
Three Fundamental Dimensions of Scientific

Workflow Interoperability: Model of Computation,

Language, and Execution Environment

Erik Elmroth Francisco Hernández Johan Tordsson

UMINF 09.05

Dept. of Computing Science and HPC2N

Ume̊a University, SE-901 87 Ume̊a, Sweden

{elmroth, hernandf, tordsson}@cs.umu.se

Abstract

We investigate interoperability aspects of Grid workflow systems
with respect to models of computation (MoC), workflow languages, and
workflow execution environments. We focus on the problems that af-
fect interoperability and illustrate how these problems are tackled by
current scientific workflows as well as how similar problems have been
addressed in related areas. Emphasis is given to the differences and
similarities between local and Grid workflows and how their peculiar-
ities have a positive or negative impact on interoperability. Our long
term objective is to achieve (logical) interoperability between work-
flow systems operating under different MoCs, using distinct language
features, and using different execution environments.

1 Introduction

To date, scientific workflow systems offer rich capabilities for designing,
sharing, executing, monitoring, and overall managing of workflows. The in-
creasing use of these systems correlates with the simplicity of the workflow
paradigm that provides a clear-cut abstraction for coordinating stand-alone
activities. With this paradigm scientists are able to concentrate on their
research at the problem domain level without requiring deep knowledge of
programming languages, operating systems, arcane use of libraries, or hard-
ware infrastructure. In addition, the ease by which scientists can describe

1



experiments, share descriptions and results with colleagues, as well as au-
tomate the recording of vast amounts of data, e.g., provenance information
and other data relevant for reproducing experiments, have made the work-
flow paradigm the fundamental instrument for current and future scientific
collaboration.

Currently, there are many sophisticated environments for creating and
managing scientific workflows that have lately also started to incorporate
capabilities for using powerful Grid resources. Although similar in many re-
spects, including domains of interest and offered capabilities, existing work-
flow systems are not yet interoperable. Rather than discussing if workflow
systems are completely interoperable or not at all, here we argue that inter-
operability between workflow systems must be considered from three distinct
dimensions: model of computation (MoC), workflow language, and workflow
execution environment. In previous work [20] we have demonstrated work-
flow execution environment interoperability by showing how a workflow tool
can interoperate with multiple Grid middleware. Extending on this effort,
we here discuss interoperability at the other two dimensions, i.e., MoC and
workflow language.

With this paper our contributions are the following. We start a dialogue
and argue that we must change the manner in which interoperability has
been addressed and start concentrating on a three dimensional model that
considers interoperability from the MoC, the language, and the execution
environment dimensions. We present the reasons why dataflow networks
have not been used in Grid settings and introduce some adaptations re-
quired in this MoC to be able to make use of it in Grid workflows. We fur-
ther investigate the minimum language constructs required for a language
to be expressive enough for supporting scientific workflows. We argue for
a distinction between the languages used for describing complex workflows
executing on the end-users desktop machine (i.e., local workflows) and possi-
bly simpler languages only used for coordinating computationally intensive
sub-workflows that run on the Grid. We support our discussion on results
and algorithms from the areas of theory of computation, compiler optimiza-
tion, and (visual) programming language research. With these results as a
starting point we discuss language aspects relevant for local and Grid work-
flows, including iterations, conditions, exception handling, and implications
of having a type system associated to the workflow language. We conclude
our work in workflow languages by studying the repercussions of choosing
between control-driven and data-driven style of representing workflows, in-
cluding methods for converting between both representations.

The rest of the paper is organized as follows. Section 2 discusses the

2



current state of the art in scientific workflows, investigates the reasons why
interoperability in workflows is desired, and introduces the three dimen-
sions that must be considered when discussing interoperability of scientific
workflows. Section 3 introduces some fundamental workflow concepts and
definitions that are used throughout the paper. Section 4 discusses issues
related to MoCs for Grid workflows including a description of how Petri nets
and Coloured Petri nets have been used as MoCs for Grid workflows and a
discussion on the reasons why dataflow networks, being the most common
MoC for local workflows, has not yet been employed for Grid workflows.
Section 5 focuses on workflow language related issues including differences
between data-driven and control-driven representations as well as the use
and implementation of language constructs such as conditions and iterations
in light of their programming languages counterparts. Finally, in Section 6
we discuss how our findings, collectively, have an impact on Grid workflow
interoperability and present our concluding remarks.

2 Workflow Interoperability

There are many scientific workflow systems currently in use, e.g., [9, 15,
43, 51]. Several of these have been developed successfully within interdis-
ciplinary collaborations between domain scientists, the end-users, and com-
puter scientists, the workflow engineers. Some of these systems target a
particular scientific domain (e.g., Taverna [51]) while others cover a range
of fields (e.g., Triana [9] and Kepler [43]).

The existence of such a wide range of workflow systems is comparable,
although to a lesser degree, to the large number of programming languages
available. In both cases solutions can be general purpose or tailored for
specific domains, and the choice of one over the others depends not only on
the problem at hand but also on personal preferences. Moreover, it is not
possible to have one solution suitable for all problems and preferred by all
users, and it is also not likely for a new solution to emerge and replace all
existing ones. Yet, unlike programming languages in which interoperabil-
ity is achieved at the binary or byte code level and the voices suggesting
source-to-source interoperability long faded away, achieving interoperability
between workflow systems is a venture of high priority.

In this section we examine motivations for workflow interoperability,
introduce a point of view that tackles the problem at multiple dimensions,
and investigate various ways in which the topic has been addressed in the
literature.

3



2.1 A case for interoperability

It has recently been suggested [53] that end-users are not really pressing for
interoperability among workflow systems. The rationale behind this sug-
gestion is that these systems are developed in tight coordination between
end-users and workflow engineers. Hence, instead of using other systems
that already offer the required functionalities new features are added when
needed. The outcome of this rationale is time consuming as it leads to dupli-
cation of efforts, it mis-utilizes resources that could otherwise be employed
in more productive endeavors, and it is mainly beneficial for researchers who
are involved in this development loop. Yet, it is also the case that users may
not be interested in full interoperability between workflow systems. Full
interoperability is commonly defined as the ability for systems (be them
human users or software components) to seamlessly use the full functional-
ity provided by the (others) interoperable systems in a totally transparent
manner [24]. Deelman et. al. [14] notice that users may want to invoke one
workflow system from another one or reuse all or part of a workflow descrip-
tion in a different system. Another motivation for interoperability is due to
portability aspects, e.g., due to infrastructure changes. User preferences can
also be taken into consideration. Once users become accustomed to a partic-
ular system it becomes a costly process to migrate to another one. Although
it is possible to enumerate a long list of use cases in which interoperability is
of value, we prefer to identify the following two categories that cover several
of the use cases according to the purpose for seeking interoperability:

Collaborative and interdisciplinary research. Science is a collabora-
tive endeavor. The importance of current scientific problems have
made crucial for these collaborations to become large interdisciplinary
enterprises in which scientists from different fields contribute to the
final solution. These significant efforts require the sharing of research
knowledge, knowledge that is often expressed in workflows.

Several workflow systems have been developed for operation within a
specific scientific domain, thus, it is expected that users from different
scientific fields, or in some cases from different research groups, use
different workflow systems. It is very difficult to change systems just
to enable these collaborations. Users are more comfortable working in
environments familiar to them and adapting to a different one may in-
volve steep learning curves [31]. For these cases it becomes imperative
to coordinate multiple workflow systems within one workflow execu-
tion. A typical scenario for this type of interoperability is a workflow

4



system invoking another one for executing a functionality represented
as a sub-workflow.

Lack of capabilities in a workflow system. Adaptation of a system ini-
tially designed for one scientific field to fulfill the requirements of
another is typically done by extending the set of activities (or ca-
pabilities) offered to users, rather than changing the way in which
the workflow system itself operates. Such extensions are commonly
added by implementing the new functionalities using libraries offered
by the systems themselves. However, these functionalities are typi-
cally locked-in and can only be used inside the targeted environment
making it impossible to share them with users of other systems. It
is then important to unlock the functionalities so that they can be
used by other systems. The capabilities need not be computations,
they can also be support for different hardware or software platforms.
An extreme case is illustrated by technology obsolescence. If a system
becomes obsolete and needs to be replaced by a newer system, it is
of paramount importance to be able to reuse the workflows developed
for the older system. This obsolescence is not limited to the workflow
system itself but the execution environment, including middleware, as
well.

2.2 Multiple dimensions for workflow interoperability

From the two categories enunciated above, we identify three dimensions rel-
evant for scientific workflow interoperability. These dimensions are in line
with a previous classification [53], but we argue that some aspects presented
in that work, e.g., meta-data and provenance, although very important in
practice, are not essential for workflow enactment coordinated by a work-
flow engine. In practice, a workflow engine can cooperate with a meta-data
or provenance manager to achieve other types of interoperability. In this
work we focus exclusively in the enactment process, that is, selecting and
executing workflow activities free of dependencies (either control or data
dependencies). Below we briefly introduce the three dimensions of interop-
erability and we present further details in the following sections.

2.2.1 Model of computation

The model of computation provides the semantic framework that governs the
execution of the workflow, i.e., a MoC provides the rules on how to execute
the activities and consume the dependencies. There are many MoCs that

5



have been considered as central abstractions for coordinating workflows,
including Petri nets, dataflow networks, and finite state machines. Some
problems are better suited for one MoC and in many cases a single workflow
may be required to use abstractions from multiple MoCs.

Strong interoperability in this respect requires the transparent execution
of workflows developed for one MoC by another one. A weaker notion is to
be able to compose workflows with parts governed by different MoCs. A so-
lution proposed by Zhao et al. [70] uses a bus in which workflow systems are
considered as black boxes that can be invoked from other systems. How-
ever, for this compositions to be possible the MoCs must be compatible.
Compatibility between MoCs has been studied by Goderis et al. [29]. Their
work explores when and how different MoCs can be combined. Their con-
tribution is significant but it is focused only on local workflow systems and
does not address Grid workflows. Many of the MoCs described by Goderis
et al. [29] are not functional in Grid settings as the assumptions of globally
controlling coordinators and fine grained token-based interactions between
concurrently executing activities are not possible to achieve (yet) in Grid
environments. The basis of their work is a hierarchical approach, based on
Eker et al. [18], in which workflows from different MoCs can be combined
according to the level of the hierarchy. Sub-workflows are then seen as black
boxes and their internal MoC is of no importance when working one level
above in the hierarchy. Petri nets and DAGs (employed as the structure for
specifying dependencies between activities) are the most common MoCs in
Grid environments. As such, in Section 4 we look into how Petri nets and
Colour Petri nets have been used for Grid workflows. In that section we also
investigate the reasons why dataflow networks, the most common MoC for
local workflow systems, has not been employed in Grid environments.

2.2.2 Workflow language aspects

One important workflow interoperability aspect is given by the set of sup-
ported language constructs. The constructs of interest in this study are
iterations and conditions, the latter used both for execution flow control
and exception handling. Another related topic is how, if at all, state is
modeled in workflows. Our previous work has demonstrated the possibility
of completely decoupling the workflow coordination language from the lan-
guage used to describe individual activities [20]. Others propose to describe
workflows with a high-level meta-language, that is not dependent on a par-
ticular workflow language [53]. Fernando et al. [23] suggest an intermediate
workflow description format, and outline how the languages of Taverna and

6



Kepler could be represented in such a format. In Section 5 we discuss the
trade-offs of having a full featured, Turing complete workflow language ver-
sus a simplistic activity coordination language. Furthermore, we investigate
the consequences of having a type system attached to a workflow language
and discuss the difficulties that the environments of current Grid infrastruc-
tures cause in this regard.

2.2.3 Workflow execution environments

In traditional workflow systems, the activities that form the workflow all
execute locally on the desktop computer of the user, making it a local work-
flow. The emergence of powerful parallel machines and Grids has opened up
the potential for utilizing applications that execute on remote machines and
possibly are developed by other scientists or organizations. Accordingly, it
is essential for a workflow system to support distributivity at some level.
Since many of the current projects are pre-Grid, they, naturally, are not
focused on Grid workflows, and are not able to optimize the capabilities
that systems designed for Grid usage offer. On the other hand, several of
the Grid-only workflow systems can appropriately use Grid resources but
they lack the ease of use and facilities offered by the local systems. The
necessities of current research demand for a balance between the local and
the distributed, so in typical scenarios the local machine is used for menial
tasks while Grid resources are used for activities that require extensive use
of resources (e.g., computation and storage). In this setting, the benefits
of workflow systems is that they abstract the communication complexities
required to interact with the Grid.

One issue in the design of toolkits for real-life scientific workflows is
the suitable level of granularity for interacting with Grid resources. Some
projects, e.g., Kepler [43], Taverna [52], and Karajan [67] use Grid resources
on a per-activity basis. Others, e.g., Pegasus [15], GWEE [20], and P-
Grade [38] use Grid resources to enact workflows, that typically constitute
a computationally intensive subset of a larger workflow. We refer to such
sub-workflows as Grid workflows. For the rest of this paper, we assume that
a workflow is a local workflow that makes use of one or more Grid workflows,
the latter ones being our focus.

3 Concepts and Definitions

In this section we introduce some concepts and definitions that are used
throughout the paper.

7



A workflow is represented by a Directed Graph (DG) W = {Nodes,
Links}, where: 1) Nodes is the set of workflow activities, and 2) Links is the
set of dependencies between workflow activities.

W is a static element that specifies the structure and possible orchestra-
tion of workflow activities and is commonly specified by a workflow language.
The workflow language is usually represented in a textual manner, although
graphical interfaces have been employed for facilitating the interaction with
the workflow system. The size and complexity of workflows varies, and while
a graphical representation may be optimal for simple workflows, this type of
representation is not feasible when scaling the number of workflow activities.
In such situations, a textual representation is better suited. Furthermore,
even when graphical interfaces are employed the graphical language is as-
sociated with a textual representation for storing and managing workflow
instances in files [30]. In many cases XML is used for the textual represen-
tation but scripting languages can also be employed.

Ports serve as containers of data associated with workflow activities.
Ports also state communication channels between activities providing entry
(input ports) and exit (output ports) points to the workflow activities. For
Grid workflows it is common to assume that ports have no associated type
information and that workflow activities internally distinguish the correct
semantics of the data in ports. In Section 5.1 we consider the implications
for the cases where the ports are typed (typical in local workflows). Commu-
nication to and from nodes is performed by specifying links between ports
associated to different activities. The links represent dependencies whose
nature, i.e., control or data flow, is unimportant from a representation point
of view.

A workflow activity represents a unit of execution in a workflow. An
activity can be an indivisible entity or it can be a sub-workflow containing
other activities. Associated input ports provide the required input for the
activity while the output is produced through output ports. As such, activ-
ities can be treated as functions whose domain is given by the cross product
between input ports and whose range is given by the cross product of the
output ports. A distinctiveness of Grid workflows is that workflow activities
are stand-alone command line applications that require a mapping between
the expected command-line arguments and the input and output ports used
for communicating with other activities. There are different manners in
which this mapping can be achieved, e.g., see [8] and [69]. For the rest of
the paper we assume that this mapping has been performed so that work-
flow activities are enacted with the appropriate parameters and the required
information is moved to and from activity ports.

8



A Model of Computation (MoC) is an abstraction that defines the se-
mantics in which the execution of a workflow W is to be carried out. A
workflow engine is a software module that given a workflow description (W)
and a MoC (M) as input, executes the activities in W following the rules
specified by M. Thus, a workflow engine provides a concrete implementation
of a MoC and it is responsible for enacting workflows. The enactment is per-
formed by selecting activities to execute. The manner in which the activities
are selected and how the communication between activities is carried out is
defined in the MoC. The engine can execute in a local machine or it can be
exposed as a permanently available service accessible by many users. The
latter useful when executing long processes, as tools can reconnect to the
engine for monitoring and managing purposes without requiring permanent
connections.

4 Model of Computation (MoC)

A model of computation is a formal abstraction that provides rules to gov-
ern the execution, in this case, of workflows. Programming and workflow
languages have traditionally been designed with an underlying abstraction
whose formal semantics is given by a MoC [35]. Similarly, workflow en-
gines instantiate a MoC when enacting workflows. While it is common for
workflow systems not to reveal the MoC used by the engine, there are some
systems in which the explicit selection of MoC is required1.

Different MoCs have different strengths and weaknesses. Selecting a
MoC often depends on, among other things, how well the model abstracts
the problem at hand and how efficient the model can be implemented. A too
abstract specification, for the model, is not only inefficient but is also unfea-
sible to implement while too much detail in the specification over-constraints
the model making it inefficient and more costly to implement [35]. In essence,
for a MoC to be efficacious there should be a balance between the generality
offered by an abstract specification and the particularities of a detailed one.
Such a MoC is useful not only for a range of scenarios but it is also possible
to model and analyze interesting aspects of individual models.

Several MoCs have been used for the general workflow case, e.g., Petri
nets, dataflow process networks, and UML activity diagrams. Some of these
MoCs are not suitable for scientific workflows, e.g., even though BPEL is
widely used for workflows in a business context, it is not as popular in the
scientific community. This, despite several attempts at adapting BPEL for

1e.g., in Kepler [43] MoCs are exchangeable and are called Directors.

9



the scientific workflow peculiarities [22, 42]. Instead, dataflow approaches
have predominantly been used for scientific workflows [43, 51, 64]. According
to McPhillips et al. [48] this adoption is due to the inherent focus on data
in the dataflow MoC, a characteristic that resembles the scientific process.

Still, a straight forward2 adoption of dataflow for Grid workflows is not
suitable. This is due to the characteristics of current, and in the foresee-
able future, Grid execution environments, such as the typical lack of control
over the internal states of workflow activities and the impossibility of con-
tinuously streaming tokens between activities. As presented in Section 3, a
distinctiveness of Grid workflows is that they typically consist of a number
of independent command line applications that are configured by environ-
ment variables or command line arguments. In this setting, activities are
considered black boxes and it is impossible for the workflow MoC to control
their internal states. For example, to the Grid workflow MoC, activities are
considered to be executing once they are scheduled for execution on a Grid
resource, even though they in practice may be stalled in a batch queue. An-
other distinctive characteristic of Grid workflow MoCs is that, as opposed
to the continuous streaming of tokens found in dataflow networks (e.g., as
in [43]), activities execute only once and communicate with other activities
at the end of this execution. Thus, it is important for the Grid workflow
MoC to support asynchronous communication and to carry out all commu-
nication only when activities finish executing, disabling those activities that
finish executing.

Because of the previous restrictions, MoCs that have been typically used
for Grid workflows are limited to Petri nets or some type of control flow
MoC specified either by DAGs [11] or by specialized imperative languages
[61, 67]. Below we present the manner in which Petri nets have been used as
a MoC for Grid workflows. We also make observations on the reasons why
a dataflow approach is not commonly employed in Grid workflows.

4.1 Petri nets

Petri nets are a mathematical and graphical tool specially useful for mod-
eling and analyzing systems that are concurrent, asynchronous, and non-
deterministic. Based on Murata [50], a Petri net is a bipartite graph in
which nodes called places are linked to nodes called transitions by directed
edges. There are no elements of the same node type connected to each other,
e.g., places are only connected to transitions and not to other places. Places

2By straight forward we mean using the same MoC , without changes, as in local
workflow systems.

10



A B

Figure 1: Petri net illustrating the control flow between activities A and B.

directed to transitions are called input places while places coming out of
transitions are called output places. Places contain tokens that are required
for enabling (initiation) the firing of transitions. Places also have an as-
sociated capacity that indicates the maximum amount of tokens they can
hold. Edges have an associated weight that indicates how many tokens are
required to enable a transition as well as how many tokes are produced when
a transition is fired. A transition is fired only when each input place has
the necessary tokens, specified by the edge weight, to enable that transition
and if the output places have not yet reached full capacity. Once fired, an
amount equal to the edge weight is set on each output place. The marking
of the net describes its state and is given by the distribution of tokens in
the places. The initial marking describes the state of the net before any
transition has fired and a new marking is created after each firing of the net.

Petri nets have traditionally been used for representing the control flow
of workflows [30, 33, 60, 65]. The manner in which this flow is represented is
illustrated in Figure 1. In this network, two activities, A and B, are executed
in sequence. Activity A is enabled (i.e., ready to fire) as there is a token
in its input place (represented by the black dot). Conceptually, the firing
of A symbolizes the execution of some activity in a Grid resource. When
A completes execution a token is placed in the output place of A, which in
this case is also the input place of B, thus enabling B. It is important to
notice that B is not able to execute until A has finished. For this net the
tokens not only symbolize the passing of control between activities, but they
also maintain the state of the net. There is however no explicit information
about the data created or consumed by the activities.

The limited support for combining control and data flow within the
same model has been addressed by the introduction of specialized high-
level nets, in particular Coloured Petri nets (CPN) [36]. In CPNs places
have an associated data type (color set) and hold tokens that contain data
values (colors) of that type. Arc expressions indicate the number and type
of tokens that can flow through an arc. Tokens of the specific data types

11



A
a

b

c

c = A(a,b)

Figure 2: Representation of workflow activities using Coloured Petri nets.
Based on the work in[34].

need to be present in its input places for a transition to fire. Transitions
can also have an associated guard, a boolean expression that enables the
firing of the transition whenever the guard evaluates to true. There is no
ordering in how the tokens are consumed by a transition with respect to
how they arrived to an input place. A queue can be associated with a
place if ordering is desired. A more detailed discussion about this type of
networks can be found in [36, 50]. Jensen [36] presents a more informal and
practical introduction to CPNs whereas Murata [50] briefly touches upon
the relationship between High-level nets, a group to which coloured nets
belong to, and logic programs.

In the Grid workflow context Petri nets and CPNs have been used both as
a graphical specification languages and as a workflow engine MoCs. Guan et
al. [30] employ simple Petri nets as graphical language for defining workflows
in the Grid-Flow system. Workflows defined with Petri nets are translated
to the Grid-Flow Description Language (GFDL). Workflows in GFDL are
then fed to the Grid-Flow engine. Language constructs3 such as OR-Split,
AND-Split, and AND-Join are used to generate instances of choice, loops,
and parallel structures offered by GFDL. Hoheisel and Alt [34] employ CPNs
both as specification language and as a MoC. In the latter case, transitions
are used as processing elements (i.e., workflow activities) in which data
tokens are distinguishable. Thus, transitions operate as functions whose
parameters are obtained from the input places and the results are stored in
the output places.

Figure 2 illustrates this process, where the result of applying the function
in A to the parameters a and b is stored in the output place c. This Petri net
models the data flow generated by the data files produced and consumed by
the transition (representing a workflow activity) A.

While there are many characteristics that make Petri nets a sound choice

3In some settings called Workflow Patterns [66].

12



Figure 3: A dataflow network that instantiates concurrent execution of ac-
tivities B and C.

for a Grid workflow MoC, there are some issues to be resolved. For example,
Murata [50] identifies that Petri nets can become quite complex even for
modest-size systems. A weakness of Petri nets when compared to a dataflow
approach is the necessity to define parallelism explicitly e.g., using AND-
Split and AND-Join [66].

4.2 Using dataflow networks on Grid workflows

Dataflow networks are the preferred MoC for local scientific workflows. For
example, Triana [9], Kepler [43], and Taverna [52] offer capabilities that, one
way or another, resemble the dataflow style of computation. In the original
dataflow approach the focus was on fine-grained flows at the CPU instruction
level. In those cases nodes represent instructions and edges represent data
paths. When this metaphor is moved to the workflow paradigm, nodes no
longer represent instructions but coarse-grained processing operations while
edges represent dependencies between workflow activities.

Figure 3 illustrates a dataflow network in which activity A sends tokens
concurrently to activities B and C. The figure presents a simplification of the
actual process been carried out, nevertheless it helps us present the problems
found when attempting to apply a dataflow approach to Grid workflows.
The Figure shows a pipeline dataflow in which initial tokens are processed
by A, and then B and C concurrently process the tokens generated by A.
In the original dataflow process networks (e.g., as presented in [59]) tokens
are continually streamed through the pipeline so that activities A, B, and C

are all concurrently processing although operating on different tokens. The

13



circles inside the rectangles represent ports that serve as containers of data
(see Section 3) and also serve as interfaces for establishing communication
channels between workflow activities. In local workflows these ports have an
associated data type that indicates the type of tokens that they can hold.
These data types need not be restricted to simple types (e.g., integer, float,
or string) as they can also be complex data structures [48]. On the contrary,
in Grid workflows tokens only represent associations with data files and are
otherwise untyped. Further discussions about type systems in workflows is
presented in Section 5.1.

We identify the continuous streaming of tokens between activities and
the lack of control of the workflow MoC over the internals of the activities
as the main impediments for adopting dataflow style of computation in Grid
workflows. Below we present a brief discussion on how these issues can be
addressed.

Streaming of tokens between activities. In dataflow nets parallelism
is achieved through concurrent processing of tokens by different activities.
This e.g., can be seen in Figure 3 when A is processing token (xi, yi) while B

and C are processing tokens produced by A(xi−1, yi−1), a previous execution
of A.

In local workflows, this process is easily accomplished by e.g., interpro-
cess communication or message passing. The nature of the Grid, however,
impedes an easy solution if attempting to implement the same functionality
on Grid resources. For Grid workflows, resources where activities A, B, and
C are to be run must be guaranteed to start executing at the same time, a
process known as co-allocation [21]. All resources must also be able to syn-
chronize with each other to establish direct lines of communication between
themselves.

The process of co-allocation of Grid resources is difficult for multiple
reasons. At a technical level activity A must have access to the network
addresses of the resources where B and C are running. However, this in-
formation is often not distributed outside the site in which B and C are
running, making such a synchronization impossible. Another technical issue
is that since many Grid applications operate on very large data files, trans-
mitting only small bursts of data is not efficient. Furthermore, streaming
tokens between activities requires adaptation of applications that normally
communicate through files.

Several solutions for the problem of co-allocation of Grid resources have
been proposed. These solutions usually depend on advance reservations

14



to ensure that all resources are available at the same time. However, the
use of advance reservations introduces a problem at a managerial level, as
reservations are known to degrade the performance of a system [45, 62, 63].

Lacking globally controlling coordinators. In local workflow systems
the MoC has control over the internal processing of the activities. This
means that any changes in the internal states of the activities are exposed
to the MoC. For example, for the case illustrated in Figure 3, the MoC can
recognize the state that activity A reaches after processing token (xi, yi).

This is not the case for Grid workflows. In this setting the MoC can
only recognize that an activity is ready to execute, that an activity has been
submitted to a Grid resource but for practical reasons can be considered to
be executing, and that an activity has finished executing either successfully
or with an error. All other changes in state are transparent to the MoC.

The nature of this obstacle is the use of command line applications that
operate on un-structured4 data files. However, the use of command line ap-
plications also simplifies the use of Grid resources by end-users as they are
not required to modify their software. Thus, there is a trade-off between hav-
ing simple coordinating MoCs in which applications can be easily included,
and having more complex MoCs that require modifications to applications
(even complete re-implementations) prior inclusion in the model.

While Petri nets have previously been used to model dataflow [40, 68],
the use of CPNs facilitates this process. The CPN in Figure 2 can be
adapted to model a processing unit from a dataflow network, i.e., the input
and output places have similar functionality as input and output ports. A
difficulty when modeling dataflow with CPNs is how to describe the implicit
parallelism found in dataflow networks. A näıve approach produces conflicts
among the concurrent activities. This can be seen in the CPN in Figure 4
that attempts to model the dataflow network of Figure 3. The conflict occurs
after A fires and sets a single token in its output place. At this point, both
B and C are enabled but only one can fire as there is only one token to
consume.

Figures 5 and 6 illustrate two manners in which this problem can be
resolved. The first approach is to add one output place for each transition
that depends on the output place whereas the second approach adds a sub-
net. With the second approach there is a complete separation between the
activities as opposed to the first approach in which the output and input

4As opposed to structured data files such as XML documents defined through XML
schema or basic data types such as integer or string.

15



A

B

C

Figure 4: CPN that simulates the functionality of Figure 3. In this CPN
activities B and C are in conflict.

A

B

C

Figure 5: A CPN that requires one output place for each dependent activity.
In this case one for each B and C.

B

C

A

Figure 6: A CPN that uses a sub-net to connect dependent activities. The
output place of A is not the same as the input places of B and C, thus each
can have an associated buffer.

16



places are shared between the activities. This second approach provides a
more accurate representation of dataflow processing units.

A MoC inspired by dataflow networks but adapted to Grid environments
is presented in our previous work [20]. In this approach, activities execute
once and are then disabled from further execution. Input and output ports
are used to establish dependencies between activities. The only data type
used is string and data values represent Grid storage locations where the
data files are to be found. Tokens carry this information from one activity
to the other. Files are transferred to the resources where the activities are
to execute from the locations where previous activities stored their outputs.

While this discussion has focused on Petri nets and dataflow, it is impor-
tant to mention that by far the most common approach for controlling de-
pendencies in Grid workflows is through DAGs. Currently, there are several
projects [11, 15, 38] that offer higher level interfaces for specifying workflows
that are rewritten in order to reduce execution time. The output of these
rewrites is often produced as DAGs. In these cases the DAGs represent
schedules for execution of workflow activities on Grid resources.

5 Workflow Representation

In this section we address several factors relevant to workflow languages.
We begin by exploring the use of type systems in workflow languages (Sec-
tion 5.1). We explore the differences in capabilities offered by type systems
depending on whether the language is for local or Grid workflows. As in the
MoC case, the nature of these differences arises from the differences present
in Grid environments.

A common differentiation in workflow languages is that between control-
driven (control flow) and data-driven (data flow) styles for representing
workflows. In control-driven workflows the complete order of execution is
specified explicitly whereas in data-driven workflows only the data depen-
dencies between activities are given and the execution order of the activities
is inferred from the manner in which the data dependencies are satisfied.
Thus the data-driven style specifies a partial order for the workflow activi-
ties and the exact order of execution is not known until run time. The choice
of style is mostly driven by the selected MoC. However, several languages
support mix-models, based on one MoC but with basic support for the other.
In Section 5.2 we illustrate mechanisms to translate control-driven workflows
into data-driven ones and vice-versa.

All modern general-purpose programming languages are Turing com-

17



plete, with the caveat that their run time environments as provided by to-
day’s computer hardware have a finite memory size as opposed to the infinite
tape length of the universal Turing machine. Being Turing complete implies
that a system is computationally equivalent to other Turing complete sys-
tems. Within the workflow community there are arguments for and against
having Turing complete workflow representations. For example, according
to Deelman [13], “one have to be careful not to take workflow languages to
the extreme and turn them into full-featured programming or scripting lan-
guages”. On the other hand Bahsi et al. [5] argue that workflows without
conditions and iterations are not sufficient for describing complex scien-
tific applications. Nevertheless, when examining current workflow systems
[5, 14, 56] it becomes apparent that most systems are Turing complete5. In
light of this finding, we discuss in Section 5.3 the manner in which the pre-
requisites for Turing completeness, namely state management, conditions,
and iterations are implemented by different workflow languages.

5.1 Workflow languages and type systems

One aspect to consider about workflow languages is the choice of type system
offered by the language. Which data types are present, whether data types
must be explicitly specified or if implicit specification is supported, and
whether the language must provide mechanisms for describing new types
are all issues that vary among languages, specially between languages for
local and Grid workflows.

For local workflows, it is relatively easy to wrap applications in an em-
bedding model that ensures compliance with the type system. For this
case activities are often developed from scratch, using APIs provided by the
workflow system and are thus completely capable for operating within the
framework provided by the workflow system. This is the case in e.g., Triana
[9] and Kepler [43]. However, due to the use of command line applications,
applying this functionality to Grid workflows is not simple. Data type in-
formation is not required for command line applications and thus it is not
included in any one of the several job description languages (e.g., JSDL [2])
currently in use. This is the case also for the languages in e.g., DAGMan
[11] and GWEE [20]. Nevertheless, there are some Grid languages that use
different methods for including type information in the workflows, this is
the case in e.g., BPEL [37], ICENI [47], and Karajan [67].

5As a side note, non-Turing complete languages have many uses [7], although they are
typically used in specialized areas.

18



Exposing Grid applications through type interfaces, e.g., Web services
or component models such as CCA [3] or GCM [10], can be a substantial
effort as it requires e.g., software installations on remote machines [16, 46].
A further complicating factor when adding a type system to Grid workflow
languages is that such languages most often lack support for defining custom
data types. It is thus hard to express the structure of data files that are
used by a given application. An exception is the Virtual Data Language
(VDL) [69] that provides primitives for describing data sets, associating
data sets with physical representations, and defining operations over the
data sets. Furthermore, whereas it is relatively simple to verify that input
values adhere to certain basic types (e.g., integer or float) it is more complex
to verify that a data file is of a specific format or follows a predetermined
structure.

In summary, using type information in Grid systems simplifies workflow
design and error handling, but it also adds overhead as each application that
is used must be exposed through a type interface. On the other hand, not
using a type system (e.g., supporting a single data type) increases flexibility
as any (command line) application can be embedded in a workflow, but this
at the expense of higher difficulty in detecting data incompatibilities.

5.2 Control-driven and data-driven workflows

Control-driven and data-driven MoCs differ in the semantics of consuming
dependencies between activities. In control-driven workflows, consuming a
dependency results in the transfer of execution control from the preceding
activity to the succeeding one, whereas in data-driven a data token is sent
from the first activity to the next one and an activity is only able to execute
after all data dependencies are cleared (i.e., all tokens are received). The
choice between styles depends, in part, on the applications to be described,
e.g., some areas such as image or signal processing have traditionally been
represented with data-driven workflows as this model provides a natural
representation of the problems studied within these fields [54, 64].

Recent results advocate for a simple hybrid model based on a data-driven
style but extended with limited control constructs [14]. The validity of this
model is attested by support of both styles of flows by several contemporary
systems [15, 38, 43, 55, 61]. In part, such a hybrid model can be realized
because, despite their differences in operation, converting from one MoC
to the other is not a complicated process. However, it is possible that
performing such conversions, control to data and data to control, requires
simulating missing functionality with the primitives available in either style.

19



A B

A B

Figure 7: A control-driven dependency (top) denoted by solid lines and the
corresponding data-dependency (bottom) illustrated by dashed lines. In
both cases activity B executes after activity A.

This results in more complex workflows and increases the risk of introducing
errors. Nevertheless, control- and data-driven workflows are interoperable
at the workflow language level. Below we present a manner in which such
conversions can be attained for the case of Grid workflows.

5.2.1 Conversions between control-driven and data-driven work-

flows

As presented in Section 3, communication between activities in Grid work-
flows is performed by the transfer of untyped data files. For this case control
dependencies can be converted to data dependencies by using tokens that
carry no data values (i.e., dummy data tokens) and in practice only represent
the transfer of control from one activity to another. This case is illustrated
in Figure 7 where equivalent control- and data-driven versions of a control
dependency between activities A and B are presented. The circle in the
bottom workflow being the dummy data token introduced to simulate the
transfer of control from A to B. The case with actual data tokens is presented
in Figure 8. In this case a file transfer (Activity B) that is represented ex-
plicitly in the top workflow is converted to an implicit transfer embedded in
a data dependency as shown in the bottom workflow.

The reverse process can be applied for converting from data- to control-
driven workflows. Data dependencies are converted by inserting an interme-
diate activity that performs an explicit file transfer from the location where
the source activity was executed to the machine where the target activity
is to be executed. The top workflow in Figure 8 illustrates the result of
this process, converting from the bottom workflow in the figure. Notably, it
is possible to eliminate the explicit file transfer (B) if such transfer is per-

20



A B

A C

C

B

Figure 8: File transfers are workflow activities in control-driven workflows
(Activity B in the top workflow) and data dependencies in data-driven work-
flows (data dependency with token labeled B in the bottom workflow).

formed as part of the job execution, a mechanism supported by most Grid
middlewares (e.g., Globus [25]). For abstract workflows6, as the resources
where activities are executed are not know until enactment, the conversion
must be performed after executing the source activity as the actual location
of the data files is not known before. Otherwise the workflow must spec-
ify the resources where all activities are to be executed (i.e., it must be a
concrete workflow).

An important step when converting from data- to control-driven is to
perform a topological sorting of the data dependencies. Consequently, the
resultant control-driven workflow specifies only one among many possible
execution orders. As a result the precise execution order may differ between
the data and the derived control-driven versions. This is however of no prac-
tical concern, as the respective execution order of all dependent activities is
maintained.

In practice these conversions have been performed a number of times. For
example, Mair et al. [44] describe how to convert both styles of workflows,
control- and data-driven, to an intermediate representation based on DAGs.
A concrete implementation between the Karajan language (control-driven)
and the internal representation of GWEE (data-driven) is presented in our
earlier work [20].

5.3 Essential language constructs

Turing completeness, the ability to simulate a universal Turing machine, is
important when analyzing the computing capabilities of systems. The ability

6In abstract workflows only the structure of the workflow is specified. The physical
resources where the activities are to be executed are not specified.

21



to manage state, e.g., by been able to define, update, and read variables, is
one criteria for Turing completeness. In addition to state handling, condition
(branching) and repetition (typically recursion or iteration) functionalities
are also required mechanisms for Turing completeness. Here, we look at
workflow languages in light of these mechanisms. Motivating use cases are
presented for each mechanism as well as the manner in which the mechanisms
are implemented by different workflow languages. We also take a look at
when and how Collections are useful.

5.3.1 Workflow state management

In modern imperative and object-oriented programming languages state is
managed by defining and updating variables that represent an abstraction
of memory locations. Some workflow languages, such as Karajan [67] and
BPEL [37], support state management through a variable construct similar
to that of modern programming languages. Other workflow systems, e.g.,
DAGMan [11] and Taverna [52], have no built-in language mechanism to
manage state. The only state in those systems is the run time state of the
workflow activities (e.g., completed, running, waiting). Not having variables
creates difficulties when using general condition and iteration constructs as
these make branching decisions mostly based on state. A different approach
for implementing a state-like mechanism is to use system parameters for
defining properties that hold similar functionality as environment variables.
This mechanism is used by ASKALON [61] and JOpera [55].

5.3.2 Conditions

By far the most common use for conditions in workflows is for workflow
steering, a functionality that carries similar semantics as the well known if
and switch constructs. The idea is that the flow is dynamic and the output
is non-deterministic. The most frequent use case for workflow steering is
classical flow of control where the branch to enact is decided at run time
based on the outcome of previously executed activities. Changing the enact-
ment of a workflow in reaction to external events is an alternative steering
use case suggested by Gil et al. [27].

Another use case for conditions is iterative refinement scenarios, where
some activity needs to be repeatedly executed until a condition is met. In
addition to conditions, iterative refinement scenarios requires iteration con-
structs and a testing mechanism, both issues discussed in more detail later
in this section.

22



Pre Post

B_2

B_1

CA

Figure 9: The black box approach where conditions are hidden in a special
activity type. In this case, the condition is transparent to the rest of the
workflow.

A final use case in which conditions have been employed is fault toler-
ance. A survey of fault tolerance mechanisms used in various Grid workflow
systems is found in Plankensteiner et al. [57]. In this use case conditions
are used for defining alternative actions for situations in which a workflow
activity fails. In contrast with programming languages that typically have
special language constructs for catching generated runtime exceptions, in
distributed Grid workflow environments, errors in remotely executing activ-
ities do not generate such exceptions but rather result in failed activities.
Conditional statements are typically sufficient for many cases of fault toler-
ance.

There are basically two abstractions for implementing conditions in a
DAG or dataflow based workflow representation. The first one considers
conditions as a special type of workflow activity. In this approach, illustrated
in Figure 9, the condition is viewed as a black box with the branches hidden
inside the activity. This form of condition gives rise to so-called “structured
workflows” [41] which are analogous to conditions and iterations found in
structured programming. This type of constructs have only one entry (pre)
and one exit (post) point into and out of the workflow. An example of this
approach is Triana [9]. The other alternative is to have the condition as
an activity that selects a branch of execution but with all possible branches
exposed in the main workflow. In this case, care must be taken as deadlock
may arise if the branches are not well synchronized. This second approach
is how conditions are implemented in JOpera [55] and Karajan [67].

After a branch is selected, data must be sent to the initial activity of the
branch in order to trigger execution. However, unless special care is taken,
not-selected branches may end up in a dead-lock state, waiting for input
forever. One solution to this undesired effect is to prune the workflow graph
by removing not-selected subgraphs from the workflow. Such a solution is

23



akin to the elimination of dead code, a well-studied problem in compiler
theory [1]. The introduction of conditions can also introduce problems with
synchronization with previous branches of the workflow. More specifically,
combination of primitives such as OR-Split and AND-Join in BPEL [37]
may result in dead-locks unless care is taken.

Detecting workflow termination becomes more complicated when the
workflow contains branches that do not execute. With conditions imple-
mented using the black-box approach, this problem can be solved by marking
conditional activities as completed once one of its branches finish executing.
A different approach is to mark branches along the non-selected paths with
a terminal state that indicates that they are not to run. It is also possible
to tag certain activities (such as activity C in Figure 9) as terminal ones.
Once such an activity completes, the workflow enactment engine is assured
that the workflow has finished executing.

In a typical, non-typed Grid workflow, condition evaluation (often re-
ferred to as testing) is hard to achieve as the workflow system has no control
over the evaluation of the condition. Generality in the testing capabilities
is also difficult to achieve unless the system limits what can be tested. As
activities in Grid workflows usually communicate via files instead of typed
variables, ordinary boolean testing is tedious in a Grid environment. To
complicate things further, it is typically hard to distinguish between errors
in the application execution and faults related to the Grid infrastructure.
One possible solution is to offer a subset of predefined testing capabilities,as
it is done in e.g., UNICORE [5, 17]. In this work, three sets of tests are
defined: (1) ReturnCodeTest, indicating successful or failed task execution;
(2) FileTest, for checking whether files exist, are readable, writable, etc.;
and (3) TimeTest, that tests if a certain time has elapsed. These evaluation
capabilities are based on information similar to what is known about process
execution in shell scripting languages. An alternative method is to imple-
ment testing by an external agent that has the domain-specific knowledge
required to perform comparisons [14].

5.3.3 Iterations

We distinguish between three types of iterations:

1. Counting loops without dependencies between iterations are often re-
ferred to as parameter sweeps or horizontal parallel iterations. This
type of iteration generates parallel independent branches and is akin
to applying a function to each element from a set. In many program-

24



f(1) f(2) f(n)...

Pre

...

Post

Figure 10: A counting loop without dependencies expressed as a parameter
sweep.

ming and workflow languages, such loops are often expressed using
language constructs such as parallel-for or for-each.

2. Counting loops with dependencies between iterations where the results
from one iteration is used in the next one. This type of loop can hence
not be independently executed in parallel. Typical syntax for these
iterations is do-n and for-n.

3. Conditional loops are also referred to as non-counting iterations, tem-
porally dependent iterations, or sequential iterations. This type of
loop stops only when a certain condition is met. While, and do-while
are used to express conditional loops in most programming languages.

Algorithm 1 Counting loop without dependencies

1: for I ← 1 . . . N do

2: f(I);

As demonstrated by Ludäscher et al. [43] counting loops without de-
pendencies can be expressed using the map function from functional pro-
gramming, that is, f(x1, x2, . . . , xn)⇒ (f(x1), f(x2), . . . , f(xn)). Algorithm
1 illustrates a typical loop of this type and Figure 10 illustrates the equiva-
lent workflow construct after applying the map function. This type of loop
give rise to a high degree of concurrency as the threads of execution are
completely independent. The same concurrency is impossible to achieve for
counting loops with dependencies. The reason is that an iteration depends
on results from a previous iteration. However, as illustrated in Algorithm 2

25



f(a[2]) f(a[3]) f(a[n])...

Figure 11: A counting loop with dependencies between iterations rolled out.

and Figure 11, this type of iteration can be rolled out [1, 12] and equivalent
functionality can be provided without using iterations. Contrary to the two
types of counting loops, conditional loops cannot be expressed by rewriting
the workflow graph. Furthermore, this type of loop requires support for
conditions to test when the terminal condition is met. We remark that it
is trivial to rewrite a counting iteration as a conditional loop, whereas the
opposite is not possible in the general case.

The mechanisms to support iteration constructs by workflow languages
are similar to the ones used for conditions. In the first case, the black
box approach, the iteration is a special workflow activity with one entry
and one exit point. This is the approach taken by the extensible actor
construct in Kepler [43]. The second alternative is to have an expression-like
construct that allows the flow of control to iterate over selected activities
in the workflow. This second approach introduces cycles to the workflow
graph and creates a more complex enactment since care must be taken to
avoid infinite loops.

Iterations, essentially being a flow of control construct, are easy to sup-
port by control-driven languages, whereas the semantics of iterations are
unclear for pure data-driven languages. Mosconi et al. [49] investigates the
minimal set of control flow constructs required to support iterations in a
pure dataflow language and surveys existing implementations of iterations
for visual programming languages.

Algorithm 2 Counting loop with dependencies

1: a[1]← initial value;
2: for I ← 2 . . . N do

3: a[I]← f(a[I − 1]);

5.3.4 Collections

Some programming languages, e.g., LISP and Perl, have built-in for-each
operations that treat a collection of elements as a single entity. Similar
ideas are used in vectorizing and parallelizing compilers [4, 32]. These type

26



of data-collection operations are also supported by some workflow systems,
e.g., ASKALON [58] and the COMAD [48] implementation in Kepler. Data-
collection mechanisms are data-centric and hence can simplify the use of
dataflow style languages. However, collections do not bring additional func-
tionality beyond what is offered by parameter sweeps or iteration constructs
except the aforementioned simplification.

6 Discussion and Concluding Remarks

Here we discuss the topics covered in the previous sections with a compre-
hensive outlook. As such, while topics are ordered as they are introduced
in those sections (Sections 2–5), there are cases in which the topics overlap
section crossings.

6.1 Model of computation

The model of computation is the central concept of a workflow engine. It
can even be said that the workflow engine is merely an implementation of
a MoC. Previous results [13, 48] suggest that a dataflow approach suits the
scientific process best. This is supported by the number of solutions that
use the dataflow MoC, and the manner that these solutions can be trivially
adapted to operate in disparate scientific fields. Common to these solutions
is the use of local machines as execution environment, which appears natural
as the environment that local machines offer is well adapted for the dataflow
MoC.

This is not the case for Grid workflows. Limitations such as the lack of
control over activities, lack of support for streaming tokens between activi-
ties, and the unavoidable requirement of executing activities in a batch pro-
cessing fashion, make the use of a pure dataflow MoC unfeasible to achieve.
Control-driven approaches appear to be better adapted for this type of en-
vironment. Nevertheless, there are several projects that attempt to use
dataflow style of coordination for Grid workflows.

One way to achieve functionality similar to what the dataflow MoC offers
is to use higher level representations that are later refined to concrete activity
specifications. This is the case presented in, e.g., [8], [15], and [26]. In [15]
and [26] a concrete workflow DAG with the correct order of execution for
the activities is generated from more abstract representations, whereas in
[8] a data-driven representation is concretized into dataflow-like workflows
that are enacted on the Grid [20]. As presented in Section 4.2, CPNs can

27



also be used for representing dataflow style coordination but care must be
taken to avoid (firing) conflicts.

Interoperability between MoCs can be achieved under certain circum-
stances. The manner in which the workflow activities are implemented, in
particular the MoC underlying their design, is the key aspect that enables
the activity to operate under different MoCs. On the local side Goderis et
al. [29] provide insight on which combinations of MoCs are valid and useful.
This work offers a hierarchical approach in which MoCs, called directors,
require certain properties from the activities, called actors, that they co-
ordinate. Directors also export properties to the actors in which they are
included. The set of properties offered and required establishes a contract
and depending on how well the contract is respected it assures the compat-
ibility of actors and directors, and thus the potential compatibility among
different MoCs. Actors that completely adhere to the contract are called
domain polymorphic [18] and can be used by any director. Thus, when seek-
ing interoperability, it is important to develop the workflow activities in a
manner in which they can be controlled by different MoCs. However, this
is not always possible.

The core of the difference between local and Grid workflows is the exe-
cution environment. Interoperability between local and Grid MoCs is thus
possible only in a few cases and directly depends on the manner in which
the activities are executed on the Grid. Nevertheless, in practice this type of
interoperability is not often requested, instead, what is commonly expected
is for local workflow systems to be able to submit work to the Grid on either
a per activity or per sub-workflow basis. The latter case with aid from a
Grid workflow system.

6.2 Language issues

Section 5.1 discusses the issue of type systems and workflow languages. As
presented there, it is common for local workflows to support type information
while it is much less common for Grid workflows to support this functionality.
In the reminder of this section we revisit the various language constructs
introduced in Section 5 and investigate the extent to which the respective
mechanisms are required. For the various constructs, we look at typical
use cases and discuss whether equivalent functionality can be achieved by
different means or if the use case motivates the particular language construct
used.

28



6.2.1 State management

Variables have traditionally been used to manage state in programming
languages. This is also the case for the workflow language of Karajan [67].
However, lack of a variable construct need not imply that a language is
not Turing complete. For example, Glatard et al. demonstrate how to
implement a Turing machine in the Taverna Scufl language [28]. In this
work, the limitation of not being able to define variables (and hence manage
state) in Scufl is circumvented by performing state management inside one
of the workflow activities (implemented in Java). For Petri nets it is also
possible to handle state. For this case the state is given by the marking of
tokens in the places of the net.

6.2.2 Conditions and iterations

It appears that in order to describe and execute anything but the most trivial
process, workflow steering, and hence conditions, are required. However, the
survey by Bahsi et al. [5] shows that not all workflow systems support con-
ditions as part of their workflow language. Equivalent functionality can be
achieved by other mechanisms, as illustrated e.g., by the pre and post scripts
that are used to steer the path of execution in DAGMan [11]. This suggests
that although conditions are required for workflow steering they need not
necessarily be part of the workflow language as they can be expressed using
alternative mechanisms. Instead, at least for Grid workflows, a mechanism
to implement the testing required for conditions is more important.

The iterative refinement use case can be implemented in two ways. One
alternative is a fine-grained workflow that iterates over individual activi-
ties until some condition is satisfied. In addition to handling conditions
and testing, this approach requires the workflow language to expose a loop
mechanism. Alternatively, it is possible to have a coarse-grained workflow
in which the activities as well as the testing mechanism are all abstracted
and hidden inside a single workflow activity. In this latter approach, which
is taken e.g., by Kepler [43], conditions are not necessary for specifying
the workflow. The support for the iterative refinement use case is hence
a trade-off between (potentially too large) granularity, and thus possible
limited parallelism, and added complexity of the workflow language.

There are two types of failures occurring frequently in workflows sys-
tems. In the first type, infrastructure problems such as network failures,
power outages, temporarily unavailable storages or databases, insufficient
disk space, incorrect hardware, etc. cause an activity or a file transfer to

29



fail. For this case a lower level tool would ideally ensures fault tolerance, e.g.,
by restarting interrupted file transfers, resubmitting failed jobs to alterna-
tive machines, etc. These types of mechanisms to recover from infrastructure
problems are known as implicit fault management [33]. Such a recovering in-
frastructure removes the need for the user to manually, through conditions,
encode alternative execution paths for the workflow to follow upon failures.
In contrast the manual alternative quickly becomes unfeasible due to the
large number of potential error sources. In the second type of failure the
workflow enactment fails due to errors in the workflow itself. These errors
can be faulty descriptions of activities, incompatible messages exchanged
between activities, unintended deadlocks in the workflow graph (e.g., circu-
lar data dependencies), etc. For this case conditions are of limited use as
the errors in the workflow are detected only during enactment whereas con-
ditions must be added at design time. Manual inspection and modification
of the workflow is typically required to solve this type of problems.

Similar to the case of conditions, a repetition mechanism is often re-
quired to express complex workflows. The mechanism need not be an it-
eration construct in the language, as it is commonly known that recursion
offers the same functionality. The latter approach is taken by e.g., Condor
DAGMan [11] and JOpera [55]. Another example of a repetition with no
explicit construct is to use parameter sweeps for implementing loops with-
out dependencies. For this case, a mechanism for distributing data, e.g.,
data collections, to the different threads of execution (each operating on a
different iteration from the loop) often facilitates this process. As far as an
iteration mechanism is required, there is always the possibility of using a
single application that hides the iterative structure of the workflow. How-
ever, care must be taken in order not to limit potential concurrency and
thus reduce the performance of the workflow.

6.3 Execution environment interoperability

It is difficult to address the issue of execution interoperability for local work-
flows as workflow activities are developed specifically for a particular system.
These activities are dependent on libraries that offer a common execution
and communication environment for operating within a particular system.
It is not easy to decouple the functionality of the activity from the opera-
tional framework. Instead, in many cases, the targeted functionality must
be re-implemented if it is required by other systems.

Web services are sometimes presented as the silver bullet of interoper-
ability for distributed computing use cases. PGrade [39] and Taverna [52]

30



are well known examples of service-based solutions. Yet, using Web services
only partially solves the interoperability problem, namely how to in a proto-
col and programming language independent manner invoke a capability (an
operation) offered by a remote entity (a service). Issues related to the coor-
dination of these activities, i.e., to the workflows, including workflow MoC
and workflow language are not addressed. Standardization efforts for web
service coordination languages, e.g., BPEL [37], have been found unsuitable
for scientific workflows [6].

In the Grid, execution level interoperability often means being able to
execute activities in resources that use different Grid middlewares. This
type of interoperability is a well studied problem with several solutions.
For example, in previous work we have show how this can be achieved by
decoupling the submission of activities from the control of dependencies in a
Grid workflow engine [20]. Then, by using a chain-of-responsibility pattern
the correct middleware for executing each activity is selected at run time.
A similar solution but at the activity level is presented in [21]. A more
specialized solution that also operates with different middlewares and can
work with groups of activities while offering fault tolerance is provided by
our Grid Job Management Framework (GJMF) [19]. Similar approaches to
workflow execution interoperability are proposed by P-Grade [39].

6.4 Granularity concerns

As we have seen from the discussions of conditions and iterations, the granu-
larity of workflow activities affects the performance as well as the complexity
of workflows. Too fine granularity can limit the performance due to a higher
overhead in Grid interactions. Conversely, having too coarse-grained activ-
ities can also reduce workflow performance, in this case due to a reduction
in concurrency as the problem can no longer be partitioned into smaller
chunks that can operate independently without synchronization. Other is-
sues in which granularity is of concern include the Grid interaction style and
whether sub-workflows or individual activities are the basic means of sub-
mitting work to the Grid. In general, there is a trade-off between granularity
on one hand and complexity and performance on the other. Nevertheless,
varying the granularity of activities can be beneficial when striving for in-
teroperability between systems.

31



6.5 Concluding remarks

In this work we give a comprehensive presentation of the different problems
that directly affect interoperability among scientific workflows. Part of our
results is the introduction of three dimensions for addressing interoperability
issues. The degree of coupling between these dimensions (MoC, language,
and execution environment) has interesting consequences. For example, an
important lesson learned in our work with a middleware independent Grid
workflow engine [20] is that a complete decoupling between execution envi-
ronment (i.e., Grid middleware and job description language) and workflow
language improves portability and interoperability of the engine, but also
makes workflow design more tedious and error prone, as the workflow activi-
ties, viewed as black boxes by the enactment engine, are completely untyped.
There hence exists a trade-off between usability and interoperability.

A similar trade-off also exists between execution environments and MoCs.
For example, in essence, the goals of local and Grid workflow MoCs differ
significantly. For local workflows, users are better able to express their so-
lutions using MoCs closer to the problem space, as illustrated by the many
different dataflow style solutions found for local workflows. However, in
these solutions activities are tightly coupled to a particular workflow system
and it is not easy to reuse those activities in a different one. On the other
hand, in Grid workflows it is simple to provide interoperability at the mid-
dleware level. Yet it is harder to specify Grid workflows as, e.g., conditions
and iterations are not always available. From our previous discussion we
can argue that in local workflows it is better to interoperate at the workflow
level whereas in Grid workflows is preferred to do so at the activity level.
Furthermore, from the execution environment dimension, our findings sup-
port the use of hierarchical approaches that consider sub-workflows (and all
activities) as black boxes.

At the workflow language level a more important trade-off is that be-
tween usability and complexity on one hand and potential concurrency (and
thus performance) on the other. This trade-off appears in any decision for
varying the granularity of activities. The most illustrative case is the dif-
ferent ways in which conditions and iterations are implemented by different
systems. While it is possible to translate between languages, differences in
implementation details may lead to a tedious processes, performed in ad-hoc
ways, and not prone to automation.

32



Acknowledgments

We are grateful to Frank Drewes and Johanna Högberg for valuable feedback
on theoretical aspects of computation. We are also grateful to P-O Östberg
for fruitful discussions on general aspects of workflow systems and on work-
flow language constructs. We thank Ken Klingenstein and Dennis Gannon,
organizers of the 2007 NSF/Mellon Workshop on Scientific and Scholarly
Workflow, as well as the participants of this important meeting that gave
us the opportunity for discussing relevant aspects of interoperability. This
research was conducted using the resources of the High Performance Com-
puting Center North (HPC2N). Financial support has been provided by The
Swedish Research Council (VR) under contract 621-2005-3667.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley, 1986.

[2] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
A. S. McGough, D. Pulsipher, and A. Savva. Job Sub-
mission Description Language (JSDL) specification, version 1.0.
http://www.ogf.org/documents/GFD.136.pdf, February 2009.

[3] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski. Toward a common component architecture
for high-performance scientific computing. In The Eighth International
Symposium on High Performance Distributed Computing, pages 115–
124, 1999.

[4] D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler transformations
for high-performance computing. ACM Computing Surveys (CSUR),
26(4):345–420, 1994.

[5] E.M. Bahsi, E. Ceyhan, and T. Kosar. Conditional workflow manage-
ment: A survey and analysis. Scientific Programming, 15(4):283–297,
2007.

[6] R. Barga and D. Gannon. Scientific versus business workflows. In
I. Taylor et al., editors, Workflows for e-Science, pages 9–18. Springer-
Verlag, 2007.

33



[7] J. Bentley. Programming pearls: little languages. Communications of
the ACM, 29(8):711–721, 1986.

[8] A-C Berglund, E. Elmroth, F. Hernández, B. Sandman, and J. Tords-
son. Combining local and Grid resources in scientific workflows (for
Bioinformatics). In 9th International Workshop, PARA 2008 (ac-
cepted). Lecture Notes in Computer Science, Springer-Verlag, 2009.

[9] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson,
M. Shields, I. Taylor, and I. Wang. Programming scientific and dis-
tributed workflow with Triana services. Concurrency Computat.: Pract.
Exper., 18(10):1021–1037, 2006.

[10] CoreGRID. Deliverable D.PM.04 basic features of the
grid component model. Beta working paper series, wp 47,
CoreGRID - Network of Excellence, 2007. Available at:
www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf.

[11] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger. Workflow
management in Condor. In I. Taylor et al., editors, Workflows for e-
Science, pages 357–375. Springer-Verlag, 2007.

[12] W.R. Cowell and C.P. Thompson. Transforming FORTRAN DO loops
to improve performance on vector architectures. ACM Transactions on
Mathematical Software (TOMS), 12(4):324–353, 1986.

[13] E. Deelman. Looking into the future of workflows: the challenges ahead.
In I. Taylor et al., editors, Workflows for e-Science, pages 475–481.
Springer-Verlag, 2007.

[14] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and
e-science: An overview of workflow system features and capabilities.
Future Generation Computer Systems, 25(5):528–540, 2009.

[15] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and
D.S. Katz. Pegasus: a framework for mapping complex scientific work-
flows onto distributed systems. Scientific Programming, 13(3):219–237,
2005.

[16] T. Delaitre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Winter, and
P. Kacsuk. GEMLCA: Running legacy code applications as grid ser-
vices. J. Grid Computing, 3(1–2):75–90, 2005.

34



[17] D. Erwin (editor). UNICORE plus final report.
www.unicore.eu/documentation/files/erwin-2003-UPF.pdf, visited
December 2008.

[18] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity – the Ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, 2003.

[19] E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P-O. Östberg.
Designing general, composable, and middleware-independent Grid in-
frastructure tools for multi-tiered job management. In T. Priol and
M. Vaneschi, editors, Towards Next Generation Grids, pages 175–184.
Springer-Verlag, 2007.

[20] E. Elmroth, F. Hernández, and J. Tordsson. A light-weight Grid work-
flow execution engine enabling client and middleware independence. In
R. Wyrzykowski et al., editors, Parallel Processing and Applied Mathe-
matics. 7th Int. Conference, PPAM 2007, pages 259–270. Lecture notes
in Computer Science 4967, Springer-Verlag, 2008.

[21] E. Elmroth and J. Tordsson. A standards-based Grid resource brokering
service supporting advance reservations, coallocation and cross-Grid in-
teroperability. Concurrency Computat.: Pract. Exper. (accepted), 2009.

[22] W. Emmerich, B. Butchart, and L. Chen. Grid service orchestration
using the business process execution language (BPEL). J. Grid Com-
puting, 3(3–4):238–304, 2005.

[23] S.D.I. Fernando, D.A. Creager, and A.C. Simpson. Towards build-time
interoperability of workflow definition languages. In V. Negru et al.,
editors, SYNASC 2007, 9th international symposium on symbolic and
numberic algorithms for scientific computing, pages 525–532, 2007.

[24] International Organization for Standardization. ISO/IEC 2382-1 infor-
mation technology - vocabulary - part 1: Fundamental terms, 1993.

[25] I. Foster. Globus toolkit version 4: Software for service-oriented sys-
tems. In H. Jin et al., editors, IFIP International Conference on Net-
work and Parallel Computing, pages 2–13. Lecture notes in Computer
Science 3779, Springer-Verlag, 2005.

[26] Y. Gil. Workflow composition: semantic representations for flexible
automation. In I. Taylor et al., editors, Workflows for e-Science, pages
244–257. Springer-Verlag, 2007.

35



[27] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers. Examining the challenges
of scientific workflows. IEEE Computer, 40(12):24–31, 2007.

[28] T. Glatard and J. Montagnat. Implementation of Turing machines with
the Scufl data-flow language. In Eighth IEEE International Symposium
on Cluster Computing and the Grid, pages 663–668. IEEE, 2008.

[29] A. Goderis, C. Brooks, I. Altintas, E. Lee, and C. Goble. Heterogeneous
composition of models of computation. Future Generation Computer
Systems, 25(5):552–560, 2009.

[30] Z. Guan, F. Hernández, P. Bangalore, J. Gray, A. Skjellum,
V. Velusamy, and Y. Liu. Grid-Flow: a Grid-enabled scientific work-
flow system with a petri-net-based interface. Concurrency Computat.:
Pract. Exper., 18(10):1115–1140, 2006.

[31] F. Hernández, P. Bangalore, J. Gray, Z. Guan, and K. Reilly. GAUGE:
Grid Automation and Generative Environment. Concurrency Compu-
tat.: Pract. Exper., 18(10):1293–1316, 2006.

[32] W.D. Hillis and G.L Steele. Data parallel algorithms. Communications
of the ACM, 29(12):1170–1183, 1986.

[33] A. Hoheisel. User tools and languages for graph-based Grid workflows.
Concurrency Computat. Pract. Exper., 18(10):1001–1013, 2006.

[34] A. Hoheisel and M. Alt. Petri nets. In I. Taylor et al., editors, Workflows
for e-Science, pages 190–207. Springer-Verlag, 2007.

[35] A. Jantsch and I. Sander. Models of computation and languages for em-
bedded system design. IEEE Proc.-Comput. Digit. Tech., 152(2):114–
129, March 2005.

[36] K. Jensen. An introduction to the practical use of coloured Petri nets.
In W. Reisig and G. Rozenberg, editors, Lectures on Petri Nets II:
Applications, pages 237–292. Lecture Notes in Computer Science 1492,
Springer-Verlag, 1998.

[37] D. Jordan and J. Evdemon (chairs). Web Services Busi-
ness Process Execution Language version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf, September 2008.

36



[38] P. Kacsuk, G. Dozsa, J. Kovcs, R. Lovas, N. Podhorszki, Z. Balaton,
and G. Gombas. P-GRADE: a grid programming environment. J. Grid
Computing, 1(2):171–197, 2003.

[39] P. Kacsuk and G. Sipos. Multi-grid and multi-user workflows in the
P-GRADE Grid portal. J. Grid Computing, 3(3-4):221–238, 2006.

[40] K.M. Kavi, B.P. Buckles, and U.N. Bhat. Isomorphisms between
petri nets and dataflow graphs. IEEE Trans. on Software Engineer-
ing, 13(10):1127–1134, 1987.

[41] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured
workflow modelling. In B. Wangler and L. Bergman, editors, Advanced
Information Systems Engineering, Proceedings of the 12th International
Conference, CAiSE 2000, pages 431–445. Lecture Notes in Computer
Science 1789, Springer-Verlag, 2000.

[42] F. Leymann. Choreography for the grid: towards fitting bpel to
the resource framework. Concurrency Computat.: Pract. Exper.,
18(10):1201–1217, 2006.

[43] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E.A. Leen, J. Tao, and Y. Zhao. Scientific workflow management
and the Kepler system. Concurrency Computat.: Pract. Exper.,
18(10):1039–1065, 2006.

[44] Michael Mair, Jun Qin, Marek Wieczorek, and Thomas Fahringer.
Workflow conversion and processing in the ASKALON grid environ-
ment. In 2nd Austrian Grid Symposium, pages 67–80. Österreichische
Computer Gesellschaft, 2006.

[45] M.W. Margo, K. Yoshimoto, P. Kovatch, and P. Andrews. Impact
of reservations on production job scheduling. In E. Frachtenberg
and U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel
Processing, pages 116–131. Lecture Notes in Computer Science 4942,
Springer-Verlag, 2008.

[46] C. Mateos, A. Zunino, and M. Campo. A survey on approaches to
gridification. Softw. Pract. Exper., 38(5):523–556, 2008.

[47] A.S. McGough, W. Lee, J. Cohen, E. Katsiri, and J. Darlington. ICENI.
In I. Taylor et al., editors, Workflows for e-Science, pages 395–415.
Springer-Verlag, 2007.

37



[48] T. McPhillips, S. Bowers, D. Zinn, and B. Ludäescher. Scientific work-
flow design for mere mortals. Future Generation Computer Systems,
25(5):541–551, 2009.

[49] M. Mosconi and M. Porta. Iteration constucts in data-flow visual pro-
gramming languages. Computer languages, 26:67–104, 2000.

[50] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, April 1989.

[51] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M.R. Pocock, A. Wipat, and P. Li. Taverna:
A tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045–3054, 2004.

[52] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M.R. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna: Lessons
in creating a workflow environment for the life sciences. Concurrency
Computat.: Pract. Exper., 18(10):1067–1100, 2006.

[53] NSF/Mellon Workshop on Scientific and Scholarly Work-
flow. Improving interoperability, sustainability and plat-
form convergence in scientific and scholarly workflow.
https://spaces.internet2.edu/display/SciSchWorkflow/Home, Vis-
ited August 2008.

[54] S.G. Parker, D.M. Weinstein, and C.R. Johnson. The SCIRun compu-
tational steering software system. In E. Arge et al., editors, Modern
Software Tools in Scientific Computing, pages 1–40. Birkhauser press,
1997.

[55] C. Pautasso and G. Alonso. The JOpera visual composition language.
Journal of visual languages and computing, 16(1–2):119–152, 2005.

[56] C. Pautasso and G. Alonso. Parallel computing patterns for grid work-
flows. In Proc. of the HPDC2006 Workshop on Workflows in Support
of Large-Scale Science (WORKS06) Paris France, June 2006.

[57] K. Plankensteiner, R. Prodan, T. Fahringer Attila Kertész, and
P. Kacsuk. Fault-tolerant behavior in state-of-the-art Grid work-
flow management systems. Technical report, CoreGRID, 2007.
http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-
0091.pdf, August 2008.

38



[58] J. Qin and T. Fahringer. Advanced data flow support for scientific grid
workflow applications. In Proceedings of the ACM/IEEE Conference
on Supercomputing SC 2007, pages 1–12. ACM, 2007.

[59] H. Reekie. Realtime signal processing: dataflow, visual, and functional
programming. PhD thesis, University of Thechnology at Sidney in the
School of Electrical Engineering, September 1995.

[60] N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
newYAWL:designing a workflow system using coloured Petri nets. In
N. Sidorova et al., editors, Proceedings of the International Workshop
on Petri Nets and Distributed Systems (PNDS’08), pages 67–84, 2008.

[61] M. Siddiqui, A. Villazon, and T. Fahringer. Grid capacity planning
with negotiation-based advance reservation for optimized qos. In Pro-
ceedings of the ACM/IEEE Conference on Supercomputing SC 2006.
IEEE, 2006.

[62] W. Smith, I. Foster, and V. Taylor. Scheduling with advance reserva-
tions. In 14th International Parallel and Distributed Processing Sym-
posium, pages 127–132. IEEE, 2000.

[63] Q. Snell, M. Clement, D. Jackson, and C. Gregory. The performance
impact of advance reservation meta-scheduling. In D.G. Feitelson and
L. Rudolph, editors, Job Scheduling Strategies for Parallel Processing:
IPDPS 2000 Workshop, JSSPP 2000, pages 137–153. Lecture Notes in
Computer Science 1911, Springer-Verlag, 2000.

[64] I. Taylor, M. Shields, I. Wang, and A. Harrison. The Triana workflow
environment: architecture and applications. In I. Taylor et al., editors,
Workflows for e-Science, pages 320–339. Springer-Verlag, 2007.

[65] W.M.P. van der Aalst and A.H.M. Hofstede. YAWL: Yet another work-
flow language. Information Systems, 30(4):245–275, 2005.

[66] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–
51, 2003.

[67] G. von Laszewski and M. Hategan. Workflow concepts of the Java CoG
Kit. J. Grid Computing, 3(3–4):239–258, 2005.

39



[68] C.Y. Wong, T.S. Dillon, and K.E. Forward. Analysis of dataflow pro-
gram graphs. In IEEE International Symposium on Circuits and Sys-
tems, ISCAS ’98, volume 2, pages 1045–1048. IEEE, 1988.

[69] Y. Zhao, M. Wilde, and I. Foster. Virtual data language: A typed
workflow notation for diversely structured scientific data. In I. Taylor
et al., editors, Workflows for e-Science, pages 258–275. Springer-Verlag,
2007.

[70] Z. Zhao, S. Booms, A. Belloum, C. de Laat, and B. Hertzberger. VLE-
WFBus: a scientific workflow bus for multi e-science domains. In 2nd
IEEE international conference on e-Science and Grid computing, pages
11–19, 2006.

40


