system. Our design and implementation of the Grid Workflow
Enactment Engine (GWEE) [4] demonstrates the viability of this approach.

This work is a direct continuation of these efforts. We identify the following
five contributions, each described in a separate section of the paper. First, we il-
lustrate the feasibility of the concept of a composable set of workflow capabilities
by demonstrating how a client tool, adapted for use within bioinformatics, can
be built on top GWEE. The problems of decoupling data from task specifica-
tion and that of dynamically adjusting workflow tasks during runtime are both
addressed with task templates that delay the binding of task parameters until
workflow execution. We then examine data flows integrating the client machine
and Grid resources. We also present a mechanism to simplify parameter sweep
studies. Finally, these results are used to reduce the complexity of a particular
bioinformatics problem - orthology detection analysis.

2 GWEE Details and the Workflow Client Tool

Before discussing the data management issues encountered when combining Grid
and local workflows, we give a brief overview of the GWEE and the client tool.
The GWEE [4] is a Grid workflow enactment engine that is exposed as a Web
service. A strict separation between workflow enactment logic and execution of
individual tasks (e.g., computational jobs and file transfers) enables indepen-
dence of workflow description language and interoperability with multiple Grid
middlewares. The GWEE uses a data flow model of computation in which task
dependencies define the execution order of the workflow. However, workflows
driven (in part or in full) by a control flow are also supported.

While the GWEE provide access to Grid resources, the interaction with users
is delegated to a client tool that uses the service interface to start and terminate
workflows, as well as pause and resume a running workflow. In this tool workflows
can also be designed, in a drag and drop manner, by connecting tasks together in
a graph that specifies a control and/or a data flow. The client can handle mixed
local and Grid workflows. Simple tasks that are not computationally intensive,
e.g., preparation of input files, are typically performed on the client side whereas
long running jobs preferably should be combined into a subworkflow that can be
sent to the GWEE for enactment on the Grid. The state of (running) workflows
can be stored to, and loaded from disk. The client can hence be disconnected
from the GWEE during the execution of a long Grid subworkflow. This is useful,
e.g., when running the client on a laptop during travel or for Grid workflows
executing for days or weeks. The client tool can be updated of Grid subworkflow
progress either by synchronous requests or by notifications.

In both the GWEE and the client tool, workflow tasks consist of three parts
(1) a set of input ports, (2) a set of output ports, and (3) a process that maps
the input ports to the output ports (i.e., a job that receives inputs and produces
outputs). Links from output ports to input ports define task dependencies. Sim-
ilarly to other data flow approaches [6], the links are associated with tokens
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that are moved between tasks. For the GWEE these tokens represent pointers
to data files with the transfer medium dependent upon the supported infrastruc-
ture (e.g., GridFTP) and the transfer carried out by middleware specific plugins.
On the client side, a token holds the name of a locally stored file that can be
accessed from both tasks in a producer/consumer fashion.

3 Task templates

Scientific workflows running on the Grid typically consist of self-contained com-
mand line applications or scripts. Execution is usually configured via environ-
ment variables or command line arguments and all communication, in and out, is
performed via data files or the standard streams (i.e., stdin, stdout, and stderr).
While this task configuration information must be explicitly described prior to
submission to Grid resources, it is not necessary when designing the workflows.
The binding of particular parameters can be delayed until workflow enactment,
which is beneficial since the required information is not always known at design
time. In addition, to support non-deterministic3 workflows, parts of the work-
flow description must be completed during enactment with values produced as
output from (previously) executed workflow tasks.

The use of command line applications introduces the problem of embedding
the required task information into the workflow model. For example, as men-
tioned in the previous section, the GWEE follows a data flow approach in which
all information is moved through ports. Values passed through these ports (e.g.,
name of input files) are required to enact the workflow and correspond to the
arguments and data products of the command line applications. This introduces
the difficulty of mapping the arguments to the corresponding input and output
ports for the correct arrangement of dependencies delineating the flow of data.

An often employed solution is to use wrappers to either include individual
applications into the workflow model or to execute those applications in a Grid
[7–9]. GEMLCA [7] exposes a generic service layer to execute command line
applications without the need of re-engineering the application. The Styx Grid
Services [8] create services of command-line applications and allows them to
run remotely as if they were local programs. In Styx, shell scripts can be used
to compose the services as workflows. These solutions enable the reuse of the
applications with different data [10] but require a service for each individual
application. If services are used only for a short period of time, these solutions
become too heavyweight as the overhead of service creation outweighs the ex-
ecution time of the wrapped application. In non-Grid environments, workflow
tools [1–3] usually offer a framework with a set of functionalities that can be
extended by writing framework specific applications using libraries developed
exclusively for this purpose [11]. However, when moved to the Grid this solution
is not always feasible as the application source code need not be accessible.

3 By the term non-deterministic, we refer to a workflow where the precise enactment is
not known in advance and it is determined dynamically during execution. Dynamic

workflows, in contrast, are actively steered by users.
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Compared to the wrapper solution, our approach is lightweight as it involves
only the specification of a parameterized task-template where the workflow de-
signer specifies the correct mapping of input and output ports to the parameters
of the application. The designer can also specify which arguments are to be de-
termined at a later stage (during enactment). A task-template is an incomplete
task description, in JSDL [12], that contains name-value mappings for missing
task parameters. The template is transformed into an executable task once the
values for these missing parameters are available. The actual values for the pa-
rameters are defined (and updated) using the task ports.

By filling out a single form that is automatically generated from the task
template, users can specify values for the template parameters without being
concerned about low-level details such as the syntax of the workflow and/or
task descriptions. The template functionality also allows the transformation of
the task outline to the resulting task to be delayed until task execution time,
and hence enables non-deterministic workflows.

./command arguments

./cmd $args arg=-d $DATA
arg=-n READ($N)

./command arguments

./cmd -d data.txt -n 10

DATA N data.txt count.txt

Fig. 1. Basic operation of the template, including usage of the read operation.

For some task templates, the value specified in the input port is not sufficient
information for the workflow to be enacted correctly. Instead, the data value(s)
produced at that port is required. To access these values, we provide a read

operation that uses the port content instead of the port name for task generation
in the template. The POSIX command xargs provides a functionality similar to
the read task, but is restricted to mapping stdin to command line arguments.

A simplified illustration of the template functionality, including the read
operation, is shown in Figure 1. In this figure, the incomplete task description
(dashed box) contains a template (shown as a hexagon). After receiving values
(data.txt, count.txt) for the template parameters ($FILE, $N), the task outline
is transformed to the executable task, shown to the right. Note how the read
operation enables the content (10) of the port marked N to be used instead of
the name of the token passed on that port (count.txt).

4 Transparent Local and Grid Data Flows

Data transfers become cumbersome for data flow workflows that contain both
local and Grid subworkflows. Special care is required to ensure that the output
of a local task is available as input to a subsequent Grid task. To handle this, the
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workflow client explicitly transfers the data to a Grid-available storage element
and then back to the client machine once the Grid subworkflow is completed.
These transfers, being control flow activities, are hidden from the user and the
visual workflow displayed in the client tool remains pure data flow.

Input ports can be used not only to define input from previous tasks in the
workflow, but also to specify dependencies on external data. In Grid subwork-
flows, this feature is utilized to automatically transfer required files, e.g., binaries
and other task input files not originally produced by the workflow.

5 Parameter Sweeps in Workflows

A commonly used pattern in workflows is parameter sweeps, where one com-
putational task (or a subworkflow) is executed with different data. Parameter
sweep require a suitable partition of the input data where each partition is as-
signed to a different task (or subworkflow). Embarrassingly parallel problems
such as parameter sweep studies are well suited to Grid environments, where
large numbers of resources are available. Even though parameter sweep work-
flows can be done without Grid workflows, data management in the client is
simplified when the parameter sweep can be treated as one (Grid) subworkflow,
instead of a (potentially large) set of individual tasks. This increased abstraction
is beneficial both from a usability and a performance point of view. Other advan-
tages include the reuse of a familiar programming paradigm akin to map-reduce
or scatter-gather reductions. By implementing parameter sweeps as a workflow
graph rewrite on the client side, iterations of the parallel-for style are possible,
regardless of whether or not iterations are supported by the workflow engine.

In data flow languages, parameter sweeps are typically implemented using
either graph rewrites, see e.g., Triana [3] and Pegasus [13] or with higher-order
functions as done, e.g., by Kepler [1]. Generation of the vector to sweep over can
be done statically before the execution as in Triana [14], or dynamically during
workflow enactment, the latter approach used by Askalon [15], Kepler [1], and
Taverna [2]. The P-GRADE [10] data composition strategies allow a custom
pairing of service input ports, typically through dot or cross product. Pautasso
et al [16] study parameter sweeps and other parallel patterns for workflows.

Our implementation of parameter sweeps is based on a graph rewrite that
can take place either before or during workflow execution. A parameter sweep
consists of three parts: i) a divider that generates the desired partition, ii) the
task template(s) forming the subworkflow that should be swept over, and iii) a
merger that collects the results. The divider and the corresponding merger are
computation tasks in the workflow. The rationale behind this is that the workflow
designer knows best how to properly generate the parameter sweep instances,
i.e., the branches in the parameter sweep. By allowing the designer to implement
the merger and divider (typically done in a Turing-complete scripting language)
rather than to choose from a few predefined partition types, new parameter
distribution patterns can be added without modifying the workflow language.
Commonly used patterns include for each input file, for each part of a large
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file (that is to be split up), and Cartesian product between two sets, the latter
illustrated in the bioinformatics use case in Section 6.

Divider

Merger

T1

TN

...

T1_1

TN_1

...

Merger

T1_2

TN_2

...

T1_M

TN_M

...

...

Divider

...

Fig. 2. Expansion of a subworkflow into a parameter sweep.

The divider task output generates the desired data partition for the param-
eter sweep. Each line of output contains template value bindings for one branch
in the parameter sweep. When the divider task completes, the template sub-
workflow is rewritten (expanded) into a task subworkflow, that can be executed
either locally or on the Grid. The divider task can either be executed statically
before the workflow is started or dynamically during workflow enactment. In the
latter case, the divider itself can contain templates that allow information col-
lected during workflow execution guide the generation of sweep instances. The
merger is always executed during workflow run time. It can be configured either
to be part of the generated (Grid) subworkflow or be executed locally.

An illustration of the parameter sweep expansion process is shown in Fig-
ure 2. From the M lines of divider task output, the incomplete task descrip-
tions (dashed boxes T1 . . . TN) with their corresponding templates (depicted
as hexagons) are resolved into sweep instances, each with concrete tasks. The
parameter sweep in Figure 2 is static as the divider itself does not make use
of the template functionality to determine M during workflow enactment. For
clarity, the figure shows a set of tasks connected as a pipeline, but the parameter
sweep functionality can be applied to any connected subworkflow.

6 InParanoid - a Bioinformatics Use Case

With the new sequencing technologies [17], the bioinformatics field is facing an
avalanche of sequence data to be analyzed. As many of the computational prob-
lems are embarrassingly parallel, there is a growing interest in the bioinformatics
field for Grid techniques in order to accelerate the data processing.
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The analysis of biological data is typically a mix of short processing steps and
larger computations that can easily be parallelized. These steps are all part of a
scientific discovery workflow for answering a biological question. Therefore, for
a workflow tool to be useful in the bioinformatics field it must have the ability
to combine local and Grid subworkflows into a larger workflow. The large-scale
bioinformatics analyzes are made on general purpose computational Grids, such
as EGEE and NorduGrid, and can hence not rely on pre-installed software. All
this considered, these analyzes are today not done using a workflow tool. Instead,
the different tasks in the analysis are typically connected by Perl scripts and
are manually submitted to the computational Grids. The drawbacks with this
approach are that (1) it can be difficult to exactly replicate the analysis, (2) there
is no easy way to reuse the scientific discovery workflow, and (3) it is difficult to
analyze and verify this workflow.

Here we have implemented a workflow for the orthology detection tool In-
Paranoid [18]. Orthology and paralogy are key concepts in comparative genomics,
and both refer to genes that are related through common descent, i.e., genes
that are homologous. In the former case through speciation and in the latter
through duplication. Due to the different evolutionary relationships, orthologous
genes are more likely to have preserved the biological role than paralogous genes.
Therefore, it is important to be able to distinguish between these two types of
homologous genes during, for example, the functional annotation of newly se-
quenced genomes. The data used here are the collected protein sequences, the
so-called proteomes, from five species4 Candida glabrata (NCBI), Drosophila
pseudoobscura (FlyBase), Escherichia coli K12 (NCBI), Kluyveromyces lactis
(NCBI), and Saccharomyces cerevisiae (SGD).

The InParanoid workflow consists of four steps: (1) format gene databases
and filter the proteomes to get the longest transcript per gene, (2) run the Basic
Local Alignment Search Tool (BLAST) [19] on all pairs of proteomes including
self-against-self, (3) filter the BLAST results, and (4) run the InParanoid ap-
plication. These four steps are illustrated in Figure 3. Step 1 is a foreach-style
parameter sweep that executes locally. The Grid executed parameter sweep in
Step 2 performs sequence similarity searches using the BLAST tool. Step 3 is a
local parameter sweep and Step 4 is a Grid subworkflow. The parameter sweeps
in steps 2 and 3 generate sweep instances according to a Cartesian product pat-
tern. The InParanoid workflow makes extensive use of the template functionality,
e.g., to pass genome file names and gene transcript lengths to the command line
applications. The edges in the resulting workflow graph in Figure 3 depict a
simplified control flow. The complete workflow combines local control flow and
Grid data flow, the latter used to install the binaries (BLAST and InParanoid)
and to transfer the gene databases and results.

The InParanoid workflow was run on a dedicated Grid testbed with four
resources that run Ubuntu Linux 2.6.24, NorduGrid/ARC 0.6, Maui 3.2.6, and
Torque 2.1.9. Each resource had one HP DL165 G5 Opteron 2346 HE, with a

4 NCBI, FlyBase, and SGD refer to the respective databases where the proteome data
are publicly available.
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blastall

formatdb

formatdb SC

blastall SC SC

InParanoid SC EC

formatdb EC

blastall SC EC blastall EC ECblastall EC SC 

SC EC

SC EC

filter filter SC SC filter SC EC filter EC ECfilter EC SC 

2

3

4

1

SC EC

InParanoid

Fig. 3. A simplified view of the templates (left) and the resulting InParanoid workflow
(right) instantiated for two proteomes (SC and EC). The numbers 1, . . . , 4 correspond
to the four steps described in Section 6.

quad core 1.8 GHz CPU and 4GB of memory as backend. The local steps in the
workflow were enacted on Ubuntu Linux 2.6.27 laptop with an Intel 1.2GHz Core
2 Duo CPU and 4 GB memory. A 100 Mbit/s network connected all machines.

Table 1 shows performance results for pairwise InParanoid comparisons of the
five investigated proteomes: Drosophila pseudoobscura (DP) with 9871 protein
sequences, Saccharomyces cerevisiae (SC) with 5792 sequences, Kluyveromyces
lactis (KL) with 5336 sequences, Candida glabrata (CG) with 5192 sequences,
and Escherichia coli K12 (EC) with 4243 sequences.

Notably, as exactly the same workflow is enacted when using one and four
Grid resources and Step 2 is the only parallel part, the two runs give similar
results for all other columns in Table 1. The runtime complexity of BLAST is
O(mn), where m and n are the sizes of the compared proteoms. The obtained
speedup hence varies with the proteom size induced load (im)balance of Step 2.
Notably, the varying from one to four resources only applies to the Grid workflow
in Step 2, although the speedup is calculated for the whole workflow. The last
column of Table 1 shows that the parallel part (Step 2) constitutes between 85
and 95 per cent of the total execution time. We remark that 90 per cent parallel
execution time would, with perfect load balance and neglectable overhead, result
in a speedup of 3.08 for four resources. In traditional parallel applications that
execute in a cluster and communicate through message passing, poor speedup
due to load imbalance results in idle nodes and wasted CPU cycles. On the con-
trary, in the InParanoid workflow, there is no waste of resources, as cluster nodes
can be used by other tasks once the shorter BLAST jobs in Step 2 completes.
Notably, the parallel speedup of the InParanoid workflow could be improved
with a finer-grained data distribution pattern for Step 2, e.g., by partitioning
the proteom files into equally sized chunks. We however remark that the above
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Table 1. Performance results for the InParanoid workflow for proteom pairs as given
in the first column. The columns labeled 1 to 4 shows the time for workflow steps 1
to 4. Next follows the overhead (which is also part of the time in the column labeled
2) for file transfer to and from the Grid, all other workflow enactment overhead, the
makespans of the complete workflow enacted with four and one Grid resources, and the
associated speedup (calculated as MS(1)/MS(4)), respectively. The last column shows
how large part Step 2 (the part to be executed in parallel) constitutes of the makespan
for the one resource case. All time units are in seconds.

Proteoms 1 2 3 4 File staging OH MS(4) MS(1) Speedup Tp(%)

DP-SC 2 5639 340 737 152 (1581MB) 19 6737 14213 2.11 92.2

DP-KL 2 5606 297 799 134 (1381MB) 17 6720 12894 1.92 91.5

DP-CG 2 5695 321 768 147 (1503MB) 20 6806 13590 2.00 92.0

DP-EC 1 5581 189 219 92 (899MB) 15 6005 8408 1.40 94.9

SC-KL 1 2256 188 814 94 (922MB) 19 3278 8098 2.47 87.4

SC-CG 1 2226 226 1043 110 (1096MB) 18 3514 9304 2.65 85.9

SC-EC 1 2233 85 219 53 (436MB) 17 2555 4044 1.58 93.3

KL-CG 1 1948 172 768 89 (844MB) 18 2907 7599 2.61 87.2

KL-EC 1 1567 58 189 41 (307MB) 15 1830 3258 1.78 91.5

CG-EC 1 1891 74 204 47 (383MB) 16 2186 3647 1.67 92.4

tests are an illustration of the functionality of the parameter sweep mechanism,
rather than an attempt to optimize the performance of the InParanoid workflow.

7 Conclusions and Future Work

We demonstrate how data flows seemlessly can integrate local and Grid re-
sources. We also introduce a more flexible parameter sweep tool than those
available in current workflow systems. Our task template mechanism enables
non-deterministic workflows and delineates data flow for command line appli-
cations. Through a combination of these mechanisms, we illustrate how to sim-
plify incorporation of Grid resources in the InParanoid workflow. Future work
includes analyzing conceptual interoperability aspects for scientific workflows to
lay a foundation for workflow reuse and workflow system interoperability.
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Abstract

We investigate interoperability aspects of Grid workflow systems
with respect to models of computation (MoC), workflow languages, and
workflow execution environments. We focus on the problems that af-
fect interoperability and illustrate how these problems are tackled by
current scientific workflows as well as how similar problems have been
addressed in related areas. Emphasis is given to the differences and
similarities between local and Grid workflows and how their peculiar-
ities have a positive or negative impact on interoperability. Our long
term objective is to achieve (logical) interoperability between work-
flow systems operating under different MoCs, using distinct language
features, and using different execution environments.

1 Introduction

To date, scientific workflow systems offer rich capabilities for designing,
sharing, executing, monitoring, and overall managing of workflows. The in-
creasing use of these systems correlates with the simplicity of the workflow
paradigm that provides a clear-cut abstraction for coordinating stand-alone
activities. With this paradigm scientists are able to concentrate on their
research at the problem domain level without requiring deep knowledge of
programming languages, operating systems, arcane use of libraries, or hard-
ware infrastructure. In addition, the ease by which scientists can describe
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experiments, share descriptions and results with colleagues, as well as au-
tomate the recording of vast amounts of data, e.g., provenance information
and other data relevant for reproducing experiments, have made the work-
flow paradigm the fundamental instrument for current and future scientific
collaboration.

Currently, there are many sophisticated environments for creating and
managing scientific workflows that have lately also started to incorporate
capabilities for using powerful Grid resources. Although similar in many re-
spects, including domains of interest and offered capabilities, existing work-
flow systems are not yet interoperable. Rather than discussing if workflow
systems are completely interoperable or not at all, here we argue that inter-
operability between workflow systems must be considered from three distinct
dimensions: model of computation (MoC), workflow language, and workflow
execution environment. In previous work [20] we have demonstrated work-
flow execution environment interoperability by showing how a workflow tool
can interoperate with multiple Grid middleware. Extending on this effort,
we here discuss interoperability at the other two dimensions, i.e., MoC and
workflow language.

With this paper our contributions are the following. We start a dialogue
and argue that we must change the manner in which interoperability has
been addressed and start concentrating on a three dimensional model that
considers interoperability from the MoC, the language, and the execution
environment dimensions. We present the reasons why dataflow networks
have not been used in Grid settings and introduce some adaptations re-
quired in this MoC to be able to make use of it in Grid workflows. We fur-
ther investigate the minimum language constructs required for a language
to be expressive enough for supporting scientific workflows. We argue for
a distinction between the languages used for describing complex workflows
executing on the end-users desktop machine (i.e., local workflows) and possi-
bly simpler languages only used for coordinating computationally intensive
sub-workflows that run on the Grid. We support our discussion on results
and algorithms from the areas of theory of computation, compiler optimiza-
tion, and (visual) programming language research. With these results as a
starting point we discuss language aspects relevant for local and Grid work-
flows, including iterations, conditions, exception handling, and implications
of having a type system associated to the workflow language. We conclude
our work in workflow languages by studying the repercussions of choosing
between control-driven and data-driven style of representing workflows, in-
cluding methods for converting between both representations.

The rest of the paper is organized as follows. Section 2 discusses the
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current state of the art in scientific workflows, investigates the reasons why
interoperability in workflows is desired, and introduces the three dimen-
sions that must be considered when discussing interoperability of scientific
workflows. Section 3 introduces some fundamental workflow concepts and
definitions that are used throughout the paper. Section 4 discusses issues
related to MoCs for Grid workflows including a description of how Petri nets
and Coloured Petri nets have been used as MoCs for Grid workflows and a
discussion on the reasons why dataflow networks, being the most common
MoC for local workflows, has not yet been employed for Grid workflows.
Section 5 focuses on workflow language related issues including differences
between data-driven and control-driven representations as well as the use
and implementation of language constructs such as conditions and iterations
in light of their programming languages counterparts. Finally, in Section 6
we discuss how our findings, collectively, have an impact on Grid workflow
interoperability and present our concluding remarks.

2 Workflow Interoperability

There are many scientific workflow systems currently in use, e.g., [9, 15,
43, 51]. Several of these have been developed successfully within interdis-
ciplinary collaborations between domain scientists, the end-users, and com-
puter scientists, the workflow engineers. Some of these systems target a
particular scientific domain (e.g., Taverna [51]) while others cover a range
of fields (e.g., Triana [9] and Kepler [43]).

The existence of such a wide range of workflow systems is comparable,
although to a lesser degree, to the large number of programming languages
available. In both cases solutions can be general purpose or tailored for
specific domains, and the choice of one over the others depends not only on
the problem at hand but also on personal preferences. Moreover, it is not
possible to have one solution suitable for all problems and preferred by all
users, and it is also not likely for a new solution to emerge and replace all
existing ones. Yet, unlike programming languages in which interoperabil-
ity is achieved at the binary or byte code level and the voices suggesting
source-to-source interoperability long faded away, achieving interoperability
between workflow systems is a venture of high priority.

In this section we examine motivations for workflow interoperability,
introduce a point of view that tackles the problem at multiple dimensions,
and investigate various ways in which the topic has been addressed in the
literature.
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2.1 A case for interoperability

It has recently been suggested [53] that end-users are not really pressing for
interoperability among workflow systems. The rationale behind this sug-
gestion is that these systems are developed in tight coordination between
end-users and workflow engineers. Hence, instead of using other systems
that already offer the required functionalities new features are added when
needed. The outcome of this rationale is time consuming as it leads to dupli-
cation of efforts, it mis-utilizes resources that could otherwise be employed
in more productive endeavors, and it is mainly beneficial for researchers who
are involved in this development loop. Yet, it is also the case that users may
not be interested in full interoperability between workflow systems. Full
interoperability is commonly defined as the ability for systems (be them
human users or software components) to seamlessly use the full functional-
ity provided by the (others) interoperable systems in a totally transparent
manner [24]. Deelman et. al. [14] notice that users may want to invoke one
workflow system from another one or reuse all or part of a workflow descrip-
tion in a different system. Another motivation for interoperability is due to
portability aspects, e.g., due to infrastructure changes. User preferences can
also be taken into consideration. Once users become accustomed to a partic-
ular system it becomes a costly process to migrate to another one. Although
it is possible to enumerate a long list of use cases in which interoperability is
of value, we prefer to identify the following two categories that cover several
of the use cases according to the purpose for seeking interoperability:

Collaborative and interdisciplinary research. Science is a collabora-
tive endeavor. The importance of current scientific problems have
made crucial for these collaborations to become large interdisciplinary
enterprises in which scientists from different fields contribute to the
final solution. These significant efforts require the sharing of research
knowledge, knowledge that is often expressed in workflows.

Several workflow systems have been developed for operation within a
specific scientific domain, thus, it is expected that users from different
scientific fields, or in some cases from different research groups, use
different workflow systems. It is very difficult to change systems just
to enable these collaborations. Users are more comfortable working in
environments familiar to them and adapting to a different one may in-
volve steep learning curves [31]. For these cases it becomes imperative
to coordinate multiple workflow systems within one workflow execu-
tion. A typical scenario for this type of interoperability is a workflow
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system invoking another one for executing a functionality represented
as a sub-workflow.

Lack of capabilities in a workflow system. Adaptation of a system ini-
tially designed for one scientific field to fulfill the requirements of
another is typically done by extending the set of activities (or ca-
pabilities) offered to users, rather than changing the way in which
the workflow system itself operates. Such extensions are commonly
added by implementing the new functionalities using libraries offered
by the systems themselves. However, these functionalities are typi-
cally locked-in and can only be used inside the targeted environment
making it impossible to share them with users of other systems. It
is then important to unlock the functionalities so that they can be
used by other systems. The capabilities need not be computations,
they can also be support for different hardware or software platforms.
An extreme case is illustrated by technology obsolescence. If a system
becomes obsolete and needs to be replaced by a newer system, it is
of paramount importance to be able to reuse the workflows developed
for the older system. This obsolescence is not limited to the workflow
system itself but the execution environment, including middleware, as
well.

2.2 Multiple dimensions for workflow interoperability

From the two categories enunciated above, we identify three dimensions rel-
evant for scientific workflow interoperability. These dimensions are in line
with a previous classification [53], but we argue that some aspects presented
in that work, e.g., meta-data and provenance, although very important in
practice, are not essential for workflow enactment coordinated by a work-
flow engine. In practice, a workflow engine can cooperate with a meta-data
or provenance manager to achieve other types of interoperability. In this
work we focus exclusively in the enactment process, that is, selecting and
executing workflow activities free of dependencies (either control or data
dependencies). Below we briefly introduce the three dimensions of interop-
erability and we present further details in the following sections.

2.2.1 Model of computation

The model of computation provides the semantic framework that governs the
execution of the workflow, i.e., a MoC provides the rules on how to execute
the activities and consume the dependencies. There are many MoCs that
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have been considered as central abstractions for coordinating workflows,
including Petri nets, dataflow networks, and finite state machines. Some
problems are better suited for one MoC and in many cases a single workflow
may be required to use abstractions from multiple MoCs.

Strong interoperability in this respect requires the transparent execution
of workflows developed for one MoC by another one. A weaker notion is to
be able to compose workflows with parts governed by different MoCs. A so-
lution proposed by Zhao et al. [70] uses a bus in which workflow systems are
considered as black boxes that can be invoked from other systems. How-
ever, for this compositions to be possible the MoCs must be compatible.
Compatibility between MoCs has been studied by Goderis et al. [29]. Their
work explores when and how different MoCs can be combined. Their con-
tribution is significant but it is focused only on local workflow systems and
does not address Grid workflows. Many of the MoCs described by Goderis
et al. [29] are not functional in Grid settings as the assumptions of globally
controlling coordinators and fine grained token-based interactions between
concurrently executing activities are not possible to achieve (yet) in Grid
environments. The basis of their work is a hierarchical approach, based on
Eker et al. [18], in which workflows from different MoCs can be combined
according to the level of the hierarchy. Sub-workflows are then seen as black
boxes and their internal MoC is of no importance when working one level
above in the hierarchy. Petri nets and DAGs (employed as the structure for
specifying dependencies between activities) are the most common MoCs in
Grid environments. As such, in Section 4 we look into how Petri nets and
Colour Petri nets have been used for Grid workflows. In that section we also
investigate the reasons why dataflow networks, the most common MoC for
local workflow systems, has not been employed in Grid environments.

2.2.2 Workflow language aspects

One important workflow interoperability aspect is given by the set of sup-
ported language constructs. The constructs of interest in this study are
iterations and conditions, the latter used both for execution flow control
and exception handling. Another related topic is how, if at all, state is
modeled in workflows. Our previous work has demonstrated the possibility
of completely decoupling the workflow coordination language from the lan-
guage used to describe individual activities [20]. Others propose to describe
workflows with a high-level meta-language, that is not dependent on a par-
ticular workflow language [53]. Fernando et al. [23] suggest an intermediate
workflow description format, and outline how the languages of Taverna and
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Kepler could be represented in such a format. In Section 5 we discuss the
trade-offs of having a full featured, Turing complete workflow language ver-
sus a simplistic activity coordination language. Furthermore, we investigate
the consequences of having a type system attached to a workflow language
and discuss the difficulties that the environments of current Grid infrastruc-
tures cause in this regard.

2.2.3 Workflow execution environments

In traditional workflow systems, the activities that form the workflow all
execute locally on the desktop computer of the user, making it a local work-
flow. The emergence of powerful parallel machines and Grids has opened up
the potential for utilizing applications that execute on remote machines and
possibly are developed by other scientists or organizations. Accordingly, it
is essential for a workflow system to support distributivity at some level.
Since many of the current projects are pre-Grid, they, naturally, are not
focused on Grid workflows, and are not able to optimize the capabilities
that systems designed for Grid usage offer. On the other hand, several of
the Grid-only workflow systems can appropriately use Grid resources but
they lack the ease of use and facilities offered by the local systems. The
necessities of current research demand for a balance between the local and
the distributed, so in typical scenarios the local machine is used for menial
tasks while Grid resources are used for activities that require extensive use
of resources (e.g., computation and storage). In this setting, the benefits
of workflow systems is that they abstract the communication complexities
required to interact with the Grid.

One issue in the design of toolkits for real-life scientific workflows is
the suitable level of granularity for interacting with Grid resources. Some
projects, e.g., Kepler [43], Taverna [52], and Karajan [67] use Grid resources
on a per-activity basis. Others, e.g., Pegasus [15], GWEE [20], and P-
Grade [38] use Grid resources to enact workflows, that typically constitute
a computationally intensive subset of a larger workflow. We refer to such
sub-workflows as Grid workflows. For the rest of this paper, we assume that
a workflow is a local workflow that makes use of one or more Grid workflows,
the latter ones being our focus.

3 Concepts and Definitions

In this section we introduce some concepts and definitions that are used
throughout the paper.
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A workflow is represented by a Directed Graph (DG) W = {Nodes,
Links}, where: 1) Nodes is the set of workflow activities, and 2) Links is the
set of dependencies between workflow activities.

W is a static element that specifies the structure and possible orchestra-
tion of workflow activities and is commonly specified by a workflow language.
The workflow language is usually represented in a textual manner, although
graphical interfaces have been employed for facilitating the interaction with
the workflow system. The size and complexity of workflows varies, and while
a graphical representation may be optimal for simple workflows, this type of
representation is not feasible when scaling the number of workflow activities.
In such situations, a textual representation is better suited. Furthermore,
even when graphical interfaces are employed the graphical language is as-
sociated with a textual representation for storing and managing workflow
instances in files [30]. In many cases XML is used for the textual represen-
tation but scripting languages can also be employed.

Ports serve as containers of data associated with workflow activities.
Ports also state communication channels between activities providing entry
(input ports) and exit (output ports) points to the workflow activities. For
Grid workflows it is common to assume that ports have no associated type
information and that workflow activities internally distinguish the correct
semantics of the data in ports. In Section 5.1 we consider the implications
for the cases where the ports are typed (typical in local workflows). Commu-
nication to and from nodes is performed by specifying links between ports
associated to different activities. The links represent dependencies whose
nature, i.e., control or data flow, is unimportant from a representation point
of view.

A workflow activity represents a unit of execution in a workflow. An
activity can be an indivisible entity or it can be a sub-workflow containing
other activities. Associated input ports provide the required input for the
activity while the output is produced through output ports. As such, activ-
ities can be treated as functions whose domain is given by the cross product
between input ports and whose range is given by the cross product of the
output ports. A distinctiveness of Grid workflows is that workflow activities
are stand-alone command line applications that require a mapping between
the expected command-line arguments and the input and output ports used
for communicating with other activities. There are different manners in
which this mapping can be achieved, e.g., see [8] and [69]. For the rest of
the paper we assume that this mapping has been performed so that work-
flow activities are enacted with the appropriate parameters and the required
information is moved to and from activity ports.
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A Model of Computation (MoC) is an abstraction that defines the se-
mantics in which the execution of a workflow W is to be carried out. A
workflow engine is a software module that given a workflow description (W)
and a MoC (M) as input, executes the activities in W following the rules
specified by M. Thus, a workflow engine provides a concrete implementation
of a MoC and it is responsible for enacting workflows. The enactment is per-
formed by selecting activities to execute. The manner in which the activities
are selected and how the communication between activities is carried out is
defined in the MoC. The engine can execute in a local machine or it can be
exposed as a permanently available service accessible by many users. The
latter useful when executing long processes, as tools can reconnect to the
engine for monitoring and managing purposes without requiring permanent
connections.

4 Model of Computation (MoC)

A model of computation is a formal abstraction that provides rules to gov-
ern the execution, in this case, of workflows. Programming and workflow
languages have traditionally been designed with an underlying abstraction
whose formal semantics is given by a MoC [35]. Similarly, workflow en-
gines instantiate a MoC when enacting workflows. While it is common for
workflow systems not to reveal the MoC used by the engine, there are some
systems in which the explicit selection of MoC is required1.

Different MoCs have different strengths and weaknesses. Selecting a
MoC often depends on, among other things, how well the model abstracts
the problem at hand and how efficient the model can be implemented. A too
abstract specification, for the model, is not only inefficient but is also unfea-
sible to implement while too much detail in the specification over-constraints
the model making it inefficient and more costly to implement [35]. In essence,
for a MoC to be efficacious there should be a balance between the generality
offered by an abstract specification and the particularities of a detailed one.
Such a MoC is useful not only for a range of scenarios but it is also possible
to model and analyze interesting aspects of individual models.

Several MoCs have been used for the general workflow case, e.g., Petri
nets, dataflow process networks, and UML activity diagrams. Some of these
MoCs are not suitable for scientific workflows, e.g., even though BPEL is
widely used for workflows in a business context, it is not as popular in the
scientific community. This, despite several attempts at adapting BPEL for

1e.g., in Kepler [43] MoCs are exchangeable and are called Directors.
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the scientific workflow peculiarities [22, 42]. Instead, dataflow approaches
have predominantly been used for scientific workflows [43, 51, 64]. According
to McPhillips et al. [48] this adoption is due to the inherent focus on data
in the dataflow MoC, a characteristic that resembles the scientific process.

Still, a straight forward2 adoption of dataflow for Grid workflows is not
suitable. This is due to the characteristics of current, and in the foresee-
able future, Grid execution environments, such as the typical lack of control
over the internal states of workflow activities and the impossibility of con-
tinuously streaming tokens between activities. As presented in Section 3, a
distinctiveness of Grid workflows is that they typically consist of a number
of independent command line applications that are configured by environ-
ment variables or command line arguments. In this setting, activities are
considered black boxes and it is impossible for the workflow MoC to control
their internal states. For example, to the Grid workflow MoC, activities are
considered to be executing once they are scheduled for execution on a Grid
resource, even though they in practice may be stalled in a batch queue. An-
other distinctive characteristic of Grid workflow MoCs is that, as opposed
to the continuous streaming of tokens found in dataflow networks (e.g., as
in [43]), activities execute only once and communicate with other activities
at the end of this execution. Thus, it is important for the Grid workflow
MoC to support asynchronous communication and to carry out all commu-
nication only when activities finish executing, disabling those activities that
finish executing.

Because of the previous restrictions, MoCs that have been typically used
for Grid workflows are limited to Petri nets or some type of control flow
MoC specified either by DAGs [11] or by specialized imperative languages
[61, 67]. Below we present the manner in which Petri nets have been used as
a MoC for Grid workflows. We also make observations on the reasons why
a dataflow approach is not commonly employed in Grid workflows.

4.1 Petri nets

Petri nets are a mathematical and graphical tool specially useful for mod-
eling and analyzing systems that are concurrent, asynchronous, and non-
deterministic. Based on Murata [50], a Petri net is a bipartite graph in
which nodes called places are linked to nodes called transitions by directed
edges. There are no elements of the same node type connected to each other,
e.g., places are only connected to transitions and not to other places. Places

2By straight forward we mean using the same MoC , without changes, as in local
workflow systems.
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A B

Figure 1: Petri net illustrating the control flow between activities A and B.

directed to transitions are called input places while places coming out of
transitions are called output places. Places contain tokens that are required
for enabling (initiation) the firing of transitions. Places also have an as-
sociated capacity that indicates the maximum amount of tokens they can
hold. Edges have an associated weight that indicates how many tokens are
required to enable a transition as well as how many tokes are produced when
a transition is fired. A transition is fired only when each input place has
the necessary tokens, specified by the edge weight, to enable that transition
and if the output places have not yet reached full capacity. Once fired, an
amount equal to the edge weight is set on each output place. The marking
of the net describes its state and is given by the distribution of tokens in
the places. The initial marking describes the state of the net before any
transition has fired and a new marking is created after each firing of the net.

Petri nets have traditionally been used for representing the control flow
of workflows [30, 33, 60, 65]. The manner in which this flow is represented is
illustrated in Figure 1. In this network, two activities, A and B, are executed
in sequence. Activity A is enabled (i.e., ready to fire) as there is a token
in its input place (represented by the black dot). Conceptually, the firing
of A symbolizes the execution of some activity in a Grid resource. When
A completes execution a token is placed in the output place of A, which in
this case is also the input place of B, thus enabling B. It is important to
notice that B is not able to execute until A has finished. For this net the
tokens not only symbolize the passing of control between activities, but they
also maintain the state of the net. There is however no explicit information
about the data created or consumed by the activities.

The limited support for combining control and data flow within the
same model has been addressed by the introduction of specialized high-
level nets, in particular Coloured Petri nets (CPN) [36]. In CPNs places
have an associated data type (color set) and hold tokens that contain data
values (colors) of that type. Arc expressions indicate the number and type
of tokens that can flow through an arc. Tokens of the specific data types
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Figure 2: Representation of workflow activities using Coloured Petri nets.
Based on the work in[34].

need to be present in its input places for a transition to fire. Transitions
can also have an associated guard, a boolean expression that enables the
firing of the transition whenever the guard evaluates to true. There is no
ordering in how the tokens are consumed by a transition with respect to
how they arrived to an input place. A queue can be associated with a
place if ordering is desired. A more detailed discussion about this type of
networks can be found in [36, 50]. Jensen [36] presents a more informal and
practical introduction to CPNs whereas Murata [50] briefly touches upon
the relationship between High-level nets, a group to which coloured nets
belong to, and logic programs.

In the Grid workflow context Petri nets and CPNs have been used both as
a graphical specification languages and as a workflow engine MoCs. Guan et
al. [30] employ simple Petri nets as graphical language for defining workflows
in the Grid-Flow system. Workflows defined with Petri nets are translated
to the Grid-Flow Description Language (GFDL). Workflows in GFDL are
then fed to the Grid-Flow engine. Language constructs3 such as OR-Split,
AND-Split, and AND-Join are used to generate instances of choice, loops,
and parallel structures offered by GFDL. Hoheisel and Alt [34] employ CPNs
both as specification language and as a MoC. In the latter case, transitions
are used as processing elements (i.e., workflow activities) in which data
tokens are distinguishable. Thus, transitions operate as functions whose
parameters are obtained from the input places and the results are stored in
the output places.

Figure 2 illustrates this process, where the result of applying the function
in A to the parameters a and b is stored in the output place c. This Petri net
models the data flow generated by the data files produced and consumed by
the transition (representing a workflow activity) A.

While there are many characteristics that make Petri nets a sound choice

3In some settings called Workflow Patterns [66].
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Figure 3: A dataflow network that instantiates concurrent execution of ac-
tivities B and C.

for a Grid workflow MoC, there are some issues to be resolved. For example,
Murata [50] identifies that Petri nets can become quite complex even for
modest-size systems. A weakness of Petri nets when compared to a dataflow
approach is the necessity to define parallelism explicitly e.g., using AND-
Split and AND-Join [66].

4.2 Using dataflow networks on Grid workflows

Dataflow networks are the preferred MoC for local scientific workflows. For
example, Triana [9], Kepler [43], and Taverna [52] offer capabilities that, one
way or another, resemble the dataflow style of computation. In the original
dataflow approach the focus was on fine-grained flows at the CPU instruction
level. In those cases nodes represent instructions and edges represent data
paths. When this metaphor is moved to the workflow paradigm, nodes no
longer represent instructions but coarse-grained processing operations while
edges represent dependencies between workflow activities.

Figure 3 illustrates a dataflow network in which activity A sends tokens
concurrently to activities B and C. The figure presents a simplification of the
actual process been carried out, nevertheless it helps us present the problems
found when attempting to apply a dataflow approach to Grid workflows.
The Figure shows a pipeline dataflow in which initial tokens are processed
by A, and then B and C concurrently process the tokens generated by A.
In the original dataflow process networks (e.g., as presented in [59]) tokens
are continually streamed through the pipeline so that activities A, B, and C

are all concurrently processing although operating on different tokens. The
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circles inside the rectangles represent ports that serve as containers of data
(see Section 3) and also serve as interfaces for establishing communication
channels between workflow activities. In local workflows these ports have an
associated data type that indicates the type of tokens that they can hold.
These data types need not be restricted to simple types (e.g., integer, float,
or string) as they can also be complex data structures [48]. On the contrary,
in Grid workflows tokens only represent associations with data files and are
otherwise untyped. Further discussions about type systems in workflows is
presented in Section 5.1.

We identify the continuous streaming of tokens between activities and
the lack of control of the workflow MoC over the internals of the activities
as the main impediments for adopting dataflow style of computation in Grid
workflows. Below we present a brief discussion on how these issues can be
addressed.

Streaming of tokens between activities. In dataflow nets parallelism
is achieved through concurrent processing of tokens by different activities.
This e.g., can be seen in Figure 3 when A is processing token (xi, yi) while B

and C are processing tokens produced by A(xi−1, yi−1), a previous execution
of A.

In local workflows, this process is easily accomplished by e.g., interpro-
cess communication or message passing. The nature of the Grid, however,
impedes an easy solution if attempting to implement the same functionality
on Grid resources. For Grid workflows, resources where activities A, B, and
C are to be run must be guaranteed to start executing at the same time, a
process known as co-allocation [21]. All resources must also be able to syn-
chronize with each other to establish direct lines of communication between
themselves.

The process of co-allocation of Grid resources is difficult for multiple
reasons. At a technical level activity A must have access to the network
addresses of the resources where B and C are running. However, this in-
formation is often not distributed outside the site in which B and C are
running, making such a synchronization impossible. Another technical issue
is that since many Grid applications operate on very large data files, trans-
mitting only small bursts of data is not efficient. Furthermore, streaming
tokens between activities requires adaptation of applications that normally
communicate through files.

Several solutions for the problem of co-allocation of Grid resources have
been proposed. These solutions usually depend on advance reservations
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to ensure that all resources are available at the same time. However, the
use of advance reservations introduces a problem at a managerial level, as
reservations are known to degrade the performance of a system [45, 62, 63].

Lacking globally controlling coordinators. In local workflow systems
the MoC has control over the internal processing of the activities. This
means that any changes in the internal states of the activities are exposed
to the MoC. For example, for the case illustrated in Figure 3, the MoC can
recognize the state that activity A reaches after processing token (xi, yi).

This is not the case for Grid workflows. In this setting the MoC can
only recognize that an activity is ready to execute, that an activity has been
submitted to a Grid resource but for practical reasons can be considered to
be executing, and that an activity has finished executing either successfully
or with an error. All other changes in state are transparent to the MoC.

The nature of this obstacle is the use of command line applications that
operate on un-structured4 data files. However, the use of command line ap-
plications also simplifies the use of Grid resources by end-users as they are
not required to modify their software. Thus, there is a trade-off between hav-
ing simple coordinating MoCs in which applications can be easily included,
and having more complex MoCs that require modifications to applications
(even complete re-implementations) prior inclusion in the model.

While Petri nets have previously been used to model dataflow [40, 68],
the use of CPNs facilitates this process. The CPN in Figure 2 can be
adapted to model a processing unit from a dataflow network, i.e., the input
and output places have similar functionality as input and output ports. A
difficulty when modeling dataflow with CPNs is how to describe the implicit
parallelism found in dataflow networks. A näıve approach produces conflicts
among the concurrent activities. This can be seen in the CPN in Figure 4
that attempts to model the dataflow network of Figure 3. The conflict occurs
after A fires and sets a single token in its output place. At this point, both
B and C are enabled but only one can fire as there is only one token to
consume.

Figures 5 and 6 illustrate two manners in which this problem can be
resolved. The first approach is to add one output place for each transition
that depends on the output place whereas the second approach adds a sub-
net. With the second approach there is a complete separation between the
activities as opposed to the first approach in which the output and input

4As opposed to structured data files such as XML documents defined through XML
schema or basic data types such as integer or string.
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Figure 4: CPN that simulates the functionality of Figure 3. In this CPN
activities B and C are in conflict.

A

B

C

Figure 5: A CPN that requires one output place for each dependent activity.
In this case one for each B and C.

B

C

A

Figure 6: A CPN that uses a sub-net to connect dependent activities. The
output place of A is not the same as the input places of B and C, thus each
can have an associated buffer.
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places are shared between the activities. This second approach provides a
more accurate representation of dataflow processing units.

A MoC inspired by dataflow networks but adapted to Grid environments
is presented in our previous work [20]. In this approach, activities execute
once and are then disabled from further execution. Input and output ports
are used to establish dependencies between activities. The only data type
used is string and data values represent Grid storage locations where the
data files are to be found. Tokens carry this information from one activity
to the other. Files are transferred to the resources where the activities are
to execute from the locations where previous activities stored their outputs.

While this discussion has focused on Petri nets and dataflow, it is impor-
tant to mention that by far the most common approach for controlling de-
pendencies in Grid workflows is through DAGs. Currently, there are several
projects [11, 15, 38] that offer higher level interfaces for specifying workflows
that are rewritten in order to reduce execution time. The output of these
rewrites is often produced as DAGs. In these cases the DAGs represent
schedules for execution of workflow activities on Grid resources.

5 Workflow Representation

In this section we address several factors relevant to workflow languages.
We begin by exploring the use of type systems in workflow languages (Sec-
tion 5.1). We explore the differences in capabilities offered by type systems
depending on whether the language is for local or Grid workflows. As in the
MoC case, the nature of these differences arises from the differences present
in Grid environments.

A common differentiation in workflow languages is that between control-
driven (control flow) and data-driven (data flow) styles for representing
workflows. In control-driven workflows the complete order of execution is
specified explicitly whereas in data-driven workflows only the data depen-
dencies between activities are given and the execution order of the activities
is inferred from the manner in which the data dependencies are satisfied.
Thus the data-driven style specifies a partial order for the workflow activi-
ties and the exact order of execution is not known until run time. The choice
of style is mostly driven by the selected MoC. However, several languages
support mix-models, based on one MoC but with basic support for the other.
In Section 5.2 we illustrate mechanisms to translate control-driven workflows
into data-driven ones and vice-versa.

All modern general-purpose programming languages are Turing com-
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plete, with the caveat that their run time environments as provided by to-
day’s computer hardware have a finite memory size as opposed to the infinite
tape length of the universal Turing machine. Being Turing complete implies
that a system is computationally equivalent to other Turing complete sys-
tems. Within the workflow community there are arguments for and against
having Turing complete workflow representations. For example, according
to Deelman [13], “one have to be careful not to take workflow languages to
the extreme and turn them into full-featured programming or scripting lan-
guages”. On the other hand Bahsi et al. [5] argue that workflows without
conditions and iterations are not sufficient for describing complex scien-
tific applications. Nevertheless, when examining current workflow systems
[5, 14, 56] it becomes apparent that most systems are Turing complete5. In
light of this finding, we discuss in Section 5.3 the manner in which the pre-
requisites for Turing completeness, namely state management, conditions,
and iterations are implemented by different workflow languages.

5.1 Workflow languages and type systems

One aspect to consider about workflow languages is the choice of type system
offered by the language. Which data types are present, whether data types
must be explicitly specified or if implicit specification is supported, and
whether the language must provide mechanisms for describing new types
are all issues that vary among languages, specially between languages for
local and Grid workflows.

For local workflows, it is relatively easy to wrap applications in an em-
bedding model that ensures compliance with the type system. For this
case activities are often developed from scratch, using APIs provided by the
workflow system and are thus completely capable for operating within the
framework provided by the workflow system. This is the case in e.g., Triana
[9] and Kepler [43]. However, due to the use of command line applications,
applying this functionality to Grid workflows is not simple. Data type in-
formation is not required for command line applications and thus it is not
included in any one of the several job description languages (e.g., JSDL [2])
currently in use. This is the case also for the languages in e.g., DAGMan
[11] and GWEE [20]. Nevertheless, there are some Grid languages that use
different methods for including type information in the workflows, this is
the case in e.g., BPEL [37], ICENI [47], and Karajan [67].

5As a side note, non-Turing complete languages have many uses [7], although they are
typically used in specialized areas.
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Exposing Grid applications through type interfaces, e.g., Web services
or component models such as CCA [3] or GCM [10], can be a substantial
effort as it requires e.g., software installations on remote machines [16, 46].
A further complicating factor when adding a type system to Grid workflow
languages is that such languages most often lack support for defining custom
data types. It is thus hard to express the structure of data files that are
used by a given application. An exception is the Virtual Data Language
(VDL) [69] that provides primitives for describing data sets, associating
data sets with physical representations, and defining operations over the
data sets. Furthermore, whereas it is relatively simple to verify that input
values adhere to certain basic types (e.g., integer or float) it is more complex
to verify that a data file is of a specific format or follows a predetermined
structure.

In summary, using type information in Grid systems simplifies workflow
design and error handling, but it also adds overhead as each application that
is used must be exposed through a type interface. On the other hand, not
using a type system (e.g., supporting a single data type) increases flexibility
as any (command line) application can be embedded in a workflow, but this
at the expense of higher difficulty in detecting data incompatibilities.

5.2 Control-driven and data-driven workflows

Control-driven and data-driven MoCs differ in the semantics of consuming
dependencies between activities. In control-driven workflows, consuming a
dependency results in the transfer of execution control from the preceding
activity to the succeeding one, whereas in data-driven a data token is sent
from the first activity to the next one and an activity is only able to execute
after all data dependencies are cleared (i.e., all tokens are received). The
choice between styles depends, in part, on the applications to be described,
e.g., some areas such as image or signal processing have traditionally been
represented with data-driven workflows as this model provides a natural
representation of the problems studied within these fields [54, 64].

Recent results advocate for a simple hybrid model based on a data-driven
style but extended with limited control constructs [14]. The validity of this
model is attested by support of both styles of flows by several contemporary
systems [15, 38, 43, 55, 61]. In part, such a hybrid model can be realized
because, despite their differences in operation, converting from one MoC
to the other is not a complicated process. However, it is possible that
performing such conversions, control to data and data to control, requires
simulating missing functionality with the primitives available in either style.
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Figure 7: A control-driven dependency (top) denoted by solid lines and the
corresponding data-dependency (bottom) illustrated by dashed lines. In
both cases activity B executes after activity A.

This results in more complex workflows and increases the risk of introducing
errors. Nevertheless, control- and data-driven workflows are interoperable
at the workflow language level. Below we present a manner in which such
conversions can be attained for the case of Grid workflows.

5.2.1 Conversions between control-driven and data-driven work-

flows

As presented in Section 3, communication between activities in Grid work-
flows is performed by the transfer of untyped data files. For this case control
dependencies can be converted to data dependencies by using tokens that
carry no data values (i.e., dummy data tokens) and in practice only represent
the transfer of control from one activity to another. This case is illustrated
in Figure 7 where equivalent control- and data-driven versions of a control
dependency between activities A and B are presented. The circle in the
bottom workflow being the dummy data token introduced to simulate the
transfer of control from A to B. The case with actual data tokens is presented
in Figure 8. In this case a file transfer (Activity B) that is represented ex-
plicitly in the top workflow is converted to an implicit transfer embedded in
a data dependency as shown in the bottom workflow.

The reverse process can be applied for converting from data- to control-
driven workflows. Data dependencies are converted by inserting an interme-
diate activity that performs an explicit file transfer from the location where
the source activity was executed to the machine where the target activity
is to be executed. The top workflow in Figure 8 illustrates the result of
this process, converting from the bottom workflow in the figure. Notably, it
is possible to eliminate the explicit file transfer (B) if such transfer is per-
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Figure 8: File transfers are workflow activities in control-driven workflows
(Activity B in the top workflow) and data dependencies in data-driven work-
flows (data dependency with token labeled B in the bottom workflow).

formed as part of the job execution, a mechanism supported by most Grid
middlewares (e.g., Globus [25]). For abstract workflows6, as the resources
where activities are executed are not know until enactment, the conversion
must be performed after executing the source activity as the actual location
of the data files is not known before. Otherwise the workflow must spec-
ify the resources where all activities are to be executed (i.e., it must be a
concrete workflow).

An important step when converting from data- to control-driven is to
perform a topological sorting of the data dependencies. Consequently, the
resultant control-driven workflow specifies only one among many possible
execution orders. As a result the precise execution order may differ between
the data and the derived control-driven versions. This is however of no prac-
tical concern, as the respective execution order of all dependent activities is
maintained.

In practice these conversions have been performed a number of times. For
example, Mair et al. [44] describe how to convert both styles of workflows,
control- and data-driven, to an intermediate representation based on DAGs.
A concrete implementation between the Karajan language (control-driven)
and the internal representation of GWEE (data-driven) is presented in our
earlier work [20].

5.3 Essential language constructs

Turing completeness, the ability to simulate a universal Turing machine, is
important when analyzing the computing capabilities of systems. The ability

6In abstract workflows only the structure of the workflow is specified. The physical
resources where the activities are to be executed are not specified.
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to manage state, e.g., by been able to define, update, and read variables, is
one criteria for Turing completeness. In addition to state handling, condition
(branching) and repetition (typically recursion or iteration) functionalities
are also required mechanisms for Turing completeness. Here, we look at
workflow languages in light of these mechanisms. Motivating use cases are
presented for each mechanism as well as the manner in which the mechanisms
are implemented by different workflow languages. We also take a look at
when and how Collections are useful.

5.3.1 Workflow state management

In modern imperative and object-oriented programming languages state is
managed by defining and updating variables that represent an abstraction
of memory locations. Some workflow languages, such as Karajan [67] and
BPEL [37], support state management through a variable construct similar
to that of modern programming languages. Other workflow systems, e.g.,
DAGMan [11] and Taverna [52], have no built-in language mechanism to
manage state. The only state in those systems is the run time state of the
workflow activities (e.g., completed, running, waiting). Not having variables
creates difficulties when using general condition and iteration constructs as
these make branching decisions mostly based on state. A different approach
for implementing a state-like mechanism is to use system parameters for
defining properties that hold similar functionality as environment variables.
This mechanism is used by ASKALON [61] and JOpera [55].

5.3.2 Conditions

By far the most common use for conditions in workflows is for workflow
steering, a functionality that carries similar semantics as the well known if
and switch constructs. The idea is that the flow is dynamic and the output
is non-deterministic. The most frequent use case for workflow steering is
classical flow of control where the branch to enact is decided at run time
based on the outcome of previously executed activities. Changing the enact-
ment of a workflow in reaction to external events is an alternative steering
use case suggested by Gil et al. [27].

Another use case for conditions is iterative refinement scenarios, where
some activity needs to be repeatedly executed until a condition is met. In
addition to conditions, iterative refinement scenarios requires iteration con-
structs and a testing mechanism, both issues discussed in more detail later
in this section.
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Figure 9: The black box approach where conditions are hidden in a special
activity type. In this case, the condition is transparent to the rest of the
workflow.

A final use case in which conditions have been employed is fault toler-
ance. A survey of fault tolerance mechanisms used in various Grid workflow
systems is found in Plankensteiner et al. [57]. In this use case conditions
are used for defining alternative actions for situations in which a workflow
activity fails. In contrast with programming languages that typically have
special language constructs for catching generated runtime exceptions, in
distributed Grid workflow environments, errors in remotely executing activ-
ities do not generate such exceptions but rather result in failed activities.
Conditional statements are typically sufficient for many cases of fault toler-
ance.

There are basically two abstractions for implementing conditions in a
DAG or dataflow based workflow representation. The first one considers
conditions as a special type of workflow activity. In this approach, illustrated
in Figure 9, the condition is viewed as a black box with the branches hidden
inside the activity. This form of condition gives rise to so-called “structured
workflows” [41] which are analogous to conditions and iterations found in
structured programming. This type of constructs have only one entry (pre)
and one exit (post) point into and out of the workflow. An example of this
approach is Triana [9]. The other alternative is to have the condition as
an activity that selects a branch of execution but with all possible branches
exposed in the main workflow. In this case, care must be taken as deadlock
may arise if the branches are not well synchronized. This second approach
is how conditions are implemented in JOpera [55] and Karajan [67].

After a branch is selected, data must be sent to the initial activity of the
branch in order to trigger execution. However, unless special care is taken,
not-selected branches may end up in a dead-lock state, waiting for input
forever. One solution to this undesired effect is to prune the workflow graph
by removing not-selected subgraphs from the workflow. Such a solution is
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akin to the elimination of dead code, a well-studied problem in compiler
theory [1]. The introduction of conditions can also introduce problems with
synchronization with previous branches of the workflow. More specifically,
combination of primitives such as OR-Split and AND-Join in BPEL [37]
may result in dead-locks unless care is taken.

Detecting workflow termination becomes more complicated when the
workflow contains branches that do not execute. With conditions imple-
mented using the black-box approach, this problem can be solved by marking
conditional activities as completed once one of its branches finish executing.
A different approach is to mark branches along the non-selected paths with
a terminal state that indicates that they are not to run. It is also possible
to tag certain activities (such as activity C in Figure 9) as terminal ones.
Once such an activity completes, the workflow enactment engine is assured
that the workflow has finished executing.

In a typical, non-typed Grid workflow, condition evaluation (often re-
ferred to as testing) is hard to achieve as the workflow system has no control
over the evaluation of the condition. Generality in the testing capabilities
is also difficult to achieve unless the system limits what can be tested. As
activities in Grid workflows usually communicate via files instead of typed
variables, ordinary boolean testing is tedious in a Grid environment. To
complicate things further, it is typically hard to distinguish between errors
in the application execution and faults related to the Grid infrastructure.
One possible solution is to offer a subset of predefined testing capabilities,as
it is done in e.g., UNICORE [5, 17]. In this work, three sets of tests are
defined: (1) ReturnCodeTest, indicating successful or failed task execution;
(2) FileTest, for checking whether files exist, are readable, writable, etc.;
and (3) TimeTest, that tests if a certain time has elapsed. These evaluation
capabilities are based on information similar to what is known about process
execution in shell scripting languages. An alternative method is to imple-
ment testing by an external agent that has the domain-specific knowledge
required to perform comparisons [14].

5.3.3 Iterations

We distinguish between three types of iterations:

1. Counting loops without dependencies between iterations are often re-
ferred to as parameter sweeps or horizontal parallel iterations. This
type of iteration generates parallel independent branches and is akin
to applying a function to each element from a set. In many program-
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Figure 10: A counting loop without dependencies expressed as a parameter
sweep.

ming and workflow languages, such loops are often expressed using
language constructs such as parallel-for or for-each.

2. Counting loops with dependencies between iterations where the results
from one iteration is used in the next one. This type of loop can hence
not be independently executed in parallel. Typical syntax for these
iterations is do-n and for-n.

3. Conditional loops are also referred to as non-counting iterations, tem-
porally dependent iterations, or sequential iterations. This type of
loop stops only when a certain condition is met. While, and do-while
are used to express conditional loops in most programming languages.

Algorithm 1 Counting loop without dependencies

1: for I ← 1 . . . N do

2: f(I);

As demonstrated by Ludäscher et al. [43] counting loops without de-
pendencies can be expressed using the map function from functional pro-
gramming, that is, f(x1, x2, . . . , xn)⇒ (f(x1), f(x2), . . . , f(xn)). Algorithm
1 illustrates a typical loop of this type and Figure 10 illustrates the equiva-
lent workflow construct after applying the map function. This type of loop
give rise to a high degree of concurrency as the threads of execution are
completely independent. The same concurrency is impossible to achieve for
counting loops with dependencies. The reason is that an iteration depends
on results from a previous iteration. However, as illustrated in Algorithm 2

25



f(a[2]) f(a[3]) f(a[n])...

Figure 11: A counting loop with dependencies between iterations rolled out.

and Figure 11, this type of iteration can be rolled out [1, 12] and equivalent
functionality can be provided without using iterations. Contrary to the two
types of counting loops, conditional loops cannot be expressed by rewriting
the workflow graph. Furthermore, this type of loop requires support for
conditions to test when the terminal condition is met. We remark that it
is trivial to rewrite a counting iteration as a conditional loop, whereas the
opposite is not possible in the general case.

The mechanisms to support iteration constructs by workflow languages
are similar to the ones used for conditions. In the first case, the black
box approach, the iteration is a special workflow activity with one entry
and one exit point. This is the approach taken by the extensible actor
construct in Kepler [43]. The second alternative is to have an expression-like
construct that allows the flow of control to iterate over selected activities
in the workflow. This second approach introduces cycles to the workflow
graph and creates a more complex enactment since care must be taken to
avoid infinite loops.

Iterations, essentially being a flow of control construct, are easy to sup-
port by control-driven languages, whereas the semantics of iterations are
unclear for pure data-driven languages. Mosconi et al. [49] investigates the
minimal set of control flow constructs required to support iterations in a
pure dataflow language and surveys existing implementations of iterations
for visual programming languages.

Algorithm 2 Counting loop with dependencies

1: a[1]← initial value;
2: for I ← 2 . . . N do

3: a[I]← f(a[I − 1]);

5.3.4 Collections

Some programming languages, e.g., LISP and Perl, have built-in for-each
operations that treat a collection of elements as a single entity. Similar
ideas are used in vectorizing and parallelizing compilers [4, 32]. These type
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of data-collection operations are also supported by some workflow systems,
e.g., ASKALON [58] and the COMAD [48] implementation in Kepler. Data-
collection mechanisms are data-centric and hence can simplify the use of
dataflow style languages. However, collections do not bring additional func-
tionality beyond what is offered by parameter sweeps or iteration constructs
except the aforementioned simplification.

6 Discussion and Concluding Remarks

Here we discuss the topics covered in the previous sections with a compre-
hensive outlook. As such, while topics are ordered as they are introduced
in those sections (Sections 2–5), there are cases in which the topics overlap
section crossings.

6.1 Model of computation

The model of computation is the central concept of a workflow engine. It
can even be said that the workflow engine is merely an implementation of
a MoC. Previous results [13, 48] suggest that a dataflow approach suits the
scientific process best. This is supported by the number of solutions that
use the dataflow MoC, and the manner that these solutions can be trivially
adapted to operate in disparate scientific fields. Common to these solutions
is the use of local machines as execution environment, which appears natural
as the environment that local machines offer is well adapted for the dataflow
MoC.

This is not the case for Grid workflows. Limitations such as the lack of
control over activities, lack of support for streaming tokens between activi-
ties, and the unavoidable requirement of executing activities in a batch pro-
cessing fashion, make the use of a pure dataflow MoC unfeasible to achieve.
Control-driven approaches appear to be better adapted for this type of en-
vironment. Nevertheless, there are several projects that attempt to use
dataflow style of coordination for Grid workflows.

One way to achieve functionality similar to what the dataflow MoC offers
is to use higher level representations that are later refined to concrete activity
specifications. This is the case presented in, e.g., [8], [15], and [26]. In [15]
and [26] a concrete workflow DAG with the correct order of execution for
the activities is generated from more abstract representations, whereas in
[8] a data-driven representation is concretized into dataflow-like workflows
that are enacted on the Grid [20]. As presented in Section 4.2, CPNs can
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also be used for representing dataflow style coordination but care must be
taken to avoid (firing) conflicts.

Interoperability between MoCs can be achieved under certain circum-
stances. The manner in which the workflow activities are implemented, in
particular the MoC underlying their design, is the key aspect that enables
the activity to operate under different MoCs. On the local side Goderis et
al. [29] provide insight on which combinations of MoCs are valid and useful.
This work offers a hierarchical approach in which MoCs, called directors,
require certain properties from the activities, called actors, that they co-
ordinate. Directors also export properties to the actors in which they are
included. The set of properties offered and required establishes a contract
and depending on how well the contract is respected it assures the compat-
ibility of actors and directors, and thus the potential compatibility among
different MoCs. Actors that completely adhere to the contract are called
domain polymorphic [18] and can be used by any director. Thus, when seek-
ing interoperability, it is important to develop the workflow activities in a
manner in which they can be controlled by different MoCs. However, this
is not always possible.

The core of the difference between local and Grid workflows is the exe-
cution environment. Interoperability between local and Grid MoCs is thus
possible only in a few cases and directly depends on the manner in which
the activities are executed on the Grid. Nevertheless, in practice this type of
interoperability is not often requested, instead, what is commonly expected
is for local workflow systems to be able to submit work to the Grid on either
a per activity or per sub-workflow basis. The latter case with aid from a
Grid workflow system.

6.2 Language issues

Section 5.1 discusses the issue of type systems and workflow languages. As
presented there, it is common for local workflows to support type information
while it is much less common for Grid workflows to support this functionality.
In the reminder of this section we revisit the various language constructs
introduced in Section 5 and investigate the extent to which the respective
mechanisms are required. For the various constructs, we look at typical
use cases and discuss whether equivalent functionality can be achieved by
different means or if the use case motivates the particular language construct
used.
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6.2.1 State management

Variables have traditionally been used to manage state in programming
languages. This is also the case for the workflow language of Karajan [67].
However, lack of a variable construct need not imply that a language is
not Turing complete. For example, Glatard et al. demonstrate how to
implement a Turing machine in the Taverna Scufl language [28]. In this
work, the limitation of not being able to define variables (and hence manage
state) in Scufl is circumvented by performing state management inside one
of the workflow activities (implemented in Java). For Petri nets it is also
possible to handle state. For this case the state is given by the marking of
tokens in the places of the net.

6.2.2 Conditions and iterations

It appears that in order to describe and execute anything but the most trivial
process, workflow steering, and hence conditions, are required. However, the
survey by Bahsi et al. [5] shows that not all workflow systems support con-
ditions as part of their workflow language. Equivalent functionality can be
achieved by other mechanisms, as illustrated e.g., by the pre and post scripts
that are used to steer the path of execution in DAGMan [11]. This suggests
that although conditions are required for workflow steering they need not
necessarily be part of the workflow language as they can be expressed using
alternative mechanisms. Instead, at least for Grid workflows, a mechanism
to implement the testing required for conditions is more important.

The iterative refinement use case can be implemented in two ways. One
alternative is a fine-grained workflow that iterates over individual activi-
ties until some condition is satisfied. In addition to handling conditions
and testing, this approach requires the workflow language to expose a loop
mechanism. Alternatively, it is possible to have a coarse-grained workflow
in which the activities as well as the testing mechanism are all abstracted
and hidden inside a single workflow activity. In this latter approach, which
is taken e.g., by Kepler [43], conditions are not necessary for specifying
the workflow. The support for the iterative refinement use case is hence
a trade-off between (potentially too large) granularity, and thus possible
limited parallelism, and added complexity of the workflow language.

There are two types of failures occurring frequently in workflows sys-
tems. In the first type, infrastructure problems such as network failures,
power outages, temporarily unavailable storages or databases, insufficient
disk space, incorrect hardware, etc. cause an activity or a file transfer to
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fail. For this case a lower level tool would ideally ensures fault tolerance, e.g.,
by restarting interrupted file transfers, resubmitting failed jobs to alterna-
tive machines, etc. These types of mechanisms to recover from infrastructure
problems are known as implicit fault management [33]. Such a recovering in-
frastructure removes the need for the user to manually, through conditions,
encode alternative execution paths for the workflow to follow upon failures.
In contrast the manual alternative quickly becomes unfeasible due to the
large number of potential error sources. In the second type of failure the
workflow enactment fails due to errors in the workflow itself. These errors
can be faulty descriptions of activities, incompatible messages exchanged
between activities, unintended deadlocks in the workflow graph (e.g., circu-
lar data dependencies), etc. For this case conditions are of limited use as
the errors in the workflow are detected only during enactment whereas con-
ditions must be added at design time. Manual inspection and modification
of the workflow is typically required to solve this type of problems.

Similar to the case of conditions, a repetition mechanism is often re-
quired to express complex workflows. The mechanism need not be an it-
eration construct in the language, as it is commonly known that recursion
offers the same functionality. The latter approach is taken by e.g., Condor
DAGMan [11] and JOpera [55]. Another example of a repetition with no
explicit construct is to use parameter sweeps for implementing loops with-
out dependencies. For this case, a mechanism for distributing data, e.g.,
data collections, to the different threads of execution (each operating on a
different iteration from the loop) often facilitates this process. As far as an
iteration mechanism is required, there is always the possibility of using a
single application that hides the iterative structure of the workflow. How-
ever, care must be taken in order not to limit potential concurrency and
thus reduce the performance of the workflow.

6.3 Execution environment interoperability

It is difficult to address the issue of execution interoperability for local work-
flows as workflow activities are developed specifically for a particular system.
These activities are dependent on libraries that offer a common execution
and communication environment for operating within a particular system.
It is not easy to decouple the functionality of the activity from the opera-
tional framework. Instead, in many cases, the targeted functionality must
be re-implemented if it is required by other systems.

Web services are sometimes presented as the silver bullet of interoper-
ability for distributed computing use cases. PGrade [39] and Taverna [52]
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are well known examples of service-based solutions. Yet, using Web services
only partially solves the interoperability problem, namely how to in a proto-
col and programming language independent manner invoke a capability (an
operation) offered by a remote entity (a service). Issues related to the coor-
dination of these activities, i.e., to the workflows, including workflow MoC
and workflow language are not addressed. Standardization efforts for web
service coordination languages, e.g., BPEL [37], have been found unsuitable
for scientific workflows [6].

In the Grid, execution level interoperability often means being able to
execute activities in resources that use different Grid middlewares. This
type of interoperability is a well studied problem with several solutions.
For example, in previous work we have show how this can be achieved by
decoupling the submission of activities from the control of dependencies in a
Grid workflow engine [20]. Then, by using a chain-of-responsibility pattern
the correct middleware for executing each activity is selected at run time.
A similar solution but at the activity level is presented in [21]. A more
specialized solution that also operates with different middlewares and can
work with groups of activities while offering fault tolerance is provided by
our Grid Job Management Framework (GJMF) [19]. Similar approaches to
workflow execution interoperability are proposed by P-Grade [39].

6.4 Granularity concerns

As we have seen from the discussions of conditions and iterations, the granu-
larity of workflow activities affects the performance as well as the complexity
of workflows. Too fine granularity can limit the performance due to a higher
overhead in Grid interactions. Conversely, having too coarse-grained activ-
ities can also reduce workflow performance, in this case due to a reduction
in concurrency as the problem can no longer be partitioned into smaller
chunks that can operate independently without synchronization. Other is-
sues in which granularity is of concern include the Grid interaction style and
whether sub-workflows or individual activities are the basic means of sub-
mitting work to the Grid. In general, there is a trade-off between granularity
on one hand and complexity and performance on the other. Nevertheless,
varying the granularity of activities can be beneficial when striving for in-
teroperability between systems.
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6.5 Concluding remarks

In this work we give a comprehensive presentation of the different problems
that directly affect interoperability among scientific workflows. Part of our
results is the introduction of three dimensions for addressing interoperability
issues. The degree of coupling between these dimensions (MoC, language,
and execution environment) has interesting consequences. For example, an
important lesson learned in our work with a middleware independent Grid
workflow engine [20] is that a complete decoupling between execution envi-
ronment (i.e., Grid middleware and job description language) and workflow
language improves portability and interoperability of the engine, but also
makes workflow design more tedious and error prone, as the workflow activi-
ties, viewed as black boxes by the enactment engine, are completely untyped.
There hence exists a trade-off between usability and interoperability.

A similar trade-off also exists between execution environments and MoCs.
For example, in essence, the goals of local and Grid workflow MoCs differ
significantly. For local workflows, users are better able to express their so-
lutions using MoCs closer to the problem space, as illustrated by the many
different dataflow style solutions found for local workflows. However, in
these solutions activities are tightly coupled to a particular workflow system
and it is not easy to reuse those activities in a different one. On the other
hand, in Grid workflows it is simple to provide interoperability at the mid-
dleware level. Yet it is harder to specify Grid workflows as, e.g., conditions
and iterations are not always available. From our previous discussion we
can argue that in local workflows it is better to interoperate at the workflow
level whereas in Grid workflows is preferred to do so at the activity level.
Furthermore, from the execution environment dimension, our findings sup-
port the use of hierarchical approaches that consider sub-workflows (and all
activities) as black boxes.

At the workflow language level a more important trade-off is that be-
tween usability and complexity on one hand and potential concurrency (and
thus performance) on the other. This trade-off appears in any decision for
varying the granularity of activities. The most illustrative case is the dif-
ferent ways in which conditions and iterations are implemented by different
systems. While it is possible to translate between languages, differences in
implementation details may lead to a tedious processes, performed in ad-hoc
ways, and not prone to automation.
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Designing general, composable, and middleware-independent Grid in-
frastructure tools for multi-tiered job management. In T. Priol and
M. Vaneschi, editors, Towards Next Generation Grids, pages 175–184.
Springer-Verlag, 2007.

[20] E. Elmroth, F. Hernández, and J. Tordsson. A light-weight Grid work-
flow execution engine enabling client and middleware independence. In
R. Wyrzykowski et al., editors, Parallel Processing and Applied Mathe-
matics. 7th Int. Conference, PPAM 2007, pages 259–270. Lecture notes
in Computer Science 4967, Springer-Verlag, 2008.

[21] E. Elmroth and J. Tordsson. A standards-based Grid resource brokering
service supporting advance reservations, coallocation and cross-Grid in-
teroperability. Concurrency Computat.: Pract. Exper. (accepted), 2009.

[22] W. Emmerich, B. Butchart, and L. Chen. Grid service orchestration
using the business process execution language (BPEL). J. Grid Com-
puting, 3(3–4):238–304, 2005.

[23] S.D.I. Fernando, D.A. Creager, and A.C. Simpson. Towards build-time
interoperability of workflow definition languages. In V. Negru et al.,
editors, SYNASC 2007, 9th international symposium on symbolic and
numberic algorithms for scientific computing, pages 525–532, 2007.

[24] International Organization for Standardization. ISO/IEC 2382-1 infor-
mation technology - vocabulary - part 1: Fundamental terms, 1993.

[25] I. Foster. Globus toolkit version 4: Software for service-oriented sys-
tems. In H. Jin et al., editors, IFIP International Conference on Net-
work and Parallel Computing, pages 2–13. Lecture notes in Computer
Science 3779, Springer-Verlag, 2005.

[26] Y. Gil. Workflow composition: semantic representations for flexible
automation. In I. Taylor et al., editors, Workflows for e-Science, pages
244–257. Springer-Verlag, 2007.

35



[27] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers. Examining the challenges
of scientific workflows. IEEE Computer, 40(12):24–31, 2007.

[28] T. Glatard and J. Montagnat. Implementation of Turing machines with
the Scufl data-flow language. In Eighth IEEE International Symposium
on Cluster Computing and the Grid, pages 663–668. IEEE, 2008.

[29] A. Goderis, C. Brooks, I. Altintas, E. Lee, and C. Goble. Heterogeneous
composition of models of computation. Future Generation Computer
Systems, 25(5):552–560, 2009.

[30] Z. Guan, F. Hernández, P. Bangalore, J. Gray, A. Skjellum,
V. Velusamy, and Y. Liu. Grid-Flow: a Grid-enabled scientific work-
flow system with a petri-net-based interface. Concurrency Computat.:
Pract. Exper., 18(10):1115–1140, 2006.

[31] F. Hernández, P. Bangalore, J. Gray, Z. Guan, and K. Reilly. GAUGE:
Grid Automation and Generative Environment. Concurrency Compu-
tat.: Pract. Exper., 18(10):1293–1316, 2006.

[32] W.D. Hillis and G.L Steele. Data parallel algorithms. Communications
of the ACM, 29(12):1170–1183, 1986.

[33] A. Hoheisel. User tools and languages for graph-based Grid workflows.
Concurrency Computat. Pract. Exper., 18(10):1001–1013, 2006.

[34] A. Hoheisel and M. Alt. Petri nets. In I. Taylor et al., editors, Workflows
for e-Science, pages 190–207. Springer-Verlag, 2007.

[35] A. Jantsch and I. Sander. Models of computation and languages for em-
bedded system design. IEEE Proc.-Comput. Digit. Tech., 152(2):114–
129, March 2005.

[36] K. Jensen. An introduction to the practical use of coloured Petri nets.
In W. Reisig and G. Rozenberg, editors, Lectures on Petri Nets II:
Applications, pages 237–292. Lecture Notes in Computer Science 1492,
Springer-Verlag, 1998.

[37] D. Jordan and J. Evdemon (chairs). Web Services Busi-
ness Process Execution Language version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf, September 2008.

36



[38] P. Kacsuk, G. Dozsa, J. Kovcs, R. Lovas, N. Podhorszki, Z. Balaton,
and G. Gombas. P-GRADE: a grid programming environment. J. Grid
Computing, 1(2):171–197, 2003.

[39] P. Kacsuk and G. Sipos. Multi-grid and multi-user workflows in the
P-GRADE Grid portal. J. Grid Computing, 3(3-4):221–238, 2006.

[40] K.M. Kavi, B.P. Buckles, and U.N. Bhat. Isomorphisms between
petri nets and dataflow graphs. IEEE Trans. on Software Engineer-
ing, 13(10):1127–1134, 1987.

[41] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured
workflow modelling. In B. Wangler and L. Bergman, editors, Advanced
Information Systems Engineering, Proceedings of the 12th International
Conference, CAiSE 2000, pages 431–445. Lecture Notes in Computer
Science 1789, Springer-Verlag, 2000.

[42] F. Leymann. Choreography for the grid: towards fitting bpel to
the resource framework. Concurrency Computat.: Pract. Exper.,
18(10):1201–1217, 2006.
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Abstract: We present an approach for development of Grid resource management
tools, where we put into practice internationally established high-level views of future
Grid architectures. The approach addresses fundamental Grid challenges and strives
towards a future vision of the Grid where capabilities are made available as indepen-
dent and dynamically assembled utilities, enabling run-time changes in the structure,
behavior, and location of software. The presentation is made in terms of design heuris-
tics, design patterns, and quality attributes, and is centered around the key concepts
of co-existence, composability, adoptability, adaptability, changeability, and interop-
erability. The practical realization of the approach is illustrated by five case studies
(recently developed Grid tools) high-lighting the most distinct aspects of these key
concepts for each tool. The approach contributes to a healthy Grid ecosystem that
promotes a natural selection of surviving components through competition, innova-
tion, evolution, and diversity. In conclusion, this environment facilitates the use and
composition of components on a per-component basis.
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Abstract. We present an approach for development of Grid resource
management tools, where we put into practice internationally estab-
lished high-level views of future Grid architectures. The approach ad-
dresses fundamental Grid challenges and strives towards a future vision
of the Grid where capabilities are made available as independent and
dynamically assembled utilities, enabling run-time changes in the struc-
ture, behavior, and location of software. The presentation is made in
terms of design heuristics, design patterns, and quality attributes, and is
centered around the key concepts of co-existence, composability, adopt-
ability, adaptability, changeability, and interoperability. The practical
realization of the approach is illustrated by five case studies (recently
developed Grid tools) high-lighting the most distinct aspects of these
key concepts for each tool. The approach contributes to a healthy Grid
ecosystem that promotes a natural selection of “surviving” components
through competition, innovation, evolution, and diversity. In conclusion,
this environment facilitates the use and composition of components on
a per-component basis.

1 Introduction

In recent years, the vision of the Grid as the general-purpose, service-oriented
infrastructure for provisioning of computing, data, and information capabilities
has started to materialize in the convergence of Grid and Web services tech-
nologies. Ultimately, we envision a Grid with open and standardized interfaces
and protocols, where independent Grids can interoperate, virtual organizations
co-exist, and capabilities be made available as independent utilities.

However, there is still a fundamental gap between the technology used in
major production Grids and recent technology developed by the Grid research
community. While current research directions focus on user-centric and service-
oriented infrastructure design for scenarios with millions of self-organizing nodes,
current production Grids are often more monolithic systems with stronger inter-
component dependencies.

⋆ This research was conducted using the resources of the High Performance Comput-
ing Center North (HPC2N). Financial support has been provided by The Swedish
Research Council (VR) under contract 621-2005-3667.



2

We present an approach to Grid infrastructure component development,
where internationally established high-level views of future Grid architectures
are put into practice. Our approach addresses the future vision of the Grid,
while enabling easy integration into current production Grids. We illustrate the
feasibility of our approach by presenting five case studies.

The outline of the rest of the paper is as follows. Section 2 gives further
background information, including our vision of the Grid, a characterization
of competitive factors for Grid software, and a brief review of internationally
established conceptual views of future Grid architectures. Section 3 presents
our approach to Grid infrastructure development, which complies with these
views. The realization of this approach for specific components is illustrated
in Section 4, with a brief presentation of five tools recently developed within
the Grid Infrastructure Research & Development (GIRD) project [26]. These
are Grid tools or toolkits for resource brokering [9–11], job management [7],
workflow execution [8], accounting [16, 24], and Grid-wide fairshare scheduling
[6].

2 Background and Motivation

Our approach to Grid infrastructure development is driven by the need and
opportunity for a general-purpose infrastructure. This infrastructure should fa-
cilitate flexible and transparent access to distributed resources, dynamic com-
position of applications, management of complex processes and workflows, and
operation across geographical and organizational boundaries. Our vision is that
of a large evolving system, realized as a Service-Oriented Architecture (SOA)
that enables provisioning of computing, data, and information capabilities as
utility-like services serving business, academia, and individuals. From this point
of departure, we elaborate on fundamental challenges that need to be addressed
to realize this vision.

2.1 Facts of life in Grid environments

The operational context of a Grid environment is harsh, with heterogeneity in
resource hardware, software, ownerships, and policies. The Grid is distributed
and decentralized by nature, and any single point of control is impossible not
only for scalability reasons but also since resources are owned by different orga-
nizations. Furthermore, as resource availability varies, resources may at any time
join or leave the Grid. Information about the set of currently available resources
and their status will always to some extent be incomplete or outdated.

Actors have different incentives to join the Grid, resulting in asymmetric
resource sharing relationships. Trust is also asymmetric, which in scenarios with
cross trust-domain orchestration of multiple resources that interact beyond the
client-server model, gives rise to complex security challenges.

Demand for resources typically exceed supply, with contention for resources
between users as a consequence. The Grid user community at large is disparate
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in requirements and knowledge, necessitating the development of wide ranges of
user interfaces and access mechanisms. All these complicating factors add up to
an environment where errors are rule rather than exception.

2.2 A General-purpose Grid ecosystem

Recently, a number of organizations have expressed views on how to realize a
single and fully open architecture for the future Grid. To a large extent, these
expressions conform to a single view of a highly dynamic service-oriented infras-
tructure for general-purpose use.

One such view proposes the model of a healthy ecosystem of Grid compo-
nents [25], where components occupy niches in the ecosystem and are designed
for component-by-component selection by developers, administrators, and end-
users. Components are developed by the Grid community at large and offer
sensible functionality, available for easy integration in high-level tools or other
software. In the long run, competition, innovation, evolution, and diversity lead
to natural selection of “surviving” components, whereas other components even-
tually fade out or evolve into different niches.

European organizations, such as the Next Generation Grids expert group
[12] and NESSI [23], have focused on a common architectural view for Grid
infrastructure, possibly with a more emphasized business focus compared to
previous efforts. Among their recommendations is a strong focus on SOAs where
services can be dynamically assembled, thus enabling run-time changes in the
structure, behavior, and location of software. The view of services as utilities
includes directly and immediately usable services with established functionality,
performance, and dependability. This vision goes beyond that of a prescribed
layered architecture by proposing a multi-dimensional mesh of concepts, applying
the same mechanisms along each dimension across the traditional layers.

In common for these views are, for example, a focus on composable com-
ponents rather than monolithic Grid-wide systems, as well as a general-purpose
infrastructure rather than application- or community-specific systems. Examples
of usage range from business and academic applications to individual’s use of
the Grid. These visions also address some common issues in current production
Grid infrastructures, such as interoperability and portability problems between
different Grids, as well as limited software reuse. Before detailing our approach
to Grid software design, which complies with the views presented above, we
elaborate on key factors for software success in the Grid ecosystem.

2.3 Competitive factors for software in the Grid ecosystem

In addition to component-specific functional requirements, which obviously differ
for different types of components, we identify a set of general quality attributes
(also known as non-functional requirements) that successful software components
should comply with. The success metrics considered here are the amount of users
and the sustainability of software.
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In order to attract the largest possible user community, usability aspects
such as availability, ease of installation, understandability, and quality of docu-
mentation and support are important. With the dynamic and changing nature
of Grid environments, flexibility and the ability to adapt and evolve is vital for
the survival of a software component. Competitive factors for survival include
changeability, adaptability, portability, interoperability, and integrability. These
factors, along with mechanisms used to improve software quality with respect to
them, are further discussed in Section 3. Other criteria, relating to sustainabil-
ity, include the track record of both components and developers as well as the
general reputation of the latter in the user community.

Quality attributes such as efficiency (with emphasis on scalability), reliability,
and security also affect the software success rate in the Grid ecosystem. These
attributes are however not further discussed herein.

3 Grid Ecosystem Software Development

In this section we present our approach to building software well-adjusted to
the Grid ecosystem. The presentation is structured into five groups of software
design heuristics, design patterns, and quality attributes that are central to our
approach. All definitions are adapted to the Grid ecosystem environment, but
are derived from, and conform to, the ISO/IEC 9126-1 standard [20].

3.1 Co-existence – Grid ecosystem awareness

Co-existence is defined as the ability of software to co-exist with other indepen-
dent softwares in a shared resource environment. The behavior of a component
well adjusted to the Grid ecosystem is characterized by non-intrusiveness, respect
for niche boundaries, replaceability, and avoidance of resource overconsumption.

When developing new Grid components, we identify the purpose and bound-
aries of the corresponding niches in order to ensure the components’ place and
role in the ecosystem. By stressing non-intrusiveness in the design, we strive to
ensure that new components do not alter, hinder, or in any other way affect
the function of other components in the system. While the introduction of new
software into an established ecosystem may, through fair competition, reshape,
create, or eliminate niches, it is still important for the software to be able to
cooperate and interact with neighboring components.

By the principle of decentralization, it is crucial to avoid making assumptions
of omniscient nature and not to rely on global information or control in the Grid.
By designing components for a user-centric view of systems, resources, compo-
nent capabilities, and interfaces, we emphasize decentralization and facilitate
component co-existence and usability.

3.2 Composability – software reuse in the Grid ecosystem

Composability is defined as the capability of software to be used both as in-
dividual components and as building blocks in other systems. As systems may
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themselves be part of larger systems, or make use of other systems’ components,
composability becomes a measure of usefulness at different levels of system de-
sign. Below, we present some design heuristics that we make use of in order to
improve software composability.

By designing components and component interactions in terms of interfaces
rather than functionality, we promote the creation of components with well-
defined responsibilities and provision for module encapsulation and interface
abstraction. We strive to develop simple, single-purpose components achieving a
distinct separation of concerns and a clear view of service architectures. Imple-
mentation of such components is faster and less error-prone than more complex
designs. Autonomous components with minimized external dependencies make
composed systems more fault tolerant as their distributed failure models become
simpler.

Key to designing composable software is to provision for software reuse rather
than reinvention. Our approach, leading to generic and composable tools well
adjusted to the Grid ecosystem, encourages a model of software reuse where
users of components take what they need and leave the rest. Being decentral-
ized and distributed by nature, SOAs have several properties that facilitate the
development of composable software.

3.3 Adoptability – Grid ecosystem component usability

Adoptability is a broad concept enveloping aspects such as end-user usability,
ease of integration, ease of installation and administration, level of portability,
and software maintainability. These are key factors for determining deployment
rate and niche impact of a software.

As high software usability can both reduce end-user training time and in-
crease productivity, it has significant impact on the adoptability of software. We
strive for ease of system installation, administration, and integration (e.g., with
other tools or Grid middlewares), and hence reduce the overhead imposed by
using the software as stand-alone components, end-user tools, or building blocks
in other systems. Key adoptability factors include quality of documentation and
client APIs, as well as the degree of openness, complexity, transparency and
intrusiveness of the system.

Moreover, high portability and ease of migration can be deciding factors for
system adoptability.

3.4 Adaptability and Changeability – surviving evolution

Adaptability, the ability to adapt to new or different environments, can be a key
factor for improving system sustainability. Changeability, the ability for software
to be changed to provide modified behavior and meet new requirements, greatly
affects system adaptability.

By providing mechanisms to modify component behavior via configuration
modules, we strive to simplify component integration and provide flexibility in,
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and ease of, customization and deployment. Furthermore, we find that the use
of policy plug-in modules which can be provided and dynamically updated by
third parties are efficient for making systems adaptable to changes in operational
contexts. By separating policy from mechanism, we facilitate for developers to
use system components in other ways than originally anticipated and software
reuse can thus be increased.

3.5 Interoperability – interaction within the Grid ecosystem

Interoperability is the ability of software to interact with other systems. Our ap-
proach includes three different techniques for making our components available,
making them able to access other Grid resources, and making other resources
able to access our components, respectively. Integration of our components typ-
ically only requires the use of one or two of these techniques.

Whenever feasible, we leverage established and emerging Web and Grid ser-
vices standards for interfaces, data formats, and architectures. Generally, we for-
mulate integration points as interfaces expressing required functionality rather
than reflecting internal component architecture. Our components are normally
made available as Grid services, following these general principles.

For our components to access resources running different middlewares, we
combine the use of customization points and design patterns such as Adapter
and Chain of Responsibility [15]. Whenever possible, we strive to embed the
customization points in our components, simplifying component integration with
one or more middlewares.

In order to make existing Grid softwares able to access our components,
we strive to make external integration points as few, small, and well-defined as
possible, as these modifications need to be applied to external softwares.

4 Case Studies

We illustrate our approach to software development by brief presentations of
five tools or toolkits recently developed in the GIRD project [26]. The presenta-
tions describe the overall tool functionality and high-light the most significant
characteristics related to the topics discussed in Section 3.

All tools are built to operate in a decentralized Grid environment with no
single point of control. They are furthermore designed to be non-intrusive and
can coexist with alternative mechanisms. To enhance adoptability of the tools,
user guides, administrator manuals, developer APIs, and component source code
are made available online [26]. As these adoptability measures are common for
all projects, the adoptability characteristics are left out of the individual project
presentations.

The use of SOAs and Web services naturally fulfills many of the composability
requirements outlined in Section 3. The Web service toolkit used is the Globus
Toolkit 4 (GT4) Java WS Core, which provides an implementation of the Web
Services Resource Framework (WSRF). Notably, the fact that our tools are made
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available as GT4-based Web services should not be interpreted as been built
primarily for use in GT4-based Grids. On the contrary, their design is focused
on generality and ease of middleware integration.

4.1 Job Submission Service (JSS)

The JSS is a feature-rich, standards-based service for cross-middleware job sub-
mission, providing support, e.g., for advance reservations and co-allocation. The
service implements a decentralized brokering policy, striving to optimize the job
performance for individual users by minimizing the response time for each sub-
mitted job. In order to do this, the broker makes an a priori estimation of the
whole, or parts of, the Total Time to Delivery (TTD) for all resources of interest
before making the resource selection [9–11].

Co-existence: The non-intrusive decentralized resource broker handles each
job isolated from the jobs of other users. It can provide quality of service to
end-users despite the existence of competing job submission tools.

Composability: The JSS is composed of several modules, each performing a
well-defined task in the job submission process, e.g., resource discovery, reserva-
tion negotiation, resource selection, and data transfer.

Changeability and adaptability: Users of the JSS can specify additional infor-
mation in job request messages to customize and fine-tune the resource selection
process. Developers can replace the resource brokering algorithms with alterna-
tive implementations.

Interoperability: The architecture of the JSS is based on (emerging) stan-
dards such as JSDL, WSRF, WS-Agreement, and GLUE. It also includes cus-
tomization points, enabling the use of non-standard job description formats, Grid
information systems, and job submission mechanisms. The latter two can be in-
terfaced despite differences in data formats and protocols. By these mechanisms,
the JSS can transparently submit jobs to and from GT4, NorduGrid/ARC, and
LCG/gLite.

4.2 Grid Job Management Framework (GJMF)

The GJMF [7] is a framework for efficient and reliable processing of Grid jobs.
It offers transparent submission, control, and management of jobs and groups of
jobs on different middlewares.

Co-existence: The user-centric GJMF design provides a view of exclusive
access to each service and enforces a user-level isolation which prohibits access
to other users’ information. All services in the framework assume shared access
to Grid resources. The resource brokering is performed without use of global
information, and includes back-off behaviors for Grid congestion control on all
levels of job submission.

Composability: Orchestration of services with coherent interfaces provides
transparent access to all capabilities offered by the framework. The functionality
for job group management, job management, brokering, Grid information system
access, job control, and log access are separated into autonomous services.
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Changeability and adaptability: Configurable policy plug-ins in multiple loca-
tions allow customization of congestion control, failure handling, progress mon-
itoring, service interaction, and job (group) prioritizing mechanisms. Dynamic
service orchestration and fault tolerance is provided by each service being capable
of using multiple service instances. For example, the job management service is
capable of using several services for brokering and job submission, automatically
switching to alternatives upon failures.

Interoperability: The use of standardized interfaces such as JSDL as job de-
scription format, OGSA BES for job execution, and OGSA RSS for resource
selection improves interoperability and replaceability.

4.3 Grid Workflow Execution Engine (GWEE)

The GWEE [8] is a light-weight and generic workflow execution engine that fa-
cilitates the development of application-oriented end-user workflow tools. The
engine is light-weight in that it focuses only on workflow execution and the cor-
responding state management. This project builds on experiences gained while
developing the Grid Automation and Generative Environment (GAUGE) [19,
17].

Co-existence: The engine operates in the narrow niche of workflow execu-
tion. Instead of attempting to replace other workflow tools, the GWEE provides
a means for accessing advanced capabilities offered by multiple Grid middle-
wares. The engine can process multiple workflows concurrently without them
interfering with each other. Furthermore, the engine can be shared among mul-
tiple users, but only the creator of a workflow instance can monitor and control
that workflow.

Composability: The main responsibilities of the engine, managing task de-
pendencies, processing tasks on Grid resources, and managing workflow state,
are performed by separate modules.

Adaptability and Changeability: Workflow clients can monitor executing work-
flows both by synchronous status requests and by asynchronous notifications.
Different granularities of notifications are provided to support specific client
requirements – from a single message upon workflow completion to detailed up-
dates for each task state change.

Interoperability: The GWEE is made highly interoperable with different mid-
dlewares and workflow clients through the use of two types of plug-ins. Currently,
it provides middleware plug-ins for execution of computational tasks in GT4
and in the GJMF, as well as GridFTP file transfers. It also provides plug-ins
for transforming workflow languages into its native language, as currently has
been done for the Karajan language. The Chain of Responsibility design pattern
allows concurrent usage of multiple implementations of a particular plug-in.

4.4 SweGrid Accounting System (SGAS)

SGAS allocates Grid capacity between user groups by coordinated enforcement
of Grid-wide usage limits [24, 16]. It employs a credit-based allocation model
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where Grid capacity is granted to projects via Grid-wide quota allowances. The
Grid resources collectively enforce these allowances in a soft, real-time man-
ner. The main SGAS components are a Bank, a logging service (LUTS), and
a quota-aware authorization tool (JARM), the latter to be integrated on each
Grid resource.

Co-existence: SGAS is built as stand-alone Grid services with minimal de-
pendencies on other software. Normal usage is not only non-intrusive to other
software but also to usage policies, as resource owners retain ultimate control
over local resource policies, such as strictness of quota enforcement.

Composability: There is a distinct separation of concerns between the Bank
and the LUTS, for managing usage quotas and logging usage data, respectively.
They can each be used independently.

Changeability and adaptability: The Bank can be used to account for any
type of resource consumption and with any price-setting mechanism, as it is
independent of the mapping to the abstract “Grid credit” unit used. The Bank
can also be changed from managing pre-allocations to accumulating costs for
later billing. The JARM provides customization points for calculating usage
costs based on different pricing models. The tuning of the quota enforcement
strictness is facilitated by a dedicated customization point.

Interoperability: The JARM has plug-in points for middleware-specific adapter
code, facilitating integration with different middleware platforms, scheduling sys-
tems, and data formats. The middleware integration is done via a SOAP message
interceptor in GT4 GRAM and via an authorization plug-in script in the Nor-
duGrid/ARC GridManager. The LUTS data is stored in the OGF Usage Record
format.

4.5 Grid-Wide Fairshare Scheduling System (FSGrid)

FSGrid is a Grid-wide fairshare scheduling system that provides three-party
QoS support (user, resource-owner, VO-authority) for enforcement of locally
and globally scoped share policies [6]. The system allows local resource capacity
as well as global Grid capacity to be logically divided among different groups of
users. The policy model is hierarchical and sub-policy definition can be delegated
so that, e.g., a VO can partition its share among its projects, which in turn can
divide their shares among users.

Co-existence: The main objective of FSGrid is to facilitate for distributed
resources to collaboratively schedule jobs for Grid-wide fairness. FSGrid is non-
intrusive in the sense that resource owners retain ultimate control of how to
perform the scheduling on their local resources.

Composability: FSGrid includes two stand-alone components with clearly
separated concerns for maintaining a policy tree and to log usage data, respec-
tively. In fact, the logging component in current use is the LUTS originally
developed for SGAS, illustrating the potential for reuse of that component.

Changeability and adaptability: A customizable policy engine is used to cal-
culate priority factors based on a runtime policy tree with information about
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resource pre-allocations and previous usage. The priority calculation can be cus-
tomized, e.g., in terms of length, granularity, and rate of aging of usage history.
The administration of the policy tree is flexible as sub-policy definition can be
delegated to, e.g., VOs and projects.

Interoperability: Besides the integration of the LUTS (see Section 4.4), FSGrid
includes a single external point of integration, as a fair-share priority factor call-
out to FSGrid has to be integrated in the local scheduler on each resource.

5 Related Work

Despite the large amount of Grid related projects to date, just a few of these have
shared their experiences regarding software design and development approaches.
Some of these projects have focused on software architecture. In a survey by
Filkenstein et al. [13], existing data-Grids are compared in terms of their archi-
tectures, functional requirements, and quality attributes. Cakic et al. [2] describe
a Grid architectural style and a light-weight methodology for constructing Grids.
Their work is based on a set of general functional requirements and quality at-
tributes that derives an architectural style that includes information, control,
and execution. Mattmann et al. [22] analyze software engineering challenges for
large-scale scientific applications, and propose a general reference architecture
that can be instantiated and adapted for specific application domains. We agree
on the benefits obtained with a general architecture for Grid components to be
instantiated for specific projects, however, our focus is on the inner workings of
the components making up the architecture.

The idea of software that evolves due to unforeseen changes in the environ-
ment also appears in the literature. In the work by Smith et al. [3], the way
software is modified over time is compared with Darwinian evolution. In this
work, the authors discuss the best-of-breed approach, where an organization
collects and assembles the most suitable software component from each niche.
The authors also construct a taxonomy of the “species” of enterprise software. A
main difference between this work and our contribution is that our work focuses
on software design criteria.

Other high-level visions of Grid computing include that of interacting au-
tonomous software agents [14]. One of the characteristics of this vision is that
software engineering techniques employed for software agents can be reused with
little or no effort if the agents encompasses the service’s vision [21]. A different
view on agent-based software development for the Grid is that of evolution based
on competition between resource brokering agents [4]. These projects differ from
our contribution as our tools have a stricter focus on functionality (being well-
adjusted to their respective niches).

Finally, it is also important to notice that there are a number of tools that
simplify the development of Grid software. These tools facilitate, for example,
implementation [18], unit testing [5], and automatic integration [1].
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6 Concluding Remarks

We explore the concept of the Grid ecosystem, with well-defined niches of func-
tionality and natural selection (based on competition, innovation, evolution, and
diversity) of software components within the respective niches. The Grid ecosys-
tem facilitates the use and composition of components on a per-component basis.
We discuss fundamental requirements for software to be well-adjusted to this en-
vironment and propose an approach to software development that complies with
these requirements. The feasibility of our approach is demonstrated by five case
studies. Future directions for this work include further exploration of processes
and practices for development of Grid software.
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