
He[d]uristics
– Heuristics for designing object oriented

examples for novices

Marie Nordström
marie@cs.umu.se

Department of Computing Science
Umeå University, Sweden

March 2009

ii

Abstract

The use of examples is known to be important in learning, they should be “exem-
plary” and function as role-models.

Teaching and learning problem solving and programming in the object oriented
paradigm is recognised as difficult. Object orientation is designed to handle com-
plexity and large systems, and not with education in focus. The fact that object
orientation often is used as first paradigm makes the design of examples even more
difficult and important.

In this thesis, a survey of the literature is made to establish a set of character-
istics for object orientation in general. This set of characteristics is then applied to
the educational setting of introducing novices to object oriented problem solving
and programming, resulting in a number of heuristics for educational purposes,
called He[d]uristics. The proposed He[d]uristics are targeted towards educators
designing small-scale examples for novices, and is an attempt to provide help in
designing suitable examples, not a catalogue of good ones.

The He[d]uristics are discussed and exemplified and also evaluated versus the
derived set of characteristics and known common problems experienced by novices.

iii

iv

Sammanfattning

Exempel är viktiga när man ska lära sig programmera, det tycker både utbildare
och nybörjare. De ska fungera som modeller och vara “typiska”, både vad gäller äm-
nesområdet och det koncept eller den praktik som ska illustreras. Det här innebär
att det kan vara små skillnader mellan exempel som fungerar bra och exempel som
i praktiken helt eller delvis motsäger det budskap man vill förmedla. Detta är en
av anledningarna till att exempel är känsliga och därför måste vara genomarbetade
för att inte ge upphov till felaktiga tolkningar och modeller.

Trots att det har diskuterats hur lämpligt det är, så är det vanligt att objektori-
entering används för introduktion till problemlösning och programmering. Men att
använda objektorientering som första paradigm är delvis motsägelsefullt eftersom
objektorientering är en ansats för att hantera komplexitet och för design av stora
system. Objektorienteringens erkända principer och formulerade praktiker har
storskalighet och komplexitet som utgångspunkt. I en undervisningssituation (lek-
tioner, föreläsningar, konstruktion av undervisningsmaterial och övningsuppgifter,
examination etc.) blir villkoren för objektorientering annorlunda jämfört med vid
produktion av stora system för industriellt bruk. Vid konstruktion av exempel och
övningar riktade till noviser vill man kunna illustrera ett koncept eller en praktik
isolerat, –en sak i taget. Det är också önskvärt att exemplen ska vara små i be-
tydelsen få rader kod, dels för att vara lätta att överblicka, dels för att inte dra
uppmärksamheten från det som ska exemplifieras. Detta medför att det kan vara
svårt att visa på styrkan i objektorientering

I objektorientering är decentralisering ett huvudbegrepp. Objekt ska vara
självständiga, aktiva och ansvarstagande enheter i problemlösningen. Ett av prob-
lemen när man lär sig programmera objekt-orienterat är att välja ut vad som ska
vara objekt i lösningen. Därför måste exemplen ge stöd för hur man väljer typiska
objekt. Hur man väljer och designar objekt är inte entydigt, både val och utformn-
ing bestäms i hög grad av sammanhanget, dvs. för vilket ändamål behövs dessa
objekt och vem vill utnyttja den service som objekten tillhandahåller. Objektens
ansvar och beteenden måste vara trovärdiga i ett specificerat sammanhang och det
måste framstå som realistiskt att sådana objekt kan förekomma i programvara.
Detta innebär ökade krav på exempel i form av sammanhang och tillämpning för
att de ska fungera som modeller för objekt-konstruktion.

Den som gör sina första stapplande försök att programmera har inledningsvis
en mycket snäv referensram. Vokabulären är mycket begränsad, dels vad gäller
begrepp i paradigmet och dels vad gäller språkliga element i det aktuella program-
meringsspråket. Det finns alltså väldigt lite att använda sig av för att ge exempel
när nya begrepp eller konstruktioner ska introduceras.

v

Att under dessa förhållanden konstruera exempel som upprätthåller de grundläg-
gande principerna i objektorientering är icke-trivialt. Det är mycket enklare att
säga vad man inte borde göra än hur man ska göra.

I det här avhandlingsarbetet görs en genomgång av etablerad kunskap och for-
mulerade praktiker inom objektorientering för att ta reda på vad som anses vara
mest karakteristiskt för objektorientering i allmänhet. Detta tolkas sedan till no-
visens situation med dess specialla bivillkor. Hur kan man vid konstruktionen av
exempel upprätthålla de allmänna objekt-orienterade egenskaperna, samtidigt som
man tar hänsyn till nybörjarens specifika problem? Baserat på detta föreslås ett
antal riktlinjer/heuristiker för att ge stöd för konstruktionen av exempel. Heuris-
tikerna utvärderas mot de koncept, principer och riktlinjer som konstaterats som
centrala för objektorientering vid litteraturgenomgången. De föreslagna heuristik-
erna utreds och exemplifieras i konkreta exempel. Programspråket som används är
Java.

Begreppet He[d]uristics är en konstruktion av det engelska ordet heuristics med
en indikation ([d]) om att det handlar om utbildning, education, vilket i olika
sammanhang på engelska symboliseras med förkortningen edu.

vi

Preface

The work presented in this thesis is partly based on ideas and work presented
previously:

• Börstler, J., Christensen, H. B., Bennedsen, J. Nordström, M., Kallin Westin,
L., Moström, J.-E., and Caspersen, M. E., Evaluating OO example programs
for CS1, Proceedings of the 13th annual conference on Innovation and tech-
nology in computer science education, 2008, Madrid, Spain June 30 - July 02,
2008 Pages 47-52

• Börstler, J., Nordström, M., Kallin Westin, L., Moström, J.-E., Christensen,
H. B., and Bennedsen, J. (2008) An Evaluation Instrument for Object-Oriented
Example Programs for Novices, Technical Report UMINF-08.09, Dept. of
Computing Science, Umeå University, Umeå, Sweden

• Börstler, J., Nordström, M., Kallin Westin, L., Moström, J.-E., and Elias-
son J. Transitioning to OOP–A Never Ending Story. In Reflections on the
Teaching of Programming, J. Bennedsen, M.E. Caspersen, M. Kölling (Edi-
tors), Lecture Notes in Computer Science, LNCS 4821, Springer, 2008, Pages
86-106.

• Börstler, J., Caspersen, M. E., and Nordström, M. Beauty and the beast—
toward a measurement framework for example program quality. Technical
Report UMINF-07.23, Dept. of Computing Science, Umeå University, Umeå,
Sweden, 2007.

• Börstler J., Caspersen M.E., and Nordström M. Beauty and the Beast -
openspace on Educators symposium, At the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and applications, OOP-
SLA’07, Montreal, Quebec, Canada October 21 - 25, 2007

• Nordström, M. PigLatinJava - troubleshooting examples. Technical Report
UMINF-07.26, Dept. of Computing Science, Umeå University, Umeå, Swe-
den, 2007.

vii

viii

Acknowledgements

I am very grateful to the University and to my department, Computing Science,
for providing me with the opportunity to pursue my doctoral studies on an every
day basis.

My supervisor Jürgen Börstler is a fountain of never-ceasing enthusiasm and
references. Thank You for sharing Your knowledge and for being so constructive!

The work on qualities of examples (Section 2.7), is to a large extent the result of
collaborative work with Jürgen Börstler, Henrik B. Christensen, Jens Bennedsen,
Lena Kallin Westin, Jan-Erik Moström and Michael E. Caspersen. Thank You all
for dedicated, fruitful and fun work!

For reading parts of the manuscript I am indebted to Anders Broberg, Lena
Palmquist, Thomas Johansson, Lena Kallin Westin and Jan Erik Moström. You
almost volunteered, thank You for valuable feedback.

Colleagues and friends at the department, thank You for making this my second
home.

On a more personal level, IRL: Girls! What would I be without Your support?
LenaP (we share many years and experiences!), Lena KW (generous with encour-
agement and time!), KristinaB (You know me, and You remain my friend?) and
many more....

In the end, my family is what makes my life matter. Torbjörn, Emilie, Johanna,
Jakob, Ellen and Frida, thank You for having me in Your lives.

ix

x

Contents

1 Introduction 1

2 Related Work 5
2.1 Introduction . 5
2.2 General Learning Aspects . 5

2.2.1 Cognitive load . 5
2.2.2 Knowledge acquisition and conceptual change 6
2.2.3 Worked examples . 7

2.3 Cognitive Aspects of Programming 8
2.4 Instructional Design for Object Oriented Programming 10

2.4.1 Conceptual modelling . 10
2.4.2 Organisation of activities . 10
2.4.3 Principles for teaching novices 11
2.4.4 Focusing on conceptual ideas 12
2.4.5 Concept-order in an objects-first approach 13
2.4.6 Taxonomy of learning object-technology 13

2.5 Misconceptions . 15
2.6 Harmful Examples and Poor Learning Behaviour 17
2.7 Qualities of Examples . 19
2.8 CRC-cards and Role-plays . 21
2.9 Summary . 23

3 Characteristics of Object Orientation 25
3.1 Introduction . 25
3.2 Frequent Concepts . 26
3.3 Abstractions . 31
3.4 Object Thinking and Metaphors . 33

3.4.1 Prerequisites to object thinking 33
3.4.2 Metaphors: The use of anthropomorphisation 35
3.4.3 Object vocabulary . 36

3.5 Summary . 37

4 Object Oriented Principles 39
4.1 Introduction . 39
4.2 SRP – The Single Responsibility Principle 40
4.3 OCP – The Open Closed Principle 41
4.4 LSP – The Liskov Substitution Principle 43

xi

Contents

4.5 DIP – The Dependency Inversion Principle 45
4.6 ISP – The Interface Segregation Principle 47
4.7 LoD – The Law of Demeter . 48
4.8 Summary . 50

5 Heuristics and Rules for Software Design 51
5.1 Introduction . 51
5.2 Johnson and Foote’s Heuristics . 51
5.3 Riel’s Heuristics . 52
5.4 Gibbon’s Heuristics . 53
5.5 The MeTHOOD Heuristics Catalogue 55
5.6 Heuristics for Thinking Like an Object 56
5.7 Design Rules . 56
5.8 Summary . 57

6 Design Patterns and Code Smells 59
6.1 Introduction . 59
6.2 The Gang of Four Patterns . 60
6.3 The Model-View-Controller Pattern 61
6.4 Micro Patterns: Low-level Patterns 63
6.5 Refactoring . 63
6.6 Code Smells . 65
6.7 Anti-patterns . 67
6.8 The Grand Mistake in Design . 69
6.9 Summary . 70

7 Software Metrics 73
7.1 Introduction . 73
7.2 Classical Metrics . 73
7.3 Object Oriented Metrics . 75

7.3.1 The first theoretically founded object oriented metric 76
7.3.2 Object oriented design metrics 77
7.3.3 Readability metric . 78

7.4 Summary . 78

8 He[d]uristics 79
8.1 Model Reasonable Abstractions . 79
8.2 Model Reasonable Behaviour . 80
8.3 Emphasize Client View . 81
8.4 Favour Composition over Inheritance 81
8.5 Use Exemplary Objects Only . 81
8.6 Make Inheritance Reflect Structural Relationships 82

9 He[d]uristics in Practice 85
9.1 Model Reasonable Abstractions . 85
9.2 Model Reasonable Behaviour . 87
9.3 Emphasize Client View . 92
9.4 Favour Composition over Inheritance 93
9.5 Use Exemplary Objects Only . 97

xii

Contents

9.6 Make Inheritance Reflect Structural Relationships 100
9.7 Summary . 104

10 Validation 105
10.1 Introduction . 105
10.2 He[d]uristics vs. Advice . 105
10.3 He[d]uristics vs. Concepts . 108
10.4 Addressing Misconceptions and Difficulties 110

11 Conclusions and Future Work 113

Bibliography 115

List of Figures 123

List of Tables 125

Listing 127

A Riel’s heuristics 129

B Gang of four patterns 135

C Smells and associated refactorings 137

D Tables 141

xiii

xiv

Chapter 1

Introduction

Examples are important in learning, both teachers and learners consider them to be
the main “learning tool” (Lahtinen et al., 2005). In a recent survey of pedagogical
aspects of programming, Caspersen (2007) concludes that examples are crucial:

Studies of students in a variety of instructional situations have shown
that students prefer learning from examples rather than learning from
other forms of instruction. Students learn more from studying examples
than from solving the same problems themselves. (Caspersen, 2007)

To be useful, the examples must help the novice to draw conclusions and to make
inferences, to make generalisations, from the presented information (Chi et al.,
1989; Pirolli and Anderson, 1985). Since examples do not distinguish incidental
from essential, or even intended, properties, we argue that examples developed
according to established practices and experience are a necessity for the example
to promote (accurate) generalisation. Novices should be able to use examples to
recognize patterns and distinguish an example’s superficial surface properties from
those that are structurally or conceptually important. By continuously exposing
students to exemplary examples important properties are reinforced. Students
will eventually gain enough experience to recognize general patterns which helps
them telling apart “good” and “bad” designs.

In a sharp critique of the contemporary state of business in educational resources
for teaching and learning programming, Wirth says:

How can one learn such an art [of designing artifacts to solve intri-
cate problems] without master examples worth studying and following?
Surely, some people are more, some less gifted for good design, but nev-
ertheless, the proper teaching, tools, and examples play a dominant role.
(Wirth, 2002)

Though largely debated, object orientation is commonly used for introducing prob-
lem solving and programming to novices. How to do this is not straightforward.
The strength of object orientation lies in the handling of complexity in the design of
large-scale system, with high demands on maintenance, efficiency and reusability.
The educational situation however, is rather different. Introductory examples are
small. The design space is restrained because of the limited frame of reference of

1

Chapter 1. Introduction

the novice, the limited number of syntactical elements available, and the fact that
the number of lines of code preferably should be kept to a minimum.

In this thesis, we investigate principles, metrics, heuristics, patterns, code smells
and similar concepts proposed by the software community. These are established
practices and constitute condensed experience, and should therefore influence the
design of examples for novices. We argue that examples developed according to
established practices and experience will lead to suitable role-models. The difficulty
is to design examples showing the strength of object orientation, and at the same
time avoiding overly complex examples that leave the novice behind. If the example
fails to, at least, indicate the strength, then novices may conclude that object
oriented design introduces complexity rather than solving a problem, whereas when
the example is too complex, students fail to understand the overall big picture.

Because of the constraints of the educational context, we will use the term
small-scale for the specific situation of introducing object orientation to novices.
A small-scale example is a program/example/exercise intended for novices in order
to present or illustrate a certain concept or feature of object oriented problem
solving and programming.

Learning problem solving and programming seems to be more difficult in the
object oriented paradigm than in the imperative paradigm. It has been argued that
object orientation is a “natural” way for problem solving. However, several studies
question this claim (see a survey of studies by Guzdial (2008)); when asked to
describe a given (algorithmic) situation, e.g., situations and processes that occur
in a Pacman game, non-programmers did not indicate any use of categories of
entities, inheritance or polymorphism. It has also been shown that novices have
more problems understanding a delegated control style than a centralised one (Du
Bois et al., 2006). This adds to the difficulty of teaching object orientation, since
distributed responsibilities is one of the major characteristics of object orientation.

There are diverging opinions of the consequences of different educational ap-
proaches, such as the order of concept presentation, objects-first vs. object late,
responsibility driven design or domain entity driven design, the use of graphics and
so on (Bruce, 2004). However, claims in favour and against objects-early have not
been validated by research, see (Lister et al., 2006). We have little scientific theory
and evidence to support us in deciding on how to introduce object orientation.
An interesting example of the quasi-type of discussions often replacing theoreti-
cal ones, is the discussion on common examples, the ‘HelloWorld’-type, that was
imitated by Westfall (2001) in Communications of the ACM. There has been an
ongoing debate on the object-orientedness of these type of examples (CACM, 2002;
Dodani, 2003; CACM, 2005). Surprisingly, the discussion was focused on how to
adjust the ‘HelloWorld’- example to be more of an object, rather than the object
oriented qualities of the example.

The goal of this work is to define a number of heuristics, called He[d]uristics,
to aid in the design of small-scale examples.

We present a literature survey investigating the characteristics and principles
for object orientation in general. The proposed He[d]uristics are then based on the
findings of this survey.

It is our goal to keep the discussion focused on the object oriented quality of
examples. It should be possible to use the proposed He[d]uritstics regardless of
choice of instructional design. Concepts could be introduced in various sequences

2

and still be discussed from a general object oriented point of view.
However, choosing object orientation as paradigm must put the focus on objects.

This means that we emphasize collaborating objects as the major component of
object orientation (Booch, 1994). Even though much of the discussion is applicable
to object orientation regardless of programming language, some of the arguments
are based on the use of Java.

The problem of teaching object orientation to novices is not new, and good
points have been made by many excellent professionals and educators, but not
collected and applied in a systematic way. Based on commonly agreed upon object
oriented principles, we propose a number of practical advice along with critical
aspects of examples. The presented educational heuristics, or He[d]uristics, should
aid in avoiding common pitfalls when designing small-scale applications.

Investigating this problem, we found it much easier to express the “no-no’s”
than to give constructive advice. This work is an attempt to be constructive, and
to suggest practical guidelines for educators.

In software too, no book advice can replace your know-how or inge-
nuity. The principal role of a methodological discussion is to indicate
some good ideas, draw your attention to some illuminating precedents,
and alert you to some known pitfalls. (Meyer, 1997)

Outline
In Chapters 2–7, a survey of related work is presented and discussed. At the end
of each chapter a short summary of factors influencing the design of small-scale
examples is made. For the reader acquainted with the established practices and
acknowledged methods, or interested in getting faster to the proposed He[d]uristics,
it should be possible to read only the summaries of these chapters as background
for the He[d]uristics.

The He[d]uristics are presented in Chapter 8. Examples and an extensive dis-
cussion follows in Chapter 9.

Chapter 10 contains an evaluation of the He[d]uristics versus the findings of
Chapters 2–7.

Conclusions and future work concludes the thesis.
An overview of the structure of the thesis is shown in Figure 1.1.

3

Chapter 1. Introduction

Figure 1.1: Structure of the Thesis

4

Chapter 2

Related Work

2.1 Introduction
The difficulty in teaching the object oriented paradigm to programming novices
is nowadays acknowledged by the community of Computer Scientists. Computer
Science Education (CSE) research is gaining more and more interest, but we still
know too little about the difficulties and especially how to meet them. There are
however, attempts to investigate different aspects of the problems we face. Un-
derstanding cognitive difficulties of object orientation is important and will aid in
our educational efforts. Practical experiences and observation of introducing ob-
ject orientation have been documented and analysed. One interesting approach is
the measurement of cognitive and conceptual difficulties of introductory program-
ming and problem solving. Other approaches are to investigate the understanding
of basic concepts, and misconceptions when applying the conceptual model inad-
equately. Reports on poor learning behaviour and harmful examples are adding
to our understanding of pitfalls, and can contribute to constructive instructional
advice.

In this chapter we give a number of examples on research connected to the area
of programming, some with general applicability to learning, and some with object
orientation in focus.

2.2 General Learning Aspects
Cognitive load theory is focused on the limitations of working memory and how
this is affecting the construction of knowledge. The construction of knowledge is
admittedly no simple task to investigate. However, a large body of knowledge has
been collected in cognitive science and learning theory, and is slowly getting its
way into CSE research.

2.2.1 Cognitive load
Cognitive Load Theory (CLT) is said to be

a major framework for investigations into cognitive processes and
instructional design. (Paas et al., 2003)

5

Chapter 2. Related Work

The theory is concerned with the limitations of working memory and the forming
and use of schemas (cognitive constructs that incorporate multiple elements of
information into a single element with a specific function) in long-term memory to
enhance working memory efficiency.

Cognitive Load (CL) has been defined based on the notion of Element interac-
tivity.

Element interactivity Low-element interactivity are elements that can be un-
derstood and learned individually without connections to any other elements.
Each element of high-element interactivity can be learned individually but
not understood until all the elements and their interactions are processed
simultaneously.

Three types of CL have been defined:

Intrinsic Cognitive Load The element interactivity imposes demands on work-
ing memory that are intrinsic to the material being learned.

Extraneous Cognitive Load The formulation of the instructional procedures
lead to unnecessary cognitive load.

Germane Cognitive Load Mental work imposed by instructional activities that
benefits the instructional goal.

Intrinsic CL can only be reduced by omitting essential interactive elements tem-
porarily from the material being learned. Extraneous CL is most important when
intrinsic CL is high, because the two forms are additive. Instructional designs in-
tended to reduce CL are therefore primarily effective when element interactivity is
high. The difference between extraneous and germane CL is that certain instruc-
tional activities can benefit the instructional goal in contributing to increase the
cognitive resources devoted to a task.

Apart from this, effort and motivation can lead to increase in cognitive resources
made available.

2.2.2 Knowledge acquisition and conceptual change
Looking at the more general research on science education, it seems to be consensus
on the way we internalise new knowledge. The constructivist model is used for
modelling our learning. In this model it is central to understand how concepts
change when confronted with new information or ideas. Hewson (1981) formulates
the following central issue :

Under what conditions will an individual holding a set of concep-
tions of natural phenomena, when confronted by new experiences, ei-
ther keep his or her conceptions substantially unaltered in the process of
assimilating these experiences or have to replace them because of their
inadequacy? ” (Hewson, 1981)

In an individual a conceptual change takes place in different ways:

• addition of new concepts through further experiences, personal development
and contact with others

6

2.2. General Learning Aspects

• reorganisation of existing conception, triggered externally by some new idea
and triggered internally as the result of some process of thought

• rejection of existing conceptions as a result of reorganisation and displacement
of some new conceptions

Important implications for teaching:

Meaning-making The knowledge people possess is of critical importance in their
attempt to interpret their experiences.

Sense-making Does the experiences make sense, and if not, why?

Misconceptions Individuals construct different conceptions from the same input.

The model presented by Hewson suggests that while introducing new concepts it is
absolutely necessary to address alternative conceptions at the same time to support
conceptual change.

2.2.3 Worked examples
A worked example is a step-by-step demonstration of how to perform

a task or solve a problem (Clark et al., 2006)

Studying worked examples puts less extraneous cognitive load (Subsection 2.2.1) on
the novice than working with practice problems. Clark et al. provide four guidelines
(Guideline17-20) specifically for the design and display of worked examples. The
approach is designed to accelerate expertise and the strategy is to modify the
examples as the learner advances.

Guideline 17: Replace Some Practice Problems with Worked Examples
One suggestion is to have worked example-problem pairs. A worked example
is then immediately followed by a similar practice problem, and the lesson
alternates between these two. When studying worked examples, working
memory can build a schema, and the analogy is available when solving the
practice problem. Without the use of such an example when actively solving
a problem most of the resources are consumed by trying to understand what
the best approach might be, instead of building new schema.

Guideline 18: Use Completion Examples to Promote Learning Processing
To avoid the problem of learners skipping worked examples, it could be wise
to use Completion examples. In this type of example some steps are demon-
strated and other steps are completed by the learner, as in a practice problem.

Guideline 19: Transition from Worked Examples to Problem Assignments with
Backwards Fading
As the learner is getting more skilled, the worked examples and the com-
pletion examples start to be less efficient, or even detrimental. In this case
Backwards Fading is likely to accommodate a gradual learning process. Back-
ward fading is when completion examples evolve into full problem assignments
by gradually increasing the number of steps completed by the learner. This
process can be applied during a single lesson, starting with a fully worked

7

Chapter 2. Related Work

example to provide a model, followed by completion examples that gradu-
ally fades into a full problem assignment. For an experienced learner worked
examples can depress learning because of the need for mental resources to
study the demonstration than to work with a problem directly. This is due
to the fact that once a schema has been established for working problems,
going through more worked examples can at best solidify the schema. This
mental activity is redundant and further learning is disrupted.

Guideline 20: Display Worked Examples and Completion Problems in Ways That
Minimize Extraneous Cognitive Load
A poorly formatted worked example could add extraneous CL, which is im-
portant to avoid. Integrated text formats (audio, visual, written) can be
used to distribute the load between the visual and auditory storage centers
of working memory. When using audio, it is recommended to have visuals
supporting the attention of the eye as the description moves on.

There is no single way to design the instructional procedures1 since the change
in skill affects the behaviour of the learner. Cognitive load methods are schema
substitutes and this explains why more experienced learners find methods designed
for novices redundant. They are looking for known patterns.

Instructional methods that manage [cognitive] load effectively for
novices are no longer needed once learners gain more expertise.
(Clark et al., 2006)

2.3 Cognitive Aspects of Programming
Attempts to investigate the cognitive complexity of programming started in the
1970’ies. Among them are studies of practices and techniques, as well as attempts
to proposing methods for reducing the cognitive load of the programmer.

White and Sivitanides (2005) investigates the cognitive differences between pro-
cedural programming and object oriented programming. Based on research on
brain hemisphere dominace, with studies showing that left-brain dominace cor-
related with procedural programming, they performed a corresponding study for
object oriented programming. The cognitive hemispheric dominance is measured
by the Hemispheric Mode Indicator (HMI) that stresses cognitive aspects. The
characteristics for left/right hemispheric modes include: rational vs. intuitive,
logical vs. hunches, differences vs. similarities, and objective vs. subjective judge-
ments. Their results support the idea that object oriented programming is not
affected by hemispheric dominance, i.e. object oriented programming suits left-
and right-brain dominant programmers equally well.

Robins et al. (2003) provides a survey of different approaches to form models
about the cognitive aspects of programming. Programming plans, schemas, pro-
gramming strategies, the difference between experts and novices, are areas reported
on.

A model for the cognitive complexity of the programming process, based on a
review of the current metrics and their theoretical approach, has been proposed by

1Instructional procedures is a part of the instructional design, but not dealing with the question
of what concepts to address and in what order.

8

2.3. Cognitive Aspects of Programming

Cant et al. (1995). In this model it is the cognitive processes of the programmer
that is central, not the complexity of the final product. Basic is the notion of
comprehension. Comprehension is present in all kinds of code related tasks, such as
maintaining, modifying, extending, testing and understanding code. The cognitive
processes in comprehension are termed chunking and tracing.

Chunking means recognising groups of statements and labelling them with sym-
bols or single abstractions. This recognition can be performed in levels and
produce a “multi-levelled, aggregated structure over several layers of abstrac-
tion”. Comprehending the chunks is important in this process.

Tracing involves scanning quickly through code in order to identify chunks. Often
information about a certain entity is scattered and tracing is needed to collect
it. In it self, the process has no connection to comprehension of the traced
code.

Cant et al. use chunking as a model for recognising “program plans”, which consists
of both an idea of control flow and of variable use. A graphical representation is
suggested (the landscape diagram) as well a mathematical one. However, these
representations are merely suggestions and not fully operational as is.

In a multi-national study Lister et al. (2004) few students articulate the in-
tent of the code when asked to “think out loud” while taking a multiple-choice
questionnaire.

Karahasanovic et al. (2007) have collected a number of studies of program
comprehension. Software maintenance is the major target of many studies, but
experiments have been criticised for lack of realism. Maintenance task have been
know beforehand, and although the results are intended for large systems few of
the experiments are made on large-scale programs.

Fleury (2001) investigates how novice programmers construct an understanding
of encapsulation and reuse in Java. This is related to program comprehension:

Readers of programs, like readers of murder mysteries, must extract
plans from scattered information. Readers of programs, like readers of
instruction manuals, must typically work with a general formulation,
not with a list of steps for specific cases. (Fleury, 2001)

Findings of this study shows that multiple classes raises the effort to comprehend
the program flow. Other sources of difficulties are parameters, because they make
the transfer of values less transparent, and slightly more general classes that can
be reused, since they are more difficult to comprehend. Some instructional advice
is given to support educators:

• show good object oriented design from the beginning

• emphasize abstract comprehension on a higher level than lines of code (chunk-
ing)

• use case studies to make sure that novices are forced to deal with deciding
on program organisation

• encourage students to reflect on their learning

• have students work with poorly encapsulated or duplicated code to make the
point

9

Chapter 2. Related Work

• require the use and reuse of library classes

Cognitive aspects of learning object oriented thinking have been discussed in a
number of papers. Based on an empirical study Or-Bach and Lavy (2004) proposes
a cognitive task taxonomy regarding abstraction and inheritance, see Figure 2.1.

The abstract class includes attributes

The abstract class includes attributes

and implemented methods

The abstract class

includes attributes,

implemented methods and

abstract methods

Figure 2.1: Taxonomy for abstraction and inheritance

This is a limited analysis of the general area of abstraction. The population is
small (n=33) and only one problem is used for analysis. The analysis is based on
simple numeric measures. They conclude that often stated advantages of object
orientation are exactly the same issues that make object orientation so difficult for
novices. The proposed taxonomy would still be useful, e.g in connection to the
structure suggested by Bennedsen and Caspersen (2004), see Figure 2.2.

2.4 Instructional Design for Object Oriented Pro-
gramming

In this section a number of examples of suggested approaches for teaching object
orientation to novices are described.

2.4.1 Conceptual modelling
Working within the small-scale context, it would be of great importance to have an
established plan for concept introduction. Suggestions has been made by Benned-
sen and Caspersen (2004, 2008). They discuss the lack of structured approach to
teach Conceptual modelling, which they term the defining characteristic of object
orientation. A progressive educational structure using modelling as the driving
force is suggested by the authors. The approach is based on an increased complex-
ity in models, see Figure 2.2 for the initial stages. The remaining elements of the
conceptual framework, composition and specialisation, is said to be treated in the
same way.

2.4.2 Organisation of activities
To guide the instructional design of the introductory programming course Caspersen
(2007) lean on nine principles for the organisation of activities at all levels of course

10

2.4. Instructional Design for Object Oriented Programming

Figure 2.2: Increasing conceptual complexity

design:
1. Consume before produce
2. Present worked, exemplary examples
3. Reinforce specifications
4. Reveal process and pragmatics
5. Provide hands-on opportunities
6. Define progression in terms of complexity of tasks
7. Reinforce patterns and conceptual frameworks
8. Ensure constructive alignment
9. Provide care and support

2.4.3 Principles for teaching novices
Based on the work by Caspersen Gries (2007) is stating five principles for teaching
novices:

Principle 1: Reveal the programming process, in order to ease and promote the
learning of programming.
This is important throughout the entire work of introducing novices to prob-
lem solving and programming, and can therefore not be taught in isolation
in a single lecture.

Principle 2: Teach skills, and not just knowledge, in order to promote the learning
of programming.
Transferring knowledge must not be the our aim, but the development of
skills.

Principle 3: Present concepts at the appropriate level of abstraction.
Describing concepts in terms of the computer can put extra cognitive strain
on the learner. One example could be using memory allocation principles
and binary storage to introduce variables.

11

Chapter 2. Related Work

Principle 4: Order material so as to minimize the introduction of terms or topics
without explanation: as much as possible, define a term when you first intro-
duce it.
Gries says that following this principle almost forces an object-first approach.
This is due to the fact that almost any object oriented program deals with
classes and object (at least should be). An example of this is to introduce
Applets before discussing subclasses.

Principle 5: Use unambiguous, clear, and precise terminology.
The lack of vocabulary in object orientation gives rise a number of confusing
terms. Inheritance is one, interface another. There are several terms for
attributes, common terms are instance variables or class variables.

2.4.4 Focusing on conceptual ideas
Based on the idea of sidestepping syntactical details and focusing on conceptual
ideas of object orientation Goldman (2004) suggests a Concepts-first curriculum.
To achieve this the IDE JPie (JPie) is used. The curriculum is based on four “big
ideas”:

Fundamental Abstractions modeling, naming abstraction, types and values,
classes and objects, methods and delegation, procedural abstraction with
parameters and return values, sequential and conditional execution.

Software Design viewed as a creative process with a specific emphasise on func-
tionality, usability and efficiency.

• Separation of Concerns: Encapsulation, Model/View Separation, and
Local Coordinate Systems

• Type Systems: Class Hierarchy Design, Inheritance and Specialization,
Polymorphism, and Program Correctness

Algorithms and Data Structures central to computer science, at least on an
introductory level, it is necessary to make these tools known to novices.

• Iteration and Recursion
• Use of Fundamental Data Structures
• Persistence

Concurrency and Communication experiences made possible through the en-
vironment used.

• Synchronization and Deadlock
• Interprocess Communication

The experiences made are not for groups of CS-majors and are aiming at ex-
posure to common computer science concepts more that learning to program in an
object oriented way.

12

2.4. Instructional Design for Object Oriented Programming

2.4.5 Concept-order in an objects-first approach
Objects first has been claimed in many suggested curricula and in many book-
titles. It has turned out that doing objects first is easier said than done. An
example for the ordering of concepts in an objects-first approach, was made by
Gries at a keynote speech at SIGSCE 2008 (Gries, 2008).

Lecture 01: Expressions, variables, assignment
Lab: practice: types int, double, boolean, string; casting; assignment

Lecture 02: Objects (students see JFrame objects)

Lecture 03: The class and subclass definitions (simple function/proc declarations
with return statements and method calls
Lab: write simple function/proc declarations in a subclass of JFrame

Lecture 04: Fields, getter/setter methods, simple constructors

Lecture 05: Static components, the class hierarchy, JUnit testing
Lab: use JUnit test cases to find and fix errors in a given program; practice
with static components

Lecture 06: How a method call is executed. if- and if-else statements. local
variables.

Lecture 07: Inside-out rule; super-this; stepwise refinement
Lab: practice: write functions (if- and if-else; no loops!)

Lecture 08: Constructors in subclasses; stepwise refinement

Lecture 09: Wrapper classes; stepwise refinement
Lab: Learn about class Vector

Lecture 10: Recursion

Lecture 11: Recursion Lab: Writing recursive functions

Lecture 12: Casting among class-types; operator instanceof; function equals.

Just looking at this course structure does not show the way concepts are discussed.
It is mainly a record of when syntactical components are introduced. It might be
argued that this approach is not objects-first, since objects only appears in the
second lecture. The non-exemplary concepts of setter/getters and static is early
in the curriculum and type-checking with the operator instanceof is included.
Inheritance is used early to support the use of graphical components.

2.4.6 Taxonomy of learning object-technology
Attempts have been made to develop taxonomies for different areas of computer
science. Mosley (2005) suggests a taxonomy for learning object technology to be
used for sequences of programming courses, see Figure 2.3. Taxonomy is the science
of classification according to a predetermined system, with the resulting catalog
used to provide a conceptual framework for discussion, analysis, or information

13

Chapter 2. Related Work

retrieval. In theory, the development of a good taxonomy takes into account the
importance of separating elements of a group (taxon) into subgroups (taxa) that
are mutually exclusive, unambiguous, and taken together, include all possibilities.

Figure 2.3: Taxonomy for learning object-technology

Basically these sets of skills can be viewed as skills in programming and skills in
analysis and design, see Figure 2.4. Calling them independent does not seem quit
correct for novices. Mosley’s study is based mainly on professional programmers,
to whom programming logic is a less complicated issue.

Figure 2.4: Taxonomy for learning object-technology, revised

14

2.5. Misconceptions

2.5 Misconceptions
Several educators have documented observed misconceptions. Holland et al. (1997)
discusses misconceptions concerning the concept of an object. They present a
number of misconceptions and suggestions how to avoid them.

Avoiding object/variable conflation Single attribute classes could make the
novice deduct that objects are wrappers for variables. Another problem is
examples with classes having all attributes of the same class. This might lead
to the misconception that all attributes must be of the same type.

Objects are not simple records One example is the music CD class, that merely
stores information like any database record. This makes the behavioural as-
pect less obvious and might induce the misconception of classes as data-only
entities. It is important to show how the behaviour of an object could vary
substantially depending on its state.

Work in methods is not all done by assignment Early examples of methods
often show assignments. This can be influential for a novice. If it is possible,
we should avoid having all attributes of immutable object, such as primitive
types. If some attributes have states themselves this misconception is less
likely to stick.

Object/class conflation It is crucial to show more than one instance of a class
to avoid the mix up of class and object.

Identity/attribute confusion Using the identifier name for an attribute could
cause a confusion about what the identity of an object is, or the function and
name of the reference to the object. This has further implications, i.e. only
one variable can reference a certain object at a given time; a variable that
references an object can not reference any other object; objects knows who
references them; two objects with the same state are the same object; two
objects with the same value of an attribute called name are the same. These
misconception are best dealt with by exposing the learner to counterexamples.

Conflation of textual representation of objects and references to objects
This is a common problem since we tend to use toString or printing to ex-
amine and show the behaviour of a method, and/or the flow of execution
in a method. It is also common with problems to distinguish between the
visual representation of an object in an IDE (e.g., BlueJ); the object itself;
and a reference to that object. References has to be taught with care and as
a separate concept along with the concepts of class and object.

In Ragonis and Ben-Ari (2005) a number of frequently observed difficulties and
misconceptions are presented along with explanations of the probable source of the
problem.

Difficulty 1 – Object state Novice students have difficulties in understanding
how the invocation of a method influences the objects state.

Difficulty 2 – Method invocation Understanding how a sequence of method
calls relates to solving the problem.

15

Chapter 2. Related Work

Difficulty 3 – Parameters Novice learners does not understand the relation be-
tween the formal and the actual parameter. A good point made by Gries
(2007) is to use the terms parameter and argument instead.

Difficulty 4 – Return values Novice learners do not understand where the re-
turn value of a method goes.

Difficulty 5 – Input instructions Understanding the need for input instruction
to the user when working with interactive programming.

Difficulty 6 – Constructors Difficulties in understanding the connections be-
tween the constructor declaration, the constructor invocation and the con-
structor execution.

Difficulty 7 – The overall picture of execution What is happening and when?
This could mean difficulties in understanding the relation between the IDE,
the code and the execution. Using IDE’s makes teachers switch between de-
velopment and destining, in an iterative fashion. This can contribute to the
implicit notion that objects can be changed through the editor, because the
results of trying out something in the class gives cause for improvement and
thereby changes in the definition of the class.

One important conclusion is that program flow can easily be neglected due to the
focus on objects. Sequential executing of statements, including the creation and
referencing of objects manipulating the state of objects, must be presented early
to avoid some of these misconception. However, it is our firm belief that there is a
larger amount of topics that has to be covered when teaching and learning object
orientation compared to procedural problem solving and programming.

Fleury (2000) elaborates on student-constructed rules and their view of ba-
sic concepts. Attempts are made to find out how certain misconceptions can be
explained.

Student–Constructed Rule 1: The Java compiler can distinguish between same-
named methods only if they have differences in their parameter lists. The
principle that names within a class must be distinguished with the help of
parameter lists was extended to methods in different classes.

Student–Constructed Rule 2: The only purpose of invoking a constructor is
to initialize the instance variables of an object. The different handling of
memory allocation for primitive values and for objects creates a problem in
Java. The declaration of reference-variables is the same as the declaration
for primitive variables, while the allocation of space for objects is implicit.

Student–Constructed Rule 3: Numbers or numeric constants are the only ap-
propriate actual parameters corresponding to integer formal parameters. Pass-
ing explicit values is more easily comprehended, than passing the value of a
formal parameter, who at the moment does not seem to have any value.

Student–Constructed Rule 4: The dot operator can only be applied to methods.
Using encapsulation properly means that the dot operator rarely is applied
to an attribute.

16

2.6. Harmful Examples and Poor Learning Behaviour

An interesting conclusion is that removing “only” or “the only” from the rules makes
them true statements. So the construction of the rules are correct rules applied in
the wrong way.

The “Who-am-I” problem

Not only are the examples we use important, but also how we use words to talk
about programming and problem solving. When talking about problem solv-
ing/programming, educators often switch between different views of ‘I’:

• ‘I’ am the constructor of the code/class/program

• ‘I’ am the user/client of the object/program

• ‘I’ am the one executing the code/program

This can be highly confusing to a novice.
When discussing the design of a a class, it seem like a good idea to think about

how the objects are going to be used, which behaviours we want to make available
to the “user”. This makes us educators switch back and forth between these views.
Then when tracing the code to see if it works we switch perspective once more.
This might cause the students to develop misconceptions. One could be the belief
that objects change state and behaviour by editing the source-code of the class.
Another might be that the client of a class could influence the behaviour of the
object.

To our knowledge this practical detail of teaching has not yet been addressed.

2.6 Harmful Examples and Poor Learning Behaviour
An interesting collection of harmful examples has been collected by Malan and
Halland (2004). They identify four common pitfall to avoid when designing exam-
ples:

Examples that are too abstract: If it does not make sense to the novice why
anyone would need such a class it gives a wrong impression of the concept of
a class.

Examples that are too complex: This is an obvious risk when attempting to
make examples more realistic. There will be too much disturbing noise dis-
tracting the attention from the concept illustrated.

Concepts applied inconsistently: One example is passing attributes as param-
eters internally in a class, despite the fact that they could be accessed directly.

Examples undermining the concept introduced: More severe cases of un-
dermining. Using data-only classes, with only set and get methods, is one
example. This undermines the idea of a class being an autonomous entity,
with both state and behaviour.

17

Chapter 2. Related Work

It is rightfully claimed that “selling” the concept is an important responsibility for
educators, especially when working with novices.

Examples as vehicles for learning tendencies is investigated by Carbone et al.
(2001). Poor learning tendencies was initiated by the following task characteristics:

Superficial attention: tasks involving copying and modifying code can lead to
avoidance in trying to make sense of the information processed.

Impulsive attention: task that do not emphasise the key ideas, or introduces
to many unfamiliar concepts, or demands long coding solutions can lead to
focusing on the interesting parts and thereby ignoring some major point.

Staying stuck: novices without adequate strategies remain stuck in three differ-
ent situations:

1. the initial designing stage
2. coding the solution and solving complications
3. run-time errors.

The poor learning tendencies are classified into three categories:

Non-retrieval: no attempt to retrieve ones’ own views and understandings rele-
vant to things presented.

Lack of internal reflective thinking: the novice is not reflecting within the
boundaries of the subject. Each task, lesson, activity or even instruction
is seen isolated from the other sources of information.

Lack of external reflective thinking: the novice is not reflecting outside the
boundaries of the subject. The content of the subject is not linked to the
outside world or other subjects.

The study performed by Carbone et al. is based on student interviews, tutor
comments and student cases. It suggests a number of task-improving measures to
be taken.

• Non-retrieval

– Familiarity.
– Reinforcement by repetition.
– Retrieve existing understanding.

• Lack of internal reflective thinking

– Tie the work into the ’Big Ideas" of the lesson.
– Build on previous work.
– Extract the links.

• Lack of external reflective thinking

– Tasks should be designed to include components of other units.

18

2.7. Qualities of Examples

2.7 Qualities of Examples
The importance of good examples seems to be agreed upon. But how does one
tell good from bad? Evaluating examples from an educational point of view is
often done on an intuitive basis. Just looking through some popular textbooks
or trying to give an example on-the-fly makes it apparent that intuition often is
misleading in this case. One attempt to construct a tool in aiding this work is a
protocol suggested by ? and in more detail described in (Börstler et al., 2008).
The discussion in this section is to a large extent based on our work during the
development of that tool. The suggested tool is based on the following definitions:

An Example Program is complete description of a program, i.e., the actual
source code in connection to all supporting explanations related to the par-
ticular example. This is opposed to code snippets.

A Good Example is an example that relates to the needs of novices in both
programming and object orientation.

Novices have a limited frame of reference. They rarely have any previous knowl-
edge about (object oriented) programming languages or the programming process.
To control the cognitive load and reduce unnecessary complexity, a number of
conditions are stated for a good example.

• Example context should be as familiar as possible.

• Examples must be small and/or focus on a single concept.

• object oriented principles must be upheld and enforced.

A number of basic properties are stated for an object oriented example program to
be effective as an educational tool. It must:

• be technically correct,

• be a valid role model for an object oriented program,

• be easy to understand (readable),

• promote “object oriented thinking”, and

• emphasize programming as a problem solving process.

Inspired by the checklist-based evaluation by the Benchmarks for Science literacy-
project (AAAS, 1989), three categories of qualities in examples have been defined:
technical quality, object oriented quality and didactical/educational quality.

Technical quality: A good example must be technically correct. Code must be
written in a consistent and exemplary fashion, i.e., appropriate naming, in-
denting, commenting and so on. This is not primarily connected to the object
oriented paradigm, but programming in general.

Object oriented quality: A good example must be a valid role model for an
object oriented program. Object oriented concepts and principles should be
emphasized and reinforced. It is therefore important to show objects with
mutable state, meaningful behavior, and communication with other objects.

19

Chapter 2. Related Work

Didactical quality: From a didactical point of view, a good example must be easy
to understand, promote object oriented thinking and emphasize programming
as a problem solving process.

A set of quality factors, denoted QF’s, corresponding to desirable example proper-
ties for each of the categories above have been defined. The QF’s, should adhere
the following properties:

• Each QF is based on accepted principles, guidelines, and rules.

• Each QF is easy to understand.

• Each QF is easy to evaluate on a Likert-type scale.

• There are as few as possible QF’s.

• There is as little redundancy as possible.

• All QF’s are at a comparable level of granularity/importance, i.e., they con-
tribute equally well to the overall “quality” of an example.

• The set of QF’s covers all relevant aspects of “quality”.

• The set of QF’s must be applicable to any example, regardless of pedagogical
approach and order of presentation.

Based on our experiences made during the work with the tool, it is reasonable to
assume that technical quality factors generally are upheld, so our focus here is on
object oriented and didactical QF’s.

Object oriented quality (O1-O2)

O1: Modeling. The example emphasizes object oriented modeling. This means to
emphasize the notion of object oriented programs as collections of communi-
cating objects.

O2: Style. The code adheres to accepted object oriented design principles. E.g.,
proper encapsulation/information hiding, Law of Demeter (no in-appropriate
intimacy), no sub classing for parametrization, etc.

The difference between O1 and O2 is that O1 focuses on design while O2 is con-
cerned with the implementation. O1 could be highly rated if the attributes are
well chosen, while O2 would rate poorly if the attributes were implemented as
public. O1 would rate poorly and O2 highly if attributes were badly chosen, but
still implemented as private.

Didactic quality (D1-D6)

D1: Sense of purpose. Students can relate to the example’s domain and computer
programming seems a relevant approach to solve the problem.

D2: Process. An appropriate programming process is followed/described, i.e., the
problem is stated and analyzed, a solution is designed, implemented and
tested/debugged.

20

2.8. CRC-cards and Role-plays

D3: Breadth. The example is focused on a small coherent set of new issues/topics.
It is not overloaded with new material or details introduced “on-the-fly”.

D4: Detail. The example is at a suitable level of abstraction for a student at the
expected level and likely understandable by such a student.

D5: Visuals. The explanation is supported by relevant and meaningful visuals.

D6: Prevent misconceptions. The example illustrates (reinforces) fundamental ob-
ject oriented concepts/issues. Precautions are taken to prevent students from
drawing inappropriate conclusions. The quality factors of particular interest
here are: O1, O2, and D1.

These are important components and serve well in evaluating an example. One of
the purposes with the development of this tool was to aid in developing a sense of
good and bad, by doing the evaluation on small-scale examples used in textbooks,
exercises, assessments and lectures. However, the object oriented qualities (O1 and
O2) are not detailed enough to be particularly helpful when it comes to the design
of examples.

2.8 CRC-cards and Role-plays
Introducing object orientation means introducing object oriented analysis and de-
sign. The approach for analysis to some extent determines the design. A popular
method for analysis and design is text analysis in combination with the use of
CRC-cards and role-play, described in (Bellin and Simone, 1997). CRC-cards are
used to characterise object with respect to Class, Responsibility and Collabora-
tion. The analysis is done by searching for nouns in a given problem description
and using them as candidate objects, filtering and organising them into candidate
classes. The verbs in the problem description can be used both for identifying
responsibilities/behaviour and for identifying possible use cases or scenarios. In
Figure 2.5 four classes are designed for a library application.

The approach is useful because it activates people and makes it everybody’s
responsibility to take part in the analysis and design of the system. It is also worth
noting that the approach requires no knowledge of programming. An interesting
application is the design of a Decanter centrifuges from Alfa Laval Separation A/S
described in (Hvam et al., 2003). However, there are some problems using the
original idea presented by (Beck and Cunningham, 1989). There is i.e. a great
risk of confusing class and object, while the CRC-card at one point represents the
generic description of all objects and at another point represents a single object (an
instance). This problem can be addressed by introducing a notation called Role-
Play diagrams (RPD’s) with post-it notes representing the instances of a class and
then using the CRC-card to function as a manuscript used when a particular object
is active in the role-play (Börstler, 2004), Figure 2.6 is an example of a RDP for a
scenario from a Library design.

Role-Play diagrams serves as a simple non-formal way of documenting the role-
playing when working through the use cases or scenarios. The use of well known
problem domains is promoted by studies reported in the literature, e.g., Biddle

21

Chapter 2. Related Work

Class:

Responsibilities Collaborators

!""#

#$"%&'%()*()+'"$',"-$

#$"%&'./',-*)
0()0#'"1*

2-*)

#$"%&'31)'3-*)
#$"%&'.*&'*.*,)
#$"%&'.*&'-1*("+4&5
#$"%&'.*&'+)6.&*+-*."$'0"3)

Class:

Responsibilities Collaborators

7.8+-+.-$

0()0#'.$'8""#

&)-+0('/"+'8""#

!""#
!""#9'!"++"%)+0()0#'"1*'8""#

Class:

Responsibilities Collaborators

!"++"%)+

#$"%&'.*&'$-:)

#));&'*+-0#'"/'"<)+31)'/.$)&
#));&'*+-0#'"/'8"++"%)3'.*):&

Class:

Responsibilities Collaborators

2-*)

#$"%&'01++)$*'3-*)

0-$'0":;1*)'$)%'3-*)&
0-$'0":;-+)'*%"'3-*)&

#$"%&'-,,'8""#&
&)-+0('/"+'8"++"%)+
#$"%&'-,,'8"++"%)+&

!""#

!"++"%)+

Figure 2.5: CRC cards for Library application

4(4)

The scenario above is somewhat simplified and does not take care of for example the

computation of return dates or how exactly the borrowers keep track of borrowed books.

Our experiences so far are quite positive. Teachers as well as TAs think our approach to

teaching CRC-cards has improved after the introduction of RPDs. Students are usually quite

positive to the CRC-approach.

References

Beck, K. (1993). CRC: Finding objects the easy way. Object Magazine 3 (4). 42-44.

Beck, K., Cunningham, W. (1989). A Laboratory for Teaching Object-Oriented Thinking.

Proceedings OOPSLA’89. 1-6.

Biddle, R., Noble, J., Tempero, E. (2002). Reflections on CRC Cards and OO Design. Proceedings

TOOLS Pacific 2002, Sydney, Australia.

Booch, G., Rumbaugh, J., Jacobson, I. (1999). The Unified Modeling Language User Guide. Reading,

MA: Addison-Wesley.

Börstler, J. (2004). Object-Oriented Analysis and Design Through Scenario Role-Play, Technical

Report UMINF-04.04, Department of Computing Science, Umeå University, Sweden.

Börstler, J., Johansson, T., Nordström, M. (2002). Introducing OO Concepts with CRC Cards and

BlueJ—A Case Study, Proceedings FIE'02, Boston, USA, T2G-1-T2G-6.

Wirfs-Brock, R., McKean, A. (2003). Object Design--Roles, Responsibilities, and Collaborations.

Upper Saddle River, NJ: Prentice Hall.

!""#$%&'""#&

()*+%&,-+&./01--/#+234&56/7+&0"&0-+&
8)9):;&

"(&9")(%&("&

!"22"<+2$%&'"22"<+2&

()*+%&=>25+(&'?2409+2&
!"22"<+7&!""#4%&("(+&

0"0)9&@/(+4%&A&

%&B/!2)2/)(&

&

!""#C%&'""#&

()*+%&CDEF&

"(&9")(%&("&;+4&

!"22"<+2C%&'"22"<+2&

()*+%&="-(&G"+&
!"22"<+7&!""#4%&("(+&C&HCDEFI&

0"0)9&@/(+4%&A&

0-+8JK&

&

C%&!"22"<&CDEF&0"&="-(&G"+&

$%&@/(7&"60&0-)0&="-(&
G"+&/4&!"22"<+2C&)(7&
0-)0&CDEF&/4&!""#C&

L%&!"22"<&!""#C&

F%&"(&9")(M& ("&

N%&)77&!""#C&0"&
!"22"<+7&!""#4&

Figure 2.6: Role-Play Diagram for Library scenario

et al. (2002). Example-systems are often taken from every day life, such as li-
braries, banking, and economics. There is however a problem with every day
life experiences, they tend to create confusion because of the conflict between the
model and the entity being modelled. In real life a borrower at the library cannot
be trusted to be responsible for keeping record of his/her unpaid fees for loans
overdue. When modelling the borrower in the system, this responsibility might be
perfectly reasonable.

22

2.9. Summary

2.9 Summary
In the area of introductory programming there are several aspects to be considered.
Examples, order of presentation, instructional design and the more general aspect
of knowledge acquisition and cognitive load to mention some.

Cognitive considerations are an underdeveloped aspect in Computer Science
education research. Making its way into the area of introductory programming it
should be beneficiaal for the development of instructional design. General theory on
cognitive load and the use of worked examples must also be taken into consideration
when designing the curricula.

In the literature there are suggestions for instructional design, made from dif-
ferent approaches, model-driven, responsibility-driven etc., but all in all, there is
no general agreement upon which object oriented concepts are to be introduced,
not how and not in what order. Though many of the instructional advices are
fairly easy to agree with, Computer Science educators in general seem to have
difficulties submitting to them. At least, the interpretation of them and the imple-
mentation of them seem to differ among educators, judging from the varying ways
of exemplifying a certain concept or idea.

23

24

Chapter 3

Characteristics of Object
Orientation

3.1 Introduction
Searching for characteristics of object orientation it is necessary to investigate how
it all started. Early on, Nygaard and Dahl used ideas from ALGOL to name entities
objects and to establish some characteristics (Nygaard, 1986). They stated that
the basic concept should be classes of objects. The subclass concept, should be a
part of the language, and direct, qualified references should be introduced.

Stroustrup (1995) makes the following (practical) definition of object orienta-
tion:

A language or technique is object oriented if and only if it directly supports:
(1) Abstraction - providing some form of classes and objects. (2) Inheritance -
providing the ability to build new abstractions out of existing ones. (3) Run-time
polymorphism - providing some form of run-time binding.

He also states that The fundamental idea is simply to improve design and pro-
gramming through abstraction.

The concept of objects in SIMULA 67 was the basis for the term object oriented
programming, coined by Alan Kay, the designer of Smalltalk.

Though it has noble ancestors indeed, Smalltalk’s contribution is a
new design paradigm–which I called object oriented for attacking large
problems of the professional programmer, and making small ones pos-
sible for the novice user. (Kay, 1996)

Generally when talking about object orientation a number of concepts keep show-
ing up. The difficulty is to be able to distinguish some sort of priority among them.
When we are working with small-scale examples and programs, it is inevitable that
we are forced to make sacrifices among the established principles of object orien-
tation. The common understanding of “established principles” seem indisputable,
but still remains to be defined.

In this chapter some attempts to establish basic characteristics, in terms of
concepts, of object orientation are described.

25

Chapter 3. Characteristics of Object Orientation

3.2 Frequent Concepts
Litterature reviews

In an early literature survey by Henderson-Sellers and Edwards (1994) it is stated:

[. . .] on the surface there is no precise agreement about what features
are vital for “object orientation.” However, when one groups the terms
frequently used, some consensus begins to emerge. (Henderson-Sellers
and Edwards, 1994)

The survey examines 20 books and journal articles by recognised pioneers of object
orientation, such as Bertrand Meyer, Grady Booch, Bjarne Stroustrup etc. Terms
found in these texts are collected into three groups and shown as corners in a
triangle, see Figure 3.1. The three groups are:

The modularisation process that consists of information hiding, encapsulation
and objects. This is related to the idea of expressing everything about an
identifiable entity in one, and only one, place.

The grouping of collections to rationalise the world, which contains classifica-
tion, classes and abstraction.

The notion of reusing code, which contains inheritance, polymorphism and dy-
namic binding.

Figure 3.1: The object oriented triangle (Henderson-Sellers and Edwards, 1994)

A more recent study of frequent concepts can be found in (Armstrong, 2006).
This study is based on 239 sources (journal, trade magazines, books and conference
proceedings), spanning over the years 1966-2005. Searching for the key phrase
object oriented development, Armstrong found 88 sources that discussed a specific
set of concepts to characterise the object oriented development approach. All in
all there were 39 concepts mentioned, and counting the frequencies resulted in the
list seen in Table D.1.

The concepts were collected to support “practitioners in the midst of transi-
tioning to object oriented development” and “researchers studying the transition
to object oriented development”. This is not the intended audience when dis-
cussing introduction to problem solving and programming using the object oriented

26

3.2. Frequent Concepts

paradigm. Armstrong is not making any distinction of what is most critical, merely
counting occurrences and picking the concepts most frequently used (in more than
50% of the papers). They were Inheritance, Objects, Class, Encapsulation, Method,
Message Passing, Polymorphism and Abstraction.

One interesting point made is that many of the concepts with lower frequencies
are either similar to or can be included in the more frequent concepts. This can
be seen as a sign of the immaturity of the paradigm, and vocabulary and concepts
remains to be agreed upon and defined.

These concepts were organised in a taxonomy, see Table 3.1. The most fre-
quent terms have been categorized in two dimensions, one for structure and one
for behaviour.

Table 3.1: Two construct object oriented taxonomy

TABLE PP
TWO CONSTRUCT OO-TAXONOMY (Armstrong 2006)

Construct Concept Definition

Abstraction
Creating classes to simplify aspects of reality using
distinctions inherent to the problem.

Class
A description of the organization and actions
shared by one or more similar objects.

Encapsulation
Designing classes and objects to restrict access to
the data and behaviour by defining a limited set of
messages that an object can receive.

Inheritance The data and behaviour of one class is included in
or used as the basis for another class.

Structure

Object
An individual, identifiable item, either real or
abstract, which contains data about itself and the
description of its manipulations of the data.

Message passing
An object sends data to another object or asks
another object to invoke a method.

Method
Ways to access, set, or manipulate an object's
information.

Behaviour

Polymorphism
Different classes may respond to the same message
and each implement it appropriately.

ACM’s CC2001

The computing community has tried to formulate the basic requirements for a
computer science degree, and in this work published curricula recommendations
(ACM, 2008b).

ACM’s Computing Currocula 2001 (ACM, 2001), with the update (ACM, 2008a)
lists the following topics in the Programming Fundamentals/ObjectOriented cate-
gory

• Object oriented design

• Encapsulation and information-hiding

• Separation of behavior and implementation

• Classes and subclasses
• Inheritance (overriding, dynamic dispatch)

• Polymorphism (subtype polymorphism vs. inheritance)

With the following Learning objectives:

27

Chapter 3. Characteristics of Object Orientation

1. Justify the philosophy of object oriented design and the concepts of encap-
sulation, abstraction, inheritance, and polymorphism.

2. Design, implement, test, and debug simple programs in an object oriented
programming language.

3. Describe how the class mechanism supports encapsulation and information
hiding.

4. Design, implement, and test the implementation of “is-a” relationships among
objects using a class hierarchy and inheritance.

5. Compare and contrast the notions of overloading and overriding methods in
an object oriented language.

The concepts mentioned explicitly are encapsulation, abstraction, inheritance, and
polymorphism.

The Java task force

In 2004 the ACM Java Task Force (JTF) (ACM, 2008c) was convened with the
following charter:

To review the Java language, APIs, and tools from the perspective of
introductory computing education and to develop a stable collection of
pedagogical resources that will make it easier to teach Java to first-year
computing students without having those students overwhelmed by its
complexity.

Some problems addressed, are based on a survey of the literature of computer
science education made by JTF in an attempt to identify the problems that have
generated the greatest level of concern. The pedagogical problems were grouped
into three categories:

High-level issues that are in some sense beyond the details of the language itself,

Language issues that arise from the design of Java itself, and

API issues associated with the application programmer interfaces provided as
part of Sun’s standard Java releases.

Most of the issues are cognitive rather than conceptual. The Language issues have
some important educational implications. Being able to separate the interface
(or protocol) of a class from its implementation (labelled L3) is crucial in object
orientation and must be carefully addressed.

The JTF contribution is packages to simplify graphics, IO, GUI, and some
more. Assignments and classroom demos have been developed. The use of these
resources seem to be beneficial, but maybe more so to non-majors, see e.g., Mertz
et al. (2008).

28

3.2. Frequent Concepts

Anchor concepts
Based on ideas in cognitive research, the notion of anchor concepts is developed

by Mead et al. (2006).
An anchor concept is a concept that is either foundational, i.e., it is

a critical, basic concept in the knowledge domain, but not derivable in
that domain or is both integrative i.e., it ties together concepts from the
knowledge domain in ways that were previously unknown and transfor-
mative i.e., it involves a restructuring of schema, possibly integrating
new information, resulting in the ability to apply what is known either
differently and/or more broadly.

By identifying anchor concepts within a curricula/discipline an anchor map is con-
structed to aid in the conceptual ordering and pedagogical approach to teach the
desired skills, in this case programming. Using this approach on object oriented
programming, the graph in Figure 3.2 is presented.

Figure 3.2: Anchor concept graph for object orientation by Mead et al. (2006)

The process of determining the anchor concepts should come from the underly-
ing principles on which the target language is based. Fundamental concepts chosen
are: relation, attribute, type, encapsulation, abstraction, behaviour and state. An-
chor concepts for object-oreinted programming are: Class, Method, Inheritance,
Message passing, Polymorphism and Object.

Truc’s

Another interesting approach on cognitive elements in education is given by Meyer
(2006). Introducing Trucs (Testable, reusable, units of cognition) Meyer states:

A Truc embodies a collection of concepts, operational skills, and
assessment criteria. [. . .] The properties listed for Trucs recall some of
the characteristics of design patterns. [. . .] Like patterns, Trucs need
not claim originality; the primary effort is to catalog modes of thought
that have proved their usefulness. Trucs could indeed be characterized
as “education patterns”. (Meyer, 2006)

A number of specific properties are specified along with an accompanying rationale
for teaching. Trucs depend on other Trucs, and this is shown by a dependency

29

Chapter 3. Characteristics of Object Orientation

graph. This graph must be acyclic, which may not be trivial, and it must not
include transitive sub graphs: If C is dependent on B, and B is dependent on A
then C must not depend on A. As an example, Meyer shows a graph for some basic
object oriented concepts used in introductory programming textbooks, se Figure
3.3.

Figure 3.3: TRUC cluster with dependencies for object oriented programming
(Meyer, 2006)

The main purpose of defining Trucs and their associated dependencies is to
support education providers in the scaffolding for a course, a textbook, an exam,
the design of a curriculum or other pedagogical use. They are intended to provide
help in defining, understanding, teaching and assessing knowledge.

Threshold concepts

Interesting work on the notion of threshold concepts in computer science has been
initiated by a multinational team. Threshold concepts are concepts that are

• transformative: they change the way a student looks at things in the disci-
pline.

• integrative: they tie together concepts in ways that the were previously un-
known to the student.

• irreversible: they are difficult for the student to understand.

• potentially troublesome: they conceptually difficult, alien, and/or counter-
intuitive.

• often boundary markers: they indicate the limits of a conceptual area or the
discipline itself.

Eckerdal et al. (2006) suggests two candidate Threshold concepts for computer
science, abstraction and object orientation. In a subsequent study (Boustedt et al.,
2007) another concept is added: pointers. Identifying the Threshold Concepts seem
to be non-trivial and much work still remains before there can be any practical
implications of this approach.

30

3.3. Abstractions

Object oriented programming modelling and design

According to Rumbaugh et al. (1991) the exact characteristics of an object oriented
approach are disputed, but generally include four aspects: identity, classification,
polymorphism and inheritance.

3.3 Abstractions
Searching for the most critical components of object orientation, the word abstrac-
tion keeps showing up frequently (Armstrong, 2006). Some would claim that it is
the key concept (Devlin, 2003; Kramer, 2007; Meyer, 2001; Parnas, 2007).

Despite that the CS community holds abstraction very highly, it is not explic-
itly a part of the educational curricula. Kramer (2007) bases his discussion of
abstraction on Webster’s definition of abstraction, which emphasise the process
of removing details to be able to focus on others, and the process of abstracting
common properties of instances to accomplish a generalisation. Kramer states that
mathematics implicitly provides this skill. If not taught, to what extent can a per-
son be expected to be skilled in abstraction. Starting with Jean Piaget (1896–1980)
and his four stages for development: the sensorimotor stage, the pre-operational
stage, the concrete operational stage, and the formal operational stage, Kramer
notes that studies have shown that as much as 65-70% of adolescents have not
reached Piaget’s formal operations stage. This is a crucial stage in which individ-
uals develop increased ability to reason hypothetically independently of concrete
situations, and to describe ones own reasoning processes (Piaget, 1962). The use
of symbols representing abstract concepts is made available. So Kramer poses
the question “Is abstraction teachable?”, In his opinion, the science to answer this
question is not yet mature enough. There is too little knowledge about abstraction
abilities including the problem that it is not obvious how to measure abstraction
abilities. There is still much work to be done in this area. There is a need for tests
to be able to monitor students progress in abstraction abilities, and to promote
teaching techniques.

If abstraction is crucial to modelling entities in the problem domain, how do
we learn how to develop abstractions?

In a reply to Kramer’s article Parnas (2007) contrasts this to Dijkstra’s defini-
tion:

An abstraction is one thing that represents several real things equally
well. (Dijkstra)

According to Parnas this definition is more useful than a definition that emphasise
extraction. Dijkstra’s definition states what must remain. According to Parnas,
Dijkstra’s’ work shows that two distinct skills are related to abstractions: being
able to work with given abstraction; and being able to develop an abstraction.

The use of abstraction in problem solving and programming emphasises the
need for mathematical training. Mathematics helps in developing a formal and
abstract way of reasoning and designing solutions for given problems, which is
crucial for computer scientists. This is motivated and strongly advocated by a
number of computer scientists in the CACM special issue Why universities require
computer science students to take math in September 2003 (Devlin, 2003).

31

Chapter 3. Characteristics of Object Orientation

Once you realize that computing is all about constructing, manipulat-
ing, and reasoning about abstractions, it becomes clear that an important
prerequisite for writing (good) computer programs is the ability to han-
dle abstractions in a precise manner. As it happens, that is something
we humans have been doing successfully for more than three thousand
years. We call it mathematics. (Devlin, 2003)

Computer science originally being a part of mathematical computations has de-
veloped its vocabulary and formal notations largely based in the mathematical
tradition. Vital to Computer science it is important to find ways to work with; and
words to express abstractions. In (Rumbaugh et al., 1991)the following statements
about abstractions are made:

Abstraction is the selective examination of certain aspects of a prob-
lem, [. . .]

Abstraction must always be for a purpose, because the purpose de-
cides what is and is not important. [. . .]

All abstractions are incomplete and inaccurate. [. . .]
A good model captures the crucial aspects of a problem and omits

the others. (Rumbaugh et al., 1991)

These are important insights: to be aware of the fact that abstractions are situated.
E.g. the abstraction “car” can be modelled in various ways depending on the
application. Possible contexts are, a system for taxes, a system for insurances,
a system for a car-manufacturer, a system for advertising purposes, a game with
moving vehicles, and so on. It becomes problematic if an abstraction should be
designed without a context. What services and behaviour are reasonable if the
purpose is unknown?

An interesting result for the connection between abstraction ability and math-
ematics can be found in (Bennedsen and Caspersen, 2006). The authors reports
on a study where the hypothesis General abstraction ability has a positive impact
on programming ability is tested. The study shows no correlation between level of
cognitive development and mathematical ability. This is somewhat contradictory
to the general assumption that mathematics supports abstraction abilities, see for
example (Devlin, 2003) and (Kramer, 2007). Furthermore, the study shows no sup-
port for a correlation between abstraction ability and programming ability. The
authors concludes by questioning their own indicators for programming ability;
and the appropriateness of choice of test for abstraction ability (a commonly used
pendulum problem).

During the process of object oriented analysis and design the developer has two
primary tasks according to Booch, (Booch, 1994):

• Identify the classes and objects that form the vocabulary in the problem
domain.

• Invent the structures whereby sets of objects work together to provide the
behaviours that satisfy the requirements of the problem.

These classes and objects are termed key abstractions of the problem and the
structures are termed mechanisms of the implementation. Initially the focus must
be on the outside view of these abstractions and mechanisms. Even though the

32

3.4. Object Thinking and Metaphors

design of classes and objects is an iterative process it is important to be able to
know if a given class or object is well designed. Booch suggests five metrics to aid
in this determination:

Coupling: a notion of the dependence between classes

Cohesion: a measure of how strongly related or focused the responsibilities of a
single class are.

Sufficiency: the class captures enough characteristics of the abstraction to be
useful in terms of interaction.

Completeness: the interface of the class captures all of the meaningful charac-
teristics of the abstraction.

Primitiveness: primitive operations are those that only can be efficiently imple-
mented given access to the underlying representation of the abstraction; i.e.
operations that cannot be implemented by combination of other operations in
the interface. According to Booch it is favourable that classes are primitive.

3.4 Object Thinking and Metaphors

Abstraction is central to object orientation. The difficulty is to know what to
abstract. Looking at some general characteristics of an abstraction is not much
help when dealing with the actual problem. To a novice it is vital to have guidelines
for deciding what to abstract when designing a solution to a programming problem.

The inability to think about programs in an implementation-independent
way still afflicts large sections of the computing community. Edsger W.
Dijkstra (Dijkstra, 1999)

Object thinking by anthropomorphisation is promoted by, among others, West
(2004). Projecting human characteristics on to objects helps us think about objects
in a different way than the traditional data-centred way of thinking. According to
West the essential thinking difference can be stated: Think like an object. He
is contrasting this to what he considers to be the prevailing mental habit among
developers: Think like a computer. The problem with “Think like a computer”
is that it leads to thinking in terms of the means of the problem solution, guided
by how computers execute their instructions. Developing this kind of data centric
solutions, means working with relations and relationships, and the solution is based
on the tools available in the solution domain. Thinking as an object should be
based in the problem domain rather than the solution domain. Objects are a
community of cooperating virtual persons. A virtual person is an entity taking on
responsibilities, such as offering/performing certain services.

3.4.1 Prerequisites to object thinking

West defines the following prerequisites to enhance object thinking:

33

Chapter 3. Characteristics of Object Orientation

Everything is an object

Any decomposition will result in the identification of a small number of objects
(only objects!), almost regardless of how complicated the problem domain might
be.

Simulation of a problem domain drives object discovery and definition

Decomposition is accomplished by applying abstraction. Data and function are
poor choices as decomposition tools; behaviour should be used instead. West dis-
cusses the use of the three human methods for organisation: differentiation, classi-
fication and composition. This is the Behaviour should be used to find the natural
entities in the problem domain. Differentiation is how we decide that one thing is
different from the other. Classification makes it possible to talk about a group of
similar entities as a group. Composition is the recognition that complicated things
can be a combination of several simpler things. Behaviour is the key to finding the
“natural” joints in the problem domain. Finding behaviours requires that we leave
the traditional software developer glasses and start looking at the problem with the
eyes of the user. One of the sources for advocating simulation as object discovery
is the idea of user illusions (Kay, 1990). Thinking in terms of magic rather than
metaphors should benefit decomposition of the problem domain. Another is the
arguments of a “design decision hiding” approach to decomposition (Parnas, 1972).

Objects must be composable

Composing is closely related to decomposing; i.e. it must be possible to assemble
and to take objects apart. Reusability and flexibility is heavily dependent on this.
It is therefore vital to state the purpose and capabilities clearly. What can potential
clients expect? Since it is important to describe the object from the perspective
of the problem domain, the terminology used must be chosen within the domain.
The capabilities of the object stay the same, independently of the context. When
it comes to taxonomies, they should imply specialisation so that substitution is
made possible. If the specialisation is made through extension, objects lower in the
taxonomy can be substituted for ancestors.

Distributed cooperation and communication must replace hierarchical cen-
tralised control as organisational paradigm

Objects are autonomous and it can be difficult to conceive how autonomous objects
can be coordinated without a centralised control. Giving up centralised control
is one of the hardest lessons to be learned in object thinking. Objects manage
themselves and do not necessarily know anything about other objects, although
they might notify other objects of a change of state. The effect of this notification
may lead other objects into action depending on their interest in this information.
Everybody is minding their own business announcing certain events, but never
caring about whether this knowledge is used or not.

34

3.4. Object Thinking and Metaphors

3.4.2 Metaphors: The use of anthropomorphisation
West discusses metaphors as an import way of getting the right mindset for object
thinking. One of the earliest, according to West, is the software integrated circuit
(IC), coined by Brad Cox. The metaphor is applicable to object orientation because
of the goal to construct reusable plug-in software components. The shortcoming of
this metaphor is in object discovery and object specification. A far better metaphor,
according to West, is the metaphor of a person. An object is like a person. In his
opinion, and others, using this metaphor is a good idea for a number of reasons:

• It aids in discovering objects in the problem domain

• Support is given in design decisions: asking the object for a certain service
indicates what kind of information the object need to be responsible for and
even indicates the form of this information (asking for a persons ID may
result in her/him showing a drivers license which might be represented by a
dedicated object instead of primitive attributes)

• It aids in remembering principles of object orientation: persons are lazy, so
if anything looks too hard, get more help (split and distribute the work onto
more objects).

• The mindset is heavily influenced by the vocabulary, so asking an object to
perform a certain service is more helpful than to decide what the program/the
machine should do next.

Software objects should be lazy and specialise, they should simulate the services
provided by real-world objects. There is however a limit to the extent of (de-
)composition, sending parameters back and forth between collaborating objects
might be counter productive. The metaphor should guide the decomposition and
reflect the demands of the problem domain when assigning responsibilities to the
software objects.

Close to this is the Object-as-agent metaphor. According to West the usefulness
of this metaphor is severely limited by the fact that an agent is not completely
autonomous. In his interpretation autonomy means independence and freedom
of action, which object and agents share, but furthermore it means behavioural
integrity which object have but agents do not. The behaviour of an object is
intrinsic but an agent acts on behalf of a client as an extended part of the client.
This means that the agent is partly dominated by the idiosyncrasies of the client
and only partly acting in its own nature. Being a good agent is important. An
object has no knowledge of any clients and is acting completely according to its
own nature.

West also mentions two human-derived metaphors: Inheritance and Responsi-
bility. They stem from the observation of human beings. They are important but
suffer from not being uniquely defined between contexts. Trees commonly illustrate
inheritance and the concept is furthermore blurred by the use of the terms parent
and child. This might lead to confusion with genealogical charts with children in-
heriting from their parents. In a genealogical chart parents and children are never
the same, but in the context of objects, inheritance is strictly a specialisation of
behaviour. Responsibility means that a stated capability of providing a service
must be consistently performed no matter what the circumstances.

35

Chapter 3. Characteristics of Object Orientation

Of course a philosophy has its critics and Dijkstra (Dijkstra, 1983) thinks that
anthropomorphism is the worst of all metaphors and analogies. Dijkstra rejects
the idea of disguising computers’ greatest strength: the efficient embodiment of
a formal system. However, this is more aiming at anthropomorphising computers
than designing solutions.

3.4.3 Object vocabulary

The idea of problem solutions being based in the problem domain and the use of
assisting metaphors is of course empowered by the choice of a suitable vocabulary.
The vocabulary shapes our ability to think and helps us communicate our thoughts.
In object thinking the vocabulary is partly chosen to differentiate object concepts
from traditional software concepts. Sending a message and invoking a function
might be the same when it comes to syntax and implementation, but sending a
message involves a sender and a receiver, an interpretation of the message and a
possible response. West differs between words in the object vocabulary in terms of
importance. In Table 3.2 it is seen that the essential terms in the object vocabulary,
according to West, are Object, Responsibility, Message and Protocol. The protocol
is the part of the interface listing the messages the object is willing to respond to.
West distinguishes these messages from the state changes clients could register for,
in all called the interface of an object.

By the use of these four words the essentials of object thinking can be captured.
They constitute the essence of objects needed to decompose a problem domain, to
identify and distribute responsibilities to a collection of objects. They provide a way
to specify the objects, not necessarily sufficient to implement them. The internals
of the objects must be described with the supporting terms of the vocabulary.

Table 3.2: Categorised Object Vocabulary (West, 2004)

TABLE AA

CATEGORISED OBJECT VOCABULARY (WEST 2004)

Essential Extension Implementation Auxillary

Object
Collaboration/
collaborator

Method Domain

Responsibility Class Variable Business requirement

Message Class hierarchy Dynamic binding
Business process
reengineering (BPR)

Protocol
Abstract/
concrete

 Application

 Inheritance

 Delegation

 Polymorphism

 Encapsulation

 Component

 Framework

 Pattern

36

3.5. Summary

According to West one of the greatest benefits of object thinking is that it helps
emphasising the need to understand the problem domain before doing anything else.

• Use the metaphor of domain anthropology to extract domain understanding.

• Decompose the problem domain into behavioural objects, according to user
expectations.

• User illusions should be maintained, unless an alternative story with a dif-
ferent set of domain entities, with different responsibilities, interacting in a
different way, can be constructed.

• Decompose problems in terms of conversations among groups of objects.

• Model objects as simple as possible, with the collective understanding clearly
communicated.

According to West the initial focus must be on identifying stories and some potential
objects of the problem domain. It is imperative that the social relationships among
potential objects are discovered. One of the big problems for the developer is the
preconception about implementation details. Each object must be defined in terms
of how it is perceived by those using it, and this should aid in the ambition “Model
objects as simple as possible”.

3.5 Summary
What are the characteristics of object orientation? Searching the literature does not
give a conclusive answer to this question. However there a number of concepts often
mentioned. Abstraction, class, method, object, inheritance and polymorphism are
among the most common ones. Terminology and vocabulary have not been agreed
upon within the community, but according to West (2004) the object vocabulary
consists of Object, Responsibility, Message and Protocol. All other terms are used
to elaborate on aspects of terms or to extend the essential terms.

Apart from the concepts characterising object orientation, the mindset must be
taken into account. The way we talk about objects and formulate systems should be
done in terms of the problem instead of the solution. Defining the objects from the
perspective of the problem domain and the clients are key ideas in object thinking.
This is important for teaching and learning abstraction and object orientation.

37

38

Chapter 4

Object Oriented Principles

4.1 Introduction
What are the most critical object oriented principles to uphold? Searching the
literature; most discussion relates to the principles collected and/or formulated by
Martin (2003). These principles can be grouped into three categories, see Table
4.1.

Table 4.1: Object oriented design principles

TABLE I

OBJECT ORIENTED DESIGN PRINCIPLES

Class
Design

SRP – The Single Responsibility Principle.
OCP – The Open Closed Principle.

LSP – The Liskov Substitution Principle.
DIP – The Dependency Inversion Principle.

ISP – The Interface Segregation Principle.

Package
cohesion

REP – The Reuse Release Equivalency Principle.
CCP – The Common Closure Principle

CRP – The Common Reuse Principle.

Package

coupling

ADP – The Acyclic Dependencies Principle.

SDP – The Stable Dependencies Principle.
SAP – The Stable Abstractions Principle.

The aim of these principles is to uphold and aid good object oriented design.
This must, of course, also be the aim of small-scale problem solving and program-
ming. When restricting the discussion to the context of small-scale problems it
seems reasonable to focus primarily on the first category of principles: Class De-
sign. The concept of packages is not normally covered when introducing object
oriented programming to novices.

A short description of the Class Design principles:

39

Chapter 4. Object Oriented Principles

SRP – The Single Responsibility Principle Each responsibility should be a
separate class. A class should have one, and only one, reason to change.

OCP – The Open Closed Principle A module should be open for extension
but closed for modification.

LSP – The Liskov Substitution Principle Subclasses should be substitutable
for their base classes.

DIP – The Dependency Inversion Principle Depend upon abstractions. Do
not depend upon concretions.

ISP – The Interface Segregation Principle Many client specific interfaces are
better than one general-purpose interface.

Apart from these principles The law of Demeter can be added.

LoD – Law of Demeter Do not talk to strangers. Only talk to your immediate
friends.

The following sections describe and exemplify the Class Design principles intro-
duced above.

4.2 SRP – The Single Responsibility Principle
The more devoted a class is to a well specified and restricted abstraction, the more
stable it will be, since the reasons for making changes to it can, by definition, be
very few. At the class level this principle is similar to the definition of cohesion.

In this context responsibility is defined as “a reason for change”. An example
of the difficulty of detecting responsibilities is shown in Listing 4.1, from (Martin,
2003).

interface Modem
{
public void dial(String pno);
public void hangup();
public void send(char c);
public char receive();

}

Listing 4.1: Modem.java - SRP Violation(Martin, 2003)

Even though the four methods listed are reasonable for a modem there are in fact
two separate responsibilities involved. One is connection management (dial and
hangup), and the other is data communication (send and receive). According
to Martin these two should be separated since they have little in common and will
change for different reasons.

Another example from Martin is shown i Figure 4.1.
In this case the Rectangle-class is used by two completely different applica-

tions. One that deals with geometrical figures and one that draws shapes on some
graphical surface. The design will benefit from separating the two responsibilities

40

4.3. OCP – The Open Closed Principle

Figure 4.1: SRP Violation example

Figure 4.2: SRP Separation of Responsibilities

into separate classes. In Figure 4.2the computational responsibility is moved to a
class specialising on the rectangle as geometrical figure.

Any changes to the graphical presentation of the rectangular forms will not af-
fect the ComputationalGeometryApplication. Recognising these differences
is non-trivial.

The SRP is one of the simplest of the principles, and one of the
hardest to get right. [...] Finding and separating those responsibili-
ties from one another is much of what software design is really about.
(Martin, 2003)

4.3 OCP – The Open Closed Principle
A class should be closed for changes and at the same time open for extension. This
is a rather complicated principle, since it demands that two contradictory purposes
are met. How can a module change without having to change the source code? To
achieve this one must rely on abstractions.

Keeping the attributes of a class private is one way of making the application
of OCP easier. The reason for this is that when an attribute changes, every func-
tion that depends upon those variables must be changed. Thus, no function that
depends upon a variable can be closed with respect to that variable.

Any form of run time type identification is dangerous and should not be used.
The dependency between classes, or coupling, is problematic and violates the OCP.

Example by Gupta (2008): Loan requests are handled in a banking applica-
tion. In Figure 4.3 the class LoanRequestHandler is strongly coupled

41

Chapter 4. Object Oriented Principles

to PersonalLoanValidator. If the bank decides to provide more kinds
of loans, e.g. a business loan, the handling will be different and demand a
change in both classes, even being forced to use condition to handle different
kinds of loan. These classes are not closed for modification and violates the
OCP.

Figure 4.3: OCP Violation

How can the strong coupling be avoided? Validating different kinds of loan re-
quests is a reason for change and should be handled more generally. The solution to
this is abstraction. Introduce a general Validator and have LoanRequestHandler
treat all request uniformly. Never mind who asks, always treat the request the same
way and have the specific request supply the appropriate implementation of the
behaviour, see Figure 4.4.

Figure 4.4: Avoiding OCP Violation

Now the application is open to extension but closed for modification.
According to Martin, OCP is the one characteristic that yields the greatest

benefits of object technology, i.e. flexibility, reusability, and maintainability. This
does not mean that abstraction is to be used unconditionally, but applied with care
to parts of solutions that is prone to change.

42

4.4. LSP – The Liskov Substitution Principle

Resisting premature abstraction is as important as abstraction itself.
(Martin, 2003)

4.4 LSP – The Liskov Substitution Principle

The Liskov substitution principle can be paraphrased as:

Functions that use pointers or references to base classes must be able
to use objects of derived classes without knowing it. Martin (2003)

This is the consequence of polymorphism. To utilise polymorphism it is imperative
that in class hierarchies, it should be possible to treat subclass-objects as if they
were base class objects. Sub-classes must not change any behaviour of the base class
that invalidates assumed characteristics of the base class. Looking at the classical
Square-Rectangle example in Figure 4.5, it can be noted that Square does not
need the two methods setWidth and setHeight inherited from Rectangle,
since the width and height of a square are identical. This is an indication of poor
design.

Figure 4.5: LSP Violation

One way to deal with this is to override the two methods, see Listing 4.2.

43

Chapter 4. Object Oriented Principles

import java.awt.*;
public class Square extends Rectangle
{
public Square(Point t1, double s)
{
super(t1, s, s);

}
public void setHeight(double h)
{
super.setHeight(h);
super.setWidth(h);

}
public void setWidth(double w)
{
super.setHeight(w);
super.setWidth(w);

}
}

Listing 4.2: LSP Violation

This means that the square will be correct from a mathematical point of view
and objects will behave as expected. Consider the method in Listing 4.3, using a
reference to a Rectangle.

public void m(Rectangle r)
{
r.setWidth(32);

}

Listing 4.3: LSP - Using the references polymorphic

This will work properly even when r is a reference to a Square object and will
cause both width and height to be assigned the same value. This means that we
seem to have two classes that work as intended.

The problem is that a derivation from a base class forces us to make changes to
the inherited behaviour. A client using objects through the method mm in Listing
4.4 may assume that changing the height of the object referenced by r will not
cause any change to the width.

public void mm(Rectangle r)
{
r.setWidth(5);
r.setHeight(4);
System.out.println("w*h = 20 : "+ r.getWidth()*r.getHeight());

}

Listing 4.4: LSP Unexpected behaviour

44

4.5. DIP – The Dependency Inversion Principle

This is a reasonable assumption, but will cause problems if a Square object
is passed as parameter. Methods, like mm, that accepts references to Rectangle
objects but does not operate properly on Square object are therefore violating
the Liskov Substitution Principle. To avoid these kinds of mistake it is vital to
remember that the relation “is-a” is all about behaviour, and when it comes to
behaviour a Square is not a Rectangle. The OCP and LSP can be upheld by
thinking in terms of pre- and post conditions as described by Meyer (1997):

A routine redeclaration may only replace the original precondition
by one equal or weaker, and the original postcondition by one equal or
stronger.

A client should be able to use objects through the protocol of the base class. This
means that derived classes must accept anything the base class would accept and
their behaviour must not violate any of the base class’ behaviour, so that clients
may not be confused.

Another important lesson learned from this principle is that “Validity is not
intrinsic”.

A model, viewed in isolation, can not be meaningfully validated. The
validity of a model can only be expressed in terms of its clients.(Martin,
2003)

This makes it important to provide context when demonstrating concepts and
design ideas in a small-scale context.

4.5 DIP – The Dependency Inversion Principle
This principle is a structural tool to achieve the Open-Closed principle and the
Liskov Substitution Principle. Martin (2003) formulates it like this:

a. High level modules should not depend upon low level modules.
Both should depend upon abstractions.

b. Abstractions should not depend upon details. Details should de-
pend upon abstractions.

Depending upon abstractions is beneficiary because abstractions are less likely to
change than concretisations. Modules that contain detailed implementations should
not be depended on, rather they themselves depend on abstractions. It is vital to
separate high-level policies from low-level implementations.

Martin (2003)gives the following practical consequences of this :

• No variable should hold a pointer or reference to a concrete class.

• No class should derive from a concrete class.

• No method should override an implemented method of any of its base classes.

The creation of instances is the most common dependence on a concrete class and
is obviously hard to avoid, especially in a small-scale context. In the general case
this can be handled by using a design pattern (AbstractFactory), see Chapter 6.

45

Chapter 4. Object Oriented Principles

Example from Martin (2003) : a Button object senses the external environ-
ment in some way. It can be polled whether the button has been activated
or deactivated. A Lamp object affects an external unit, and on receiving
a turnOn message it illuminates some light, and on a turnOff message it
extinguishes the light.

The design in Figure 4.6 shows a direct dependency between Button and Lamp.

Figure 4.6: DIP Violation (Martin, 2003)

This design makes it difficult to reuse the Button class to control some other
kind of object, e.g. a Motor object and thereby violates the DIP. The high-level
policies has not been separated from low-level implementations of the application.
Without separating them, the abstraction will automatically depend on the details.

What would the high-level policy of this application be? Martin calls it the
metaphor of the system. In this small example the underlying abstraction is to
detect an on/off gesture from a client and relay that gesture to the target object.
Target object and mechanism to detect the gesture is irrelevant, these are details
that do not affect the abstraction. The design in Figure 4.6 can be improved by
inverting the dependency on the Lamp object, see Figure 4.7.

Figure 4.7: DIP implemented

Now the Button is dependent on a SwitchableDevice. In this design a
Button object can be used to to turn any device on or off, and Lamp is depending
on an abstraction instead of being depended upon.

Indeed, it is this inversion of dependencies that is the hallmark of
good object oriented design. [...] If its [the programs] dependencies are
inverted, it has an OO design. (Martin, 2003)

46

4.6. ISP – The Interface Segregation Principle

4.6 ISP – The Interface Segregation Principle
Many client specific interfaces/protocols are better than one general-purpose in-
terface/protocol. A class used by many clients could be better utilised if several
interfaces targeted towards different clients is created. This is much better than
imposing the entire class on every client.

Clients should not be forced to depend on methods that they do not
use.(Martin, 2003)

Example from Martin (2003): In a security system there are Door objects
that can be locked and unlocked, and they know whether they are locked
or not. In the spirit of the DIP, the Door class is made abstract thereby al-
lowing clients to use objects with this behaviour without having to depend on
a particular implementation . A TimedDoor is an implementation of Door
that sounds an alarm when when the door has been left open too long. To
manage this, the TimedDoor object collaborates with a Timer object. The
Timer object keeps a reference to a TimerClient object whose timeOut
method is to be called when time expires.

In Figure 4.8 an UML class diagram of a straightforward solution is shown.

Figure 4.8: ISP Violation

The Door class is now dependent on the TimerClient class. This is an
example of interface pollution, since the protocol/interface of Door is polluted by
a method (timeOut) that it does not require, since not all doors need timing.
Timing-free subclasses of Door need to make fake implementations of the method,
which might lead to violation of LSP. The method is there to support a particular
kind of door, but if this line of design is continued it can be necessary to add more
methods to TimerClient because of the extension of the hierarchy of doors.

47

Chapter 4. Object Oriented Principles

Door and TimerClient are protocols/interfaces used by different clients. The
idea of ISP is to keep the protocols/interfaces separate too.

Figure 4.9: ISP Solution

With the design shown in Figure 4.9 clients use both TimerClient and Door,
but are not dependent on TimedDoor. This means that they are able to use the
same object through different protocols/interfaces. With Java allowing only single
inheritance it is necessary to use interfaces, either for one of the classes or both. In
this case it might be argued that being a Door is a structural relationship, while
being a TimerClient is a simple behaviour.

4.7 LoD – The Law of Demeter
Do not talk to strangers - only talk to your immediate friends.

The idea of this “law” is to restrict the message-sending in methods. The law
prevents a method from retrieving a part of another object. Intermediate methods
must be used to limit the coupling with respect to “uses” relations.

Object form of Law of Demeter (DemeterW3; Martin, 2003)

A method m of a class C, can only call methods of:

• C
• An object passed as an argument to m.
• An object created by m.
• An object held in an instance variable of C

Methods should not invoke methods on any object returned by any of the above
methods (Martin 2008). One consequence of this is that methods should not return
a reference to an object that is participating in the internal implementation of the
object. This is to prevent clients to operate on objects that are parts of other
objects (Horstmann, 2004).

Example by Bock (2008): A Paperboy has to get a payment from a Customer.
The Customer has a Wallet that contains the cash. A simple design is
shown in Figure 4.10.

48

4.7. LoD – The Law of Demeter

Figure 4.10: LoD Violation

To get paid the Paperboy asks for the Customer’s Wallet and withdraws
the amount of money needed, see Listing 4.5.

public void payHim(double amount)
{
Wallet theWallet = myCustomer.getWallet();
if (theWallet.getTotalMoney() > amount)
{
theWallet.subtractMoney(amount);
payment = payment + amount;

}
else
{
System.out.println("---Not sufficient amount in wallet---");

}
}

Listing 4.5: LoD Violation

In this example the Paperboy is being exposed to more information about the
Customer than necessary. There is no need for the Paperboy to have access to
the Wallet. The Wallet object is not any of the specified object listed in the
law of Demeter. It is crucial to leave the responsibility to the right object, in this
case the Customer does not need to show the internal representation of the cash
to any client.

49

Chapter 4. Object Oriented Principles

public void payHim(double amount)
{
double paidAmount = myCustomer.getPayment(amount);
if (paidAmount == amount)
{
payment = payment + amount; // say thank you and give

customer a receipt
}
else
{
System.out.println("---I will come back later!---");

}
}

Listing 4.6: LoD Solution

In general it is wise to think in terms of clients asking for services rather than
objects or values.

4.8 Summary
The principles discussed in this chapter are, in our opinion, the most general and
condensed description of what characterises object orientation.

One problem with principles is that they tend to be too general, and the object
oriented design principles described above have not been formulated for the benefit
of educators struggling with small examples to be used for novices, neither for
novices trying to learn and understand object orientation.

Within the small-scale context it can be difficult to fully subordinate to these
principles. From an educational perspective we are tempted to save space in terms
of lines of code to increase readability and to make the example more focused. Too
often this leads to violations of more than one of the above mentioned principles.
On the other hand, following the principles will likely make the example grow, the
number of classes increase and all this overhead is not easily justified to a novice.
Nevertheless, we have to keep these principles in mind when designing small-scale
examples.

The Single Responsibility Principle (SIP) is perhaps the most basic of the six
principles presented. Many heuristics, rules and guidelines are aspects or conse-
quences of this principle. Being true to the Dependency Inversion Principle (DIP)
should imply using interfaces and abstract classes to a larger extent than common
in most introductory text books. The Law of Demeter gives an indication of how
to promote privacy and responsibilities of objects.

50

Chapter 5

Heuristics and Rules for
Software Design

5.1 Introduction

In this chapter, we review examples of heuristics and rules for object oriented
design, formulated by Computer Science researchers . This is done to see what ob-
ject oriented characteristics different researchers have considered when formulating
design advice.

The words heuristics and rules are used interchangeably and there is no clear
distinction between them. Looking at the dictionary description of heuristic shows
the difficulty in making such a distinction.

Heuristic - a commonsense rule (or set of rules) intended to increase
the probability of solving some problem. (The Free Dictionary, 2008)

Often these commonsense rules build upon experience and hard earned insights.
The level of detail varies from very general (e.g., Riels heuristic 03.07 Eliminate

irrelevant classes from your design, Appendix A.) to detailed code instructions
(e.g., Bloch’s Rule #31 Avoid Float and Double if exact answers are required. Table
D.4), even within the same collection of advice. There is also a large variation in
the number of advices given, the number ranges from 7 to 61.

5.2 Johnson and Foote’s Heuristics

The need for object oriented design rules or guidelines was discovered early and the
paper by Johnson and Foote (1988) is often cited as one of the first written collec-
tions of design rules. Johnson and Foote are primarily concerned with reusability
and techniques that makse object oriented software more reusable.

51

Chapter 5. Heuristics and Rules for Software Design

Rules for Finding Standard Protocols

Rule 1 Recursion introduction: use the same method names in a chain
of calls to perform an operation.

Rule 2 Eliminate case analysis: it is almost always a mistake to check the
class of an object. The same is true for case analysis of variables.

Rule 3 Reduce the number of arguments: many arguments make mes-
sages hard to read.

Rule 4 Reduce the size of methods: makes subclassing easier.

Rules for Finding Abstract Classes

Rule 5 Class hierarchies should be deep and narrow.
Rule 6 The top of the class hierarchy should be abstract.
Rule 7 Minimize accesses to variables.
Rule 8 Subclasses should be specializations.

Rules for Finding Frameworks

Rule 9 Split large classes.
Rule 10 Factor implementation differences into subcomponents.
Rule 11 Separate methods that do not communicate.
Rule 12 Send messages to components instead of to self.
Rule 13 Reduce implicit parameter passing.

Design should be given enough attention to result in general, reusable compo-
nents.

Object oriented techniques offer us an alternative to writing the same
programs over and over again. We may instead take the time to craft,
hone, and perfect general components, with the knowledge that our pro-
gramming environment gives us the ability to re-exploit them. If de-
signing such components is a time consuming experience, it is also one
that is aesthetically satisfying. If my alternatives are to roll the same
rock up the same hill every day, or leave a legacy of polished, tested
general components as the result of my toil, I know what my choice will
be. (Johnson and Foote, 1988)

5.3 Riel’s Heuristics

A number of design heuristics (61) has been collected and described in detail by
Riel (1996). They can, in general, be classified as practical consequences of the
design principles of Table 4.1.

The heuristics are categorised and presented by chapter in the book:

52

5.4. Gibbon’s Heuristics

Ch-2: Classes and Objects: The Building Blocks of the Object oriented Paradigm
(11 heuristics)

Ch-3: Topologies of Action-Oriented Vs. Object oriented Applications (10 h)

Ch-4: The Relationships Between Classes and Objects (14 h)

Ch-5: The Inheritance Relationship (19 h)

Ch-6: Multiple Inheritance (3 h)

Ch-7: The Association Relationship (1 h)

Ch-8: Class Specific Data and Behavior (1 h)

Ch-9: Physical Object oriented Design (2 h)

These heuristics are well formed and straightforward. In general the principles
in Chapter 4 are recognisable. Taking a look at the basic heuristics concerning
classes and objects (heuristics 2.01-2.11), the ideas of abstraction and encapsulation
are well covered.

02.01 All data should be hidden within its class
02.02. Users of a class must be dependent on its public interface, but a class should

not be dependent on its users.

02.03. Minimize the number of messages in the protocol of a class (protocol of a
class means the set of messages to which an instance of the class can respond)

02.04. Implement a minimal public interface that all classes understand

02.05. Do not put implementation details such as common-code private functions
into the public interface of a class

02.06. Do not clutter the public interface of a class with things that users of that
class are not able to use or are not interested in using.

02.07. Classes should only exhibit nil or export coupling with other classes, that
is, a class should only use operations in the public interface of another class
or have nothing to do with that class.

02.08. A class should capture one and only one key abstraction

02.09. Keep related data and behaviour in one place.

02.10. Spin off non-related information into another class (that is, non-
communicating behaviour)

02.11. Be sure the abstractions that you model are classes and not simply the
roles objects play

See Appendix A for a complete list of Riel’s heuristics.

5.4 Gibbon’s Heuristics

In an attempt to aid novices in the development of design skills,Gibbon (1997)
formulated a set of design heuristics targeted for automation. A tool (TOAD) was
developed to assist students in evaluating their design during the design phase.

53

Chapter 5. Heuristics and Rules for Software Design

One of the objectives for this work was to identify and use design heuristics as a
vocabulary for common object oriented design problems. The main focus of design
quality in this tool is maintainability.

In this work design heuristics and design metrics are combined to identify,
analyse, submit feedback and suggest solutions to common design problems. The
evaluation is seen as a means to show the learner what and where certain heuristics
are violated and at the same time educate the learner why certain approaches are
more preferable than another. The suggested design heuristics, build upon the
heuristics by Riel (1996), but is compounded to support the understanding of what
solution to suggest (Gibbon and Higgins, 1996).

The heuristics have a two letter identification code. The first letter documenting
the type of heuristic; either class (C) or relationship (R). The second letter indicates
the model used by Gibbon, C for class model, U for using, A for aggregation, and
I for inheritance.
CC1 Limit the number of methods per class

CC2 Limit the number of attributes per class

CC3 Limit the messages an object can receive

CC4 Minimise complex methods

CC5 Limit enabling mechanisms that breach encapsulation

CC6 Hide all implementation details

CU1 Limit the number of collaborating classes

CU2 Restrict the visibility of interface collaborators

RU1 Identify and stabilise common place interface collaborators

CA1 The aggregate should limit the number of aggregated

CA2 Restrict access to aggregated by clients

RA1 Aggregation hierarchies should not be too deep

RA2 The leaf nodes in an aggregation hierarchy should be small, reusable and
simple

RA3 Stability should descend the hierarchy from rich aggregates to their building
blocks

CI1 Limit the use of multiple inheritance

CI2 Prevent over-generalisation of the parent class

RI1 The inheritance hierarchy should not be too deep

RI2 The root of all inheritance hierarchies should be abstract
RI3 For deep hierarchies upper classes should be type definitions

RI4 Minimise breaks in the type/class hierarchy

RI5 Strive to make as many intermediate nodes as possible abstract

RI6 Stability should ascend the inheritance hierarchy

54

5.5. The MeTHOOD Heuristics Catalogue

RI7 Inheritance is a specialisation hierarchy

Individual heuristics covers a number of design concepts for a design problem,
but to support the design analysis Gibbon (1997) constructs a number of concept
categories, see Table 5.1. These concept categories is used to give feedback on
design principles.

Experience teaching OOD has shown that these concept categories
are the once that inexperienced designers typically require feedback on.
Grouping design heuristics into categories provides a uniform way of
representing higher level design problems relating directly to essential
paradigmatic concepts. (Gibbon, 1997)

Table 5.1: Concept categories used in TOAD(Gibbon, 1997)

TABLE 2

CONCEPT CATEGORIES USED IN TOAD

Concept category what the category reports on

Inheritance

the use of abstract classes
the shape of the hierarchy

inheriting from concrete classes
issues of type vs. class

Encapsulation
use of non-private data
mechanisms used to breach encapsulation

Collaborators
the behavioural content of the class
centralisation of the designs’ behaviour

possession of high fan-out

Bandwidth

if low or high
if class cohesive

abstract or concrete
position in the inheritance hierarchy

Implementation
size
contributions by user-defined types

attribute well encapsulated

It has been impossible to trace the reasoning for the choice of heuristics used,
since the catalogue itself is irretrievable due to a missing report (Gibbon).

5.5 The MeTHOOD Heuristics Catalogue
The MeTHOOD project is a formalisation and integration of design heuristics,
measures and transformation rules (Grotehen, 2001). The focus of the project is
limited to object bases, e.g. shared object oriented databases. This methodology
extension supports designers in finding the road to better designs for these impor-
tant components of many systems. MeTHOOD combines measures describing the
objective, heuristics showing and transformation rules representing more concrete
decision support. As a part of the project, a heuristics catalogue containing 24
heuristics is presented, see Table D.2.

55

Chapter 5. Heuristics and Rules for Software Design

5.6 Heuristics for Thinking Like an Object
West (2004) proposes eight heuristics for discovering and assigning object respon-
sibilities. These heuristics are based on anthropomorphisation, see Section 3.4, in
this case thinking like an object.

H1: Let objects assume responsibility for tasks that are wholly or completely del-
egated to other objects in cases in which the responsibility reflects a natural
communication pattern in the domain.

H2: Delegate responsibilities to get a better distribution and increase reusability.

H3: Use anthropomorphisation and foreshadowing to determine whether an object
should assume a given responsibility.

H4: Responsibilities should be distributed among the community of objects in a
balanced manner.

H5: Always state responsibilities in an active voice describing a service to be per-
formed.

H6: Avoid responsibilities that are characteristic specific, that focus on providing
a potential user with the value of a simple characteristic of the object.

H7: Create proxies for objects outside the domain that are sources of information
required by objects within the domain.

H8: Look for components, i.e. larger cluster of strongly coherent responsibilities.

5.7 Design Rules

Garzás and Piattini’s design rules
An attempt to combine principles, design patterns, rules and heuristics has been
made by Garzás and Piattini (2007b). The term rule has been chosen to incorporate
principles, code smells (described in Section 6.6), best practices and so on. These
rules are applicable to object oriented design at a class design level. The rules are
further explored and described in (Garzás and Piattini, 2007a) A short description
of the rules can be found in Table D.3.

Even though Garzás and Piattini claim to present a catalogue of object oriented
design knowledge, the formulation of the rules are towards existing code. They aid
in defining what to look for and how to deal with it. How can this condensed mass
of experience be formulated to enlighten the novice before the mistakes are made?

Bloch’s effective rules for Java
Another set of rules are defined in (Bloch, 2001) with, in the first edition, 57
items that according to Bloch, describe practices generally held to be beneficial
by recognised programmers. Bloch’s rules in Table D.4 are given in the original
thematical order. They are

Wick’s design rules for concepts
There are several suggestions for rules on more limited areas of object orientation.
One example is the design rules for encapsulation and abstraction used by Wick

56

5.8. Summary

et al. (2004). Only one of the seven rules is said to applicable for novices:

Whenever possible and practical, avoid writing getters and setters.
First ask, “What is the client attempting to do through this access
method?” Then write a method for achieving that behavior rather than
defining a getter/setter pair (Wick et al., 2004).

Meyer’s properties of the ideal class
Typical properties of the ideal class should according to Meyer (1997) adhere to
the following:

• Clear Abstraction: a clearly associated abstraction.

• Adequate Class name: a descriptive noun or adjective characterising the ab-
straction.

• Representation: the class represents a set of possible objects.

• Interface for Properties: distinct access to properties of an instance

• Interface for Manipulation: methods for changing the state of an instance
and to ask object to perform according to the behaviour of the abstraction.

• Abstract properties stated: invariants, pre- and post conditions preferably
formally described.

5.8 Summary
Heuristics and rules for object oriented design, are advice regarding different aspects
of design and even code. They can very well be contradictory, and even though
they may be detailed, most of them do not explicitly declare limits or thresholds
for different concepts or situations. Riel’s grouping of heuristics is beneficial, but
the amount of heuristics makes them less practical for the small-scale situation.
Garzás and Piattini (2007b) combine acknowledged design principles, rules and
heuristics. However their rules are formulated as to detect situations in existing
code, if RULE They are advice of what to do when things have gone wrong,
rather than being advice for design. This is similar to the “code smells” discussed
in Chapter 6. When thinking about how to design a small-scale example we lack
advice on what to aim for, rather than what to avoid. Therefore the suggested
He[d]uristics will be stated in a positive and constructive way.

Despite the difference in number, the heuristics presented by different authors
have some things in common. It is our view that they point towards abstraction
as a key concept (Bashar Molla, 2005). It is also commonly stressed that protocols
should be separated from the internal representation of the abstraction.

As we see it, some of these advices are not applicable to the small-scale context,
and those that are, can in most cases be regarded as consequences of the more
general principles considered in Chapter 4.

57

58

Chapter 6

Design Patterns and Code
Smells

6.1 Introduction

The first reference of (design) patterns always seem to be to the work done by
Christopher Alexander, an architect reasoning about construction of buildings,
cities, rooms etc. He has been frequently cited since the late 60’ies and apparently
he has had a great influence on software engineering.

When it comes to design patterns for software construction, early references
are made to work done in connection to Smalltalk in the 70’s. The real starting
point seems to be with the 23 design patterns collected and presented by Gamma
et al. (1995) 1. There are a number of definitions of what a design pattern is, some
shown below.

[..] descriptions of communicating objects and classes that are cus-
tomized to solve a general design problem in a particular context. (Gamma
et al., 1995)

Patterns provide a mechanism for rendering design advice in a ref-
erence format. (Fowler, 2003)

Design patterns are not just about the design of objects, but about
the communication between objects.

[. . .] design patterns describe how objects communicate without be-
come entangled in each other’s data models and methods. Keeping
this separation has always been an objective of good IO programming.
(Cooper, 2000)

It does seem undisputable though, that patterns are years of experiences of problem
solving and design that have been formed into generalised solutions to common
problems.

Another benefit is that patterns provide a vocabulary for designers. Undertak-
ing a standard documentation style, though not entirely agreed upon, they make a

1Often refered to as the Gang of Four, or GoF

59

Chapter 6. Design Patterns and Code Smells

basis for a better understanding of solutions. They are powerful and aids, if used
wisely, in making code more easily understood.

However, patterns in general require an understanding of abstract concepts and
an ability to recognise these abstractions. A novice programmer setting out to
learn the object oriented paradigm is no way near this understanding. Patterns
are solutions to recurring problems that have evolved over time, i.e. not the kind
of solutions a novice would come up with initially.

Nowadays patterns for various applications are designed and discussed both
within and outside of software development, e.g., educational patterns. The gran-
ularity of patterns varies and maybe this is one of the reasons for the increasing
number of patterns.

6.2 The Gang of Four Patterns
The design patterns described by Gamma et al. (1995) are classified in families of
patterns. The classification is done by two criteria, purpose and scope. Purpose is
what a pattern does and scope specifies whether the pattern is primarily applicable
to classes or objects.

Class patterns deal with relationships between classes and their subclasses and
are established through inheritance, which implies that the relationship is static
since it is fixed at compile time. Object patterns deal with relationships between
objects and are more dynamic since they can be changed at run time.

Creational class patterns: defers object creation to subclasses.

Creational object patterns: defers object creation to another object.

Structural class patterns: uses inheritance to compose classes.

Structural object patterns: describe ways to assemble objects.

Behavioural class patterns: uses inheritance to describe algorithms and flow of
control.

Behavioural object patterns: describe how a group of objects cooperate to per-
form a task.

The patterns are classified according to two criteria. Purpose, which reflects what
a pattern does, and scope which specifies if the pattern is applicable to classes or
objects. See Table 6.1 for this classification and Appendix B for a short description
of the patterns.

In general, patterns are dealing with rather complex problems that probably
will be meaningful rather late in an introduction to object oriented concepts. But
even experienced software constructors need concrete examples to understand how
to apply these principles. When attempting to introduce object orientation the
main contribution of patterns lies in the mind of the presenter.

Two important principles are stated as a base for the GoF-patterns:

• Program to an interface, not an implementation.

• Favour object composition over class inheritance.

60

6.3. The Model-View-Controller Pattern

Table 6.1: Design Pattern Space

TABLE W

DESIGN PATTERN SPACE

 Purpose

 Creational Structural Behavioral

Factory Method Adapter (class) Interpreter Class

 Template Method

Abstract Factory Adapter (object) Chain of Responsibility

Singleton Bridge Command

Builder Composite Iterator

Prototype Decorator Mediator

 Facade Momento

 Flyweight Observer

 Proxy State

 Strategy

Scope

Object

 Visitor

6.3 The Model-View-Controller Pattern
One early pattern not included in the collection of The Gang of Four is the Model-
Controller-View pattern. This pattern is based on the idea of separating the data
from its representation. The model maintains the data, the view is one or more
ways of displaying all or parts of the data and the controller is responsible for the
communication between the views and the model. Communication between the
user, the GUI and the data is carefully controlled and this separation of functions
accomplished that nicely. Three objects talking to each other using this restrained
set of connections is an example of a powerful design pattern.

Sun’s Swing architecture is rooted in the model-view-controller (MVC) design
that dates back to Smalltalk, see Figure 6.1 2.

Model Code that implements the behaviour of some abstraction. Models a func-
tionality without regards to presentation and client. The model informs its
registered views when any of its functions cause its state to be changed.

View The view, or views, presenting the results of the model to different clients.
The view informs the controller of any desired state-changing events gen-
erated by the user. In Java the views can be built from AWT or Swing
components.

Controller The controller maps user interactions to state updates in the model.
Dependent on events in the view, and the resulting changes in the model,
the controller selects an appropriate view. In Swing the controllers are the
listeners.

The example in Figure 6.2 by Bergin (2007)3 shows a simple temperature model.
The model encapsulates the notion of a temperature. It is possible to ask the model
for the temperature in either Fahrenheit or Celsius. There are a number of dif-
ferent views, textual with buttons (FahrenheitGUIt, CelsiusGUI), a slider
(SliderGUI) and a gauge (GraphGUI). The controllers in this example are the

2Picture: http://java.sun.com/blueprints/patterns/images/mvc-structure-generic.gif
3Slightly adapted for this presentation. Listeners are shown as separate classes to be “visible”.

61

Chapter 6. Design Patterns and Code Smells

Figure 6.1: Model-View-Controller Pattern

listeners that implements the Observer interface. The listeners registers as ob-
servers with the model, that is Observable and notifies all Observer’s when the
state changes. With this design it is possible to have multiple instances of the views
located at different positions and still all views are reacting to the same notification
caused by a state change in the model. The model sends an update message to all
registered observers and they in turn queries the model for information and starts
updating itself according to the retrieved information.

Figure 6.2: MVC Temperature

This design results in a flexible organisation of the solution. Adding another
view does not require any modification of neither the model nor the existing views.

62

6.4. Micro Patterns: Low-level Patterns

6.4 Micro Patterns: Low-level Patterns
An interesting development of patterns is the recently suggested idea of Micro Pat-
terns by Gil and Maman (2005). These patterns are similar to design patterns but
closer to the implementation, i.e. on a lower level of abstraction. They provide
a way to establish a vocabulary, which makes it possible to talk about implemen-
tation details in a uniform way. They are based on object oriented concepts and
reflect the structure and organisation of smaller components in an object oriented
solution. Context is not important for these patterns since they are dealing with
details that have to be taken care of in many different situations. This might
be compared to algorithms for sorting. Micro patterns are defined as “class-level
traceable patterns”.

A pattern is said to be traceable if it can be expressed as a simple
formal condition on the attributes, types, name and body of a software
module and its components. (Gil and Maman, 2005)

A small example fromGil and Maman (2005): a class with a public constructor and
with one or more static public fields of the same type as the class itself, is defined
as the Sampler pattern belonging to the Controlled Creation category. The purpose
of such a class is to give clients access to pre-made instances of the class, but also
a possibility to create objects on their own. The Color-class in Javas API is a
typical example of this micro pattern.

In the paper (Gil and Maman, 2005) 27 micro patterns are collected in a cata-
logue. For visibility the patterns are grouped into 8 categories in a two-dimensional
space with State and Behaviour as axes, see Figure 6.3.

As seen in Figure 6.3 there is overlapping among the 8 categories, i.e. one
pattern can belong to more than one category. Gil and Maman also propose the
term nano-patterns for traceable patterns, which stand at the method or procedure
level. Furthermore they suggest the term milli-patterns to be used for traceable
patterns at the package level (or to any other kind of class grouping or mode of
cooperation). It is however interesting to notice that the occurrence of degenerated
classes and methods is vast. Out of the 27 micro pattern presented in the paper
19 deals with degenerate state and/or degenerate behaviour. A short description
of each micro pattern can be found in Table D.5.

6.5 Refactoring
One aim of object oriented software developers is to design reusable software. Ob-
ject orientation is said to be particularly suitable for this purpose. Reusable soft-
ware components are mostly the result of a iterative process, guided by experience.
Nonetheless, reuse of software components is greatly enhanced if the components
are made “changeable” from the beginning.

Refactoring is about changing the structure of software code without chang-
ing its external behaviour. Opdyke Opdyke (1992) makes the first definition of
refactoring:

Refactorings are reorganization plans that support change at an in-
termediate level.

63

Chapter 6. Design Patterns and Code Smells

sufficient objective means of quality evaluation. Still, even
when these means mature, or if we suffice ourselves with
a subjective evaluation, an important question is whether
choice of patterns makes a significant and meaningful influ-
ence on the software.

Our answer to this question is two fold.

1. We show that the catalog touches a great deal of the
software: Three out of four classes can be characterized
by the catalog; many carry even more than one pattern
label (see Section 6).

2. We show that the differences between pattern preva-
lence levels in different software collections are signifi-
cant (Section 7).

Therefore, we have that the patterns as a whole are sig-
nificant in characterizing a large portion of software collec-
tions. Of course, we cannot show that the characterization
of software by patterns, i.e., these 5 bits of information, are
directly tied with quality. One may still be able to draw
conclusions from the fact that a pattern is used extensively
in software that came from respected vendors such as Sun
and the Apache group.

The question of the extent by which the micro-patterns
in the catalog contributes to the global (or local) software
quality, is difficult, and must be left open for debate or fur-
ther research, in which the finding of this paper, as well as
the statistical methods we employ may become useful.

Individual value of each of the patterns? Two patterns
in the catalog: Pseudo Class and Cobol like, are prime suspects
of bad coding practice. Our experimental setting is not suf-
ficient for maturing the suspicions into verdicts. However,
we know that there is value finding bad patterns, which can
be used as warning signals.

A question on which our statistical analysis is applicable,
is whether each of the patterns in the catalog is relevant. We
show that each of the patterns matters for the statistical
distinction between software of different origins.

Furthermore, we show that since a class can be charac-
terized by more than one pattern, the catalog is, in a sense,
greater than the sum of its parts. Specifically, we define an
information theoretical metric of the amount of design in-
formation, i.e., the number of bits, that the catalog reveals
on a software collection. Our experiments indicate that in
average the catalog provides about 5 bits of design infor-
mation on the classes in our data set, and, this number is
greater than the sum of the information that the individual
patterns provide (Section 6).

Outline. This remainder of this paper can be divided
to two parts. The first part is concerned with the descrip-
tion of micro patterns: Section 2 gives the entire catalog of
patterns. Section 3 then elaborates further on the notion,
including a comparison to design patterns, and to what may
be called implementation patterns.

The second part is concerned with the experimental re-
sults. Section 4 defines the notion of entropy of a pattern.

The data set is described in Section 5, while the core of the
experimental results are in Section 6. Section 7 employs sta-
tistical tests to check whether the difference in prevalence
levels are significant. Section 8 discusses the alternatives for
explaining this significance—the main inspection tool being
pseudo patterns, which are patterns that do not appear to
bear purpose or value to the programmer. Section 9 con-
tinues the statistical investigation, by checking whether the
patterns make statistically significant distinction between
different versions of the same software.

Related work is the subject of Section 10. Section 11
reflects on the results, and suggests some ideas for further
research.

2. The Micro Patterns Catalog
This section enumerates the patterns in the catalog, describ-
ing each one of them briefly.

Figure 1 shows a global map of the 8 categories, and the
placement of the 27 micro patterns into these.

Figure 1: A map of the micro patterns in the cat-
alog: rounded rectangles denote pattern categories
in which state, behavior, or construction is degen-
erate, rectangles denote categories of patterns for
containment, while trapezoids denote patterns used
for inheritance.

The X-dimension of the figure corresponds to class be-
havior. Categories at the left hand side of the map are
those of patterns which restrict the class behavior more than
patterns which belong to categories at the right. Similarly,
the Y -dimension corresponds to class state: Categories at
the upper portion of the map are of patterns restricting the
class state more than patterns which belong to categories at
the bottom of the map.

Altogether, there are four categories in which the class
behavioral, or creational or variability (state) aspects of
a class are degenerate: degenerate state and behavior , de-
generate state, degenerate behavior and restricted creation.
The patterns in these four categories (which are depicted

Figure 6.3: Micro patterns (Gil and Maman, 2005)

[. . .] Refactorings do not change the behavior of a program
[. . .]they can support software design and evolution by restructuring

a program in the way that allows other changes to be made more easily.

In the first definition of refactoring Fowler (Fowler et al., 1999) has in a systematic
way described seventy refactorings: the motivation for doing them, mechanics of
how to do them safely, accompanied by simple examples. Refactorings are described
in a standard format. The format consists of five components:

Name: important for creating a common vocabulary

Summary: short description of the situation that need refactoring and what kind
of refactoring that solves the problem. Important in aiding the search for an
appropriate refactoring.

Motivation: the reason for refactoring and exceptions when refactoring is to be
avoided.

Mechanics: a detailed step-by-step description how to perform the refactoring.

Examples: illustrates the refactoring with a simple example.

In connection to design, refactoring is not a tool in itself, since the need for refactor-
ing is a result of code evolving as a result of changes in design, added functionality
and often over time.

64

6.6. Code Smells

6.6 Code Smells
To be able to detect if refactoring is an option Fowler et al. (1999), has named a
number of candidate situations for refactoring. These are called “code smells”. A
smell is an indication of a potential problem, not a guarantee of an actual problem.
Smells will occasionally find false positives—things that smell, but are actually
better than the alternatives. However, there is no easy way to detect or measure
the amount of “smell” or to what extent refactoring is needed, since code is context-
dependent. A short description of the 22 code smells given in (Fowler et al., 1999)
follows.

Smell name Description
Alternative Classes
with Different
Interfaces

lack of common interface for related classes.

Comments can be misused to compensate for bad structure, should
only be used to clarify why, not what Data Class a class
that contains data but no “real” behaviour

Duplicated Code redundant code, never do anything more than once!

Data Clump the same few data items passed around together, should
be turned into an object.

Divergent Change one class needs to be modified continuously??

Feature Envy a method more interested in other classes than the one it
belongs to

Inappropriate
Intimacy

two classes too tightly coupled, classes should know as
little as possible about each other.

Incomplete Library
Class

using a library that does not offer sufficient services

Large Class a class trying to do too much, indications are many
attributes and/or methods.

Lazy Class a class that does not do a proper job. Classes should pull
their weight. Every additional class increases the
complexity of a project. If you have a class that is not
doing enough to pay for itself, can it be collapsed or
combined into another class?

Long Method Fowler and Beck strongly believe in short methods

65

Chapter 6. Design Patterns and Code Smells

Smell name Description

Long Parameter
List

Don’t pass in everything the method needs; pass in
enough so that the method can get to everything it
needs.

Message Chains Watch out for long sequences of method calls or
temporary variables to get routine data. Intermediaries
are dependencies in disguise.

Middle Man A class mostly delegating to other classes.

Parallel Inheritance
Hierarchies

Every time you make a subclass of one class, you must
also make a subclass of another. Consider folding the
hierarchy into a single class.

Primitive Obsession primitives are used instead of small classes/types. A
really good analysis of this can be seen in (Fowler 2003b).

Refused Bequest a subclass that does not fully support the data and
method it inherits. If you inherit from a class, but never
use any of the inherited functionality, should you be
using inheritance?

Shotgun Surgery the opposite of Divergent Change, small changes involves
many classes. If a change in one class requires cascading
changes in several related classes, consider refactoring so
that the changes are limited to a single class.

Speculative
Generality

code has been generated in case of future changes.

Switch Statements type codes or type detection is used instead of
polymorphism or type codes are passed on to methods.

Temporary Field a class has an attribute used only in certain situations
and probably should be a method variable.

Code smells might be considered the opposite of patterns, more like anti-
patterns, i.e. code that has certain “bad” object oriented-characteristics that need
to be replaced. Originally Fowler et al. described 22 code smells, which is a lot to
keep in mind, especially if the aim is to avoid them from the very beginning. To
make it somewhat easier Mäntylä has defined a taxonomy for a more easy use of
these code smells (Mäntylä, 2003). The ambition is to organise the smells into a
higher level of abstraction. The result is five categories, see Table 6.3. However, as

66

6.7. Anti-patterns

stated in (Mäntylä, 2003) the grouping could be debated and many of the smells
would be appropriate in several of the groups. Later on the taxonomy has been
revised (Mäntylä).

Table 6.3: Taxonomy of code smells (Mäntylä, 2003)

TABLE QQ
MÄNTYLÄ’S TAXONOMY OF CODE SMELLS

Group Smells Explanation

The Bloaters

Long Method
Large Class
Primitive Obsession
Long Parameter List
DataClumps

Something that has grown so large that it cannot
be effectively handled.

The Object-
Orientation

Abusers

Switch Statements
Temporary Field
Refused Bequest
Alternative Classes with
Different Interfaces

Cases where the solution does not fully exploit
the possibilities of object oriented design

The Change

Preventers

Divergent Change
Shotgun Surgery
Parallel Inheritance
Hierarchies

Prevents or hinders the change or future
development of the software.

The

Dispensables

Lazy class
Data class
Duplicate Code
Dead Code
Speculative Generality

Something unnecessary that should be removed
from the source code.
[Dead Code is Mäntylä’s suggestion of an added
code smell]

The Couplers

Feature Envy
Inappropriate Intimacy
Message Chains
Middle Man

Three of the smells represent high coupling.
Middle Man smell on the other hand represent a
problem that might be created when trying to
avoid high coupling with constant delegation.

Others
Comments
Incomplete Library class

Have nothing in common except that they do
not fit into any of the other groups.

 Based on the smells by Fowler et al. (1999), another set of “Smells and Heuris-

tics” are formulated by Martin (2008). Martin categorises his advice in six cat-
egories: Comments (5), Environment (2), Functions (4), General (36), Java (3),
Names(7), and Tests (9). Yielding a total of 66 smell and heuristics. One of the
mot important rules, according to Martin, is G5: Duplication. It is also known as
the DRY principle.

The DRY (Don’t Repeat Yourself) Principle states: Every piece of
knowledge must have a single, unambiguous, authoritative representa-
tion within a system. (Hunt)

6.7 Anti-patterns
A pattern starts with a recurring problem and suggests a solution that has proven
to work well and inhibit appreciated characteristics. The idea of Anti-patterns is to
provide a way to capture bad software development practices. Some descriptions
of AntiPatterns:

A literary form that describes a commonly occurring solution to a
problem that generates decidedly negative consequences Brown et al.
(1998)

An AntiPattern is a pattern gone bad. It is a frequently used, but
largely ineffective solution to a problem. A well-formed AntiPattern

67

Chapter 6. Design Patterns and Code Smells

provides a structured way to describe the initial problematic solution
and the most appropriate way to refactor that solution. Jimenez (2006)

As the case with patterns, AntiPatterns provide a vocabulary to talk about software
designs and solution, but in this case “bad” ones. Once a problem is detected the
AntiPattern suggests a refactoring to obtain a more functional solution.

Intent of patterns Logically unique solution

Intent of AntiPatterns Awareness of situation and alternative solutions

Part of the vocabulary is the use of an AntiPattern template. This way the mapping
of problematic situations is simplified. One of the components of the AntiPattern
template is Root causes, a section that lists typical causes for the failed solution.

Apart from these components there are others to be added depending on the
context. Antipatterns are categorised in three groups, based on the view of the
Developer, the Architect or the Manager.

• Software Development AntiPatterns: aiming at solving programming
problems encountered by the programmer.

• Software Architecture AntiPatterns: focuses on problems dealing with
the structure of systems. The functional partitioning of software mod-
ules., the software interfaces between modules and the selection and
characteristics of the technology used to implement the interface con-
nections between software modules.

• Software Project Management AntiPatterns: describe how people is-
sues, processes, resources, and external relationships impair software
projects. Many of the AntiPatterns can address problematic situations
in more than one of the views. Since development is of most interest to
small-scale situations some examples of Development AntiPatterns are
listed in Table 6.4.

Patterns and AntiPatterns are intrinsically linked since over time and/or due
to change of requirements, maintenance, bug fixing etc. Any well-behaved code
developed using patterns might evolve into an AntiPattern. An AntiPattern is a
pattern in an appropriate context, Se Figure 6.4 from Brown et al. (1998)

In Brown et al. (1998) the seven sins of programmers are stated as root causes
and the fundamental context for AntiPatterns. They are:

Haste: Hasty decisions lead to compromises in quality.

Apathy: Unwillingness to attempt a solution. In object orientation it might lead
to lack of partitioning, and the definition of proper interfaces between classes.

Narrow-mindedness: The refusal to practice solutions that are otherwise known
to be effective.

Sloth: Poor decisions based on the easiest answers leads to lack of configuration
control.

68

6.8. The Grand Mistake in Design

Figure 6.4: Design patterns and AntiPatterns relation. (Brown et al., 1998)

Avarice: (Greed) Architectural avarice, which means the system is overcompli-
cated with excessive detail, which leads to excessive complexity due to insuf-
ficient abstraction.

Ignorance: The intellectual sloth, not seeking to understand.

Pride: The not-invented-here syndrome. Object technology is the opposite of this
and code reuse simplifies work and makes development less risky.

One example is Cut-and-Paste Programming. The root cause for this AntiPattern
is Sloth. And in the template entry Anecdotal Evidence for this AntiPattern it says:

“Hey, I thought you fixed that bug already, so why is it doing this
again” “Man, you guys work fast. Over 4000,000 lines of code in three
weeks is outstanding progress!”Brown et al. (1998)

The work of Brown et al. (1998) was published before the Refactoring/Code smell
work published by Fowler et al. (1999) and does not seem to have been further
developed. In its initial form AntiPatterns are less formalised and provides less
constructive solutions than the ideas of Refactorings and Code smells.

6.8 The Grand Mistake in Design
According to Meyer (1997) the most common and most damaging mistake, what
he calls The Grand Mistake, is designing a class that isn’t. The following are
indications of this mistake:

• “My class performs. . . ”: a class is supposed to offer a variety of services on
objects of a certain type, not dedicate itself to something that ought to be a
method of some other class.

69

Chapter 6. Design Patterns and Code Smells

• Imperative names: class names consisting of imperative verbs could very well
be an indication of a class that does only one thing (printing, sorting etc.).
The name should be carefully chosen to clearly reflect the abstraction. For
classes this means a noun, and for interfaces in Java an adjective.

• Single-routine classes: a class that contains only one non-private method
might be just a wrapped subroutine/procedure.

• Premature classification: a common mistake among novices is to introduce
inheritance to early in the analysis and design work. Since abstractions are
the core of object orientation, inheritance is only relevant as a relation among
well-understood abstractions. Inheritance may well be a result at a later stage
due to the iterative way of working that is necessary to discover abstractions
and relations. To a novice this indication might be pointing at the class-object
confusion.

• No-command classes: these are classes without any behaviour at all; they are
the equivalents to records in Pascal and structs in C.

• Mixed abstractions: a class whose features relate to more than one abstrac-
tion. This is summarised in the Class Consistency principle: All the features
of a class must pertain to a single, well-identified abstraction.

6.9 Summary
The origin of code smells is code that has evolved over time, and this makes code
smells less applicable in the small-scale context. Knowledge of code smells can be
motivated by the need to avoid pitfalls, but for practical use in an educational
setting their value is limited. It is well known that the use of negation is dangerous
in teaching and knowledge transfer. In a recent study, Kotzé et al. (2008) found
that students showed signs of confusion when being exposed to negative guidelines.
However, it is important from an instructional point of view, to address common
misconceptions (discussed in Section 2.5) to aid novices in their understanding of
concepts (Hewson, 1981).

Patterns are the results of years of experience made by professional software
developers. In a small-scale example, the use of design patterns creates an unmo-
tivated overhead that complicates the example beyond the scope of its purpose.
The use of patterns in a small-scale situation is therefore limited and not used as
an explicit resource in this work to discuss examples. It is however important to
keep the two basic ideas of pattern in mind when designing examples: Program
to an interface, not an implementation and Favour object composition over class
inheritance. The intention of these two principles is implicitly useful, think twice
before using inheritance and use interfaces to show the possibilities of extension and
more general code. In other words: delay the introduction of inheritance until the
concept can be rightfully justified by proper examples. Patterns in general, favors
the use of interfaces and composition. This is important to take into consideration
in the small-scale context.

70

6.9. Summary

Table 6.4: Software development AntiPatterns (Brown et al., 1998)
AntiPattern Synopsis Refactored Solution

Cut and Paste
Programming

Code reused by copying
source statements leads
to significant
maintenance problems.

Black Box reuse reduces
maintenance issues by
having a common source
code, testing, and
documentation for
multiple reuses.

Functional
Decomposition

Non-object oriented
design (possibly from
legacy) is coded in
object oriented language
and notation.

No straightforward way
to refactor: redesign
using object oriented
principles.

Golden Hammer A familiar technology or
concept is applied
obsessively to many
problems.

Expanding the
knowledge of developers
through education,
training, and book
study groups exposes
developers to new
solutions.

Lava Flow Dead code and
forgotten design
information is frozen in
an ever-changing design.

Configuration control
processes that eliminate
dead code and
evolve/refactor design
towards increasing
quality.

Poltergeists Classes with a very
limited roles and life
cycles, often starting
processes for other
objects.

Allocate the
responsibility to
longer-lived objects and
eliminate the
poltergeists.

The Blob Procedural-style design
leads to one object with
numerous
responsibilities and
most other objects only
holding data.

Refactor the design to
distributed
responsibilities more
uniformly and isolate
the effect of changes.

71

72

Chapter 7

Software Metrics

7.1 Introduction
Software metrics are used for different purposes. One is to estimate the work spent
on constructing the software. Another purpose is to predict maintenance costs.
In this chapter, a number of metrics are presented, without the ambition to be
exhaustive.

7.2 Classical Metrics
Historically there are three different metrics that is the starting point for code-
metrics.

LOC – Lines of code

This is to be considered more a measure of length and might be regarded as the size
of program representation because of its insensitivity to the language and paradigm
of the measured program.

HSS – Halstead software science

This measure was suggested in 1977 and is trying to estimate the programming
effort. The number of appearing operators and operands are estimated. Operands
can be “+” and “*” but also an index “[. . .]” or a statement separator “;”. Operands
are litteral expressions, constants and variables. A brief description of HSS can be
found in Christensen et al. (1981). There are four basic program measures:

• η1 Number of unique operators used.

• η2 Number of unique operands used.

• N1 Number of times operators are used.

• N2 Number of times operands are used.

73

Chapter 7. Software Metrics

Vocabulary (η) of a given program is defined as the sum of unique operators and
operands used in that program, and is a measure of the repertoire of elements that
a programmer must deal with to implement the program. Vocabulary is therefore
defined as: η = η1 + η2

Length (N) of a given program is defined as the sum of the operator usage and
the operand usage. Intuitively, length is a measure of program size and measures
the number of times a programmer deals with each of the programming elements.
Length is expressed as follows:

Length : N = N1 + N2

Halstead suggests a relationship such that Length can be estimated from Vocab-
ulary. The formula for Estimated Length (N̂) based on Vocabulary is the following:

Estimated length : N̂ = η1log2η1 + η2log2η2

According to (Christensen et al., 1981) Estimated Length tends to be low for
large programs and high for small programs and seems to most accurate in the range
of 2000-4000 units of length. Halstead also suggests a two-dimensional measure of
program size. This measure considers the frequency of elements in connection to
the range of possible elements. This is defined as the Volume of a program:

V olume : V = Nlog2η

It is stated in (Christensen et al., 1981) that these measures are consistent with
lines of code as relative measures of length.

MCC – McCabes Cyclomatic Complexity

This complexity measure is based on a mathematical approach to measure and
control the number of paths through a program (McCabe, 1976). Graph theory is
used to represent decision structure from which measure of control flow is derived.
An example is shown in Figure 7.1.

Figure 7.1: Example of McCabes Cyclomatic complexity(MCC)

For x = 1 To 5
If x = 1
Then "x=1"
ElseIf x = 2

Then MsgBox "x=2!"
Else: MsgBox "x is

higher than 2!"
End If

Next

Listing 7.1: Code
Corresponding Graph

74

7.3. Object Oriented Metrics

For practical reasons an edge from exit to entry is added.
The cyclomatic number, the number of independent paths through strongly

connected directed graphs, is calculated as:

M = E − N + 1 = 8 − 6 + 1 = 3

where
E = the number of edges of the graph
N = the number of nodes of the graph
and the cyclomatic complexity is calculated as:

M = E − N + 2 = 8 − 6 + 2 = 4

This means that the example in Figure 7.1 has the cyclomatic complexity:

M = 8 − 6 + 2 = 4

Since Cyclomatic Complexity is based entirely on control flow, its major appli-
cation in object orientation is on a method level. Complexity raises in methods
that have a lot of if statements, for and while loops etc. Values over 10 are generally
viewed as being bad.

A practical use of the cyclomatic complexity is that it is said to be a count of
the number of test conditions of a program.

Hybrid metrics

Based on the ideas of the aforementioned metrics, hybrids have been developed
that are more representative of the complexity of a program since they combine
measures for size control and flow information flow.

Maintainability Index (MI), developed at the University of Idaho, is using Hal-
stead’s effort and McCabe’s cyclomatic complexity, and other factors relating to
the number of lines of code (JHawk Webpage). Maintainability is the focus of
MI and it is stated to be language independent and was validated in the field by
Hewlett-Packard (HP).

7.3 Object Oriented Metrics

Traditionally in metrics, complexity that was inherited was ignored. This is a
mistake since inheritance adds additional complexity to the modularity equation.

There has been an adoption of classical metrics to object orientation, and the
Halstead metrics and McCabe’s cyclomatic complexity is still relevant. All of the
measures can be applied at method level, and can be extended as averages on a
class level.

When it comes to design, the interpretation of different metrics can aid in
indicating design flaws.

75

Chapter 7. Software Metrics

7.3.1 The first theoretically founded object oriented metric

Gibbon (1997) states that the object oriented-metrics by Chidamber and Kemerer
(1991) were the first to be both theoretically and empirically validated. They form
a basis for many subsequent metrics. This set of metrics is based on the essential
features of object oriented design as presented by Booch (1994). Four major steps
involved in the object oriented design process are outlined.

• Identification of classes and objects at a given level of abstraction: In this
step, key abstractions in the problem space are identified and labeled as
potential classes and objects. It also serves the purpose of establishing the
boundaries of the problem.

• Identify the semantics of these classes and objects: The meaning of the classes
and objects identified in the previous step is established. This means defining
the behaviour and attributes of each abstraction.

• Identify relationships between classes and objects: In this step, class and
object interactions, such as patterns of inheritance among classes and pattens
of visibility among objects and classes (what classes and objects should be
able to “see” each other) are identified. The purpose is to formalise the
conceptual as well as physical separation of concern among abstractions.

• Implementation of classes and objects: In this step, detailed internal views
are constructed, including definitions of methods and their various behaviors.

One important aspect of these metrics is that they are directly aiming at the
design of objects (or classes). The elements of the Chidamber and Kemerer metric
are listed in Table 7.1.

Table 7.1: The metric suite (Chidamber and Kemerer, 1991)

TABLE X

THE METRIC SUITE BY CHIDAMBER AND KEMERER

Weighted Methods per Class (WMC) Sums the complexity of individual methods.

Depth of Inheritance (DIT) Asserts that design complexity increases with depth of
the inheritance hierarchy since more classes and
methods are involved.

Number of Children (NOC) Number of immediate subclasses to a class. This
number indicates of the potential influence a class has
on the design.

Coupling between Objects (CBO) The number of non-inheritance related couples
between classes (use of methods and/or attributes).

Response For a Class (RFC) The set of all methods available to an object. The
response set of a class is the set of all methods that can
be invoked in response to a message received by an
object of that class

Lack of Cohesion in Methods (LCOM) Amount of use methods make of the objects attributes.
Identifies disparity between a class’ methods and its
data, indicating flaws in the design of the class.

76

7.3. Object Oriented Metrics

The design of classes is declared to be central to the object oriented paradigm.
Chidamber and Kemerer’s metrics are designed to measure the complexity in the
design of classes. The limitation is that dynamic behaviour of a system is not
captured.

7.3.2 Object oriented design metrics

According to Lanza et al. (2005)it is necessary that an overview of an object ori-
ented system include metrics that reflect on three main aspects, using the following
metrics (both directly and in computed proportions):

1. Size and complexity. How big and complex is the system

• NOP - number of packages

• NOC - Number of Classes

• NOM - Number of Operations1

• LOC - Lines of Code

• CYCLO - Cyclomatic Number, the sum of all McCabe’s cyclomatic num-
ber for all operations

2. Coupling. Collaboration is at the core of object orientation.

• CALLS - Number of Operation Calls. Distinct invocations, i.e. the sum
of all user-defined operations.

• FANOUT - Number of Called Classes. A sum of the FANOUT metric,
defined as the number of classes referenced by a class.

3. Inheritance. Considered a major asset, inheritance must be measured and
analysed.

• ANDC - Average Number of Derived Classes, i.e. the average number
of direct subclasses of a class (interfaces not counted).

• ANH - Average Hierarchy Height. An average of the Height of Inheri-
tance Tree (HIT) among the root classes defined in the system (interfaces
not counted).

Whatever metrics used, they are not to be considered absolute measures of quality.

Metrics measure structural elements and as such they can reveal
hidden symptoms. But there will always be a gap between the symptoms
and the deep assessment that an expert of object oriented design can do
using these symptoms. (Lanza et al., 2005)

1User-defined operations, including methods or global functions.

77

Chapter 7. Software Metrics

7.3.3 Readability metric
In the small-scale context it is important to consider the skill to read and under-
stand written code. Understandability and readability are interesting qualities of
program code that has yet to be explored. Although there is a large body of litera-
ture on software measurement, no publications on measures for software readability
could be found.

Basic syntactical elements must be easy to spot and easy to recognize, only
then, one can establish relationships between the elements and form more abstract
schema or chunks. In Börstler et al. (2007) we make an attempt to formulate a
reading ease score for software (SRES).

SRES is based on a readability measure for ordinary text. By interpreting the
lexemes of a programming language as syllables, its statements as words, and its
units of abstraction as sentences, we could then argue that the smaller the average
word length and the average sentence length, the easier it is to recognize relevant
units of understanding, so-called “chunks”. Since abstraction is a key programming
concept, proper chunking is highly relevant for the understanding of programming
examples.

A comparison of SRES with other significant measures is performed. The con-
clusions of the initial tests, is that SRES, along with the other measures, favours
code with a high degree of decomposition. Decomposition is useful in managing
complexity, and therefore important from a cognitive point of view. However, de-
composition in itself is no guarantee for readability, the decomposition must capture
meaningful abstractions in the problem domain. Furthermore, there are many im-
portant aspects of readability and understandability not covered by any measure,
e.g. choice of names, commenting, and indentation,.

7.4 Summary
Object oriented-metrics are mainly focused on class, method and/or system-level
analysis as shown by Purao and Vaishnavi (2003). Their survey shows that research-
activities were intense during the mid-90’s, but has decreased, and they regret the
lack of consensus about definitions of quality characteristics.

In a small-scale context we would like to avoid overly complex examples, to
reduce the cognitive load on the novice. Complexity of systems and classes is in-
teresting but difficult to measure. The depth and width of inheritance hierarchies
can be measured, and might be evaluated in terms of complexity. The number
of classes, attributes and methods and how they interact could be used as indica-
tors. Coupling and cohesion is also among the components mentioned in different
metrics.

When dealing with small-scale problems it is important to keep the cohesion
high, i.e. to make sure that an abstraction is focused and limited. This is well
captured by The Single Responsibility Principle, see Section 4.2 and (Martin, 2003).

78

Chapter 8

He[d]uristics

Small-scale brings about restrictions on the design of examples not present in the
design of large-scale object oriented systems. The size of examples, the repertoire of
concepts and syntactical components, and the need to present concepts in isolation
are limiting conditions. Furthermore, we have to support object-thinking, and we
have to be particular about the context/problem domain that we supply for the
examples.

The intention of the proposed He[d]uristics is to support the design of exemplary
examples, with respect to the characteristics of object orientation, and in addressing
novices’ particular needs. For practical reasons it is important to avoid being
too general or too detailed. Therefore, the proposed He[d]uristics are targeted
towards general design characteristics, which means that more detailed practices,
like keeping all attributes private, are not stated explicitly. The He[d]uristics are
designed to be independent of a particular line of presentation (objects first/late,
order of concepts, ..) and environment used.

The proposed He[d]uristics are:
1. Model Reasonable Abstractions
2. Model Reasonable Behaviour
3. Emphasize Client View
4. Favour Composition over Inheritance
5. Use Exemplary Objects Only
6. Make Inheritance Reflect Structural Relationships
In this chapter the He[d]uristics are presented, each with a short description

and motivation. Examples and discussions of consequences follow in Chapter 9.
Finally, the proposed He[d]uristics are evaluated against established characteristics
and practices in Chapter 10.

8.1 Model Reasonable Abstractions

This is maybe the most important He[d]uristic. Abstractions are at the heart of
object orientation and we need to enforce the right approach to abstractions. So
what is a reasonable abstraction?

In the small-scale context it has two implications.

79

Chapter 8. He[d]uristics

• An abstraction has to be object oriented and act as a role-model for objects.
Implementing the abstraction, we must not sacrifice essential object oriented
characteristics for the purpose of saving space, in terms of number of classes,
lines of code etc.

• It also means that there must be a problem presented that, to a novice,
is likely to appear in software. It is often the case that we have to make
simplifications of a small-scale problem, to make the problem appropriate
in size and complexity. However, it is necessary to strive for non-artificial
classes and objects. It must be possible to imagine a client using objects of
this kind, and the objects must model some entity in the problem domain.

To promote the understanding of objects, it is important to show the basic char-
acteristics of an object: objects have identity, state and behaviour. Among other
things, this implies that classes being mere data containers are not exemplary.

In view of the Single Responsibility Principle (SRP, Section 4.2), we can assume
that in terms of responsibilities, small is beautiful. For the small-scale context this
should imply few attributes and few methods. Furthermore, the limiting conditions
of a small-scale example results in few lines of code, and keeping the abstraction
focused with few collaborators means less passing of parameters. Encapsulation
and information hiding must be emphasized.

Working with composition to have slightly more complex classes, it is handy to
use compositions from real life as examples. But, with every day life examples it is
important to explicitly discuss the difference between the model and the modelled.
It is difficult for the inexperienced to accept that the model can have behaviour
and responsibilities that a static, dead thing from our every day reality never would
have.

Another common pifall is to model roles instead of classes. Whether a domain
entity is a candidate for an abstraction or merely a role that some abstraction can
take on, must be decided carefully.

8.2 Model Reasonable Behaviour
One risk in the small-scale situation, is to oversimplify the behaviour of objects.
We have to design examples with objects simple enough, in terms of syntactical
elements and programming concepts, for a novice to understand with her/his lim-
ited “vocabulary”. It is however crucial to avoid artificial behaviour because it may
distract the novice from understanding the basic concept of behaviour in an object.
Discussing what a client would/should expect in terms of consistency and logic will
most likely extend an example, but will empower the novice in terms of analysis
and design thinking.

The consequences of demanding a reasonable behaviour makes some common
habits improper. Printing for tracing is one example, this confuses the novice of
how things are returned from methods and spoils the idea of having I/O separated
from the functional parts of a system. Snippets of code is another. It does not
promote object-thinking and leaves the novice with the extra cognitive burden
of constructing a meaningful context for this code to work. Setters and getters
connected to the implementational details (attributes) of a class can break the
idea of encapsulation and information hiding (Section 5.7), and should therefore

80

8.3. Emphasize Client View

be avoided as much as possible. This can be avoided by consistently discussing and
exemplifying the separation of the implementation from the abstraction. Objects
should provide services, not merely be wrappers of data.

8.3 Emphasize Client View
When we design small-scale examples, we have to think about how to support
the novice in object-thinking. Taking a clients’ view when designing a class gives
important for designing small-scale examples. It is crucial to define the responsi-
bilities and services of an object separately from the internal representation and
implementation of the attributes. Leaving the implementational details out from
the design thinking will promote object thinking and make problem solving easier
for the the novice.

A practical advice is given by Meyers (2004), anticipate what clients might want
to do and what clients might do incorrectly. The interface/protocol of a class must
be carefully designed, and be consistent with the problem domain. It should also be
as complete as possible, even if some services would not be immediately requested.
On the other hand, it is important not to burden clients with functionality they are
not interested in. The Single responsibility Principle (SRP, Section 4.2) and The
Interface Segregation Principle (DIP, section 4.6) both addresses this problem.

8.4 Favour Composition over Inheritance
Inheritance1 is the concept that distinguishes object orientation from other paradigms,
but it is considered difficult to learn and is therefore given a lot of attention. Intro-
ducing it early often results in examples that are too simple to show the strength
of inheritance. Since novices still have a very limited repertoire of concepts and
syntactical constructs, it is difficult to show the nature and strength of inheritance.
Inheritance is often used to exemplify reuse, but composition is no less important
to show this feature of object orientation. Being restrictive with inheritance is
important to guide novices toward a proper use of inheritance. Polymorphism is
powerful, and its strength can be demonstrated by interfaces and abstract classes
as well as by inheritance. The distribution of responsibilities and the importance
of proper protocols can be shown through the collaboration among objects.

Many classes in Java’s API are implementing interfaces, and separating the
introduction and use of behavioural (interfaces) and structural (inheritance) rela-
tionships is probably a good idea. Late introduction of inheritance makes it possible
to show its benefits through more advanced examples. The Gang of Four-patterns
(Chapter 6) strongly build on the recommendation Favour composition over inher-
itance. Skrien (2009) shows many examples of how this can lead to better designs.

8.5 Use Exemplary Objects Only
We have found it common that practicalities of examples threaten to violate the
basic characteristics of objects. Even if the abstraction is well chosen, based on the

1By inheritance we mean subclasses in Java (implementation inheritance) rather than interfaces
in Java (interface inheritance).

81

Chapter 8. He[d]uristics

clients view and the context makes the proposed design plausible, we may unin-
tentionally contradict the general intention of an example. With this He[d]uristic
we attempt to capture common pitfalls and to address some of the misconceptions
described in section 2.5.

To show the idea of objects, we should strive for “many” objects present in the
small-scale example. A common example often consists of only one or two references
of a certain class, and objects are instantiated to show some of their functionality.
But, in a “normal” situation there ought to be many instances of a class, because
otherwise it seems like a questionable abstraction. Questionable since a class is a
template for creating objects of the same type. This is not unproblematic, since
the presence of many objects raises another problem: how should we handle many
objects?

Another common pitfall is to use “one-of-a-kind” classes. If there is no need
for more than one object of a certain class, it does not support the novice in
understanding the conceptual difference between the object and the class.

It is also important to be explicit, i.e. using explicit objects whenever possible.
Following the Law of Demeter (Section 4.7) is one way to make a design more
explicit. Calling methods of explicit objects instead of calling the nameless object
resulting from a method call, makes the behaviour of objects less obscure.

Anonymous classes is way of making the example shorter which often is desired,
but contradictory to the needs of a novice. Implementing methods in the formal
definition of another method, e.g., the signature, does not promote the understand-
ing of objects and their behaviour. This is more suitable for the more experienced
learners. Since tracing is an important part of learning to program, avoiding anony-
mous objects and classes, will decrease the cognitive load for a novice (Section 2.3).

Avoiding anonymity and using explicit objects mean that the use of static ele-
ments becomes an issue. Static attributes and static methods can confuse novice of
the concepts class, object and behaviour and should preferably be avoided, or de-
ferred. Including the main-method in an abstraction means breaking the concept
of abstraction and encapsulation. A class is the detailed description of an abstrac-
tion, used to instantiate objects from this abstraction. Having a main-method to
be able to test the class, including the creation of an object of the class itself, does
not lead to reasonable behaviour or abstractions. The method main is in itself
an exception to object orientation for many reasons. The invocation is done with-
out any object being instantiated (static), it is not called by any explicit object,
the invocation is not visible in code (system defined invocation) and it is not the
implementation of any behaviour that the class is responsible for.

8.6 Make Inheritance Reflect Structural Relation-
ships

Inheritance is often over-emphasized and misused when introducing hierarchical
structures early (see Section 8.4). To show the strength and usefulness of inheri-
tance it is necessary to design examples carefully. Behaviour must guide the design
of hierarchies and specialisation must be clear and restricted. The Liskov Substi-
tution Principle (LSP, see Section 4.4) promotes polymorphism, but restricts the
relationship between the base class and the derived class. This must be taken into

82

8.6. Make Inheritance Reflect Structural Relationships

account when designing examples. What can be expected of an object of the base
class must always be true for objects of the derived class.

It is confusing for a novice that it is possible to instantiate both the the base class
and the derived class, and it can not be considered exemplary to design structures
this way. To eliminate this possible class/object conflation it is critical to adhere to
one of the consequences of The Dependency Inversion Principle (DIP, see Section
4.5) and the basic idea of design patterns (see Section 6.2): Never derive a class
from a concrete class.

83

84

Chapter 9

He[d]uristics in Practice

In this chapter, we demonstrate and discuss the intentions of the proposed He[d]uristics
through examples. Different implications are discussed and suggestions for improv-
ing existing examples are made. This chapter should provide insights into the in-
tended use of the proposed He[d]uristics and hopefully new insight and inspiration
for the design of small-scale examples.

9.1 Model Reasonable Abstractions
Abstraction is at the heart of object orientation, and that makes this He[d]uristic
one of the most important ones.

The ambition must be to make the abstraction plausible, both from a software
perspective as well as from an educational perspective, all seen through the eyes of
a novice.

One important implication of Model Reasonable abstractions is that context is
critical to the abstraction. What differs good from bad is often in the details.
Throwing an example up on the board is tempting, but making up examples on
the fly is unfortunately hazardous, unless one possesses a set of carefully worked
out examples. An obvious risk is to either violate the ’good’ properties or realising
the need for context and thereby making the example overly complex.

Illustrating smaller syntactical components it is common to use a complete
application and place the example in the main-method. Listing 9.1 shows a simple
example illustrating the for-loop.

85

Chapter 9. He[d]uristics in Practice

public class Ex
{
public static void main(string[] args)
{
int i = 0;
for (int j=0; j<10; j++)
{
i = i+j;

}
}

}//class Ex

Listing 9.1: Using a complete application illustrating syntactical
elements.

This example is not contributing to the understanding of object orientation if we
want to promote the idea that (almost) everything is about objects, and that they
communicate through methods. main is a method not representing a behaviour of
a certain type of object, and it is never explicitly called. So to avoid this potential
confusion, do not make main into the entire program.

Decentralised responsibilities is a key component in object orientation. A rea-
sonable abstraction should preferably have one responsibility. Therefore, God
classes must be avoided, since large classes contradict the idea of focused abstrac-
tions (Riel, 1996).

One common mistake when designing small-scale examples is to model roles
instead of classes. It is desirable that classes are made up of more than primitive
attributes, and examples like the one in Figure 9.1 is not uncommon.

family1:
Family

mother

father

children

family1:
Family

mother

father

children

:Mother

:Father

:Child

family2:
Family

mother

father

children

:Person

:Person

:Person

Ball

color

Ball

color

RedBall

Ball

BlueBall GreenBall

Figure 9.1: Classes that model roles (Riel, 1996).

The classes Mother, Father and Child are probably only persons having a
certain logical interpretation in a given context. It is not unreasonable to assume
that the same person can be mother in one family and child in another. Which
yields the revised example in Figure 9.2.

86

9.2. Model Reasonable Behaviour

family1:
Family

mother

father

children

family1:
Family

mother

father

children

:Mother

:Father

:Child

family2:
Family

parent1

parent2

children

:Person

:Person

:Person

Ball

color

Ball

color

RedBall

Ball

BlueBall GreenBall

Figure 9.2: Objects with the same behaviour modelled by one class.

This design is closer to Dijkstra’s definition of abstraction – An abstraction is
one thing that represents several real things equally well. The important question is
whether or not the distinction between Mother and Father is in behaviour, which
would justify the use of different abstractions. Choosing the design of Figure 9.2
makes the class reusable and the abstraction more exemplary. Another frequent
example of this, is students taking courses at a university department. Being a
student is a role a person can take in one situation, while in another situation the
same person might be a lecturer. This is especially true if the role is temporary. If
the decision on what to model is based on the perspective of a client and situated
in the problem domain, it becomes easier to model classes, not roles.

Deciding on abstractions must generally be made with real objects1 in mind.
A real object must be able to act as a role-model for object thinking, i.e. it must
have identity, state and behaviour. Thinking in terms of responsibilities when
choosing/designing the abstractions of a problem, might be one way of avoiding
too much focus on implementational details. Christensen (2005) suggests to start
the analysis and design with “There must be an object that is responsible for . . .”

The Single Responsibility Principle (Section 4.2) applied in a small-scale context
should result in keeping classes, number of attributes, number of methods and
number of parameters small, i.e. keep things small.

9.2 Model Reasonable Behaviour

The demand for objects to have reasonable behaviour is easy to agree on. We argue
that what is reasonable is decided by the context. If the context is not supplied,
the meaning of the concept behaviour is difficult to understand. One example of
this, is how some specific construct in the language is illustrated. To demonstrate
this, it is tempting and practical to show a few lines of code without context. The
for-loop might be illustrated with the snippet in Listing 9.2.

1Note that “real objects” in this case is referring to objects showing the characteristics of object
orientation, not real world object.

87

Chapter 9. He[d]uristics in Practice

int i = 0;

for (int j=0; j<10; j++)
{
i = i+j;

}

Listing 9.2: Small example without context.

But, just looking at the source code in Listing 9.2 does not aid the understanding
of how and when things happen when the code is executed. What kind of object
would have this behaviour and what would the corresponding responsibility be?
It is even contradictory to how the concept illustrated, the for-loop, is supposed
to be used ‘for real’. It is not reasonable to have code that accumulates the sum
of the integers 0..9. This is an artificial problem and would never appear in any
programming problem, not even in the small-scale context. Avoid using snippets,
since they do not promote the idea of behaviour.

Next it is tempting to use printing to show the values of the variables as the
execution runs through the code, see Listing 9.3.

public class Ex
{
public static void main(string[] args)
{
int i = 0;
for (int j=0; j<10; j++)
{
i = i+j;
System.out.println("j="+j+" i="+i);

}
System.out.println("The sum is "+i);
}

}//class Ex

Listing 9.3: Printing for illustrating syntactical elements.

Seeing these lines of ‘tracing’ in almost every small example might lead the
novice to believe that it actually is necessary to do the printing to ‘get things done’.
Furthermore, since the understanding of methods and their invocation heavily relies
on the mathematical foundation of functions, the ‘printing-effects’ are even more
dangerous when used in small methods, as in Listing 9.4.

88

9.2. Model Reasonable Behaviour

private double x,y; //attributes
...
public double average()
{
double temp = (x+y)/2;
System.out.println("Average : " + temp);
return temp;

}//average

Listing 9.4: Printing for tracing in a method.

Now the novice is absolutely certain that printing is the only way to get results
out of methods. However, external I/O is not a natural behaviour of objects. If
anything, we should redefine the toString-method and retrieve the information
by method call. Avoiding external I/O, means much more work to illustrate the
behaviour of different language constructions, even on the very basic level. By
rewriting the example, the notion of objects being autonomous entities providing
services through the public interface of the class can be reinforced. It could also
be argued that printing is just one way of displaying information and that is not
the responsibility of the class to decide what the results are or how and when they
are to be displayed. By adding another method, a client using these objects can,
if needed, display some functionality of the method, see Listing 9.5.

To avoid this do not use explicit printing for tracing mixed up with the definition
of an objects behaviour.

private double x,y; //attributes
...
public double average()
{

double temp = (x+y)/2;
return temp;

}//average

public String averageAsString()
{
return "Average is : " + average();

}//averageAsString

Listing 9.5: Printing deferred to the client of the object.

Reasonable behaviour also conflicts with the general “textbook-rule” to have
attributes private, and to use setters and getters for the attributes, which easily
leads to dumb storage classes. It is important to avoid classes consisting of only
setters and getters (and maybe toString). They tend to support the impression
that classes are merely wrappers for values, and they are not exemplary of what
should be considered behaviour. Behaviour should, preferably, be separated from
the internal implementation of the abstraction, and emphasize the clients view.

89

Chapter 9. He[d]uristics in Practice

In Listing 9.6, that happens to be one of the first user-written classes in a text-
book, the class is not in any way different from having a simple variable of primitive
type. Why bother all the overhead? In this case objects only seem to complicate
things.

public class Num
{
private int value;

public Num (int update)
{
value = update;

}
public void setValue (int update)
{
value = update;

}
public String toString ()
{
return value + "";

}
}

Listing 9.6: A wrapper-class (Lewis and Loftus, 2007).

Another example of confusing behaviour, is the Die-class in Listing 9.7. There
are several issues with this implementation of a die-abstraction, when it comes to
reasonable behaviour. Is it reasonable to expect a newly created Die-object to
have the face value 1; why is it not a random value? In method roll, the face
value result of the roll is returned, even though there is a getFaceValue-method.
The Single Responsibility Principle also applies to methods. Is this design chosen
just to serve the testing, or is it the result of a carefully designed abstraction in a
presented context?

90

9.2. Model Reasonable Behaviour

public class Die
{
private final int MAX = 6; // maximum face value
private int faceValue; // current value showing on the die

public Die()
{
faceValue = 1;

}
public int roll()
{
faceValue = (int)(Math.random() * MAX) + 1;
return faceValue;

}
public void setFaceValue (int value)
{
faceValue = value;

}
public int getFaceValue()
{

return faceValue;
}
public String toString(){ ... }

}

Listing 9.7: The Die-class (Lewis and Loftus, 2007).

A slight adjustment of this example makes the behaviour more consistent and
less confusing to a novice, see Listing 9.8.

public class Die
{
...
public Die()
{
faceValue = roll();

}
public void roll()
{
faceValue = (int)(Math.random() * MAX) + 1;

}
public int getFaceValue(){ ... }
public String toString(){ ... }

}

Listing 9.8: The improved Die-class.

It is furthermore important to show that modelling objects in the problem
domain, does not necessarily mean to copy the behaviour and characteristics of

91

Chapter 9. He[d]uristics in Practice

the domain object. In a library system it would for example be reasonable for the
borrower-object to be responsible for knowing any outstanding fees, despite the
fact that this would never be the case in real life. We do not model the real world,
we model a system solving a problem originated in the real world. Therefore we
have to make an effort to aid novices in separating the model from the modelled.

9.3 Emphasize Client View
In small-scale examples, it is common with simple classes with only set- and get-
methods handling the attributes of a class, see Listing 9.9.

public class Card
{
private int rank; // 2 -- 14
private char suit; // ’D’, ’H’, ’S’, ’C’

public int getRank()
{

return rank;
}
public void setRank(int r)
{

rank = r;
}
public char getSuit()
{

return suit;
{
public void setSuit(char s)
{
suit = s;

}
} //Card

Listing 9.9: Public access methods for attributes (Wick et al., 2004).

In this example it makes no sense declaring the attributes private, and it makes
object orientation seemingly more complicated to use just because of the demand to
keep attributes private. Wick et al. (2004) state that abstraction and encapsulation
are the main principles of sound design, but this must not be contradicted by
the example. Object thinking (West, 2004) helps us to think of objects from the
problem domain and makes the argument for information hiding strong. Martin
(2003) states that a model must be validated in connection to its clients. From an
educational point of view it is therefore important to present a context for the small-
scale examples. This has a pedagogical value in the sense that it will be possible
to contrast different solutions with respect to their context. It will also show the
need for comparing several solutions when deciding on an appropriate one for the
problem at hand. This will illustrate that there is not a definite truth about ‘right’
and ‘wrong’. It becomes important to emphasize the difference between attributes

92

9.4. Favour Composition over Inheritance

and properties of a class, as well as giving a lot of attention to the interface/protocol
of a class. Meyers (2004) concludes that the most important general interface design
guideline is: “make interfaces easy to use correctly and hard to use incorrectly”.

So what behaviour would be appropriate for the Card class? It is questionable
if Card-objects ever should change state, this is not a reasonable behaviour from
a clients point of view. There are 52 cards in a deck, and they never change suit or
value. The interesting services is to be able to ask the object if it is of the same suit
as another Card-object or whether it is higher/lower in value than another Card-
object, and so on. If the context is to implement a simple poker card abstraction to
be used in a computer administrated game, one suggestion could be Listing 9.10.

public class Card
{
private int rank; // 2 -- 14
private char suit; // D, H, S, C
...
public Card(int r, char s)
{
//Validating rank (r) and suit (s) to construct
//valid cards only!
...
this.rank = r;
this.suit = s;

}
public boolean isDiamond()
{
return suit == D;

}
public boolean isHigherThan(Card c)
{
return this.rank > c.rank;

}
...

}// Card

Listing 9.10: Examples of public access methods for responsibilities.

9.4 Favour Composition over Inheritance

Inheritance is is one of the most significant features of object orientation (Skrien,
2009). Properly used it increases the reusability of classes and minimizes the du-
plication of code. However, deriving a new class, from a class with only similar
protocol is not good practice since it can cause unwanted consequences. This can
make part of the inherited protocol inappropriate for the derived class. Imple-
menting a stack through derivation from Vector is an example of this, see Listing
9.11.

93

Chapter 9. He[d]uristics in Practice

public class Stack extends Vector
{
public Stack() {}
public Object push(Object item)
{
addElement(item);
return item;

}
...

}

Listing 9.11: Stack implemented with Inheritance (Kegel and Steimann,
2008).

The problem with this design is that there are a number of methods inherited
from Vector (and its superclass AbstractList) that do not suit the behaviour
of a stack, e.g. insertElementAt and elementAt. This means that Stack
has a protocol that does not match the definition of a stack. This makes it pos-
sible for clients to access and manipulate Stack-objects in inappropriate ways;
breaking the stack abstraction. By using composition and delegation instead of
inheritance, the protocol of Stack specifies only legal requests and forwards them
to the appropriate responsibilities of Vector, see Listing 9.12.

public class Stack
{
protected Vector delegatee;
public Stack()
{
delegatee = new Vector();

}
public Object push(Object item)
{
delegatee.addElement(item);
return item;

}
public int size()
{
return delegatee.size();

}
...

}

Listing 9.12: Stack implemented with Delegation (Kegel and Steimann,
2008).

There are a number of problem domains commonly used in introductory pro-
gramming when introducing inheritance, like geometrical figures, genealogical re-
lationships, and bank accounts. In the example of Figure 9.3, a class Account
is responsible for managing the basics of a bank account: balance, owner and

94

9.4. Favour Composition over Inheritance

creation date. To accommodate private customers a class SavingsAccount is
derived from Account . It is-an Account, but also has the additional respon-
sibilities connected to interest rates. When a new type of account is needed it is
simple to derive a new class from Account.

Figure 9.3: Hierarchy of accounts.

But in the small-scale context, this design might be too simple to be justifiable.
If the class SavingsAccount adds restrictions to the behaviour of Account,
e.g. restrictions on withdrawals, then this will be inconsistent with the expected
behaviour of Account and The Liskov Substitution Principle is violated. In this
case delegation is a better design. Using composition for this example, it would be
a good idea to rename the Account class, calling it AccountInfo instead. Often
naming is too hasty and cause us to think about a design in a limited and less
fruitful way. The way we talk about objects is critical and we have to be particular
about the vocabulary used (West, 2004) .

With the delegated design, an account of any kind can keep track of its details
through the collaboration with an object designed for a limited responsibility, see
Figure 9.4.

Figure 9.4: Composition of accounts.

So why would composition be preferable to inheritance? One reason is, that
deriving from existing classes, not specifically designed for the intended hierarchy,
is that parts of the inherited protocol might be inappropriate for the abstraction.

The general recommendation is to use delegation when the features of an exist-
ing class is wanted, but its protocol inappropriate for the new class. Then a client
of the new class is offered services appropriate for the abstraction (Eckel, 2002).

95

Chapter 9. He[d]uristics in Practice

Another benefit from promoting delegation, is that composition is a strong
argument for objects as autonomous and collaborating entities, and should be used
to reinforce this object oriented characteristic.

How can we decide whether or not a small-scale example is suitable to illustrate
inheritance? One recommendation is to think about the context/problem domain.
Consider if is it going to be useful to upcast from the derived class to the base class?
That is, is the particular example going to show the strength of late binding, or is
about code sharing. Reuse of code is not by itself sufficient for inheritance.

For the small-scale situation it seem like a good recommendation to postpone
the introduction of inheritance until it is possible to give an appropriate example.

96

9.5. Use Exemplary Objects Only

9.5 Use Exemplary Objects Only

There are a number of details concerning small-scale examples to be aware of to
prevent misconceptions or “bad” norm-building.

One common difficulty initially, is the confusion of class and object. To aid in
differentiating between class and object, is to make sure that it is obvious that there
are many objects instatiated from a single class. However, it can be difficult to
promote the idea of many objects, because of the limited set of language constructs
available. This can be done in different ways, e.g. using some kind of collection,
depending on the order of concept introduction, but the important thing is to avoid
single instances.

Even more problematic is the use of one-of-a-kind classes. Many textbooks
contains examples that consist of single-object situations. One such example is the
RobberLanguageCryptographer, see Listing 9.13.

public class RobberLanguageCryptographer
{
public RobberLanguageCryptographer()
{
}
private boolean isConsonant(char c) { ... }
public String encrypt(String s)
{
StringBuffer result = new StringBuffer();
for (int i = 0; i<s.length(); i++)
{
char c = s.charAt(i);
result.append(c);
if (isConsonant(c))
{
result.append(’o’);
result.append(c);

}
}
return result.toString();

}
public String decrypt(String s) { ... }
...

}

Listing 9.13: One-of-a-kind cryptographer.

In this example2 the reason for more than one object might be difficult to under-
stand, unless it is explicitly shown that different objects of the class produce differ-
ent results given the same input. One reason could be that the encoding-algorithm
can vary among the the objects, depending on some information submitted to the
constructor. The constructor of this example is empty, and there are no attributes.

2Taken from a university website, given as solution for one of the assignments in a final CS1-
exam.

97

Chapter 9. He[d]uristics in Practice

This is troublesome for novices, and it is not a good role-model for the definition
of objects. This class defines no state, only behaviour, which is non-exemplary
for objects (Booch, 1994). In this case it is no more than two methods (with a
small helper, isConsonant) that easily could be the responsibility of some other
object. A small change can make this example more suitable as a role-model for
object orientation. One reason for more than one object of this kind is to let the
object take responsibility for knowing its substitution-character, as in Listing 9.14.

public class RobberLanguageCryptographer
{
private char subst;
public RobberLanguageCryptographer (char c)
{
if (!isConsonant(c))
subst = c;

else
subst = ’o’;

}
private boolean isConsonant(char c) { ... }
public String encrypt(String s) { ... }
public String decrypt(String s) { ... }
...

}

Listing 9.14: Class instantiating several cryptographer-objects.

A similar one-of-a-kind issue can be raised with class Random (which is fre-
quently usen in introductory textbooks) is shown i Listing 9.15.

Random generator = new Random();
int i;

i = generator.nextInt();
System.out.println("A random int: " + i);
i = generator.nextInt(10);
System.out.println("An int in [0,9] : " + i);

Listing 9.15: Example of a class with no need for more than one object.

What is the need for the class Random? Is it ever necessary to have more than
one object of this kind? There are reasons for having more than one random.number
generator, e.g. to avoid having the same sequence of random numbers by using
different seeds, but it is seldom productive to discuss this when an example is in
need of a random number. Then the example is better replaced until the discussion
on the generation of random numbers can be pursued. Another option is to use
the static method random in Math, see Listing 9.16.

98

9.5. Use Exemplary Objects Only

int i;
double d;

d = Math.random();
i = (int) (d*10);
System.out.println("A random double: " + d);
System.out.println("An int in[0,9]: " + i);

Listing 9.16: Avoiding one-of-a-kind objects introduces another problem.

This is probably a more adequate example, but uses a non-exemplary object
oriented concept – a static method. This is confusing for novices since Math is
the name of the class and no object is instantiated. In Java 1.5 this is however in
some sense disguised by allowing import of the class and thereby making the call
to static methods seem as the method is a part of general services built into the
language. However, this might add to the confusion of a novice, since it is common
to have difficulties separating what is actually part of the language and what is
part of external libraries.

Another example of non-exemplary objects is when illustrating the instantiation
and use of objects within the class itself. To save space (examples should preferably
be short in terms of lines-of code!), a main method is added to the class, an object is
instantiated in main and the class’ own methods can be called, often to demosntrate
how to use objects of the class. Listing 9.17 shows a common example of this.

public class Person
{
private ...;
...
public Person(...) { ... }//constructor
public void someMethod(...) { ... }

public static void main(string[] args)
{
Person p = new Person(...);
p.someMethod(...);

}
} //class Person

Listing 9.17: Attempt to avoid extra classes.

In this example, an unnecessary strain is put on a novice. It is artificial to
instantiate an object inside a static method of the class. How can something that
does not exist create itself? Still one might argue for using the main-method. One
reason for insecurity among novices is the lack of control. A common question is
–How is this run? or –Where is the program? Dealing with objects, there is no
simple answer to these questions. One of the difficulties with object oriented is the
delocalised nature of activities. The flow of control is not obvious, and working
with complete applications is one way of gaining a sense of control for the novice
programmer. “This is a complete program – and I wrote it myself” is a comforting

99

Chapter 9. He[d]uristics in Practice

feeling that should not be underestimated. This can be achieved by adding a class
with the single purpose of instantiating the objects discussed. Isolate main to
keep the boundaries of objects clear, see Listing 9.18.

public class Test
{
public static void main(string[] args)
{
Person mother = new Person(...);
mother.someMethod(...);
Person father = new Person(...);
father.someMethod(...);

}
} //class Test

Listing 9.18: Keep clients in separate classes.

This example still has to be put into context, because the class Test is not
a real client of objects of class Person, merely substituting a client temporarily
for testing purposes. The problematic use of main can be avoided by using an
IDE that supports working with objects in isolation, i.e. instantiating objects and
invocating methos without explicit testprograms, e.g. BlueJ (BlueJ).

9.6 Make Inheritance Reflect Structural Relation-
ships

It is challenging to find small-scale examples that illustrates inheritance, because
of the many demands on inheritance (Chapter 4). A common small-scale example
for inheritance is the design of the geometrical shapes rectangles and squares. The
rectangle is defined as shown in Listing 9.19

public class Rectangle
{
private double height, width;
public void setHeight(double h)
{
height=h;

}
public void setWidth(double w)
{
width=w;

}
}//Rectangle

Listing 9.19: A Rectangle class.

From a mathematical point of view it might be possible to say that a square is
specialised form of a rectangle (a rectangle with height = length). This could be
regarded a reasonable specialisation hierarchy, demanding only a small adjustment

100

9.6. Make Inheritance Reflect Structural Relationships

in Square to make sure that its height and width are the same, see Figure 9.5 and
Listing 4.2.

Rectangle

- length
- width
- xPos
- yPos

Rectangle

+ setHeight(h)
+ setWidth(w)
+ getHeight()
+ getWidth()
…

Square

Rectangle

Square

Figure 9.5: Square seen as a more specialised version of a rectangle.

Looking more closely at this example, it is not unreasonable to think that the
designer of the method setWidth, assumed that setting the width of a rectangle
leaves the height unaltered. This is not true for the behaviour of a Square, and
the design is violating The Liskov Substitution Principle as discussed in Section
4.4. This principle states that descendants must not violate assumed characteris-
tics of the base class and that anything expected from the base class must be true
for the derived class. Adhering to the design advice to “only derive a class from an
abstract class” would prevent some of the most common problems concerning both
exemplifying and understanding inheritance. In our opinion, examples of inheri-
tance, should demonstrate that the base class is an unfinished description shared by
structurally related things. In (Martin, 2003) this is formulated as Derived methods
should expect no more and provide no less than its inherited method. Even though
geometrically a square might be regarded as a rectangle, it is not true when talking
about objects. The behaviour of the derived class, Square, is not consistent with
the expected behaviour of a Rectangle object. As Martin (2003) states it: Be-
haviorally, a Square is not a Rectangle! And it is behavior that software is really all
about. Booch (1994) formulates a description of inheritance (class structure) based
on the definition of hierarchy: Hierarchy is a ranking or ordering of abstractions.
Furthermore, it might be argued that mathematically squares and rectangles do
not change size, they are “constants”, and therefore no really good examples. An
extensive discussion of this particular example is given in (Skrien, 2009).

If there is no structural relationship between Square and Rectangle, the
recommendation is to use compomposition instead. Defining a class QuadFig
that has the responsibility to know its two sides, and to able to evaluate its area
and to answer whether it is a square or not, makes this example more general, and
the common characteristics of the two shapes are in focus (Listing 9.20).

101

Chapter 9. He[d]uristics in Practice

public class QuadFig
{
private double side1, side2;

public QuadFig(double s1, double s2)
{
side1 = s1;
side2 = s2;

}
public double getSide1(){ ... }
public double getSide2(){ ... }

public double getArea()
{
return side1*side2;

}
public boolean isSquare(){ ... }

}

Listing 9.20: Squares and rectangles are all quadrangles.

This example is no longer illustrating inheritance, but it might be used in
connection with the design in Figure9.5 and Listing ?? to discuss what inheritance
is and how and when it should be used (and not).

Another issue is that inheritance should separate behaviour (Riel, 1996), which
can be difficult within the small-scale context. If the behaviour of a class depends
on its state, and the state is tested explicitly to decide on the bahaviour, this can be
a proper situation to use inheritance. The class Ball in Figure 9.6 has a behaviour
that depends on the value of its attribute colour. The context could be that these
balls are part of some kind of game, where blue balls explode, green balls jump and
red balls are eaten.

family1:
Family

mother

father

children

family1:
Family

mother

father

children

:Mother

:Father

:Child

family2:
Family

mother

father

children

:Person

:Person

:Person

Ball

color

Ball

color

RedBall

Ball

BlueBall GreenBall

Figure 9.6: Major difference in behaviour depending on the value of an attribute
(Riel, 1996).

In this context, Ball can have the responsibility of knowing its colour and
performing an action, act, and this behaviour is then defined by the derived classes
(Figure 9.7).

Declaring the class Ball and the method act() abstract, forces the novice to
realise the need to supply implementations for the behaviour in the derived classes.
A slighly larger example is given in Figure 9.8. In this example a “Database of
Multimedia Entertainment, DoME” is being designed.

In this design, the attributes and behaviour declared in the base-class Item,
is general and concerns the entries in the database. The derived classes are suffi-

102

9.6. Make Inheritance Reflect Structural Relationships

Ball

color

RedBall BlueBall GreenBall

act()

act() act() act()

Figure 9.7: Inheritance used to separate behaviour among siblings. Slightly
adapted from(Riel, 1996).

Item

title
playingTime
gotIt
comment

*

CD

artist
numberOfTracks

*

DVD

director

*

Game

numberOfPlayers

*

VideoGame

platform

*

BoardGame

…

*

Figure 9.8: The DoME hierarchy. (Barnes and Kölling, 2009)

ciently different, compared to each other, to justify the added responsibilities and
behaviour.

The Dependency-Inversion Principle is critical to inheritance, and some prac-
tical advice for upholding it is given in (Martin, 2003):

• No variable should hold a reference to a concrete class.

• No class should derive from a concrete class.

• No method should override an implemented method of its base class.

Objects need to be instantiated eventually, but these advice will support the educa-
tor designing small-scale examples on inheritance, and the novices’ understanding
and use of inheritance.

103

Chapter 9. He[d]uristics in Practice

9.7 Summary
The proposed He[d]uristics and some of their implications are summarized below.

1. Model Reasonable Abstractions
Plausible both from a software perspective and also from a novice perspective.
Do not make main into the entire program.
Real objects (with identity, state and behaviour), implies, e.g., no stateless
or behaviourless classes (containers).
Small is beautiful (in terms of classes, methods and parameters) implies, e.g.,
no God classes.
Model classes not roles.

2. Model Reasonable Behaviour
Separate the model from the modelled.
Avoid setter/getters, particularly for attributes.
No snippets.
No printing for tracing.

3. Emphasize Client View
Promote thinking in outside expectations.
Separate the internal representation from the external functionality.

4. Favour Composition over Inheritance
How to know which to choose, to avoid the overuse of inheritance.
Emphasize the idea of collaborating objects.
Delay the introduction of inheritance.

5. Use Exemplary Objects Only
Always promote the idea of many objects.
No one-of–a-kind classes.
Be explicit, do not use static, anonymous classes, and keep the Law of Deme-
ter in mind.
Separate main from abstractions.

6. Make Inheritance Reflect Structural Relationships
Important to distinguish between external and internal is-a relationships.
Behaviour must guide the design of hierarchies.
Inheritance should separate behaviour.

Some of these characteristics/qualities could be placed under more than one head-
ing.

The use of real objects (with identity, state and behaviour), is on one hand
a question of abstraction, and on the other the promotion of exemplary objects.
In this work Use Exemplary Objects Only is more intended to focus on the actual
presentation of small-scale examples while Model Reasonable Abstractions is aiming
at a proper mindset for object oriented design.

104

Chapter 10

Validation

10.1 Introduction
The aim of this work is to propose a number of He[d]uristics that will aid in up-
holding object oriented characteristics when designing small-scale examples. They
should be few enough to keep in mind without effort, but comprehensive enough
to cover basic object oriented characteristics.

In the following sections we evaluate the He[d]uristics presented in Chapter 8
and 9against the advice and concepts discussed in Chapters 2–7.

In Section 10.2, we discuss the collections of advice1 surveyed (Chapter 4–6)
and how the proposed He[d]uristics upholds them.

In Section 10.3, we define a set of object oriented concepts collected from the
findings of Chapters 2–3, and then we evaluate the He[d]uristics with respect to
this set.

Finally in Section 10.4, we investigate whether or not the He[d]uristics can
contribute to the surveyed cognitive difficulties discussed in Sections 2.4–2.6.

10.2 He[d]uristics vs. Advice
The collections of advice from in Chapters 4 - 6 are on different levels of detail.
In many cases they overlap and address similar features of object orientation. A
classification the collections of advice in terms of level of detail is shown in Figure
10.1.

1The word “advice” is used to represent any of the principles, patterns, rules, heuristics and
guidelines presented in chapters 4-6.

105

Chapter 10. Validation

Figure 10.1: Classification of advice

Patterns and Principles are general advice on how to design reusable and main-
tainable object oriented units. Rules, AntiPatterns and Code Smells are all de-
signed for existing code and attempt to identify problematic situations and con-
structions, and make suggestions how to deal with them. The different Heuristics
(Riel, Gibbon, Johnson and Foote, and McConnel) are detailed implementational
advice. The number of advice in a single collection rises, as the level of detail
increases.

Typical examples of advice for each of the levels of detail is presented below.

Conceptual: The single responsibility principle (Martin, 2003), see Section 4.2.
Each responsibility should be a separate class. A class should have one, and
only one, reason to change. This means keeping the class small and focused.
The interface should be simple and clearly state the services provided by the
class.

Architectural design: A class collaborates with many others (Garzás and Piat-
tini, 2007b), see Section 5.7 and Table D.3. Extensive collaboration may be
an indication of too many responsibilities.

Class design: Large class smell (Fowler et al., 1999), see Section 6.6. A large class

106

10.2. He[d]uristics vs. Advice

is an indication of a class trying to do too much, and possible indications of
this are many attributes and/or methods.

Code design: Limit the number of attributes per class (Gibbon and Higgins,
1996), see Section 5.4 . Some advice in this category is even more detailed
and explicitly states the number of parameters, lines of code, methods in a
class etc.

The categories are not sharp, e.g. Class design has more to do with implementa-
tion/code, while Architectural design is more on design issues.

It is crucial to uphold as many of the general principles and heuristics as pos-
sible, since teaching “bad” strategies that have to be unlearned later, must be con-
sidered to be a less pedagogical path. The problem is to avoid burdening novices
with too many explicitly stated general rules.

In general, all advice in Chapters 4 - 6 can be captured by the high-level con-
ceptual principles of Chapter 4. Apart from the principles of Chapter 4, one of
the two main principles of patterns from Section 6.2 have been included in this
evaluation, Favour object composition over class inheritance. The other basic idea
of patterns, Program to an interface, not an implementation is similar to The De-
pendency Inversion Principle (DIP).

• SRP – The Single Responsibility Principle

• OCP – The Open Closed Principle

• LSP – The Liskov Substitution Principle

• DIP – The Dependency Inversion Principle

• ISP – The Interface Segregation Principle

• LoD – Law of Demeter
• Favour object composition over class inheritance.

The granularity of Principles and He[d]uristics is different, and the evaluation is
therefore an interpretation of whether a suggested He[d]uristics supports a partic-
ular principle or not.

107

Chapter 10. Validation

The results of the evaluation in Table 10.1 shows that all of the principles are
covered to some extent.

Table 10.1: Relationship between Principles and He[d]uristics.

TABLE 15/2

PRINCIPLES VS. HE[D]URISTICS

 He[d]uristic

Principle

1
.

M
o

d
e
l

R
e
a

so
n

a
b

le
 A

b
st

r
a

c
ti

o
n

s

2
.

M
o

d
e
l

R
e
a

so
n

a
b

le
 B

e
h

a
v
io

u
r

3
.
E

m
p

h
a

si
z
e
 C

li
e
n

t
V

ie
w

4
.
F

a
v

o
u

r
 C

o
m

p
o

si
ti

o
n

 o
v

e
r

In

h
e
r
it

a
n

c
e

5
.
U

se
 E

x
e
m

p
la

r
y

 O
b

je
c
ts

 o
n

ly

6
.

M
a

k
e
 I

n
h

e
ri

ta
n

c
e
 R

e
fl

e
c
t

S
tr

u
c
tu

r
a

l
R

e
la

ti
o

n
sh

ip
s

SRP – The Single Responsibility Principle X X X X

OCP – The Open Closed Principle X

LSP – The Liskov Substitution Principle X X

DIP – The Dependency Inversion Principle X

 X

ISP – The Interface Segregation Principle X X X

LoD – Law of Demeter X

Favour object composition over class inheritance X X

The He[d]uristics are only slightly addressing the principles OCP and LoD. This
could be expected, since the He[d]uristics are focusing on educational strategies,
and do not specifically address these kinds of principles. The Open Closed Principle
has to be enforced primarily through proper use of inheritance. The Law of Demeter
can be upheld by careful application of the He[d]uristic Use Exemplary Objects
Only.

10.3 He[d]uristics vs. Concepts
There is no commonly agreed upon set of concepts characterising object orientation
and there is no agreed upon vocabulary. Sometimes different words are used to
represent the same conceptual idea. Looking for object oriented concepts in all
kinds of advice (Chapters 4 - 6) and related work (Chapters 2 and 3), we selected the
concepts shown in Figure 10.2 as the minimal set of most frequent and emphasized
concepts in the literature.

There are further concepts frequently mentioned in the literature that have been
excluded from this selection.

The concepts Method and Message, is covered by the concept Communication.
We have made this choice because they are closely related and the words are used
to indicate communication, even though message is on a more conceptual level
than method. In the small-scale context it is initially less crucial to make this

108

10.3. He[d]uristics vs. Concepts

Figure 10.2: Minimal set of object oriented concepts

distinction.
Coupling and Cohesion are to a large extent dependent on both the abstraction

and on the design of the class and are therefore not explicitly included in the set
of concepts, since we consider them covered by the advice presented in Section 8.2.

Reuse is made possible through a number of practices in object orientation;
e.g. carefully designed abstractions, collaboration among classes, composition and
proper use of inheritance.

Table 10.2 summarizes how the essential object oriented concepts are covered
by our He[d]uristics.

Table 10.2: Relationship between Concepts and He[d]uristics

TABLE 15/2

CONCEPTS VS. HE[D]URISTICS

 He[d]uristic

Concept 1
.

M
o

d
e
l

R
e
a

so
n

a
b

le
 A

b
st

r
a

c
ti

o
n

s

2
.

M
o

d
e
l

R
e
a

so
n

a
b

le
 B

e
h

a
v
io

u
r

3
.
E

m
p

h
a

si
z
e
 C

li
e
n

t
V

ie
w

4
.
F

a
v

o
u

r
 C

o
m

p
o

si
ti

o
n

 o
v

e
r

In
h

e
r
it

a
n

c
e

5
.
U

se
 E

x
e
m

p
la

r
y

 O
b

je
c
ts

 o
n

ly

6
.

M
a

k
e
 I

n
h

e
r
it

a
n

c
e
 R

e
fl

e
c
t

S
tr

u
c
tu

r
a

l
R

e
la

ti
o

n
sh

ip
s

Responsibility X X X X

Abstraction X X X X

Encapsulation X X X X X

Information hiding X

X

Inheritance X X

Polymorphism X

Protocol/interface X X X

 X

Communication X X X X X X

Class X X X X

Object X X X X X X

109

Chapter 10. Validation

In general, the concepts of Figure 10.2 are well covered by the He[d]uristics.
Polymorphism is the concept least explicitly focused. The only He[d]uristic

that applies explicitly is Make Inheritance Reflect Structural Relationships. On the
other hand is polymorphism covered by several of the principles in Section 10.2,
e.g. The Liskov Substitution Principle and The Dependency Inversion Principle.

10.4 Addressing Misconceptions and Difficulties
A number of studies and attempts to classify different problems and common mis-
understandings among object oriented novices have been reviewed in Section 2.4 -
2.6. They are important indicators of conceptual difficulties. To assist educators
in upholding object oriented qualities in small-scale examples, it is important to
see whether or not common conceptual difficulties can be addressed using the pro-
posed He[d]uristics. Therefore, the proposed He[d]uristics are evaluated against a
number of common difficulties.

The learning difficulties investigated in relation to the proposed He[d]uristics,
are listed below.

Misconceptions (Section 2.5)

1. Avoiding object/variable conflation.
2. Objects are not simple records
3. Work in methods is not all done by assignment
4. Object/class conflation
5. Identity/attribute confusion.
6. Conflation of textual representation of objects and references

Difficulties (Section 2.5)

1. Object state
2. Method invocation
3. Parameters
4. Return values
5. Input instructions
6. Constructors
7. The overall picture of execution

Harmful Examples (Section 2.6)

1. Examples that are too abstract
2. Examples that are too complex
3. Concepts applied inconsistently
4. Examples undermining the concept introduced

110

10.4. Addressing Misconceptions and Difficulties

Table 10.3: Coverage of Misconceptions in He[d]uristics

TABLE 16/2

MISCONCEPTIONS VS. HE[D]URISTICS

 He[d]uristic

Misconceptions, Difficulties and

Harmful examples 1
.

M
o

d
e
l

R
e
a

so
n

a
b

le
 A

b
st

r
a

c
ti

o
n

s

2
.

M
o

d
e
l

R
e
a

so
n

a
b

le
 B

e
h

a
v
io

u
r

3
.
E

m
p

h
a

si
z
e
 C

li
e
n

t
V

ie
w

4
.
F

a
v

o
u

r
 C

o
m

p
o

si
ti

o
n

 o
v

e
r

In

h
e
r
it

a
n

c
e

5
.
U

se
 E

x
e
m

p
la

r
y

 O
b

je
c
ts

 o
n

ly

6
.

M
a

k
e
 I

n
h

e
r
it

a
n

c
e
 R

e
fl

e
c
t

S
tr

u
c
tu

r
a

l
R

e
la

ti
o

n
sh

ip
s

M - Avoiding object/variable conflation. X

M - Objects are not simple records X X X X X X

M - Work in methods is not all done by
assignment X X X X

M - Object/class conflation X X X X X

M - Identity/attribute confusion. X X

M - Conflation of textual representation of
objects and references

 X

Diff 1 – Object state X X X

Diff 2 – Method invocation X X

Diff 3 – Parameters

Diff 4 – Return values X X

Diff 5 – Input instructions

Diff 6 – Constructors X

Diff 7 – The overall picture of execution

Harmful - Examples that are too abstract X X

Harmful - Examples that are too complex X

Harmful - Concepts applied inconsistently

Harmful - Examples undermining the
concept introduced X X X X X

The investigation of to what extent the proposed He[d]uristics can be of assistance
in avoiding common difficulties is presented in Table 10.3.

In general, the proposed He[d]uristics focus on object oriented aspects of ex-
amples, even if Favour Composition over Inheritance and Use Exemplary Objects
Only are emphasizing the need to be particular about details to avoid being coun-
terproductive.

Some of these difficulties is not covered by the proposed He[d]uristics.
Diff 3-Parameters and Diff 5-Input instructions are general programing diffi-

culties and does not concern object orientation in particular.
Diff 7-The overall picture of execution can not be resolved by better examples,

111

Chapter 10. Validation

it requires a conceptual model of execution.
Harmful-Concepts applied inconsistently general problem, not particular for ob-

ject orientation, but our He[d]uristics help to provide a more consistent picture of
object orientation.

Slightly different problems are addressed by Principles for teaching novices
(Section 2.4) and Student constructed rules (Section 2.5).

Principles for teaching novices (Section 2.4)

1. Reveal the programming process, in order to ease and promote the learn-
ing of programming.

2. Teach skills, and not just knowledge, in order to promote the learning
of programming.

3. Present concepts at the appropriate level of abstraction.
4. Order material so as to minimize the introduction of terms or topics

without explanation
5. Use unambiguous, clear, and precise terminology

Student constructed rules (Section 2.5)

1. The Java compiler can distinguish between same-named methods only
if they have differences in their parameter lists.

2. The only purpose of invoking a constructor is to initialize the instance
variables of an object

3. Numbers or numeric constants are the only appropriate actual parame-
ters corresponding to integer formal parameters.

4. The dot operator can only be applied to methods.

The Novice-teaching principles are general advice for instructional design rather
than addressing specific object oriented qualities of the examples, and they have
no correspondence in the proposed He[d]uristics.

The Student Constructed Rules illustrate the need to anticipate and discuss
common misunderstandings/misconceptions when introducing a concept or the se-
mantical implications of syntactical element. These problems are not addressed by
the proposed He[d]uristics.

112

Chapter 11

Conclusions and Future Work

There seems to be a trade-off between object oriented principles and ‘good’ exam-
ples when it comes to the specific needs of an educational situation. Small examples
are burdened by large overhead in terms of justifying exemplary objects and their
behaviour. Size is definitely important! If novices are to comprehend an example
easily, it must be restricted in size, both in terms of lines of code, but also in terms
of complexity. Trying to apply established object oriented principles to examples
and exercises in small-scale examples might seem difficult at first. There will be
causes for violation of even basic principles. However, having them in mind, in-
terpreted in the educational situation, should make us think twice and hopefully
avoid some of the pitfalls.

The level of abstraction in object orientation adds difficulty to the effort of both
the mediator of knowledge and the novice, compared to learning problem solving
and programming through the imperative paradigm.

The number of He[d]uristics has been difficult to decide upon. Too few would
probably mean that they would be on such a general level that they would be hard
to use, and to many would also be impractical.

It has been astonishing to realise how immature object orientation is, in terms
of agreed upon terminology and definitions of characteristics, even within the ed-
ucational community.

Often small-scale examples are given too little attention, sometimes as a result
of too superficial understanding of how details may contradict the ideas being
conveyed and perhaps sometimes out of ignorance.

To evaluate and further develop the suggested He[d]uristics we are planning
some empirical studies.

• Surveys and interviews with educators, both at universities and in upper
secondary schools, to investigate their descriptions of what they consider
most critical in object orientation and how they teach it.

• Testing the proposed He[d]uristics on groups of educators to get feedback on
usability.

Based on these studies we revise the proposed He[d]uristics to reflect the experiences
resulting from the analysis of the the empirical material.

Other interesting research questions:

113

Chapter 11. Conclusions and Future Work

• Is it possible to formulate metrics for small-scale situations? How can these
metrics be evaluated? If there is such a metric it must be based on qualities of
both object oriented principles and educational values. One way of collecting
more educational background material is to find out how lecturers value the
difficulties of object orientation and how they chose to address them. This
would help determine common problems and common choices.

• How would the suggested He[d]uristics influence the example evaluating tool
discussed in Börstler et al. (2008)?

114

Bibliography

Example of McCabes Cyclomatic Complexity. http://www.vidbob.com/
qa-info/control-flow-graphing.html, Webpage last visited 2008-11-
19.

AAAS (1989). Benchmarks for science literacy, a tool for curriculum reform. http:
//www.project2061.org/publications/bsl/default.htm, Webpage
last visited 2007-12-07.

ACM (2001). Computing curricula 2001. http://www.acm.org/education/
curric_vols/cc2001.pdf Webpage last visited: 2008-12-15.

ACM (2008a). Computing curricula update 2008. http://www.acm.org/
education/curricula/ComputerScienceCurriculumUpdate2008.
pdf. Last visited: 2008-12-15.

ACM (2008b). Curricula recommendations. http://www.acm.org/
education/curricula-recommendations Last visited: 2008-12-15.

ACM (2008c). Java Task Force. http://www-cs-faculty.stanford.edu/
~eroberts//jtf/, Last visited: 2008-12-15.

Armstrong, D. (2006). The quarks of object-oriented development. Communica-
tions of the ACM, 49(2):123–128.

Barnes, D. J. and Kölling, M. (2009). Objects First with Java: A Practical In-
troduction Using BlueJ: International Edition, 4/E. Pearson Higher Education,
4th edition.

Bashar Molla, M. K. (2005). An overview of object oriented design heuristics.
Master’s thesis, Department of Computer Science, Umeå University, Sweden.

Beck, K. and Cunningham, W. (1989). A laboratory for teaching object oriented
thinking. In Conference proceedings on Object-oriented programming systems,
languages and applications, OOPSLA’89, pages 1–6, New Orleans, Louisiana,
United States. ACM.

Bellin, D. and Simone, S. S. (1997). The CRC Card Book. Addison-Wesley.

Bennedsen, J. and Caspersen, M. E. (2004). Programming in context – a model-
first approach to cs1. In Proceedings of the 35th SIGCSE technical symposium on
Computer science education,, pages 226–230, St. Louis, Missouri, USA. ACM.

115

http://www-cs-faculty.stanford.edu/~eroberts//jtf/
http://www-cs-faculty.stanford.edu/~eroberts//jtf/
http://www.vidbob.com/qa-info/control-flow-graphing.html
http://www.vidbob.com/qa-info/control-flow-graphing.html
http://www.project2061.org/publications/bsl/default.htm
http://www.project2061.org/publications/bsl/default.htm
http://www.acm.org/education/curric_vols/cc2001.pdf
http://www.acm.org/education/curric_vols/cc2001.pdf
http://www.acm.org/education/curricula-recommendations
http://www.acm.org/education/curricula-recommendations

Bibliography

Bennedsen, J. and Caspersen, M. E. (2006). Abstraction ability as an indicator of
success for learning object-oriented programming? SIGCSE Bull., 38(2):39–43.

Bennedsen, J. and Caspersen, M. E. (2008). Model-Driven Programming, pages
116–129. Springer-Verlag, Berlin, Heidelberg.

Bergin, J. (2007). Building graphical user interfaces with the mvc pattern.
http://csis.pace.edu/~bergin/mvc/mvcgui.html, Webpage Last vis-
ited 2009-01-02.

Biddle, R., Noble, J., and Tempero, E. (2002). Reflections on crc cards and oo
design. In Noble, J. and Potter, J., editors, Fortieth International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS Pacific 2002),
volume 10, pages 201–205, Sydney, Australia. ACS.

Bloch, J. (2001). Effective Java Programming Language Guide. Addison-Wesley,
1st edition.

BlueJ. Bluej homepage. http://www.bluej.org, Webpage last visited 2008-
06-25.

Bock, D. (2008). The paperboy, the wallet, and the law of deme-
ter. http://www.ccs.neu.edu/research/demeter/demeter-method/
LawOfDemeter/paper-boy/demeter.pdf Webpage Last visited 2008-12-
28.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications, 2nd
edition. Addison-Wesley.

Börstler, J. (2004). Object-oriented analysis and design through scenario role-play.
Technical report, Dept. of Computing Science, Umeå University, Umeå, Sweden.

Börstler, J., Caspersen, M. E., and Nordström, M. (2007). Beauty and the beast—
toward a measurement framework for example program quality. Technical Report
UMINF-07.23, Dept. of Computing Science, Umeå University, Umeå, Sweden.

Börstler, J., Nordström, M., Kallin Westin, L., Moström, J.-E., Christensen, H. B.,
and Bennedsen, J. (2008). An evaluation instrument for object-oriented example
programs for novices. Technical Report UMINF-108.09, Dept. of Computing
Science, Umeå University, Umeå, Sweden.

Boustedt, J., Eckerdal, A., McCartney, R., Moströmk, J.-E., Ratcliffe, M., Sanders,
K., and Zander, C. (2007). Threshold concepts in computer science: do they exist
and are they useful? SIGCSE Bull., 39(1):504–508.

Brown, W. J., Malveau, R., McCormick, H., and Mowbray, T. (1998). AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis. Wiley.

Bruce, K. (2004). Controversy on how to teach cs1: A discussion on the sigcse-
members mailing list. ACM SIGCSE Bulletin, 36(4):29–35.

CACM (2002). Hello, world gets mixed greetings. Communications of the ACM,
45(2):11–15.

116

http://csis.pace.edu/~bergin/mvc/mvcgui.html
http://www.bluej.org

Bibliography

CACM (2005). For programmers, objects are not the only tools. Communications
of the ACM, 48(4):11–12.

Cant, S., Jeffery, D. R., and Henderson-Sellers, B. (1995). A conceptual model of
cognitive complexity of elements of the programming process. Information and
Software Technology, 37(7):351–362.

Carbone, A., Hurst, J., Mitchell, I., and Gunstone, D. (2001). Characteristics of
programming exercises that lead to poor learning tendencies: Part ii. In ITiCSE
’01: Proceedings of the 6th annual conference on Innovation and technology in
computer science education, pages 93–96, New York, NY, USA. ACM.

Caspersen, M. E. (2007). Educating Novices in The Skills of Programming. PhD
thesis, University of Aarhus, Denmark.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and Glaser, R. (1989).
Self-explanations: How students study and use examples in learning to solve
problems. Cognitive Science, 13(2):145 – 182.

Chidamber, S. R. and Kemerer, C. F. (1991). Towards a metrics suite for object
oriented design. In ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, Phoenix, Arizona, United States.

Christensen, H. B. (2005). Implications of perspective in teaching objects first
and object design. In Proceedings of the 10th Annual SIGCSE Conference on
innovation and Technology in Computer Science Education, pages 94–98.

Christensen, K., Fitsos, G. P., and Smith, C. P. (1981). A perspective on software
science. IBM Systems Journal, 20(4).

Clark, R., Nguyen, F., and Sweller, J. (2006). Efficiency in Learning, Evidence-
Based Guidelines to Manage Cognitive Load. Wiley & Sons.

Cooper, J. W. (2000). Java Design Patterns – A Tutorial.

DemeterW3. Demeter webpage. http://www.ccs.neu.edu/research/
demeter/demeter-method/LawOfDemeter/object-formulation.
html, Webpage last visited 2008-07-30.

Devlin, K. (2003). Why universities require computer science students to take math
: Introduction. Commun. ACM, 46(9):36–39.

Dijkstra, E. W. Definition of abstraction (personal conversation with David Par-
nas).

Dijkstra, E. W. (1983). The fruits of misunderstanding. Unpub-
lished work, transcript at http://www.acm.org/education/curricula/
ComputerScienceCurriculumUpdate2008.pdf.

Dijkstra, E. W. (1999). Computing science: Achievements and challenges. Un-
published work, transcript at http://www.cs.utexas.edu/users/EWD/
ewd12xx/EWD1284.PDF.

117

Bibliography

Dodani, M. H. (2003). Hello world! goodbye skills! Journal of Object Technology,
2(1):23–28.

Du Bois, B., Demeyer, S., Verelst, J., and Temmerman, T. M. M. (2006). Does god
class decomposition affect comprehensibility? In Kokol, P., editor, SE 2006 In-
ternational Multi-Conference on Software Engineering, pages 346–355. IASTED.

Eckel, B. (2002). Thinking in Java, 3rd ed. Prentice Hall Professional Technical
Reference.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., and
Zander, C. (2006). Putting threshold concepts into context in computer science
education. SIGCSE Bull., 38(3):103–107.

Fleury, A. E. (2000). Programming in java: Student-constructed rules. In Pro-
ceedings of the thirty-first SIGCSE technical symposium on Computer science
education, pages 197–201.

Fleury, A. E. (2001). Encapsulation and reuse as viewed by java students. In Pro-
ceedings of the thirty-second SIGCSE technical symposium on Computer Science
Education, pages 189–193.

Fowler, M. (2003). Patterns. IEEE Software, 20(2):56–57.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring:
improving the design of existing code. Addison-Wesley Longman Publishing Co.,
Inc.

Gamma, E., Helm, R., Ralph, E. J., and Vlissides, J. M. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Longman.

Garzás, J. and Piattini, M. (2007a). Improving the teaching of object-oriented
design knowledge. SIGCSE Bull., 39(4):108–112.

Garzás, J. and Piattini, M. (2007b). Object-oriented Design Knowledge: Principles,
Heuristics, and Best Practices. Idea Group Publishing, USA.

Gibbon, C. (1997). Heuristics for Object-Oriented Design. PhD thesis, University
of Nottingham.

Gibbon, C. A. Object-oriented design heuristics: a working document, internal
report (missing thesis ref.). Personal com. July 2006 with Dr. Gibbon and prof.
Higgins concerning missing Thesis ref.

Gibbon, C. A. and Higgins, C. A. (1996). Towards a learner-centred approach to
teaching object-oriented design. In Proceedings of the Third Asia-Pacific Soft-
ware Engineering Conference. IEEE Computer Society.

Gil, J. and Maman, I. (2005). Micro patterns in java code. In Proceedings of
the 20th annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, San Diego, CA, USA. ACM.

Goldman, K. J. (2004). A concepts-first introduction to computer science. In
SIGCSE ’04: Proceedings of the 35th SIGCSE technical symposium on Computer
science education, pages 432–436, New York, NY, USA. ACM.

118

Bibliography

Gries, D. (2007). Teaching java –with oo first. Key Note at PPPJ 2007. http:
//www.cs.cornell.edu/gries/programlive/OOfirst.pdf, Webpage
Last visited 2008-12-02.

Gries, D. (2008). Teaching oo to beginners. key note at oopsla 2008. http://
www.cs.cornell.edu/gries/programlive/oopsla.key, Webpage Last
visited 2008-12-02.

Grotehen, T. (2001). Objectbase Design: A Heuristic Approach. PhD thesis, Uni-
versity of Zurich, Switzerland.

Gupta, S. (2008). Designing abstraction. http://javaboutique.internet.
com/tutorials/JavaOO/OCP.html, Webpage last visited 2008-12-19.

Guzdial, M. (2008). Paving the way for computational thinking. Commun. ACM,
51(8):25–27.

Henderson-Sellers, B. and Edwards, J. (1994). BOOK TWO of object-oriented
knowledge: the working object: object-oriented software engineering: methods
and management. Prentice-Hall, Inc.

Hewson, P. W. (1981). A conceptual change approach to learning science. Inter-
national Journal of Science Education, 3(4):383–396.

Holland, S., Griffiths, R., and Woodman, M. (1997). Avoiding object misconcep-
tions. In Proceedings of the 28th Technical Symposium on Computer Science
Education, pages 131–134.

Horstmann, C. S. (2004). Object-oriented design & patterns. Wiley New York.

Hunt, A. Dont repeat yourself (-the wikiwikiweb). http://c2.com/cgi/wiki?
WikiWikiWeb/, Webpage Last visited 2009-01-11.

Hvam, L., Riis, J., and Hansen, B. L. (2003). Crc cards for product modelling.
Computers in Industry, 50(1):57–70.

JHawk Webpage. Jhawk java code metrics. http://www.virtualmachinery.
com/jhawkmetrics.htm, Webpage Last visited 2009-01-11.

Jimenez, E. (2006). Antipatterns. http://www.antipatterns.com/EdJs_
Paper/Antipatterns.html, Webpage last visited 2008-10-17.

Johnson, R. and Foote, B. (1988). Designing reusable classes. Journal of Object-
Oriented Programming, 1(2).

JPie. JPie webpage. http://jpie.cse.wustl.edu/, Webpage last visited
2008-12-12.

Karahasanovic, A., Levine, A. K., and Thomas, R. (2007). Comprehension strate-
gies and difficulties in maintaining object-oriented systems: An explorative stud.
Journal of Systems and Software, Evaluation and Assessment in Software Engi-
neering - EASE06, 80(9):1541–1559.

119

http://jpie.cse.wustl.edu/
http://www.cs.cornell.edu/gries/programlive/OOfirst.pdf
http://www.cs.cornell.edu/gries/programlive/OOfirst.pdf
http://www.cs.cornell.edu/gries/programlive/oopsla.key
http://www.cs.cornell.edu/gries/programlive/oopsla.key
http://javaboutique.internet.com/tutorials/JavaOO/OCP.html
http://javaboutique.internet.com/tutorials/JavaOO/OCP.html
http://c2.com/cgi/wiki?WikiWikiWeb/
http://c2.com/cgi/wiki?WikiWikiWeb/
http://www.virtualmachinery.com/jhawkmetrics.htm
http://www.virtualmachinery.com/jhawkmetrics.htm

Bibliography

Kay, A. (1990). User interface: A personal view. In Laurel, B. and Mountford, S.,
editors, The Art of Human-Computer Interface Design. Addison-Wesley Long-
man Publishing Co., Inc. Boston, MA, USA.

Kay, A. C. (1996). The early history of smalltalk. pages 511–598.

Kegel, H. and Steimann, F. (2008). Systematically refactoring inheritance to dele-
gation in java. In ICSE ’08: Proceedings of the 30th international conference on
Software engineering, pages 431–440, New York, NY, USA. ACM.

Kotzé, P., Renaud, K., and van Biljon, J. (2008). Don’t do this - pitfalls in using
anti-patterns in teaching human-computer interaction principles. Comput. Educ.,
50(3):979–1008.

Kramer, J. (2007). Is abstraction the key to computing? Communications of the
ACM, 50(4):36–42.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H. (2005). A study of the difficulties
of novice programmers. In Proceedings of the 10th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education, pages 14–18.

Lanza, M., Marinescu, R., and Ducasse, S. (2005). Object-Oriented Metrics in
Practice. Springer-Verlag New York, Inc. Secaucus, NJ, USA.

Lewis, J. and Loftus, W. (2007). Java Software Solutions. Addison-Wesley, 5th
edition.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hame, J., Lindholm, M., Mc-
Cartney, R., Moström, J.-E., Sanders, K., Seppälä, O., Simon, B., and Thomas,
L. (2004). A multi-national study of reading and tracing skills in novice pro-
grammers. SIGCSE Bull., 36(4):119–150.

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B., Hitch-
ner, L., Luxton-Reilly, A., Sanders, K., Schulte, C., and Whalley, J. L. (2006).
Research perspectives on the objects-early debate. SIGCSE Bull., 38(4):146–165.

Malan, K. and Halland, K. (2004). Examples that can do harm in learning pro-
gramming. In Companion to the 19th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 83–87.

Mäntylä, M. A taxonomy for "bad code smells”. http://www.soberit.hut.
fi/mmantyla/BadCodeSmellsTaxonomy.htm, Webpage last visited 2008-
10-17.

Mäntylä, M. (2003). Bad smells in software – a taxonomy and an empirical study.
Master’s thesis, Helsiniki University of Technology.

Martin, R. C. (2003). Agile Software Development, Principles, Patterns, and Prac-
tices. Addison-Wesley.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall PTR.

120

http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm
http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.htm

Bibliography

McCabe, T. (1976). A complexity measure. IEEE Transactions on Software Engi-
neering, 2(4):308–320.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S., and Thomas, L.
(2006). A cognitive approach to identifying measurable milestones for program-
ming skill acquisition. In Working group reports on ITiCSE on Innovation and
technology in computer science education, Bologna, Italy. ACM.

Mertz, A., Slough, W., and Cleave, N. V. (2008). Using the acm java libraries in
cs 1. J. Comput. Small Coll., 24(1):16–26.

Meyer, B. (1997). Object-oriented Software Construction 2/E. Prentice Hall.

Meyer, B. (2001). Software engineering in the academy. IEEE Computer, 34(5):28–
35.

Meyer, B. (2006). Testable, reusable units of cognition. IEEE Computer, 39(4):20–
24.

Meyers, S. (2004). The most important design guideline? IEEE Softw., 21(4):14–
16.

Mosley, P. (2005). A taxonomy for learning object technology. J. Comput. Small
Coll., 20(3):204–216.

Nygaard, K. (1986). Basic concepts in object oriented programming. SIGPLAN
Not., 21(10):128–132.

Opdyke, W. F. (1992). Refactoring object-oriented frameworks. Master’s thesis,
University of Illinois at Urbana-Champaign, USA.

Or-Bach, R. and Lavy, I. (2004). Cognitive activities of abstraction in object
orientation: an empirical study. SIGCSE Bull., 36(2):82–86.

Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive Load Theory and Instruc-
tional Design: Recent Developments. Educational Psychologist, 38(1):1–4.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058.

Parnas, D. L. (2007). Use the simplest model, but not too simple. Communications
of the ACM - Forum, 50(6):7–9.

Piaget, J. (1962). The stages of the intellectual development of the child. Bulletin
of the Menninger Clinic, 26(May):120–128.

Pirolli, P. L. and Anderson, J. R. (1985). The role of learning from examples in
the acquisition of recursive programming skills. Canadian journal of psychology,
39(2):240–272.

Purao, S. and Vaishnavi, V. (2003). Product metrics for object-oriented systems.
ACM Comput. Surv., 35(2):191–221.

121

Bibliography

Ragonis, N. and Ben-Ari, M. (2005). On understanding the statics and dynam-
ics of object-oriented programs. In Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, pages 226–230.

Riel, A. J. (1996). Object-Oriented Design Heuristics. Addison-Wesley.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching program-
ming: A review and discussion. Computer Science Education, 13(2):137–172.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991).
Object-oriented modeling and design. Prentice-Hall, Inc.

Skrien, D. (2009). Object-Oriented Design Using Java. McGraw Hill.

Stroustrup, B. (1995). Why c++ is not just an object-oriented programming
language. In OOPSLA ’95: Addendum to the proceedings of the 10th annual
conference on Object-oriented programming systems, languages, and applications
(Addendum), pages 1–13, New York, NY, USA. ACM.

The Free Dictionary (2008). http://www.thefreedictionary.com/
heuristic, Webpage last visited: 2008-11-21.

West, D. (2004). Object Thinking. Microsoft Press.

Westfall, R. (2001). ’hello, world’ considered harmful. Communications of the
ACM, 44(10):129–130.

White, G. and Sivitanides, M. (2005). Cognitive differences between procedural
programming and object oriented programming. Inf. Technol. and Management,
6(4):333–350.

Wick, M. R., Stevenson, D. E., and Phillips, A. T. (2004). Seven design rules
for teaching students sound encapsulation and abstraction of object properties
and member data. In Proceedings of the 35th SIGCSE technical symposium on
Computer science education, Norfolk, Virginia, USA. ACM.

Wirth, N. (2002). Computing science education: the road not taken. In ITiCSE
’02: Proceedings of the 7th annual conference on Innovation and technology in
computer science education, pages 1–3, New York, NY, USA. ACM.

122

http://www.thefreedictionary.com/heuristic
http://www.thefreedictionary.com/heuristic

List of Figures

1.1 Structure of the Thesis . 4

2.1 Taxonomy for abstraction and inheritance 10
2.2 Increasing conceptual complexity . 11
2.3 Taxonomy for learning object-technology 14
2.4 Taxonomy for learning object-technology, revised 14
2.5 CRC cards for Library application 22
2.6 Role-Play Diagram for Library scenario 22

3.1 The object oriented triangle . 26
3.2 Anchor concept graph for object orientation 29
3.3 TRUC cluster with dependencies for object oriented programming . 30

4.1 SRP Violation example . 41
4.2 SRP Separation of Responsibilities 41
4.3 OCP Violation . 42
4.4 Avoiding OCP Violation . 42
4.5 LSP Violation . 43
4.6 DIP Violation . 46
4.7 DIP implemented . 46
4.8 ISP Violation . 47
4.9 ISP Solution . 48
4.10 LoD Violation . 49

6.1 Model-View-Controller Pattern . 62
6.2 MVC Temperature . 62
6.3 Micro patterns . 64
6.4 Design patterns and AntiPatterns relation 69

7.1 Example of McCabes Cyclomatic complexity 74

9.1 Classes that models roles . 86
9.2 Objects with the same behaviour modelled by one class. 87
9.3 Hierarchy of accounts. 95
9.4 Composition of accounts. 95
9.5 Square seen as a more specialised version of a rectangle. 101
9.6 Major difference in behaviour depending on the value of an attribute 102

123

List of Figures

9.7 Inheritance used to separate behaviour among siblings 103
9.8 The DoME hierarchy. 103

10.1 Classification of advice . 106
10.2 Minimal set of object oriented concepts 109

124

List of Tables

3.1 Two construct object oriented taxonomy 27
3.2 Categorised Object Vocabulary . 36

4.1 Object oriented design principles . 39

5.1 Concept categories used in TOAD 55

6.1 Design Pattern Space . 61
6.3 Taxonomy of code smells . 67
6.4 Software development AntiPatterns 71

7.1 The CK metric suite . 76

10.1 Relationship between Principles and He[d]uristics. 108
10.2 Relationship between Concepts and He[d]uristics 109
10.3 Coverage of Misconceptions in He[d]uristics 111

D.1 Frequencies of object oriented concepts 141
D.2 The MeTHOODS heuristics catalogue 142
D.3 Object oriented design rules . 143
D.4 Effective Rules for Java . 144
D.5 Micro Patterns . 145

125

126

Listing

4.1 Modem.java - SRP Violation . 40
4.2 LSP Violation . 44
4.3 LSP - Using the references polymorphic 44
4.4 LSP Unexpected behaviour . 44
4.5 LoD Violation . 49
4.6 LoD Solution . 50
7.1 Code . 74
9.1 Using a complete application illustrating syntactical elements. 86
9.2 Small example without context. 88
9.3 Printing for illustrating syntactical elements. 88
9.4 Printing for tracing in a method. 89
9.5 Printing deferred to the client of the object. 89
9.6 A wrapper-class . 90
9.7 The Die-class . 91
9.8 The improved Die-class. 91
9.9 Public access methods for attributes 92
9.10 Examples of public access methods for responsibilities. 93
9.11 Stack implemented with Inheritance 94
9.12 Stack implemented with Delegation 94
9.13 One-of-a-kind cryptographer. 97
9.14 Class instantiating several cryptographer-objects. 98
9.15 Example of a class with no need for more than one object. 98
9.16 Avoiding one-of-a-kind objects introduces another problem. 99
9.17 Attempt to avoid extra classes. 99
9.18 Keep clients in separate classes. 100
9.19 A Rectangle class. 100
9.20 Squares and rectangles are all quadrangles. 102

127

128

Appendix A

Riel’s heuristics

Classes and Objects: The Building Blocks of the Object Oriented Paradigm

02.01 All data should be hidden within its class

02.02. Users of a class must be dependent on its public interface, but a class should
not be dependent on its users.

02.03. Minimize the number of messages in the protocol of a class (protocol of a
class means the set of messages to which an instance of the class can respond)

02.04. Implement a minimal public interface that all classes understand

02.05. Do not put implementation details such as common-code private functions
into the public interface of a class

02.06. Do not clutter the public interface of a class with things that users of that
class are not able to use or are not interested in using.

02.07. Classes should only exhibit nil or export coupling with other classes, that
is, a class should only use operations in the public interface of another class
or have nothing to do with that class.

02.08. A class should capture one and only one key abstraction

02.09. Keep related data and behaviour in one place.

02.10. Spin off non-related information into another class (that is, non-communicating
behaviour)

02.11. Be sure the abstractions that you model are classes and not simply the
roles objects play

Topologies of Action-Oriented Versus Object-Oriented Applications

03.01 Distribute system intelligence horizontally as uniformly as possible, that is
the top level classes in a design should share the work uniformly.

129

Appendix A. Riel’s heuristics

03.02 Do not create god classes or god objects in your system. Be very suspicious
of a class whose name contains DRIVER, MANGER, SYSTEM, SUBSYS-
TEM, etc.

03.03 Beware of classes that have many accessor methods defined in their interface.
Having many implies that related data and behaviour are not being kept in
one place.

03.04 Beware of classes that have too much non-communicating behaviour, that
is, methods that operate on a proper subset of the data members of a class.
God classes often exhibit a great deal of non-communicating behaviour.

03.05 In applications that consist of an object oriented model interacting with a
user interface, the model should never be dependent on the interface. The
interface should be dependent on the model.

03.06 Model the real world whenever possible. (This heuristic is often violated for
reasons of system intelligence distribution, avoidance of god classes, and the
keeping of related data and behaviour in one place.)

03.07 Eliminate irrelevant classes from your design.

03.08 Eliminate classes that are outside the system.

03.09 Do not turn an operation into a class. Be suspicious of any class whose
name is a verb or is derived from a verb, especially those which have only
one piece of meaningful behaviour. Ask if that piece of meaningful behaviour
needs to be migrated to some existing or undiscovered class.

03.10 Agent classes are often placed in the analysis model of an application. Dur-
ing design time, many agents are found to be irrelevant and should be re-
moved.

Relationships Between Classes and Objects

04.01. Minimize the number of classes with which another class collaborates.

04.02 Minimize the number of message sends between a class and its collaborator.

04.03 Minimize the amount of collaboration between a class and its collaborator,
that is, the number of different messages sent

04.04 Minimize fanout in a class, that is the product of the number of messages
defined by the class and the messages they send

04.05 If a class contains objects of another class, then the containing class should
be sending messages to the contained objects, that is, the containment rela-
tionship should always imply a <uses> relationship.

04.06 Most of the methods defined in a class should be using most of the data
members most of the time.

04.07 Classes should not contain more objects than a developer can fit in his or
her short-term memory. A favourite value for this number is six.

130

04.08 Distribute system intelligence vertically down narrow and deep containment
hierarchies

04.09 When implementing semantic constraints, it is best to implement them in
terms of the class definition. Often this will lead to a proliferation of classes,
in which case, the constraint must be implemented in the behaviour of the
class - usually but not necessarily, in the constructor.

04.10 When implementing semantic constraints in the constructor of a class, place
the constraint test in the constructor as far down in a containment hierarchy
as the domain allows.

04.11 The semantic information on which a constraint is based is best placed in
a central, third party object when that information is volatile.

04.12 The semantic information on which a constraint is based is best decentral-
ized among the classes involved in the constraint when that information is
stable.

04.13 A class must know what it contains, but should never know who contains
it.

04.14 Objects that share lexical scope - those contained in the same containing
class - should not have <uses> relationship between them.

Inheritance Relationship

05.01. Inheritance should be used only to model a specialization hierarchy

05.02 Derived classes must have knowledge of their base class by definition, but
base classes should not know anything about their derived classes

05.03 All data in a base class should be private; do not use protected data.

05.04 In theory, inheritance hierarchies should be deep - the deeper the better

05.05 In practice, inheritance hierarchies should be no deeper than an average
person can keep in his or her short term memory. A popular value for this is
six.

05.06 All abstract classes must be base classes.

05.07 All base classes must be abstract classes.

05.08 Factor the commonality of data, behaviour, and/or interface, as high as
possible in the inheritance hierarchy.

05.09 If two or more classes share only common data (no common behaviour),
then that common data should be placed in a class that will be contained by
each sharing class

05.10 If two or more classes have common data and behaviour (that is, methods),
then those classes should each inherit from a common base class that captures
those data and methods.

131

Appendix A. Riel’s heuristics

05.11 If two or more classes only share common interface (i.e. messages, not
methods) then they should inherit from a common base class only if they will
be used polymorphically.

05.12 Explicit case analysis on the type of an object is usually an error, the de-
signer should use polymorphism in most of these cases.

05.13 Explicit case analysis on the value of an attribute is often an error. The
class should be decomposed into an inheritance hierarchy, where each value
of the attribute is transformed into a derived class.

05.14 Do not model the dynamic semantics of a class through the use of an inher-
itance relationship. An attempt to model dynamic semantics with a static
semantic relationship will lead to a toggling of types at run time.

05.15 Do not turn objects of a class into derived classes of the class. Be very
suspicious of any derived class for which there is only one instance.

05.16 If you think you need to create new classes at run time, take a step back
and realize that what you are trying to create are objects. Now generalize
these objects into a new class.

05.17 It should be illegal for a derived class to override a base class method with
a NOP method, that is, a method that does nothing.

05.18 Do not confuse optional containment with the need for inheritance. Mod-
eling optional containment with inheritance will lead to a proliferation of
classes.

05.19 When building an inheritance hierarchy, try to construct reusable frame-
works rather than reusable components.

Multiple Inheritance

06.01 If you have an example of multiple inheritance in your design, assume you
have made a mistake and prove otherwise.

06.02 When ever there is inheritance in an object oriented design ask yourself two
questions: 1) Am I a special type of the thing I’m inheriting from? and 2) Is
the thing I’m inheriting from part of me?

06.03 Whenever you have found a multiple inheritance relationship in a object
oriented design be sure that no base class is actually a derived class of another
base class, i.e. accidental multiple inheritance.

Association Relationship

07.01 When given a choice in an object oriented design between a containment
relationship and an association relationship, choose the containment relation-
ship.

132

Class-Specific Data and Behaviour

08.01 Do not use global data or functions to perform bookkeeping information on
the objects of a class, class variables or methods should be used instead.

Physical object oriented Design

09.01 Object oriented designers should never allow physical design criteria to cor-
rupt their logical designs. However, very often physical design criteria’s used
in the decision making process at logical design time.

09.02 Do not change the state of an object without going through its public in-
terface.

133

134

Appendix B

Gang of four patterns

Creational Patterns
Factory Pattern Returns an instance of one of several similar classes depending

on the data provided to it. Uses inheritance to achieve this.

Abstract Factory Pattern One level of abstraction higher than the factory pat-
tern. Used to return one of several related classes of objects, each of which
can return several different objects on request. The Abstract Factory is a
factory object that returns one of several factories.

Singleton Pattern Ensures that there can be one and only one instance of a
class. Usually solved by embedding a static variable inside the class that is
set on the first instance and checked for each time the constructor is entered.

Builder Pattern Separates the construction of a complex object from its repre-
sentation, so that several different representations can be created depending
on the needs of the program.

Prototype Pattern Starts with an initialised and instantiated class and copies
or clones it to make new instances rather than creating new instances. Par-
ticularly useful when creating new instances are expensive.

Structural Patterns
Adapter Pattern used to change the interface of one class to that of another one.

Bridge Pattern Intended to keep the interface to your client program constant
while allowing you to change the actual kind of class you display or use. You
can then change the interface and the underlying class separately.

Composite Pattern Components that are individual objects and also can be
collection of objects. A recursive definition used e.g. in Java’s graphical
components.

Decorator Pattern A class that surrounds a given class, adds new capabilities
to it, and passes all the unchanged methods to the underlying class.

135

Appendix B. Gang of four patterns

Facade Pattern groups a complex object hierarchy and provides a new, simpler
interface to access those data.

Flyweight Pattern provides a way to limit the proliferation of small, similar class
instances by moving some of the class data outside the class and passing it
in during various execution methods

Proxy Pattern provides a simple place-holder class for a more complex class
which is expensive to instantiate.

Behavioural Patterns
Chain of Responsibility Pattern allows an even further decoupling between

classes, by passing a request between classes until it is recognized.

Command Pattern provides a simple way to separate execution of a command
from the interface environment that produced it, and

Interpreter Pattern provides a definition of how to include language elements
in a program.

Iterator Pattern ormalizes the way we move through a list of data within a class.

Mediator Pattern defines how communication between classes can be simplified
by using another class to keep all classes from having to know about each
other.

Memento Pattern Without violating encapsulation, capture and externalise an
object’s internal state so that the object can be restored to this state later.

Observer Pattern defines the way a number of classes can be notified of a change.

State Pattern provides a memory for a class’s instance variables.

Strategy Pattern used to encapsulate algorithms to be used by a context. The
client needs to be aware of the different strategies.

Template Pattern provides an abstract definition of an algorithm.

Visitor Pattern adds function to a class.

136

Appendix C

Smells and associated
refactorings

Associated with each code smell presented in (Fowler et al., 1999) is given a set of
refactoring element to aid in the process of reorganising the code in a systematic
way. (from (Fowler et al., 1999), back cover)

Smells Common Refactorings
Alternative Classes with
Different Interfaces

Rename Method, Move Method

Comments Extract Method, Introduce Assertion ;

Data Class Move Method, Encapsulate Field, Encapsulate
Collection

Data Clump Extract Class, Introduce Parameter Object,
Preserve Whole Object

Divergent Change Extract Class

Duplicated Code Extract Method, Extract Class, Pull Up
Method, Form Template Method

Feature Envy Move Method, Move Field, Extract Method

Inappropriate Intimacy Move Method, Move Field, Change Bidirectional
Association to Unidirectional, Replace
Inheritance with Delegation, Hide Delegate

137

Appendix C. Smells and associated refactorings

Smells Common Refactorings

Incomplete Library Class Introduce Foreign Method, Introduce Local
Extension Large Class Extract Class, Extract
Subclass, Extract Interface, Replace Data Value
with Object

Large Class Extract Class, Extract Subclass, Extract
Interface, Replace Data Value with Object

Lazy Class Inline Class, Collapse Hierarchy

Long Method Extract Method, Replace Temp with Query,
Replace Method with Method Object,
Decompose Conditional

Long Parameter List Replace Parameter with Method, Introduce
Parameter Object, Preserve Whole Object

Message Chains Hide Delegate

Middle Man Remove Middle Man, Inline Method, Replace
Delegation with Inheritance

Parallel Inheritance
Hierarchies

Move Method, Move Field

Primitive Obsession Replace Data Value with Object, Extract Class,
Introduce Parameter Object, Replace Array with
Object, Replace Type Code with Class, Replace
Type Code with Subclasses, Replace Type Code
with State/ Strategy

Refused Bequest Replace Inheritance with Delegation

Shotgun Surgery Move Method, Move Field, Inline Class

Speculative Generality Collapse Hierarchy, Inline Class, Remove
Parameter, Rename Method

Switch Statements Replace Conditional with Polymorphism,
Replace Type Code with Subclasses, Replace
Type Code with State/Strategy, Replace
Parameter with Explicit Methods, Introduce
Null Object

138

Smells Common Refactorings

Temporary Field Extract Class, Introduce Null Object

139

140

Appendix D

Tables

Table D.1: Frequencies of object oriented concepts (Armstrong, 2006)

TABLE VV
FREQUENCIES OF OO CONCEPTS (Armstrong 2006)

Concept Count Percentage

Inheritance 71 81%

Objects 69 78%

Class 62 71%

Encapsulation 55 63%

Method 50 57%

Message passing 49 56%

Polymorphism 47 53%

Abstraction 45 51%

Instantiation 31 35%

Attribute 29 33%

Information hiding 28 32%

Dynamic binding 13 15%

Relationship 12 14%

Interaction 10 12%

Class hierarchy 9 10%

Abstract data type 7 8%

Object-identity independence 6 7%

Collaboration 5 6%

Aggregation 4 5%

Object model 4 5%

Reuse 3 3%

Cohesion, Coupling, Graphical, Persistence 2 2%

Composition, Concurrency, Dynamic model,

Extensibility, Framework, Genericity,
Identifying objects, Modularization,

Naturalness, Safe referencing, Typing,

Virtual procedures, Visibility

1 1%

141

Appendix D. Tables

Table D.2: The MeTHOODS heuristics catalogue (Grotehen, 2001)

TABLE MHC

THE METHOODS HEURISTICS CATALOGUE (GROTEHEN 2001)

1 A class in a containment hierarchy should only depend on its child classes

2 Every attribute should be hidden within its class

3 Avoid dependencies of objectbase classes on their clients

4 A class should capture one, and only one key abstraction with all its information
and its entire behavior

5 Do not create unnecessary classes to model roles

6 Avoid pure accessor operations.

7 Avoid additional relationships of base classes to their derived classes

8 Avoid classes with properties implying redundancies

9 Avoid multivalued dependencies

10 Whenever possible, convert associations and uses relationships in the strongest
containment relationship.

11 Avoid contained objects that can concurrently be modified.

12 All properties of the basetype must be usable in objects of its subtypes in every
location in that a basetype object is expected

13 Common properties of objects should be defined in a single location

14 Soft classes should not be base classes

15 Do not misuse inheritance for sharing attributes

16 The overloading should only define differences to the overloaded operation

17 Avoid full parallel overloading in siblings

18 Avoid case analysis on properties of objects

19 Prefer typing by attribute to typing by inheritance

20 An operation should only use classes of attributes of its class, classes of its
parameters or classes of locally created objects

21 Avoid mirror fragments in class structures

22 Dependencies in inheritance hierarchies should not go from higher to lower levels.

23 Hard fragments should not depend on soft fragments

24 Avoid direct recursive associations

1 A class in a containment hierarchy should only depend on its child classes
2 Every attribute should be hidden within its class
3 Avoid dependencies of objectbase classes on their clients
4 A class should capture one, and only one key abstraction with all its information and its entire
behavior
5 Do not create unnecessary classes to model roles
6 Avoid pure accessor operations.
7 Avoid additional relationships of base classes to their derived classes
8 Avoid classes with properties implying redundancies
9 Avoid multivalued dependencies
10 Whenever possible, convert associations and uses relationships in the strongest containment
relationship.
11 Avoid contained objects that can concurrently be modified.
12 All properties of the basetype must be usable in objects of its subtypes in every location in that
a basetype object is expected
13 Common properties of objects should be defined in a single location

14 Soft classes should not be base classes
15 Do not misuse inheritance for sharing attributes
16 The overloading should only define differences to the overloaded operation
17 Avoid full parallel overloading in siblings
18 Avoid case analysis on properties of objects
19 Prefer typing by attribute to typing by inheritance

20 An operation should only use classes of attributes of its class, classes of its parameters or
classes of locally created objects
21 Avoid mirror fragments in class structures
22 Dependencies in inheritance hierarchies should not go from higher to lower levels.
23 Hard fragments should not depend on soft fragments
24 Avoid direct recursive associations

142

Table D.3: Object oriented design rules(Garzás and Piattini, 2007b)

TABLE EE
OO-DESIGN RULES (Garzás & Piattini 2007a)

Rule Intended design characteristics

Dependencies of concrete classes Dependencies should be on abstractions. Clients do not need to
know the implemented class only it’s services.

An object behaves differently according to its

state

Different behaviour should be separated into different classes.

A class hierarchy has many levels Inheritance is static (can not be changed during run-time). Too many
levels makes maintenance difficult. Consider compositions instead of
inheritance.

Something is used very little or not used at all Simplifying the design and increasing maintainability.

A super class knows one of its sub-classes This is a no-no! The use of polymorphism is inhibited and the
design-solution counterproductive.

A class collaborates with many others One ambition in OO is to keep coupling low and to model
abstractions with “single” responsibilities. Makes the design sensitive
to changes.

A change in an interface has an impact on
many clients

It is better to have many specific interfaces than a single general-
purpose one. Classes should be reusable. Martin(Martin 2003) defines
this in the Interface Segregation Principle (ISP)

There is no abstraction between an interface

and its implementation

To avoid duplicated code a majority of the methods of the interface
should be implemented in the abstract class. However, it is important
not to force derived classes to redefine implemented methods.

A super-class is concrete The idea of inheritance is to make the descriptions of an abstraction
more and more specialised. Having an instantiable super-class

assigns two roles to the class, on one hand defining a common

“part” for other classes and on the other hand being an entity by
itself.

A service has a lot of parameters A long parameter list is a “bad smell” (Fowler et al 1999) and
indicates passing a large amount of data. Either pass data as objects
or reconstruct for many services with few parameters.

A class is large If a class is large it might indicate a violation of the Single
Responsibility Principle (SRP) (Martin 2003). This means that the
class is taking on to much responsibilities or services.

Elements of the user interface are within
domain entities

The reason for this rule is to separate the core of a system from its
presentation. This is stated in the early pattern Model-Controller-
View.

A class uses more things from another class

than from itself

Also known as the bad smell Feature envy (Fowler et al 1999).
Cohesion is important in object orientation and is the notion of how
fit the abstraction modelled is. The solution might be to relocate the
service to another class.

A class rejects something it has inherited Basically this is inheritance gone bad. Inheritance should be based on
structural relationships, with specialisation increasing down the
hierarchy. It is absolutely necessary for any object belonging to the
hierarchy to deliver the expected services promised by any part in its
line of the hierarchy.

If attributes of a class are public or protected Encapsulation is an important part of object orientation and one of
its strengths. The idea is for a class to offer services not being a
container of values. The client should not be bothered by details of
how the internal representation of the abstraction is implemented.

143

Appendix D. Tables

Table D.4: Effective Rules for Java(Bloch, 2001)

TABLE BB
RULES BY BLOCH (Bloch 2001; Meyer 2001)

1 Consider Providing Static Factory Methods Instead of Constructors

2 Enforce the Singleton Property with a Private Constructor

3 Enforce Noninstantiability with a Private Constructor

4 Avoid Creating Duplicate Objects

5 Eliminate Obsolete Object References

Creating and
Destroying

Objects

6 Avoid Finalizers

7 Obey the General Contract when Overriding Equals

8 Always Override HashCode When You Override Equals

9 Always Override toString

10 Override Clone Judiciously

Methods

Common to All
Objects

11 Consider Implementing Comparable

12 Minimize the Accessibility of Classes and Members

13 Favor Immutability

14 Favor Composition Over Inheritance

15 Design and Document for Inheritance or Else Prohibit It

16 Prefer Interfaces to Abstract Classes

17 Use Interfaces Only to Define Types

Classes and
Interfaces

18 Favor Static Member Classes Over Non-Static

19 Replace Structures with Classes

20 Replace Unions with Class Hierarchies

21 Replace Enums with Classes

Substitutes for C

Constructs

22 Replace Function Pointers with Classes and Interfaces

23 Check Parameters for Validity

24 Make Defensive Copies when Needed

25 Design Method Signatures Carefully

26 Use Overloading Judiciously

27 Return Zero-Length Arrays, Not Nulls

Methods

28 Write Doc Comments for All Exposed API Elements

29 Minimize the Scope of Local Variables

30 Know and Use the Libraries

31 Avoid Float and Double if Exact Answers are Required

32 Avoid Strings where Other Types are More Appropriate

33 Beware the Performance of String Concatenation

34 Refer to Objects by their Interfaces

35 Prefer Interfaces to Reflection

36 Use Native Methods Judiciously

37 Optimize Judiciously

General
Programming

38 Adhere to Generally Accepted Naming Conventions

39 Use Exceptions Only for Exceptional Conditions

40 Use Checked Exceptions for Recoverable Conditions and runtime
Exceptions for Programming Errors

41 Avoid Unnecessary Use of Checked Exceptions

42 Favor the Use of Standard Exceptions

43 Throw Exceptions Appropriate to the Abstraction

44 Document All Exceptions Thrown by Each Method

45 Include Failure-Capture Information in Detail Messages

46 Strive for Failure Atomicity

Exceptions

47 Don't Ignore Exceptions

48 Synchronize Access to Shared Mutable Data

49 Avoid Excessive Synchronization

50 Never Invoke Wait Outside a Loop

51 Don't Depend on the Thread Scheduler

52 Document Thread-Safety

Threads

53 Avoid Thread Groups

54 Implement Serializable Judiciously

55 Consider Using a Custom Serialized Form

56 Write ReadObject Methods Defensively
Serialization

57 Provide a ReadResolve Method when Necessary

144

Table D.5: Micro Patterns(Gil and Maman, 2005)

TABLE QQ
SHORT DECRIPTION OF MICRO PATTERNS

 Main
Category

Pattern Short description Additional
Category

Designator An interface with absolutely no
members.

Taxonomy An empty interface extending
another interface.

Joiner An empty interface joining two or
more superinterfaces

Degenerate
state and
behaviour

Pool A class, which declares only static
final fields, but no methods.

Function Pointer A class with a single public instance
method, but with no fields.

Function Object A class with a single public instance
method, and at least one instance
field.

Degenerate
behaviour

Cobol Like A class with a single static method,
but no instance members

Stateless A class with no fields, other than
static final ones.

Common State A class in which all fields are static. Degenerate
state Immutable A class with several instance fields,

which are assigned exactly once,
during instance construction.

Restricted Creation A class with no public constructors,
and at least one static field of the
same type as the class.

D
e
g

e
n

e
ra

te
 c

la
ss

e
s

Controlled
creation

Sampler A class with one or more public
constructors, and at least one static.

Box A class which has exactly one,
mutable, instance field of the same
type as the class.

Compound Box A class with exactly one non-
primitive instance field.

Wrappers

Canopy A class with exactly one instance field
that it assigned exactly once, during
instance creation.

Degenerate
State

Record A class in which all fields are public,
no declared methods.

Data Managers A class where all methods are either
setters or getters.

Degenerate
Behaviour

C
o

n
ta

in
m

e
n

t

Data
Managers

Sink A class whose methods do not
propagate calls to any other class.

Outline A class where at least two methods
invoke an abstract method on “this”

Trait An abstract class, which has no state.

Degenerate
State

State Machine An interface whose methods accept
no parameters.

Pure Type A class with only abstract methods,
and no static members, and no fields.

Augmented Type Only abstract methods and three or
more static final fields of the same
type

Base classes

Pseudo Class A class that can be rewritten as an
interface: no concrete methods, only
static fields.

Degenerate
State and
Behaviour

Implementor A concrete class, where all the
methods override inherited abstract
methods.

Overrider A class in which all methods override
inherited, non-abstract methods.

In
h

e
ri

ta
n

c
e

Inheritors

Extender A class that extends the inherited
protocol, without overriding any
methods.

145

	Introduction
	Related Work
	Introduction
	General Learning Aspects
	Cognitive load
	Knowledge acquisition and conceptual change
	Worked examples

	Cognitive Aspects of Programming
	Instructional Design for Object Oriented Programming
	Conceptual modelling
	Organisation of activities
	Principles for teaching novices
	Focusing on conceptual ideas
	Concept-order in an objects-first approach
	Taxonomy of learning object-technology

	Misconceptions
	Harmful Examples and Poor Learning Behaviour
	Qualities of Examples
	CRC-cards and Role-plays
	Summary

	Characteristics of Object Orientation
	Introduction
	Frequent Concepts
	Abstractions
	Object Thinking and Metaphors
	Prerequisites to object thinking
	Metaphors: The use of anthropomorphisation
	Object vocabulary

	Summary

	Object Oriented Principles
	Introduction
	SRP – The Single Responsibility Principle
	OCP – The Open Closed Principle
	LSP – The Liskov Substitution Principle
	DIP – The Dependency Inversion Principle
	ISP – The Interface Segregation Principle
	LoD – The Law of Demeter
	Summary

	Heuristics and Rules for Software Design
	Introduction
	Johnson and Foote’s Heuristics
	Riel’s Heuristics
	Gibbon’s Heuristics
	The MeTHOOD Heuristics Catalogue
	Heuristics for Thinking Like an Object
	Design Rules
	Summary

	Design Patterns and Code Smells
	Introduction
	The Gang of Four Patterns
	The Model-View-Controller Pattern
	Micro Patterns: Low-level Patterns
	Refactoring
	Code Smells
	Anti-patterns
	The Grand Mistake in Design
	Summary

	Software Metrics
	Introduction
	Classical Metrics
	Object Oriented Metrics
	The first theoretically founded object oriented metric
	Object oriented design metrics
	Readability metric

	Summary

	He[d]uristics
	Model Reasonable Abstractions
	Model Reasonable Behaviour
	Emphasize Client View
	Favour Composition over Inheritance
	Use Exemplary Objects Only
	Make Inheritance Reflect Structural Relationships

	He[d]uristics in Practice
	Model Reasonable Abstractions
	Model Reasonable Behaviour
	Emphasize Client View
	Favour Composition over Inheritance
	Use Exemplary Objects Only
	Make Inheritance Reflect Structural Relationships
	Summary

	Validation
	Introduction
	He[d]uristics vs. Advice
	He[d]uristics vs. Concepts
	Addressing Misconceptions and Difficulties

	Conclusions and Future Work
	Bibliography
	List of Figures
	List of Tables
	Listing
	Riel's heuristics
	Gang of four patterns
	Smells and associated refactorings
	Tables

