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Abstract

Using a unifying terminology and notation an introduction to the theory of stratification
for orbits and bundles of matrices, matrix pencils and system pencils with applications
in systems and control is presented. Canonical forms of such orbits and bundles reveal
the important system characteristics of the models under investigation. A stratification
provides the qualitative information of which canonical structures are near each other
in the sense of small perturbations. We discuss how fundamental concepts like control-
lability and observability of a system can be studied with the use of the stratification
theory. Important results are presented in the form of the closure and cover relations
for controllability and observability pairs. Furthermore, different canonical forms are
considered from which we can derive the characteristics of a system. Specifically, we
discuss how the Kronecker canonical form is related to the Brunovsky canonical form
and its generalizations. Concepts and results are illustrated with several examples
throughout the presentation.
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1 Introduction

To study how linear state-space systems and models behave under small perturbations is a
critical task, since computing the canonical structure of such a system is an ill-posed problem
and is therefore sensitive to small perturbations. The canonical structure is, for example,
of interest when computing the controllability and observability characteristics of a linear
system.

We exemplify the problems that can arise by a steering system of an airplane. For such
critical systems it is crucial that the system is controllable in all possible states. What we
mean by that is, loosely speaking, that the steering should always (in any situation) react as
predicted and should not collapse in an uncontrollable state so that the airplane no longer
can be controlled. In a given time, the computed canonical structure of the steering system
may indicate that we can control all rudders of the airplane. However, it may be so that a
particular unexpected reaction from the pilot results in that one of the components in the
steering systems no longer is controllable. Especially, it is important to know the canonical
structure of these uncontrollable systems and how near they are our controllable system.
Most likely, such uncontrollable systems are almost impossible to reach in practice.

In this paper, we consider linear time-invariant, finite dimensional systems (LTI systems)
which in continuous time are represented as a state-space model by a system of differential
equations

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1.1)

where A ∈ Cn×n is the system (state) matrix, B ∈ Cn×m is the input (control) matrix,
C ∈ Cp×n is the output matrix, and D ∈ Cp×m is the feedforward matrix. Moreover, x(t)
is the state vector, u(t) is the input vector, and y(t) is the output vector. We also consider
the generalized state-space system (or descriptor system)

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1.2)

where E can be singular. In the most general case, A and E can be rectangular matrices.
However, in most cases we assume that they are square and E is nonsingular, and the
generalized state-space system can (in theory) be transformed into the state-space form
(1.1). In short form, the state-space system (1.1) is represented by the quadruple of matrices
(A,B,C,D), and the generalized state-space system (1.2) by the 5-tuple (E, A,B, C,D).

An LTI system can also be represented and analyzed in terms of a general matrix pencil
G − λH, where G and H are mp × np complex matrices and λ ∈ C. A matrix pencil
associated with a state-space system (1.1) is called a system pencil S − λT and has the form

S(λ) = S − λT =
[
A B
C D

]
− λ

[
I 0
0 0

]
, (1.3)

where S and T are of size (n + p)× (n + m).
We also consider the controllability pair (A,B) and the observability pair (A,C), asso-

ciated with the particular systems

ẋ(t) = Ax(t) + Bu(t), and
ẋ(t) = Ax(t),
y(t) = Cx(t),
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respectively, of (1.1). The corresponding system pencils for the controllability and observ-
ability pairs are

SC(λ) =
[
A B

]
− λ

[
In 0

]
, (1.4)

and

SO(λ) =
[
A
C

]
− λ

[
In

0

]
. (1.5)

These systems can also appear in generalized versions with the identity matrix In replaced
by E as in (1.2). As the names indicate, the controllability and observability characteristics
of an LTI system are revealed by the matrix pairs (A,B) and (A,C), respectively.

An LTI system (1.1) is said to be controllable if there exists an input signal u(t), t0 ≤
t ≤ tf , that takes every state variable from an initial state x(t0) to a desired final state x(tf)
in finite time. Otherwise it is said to be uncontrollable. The dual concept of controllability
is observability. System (1.1) is said to be observable if it is possible to find the initial state
x(t0) from the input signal u(t) and the output signal y(t) measured over a finite interval
t0 ≤ t ≤ tf . Otherwise it is said to be unobservable.

Controllability and observability are two fundamental concepts in systems and control
theory. Other fundamental concepts are for example poles, zeros, reachability, stability,
and detectability. These system characteristics are reveled from the canonical structure
information of the appropriate system pencil. An overview of canonical forms and structure
information for matrices, matrix pencils, and system pencils constitute one major part of
the paper. For an introduction to systems and control theory, we refer to [1, 17, 18, 56, 95,
97, 100] where also numerical aspects are discussed.

The next major part study how small perturbations can change the canonical struc-
ture of a matrix A, a matrix pencil G − λH, and for independent system pencils S − λT
associated with a controllability pair (A,B) and a observability pair (A,C), respectively.
A stratification provides the qualitative information of which canonical structures are near
each other in the sense of small perturbations [30, 31, 36, 72, 75]. To give a comprehensive
review of existing results for stratification of orbits and bundles is one major contribution of
this paper. The focus is on the stratification of matrices, matrix pencils, and matrix pairs.
We present the stratification theory and its theoretical background, illustrated with several
examples [30, 31]. Several other people have worked on the theory of stratifications and
similar topics, e.g., see [7, 44, 59, 65, 96] and references there in. Furthermore, the related
topic distance to uncontrollability [94] has been studied in, e.g., [9, 30, 32, 37, 58], and more
recently in [14, 15, 29, 35, 61, 62, 88].

The stratification is the closure hierarchy of matrix (and matrix pencil) orbits and bun-
dles of canonical structures. The hierarchy is obtained from the closure and cover relations
of orbits and bundles, where the cover relations guarantee that two structures are nearest
neighbours in the closure hierarchy. For example, a matrix orbit is the manifold of all simi-
lar matrices, and a bundle is the union of all orbits with the same canonical form but with
unspecified eigenvalues [2]. The closure hierarchies can be analyzed and illustrated with the
software tool StratiGraph [34, 70, 73, 74].

The rest of the paper is organized as follows. In Section 2, we review different canonical
forms for matrices, matrix pencils and system pencils. These are the Jordan canonical
form (JCF), Kronecker canonical form (KCF) and Brunovsky canonical form (BCF) with
generalizations. Especially, in Section 2.7 we derive the permutation matrices that take a
matrix pencil in Kronecker canonical form to (generalized) Brunovsky canonical form. In
Section 3.1, we discuss existing numerical stable methods to compute the canonical structure
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information for matrices, matrix pencils and system pencils, using staircase-type algorithms.
The following and related Section 3.2, considers the computation of the controllable and
unobservable subspaces of a system. In Section 4, the geometry of the tangent and normal
spaces of the orbits of matrices, matrix pencils, and system pencils, are considered. In the
main section, Section 5, we present the theory of stratification of matrices, matrix pencils,
and matrix pairs. In Section 5.1, we give a brief introduction to integer partitions and coin
moves, which are used to define the stratification rules. In Section 5.3, the stratification rules
for matrices and matrix pencils are presented and the stratification rules for matrix pairs
are derived. Section 5 is ended with an extensive example illustrating the stratification of a
state-space system. Finally, we give some concluding remarks in Section 6. As appendices,
we present some important parts of the paper in a comprehensive and compact form. A
summarizes the explicit expressions to compute the codimensions of orbits and bundles, and
in B the stratification rules for matrices, matrix pencils and matrix pairs are summed up.
Finally, we have summarized the most important notation used in this paper in C.
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2 Canonical forms and invariants

In linear algebra, it is a well known fact that a matrix (or matrix pencil) can be transformed
to different canonical forms in terms of similarity (or equivalence) transformations. In Sec-
tion 2.1, we introduce the Schur form and the Jordan canonical form for matrices, and in
Section 2.2 the Kronecker canonical form for matrix pencils is presented. In Section 2.5, we
summarize the most common types of transformations used in systems and control theory.
Then we introduce the Brunovsky canonical form with generalizations for system pencils in
Section 2.6.

We discuss different representations and invariants for matrices, and matrix pencils in
Sections 2.3 and 2.4. Moreover, in Section 2.7 we prove that it is possible with two permuta-
tion matrices to transform a matrix pencil in Kronecker canonical form to a corresponding
system pencil in (generalized) Brunovsky canonical form, and vice versa.

2.1 Schur form and Jordan canonical form

For square matrices there exist two fundamental canonical forms, the Schur form and the
Jordan canonical form (JCF) (also called Jordan normal form) [43, 55]. For many applica-
tions it is enough to compute the Schur form, which is both more numerically stable and less
expensive to compute than JCF. To get the Schur form, in the complex case, we transform a
matrix A to a similar upper triangular matrix such that Ã = QAQH with Q unitary, where
the eigenvalues show up on the diagonal. In the real case, the matrix Ã is upper quasi-
triangular, i.e., a block upper triangular matrix with 1-by-1 diagonal blocks corresponding
to real eigenvalues and 2-by-2 blocks on the diagonal associated with complex conjugate
pairs of eigenvalues.

For our purpose the Jordan canonical form is more adequate. If there exists a nonsingular
matrix P such that Ã = PAP−1, then the matrices A and Ã are said to be similar1. For
any matrix A ∈ Cn×n there exists a similarity transformation such that

PAP−1 = Ã = diag(J(µ1), J(µ2), . . . , J(µq)),

and

J(µi) = diag(Jh1(µi), Jh2(µi), . . . , Jhgi
(µi)), h1 ≥ · · · ≥ hgi

≥ 1,

where Jh1(µi), . . . , Jhgi
(µi) are Jordan blocks for matrices of size hk × hk with eigenvalue

µi, and each Jordan block is defined as

Jhk
(µi) =


µi 1

µi
. . .
. . . 1

µi

 ,

where left-out elements are zeros. The block diagonal matrix Ã is now said to be in Jordan
canonical form with q ≤ n distinct (possibly multiple) eigenvalues.

The algebraic multiplicity ai of the eigenvalue µi is the multiplicity of µi as a root of
the characteristic equation det(A− λI) = 0. The geometric multiplicity gi is the number of

1Notice, in order to conform with what is typically used in the matrix theory of state-space transforma-
tions, the transformation matrix applied to the right hand side of a matrix in similarity and equivalence
transformations is expressed as a matrix inverse.
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linearly independent eigenvectors associated with µi. We remark that ai = h1 + · · · + hgi

and that gi ≤ ai corresponds to the number of Jordan blocks associated with the eigenvalue
µi.

2.2 Kronecker canonical form

For general matrix pencils G − λH of size mp × np we use the Kronecker canonical form
(KCF), which is a generalization of JCF to general matrix pencils [43]. Two matrix pencils
G − λH and G̃ − λH̃ are strictly equivalent1 if there exist two nonsingular matrices U and
V such that G̃ − λH̃ = U(G − λH)V −1. Any matrix pencil can be transformed into KCF
in terms of an equivalence transformation such that

U(G − λH)V −1

= diag(Lε1 , . . . , Lεr0
, J(µ1), . . . , J(µq), Ns1 , . . . , Nsg∞

, LT
η1

, . . . , LT
ηl0

),
(2.6)

where J(µi) = diag(Jh1(µi), . . . , Jhgi
(µi)), i = 1, . . . , q. The blocks Jhk

(µi) are hk × hk

Jordan blocks for matrix pencils associated with each distinct finite eigenvalue µi and the
blocks Nsk

are sk×sk Jordan blocks for matrix pencils associated with the infinite eigenvalue.
Moreover, gi is the geometric multiplicity of the finite eigenvalues µi and g∞ is the geometric
multiplicity of the infinite eigenvalue. These two types of blocks constitute the regular part
of a matrix pencil and are defined by

Jhk
(µi) =


µi 1

. . . . . .
. . . 1

µi

− λ


1 0

. . . . . .
. . . 0

1

 , (2.7)

and

Nsk
=


1 0

. . . . . .
. . . 0

1

− λ


0 1

. . . . . .
. . . 1

0

 . (2.8)

If mp 6= np or det (G − λH) ≡ 0 for all λ ∈ C, then the matrix pencil also includes a singular
part and we say that the matrix pencil is singular. The singular part of the KCF consists
of the r0 right singular blocks Lεk

of size εk × (εk + 1) and the l0 left singular blocks LT
ηk

of
size (ηk + 1)× ηk, defined as

Lεk
=

0 1
. . . . . .

0 1

− λ

1 0
. . . . . .

1 0

 , (2.9)

and

LT
ηk

=


0
1

. . .

. . . 0
1

− λ


1
0

. . .

. . . 1
0

 . (2.10)
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An L0 and an LT
0 block are of size 0×1 and 1×0, respectively, and each of them contributes

to a column or row of zeros (see Example 1). The size of a matrix pencil is equal the sum
of the sizes of all blocks in its KCF:

mp =
r0∑

j=1

εj +
l0∑

j=1

(ηj + 1) +
q∑

i=1

gi∑
j=1

h
(i)
j +

g∞∑
j=1

sj , and

np = mp − l0 + r0

where h
(i)
j are the sizes of the Jordan blocks associated with eigenvalue µi, i = 1, . . . , q.

For consistency reasons, the L blocks always appear before the LT blocks in the KCF.
Apart from that the order of the blocks is arbitrary. Moreover, a general matrix pencil may
only consist of a subset of the different types of canonical blocks mentioned above. For
example, a regular pencil (det (G − λH) 6≡ 0, except when λ is an eigenvalue) only has J
and N blocks.

The transformation matrices used to compute the Kronecker canonical form can be very
ill-conditioned, therefore it is more appropriate to compute a generalized Schur-staircase
form of the matrix pencil, see Section 3.1. Notably, if the KCF is computed the elements
represented by ones in the blocks Jk(µi), Nk, Lk and LT

k are not forced to be ones, instead
we just get them as nonzero entries. Moreover, the eigenvalues µi are computed as pairs
of values (αi, βi), αi 6= 0 and/or βi 6= 0, for i = 1, . . . , q. If βi 6= 0, for some i, then
the eigenvalue µi = αi/βi, and if αi 6= 0 and βi = 0 then µi is an infinite eigenvalue.
In Section 3.1, we review how the eigenvalues are computed in practice (finite precision
arithmetic).

2.3 Block structure notation

Both for matrices and matrix pencils we often use a compact notation, which we refer to
as block structure notation, instead of expressing their canonical forms in matrix form. In
general, a block diagonal matrix A with b blocks A1, A2, . . . , Ab can be represented as a
direct sum

A ≡ A1 ⊕A2 ⊕ · · · ⊕Ab ≡
b⊕

k=1

Ak.

Equation (2.6) can now compactly be rewritten as

U(G − λH)V −1 ≡ L⊕ LT ⊕ J(µ1)⊕ · · · ⊕ J(µq)⊕ N,

where

L =
r0⊕

j=1

Lεj
, LT =

l0⊕
j=1

LT
ηj

,

J(µi) =
gi⊕

j=1

Jhj (µi), and N =
g∞⊕
j=1

Nsj .

Notably, in the block structure notation we reorder the blocks such that the LT blocks
appear directly after the L blocks.
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Example 1

Consider a matrix pencil with two L1 blocks, one LT
0 block and one J2(α) block.

The KCF of this matrix pencil is in block structure notation written as 2L1 ⊕
LT

0 ⊕ J2(α). The corresponding representation in matrix form is

G − λH = diag(L1, L1, J2(α), LT
0 )

=



0 1
0 1

α 1
0 α


− λ



1 0
1 0

1 0
0 1



=



−λ 1
−λ 1

α− λ 1

0 α− λ


.

2.4 Invariants of matrices and matrix pencils

The matrix pencil characteristics can equivalently be expressed in terms of column/row
minimal indices and finite/infinite elementary divisors. It follows that two matrix pencils
are strictly equivalent if and only if they have the same minimal indices and elementary
divisors or, equivalently, if they have the same KCF, i.e., the same L, LT , J and N blocks
[43]. Before defining these invariants, we introduce integer partitions which are used to
represent the invariants.

An integer partition κ = (κ1, κ2, . . .) of an integer K is a monotonically decreasing
sequence of integers (κ1 ≥ κ2 ≥ · · · ≥ 0) where κ1 +κ2 + · · · = K. The union τ = (τ1, τ2, . . .)
of two integer partitions κ and ν is defined as τ = κ ∪ ν where τ1 ≥ τ2 ≥ · · · , i.e.,
τ is composed from all elements of κ and ν in such order that τ becomes monotonically
decreasing. For example, the union of (5, 4, 4, 1) and (4, 2) is (5, 4, 4, 4, 2, 1). The difference
τ of two integer partitions κ and ν is defined as τ = κ \ ν, where τ includes the elements
from κ except elements existing in both κ and ν, which are removed. Notably, elements
in ν not appearing in κ do not contribute to the difference. For example, the difference
(5, 4, 4, 1) \ (4, 2) is (5, 4, 1). Furthermore, the conjugate partition of κ is defined as ν =
conj(κ), where νi is equal to the number of integers in κ that is equal or greater than i, for
i = 1, 2, . . .. For example, the conjugate of (4, 4, 2, 1) is (4, 3, 2, 2).

The normal rank of G − λH, nrk (G − λH), is the order of the matrix pencil’s greatest
minor different from polynomial zero [42]. Given the KCF of an mp × np matrix pencil, we
have

nrk (G − λH) = np − r0 = mp − l0,
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where r0 and l0 are the number of right and left singular blocks, respectively. The null space
of an m×n matrix A is denoted by null(A), and is defined by null(A) = {x ∈ Cn | Ax = 0}
[55]. The complementary space to null(AH) is the range of A, denoted by ran(A), and is
defined by ran(A) = {y ∈ Cm | y = Ax for some x ∈ Cn} [55]. In some literature, the null
space and the range of A are called the kernel and the image of A, respectively.

The four invariants, column/row minimal indices and finite/infinite elementary divisors,
are defined as follows [43]:

(i) The column (right) minimal indices are ε = (ε1, . . . , εr0), where

ε1 ≥ ε2 ≥ · · · ≥ εr1 > εr1+1 = · · · = εr0 = 0,

define the sizes of the Lεk
blocks, εk × (εk +1), and r0 = np−nrk (G − λH). The conjugate

partition r = (r1, . . . , rε1 , 0, . . .) of ε defines the r-numbers of the matrix pencil. From these
we define the integer partition R(G − λH) = (r0) ∪ (r1, . . . , rε1), which in Section 5 is used
to characterize the sizes of the L blocks. If there are no εk = 0 (i.e., no L0 blocks) it follows
that r0 = r1 and ε = (ε1, . . . , εr1), and if there are no column minimal indices then ε = ∅
and R(G − λH) = (0, 0, . . .) = (0).

(ii) The row (left) minimal indices are η = (η1, . . . , ηl0), where

η1 ≥ η2 ≥ · · · ≥ ηl1 > ηl1+1 = · · · = ηl0 = 0,

define the sizes of the LT
ηk

blocks, (ηk + 1) × ηk, and l0 = mp − nrk (G − λH). The con-
jugate partition l = (l1, . . . , lη1 , 0, . . .) of η defines the l-numbers of the matrix pencil, and
analogously to the column minimal indices, we define the integer partition L(G − λH) =
(l0)∪(l1, . . . , lη1), where l0 = l1 if there are no LT

0 blocks. If there are no left minimal indices
it follows that η = ∅ and L(G − λH) = (0).

(iii) The finite elementary divisors are of the form

(λ− µ1)h
(1)
1 , . . . , (λ− µ1)h(1)

g1 , . . . , (λ− µq)h
(q)
1 , . . . , (λ− µq)

h(q)
gq ,

with h
(i)
1 ≥ · · · ≥ h

(i)
gi ≥ 1 for each q distinct finite eigenvalue µi, i = 1, . . . , q. Here gi is the

geometric multiplicity of the eigenvalue µi and the sum of all h
(i)
k for k = 1, . . . , gi is the

algebraic multiplicity of µi. The exponents of the finite elementary divisors for eigenvalue
µi are represented by the integer partition hµi

= (h(i)
1 , . . . , h

(i)
gi , 0, . . .) which is known as

the Segre characteristics. The Segre characteristics correspond to the sizes h
(i)
k × h

(i)
k of the

Jordan blocks for eigenvalue µi, and also give the orders h
(i)
k of the finite zero at µi of the

associated LTI system (1.1). The conjugate partition of hµi
, J µi

(G − λH) = (j1, j2, . . .),
is known as the Weyr characteristics of µi. Consequently, we get j1 = gi for each µi, i =
1, . . . , q. For matrices it follows that j1 = dim(null(A− µiI)), j1+j2 = dim(null(A− µiI)2),
etc. In other words, j1 is the number of eigenvectors of µi and jk corresponds to the
number of principal vectors of grade k ≥ 2. Moreover, the trailing zeros in both hµi

and
J µi

(G − λH) are left out, except for situations when they are explicitly used.
(iv) The infinite elementary divisors are of the form

ρs1 , ρs2 , . . . , ρsg∞ ,

with s1 ≥ · · · ≥ sg∞ ≥ 1, where g∞ is the geometric multiplicity of the infinite eigenvalue and
the sum of all sk for k = 1, . . . , g∞ is the algebraic multiplicity. The exponents represented
by the integer partition s = (s1, . . . , sg∞ , 0, . . .) is the Segre characteristics for the infinite
eigenvalue, and correspond to the sizes sk × sk of the Nsk

blocks. The orders of the zeros at
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infinity of the associated LTI system (1.1) is sk − 1 [112], i.e., an infinite elementary divisor
of order one (a simple eigenvalue) makes no contribution to the zeros at infinity. In the same
way as for finite eigenvalues, the conjugate integer partitionN (G − λH) = (n1, n2, . . .) is the
Weyr characteristics for the infinite eigenvalue, and the trailing zeros in s and N (G − λH)
are normally left out, except when needed.

When it is clear from context, we use the abbreviated notation R, L, J , and N , for
the above defined integer partitions. In the following, these integer partitions are referred
to as structure integer partitions. Moreover, the integer partitions representing the minimal
indices and elementary divisors give the largest block first, but in block structure notation
(see Section 2.3) it is not unusual that the blocks are given in reverse order, i.e., the smallest
block first. This actually is the same order in which the conjugate partitions R, L, J , and
N are interpreted. For example, the integer partition R = (4, 3, 3, 1) is read as: there are
4− 3 = 1 L0 block, 3− 3 = 0 L1 blocks, 3− 1 = 2 L2 blocks, and 1− 0 = 1 L3 block. The
corresponding KCF in block structure notation would then be L0 ⊕ 2L2 ⊕ L3. However, to
be consistent with KCF we use the decreasing order of the block sizes in this paper.

The system pencils S(λ), SC(λ), and SO(λ), can also be expressed in terms of the
above invariants and their associated structure integer partitions. However, in general their
corresponding invariants are different. For example, the system pencil SC(λ) of a completely
controllable system associated with the pair (A,B) can only have L blocks in its KCF while
S(λ) (1.3) may have both types of singular invariants (blocks) as well as eigenvalues in its
KCF.

Example 2

Let us again consider the matrix pencil in Example 1 with KCF 2L1⊕LT
0 ⊕J2(α).

As defined above, the minimal indices and the elementary divisors give the sizes
of the corresponding blocks. For this matrix pencil where we have two L blocks
of size one the column (right) minimal indices are ε = (1, 1). Moreover, it has
one LT block of size zero and therefore the row (left) minimal indices are η = (0),
and the single Jordan block of size 2× 2 corresponds to the Segre characteristics
hα = (2) for the finite eigenvalue α. The matrix pencil has no infinite eigenvalues
and therefore no infinite elementary divisors.

We can also represent the KCF of the matrix pencil by its structure integer
partitions R, L, J , and N . We start with the right singular blocks, 2L1. The
first integer in R is the number of L blocks of size zero or greater, the second
integer is the number of L blocks of size one or greater, and so on. This results
in

2L1 ⇒ R = (2, 2, 0, . . .),

where the trailing zeros normally are left out.

In the same way, we get the structure integer partitions L, J , and N , with
the exception that the first element in the integer partitions J and N represent
blocks of size one or greater. Altogether, the integer partitions representing the
canonical structure of the matrix pencil are:

R = (2, 2),
L = (1), and

J α = (1, 1).
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In addition, we also consider the following invariants associated with the matrix polyno-
mial A − λI corresponding to the n × n matrix A [43, Vol. 1]. Denote by Dk the greatest
common divisors of all the minors of order k of the linear matrix polynomial A − λI. Let
D0 = 1 and Dk ≡ 0 if all the minors of order k of A − λI are zeros. Then the invariant
factors of the matrix A are defined by the polynomials given from the quotients

P1 =
Dn

Dn−1
, P2 =

Dn−1

Dn−2
, . . . , Pn =

D1

D0
= D1. (2.11)

Furthermore, from the decomposition of the invariant factors into irreducible factors the
finite elementary divisors are defined:

Pj =
q∏

i=1

(λ− µi)h
(i)
j , j = 1, . . . , n, (2.12)

where µ1, . . . , µq are distinct eigenvalues and the exponents h
(i)
j are the Segre characteristics

hµi
= (h(i)

1 , . . . , h
(i)
gi , 0, . . .). For square matrices it follows that

∑
i

∑
j h

(i)
j = n. From (2.11)

and (2.12) we can derive the following relation:

Dj = PnPn−1 · · ·Pn+2−jPn+1−j

=
q∏

i=1

(λ− µi)
∑j

k=1 h
(i)
n+1−k , j = 1, . . . , n.

(2.13)

For each finite elementary divisor λ− µi, i = 1, . . . , q, define

d
(i)
j = the multiplicity of λ− µi in Dj ,

where the integer sequence dµi
= (d(i)

0 , . . . , d
(i)
n ) is increasing, i.e., d

(i)
j ≤ d

(i)
j+1 for j =

0, . . . , n − 1 [64]. Note that the exponent h
(i)
j is the multiplicity of the finite elementary

divisor λ−µi in Pj and, unlike hµi
which has n elements, dµi

has n+1 elements. Furthermore,
d
(i)
0 = 0 and

j∑
k=1

h
(i)
k = d(i)

n − d
(i)
n−j , j = 1, . . . , n, (2.14)

for each eigenvalue µi.

Example 3

Consider a matrix of size 9 × 9 with JCF J4(α) ⊕ 2J2(α) ⊕ J1(β). The corre-
sponding elementary divisors are

(λ− α)4, (λ− α)2, (λ− α)2, and (λ− β),

and the invariant factors are

P1 = (λ− α)4(λ− β),

P2 = (λ− α)2,

P3 = (λ− α)2, and
P4 = · · · = P9 = 1.
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Consequently, the Segre characteristics for the matrix are hα =
(4, 2, 2, 0, 0, 0, 0, 0, 0) and hβ = (1, 0, 0, 0, 0, 0, 0, 0, 0). From (2.13) we can now
derive the greatest common divisors:

D0 = · · · = D6 = 1,

D7 = P9 · · ·P3 = (λ− α)2,

D8 = P9 · · ·P2 = (λ− α)2(λ− α)2, and

D9 = P9 · · ·P1 = (λ− α)2(λ− α)2(λ− α)4(λ− β),

which give the integer sequences dα = (0, 0, 0, 0, 0, 0, 0, 2, 4, 8) and dβ =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

2.5 State-space transformations

To manipulate an LTI system in the time domain several different types of transformations
are used. Here we present some of the more common ones for the state-space system (1.1)
with the system pencil (1.3):

S(λ) =
[
A B
C D

]
− λ

[
In 0
0 0

]
.

We only consider structure preserving transformations, that is, transformations that do not
destroy or change the special block structure of a system pencil. Moreover, we only consider
the complex case, i.e., matrices with complex entries, but several of the transformations and
conditions in the following also hold for the real case. For simplicity, we use the notation
A ∈ Gln(C) to denote that the complex matrix A is n × n and nonsingular (where Gln(C)
is the linear group of order n over C).

A system pencil S(λ) of a matrix quadruple is said to be feedback equivalent [19, 91, 104]
to S̃(λ) if there exist a P ∈ Gln(C), T ∈ Glp(C), Q ∈ Glm(C), S ∈ Cn×p and an R ∈ Cm×n,
such that the nonsingular transformation matrices U and V are

U =
[
P S
0 T

]
and V −1 =

[
P−1 0
R Q−1

]
,

and

S̃(λ) = US(λ)V −1.

The feedback equivalence for matrix quadruples is a generalization of the feedback equiv-
alence for matrix pairs and is the product of six elementary transformations defined for
matrix quadruples. They are:

left multiplication : (Ã, B̃, C̃, D̃) = (PA,PB,C,D),

state-coordinate : (Ã, B̃, C̃, D̃) = (AP−1, B, CP−1, D),

input-coordinate : (Ã, B̃, C̃, D̃) = (A,BQ−1, C,DQ−1),

state-feedback : (Ã, B̃, C̃, D̃) = (A + BR,B,C + DR,D),

output-coordinate : (Ã, B̃, C̃, D̃) = (A,B, TC, TD),

output-injection : (Ã, B̃, C̃, D̃) = (A + SC, B + SD,C,D).

(2.15)
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Taken together, the left multiplication and state-coordinate transformations form a simi-
larity transformation of the system matrix A and are sometimes referred to as a general
state-space transformation. This is also one of the most common transformations of a state-
space system. The last two transformations, on the other hand, are not of interest for the
actual control problem. The output-coordinate transformation is (mainly) used for rescaling
the output and the output-injection has no meaningful usage for the control problem but
are of more theoretical use.

We can now state the following important property for the state-space systems (1.1)
(which also holds for feedback equivalence of all independent subsystems of (1.1) [53, 19,
117]).

Theorem 2.1 [19] Two matrix quadruples (A,B,C,D) and (Ã, B̃, C̃, D̃) are feedback
equivalent if and only if the corresponding system pencils S(λ) and S̃(λ) are strictly equiv-
alent.

Two generalized state-space systems are said to be restricted system equivalent [17, 101]
if there exist two matrices P ∈ Glq(C) and Z ∈ Gln(C) such that[

P 0
0 Ip

] [
A− λE B

C D

] [
Z−1 0
0 Im

]
=

[
P (A− λE)Z−1 PB

CZ−1 D

]
.

where A,E ∈ Cq×n.
For the controllability pair (A,B) the transformations 1 to 4 in (2.15) are applicable.

Taken together, these transformations define the feedback equivalence for controllability
pairs:

P
[
A− λIn B

] [
P−1 0
R Q−1

]
=

[
P (A− λIn) P−1 + PBR PBQ−1

]
, (2.16)

where P ∈ Gln(C), Q ∈ Glm(C) and R ∈ Cm×n (e.g., see [12, 59, 117]). Other names that
appear in the literature for this equivalence relation are block similar [53] and Γ-equivalence
[19].

These transformations can also be motivated from control theory. By adding a linear
feedback u(t) = Fx(t) + v(t) to ẋ(t) = Ax(t) + Bu(t) we obtain the system

ẋ(t) = (A + BF )x(t) + Bv(t).

Then we introduce new coordinates P−1x(t) and Q−1v(t) for the state and input variables
leading to a transformed system (with the same system behaviors):

ẋ(t) = P (A + BF )P−1x(t) + PBQ−1v(t),

which in matrix form is

P
[
A− λIn B

] [
P 0

−QF Q

]−1

= P
[
A− λIn B

] [
P−1 0

FP−1 Q−1

]
.

By substituting FP−1 with R we obtain the equivalence transformation (2.16).
For the observability pair (A,C) the corresponding transformations are 1–2 and 5–6 in

(2.15), which together define the feedback equivalence for observability pairs:[
P S
0 T

] [
A− λIn

C

]
P−1 =

[
P (A− λIn) P−1 + SCP−1

TCP−1

]
,
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where P ∈ Gln(C), T ∈ Glp(C) and S ∈ Cn×p.
For generalized matrix pairs (E, A,B), where E, A ∈ Cq×n and B ∈ Cq×m, the restricted

system equivalence, the input-coordinate and state-feedback transformations form the group
of proportional feedback transformations, where two systems are said to be feedback equiv-
alent (e.g., see [67, 86]). With the addition of the derivative-feedback transformation we
have the group of proportional plus derivative feedback transformations where two systems
are called pd-feedback equivalent (e.g., see [67, 86, 118]). To express the proportional plus
derivative feedback transformations we need to separate the pencil A−λE into their A- and
λ-parts, respectively, and apply a 3 × 3 block matrix from the right. For consistency, we
also express the proportional feedback transformation in the same form.

Two generalized matrix pairs (E, A,B) and (Ẽ, Ã, B̃) are feedback equivalent if there
exists an equivalence transformation by two nonsingular matrices such that

P
[
−E A B

] Z−1 0 0
0 Z−1 0
0 FP Z−1 Q−1


=

[
−PEZ−1 P (A + BFP )Z−1 PBQ−1

]
≡

[
Ẽ Ã B̃

]
.

Two generalized matrix pairs (E, A,B) and (Ẽ, Ã, B̃) are pd-feedback equivalent if there
exists an equivalence transformation by two nonsingular matrices such that

P
[
−E A B

]  Z−1 0 0
0 Z−1 0

FDZ−1 FP Z−1 Q−1


=

[
−P (E + BFD)Z−1 P (A + BFP )Z−1 PBQ−1

]
≡

[
Ẽ Ã B̃

]
.

All the above transformations preserve the structure of (E, A,B), but when q = n and
det (A− λE) 6≡ 0 the state-feedback and derivative-feedback transformations can destroy
the regularity condition det (A− λE) 6≡ 0 [66].

2.6 Brunovsky canonical form and generalizations

When considering canonical forms of the system pencil S(λ) associated with pairs, triples
or quadruples of matrices, we are (mainly) interested in canonical forms obtained from
structure-preserving transformations, see Section 2.5. One such example is the Brunovsky
canonical form and its generalizations. These canonical forms explicitly reveal the system
characteristics from the system pencils. This is in contrast to the KCF, which destroys the
special block structure of S(λ) and only implicitly gives the system characteristics. Canonical
forms for generalized state-space (or descriptor) systems studied in, e.g., [52, 63, 86, 105]
are not considered in this paper.

Brunovsky formulated in 1970 a canonical form for completely controllable matrix pairs
[12] (the results were published already in 1966 in a Russian article). He also derived the
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r-numbers for a matrix pair (A,B) as2 [12, 59]:

r1 = rank(B),

rj = rank
(
B,AB, . . . , Aj−1B

)
− rank

(
B,AB, . . . , Aj−2B

)
, j = 2, . . . , n.

Kalman [81] pointed out that the Brunovsky invariants are equivalent to those of Kronecker
[82] (see Section 2.4). The canonical form defined by Brunovsky has later been revised to
include uncontrollable matrix pairs, see for example [53, Theorem 6.2.5] and [117, Theo-
rem 2.11].

Given a matrix pair (A,B) associated with the state-space model

ẋ(t) = Ax(t) + Bu(t),

which does not need to be completely controllable, there exists a feedback equivalent matrix
pair (AB , BB) in Brunovsky canonical form (BCF), such that

P
[
A− λIn B

] [
P−1 0
R Q−1

]
=

[
AB − λIn BB

]
=

[
Aε 0 Bε 0
0 Aµ 0 0

]
. (2.17)

The matrix pair (Aε, Bε) is controllable and the regular pencil Aµ consists of the uncontrol-
lable eigenvalues (modes). Moreover, the column minimal indices of (Aε, Bε) are known as
the controllability indices of (A,B). The next result follows immediately from Theorem 2.1.

Theorem 2.2 [117] Two controllability pairs (A,B) and (Ã, B̃) are feedback equivalent
if and only if they have the same controllability indices and finite elementary divisors, i.e.,
they are strictly equivalent.

The dual form of BCF for the matrix pair (A,C) is

[
P S
0 T

] [
A− λIn

C

]
P−1 =

[
AB − λIn

CB

]
=


Aη 0
0 Aµ

Cη 0
0 0

 , (2.18)

where (Aη, Cη) is observable and Aµ is regular and consists of the unobservable eigenvalues
(modes). The row minimal indices of (Aη, Cη) are known as the observability indices of
(A,C).

The BCF of a matrix pair is a special case of a more general canonical form proposed
independently by Morse [91] for matrix triples and by Thorp [104] for matrix quadruples.
This canonical from is defined as follows (see also [93] where a canonical form under similarity
transformations is derived).

Let (A,B,C,D) be a matrix quadruple associated with the state-space model

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).

Moreover, let S(λ) be the associated system pencil with the following invariants:

• The column minimal indices (ε1, . . . , εr1 , εr1+1 . . . , εr0).

• The row minimal indices (η1, . . . , ηl1 , ηl1+1 . . . , ηl0).

2The l-numbers of the matrix pair (A, C) can similarly be determined from its observability matrix.

18



• The Segre characteristics (h(i)
1 , . . . , h

(i)
gi ) for the finite eigenvalue µi, i = 1, . . . , q (the

exponents of the finite elementary divisors).

• The Segre characteristics (s1, . . . , sg∞) for the infinite eigenvalue (the exponents of the
infinite elementary divisors). Let δi = si − 1, such that δ1 ≥ · · · ≥ δt > δt+1 = · · · =
δg∞ = 0. The integer partition (δ1, . . . , δt) corresponds to the t zeros at infinity of the
associated LTI system, i.e., the t Nk blocks of size k ≥ 2.

Alternatively, the system pencil S(λ) can be expressed in terms of the structure integer
partitions R, L, J and N associated with the invariants above.

Now, there exists a feedback equivalence transformation of S(λ) such that[
P S
0 T

] [
A− λIn B

C D

] [
P−1 0
R Q−1

]
=

[
AB − λIn BB

CB DB

]
, (2.19)

where (AB , BB , CB , DB) is in generalized Brunovsky canonical form (GBCF) [19, 90, 91,
104], defined by
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AB − λIn BB

CB DB

 =



Aε 0 0 0 Bε 0 0 0
0 Aη 0 0 0 0 0 0
0 0 A∞ 0 0 B∞ 0 0
0 0 0 Aµ 0 0 0 0
0 Cη 0 0 0 0 0 0
0 0 C∞ 0 0 0 0 0
0 0 0 0 0 0 D∞ 0
0 0 0 0 0 0 0 D0


=

=



Jε1 (0)
. . .

Jεr1
(0)

0 0 0
eε1

. . .

eεr1

0 0 0

0
JT

η1
(0)
. . .

JT
ηl1

(0)

0 0 0 0 0 0

0 0
JT

δ1
(0)
. . .

JT
δt

(0)

0 0
fδ1

. . .

fδt

0 0

0 0 0
J(µ1)

. . .

J(µq)
0 0 0 0

0

eT
η1 . . .

eT
ηl1

0 0 0 0 0 0

0 0
eT
δ1 . . .

eT
δt

0 0 0 0 0

0 0 0 0 0 0 Ig∞−t 0

0 0 0 0 0 0 0 0



,

where the Jk blocks are nilpotent matrices in its reduced Jordan form (2.7), D0 is an
(l0 − l1)× (r0 − r1) zero matrix,

ei =


0
...
0
1

 ∈ Ci×1, and fi =


1
0
...
0

 ∈ Ci×1.

In the GBCF, the matrix pair (Aε, Bε) is controllable and corresponds to the Lk blocks,
k ≥ 1, in the KCF of S(λ). Similarly, the matrix pair (Aη, Cη) is observable and corresponds
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to the LT
k blocks, k ≥ 1. Moreover, the matrix Aµ corresponds to all Jordan blocks of the

finite eigenvalues, where each block J(µi) in Aµ is block diagonal with the Jordan blocks
for the specified finite eigenvalue µi. The matrix D∞ corresponds to the N1 blocks and the
remaining parts, formed by [

A∞ B∞
C∞ 0

]
,

correspond to the Nk blocks, k ≥ 2. Furthermore, the number of columns in Bε corresponds
to the number of Lk blocks with k ≥ 1, likewise, the number of rows in Cη corresponds to
the number of LT

k blocks with k ≥ 1, and the number of columns in B∞ or rows in C∞ is the
number of N blocks of size greater than one. The (l0− l1)× (r0− r1) matrix D0 constitutes
of the vectors eεr1+1 , . . . , eεr0

of size 0 × 1 and the vectors eT
ηl1+1

, . . . , eT
ηl0

of size 1 × 0. It
follows that the number of columns of D0 corresponds to the number of L0 blocks, and the
number of rows of D0 corresponds to the number of LT

0 blocks.
Several system properties are reveled directly from the GBCF. The GBCF is composed

of five decoupled subsystems as follows [7]:

(1) The subsystem (A∞, B∞, C∞) corresponding to the infinite zero structure. It is con-
trollable and observable and consists of decoupled chains of integrators with inputs
and outputs.

(2) The subsystem (Aε, Bε) corresponding to the column minimal indices. It is controllable
but not observable and consists of decoupled chains of integrators with inputs, but no
outputs.

(3) The subsystem (Aη, Cη) corresponding to the row minimal indices. It is observable
but not controllable and consists of decoupled chains of integrators with outputs, but
no inputs.

(4) The subsystem Aµ corresponding to the finite structure. It is uncontrollable and
unobservable and consists of the finite zeros of the original system.

(5) The “feedforward” subsystem diag(D∞, D0). This subsystem passes g∞ − t inputs
unchanged to g∞−t outputs, annihilates r0−r1 inputs, and generates l0−l1 identically
zero outputs.

A matrix triple is a special case of a matrix quadruple, where D in (2.19) is the zero
matrix [19, 91]. For an LTI system it means that we have no feedforward matrix and
consequently the subsystem (5) described above is absent. It follows that a matrix triple
can have no infinite elementary divisors of order one, i.e., no N1 blocks. Apart from this
restriction, the invariants and the GBCF are the same as for matrix quadruples.

As said in the beginning of this section, it follows that the BCF for a matrix pair (A,B)
(and (A,C)) is a subset of GBCF. The BCF (2.17) for (A,B) only includes the blocks Aε, Aµ

and Bε. Similarly, the BCF (2.18) for (A,C) only includes the blocks Aη, Aµ and Cη. A
consequence is that matrix pairs cannot have infinite eigenvalues (N blocks). Moreover, the
controllability pair (A,B) has exactly m L blocks and the observability pair (A,C) has p
LT blocks. This can be verified from the fact that the controllability system pencil

SC(λ) =
[
A B

]
− λ

[
In 0

]
has full row rank, i.e., the system pencil can have no left singular blocks (LT blocks), and
the number of columns in Bε is equal to m. Similarly, the observability system pencil

SO(λ) =
[
A
C

]
− λ

[
In

0

]
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has full column rank and therefore has no right singular blocks (L blocks), and the number
of rows in Cη is equal to p.

Furthermore, the following system characteristics are revealed from the BCF of the
controllability pair (A,B) and observability pair (A,C). If rank(SC(λ)) < n for some
λ ∈ C then (A,B) is uncontrollable and there exists a regular pencil Aµ whose eigenvalues
correspond to the uncontrollable eigenvalues (modes). Likewise, if rank(SO(λ)) < n for some
λ ∈ C then (A,C) is unobservable and there exists a regular pencil Aµ whose eigenvalues
correspond to the unobservable eigenvalues (modes). The number of L0 blocks of (A,B) is
m−rank(BB), where for each L0 block one input signal uk(t) can be removed without loosing
controllability of (Aε, Bε).3 Likewise, the number LT

0 blocks of (A,C) is p−rank(CB), where
for each LT

0 block one output signal yk(t) can be removed without loosing observability of
(Aη, Cη).

Example 4

To exemplify the Brunovsky canonical form and its generalization we consider a
state-space system with two states, three inputs and one output:

ẋ(t) =
[

0 0
−3 0

]
x(t) +

[
3 10 1

0.6 2 0.2

]
u(t),

y(t) =
[
0.6 γ

]
x(t),

(2.20)

where γ > 0. The system has the KCF 2L0⊕J1(α)⊕N2 with the corresponding
GBCF

S(λ) =

 −λ 0 0 0 1
0 α− λ 0 0 0
1 0 0 0 0

 ,

where the finite eigenvalue α depends on the value of γ.

By inspecting the subsystems SC(λ) and SO(λ) of S(λ), we can derive the con-
trollability and observability characteristics of the system. The controllability
pair in BCF is

SC(λ) =
[

0 1 0 0 0
0 0 1 0 0

]
− λ

[
1 0 0 0 0
0 1 0 0 0

]
,

and has the KCF L2⊕ 2L0, so the system is controllable. The observability pair
in BCF is

SO(λ) =

 0 0
1 0
0 1

− λ

 1 0
0 1
0 0

 ,

and has the KCF LT
2 , i.e., the system is also observable. Here we could be satis-

fied with knowing that the system is both controllable and observable. However,
if we look at the system pencil of the observability pair

SO(λ) =

 0 0
−3 0
0.6 γ

− λ

 1 0
0 1
0 0

 ,

3However, for safety reasons it is customary to have redundancy in the actuation system and the corre-
sponding control surface in critical systems.

22



we can see that the observability depends on the value of γ. As long as γ > 0 the
system is observable, but when γ approaches 0 the observability pencil becomes
closer and closer to being unobservable. Finally, when γ reaches zero the KCF
of the observability pencil is LT

1 ⊕ J1(0) with BCF

SO(λ) =

 0 0
0 0
1 0

− λ

 1 0
0 1
0 0

 ,

which corresponds to an unobservable system with one unobservable mode at
zero.

Even if the computed canonical structure is observable the original system may
be unobservable or close to, since a zero element (e.g., γ in the above example)
can become nonzero because of roundoff errors in the numerical methods or noise
in the data. This is the reason why it is important to know the distance to the
closest unobservable system (or uncontrollable system), or even better, to know
all possible canonical structures which can be reached by a small perturbation
and the distance to each of them.

2.7 Relation between KCF and GBCF

By comparing the KCF (2.6) and the GBCF (2.19) associated with the same system, we see
that the two canonical forms are closely related to each other [81, 91, 104]. More precisely
they are permutations of each other. From a general matrix pencil G − λH of size mp × np

in KCF the corresponding system pencil S − λT of size (n + p) × (n + m) in GBCF can
be computed as Prow(G − λH)Pcol = S − λT, where mp = n + p, np = n + m, and Prow

and Pcol are permutation matrices of rows and columns, respectively (the identity matrix
of conforming size with its rows or columns reordered). To get exactly the same form of
S − λT as in (2.19), the blocks in the KCF of the matrix pencil G − λH must be ordered as
(compare with (2.6)):

G − λH

= diag(Lε1 , . . . , Lεr0
, LT

η1
, . . . , LT

ηl0
, Ns1 , . . . , Nsg∞

, Jh1(µ1), . . . , Jhgq
(µq)).

(2.21)

The following two algorithms together determine permutation matrices Prow and Pcol such
that Prow(G − λH)Pcol is in GBCF, where G − λH is assumed to be in the form (2.21).

Algorithm 1

The row-permutation matrix Prow is derived from G − λH (mp×np) in the form
(2.21) with the following steps:

1. Create a matrix Grow, initially of size mp × np, where the elements corre-
sponding to nonzero elements in G are all set to ones and the remaining
elements are set to zeros.

2. Create a matrix Hrow, initially of size mp × np, where the elements corre-
sponding to nonzero elements in H are all set to ones and the remaining
elements are set to zeros.
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3. Set all rows of Grow to zero where the corresponding rows in Hrow have a
nonzero entry.

4. Let a and b be the number of columns in Grow and Hrow, respectively,
with only zero entries. Remove these zero columns such that Grow becomes
mp × (np − a) and Hrow becomes mp × (np − b).

5. Set Prow =

[
HT

row

Qrow

GT

row

]
, where Prow is mp×mp, and Qrow is (mp− 2np + a +

b)×mp and chosen such that Prow becomes a permutation matrix.

Algorithm 2

The column-permutation matrix Pcol is derived from G − λH (mp × np) in the
form (2.21) with the following steps:

1. Create a matrix Gcol, initially of size mp × np, where the elements corre-
sponding to nonzero elements in G are all set to ones and the remaining
elements are set to zeros.

2. Create a matrix Hcol, initially of size mp × np, where the elements corre-
sponding to nonzero elements in H are all set to ones and the remaining
elements are set to zeros.

3. Set all columns of Gcol to zero where the corresponding columns in Hcol

have a nonzero entry.

4. Let c and d be the number of rows in Gcol and Hcol, respectively, with only
zero entries. Remove these zero rows such that Gcol becomes (mp− c)×np

and Hcol becomes (mp − d)× np.

5. Set Pcol = [HT

col Qcol GT

col ], where Pcol is np × np, and Qcol is np × (np −
2mp + c + d) and chosen such that Pcol becomes a permutation matrix.

The matrices Qrow and Qcol can be chosen as zero matrices, since the 1’s added in this step
have no relevance for the permutation from KCF to GBCF (they correspond to permutations
of rows or columns of zeros and are included only to make Prow and Pcol permutation
matrices). In step 4 of both algorithms, the dimensions np − b and mp − d, respectively,
are equal to the number of states n of the system. Furthermore, for the controllability pair
(A,B), Prow = Imp , and for the observability pair (A,C), Pcol = Inp .

Proof of Algorithm 1. Let the mp × np matrix pencil G − λH be in KCF with the
block-order of (2.21) and with the corresponding (n + p)× (n + m) system pencil

S − λT =
[
A B
C D

]
− λ

[
In 0
0 0

]
,

in GBCF, where mp = n+p and np = n+m. Note that G − λH and S − λT are associated
with the same system and therefore have the same number of states n, i.e., the same number
of nonzero columns in H and T, respectively. First consider the case when, in addition to
the eigenvalues, G − λH and S − λT only have entries of ones and zeros.

We want to show that Prow(G − λH)Pcol = S − λT, i.e.,

ProwGPcol = S, (2.22)
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and

ProwHPcol = T, (2.23)

where Prow is the (n + p)× (n + p) row-permutation matrix constructed with Algorithm 1,
and Pcol is an (n + m) × (n + m) column-permutation matrix. We first consider (2.23) in
part 1 and then (2.22) in part 2.

Part 1: Rewrite (2.23) as

HPcol = PT
rowT, (2.24)

and let PT
row be partitioned as

PT
row =

[
UT

row LT
row

]
, (2.25)

where UT
row is (n+p)×n and LT

row is (n+p)×p. From the structure of T it follows that the
row-permutation elements in PT

row acting on T in (2.24) must all be in UT
row, and we only

need to consider the subproblem

HPcol =
[
UT

row 0(n+p)×p

] [
In 0n×m

0p×n 0p×m

]
=

[
UT

row 0(n+p)×m

]
.

Take Pcol such that all m zero columns in H are moved to the trailing columns, i.e.,

HPcol =
[
H̃ 0(n+p)×m

]
=

[
UT

row 0(n+p)×m

]
, (2.26)

where H̃ still has the same order of the nonzero columns as H (if m = 0 then H̃ = H).
From (2.25) and (2.26) we now get that

Prow =

[
H̃

T

Lrow

]
.

If Prow is taken as above with Lrow as the zero matrix, then (2.23) is satisfied except for
a column permutation (regardless of what Pcol is). If p = 0, i.e., G − λH corresponds to
a controllability pair (A,B), the proof of Algorithm 1 for Prow is complete (Lrow is then
0 × n). Moreover, since the order of the L and J blocks are the same in the KCF and the

GBCF it follows that Prow = H̃
T

= In. If p > 0, then continue with part 2. We remark
that the above H̃ is identical to Hrow after step 4 in Algorithm 1.

Part 2: Now we consider the remaining part, Lrow, of Prow. Equation (2.22) is equal to

ProwGPcol =
[
Urow

Lrow

]
GPcol = S. (2.27)

Consequently, for each nonzero column in Urow the corresponding column in Lrow must be
zero, i.e., they cannot affect the same rows in G. Let Pcol = In+m and split G such that
G = G1 + G2, where G1 consists of the rows corresponding to nonzero columns in Urow

(same as the nonzero rows in H) and G2 consists of the rows corresponding to zero columns
in Urow. Note that all eigenvalues of G − λH will be in G1. The problem can now be
rewritten as [

Urow

0

]
G1 +

[
0

Lrow

]
G2 =

[
S1

S2

]
.
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Since Urow was determined in (2.26), we only need to consider the subproblem

LrowG2 = S2.

Let an (n+p)× q matrix G̃2 consist of only the q nonzero columns of G2 (given in the same
order). It follows that q ≤ p. Take

Lrow =

[
0

G̃
T

2

]
, (2.28)

then LrowG2 moves all nonzero rows in G2 to the last q rows. The p− q rows of zeros above
G̃

T

2 in Lrow correspond to permutations of LT
0 blocks, i.e., rows of zeros in G for which there

are no need to determine explicit permutations. Since the order of the blocks in (2.21) are
the same as in GBCF, it follows that if Lrow is chosen as in (2.28) and Urow as in step 1 then
(2.27) is satisfied except for a column permutation (which is determined by Algorithm 2).
Notably, the matrix G̃2 in (2.28) is identical to Grow after step 4 in Algorithm 1, and the
rows of zeros above correspond to Qrow in step 5.

For the general case where G and H can have elements with values other than one
or zero (additionally to the eigenvalues), we take Hrow ≡ H̃ and Grow ≡ G̃2 where the
corresponding elements in Hrow and Grow are set to one when H̃ and G̃2 have a nonzero
element, respectively. Let

Prow =

HT
row

Qrow

GT
row

 ,

where Qrow is chosen such that Prow becomes a permutation matrix. Then
Prow(G − λH)In+m is equal to S − λT up to a column permutation, which is determined
by Pcol in Algorithm 2. �

Proof of Algorithm 2. The proof of Algorithm 2 is similar to that of Algorithm 1. �

Example 5

A Matlab function kcf2gbcf has been developed that given the KCF of a matrix
pencil returns the GBCF and the permutation matrices which transform the
matrix pencil in KCF (2.21) to GBCF.

Consider the 5 × 6 general matrix pencil given in Example 1 with KCF 2L1 ⊕
LT

0 ⊕ J2(α), where the blocks have been reordered as in (2.21):

G − λH =


0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 α 1
0 0 0 0 0 α

− λ


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Let α = −5. Then the output from the Matlab function is:

>> [S,T,Prow,Pcol] = kcf2gbcf(G,H)

S =

0 0 0 0 1 0

0 0 0 0 0 1

0 0 -5 1 0 0

0 0 0 -5 0 0

0 0 0 0 0 0
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T =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

Prow =

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

Pcol =

1 0 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

We now show step by step how the permutation matrices Prow and Pcol are
constructed using Algorithms 1 and 2, respectively.

Algorithm 1: First we construct the matrices Grow and Hrow from G and H,
respectively (steps 1 and 2):

Grow =


0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 , and (2.29)

Hrow =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (2.30)

The third step is to set all rows of Grow to zero where the corresponding rows in
Hrow have a nonzero entry. For our example, all nonzero rows of Grow are set
to zero and Grow becomes a zero matrix. Then, we remove all columns in Grow

and Hrow that only have entries of zeros:

Grow = 5× 0 empty matrix, and

Hrow =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .
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The final Prow is constructed as:

Prow =

HT
row

Qrow

GT
row

 =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 ,

where the last row is Qrow. If we set Qrow =
[
0 0 1 0 0

]
then Prow becomes

a permutation matrix.

Algorithm 2: The next step is to construct the column-permutation matrix Pcol.
This is done by first constructing the matrices Gcol and Hcol, which are the same
as Grow and Hrow given in (2.29) and (2.30), respectively. Then set all columns
of Gcol to zero where the corresponding columns in Hcol have a nonzero entry:

Gcol =


0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Continue by removing all rows of zeros in Gcol and Hcol, which give

Gcol =
[
0 1 0 0 0 0
0 0 0 1 0 0

]
, and

Hcol =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The resulting Pcol is

Pcol =
[
HT

col Qcol GT
col

]
=


1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

 ,

where Qcol is an empty matrix (6× 0).

Finally, multiplying G − λH with Prow and Pcol transform the matrix pencil in
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KCF to the corresponding system pencil in GBCF:

Prow




0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 α 1
0 0 0 0 0 α

− λ


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 Pcol

=


0 0 0 0 1 0
0 0 0 0 0 1
0 0 α 1 0 0
0 0 0 α 0 0
0 0 0 0 0 0

− λ


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0



≡
[
AB BB

CB DB

]
− λ

[
I4 0
0 0

]
.
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3 Computing canonical structure information

In this section, we briefly discuss numerically stable methods to compute the canonical struc-
ture information of a matrix, matrix pencil or a system pencil. These methods transform
the matrix or pencil to a so called staircase form (Section 3.1) from which we can extract
the canonical structure information. However, in theoretical analyses we use the canonical
forms (e.g., those considered in Section 2 like JCF, KCF and GBCF) because they describe
the fine structure (canonical) elements of the given matrix, matrix pencil, or system pencil.

In Section 3.2, we consider the controllable and unobservable subspaces of matrix pencils
and system pencils and how to compute them robustly. We also review how these subspaces
directly are obtained from the BCF of a matrix pair.

3.1 Staircase-type forms

The computation of a canonical form like JCF, KCF, or GBCF is, in general, not a numeri-
cally stable process, because the transformation matrices that reduce, for example, a matrix
to Jordan canonical form can be arbitrary ill-conditioned. Therefore it is not appropriate
to use such canonical forms in practice. Instead we use so called staircase-type forms from
which we can retrieve the same canonical structure information as from the canonical forms,
by only using real orthogonal (or unitary in the complex case) transformation matrices and
backward stable algorithms. An algorithm is backward stable [114] when it computes the
exact canonical structure of a nearby (slightly perturbed) matrix or matrix pencil. Without
going into any algorithmic details, we here present some of the staircase-type forms. More
details of the different methods are given in [5, 13, 78, 109].

The staircase method was first introduced for matrices by Kublanovskaya in 1966 [83].
The resulting staircase form is called a Jordan-Schur form. The basic idea is to compute
the null spaces of (A − µI)j for j = 1, 2, . . ., for each eigenvalue µ of A, using unitary
similarity transformations without explicitly computing the matrix powers (A − µI)j . In
[83], a normalized RQ factorization is used for rank decisions, and methods using the singular
value decomposition (SVD) have later been developed [54, 79, 80, 102]. In addition to the
Schur form (described in Section 2.1), the Jordan-Schur form gives detailed information of
the Jordan structure of the matrix. For example, given a matrix A with one eigenvalue µ
of multiplicity n, then B = A−µIn is nilpotent and has the only eigenvalue 0. Suppose the
computed Jordan-Schur form for the matrix B is

m1︷ ︸︸ ︷ m2︷ ︸︸ ︷ m3︷ ︸︸ ︷

0 0 0 x x x x
0 0 x x x x

0 x x x x
0 0 x x

0 x x
0 0

0


.

Then the dimensions m1, m2 and m3 are the Weyr characteristics of B for the eigenvalue
0, J 0 = (3, 2, 2). This corresponds to the JCF J3(0)⊕ J3(0)⊕ J1(0), and it follows that the
matrix A has the JCF J3(µ)⊕ J3(µ)⊕ J1(µ).

The staircase form for (singular) matrix pencils is called the generalized Schur-staircase
form, which is the orthogonal counterpart of KCF. Other names used are Kronecker-Schur
form and GUPTRI form (Generalized UPer TRIangular form) [26, 27]. The generalization of
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the staircase form for matrices to singular matrix pencils was done by Van Dooren [106, 108]
using unitary equivalence transformations. This method has later been refined by a number
of authors [4, 26, 27, 24, 77, 84, 85].

For example, an mp × np singular matrix pencil G − λH can be transformed into the
GUPTRI form [26, 27, 78]:

U(G − λH)V H =

Gr − λHr ∗ ∗
0 Greg − λHreg ∗
0 0 Gl − λHl

 , (3.31)

where U (m ×m) and V (n × n) are unitary matrices and ∗ denotes arbitrary conforming
submatrices. The rectangular block upper triangular Gr − λHr and Gl − λHl give the right
and left singular structures of the matrix pencil, respectively. The remaining square upper
triangular Greg − λHreg is regular and contains all the finite and infinite eigenvalues of
G − λH. Furthermore, the regular part Greg − λHreg is in the staircase form:

Greg =

Gz ∗ ∗
0 Gf ∗
0 0 Gi

 , Hreg =

Hz ∗ ∗
0 Hf ∗
0 0 Hi

 ,

where Gz − λHz and Gi − λHi reveal the Jordan structures of the zero and infinite eigenval-
ues, and Gf − λHf , in generalized Schur form, includes the finite but nonzero eigenvalues.

As we have touched upon in the end of Section 2.2, the eigenvalues µi are computed
as pairs of values, denoted by (αi, βi). If αi 6= 0 and βi 6= 0 then µi is the finite nonzero
eigenvalue µi = αi/βi, if αi = 0 and βi 6= 0 then µi is a zero eigenvalue, and if αi 6= 0
and βi = 0 then µi is an infinite eigenvalue. Notably, αi = βi = 0 does not correspond to
an eigenvalue, instead it belongs to the singular part of the matrix pencil. In the complex
case of the GUPTRI form, the pairs of values (αi, βi) are given from the two corresponding
diagonal elements of Greg and Hreg:

Greg =

. . . ∗
αi

0
. . .

 , and Hreg =

. . . ∗
βi

0
. . .

 .

Consequently, the diagonal elements of Gf , Gi, Hz and Hf are nonzero, and those of Gz

and Hi are zero.
The use of staircase-type forms or other types of condensed forms has a number of

applications in systems and control theory, such as the computation of controllability, ob-
servability, minimality of state-space models, Kronecker structures, poles and zeros. To
compute the Kronecker structure of a system pencil one of the staircase algorithms for ma-
trix pencils can be used, but there exist efficient algorithms that exploit the special structure
of a system pencil (e.g., see [13, 25, 89, 92, 107, 111]). To get a system pencil in a staircase
form, the permuted system pencil

S̃(λ) =
[
B A− λE
D C

]
, (3.32)

is usually considered. In the following, we take a closer look at staircase-type forms for
the controllability pair (A,B), the observability pair (A,C) and the generalized state-space
system (E, A,B,C,D).

Instead of computing the BCF of the controllability pair (A,B), the n× (n + m) system
pencil SC(λ) is transformed into the so called controllability staircase form (block version of
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the controller-Hessenberg form) [8, 25, 94, 107, 109]. There exits a unitary matrix U (n×n),
such that

U
[

B A− λIn

] [
Im 0
0 UH

]

=



X1 A1,1 ∗ · · · ∗ ∗

0 X2 A2,2

...
...

...
. . . . . . . . .

...
...

...
. . . Xε1 Aε1,ε1 ∗

0 · · · · · · 0 0 Areg


− λ

[
0 In

]
,

(3.33)

where the matrices Ai,i, i = 1, . . . , ε1, are of size ri × ri. The matrices Xi, i = 1, . . . , ε1, are
of size ri × ri−1 with full row rank ri, where r0 = m. The sizes ri form the integer partition
R(A,B) = (r0, r1, . . . , rε1), where the conjugate of (r1, . . . , rε1) defines the controllability
indices of (A,B). The matrix Areg is regular and consists of the finite elementary divisors,
i.e., the uncontrollable eigenvalues (modes) of (A,B).

The dual form is the observability staircase form (block version of the observer-Hessen-
berg form) for the (n + p)× n observability system pencil SO(λ) [8, 25, 94, 107, 109]. There
exits a unitary matrix U (n× n), such that[

U 0
0 Ip

] [
A− λIn

C

]
UH

=



Areg ∗ · · · · · · ∗
0 Aη1,η1 · · · · · · ∗

0 Yη1

. . .
...

...
. . . . . . A2,2 ∗

...
. . . Y2 A1,1

0 · · · · · · 0 Y1


− λ

[
In

0

]
,

(3.34)

where the matrices Ai,i, i = 1, . . . , η1, are of size li × li. The matrices Yi, i = 1, . . . , η1, are
of size li × li−1 with full column rank li, where l0 = p. The sizes li form the integer parti-
tion L(A,C) = (l0, l1, . . . , lη1), where the conjugate of (l1, . . . , lη1) defines the observability
indices of (A,C). The matrix Areg is regular and consists of the unobservable eigenvalues
(modes) of (A,C).

There also exist staircase counterparts for the GBCF of a system pencil. The system
pencil S̃(λ) in (3.32) associated with a generalized state-space system (E, A,B, C,D) can
be transformed into the staircase Kronecker-like form [110, 111] (or a similar staircase form,
e.g., see [13]) using orthogonal matrices Q and Z, such that

QS̃(λ)Z =


Br Ar − λEr ∗ ∗ ∗ ∗
0 0 A∞ − λE∞ ∗ ∗ ∗
0 0 0 Di ∗ ∗
0 0 0 0 Af − λEf ∗
0 0 0 0 0 Al − λEl

0 0 0 0 0 Cl

 . (3.35)

The generalized matrix pair (Er, Ar, Br) is controllable, and the system pencil[
Br Ar − λEr

]
is in controllability staircase form and gives the right (column) minimal
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indices. The matrix Er is invertible and upper-triangular and Ar − λEr has full row-
rank. Similarly, the generalized matrix pair (El, Al, Cl) is observable, and the system pencil[

Al−λEl

Cl

]
is in observable staircase form and gives the left (row) minimal indices. The matrix

El is also invertible and upper-triangular and Al − λEl has full column-rank.
Together the regular matrix pencil A∞−λE∞ and the matrix Di give the infinite elemen-

tary divisors, where A∞ and Di are invertible and upper-triangular, and E∞ is nilpotent and
upper-triangular. The matrix pencil Af − λEf gives the finite elementary divisors, where
Ef is invertible and upper-triangular.

Example 6

We consider the state-space system (2.20) in Example 4 for γ = 0:[
B A− λIn

D C

]
=

 3 10 1 −λ 0
0.6 2 0.2 −3 −λ
0 0 0 0.6 0

 .

The controllability staircase form is computed as (rounded to four decimals)

[
−0.9806 −0.1961
−0.1961 0.9806

] [
3 10 1 0 0

0.6 2 0.2 −3 0

]
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −0.9806 −0.1961
0 0 0 −0.1961 0.9806


=

[
−3.0594 −10.1980 −1.0198 −0.5769 −0.1154

0 0 0 2.8846 0.5769

]

≡
[

X1 ∗ ∗
0 X2 ∗

]
.

We can now derive the Kronecker structure in the following way: r1 = rank(X1) =
1, r2 = rank(X2) = 1, and the system has 3 inputs; therefore r0 = 3. There exists
no regular part (Areg is absent) so the controllability pair hasR(A,B) = (3, 1, 1),
i.e., the KCF L2 ⊕ 2L0.
Similarly, the observability staircase form is computed as0 1 0

1 0 0
0 0 1

 0 0
−3 0
0.6 0

[
0 1
1 0

]
=

 0 −3
0 0
0 0.6

 ≡

 Areg ∗
0 ∗
0 Y1

 ,

where l1 = rank(Y1) = 1 and l0 = 1. As we can see there exists a regular part
of size 1 × 1 corresponding to the unobservable mode (here the eigenvalue 0).
Consequently, L(A,C) = (1, 1) and J 0(A,C) = (1), which correspond to the
KCF LT

1 ⊕ J1(0).

3.2 Computing controllable and unobservable subspaces

The controllable subspace CS(A,B) and unobservable subspace OS(A,C) of a state-space
system (A,B,C,D) is defined, respectively, as (e.g., see [25, 107, 116])

CS(A,B) = inf{S | AS ⊂ S; ran(B) ⊂ S} = ran(C(A,B)),

OS(A,C) = sup{S | AS ⊂ S; S ⊂ null(C)} = null(O(A,C)).
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If dim(CS(A,B)) = c < n, then the system is uncontrollable and there exists an uncontrol-
lable subspace. Analogously, if dim(OS(A,C)) = ō > 0, then the system is unobservable
and there exists an unobservable subspace.

With an n× n unitary transformation matrix U the controllability system pencil SC(λ)
can be reduced to the controllability staircase form (3.33):

U
[
B A− λIn

] [
Im 0
0 UH

]
=

[
Bc Ac − λIc ∗
0 0 Ac̄ − λIc̄

]
,

where (Ac, Bc) is controllable, Ac̄ − λIc̄ is regular and contains the uncontrollable modes,
and the first c rows of U span CS(A,B) [107]. Dually, the observable subspace can be
derived from the observability staircase form (3.34):

[
U 0
0 Ip

] [
A− λIn

C

]
UH =

 Aō − λIō ∗
0 Ao − λIo

0 Co

 ,

where (Ao, Co) is observable, Aō − λIō is regular and contains the unobservable modes, and
the first ō rows of U span OS(A,C) [107].

It follows, that if a controllability pair (A,B) already is in BCF then

[
Ic 0
0 Ic̄

] [
BB AB − λIn

] Im 0 0
0 Ic 0
0 0 Ic̄

 =
[
Bε Aε 0
0 0 Aµ

]
,

where Aε has c rows/columns and Aµ has c̄ rows/columns. Consequently,

CS(A,B) = span
{[

Ic

0

]}
.

Similarly, if an observability pair (A,C) is in BCF thenIō 0 0
0 Io 0
0 0 Ip

[
AB − λIn

CB

] [
Iō 0
0 Io

]
=

Aµ 0
0 Aη

0 Cη

 ,

where Aµ has ō rows/columns and Aη has o rows/columns, then

OS(A,C) = span
{[

Iō

0

]}
.

The subspaces can also be derived from a generalized Schur-staircase form where the
structure of the system pencil is not preserved, in contrary to the controllability and observ-
ability staircase forms. For example, from the GUPTRI form of the corresponding general
matrix pencil G − λH of a system, the subspaces can be derived as follows.

From the mp × np matrix pencil G − λH in the GUPTRI form

U(G − λH)V H =

Gr − λHr ∗ ∗
0 Greg − λHreg ∗
0 0 Gl − λHl

 ,

different pairs of reducing subspaces can be computed [25, 108]. Let Gr − λHr be mr × nr,
Greg − λHreg be mreg ×nreg, and Gl − λHl be ml×nl. Let also U and V be partitioned as
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U =
[
Ur Ureg Ul

]
and V =

[
Vr Vreg Vl

]
, respectively, where the dimensions of each

submatrix are given from the sizes of the blocks in the GUPTRI form of G − λH. Then
the left and right reducing subspaces, U and V, form a pair of reducing subspaces spanned
by the leading columns of U and V , respectively. The subspace is called minimal if it is
spanned by the minimal reducing subspace pair (span{Ur}, span{Vr}), and maximal if it is
spanned by the maximal reducing subspace pair (span{Ur, Ureg}, span{Vr, Vreg}).

If the n× (n + m) controllability system pencil is in the GUPTRI form

U
[
B A− λIn

]
V H =

[
Ar − λBr ∗

0 Areg − λBreg

]
,

it follows that the controllable subspace is equal to the minimal left reducing subspace
U ≡ span{Ur}, or equivalently, the bottom n rows of the minimal right reducing subspace
V ≡ span{Vr}. For the generalized matrix pair (E, A,B), where E is nonsingular, the
controllable subspace is equal to E−1U [25].

Analogously, the unobservable subspace is equal to the maximal right reducing subspace
of SO(λ), or equivalently, the first n rows of maximal left reducing subspace [25]. This
follows from the duality

unobservable subspace of (A,C)

= (controllable subspace of (AT , CT ))⊥

= (minimal left reducing subspace of
[
CT AT − λIn

]
)⊥

= maximal right reducing subspace of
[

A−λIn

C

]
.
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4 Matrix and pencil spaces

A matrix can be seen as a point in a matrix space, and the union of all similar matrices
as a manifold in this space. We say that the matrix “lives” in the space spanned by the
manifold, and the dimension of the manifold is given from the number of parameters of the
matrix, where each fixed parameter gives one less degree of freedom. The dimension of the
complementary space to the manifold is called the codimension, and as we will see has a
vital role in the theory of stratification.

In this section, we consider the matrix space and the corresponding spaces for matrix
pencils and system pencils. Moreover, it is shown how the dimensions and codimensions of
these spaces are computed, and we also present a convenient way to get the codimension
from the canonical structure information of a matrix, matrix pencil or system pencil.

4.1 The matrix space

A matrix A of size n×n has n2 elements and therefore belongs to an n2-dimensional (matrix)
space, one dimension for each parameter. As mentioned above, a matrix A can be seen as a
point in the n2-dimensional space and consequently the union of all n×n matrices constitute
the entire matrix space [30].

The orbit of a matrix, O(A), is the manifold of all similar matrices:

O(A) = {PAP−1 : det (P ) 6= 0}. (4.36)

This means that all matrices in the same orbit have the same canonical form, both the
eigenvalues and the sizes of the Jordan blocks are fixed, and that O(A) is a manifold in the
n2-dimensional space. A bundle defines the union of all orbits with the same canonical form
but with the eigenvalues unspecified,

⋃
µi
O(A) [2]. We denote the bundle of A by B(A).

The dimension of the space O(A) is equal to the dimension of the tangent space to
O(A) at A, denoted by tan(A), and is defined in terms of A by the matrices of the form
TA = XA−AX, where X is an n×n matrix. Using the technique in [30] the tangent vectors
TA can be expressed in terms of the vec-operator and Kronecker products as:

vec(TA) =
(
AT ⊗ In

)
vec(X)− (In ⊗A) vec(X)

=
(
AT ⊗ In − In ⊗A

)
vec(X).

The orthogonal complement of the tangent space is the normal space, nor(A), which is
the union of all n× n matrices Z that satisfy

AHZ = ZAH .

Figure 1 illustrates an orbit of a tentative matrix A together with the tangent and normal
spaces to the orbit at A.

The dimension of the space complementary to the orbit is called the codimension of
O(A), denoted by cod(O(A)) [23, 30, 113]. Consequently the codimension is equal to the
dimension of the normal space and

cod(O(A)) = n2 − dim(tan(A)).

The codimension of the B(A) is denoted cod(B(A)). When it is clear from context whether
it is the codimension of an orbit or a bundle, we only write cod(A).

An explicit expression for the codimension for matrices was derived by Arnold [2] using
miniversal deformations, including a parameterization of the normal space, with one param-
eter for each dimension of the normal space. It follows that the codimension can be obtained
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nor(A)

tan(A)

O(A)

A

Figure 1: Illustration of the orbit, tangent space, and normal space for a tentative matrix
A (marked with the dot).

as the number of linearly independent matrices X that solve f(X) = XA − AX = 0. For
an introduction to and how the (mini)versal deformation is derived we refer to [3] and [30].

A more convenient way to determine the codimension of the orbit of A is based on the
Jordan structure of the matrix (e.g., see [23]):

cod(A) = cJor, (4.37)

where

cJor =
q∑

i=1

gi∑
j=1

(2j − 1)h(i)
j =

q∑
i=1

(h(i)
1 + 3h

(i)
2 + 5h

(i)
3 + · · · ), (4.38)

and (h(i)
1 , . . . , h

(i)
gi ) are the Segre characteristics for the finite eigenvalue µi, as defined in

Section 2.4, and q is the number of distinct eigenvalues.
Simple eigenvalues make no contribution to the codimension in the bundle case. There-

fore, knowing the codimension of an orbit the codimension of the corresponding bundle is
one less for each distinct eigenvalue:

cod(B(A)) = cod(O(A))− (number of distinct eigenvalues).

For example, if we are interested in an n × n matrix A with k unspecified eigenvalues and
the rest with known specified values, the codimension of B(A) is cod(O(A))− k.

Example 7

Given a matrix A with JCF 2J2(µ1) ⊕ J1(µ1) ⊕ 3J5(µ2) ⊕ J2(µ3) with the cor-
responding Segre characteristics:

hµ1 = (2, 2, 1),
hµ2 = (5, 5, 5), and
hµ3 = (2).

The codimension of the orbit of A is

cod(A) = (2 + 3 ∗ 2 + 5 ∗ 1) + (5 + 3 ∗ 5 + 5 ∗ 5) + 2 = 60,

and the codimension of the bundle of A is 60−3 = 57 (since A has three distinct
eigenvalues).
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4.2 The matrix pencil space

In the case of mp×np matrix pencils G − λH, we now have a 2mpnp-dimensional space (two
matrices, each with mpnp elements), where the orbit is the manifold of strictly equivalent
matrix pencils:

O(G − λH) = {U(G − λH)V −1 : det (U) · det (V ) 6= 0}. (4.39)

As for matrices, the bundle of G − λH, B(G − λH), is the set of matrix pencils with the
same Kronecker canonical structure, i.e., equal left and right singular blocks and Jordan
blocks of equal size but with unspecified eigenvalues.

The dimension ofO(G − λH) is equal to the dimension of the tangent space toO(G − λH),
which can be expressed by the pencils on the form

TG − λTH = X(G − λH)− (G − λH)Y,

where X is an mp×mp matrix and Y is an np×np matrix. Edelman, Elmroth and K̊agström
[30] showed that by using Kronecker products the 2mpnp tangent vectors TG − λTH can be
represented as [

vec(TG)
vec(TH)

]
=

[
GT ⊗ Imp

HT ⊗ Imp

]
vec(X)−

[
Inp ⊗G
Inp ⊗H

]
vec(Y ),

and the tangent space is the range of the 2mpnp × (mp
2 + np

2) matrix

T ≡
[
GT ⊗ Imp −Inp ⊗G

HT ⊗ Imp −Inp ⊗H

]
. (4.40)

Then the normal space is

nor(G − λH) = null(TH) = {ZG − λZH},

where ZGGH + ZHHH = 0 and GHZG + HHZH = 0 [30]. The dimensions of the two
complementary spaces can now be expressed in terms of the matrix T as

dim(tan(G − λH)) = mp
2 + np

2 − dim(null(T )),

and

dim(nor(G − λH)) = dim(null(TH)) = dim(null(T ))− (mp − np)2.

As before, the codimension of the orbit is equal to the dimension of the normal space, which
together with the tangent space makes up the complete 2mpnp-dimensional space for the
matrix pencil.

We recall from Section 2.4 the invariants associated with the KCF of a matrix pencil.
These are the column minimal indices (ε1, . . . , εr0), the row minimal indices (η1, . . . , ηl0),
the Segre characteristics (h(i)

1 , . . . , h
(i)
gi ) for the finite eigenvalue µi for i = 1, . . . , q, and the

Segre characteristics (s1, . . . , sg∞) for the infinite eigenvalue.
Knowing the KCF, Demmel and Edelman [23] derived explicit expressions for the codi-

mension of a matrix pencil. They showed that it is a sum of separate codimensions:

cod(G − λH) = cRight + cLeft + cSing + cJor + cJor,Sing, (4.41)
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where

cRight =
∑

εi>εj

(εi − εj − 1), cLeft =
∑

ηi>ηj

(ηi − ηj − 1),

cSing =
∑
εi,ηj

(εi + ηj + 2), cJor =
q∑

i=1

gi∑
j=1

(2j − 1)h(i)
j +

g∞∑
j=1

(2j − 1)sj ,

and

cJor,Sing = (r0 + l0)

 q∑
i=1

gi∑
j=1

h
(i)
j +

g∞∑
j=1

sj

 .

The first two terms, cRight and cLeft, come from the interaction between L blocks and LT

blocks, respectively. The term cSing comes from the interaction between the right and left
singular blocks and is the summation over all pairs of Lεi

and LT
ηj

blocks. The term cJor

comes from the Jordan blocks and corresponds to (4.38) for matrices, but also includes the
infinite eigenvalues appearing in general matrix pencils. The last term cJor,Sing is the product
of the number of singular blocks and the total size of the regular part. As for matrices, the
codimension of the corresponding bundle is given as:

cod(B(G − λH)) = cod(O(G − λH))− (number of distinct eigenvalues).

Example 8

Given a matrix pencil G − λH with KCF L3 ⊕ L1 ⊕ L0 ⊕ LT
3 ⊕ LT

0 ⊕ J2(α) ⊕
J1(α)⊕N3 with the corresponding integer partitions:

ε = (3, 1, 0), η = (3, 0),
hα = (2, 1), and s = (3).

The codimension of the orbit of G − λH is the sum of the terms

cRight = (3− 1− 1) + (3− 0− 1) + (1− 0− 1) = 3,

cLeft = 3− 0− 1 = 2,

cSing = (3 + 3 + 2) + (3 + 0 + 2) + (1 + 3 + 2) + (1 + 0 + 2)
+ (0 + 3 + 2) + (0 + 0 + 2) = 29,

cJor = (2 + 3 ∗ 1) + 3 = 8, and
cJor,Sing = (3 + 2)(2 + 1 + 3) = 30,

which give cod(G − λH) = 3+2+29+8+30 = 72. It follows that the codimension
of the bundle of G − λH is 72−2 = 70, since we have two eigenvalues (one finite
and one infinite).

Another approach to compute the codimension is from the singular value decomposition
(SVD) of the matrix T in (4.40) [30]. It follows that

cod(G − λH) = number of zero singular values of T ,
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and that the left singular vectors corresponding to the zero singular value form an orthonor-
mal basis for nor(G − λH). The corresponding result for square matrices is

cod(A) = number of zero singular values of AT ⊗ In − In ⊗A.

This is a robust but rather costly method for computing the codimension, e.g., to compute
the SVD of T is an O(m3n3) operation. However, the main advantage of the SVD-based
method is that the codimension can be computed without any knowledge of the canonical
structure of the orbit.

Miniversal deformations for matrix pencils were derived by Edelman, Elmroth and K̊ag-
ström [30] and partially by Berg and Kwatny [6]. Further studies on versal deformations
of matrix pencils have, for example, been done in [46, 48], and [47] where the simplest
miniversal deformation of matrices and matrix pencils is derived. Versal deformations of
different kinds of system pencils (considered in the next section) have, for example, been
studied in [7, 39, 50, 51, 103] and of invariant subspaces in [41, 99].

4.3 The system pencil space

Next, we consider pairs, triples and quadruples of matrices. An (n + p) × (n + m) matrix
quadruple (A,B,C,D) belongs to an ((n+p)(n+m))-dimensional space and a matrix triple
(A,B,C) to an (n2 + np + nm)-dimensional space. Similarly, the controllability pair (A,B)
belongs to an (n2 + nm)-dimensional space and the observability pair (A,C) belongs to an
(n2 + np)-dimensional space. Throughout this paper we are only considering orbits and
bundles under feedback equivalence of these systems. For matrix quadruples (and matrix
triples when D ≡ 0) such an orbit is defined as

O(A,B,C,D)

=
{[

P S
0 T

] [
A− λI B

C D

] [
P−1 0
R Q−1

]
: det(P ) · det(T ) · det(Q) 6= 0

}
.

Similarly, the orbit for the controllability pairs is defined as

O(A,B) =
{

P
[
A− λI B

] [
P−1 0
R Q−1

]
: det(P ) · det(Q) 6= 0

}
,

and for the observability pairs we have

O(A,C) =
{[

P S
0 T

] [
A− λI

C

]
P−1 : det(P ) · det(T ) 6= 0

}
.

The tangent space to O(A,B,C,D) at (A,B,C,D) is given by the system matrix of the
form [

TA TB

TC TD

]
=

[
X Y
0 Z

] [
A B
C D

]
+

[
A B
C D

] [
−X 0
V W

]
,

where X, Y, Z, V and W are matrices of conforming sizes [40]. Similar to the general
matrix pencil case, we can express the tangent space of a matrix quadruple (A,B,C,D) as
the range of the (n2 + nm + np + mp)× (n2 + np + p2 + nm + m2) matrix

T(A,B,C,D) =


AT ⊗ In − In ⊗A CT ⊗ In 0 In ⊗B 0

BT ⊗ In DT ⊗ In 0 0 Im ⊗B
−In ⊗ C 0 CT ⊗ Ip In ⊗D 0

0 0 DT ⊗ Ip 0 Im ⊗D

 ,
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where 
vec(TA)
vec(TB)
vec(TC)
vec(TD)

 = T(A,B,C,D)


vec(X)
vec(Y )
vec(Z)
vec(V )
vec(W )

 .

The matrix T(A,B,C,D) is derived using the technique for general matrix pencils [30]. The cor-
responding matrix representations of the tangent space of a triple (A,B,C), a controllability
pair (A,B) and an observability pair (A,C) are ([15, 45]):

T(A,B,C) =

AT ⊗ In − In ⊗A CT ⊗ In 0 In ⊗B 0
BT ⊗ In 0 0 0 Im ⊗B
−In ⊗ C 0 CT ⊗ Ip 0 0

 ,

T(A,B) =
[
AT ⊗ In − In ⊗A In ⊗B 0

BT ⊗ In 0 Im ⊗B

]
, and

T(A,C) =
[
AT ⊗ In − In ⊗A CT ⊗ In 0

−In ⊗ C 0 CT ⊗ Ip

]
.

As before, the dimension of the orbit is equal to the dimension of the tangent space to
the orbit, and the codimension is equal to the dimension of the associated normal space.
Expressed in terms of the T -matrix notation, we have for the different systems (see [51] for
(A,B,C) and [39] for (A,B)):

dim(tan(A,B,C,D)) = n2 + np + p2 + nm + m2 − dim(null(T(A,B,C,D))),

dim(nor(A,B,C,D)) = dim(null(T(A,B,C,D)))−m2 − p2 + pm,

dim(tan(A,B,C)) = n2 + np + p2 + nm + m2 − dim(null(T(A,B,C))),

dim(nor(A,B,C)) = dim(null(T(A,B,C)))−m2 − p2,

dim(tan(A,B)) = n2 + nm + m2 − dim(null(T(A,B))),

dim(nor(A,B)) = dim(null(T(A,B)))−m2 − p2 − np,

dim(tan(A,C)) = n2 + np + p2 − dim(null(T(A,C))), and

dim(nor(A,C)) = dim(null(T(A,C)))−m2 − p2 − nm.

For the generalized case of the matrix quadruple where we also have restricted system
equivalence [17, 101], the tangent space to O(E, A,B, C,D) is[

TE TA TB

0 TC TD

]
=

[
X Y
0 Z

] [
E A B
0 C D

]
+

[
E A B
0 C D

]−S 0 0
0 −S 0
0 V W

 .

As for state-space systems we can get the tangent space from the range of

T(E,A,B,C,D)

=


ET ⊗ In −In ⊗ E 0 0 0 0
AT ⊗ In −In ⊗A CT ⊗ In 0 In ⊗B 0
BT ⊗ In 0 DT ⊗ In 0 0 Im ⊗B

0 −In ⊗ C 0 CT ⊗ Ip In ⊗D 0
0 0 0 DT ⊗ Ip 0 Im ⊗D

 ,
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where 
vec(TE)
vec(TA)
vec(TB)
vec(TC)
vec(TD)

 = T(E,A,B,C,D)


vec(X)
vec(S)
vec(Y )
vec(Z)
vec(V )
vec(W )

 .

This is an extension of the generalized matrix triple (E, A,B, C) considered in [15]. For
(E, A,B, C) the group of proportional plus derivative feedback transformations [86, 118]
acting on the E matrix is also of interest. The tangent space is now given as (see [15])

[
TE TA TB

0 TC 0

]
=

[
X Y
0 Z

] [
E A B
0 C 0

]
+

[
E A B
0 C 0

]−S 0 0
0 −S 0
U V W

 ,

with the corresponding T matrix in Kronecker product representation:

T(E,A,B,C)

=


ET ⊗ In −In ⊗ E 0 0 In ⊗B 0 0
AT ⊗ In −In ⊗A CT ⊗ In 0 0 In ⊗B 0
BT ⊗ In 0 0 0 0 0 Im ⊗B

0 −In ⊗ C 0 CT ⊗ Ip 0 0 0

 ,

where


vec(TE)
vec(TA)
vec(TB)
vec(TC)

 = T(E,A,B,C)



vec(X)
vec(S)
vec(Y )
vec(Z)
vec(U)
vec(V )
vec(W )


.

Knowing the canonical structure, the explicit expression for the codimension of the orbit
of a controllability pair (A,B) is derived in [39], see also [38]. By rewriting the result, it
is obvious that the computation of the codimension of O(A,B) can be done using parts of
the expression (4.41) for matrix pencils. Following the notation of (4.41) and the invariants
associated with (A,B), the codimension of O(A,B) is

cod(A,B) = cRight + cJor + cJor,Right, (4.42)

where

cRight =
∑

εk>εl

(εk − εl − 1), cJor =
q∑

i=1

gi∑
k=1

(2k − 1)h(i)
k , and cJor,Right = r0

q∑
i=1

gi∑
k=1

h
(i)
k .

The codimension of the orbit of an observability pair (A,C) is easily derived by its duality
to (A,B). The codimension of O(A,C) is

cod(A,C) = cLeft + cJor + cJor,Left, (4.43)
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where

cLeft =
∑

ηk>ηl

(ηk − ηl − 1), cJor =
q∑

i=1

gi∑
k=1

(2k − 1)h(i)
k , and cJor,Left = l0

q∑
i=1

gi∑
k=1

h
(i)
k .

Expressed in terms of the structure invariants of the system, the codimension for matrix
quadruples and matrix triples were derived by Garćıa-Planas and Magret. The explicit
expression for the codimension of a matrix triple is derived in [51] and the explicit expression
for a matrix quadruple is presented, but not derived, in [49]. However, parts of the results
provided in [49] and [51] seem to be incorrect. The terms coming from the interaction
between the N blocks should depend on the existence of L and LT blocks4. This can be
seen by studying the versal deformations of the corresponding system pencil. We have
included our revised version of their results in A.

When computing the codimension of the corresponding bundle, the same relation holds
for pairs, triples and quadruples associated with a system pencil S(λ), as for matrices and
matrix pencils:

cod(B(S(λ))) = cod(O(S(λ)))− (number of distinct eigenvalues).

4See Equations (A.66), (A.67), (A.76), and (A.77) of A. See also the original rules in [51, Table 1; Eq. (2)
and (10)] and [49, p. 881].
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5 Stratification of orbits and bundles

Computing the canonical structure of a system is an ill-posed problem; the system may
be sensitive to small perturbations, e.g., small changes in the input data may drastically
change the computed canonical structure. Besides knowing the canonical structure, it is
equally important to be able to identify nearby canonical structures in order to explain the
behavior of the state-space system under small perturbations. For example, a state-space
system which is found to be controllable may be very close to an uncontrollable system, and
can therefore by only a small change in some data, e.g., due to round-off errors, become
uncontrollable.

A stratification gives the closure hierarchy of orbits and bundles of canonical structures,
i.e., it shows which structures are near to each other (in the sense of small perturbations)
and their relation to other structures. For square matrices, Arnold [2] examined nearby
structures by small perturbations using versal deformations. For matrix pencils, the theory
was first introduced for the set of 2-by-3 matrix pencils by Elmroth and K̊agström [37]
and later extended in collaboration with Edelman to general matrices and matrix pencils
[30, 31]. In line of this work, the theory has further been developed in [34] by Elmroth,
P. Johansson and K̊agström, and for matrix pairs together with S. Johansson in [33, 36, 76].
Other interesting papers have been published by Berg and Kwatny [6, 7], Boley [10], Garcia-
Planas and Magret [44], and Pervouchine [96].

In the following, when it is clear from context we sometimes use the shorter term structure
when we refer to a canonical structure. Moreover, in the graph representation used below a
downward path is defined as a path for which all edges start in a node and end in another
node below in the graph. Similarly, an upward path is a path in the opposite direction.

Based on the theory in [30, 31, 36], a software tool, StratiGraph [34, 70, 73, 74], has been
developed for computing and visualizing the stratification. The stratification is represented
as a connected graph where the nodes correspond to orbits (or bundles) of different canonical
structures and the edges to their covering relations. Given a node for a canonical structure,
its closure is represented by the node itself and all nodes which can be reached by a downward
path. In Figure 2, we can see how such a stratification can be represented graphically. The
graph illustrates the complete stratification of bundles of all 111 structurally different 7× 7
matrices, where each bundle of the different Jordan structures is represented by one of the
111 nodes. Indeed, the size of a graph grows exponentially with the matrix size.

In the graph, it is always possible to go from any canonical structure to another higher
up in the graph by a small perturbation if and only if they are connected by an upward path.
The other way around is normally not possible, i.e., a structure does not have to be near a
structure below in the graph. However, the cases when a structure below in the hierarchy
actually is nearby is often of particular interest, as it shows that a more degenerate structure
can be found by a small perturbation.

The stratification can be characterized as follows. First, the codimension determines the
level in the graph on which the canonical structure resides. We remark that several structures
can have the same codimension and therefore are on the same level in the graph. In Figure 2,
the codimension is shown on the left side of the graph. Second, the cover relations give the
connected structure(s) above or below in the closure hierarchy and guarantee that there
is no structure in between. Two structures that have the same codimension cannot cover
each other, instead they belong to different branches in the graph. Third, the most generic
structure is the one with the lowest codimension and is therefore the topmost node in the
graph. In Figure 2, the top node corresponds to the most generic orbit of 7×7 diagonalizable
matrices with 7 distinct eigenvalues (JCF: J1(µ1)⊕J1(µ2)⊕· · ·⊕J1(µ7); µi 6= µj for i 6= j).
The most degenerate (or the least generic) structure is the one with the highest codimension
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Figure 2: The complete stratification of the bundle to a 7× 7 matrix give 111 nodes and
313 edges. The numbers on the left show the codimension of the nodes on each level. The
graph is generated using StratiGraph v 3.0.

45



and is consequently the bottom node. In Figure 2, the bottom node corresponds to the most
degenerate orbit and Jordan structure, i.e., a nilpotent matrix in diagonal form (the zero
matrix with JCF: J1(µ1) ⊕ · · · ⊕ J1(µ7); µi = 0, ∀i). All other 109 nodes represent matrix
orbits corresponding to all possible combinations of Jordan blocks (and eigenvalues), whose
sizes add up to seven. The edges represent closure relations in the orbit hierarchy.

How the codimensions are computed have already been discussed in Section 4, the most
generic and degenerate cases are considered in Section 5.2, and the cover relations in Sec-
tion 5.3. We end this section by discussing the stratification of a small state-space system
in Section 5.4.

5.1 Integer partitions and coins

Before we go any further into the theory of stratification, we define some more properties
for integer partitions, which were introduced in Section 2.4. Following [30, 31], the integer
partitions are used to express the stratification rules with combinatorial rules acting on these
partitions. These rules are called minimum coin moves.

For integer partitions we use standard vector operations and if κ = (κ1, κ2, . . .), κ1 ≥
κ2 ≥ · · · ≥ 0, is an integer partition of an integer K and m is a scalar, then we denote the
sum κ1 +κ2 + · · · as

∑
κ and (κ1 +m,κ2 +m, . . .) as κ+m. We also recall from Section 2.4

the following operations on integer partitions. The union of two integer partitions κ and ν
is denoted by κ ∪ ν, the difference by κ \ ν, and the conjugate of κ is denoted by conj(κ).

If ν = (ν1, ν2, . . .) is a second integer partition (not necessarily of the same integer K as
κ) and κ1 + · · · + κi ≥ ν1 + · · · + νi for i = 1, 2, . . ., then κ ≥ ν. Note that, if

∑
κ =

∑
ν

then κ ≤ ν if and only if conj(κ) ≥ conj(ν). We say that κ dominates ν or κ > ν, if κ ≥ ν
and κ 6= ν. If κ, ν and τ are integer partitions of the same integer K and there does not
exist any τ such that κ > τ > ν where κ > ν, then κ covers ν. It follows that κ covers ν if
and only if κ > ν and conj(κ) < conj(ν).

A weaker definition of cover is adjacent [22, 65], where κ and ν can be partitions of
different integers. We say that κ > ν are adjacent partitions if either κ covers ν or if
κ = ν ∪ (1).

An integer partition κ = (κ1, . . . , κn) can also be represented by n piles of coins, where
the first pile has κ1 coins, the second κ2 coins and so on. This representation is used by
Edelman, Elmroth and K̊agström [31] to construct the stratification rules. They also defined
the following sets of rules on the coin representation.

• Minimum rightward coin move on κ: Move one coin one column rightward or one row
downward, and keep κ monotonically decreasing.

• Minimum leftward coin move on κ: Move one coin one column leftward or one row
upward, and keep κ monotonically decreasing.

In Figure 3, a Hasse diagram and the corresponding piles of coins are illustrated for
the integer partition of K = 6, where two covering partitions are nearest neighbours. For
example, the integer partition κ = (5, 1) covers ν = (4, 2).

In [31], it was shown that the two coin moves defined above can be used to find covering
partitions above and below a given partition (see Figure 4).

Theorem 5.1 [16, 31]

(a) An integer partition κ covers ν if ν can be obtained from κ by a minimum rightward
coin move on κ.
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2 1 1 1 1

1 1 1 1 1 1

2 2 1 1

2 2 2

3 2 1

3 1 1 1

4 1 1 3 3

4 2

5 1

Figure 3: Example of a covering relationship with six coins.
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Figure 4: Minimum rightward and leftward coin moves illustrate that κ = (3, 2, 2, 1)
covers ν = (3, 2, 1, 1, 1) and κ = (3, 2, 2, 1) is covered by τ = (3, 3, 1, 1).

(b) An integer partition κ is covered by τ if τ can be obtained from κ by a minimum
leftward coin move on κ.

We can also illustrate the conjugate operation with coins, which is obtained by trans-
posing the coins on the anti-diagonal as in Figure 5.

Figure 5: Conjugate of the partition (3, 2, 2, 1) is (4, 3, 1).

5.2 Most and least generic cases

Almost all systems of the same size and type (matrices, matrix pencils, etc.) have the same
canonical structure. This canonical structure corresponds to the most generic case and has
the lowest codimension in the closure hierarchy. This follows from the concept of generic
(above called most generic) in [115].

Definition 5.1 [44, 115] A submanifold Y of a manifold X is called generic (or most
generic) if it is open, dense and its boundary is the union of submanifolds of (strictly) lower
dimensions.

The opposite case, which in the nilpotent matrix case corresponds to the zero matrix, is
the least generic case, or equivalently, the most degenerate case and it has the highest
codimension. In the closure hierarchy graph, the most generic case is represented by the
topmost node and the most degenerate case by the bottom node. The canonical structures
in between correspond to degenerate (or non-generic) cases. In the following, the most and
least generic structures for matrices, matrix pencils and system pencils are expressed in their
canonical structure and the structure integer partitions R and L, see Section 2.1–2.4.
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We remark that the formulae, discussed below, to compute the most generic structure
only hold if there are no restrictions on the matrix, matrix pencil, or system pencil. Other-
wise, for example when the matrix pencil has a special structure or fixed rank, the restrictions
must be considered when determining the most and least generic cases. There can even ex-
ist several most generic structures, but only one with codimension 0 (if it exists). This has
recently been studied for general matrix pencils in, e.g., [20, 21, 69].

For general n× n matrices, the most generic canonical structure has n J1 blocks corre-
sponding to n distinct eigenvalues. The associated orbit has codimension n and consequently
the bundle has codimension n − n = 0. For orbits of nilpotent matrices the most generic
case has one Jordan block of size n × n and the codimension of its orbit is n. The most
degenerate structure is the one with n J1 blocks corresponding to a single eigenvalue of
multiplicity n, which for orbits has the codimension n2 and for bundles n2 − 1. Hence, the
orbit corresponding to the most degenerate Jordan structure is only a point in the matrix
space. In the bundle case, the matrix has one degree of freedom given by the unspecified
value of the eigenvalue. See for example Figure 2, where the most degenerate structure of a
bundle for a 7× 7 matrix has codimension 7 · 7− 1 = 48.

For a non-square matrix pencil of size mp×np the most generic case with d = np−mp > 0
has R = (r0, . . . , rα+1) where r0 = · · · = rα = d and rα+1 = c with α = bmp/dc and
c = mp mod d [23, 106]. The same statement holds for d = mp − np > 0 by only replacing
the partition R with L. It follows that the most generic structures for non-square matrix
pencils are equivalent to

G − λH =
[
0 Imp

]
− λ

[
Imp 0

]
, if mp < np,

and

G − λH =
[

0
Inp

]
− λ

[
Inp

0

]
, if mp > np.

The most generic canonical structure for a square matrix pencil of size np×np consists only of
a regular part with np distinct finite eigenvalues, i.e., it is diagonalizable and det(G − λH) =
0 if and only if λ is an eigenvalue. The most generic structures for square singular matrix
pencils have r0 = · · · = rj = 1 and l0 = · · · = lnp−j−1 = 1, j = 0, . . . , np − 1 [113], i.e.,
the number of most generic square singular matrix pencils is np. The most degenerate case,
both for a square and non-square matrix pencil, corresponds to the zero pencil G − λH =
0mp×np − λ0mp×np and has R = (np) and L = (mp), i.e., np L0 blocks and mp LT

0 blocks.
The most generic cases for a matrix quadruple and a matrix triple depend on the dimen-

sions of the corresponding (n + p)× (n + m) system pencil

S(λ) =
[
A B
C D

]
− λ

[
In 0
0 0

]
.

For matrix quadruples the most generic case is [19]:

(1) If m > p, let d = m−p, α = bn/dc and c = n mod d. Then the most generic structure
has p N1 blocks and R = (r0, . . . , rα+1) where r0 = · · · = rα = d and rα+1 = c.

(2) If p > m, let d = p−m, α = bn/dc and c = n mod d. Then the most generic structure
has m N1 blocks and L = (l0, . . . , lα+1) where l0 = · · · = lα = d and lα+1 = c.

(3) If m = p, the most generic structure has m N1 blocks and n J1 blocks with distinct
eigenvalues.
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For matrix triples the most generic case is [19]:

(1) If m > p and n ≥ p, let d = m− p, α = b(n− p)/dc and c = (n− p) mod d. Then the
most generic structure has p N2 blocks andR = (r0, . . . , rα+1) where r0 = · · · = rα = d
and rα+1 = c.

(2) If p > m and n ≥ m, let d = p−m, α = b(n−m)/dc and c = (n−m) mod d. Then the
most generic structure has m N2 blocks and L = (l0, . . . , lα+1) where l0 = · · · = lα = d
and lα+1 = c.

(3) If m = p and n ≥ m, the most generic structure has m N2 blocks and n−m J1 blocks
with distinct eigenvalues.

(4) If n < min{m, p}, the most generic structure has n N2 blocks, m − n L0 blocks and
p− n LT

0 blocks.

We remark that in the orbit case for both quadruples and triples, where the regular part is
nilpotent, case (3) gives one Jordan block of size n and n−m, respectively. Moreover, the
most generic matrix quadruple has N1 blocks, while the most generic triple has N2 blocks.
The larger N blocks for matrix triples are a consequence of that the smallest N block a
matrix triple can have is of size 2× 2, see Section 2.6.

The most degenerate cases for triples and quadruples have n J1 blocks with equal eigen-
values, m L0, and p LT

0 blocks.

Example 9

Given a system pencil S(λ) with n = 2, m = 3, and p = 1, we illustrate how the
most generic and the most degenerate canonical structures for matrix quadruples
and matrix triples are derived.

We begin with the matrix quadruple associated with S(λ). Since m > p we use
case (1) above:

d = m− p = 3− 1 = 2,

α = bn/dc = b2/2c = 1, and
c = n mod d = 2 mod 2 = 0.

We get R = (2, 2, 0) corresponding to two L1 blocks, and one (p = 1) N1 block,
i.e., the most generic structure for a matrix quadruple associated with S(λ) has
the KCF 2L1 ⊕N1.

For the associated matrix triple we also use the corresponding case (1) (m > p
and n ≥ p):

d = m− p = 3− 1 = 2,

α = b(n− p)/dc = b(2− 1)/2c = 0, and
c = (n− p) mod d = (2− 1) mod 2 = 1.

We get R = (2, 1) corresponding to one L0 block and one L1 block, and one
(p = 1) N2 block, i.e., the KCF L1 ⊕ L0 ⊕N2.

The most degenerate structure, both for the matrix quadruple and matrix triple,
is 3L0 ⊕ LT

0 ⊕ 2J1(µ1).
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The most generic structure of the controllability pair (A,B) has R = (r0, . . .
, rα, rα+1) where r0 = · · · = rα = m, rα+1 = n mod m, and α = bn/mc [57]. For
the observability pair (A,C) the most generic structure has L = (l0, . . . , lα, lα+1) where
l0 = · · · = lα = p, lα+1 = n mod p, and α = bn/pc. The most degenerate case of (A,B) has
m L0 blocks and n Jordan blocks of size 1×1 corresponding to an eigenvalue of multiplicity
n. Similarly, (A,C) has p LT

0 blocks and n 1 × 1 Jordan blocks. In other words, the most
generic cases correspond to completely controllable and observable systems, while the most
degenerate cases correspond to systems with n uncontrollable and n unobservable multiple
modes, respectively.

Example 10

We use the same system pencil as in Example 9 to illustrate how the most generic
and the most degenerate canonical structures for the matrix pairs (A,B) and
(A,C), respectively, are computed.

For the matrix pair (A,B) with n = 2 and m = 3 we have α = b2/3c = 0 and
r1 = 2 mod 3 = 2. Hence, the most generic structure has R = (3, 2), giving the
KCF 2L1 ⊕ L0. The most degenerate structure has the KCF 3L0 ⊕ 2J1(µ1).

The matrix pair (A,C) with n = 2 and p = 1 has α = b2/1c = 2 and l3 =
2 mod 1 = 0. So, the most generic structure has L = (1, 1, 1, 0), i.e., the KCF
LT

2 , and the most degenerate structure is LT
0 ⊕ 2J1(µ1).

Example 11

In this example, we illustrate how a fixed structure of the system matrices A
and B in a state-space system ẋ(t) = Ax(t) + Bu(t) can restrict the form of the
most and least generic cases.

Consider a controllability pair (A,B) of the same size as in Example 10 associated
with the state-space system

ẋ(t) =
[

1 0
1.45 2.5

]
x(t) +

[
3.0 0 0
1 0 0

]
u(t), (5.44)

with the corresponding 2× 5 controllability system pencil

SC(λ) =
[

1 0 3.0 0 0
1.45 2.5 1 0 0

]
− λ

[
I2 0

]
.

Moreover, let all zeros and ones in the system matrices A and B be fixed.

We first determine the most generic structure. For a controllability pair the
number of L0 blocks is m− rank(B) (see end of Section 2.6). It follows that for
the system (5.44) the number of L0 blocks must be at least 3− rank(B) = 2 (we
have two fixed columns of zeros). Since the most generic structure has two L0

blocks: r0 = · · · = rα = m,

rα+1 = m− 2 = 3− 2 = 1, and
rα+1 = n mod m = n− bn/mcm = n− αm = 2− 3α.
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Figure 6: The complete bundle stratification of a 2×5 controllability pencil. The grey area
marks the possible canonical structures for the state-space system (5.44). The numbers on
the left show the codimension of the orbits on each level.

From the above two equations α = 1 and, consequently, the most generic struc-
ture has R = (3, 3, 1) corresponding to the KCF L2 ⊕ 2L0.

The most degenerate structure is determined by studying the system with all
free variables in A and B set to zero:

ẋ(t) =
[
1 0
0 0

]
x(t) +

[
0 0 0
1 0 0

]
u(t),

which has the KCF L1 ⊕ 2L0 ⊕ J1(1). That the most degenerate structure has
one Lk block, where k > 0, follows from that we have one nonzero column in
B. In this case k = 1. Consequently, the total size of the Jordan structure is
n− k = 2− 1 = 1.

Figure 6 displays the complete stratification of the bundles of 2×5 controllability
pencils. The grey area marks the possible canonical structures for the state-
space system (5.44) with all zeros and ones fixed. As we can see, the only
possible structures are the two we have derived above. How the complete bundle
stratification in Figure 6 is determined is explained in Section 5.4.

5.3 Closure and cover relations

To determine the closure hierarchy for n×n matrices we stratify the n2-dimensional matrix
space into similarity orbits (or bundles). Similarly, the closure hierarchy for mp×np matrix
pencils is given by the stratification of strictly equivalence orbits (or bundles) in the 2mpnp-
dimensional matrix pencil space. The stratification of orbits or bundles is given from the
closure relations and further the cover relations between these manifolds, see Arnold [2] and
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[30, 31]. An orbit covers another orbit if its closure includes the closure of the other orbit
and there is no orbit in between in the closure hierarchy, i.e., they are nearest neighbours in
the hierarchy. The closure and cover relations for bundles are defined analogously.

We want a procedure to decide if an orbit closure is a (proper) subset of another orbit
closure. We start by observing that if two systems with the corresponding orbits O1 and
O2 are equivalent, then O1 = O2 where O denotes the orbit closure. Furthermore, an orbit
O2 which lies in the closure of O1 is less generic, i.e., dim(O2) < dim(O1). In general,
this follows from the closed orbit lemma [68], where the differentiable manifold X can be a
matrix A, a matrix pencil G − λH, or a system pencil S − λT.

Theorem 5.2 [68] Let an equivalence transformation act on a differentiable manifold X.
Then each orbit is a smooth, locally closed subset of X, whose boundary is a union of orbits
of strictly lower dimension. In particular, orbits of minimal dimension are closed (so closed
orbits exist).

In the following, we show the requirements on the canonical forms corresponding to O1

and O2 such that O1 ⊇ O2, i.e., that the closure of O2 lies in the closure of O1, for
matrices, matrix pencils and matrix pairs. The closure and cover relations for orbits of
matrix quadruples and matrix triples are not yet completely determined, and are therefore
not considered in this paper.

Starting with matrices, the theory behind the closure decision problem for orbits of
nilpotent matrices goes back to 1961. If the matrix has well clustered eigenvalues but is
not nilpotent, the blocks associated with the same eigenvalue can be shifted to a nilpotent
matrix and the same theory can be used. For example, given a matrix A with eigenvalues
µ1, . . . , µq. Order the Jordan blocks such that A = diag(A1, . . . , Aq), where Ai contains all
Jordan blocks associated with the eigenvalue µi, for i = 1, . . . , q. In order to study closure
and cover relations related to the eigenvalue µi, the matrix can be shifted (Ã = A− µiI) so
that the block Ãi = Ai − µiI is nilpotent.

The closure conditions for orbits of matrices are given by the following theorem, where the
integer partition hµi

represents the Segre characteristics and J µi
the Weyr characteristics

for the finite eigenvalue µi, and q is the number of distinct eigenvalues.

Theorem 5.3 [2, 31] O(A1) ⊇ O(A2) if and only if J µi
(A1) ≤ J µi

(A2) and hµi
(A1) ≥

hµi
(A2), for all µi ∈ C, i = 1, . . . , q.

From Theorem 5.3 it follows that the number of eigenvalues and the total size of all blocks
associated with the same eigenvalue, are the same for all orbits in the closure hierarchy.
This in contrast to the bundle case where eigenvalues can coalesce or split apart.

Next, we consider the cover relations for orbits of matrices. This can be obtained from
Theorem 5.3 and the definition of covering partitions. Here we give the cover relations in
form of coin moves on the structure integer partition J µi as presented in [31].

Theorem 5.4 [2, 31] O(A1) covers O(A2) if and only if some J µi
(A2) can be obtained

from J µi(A1) by a minimum leftward coin move, and J µj (A2) = J µj (A1) for all µj 6= µi.

In the case of not well-clustered eigenvalues, we have to consider the bundle case as
defined by Arnold [2]. The solution to the closure decision problem for matrix bundles is
given in Theorem 5.5, where coalescing two eigenvalues α and β is equivalent to take the
union of the two corresponding integer partitions J α and J β . We remark that, even if
testing for closure relations between nilpotent matrices is trivial, deciding if one bundle is in
the closure of another bundle is an NP-complete problem [60] (see also [31]). The conditions
for covering relations expressed in terms of coin moves are given in Theorem 5.6. We have
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summarized the stratification rules to find a covering or a covered orbit/bundle to a matrix
in Table 2 of B.

Theorem 5.5 [28, 31, 87] If B(A1) has at least as many distinct eigenvalues as B(A2),
then B(A1) ⊇ B(A2) if and only if it is possible to coalesce eigenvalues and apply the domi-
nance ordering coin moves to the structure integer partitions of the bundle defined by A1 to
reach that of A2.

Theorem 5.6 [31] B(A1) covers B(A2) if and only if some J µi(A2) either can be obtained
from J µi

(A1) by a minimum leftward coin move or by coalescing the partitions from two
distinct eigenvalues (and J µj

(A2) = J µj
(A1) for all other eigenvalues µj).

Example 12

Let A be a 7 × 7 matrix with JCF 2J2(µ1) ⊕ J1(µ2) ⊕ J1(µ3) ⊕ J1(µ4). Using
the stratification rules in Table 2.C (also given in Theorem 5.6 above) and Ta-
ble 2.D of B, we show how to derive all nearest neighbours to the matrix A in a
bundle stratification. The complete bundle stratification of all 7× 7 matrixces is
shown in Figure 2, where the matrix A is represented by one of the nodes with
codimension 7 (the fourth node from the right).

The JCF of A is expressed in the Weyr characteristics and its corresponding sets
of coins as

J µ1 = (2, 2); ,

J µ2 = (1); ,

J µ3 = (1); , and

J µ4 = (1); .

We start with the two rules in Table 2.C to find all covered matrix bundles.
First, rule C.1 (minimal leftward coin move) is applied to all sets of coins for
which it is feasible. It follows that it can only be applied to the set J µ1 :

J µ1 : ⇒ J µ1 : .

The remaining sets are unchanged, showing that B(A) covers the bundle of the
matrices with JCF J2(µ1)⊕ 2J1(µ1)⊕ J1(µ2)⊕ J1(µ3)⊕ J1(µ4).

Then we apply rule C.2 (take the union of two sets) to all the sets of coins. Here
we have two possibilities, either we take the union of two sets with one coin
(whichever two of J µ2 , J µ3 and J µ4), e.g.,

J µ2 :
⋃

J µ3 : ⇒ J µ2 : ,
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or we take the union of J µ1 and one of the sets with one coin, e.g.,

J µ1 :
⋃

J µ2 : ⇒ J µ1 : .

It follows that B(A) also covers the bundles of the structures with JCF 2J2(µ1)⊕
J2(µ2)⊕ J1(µ4) and J3(µ1)⊕ J2(µ1)⊕ J1(µ3)⊕ J1(µ4).

To find all covering matrix bundles the two rules in Table 2.D are used. Rule D.1
(minimal rightward coin move) can only be applied to the set J µ1 :

J µ1 : ⇒ J µ1 : .

With all other sets unchanged, we get that B(A) is covered by the bundle of the
structures with JCF J3(µ1)⊕J1(µ1)⊕J1(µ2)⊕J1(µ3)⊕J1(µ4). The second rule
(divide one set into two) can also only be applied to the set J µ1 :

J µ1 : ⇒ J µ1 : , J µ5 : .

This shows that B(A) is covered by the bundle of the structures with JCF
2J1(µ1)⊕ J1(µ2)⊕ J1(µ3)⊕ J1(µ4)⊕ 2J1(µ5).

The bundle closure hierarchy with all covered and covering bundles to B(A) is
shown in Figure 7.

The closure decision problem for orbits of general matrix pencils was solved by Pokrzywa
[98] and later reformulated by De Hoyos [19]. Independently, Bongartz [11] derived a similar
solution to the problem. Here follows the theorem given in [19] formulated as in [31], where
R = (r0, . . . , rε1), L = (l0, . . . , lη1), and J µi

= (j(i)
1 , . . . , j

(i)
gi ) are the structure integer

partitions defined in Section 2.4. Moreover, denote byr0(G − λH) the number of column
minimal indices (r0) for G − λH.

Theorem 5.7 [31, 19, 98] O(G − λH) ⊇ O(G̃ − λH̃) if and only if the following relations
hold:

(1) R(G − λH) + nrk (G − λH) ≥ R(G̃ − λH̃) + nrk(G̃ − λH̃).

(2) L(G − λH) + nrk (G − λH) ≥ L(G̃ − λH̃) + nrk(G̃ − λH̃).

(3) J µi(G − λH) + r0(G − λH) ≤ J µi(G̃ − λH̃) + r0(G̃ − λH̃),

for all µi ∈ C, i = 1, 2 . . ., where C = C ∪ {∞}.

From matrix bundles it follows that deciding if a bundle of a matrix pencil is in the
closure of another is also an NP-complete problem. The necessary conditions for an orbit or
a bundle of two matrix pencils to be closest neighbours were derived in [11, 19, 98], which
was later complemented with the sufficient conditions in [31].
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J3(µ1)⊕J1(µ1)⊕J1(µ2)⊕J1(µ3)⊕J1(µ4)

D.12J1(µ1)⊕J1(µ2)⊕J1(µ3)⊕J1(µ4)⊕2J1(µ5)

D.2

2J2(µ1)⊕J1(µ2)⊕J1(µ3)⊕J1(µ4)

C.2

J3(µ1)⊕J2(µ1)⊕J1(µ3)⊕J1(µ4)

C.2

2J2(µ1)⊕J2(µ2)⊕J1(µ4)

C.1

J2(µ1)⊕2J1(µ1)⊕J1(µ2)⊕J1(µ3)⊕J1(µ4)

Figure 7: All nearest neighbours in the closure hierarchy to the bundle of the matrix with
JCF 2J2(µ1) ⊕ J1(µ2) ⊕ J1(µ3) ⊕ J1(µ4). Which rule in Table 2 of B used is marked at
each edge, and the bundle codimensions are shown to the left.

Theorem 5.8 [31] Given the structure integer partitions L, R and J µi
of G − λH, where

µi ∈ C, one of the following if-and-only-if rules finds G̃ − λH̃ such thatO(G − λH) covers
O(G̃ − λH̃):

(1) Minimum rightward coin move in R (or L).

(2) If the rightmost column in R (or L) is one single coin, move that coin to a new
rightmost column of some J µi (which may be empty initially).

(3) Minimum leftward coin move in any J µi
.

(4) Let k denote the total number of coins in all of the longest (= lowest) rows from all
of the J µi

. Remove these k coins, add one more coin to the set, and distribute k + 1
coins to rp, p = 0, . . . , t and lq, q = 0, . . . , k − t − 1 such that at least all nonzero
columns of R and L are given coins.

Rules 1 and 2 are not allowed to make coin moves that affect r0 (or l0).

Notice that in the above two theorems for matrix pencils, the eigenvalue µi corresponding
to the structure integer partition J µi

belongs to the extended complex plane, i.e., µi ∈
C ∪ {∞}. Moreover, in Theorem 5.8 the restriction for rules (1) and (2) implies that the
number of left and right singular blocks remain fixed, while rule (4) adds one new block
of each kind and rule (3) corresponds to the nilpotent case. We also remark that rule (4)
cannot be applied if the total number of nonzero columns in R and L are more than k + 1.
If the rule can be applied, at least one coin must be assigned to R and L, respectively. In
Table 3 of B, the complete set of rules for cover relations of matrix pencils is given (both
for covered/covering orbits and bundles).
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Example 13

Here we consider the orbit stratification of the 3 × 5 matrix pencil G − λH
associated with the state-space system (2.20) in Example 4. The KCF of G − λH
is 2L0⊕J2(α)⊕J1(β), where in (2.20) the eigenvalue α = ∞ and the eigenvalue
β depends on the value of γ (if γ = 0 then β = 0). However, we consider the
general case where α and β can be any complex number (including infinity) and
therefore denote the eigenvalues by µ1 and µ2, respectively. In the following, we
show how all matrix pencils covered by O(G − λH) can be found using the rules
in Theorem 5.8 (or Table 3.A of B).

First, we express the KCF 2L0⊕J2(µ1)⊕J1(µ2) in the structure integer partitions
R and J , and its corresponding sets of coins:

R = (2); ,

J µ1 = (1, 1); , and

J µ2 = (1); .

Rule (1) cannot be applied to R because the rule is not allowed to do any coin
moves that affect r0 (the first column in R). The second rule cannot be used
because R has not a single coin in its rightmost column. However, rule (3) can
be applied to the set J µ1 :

J µ1 : ⇒ J µ1 : .

This shows that O(G − λH) covers the orbit of the matrix pencils with KCF
2L0 ⊕ 2J1(µ1)⊕ J1(µ2).

We can also apply the fourth rule which says the following. Take all coins on the
lowest rows of all J and add one coin to the set:

J µ1 : + J µ2 : + ⇒ .

Then distribute the coins on R and L, such that at least all nonzero columns
in R and L get one coin each and R and L get no less than one coin. The four
coins can be distributed in three different ways on the sets R and L:

I. R: , L: .

II. R: , L: .
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III. R: , L: .

The three cases correspond to the matrix pencils 3L0 ⊕LT
2 , L1 ⊕ 2L0 ⊕LT

1 , and
L2 ⊕ 2L0 ⊕ LT

0 , respectively.

To illustrate rule (2), we also derive the orbits of matrix pencils covered by the
orbit of L1⊕2L0⊕LT

1 (case II above). Rule (1) cannot be applied because there
are no minimal rightward coin moves that do not affect r0. For rule (2), there
are two choices; either the single rightmost coin in R or the single rightmost coin
in L is moved to a new set J µ1 :

R: ⇒ R: , J µ1 : ,

or

L: ⇒ L: , J µ1 : .

The two cases give the matrix pencils with KCF 3L0 ⊕ LT
1 ⊕ J1(µ1) and L1 ⊕

2L0 ⊕ LT
0 ⊕ J1(µ1). Furthermore, rule (3) and (4) cannot be applied because

there is no regular part.

If we derive the orbits that are covered by the orbit of the remaining structures
2L0 ⊕L2 ⊕LT

0 , 2L0 ⊕ 2J1(µ1)⊕ J1(µ2), and 3L0 ⊕LT
2 , we actually get no more

structures than those already derived. The orbit stratification derived above
is shown in Figure 8 (the complete stratification of the bundles of 3 × 5 matrix
pencils is shown in Figure 9). We remark that rule (1) is not used in this example,
but it is similar to rule (3) and should be straightforward to apply.

Closure conditions for controllability pairs, both necessary and sufficient, have been
studied by Gracia, De Hoyos and Zaballa [59], and later by Hinrichsen and O’Halloran
[65, 66]. As shown below, the closure conditions are a subset of those for general matrix
pencils. Here we give our reformulation and slight modification of the theorem originally
presented in [66, Theorem 4.6].

Theorem 5.9 [66, 75] O(A,B) ⊇ O(Ã, B̃) if and only if the following conditions hold:

(1) R(A,B) ≥ R(Ã, B̃).

(2) J µi
(A,B) ≤ J µi

(Ã, B̃), for all µi ∈ C, i = 1, . . . , q.

The closure conditions for the observability pair (A,C) are, from the duality with (A,B),
equal to those for (A,B) except that R is replaced by L.

In [66, Theorem 4.6], condition (1) is given as conj(ε) ≥ conj(ε̃) and condition (2) as
Dj(A,B) divides Dj(Ã, B̃) for all j = 1, . . . , n, where the integer partition ε is the column
minimal indices and Dj(A,B) are the greatest common divisors of all minors of (A,B), as
defined in Section 2.4. Furthermore, they only prove the theorem for O(A,B) ⊇ (Ã, B̃)
instead of the more rigid condition O(A,B) ⊇ O(Ã, B̃). In the proof, we show that these
two closure relations are indeed equal for matrix pairs and that the two conditions in [66,
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cod

9

10

11

12

14

2L0⊕J2(µ1)⊕J1(µ2)

4

L1⊕2L0⊕LT
1

4

L2⊕2L0⊕LT
0 3

2L0⊕2J1(µ1)⊕J1(µ2)2 2

4

L1⊕2L0⊕LT
0 ⊕J1(µ1)

4

3L0⊕LT
2

2

4

2

3L0⊕LT
1 ⊕J1(µ1)

Figure 8: A subgraph of all orbits that are in closure of the orbit of the matrix pencil
with KCF 2L0⊕ J2(µ1)⊕ J1(µ2). Which rule of Theorem 5.8 used is marked at each edge,
and the orbit codimensions are shown to the left.

Theorem 4.6] can be reformulated as those in Theorem 5.9. The proof is originally presented
in [75].

Proof of Theorem 5.9. Notably, in order to conform with our formulations of The-
orems 5.3 and 5.7 we write O(A,B) ⊇ O(Ã, B̃) instead of O(A,B) ⊇ (Ã, B̃) as originally
written in [66, Theorem 4.6]. This can be done since O(A,B) consists of the set of all
controllability pairs with the canonical form of (A,B) (i.e., O(A,B)) and more degenerate
orbits in the closure of O(A,B). The same holds for O(Ã, B̃). Since O(Ã, B̃) is in the
closure of O(A,B), O(Ã, B̃) is in O(A,B).

It remains to show that conditions (1) and (2) given in [66, Theorem 4.6] are equal to
conditions (1) and (2), respectively, of Theorem 5.9.

Condition (1): Show that conj(ε) ≥ conj(ε̃) in [66, Theorem 4.6] is equivalent toR(A,B) ≥
R(Ã, B̃) in Theorem 5.9.

Knowing that R = (r0) ∪ conj(ε) where r0 is the number of L blocks, and that (A,B)
always has m L blocks, it follows directly that conj(ε) ≥ conj(ε̃) is equivalent to R(A,B) ≥
R(Ã, B̃).

Condition (2): Show that Dj(A,B) divides Dj(Ã, B̃) (j = 1, . . . , n) in [66, Theorem 4.6]
is equivalent to J µi

(A,B) ≤ J µi
(Ã, B̃) (for all µi ∈ C, i = 1, . . . , q) in Theorem 5.9.
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The BCF of the matrix pairs (A,B) and (Ã, B̃) are[
Aε 0 Bε

0 Aµ 0

]
, and

[
Ãε 0 B̃ε

0 Ãµ 0

]
,

respectively, where (Aε, Bε) and (Ãε, B̃ε) consist of the singular parts and the square pencils
Aµ and Ãµ consist of the regular parts of (A,B) and (Ã, B̃), respectively.

First of all, the size of Aµ is always less or equal to the size of Ãµ. It follows from
cod(A,B) ≤ cod(Ã, B̃) (equality if (A,B) and (Ã, B̃) have the same KCF).

If Aµ and Ãµ are of the same size we can use the closure conditions in Theorem 5.3 for
matrices. We follow the steps by Hinrichsen and O’Halloran in [64, p. 614] to prove the
equivalence with the elementary divisors.

It follows from Theorem 5.3 that O(Aµ) ⊇ O(Ãµ) if and only if J µi
(Aµ) ≤ J µi

(Ãµ) and
hµi

(Aµ) ≥ hµi
(Ãµ), for each eigenvalue µi. Recall from Section 2.4 that h

(i)
k (in hµi

(Aµ) and
hµi

(Ãµ)) is the multiplicity of the elementary divisor λ−µi in Pk of Aµ and Ãµ, respectively.
We get from (2.14) and the closure condition in Theorem 5.3 that O(Aµ) ⊇ O(Ãµ) if and
only if Dj(Aµ) divides Dj(Ãµ), i.e.,

J µi(Aµ) ≤ J µi(Ãµ) if and only if Dj(Aµ) divides Dj(Ãµ).

Finally, we consider the case when the size of Ãµ is larger than for Aµ. Let Ãreg be a
submatrix of Ãµ with the same eigenvalues as Aµ, where the total size of all blocks cor-
responding to each of those eigenvalues are at least as large as in Aµ. As shown above
it follows that Dj(Aµ) divides Dj(Ãreg) and therefore must Dj(Aµ) divide Dj(Ãµ). Ex-
pressed in Weyr characteristics this corresponds to J µi

(Aµ) ≤ J µi
(Ãreg), and consequently

J µi
(A,B) = J µi

(Aµ) ≤ J µi
(Ãreg) ≤ J µi

(Ã, B̃), for all µi ∈ C, i = 1, . . . , q.
�

Theorem 5.10 [36] If B(A,B) has at least as many distinct eigenvalues as B(Ã, B̃), then
B(A,B) ⊇ B(Ã, B̃) if and only if the following conditions hold:

(1) R(A,B) ≥ R(Ã, B̃).

(2) It is possible to coalesce eigenvalues and apply the dominance ordering coin moves to
J µi

(A,B), for any µi, to reach (Ã, B̃).

Proof. The theorem follows directly from Theorem 5.9 and the closure condition for
matrix bundles presented in [31]. �

In [65], also the necessary conditions for cover relations of matrix pencils with no row
minimal indices have been derived. They are summarized in Proposition 5.11 with some
minor reformulations. We remark that a matrix pencil G − λH with no row minimal indices
can have infinite elementary divisors, which is not the case for a controllability pair (A,B).
As defined in Section 2.4, the invariants of G − λH and G̃ − λH̃ (column minimal indices
and Segre characteristics of finite and infinite eigenvalues) are

ε = (ε1, . . . , εr0), hµi
= (h(i)

1 , . . . , h(i)
gi

), s = (s1, . . . , sg∞), and

ε̃ = (ε̃1, . . . , ε̃r̃0), h̃µj = (h̃(j)
1 , . . . , h̃

(j)
g̃j

), s̃ = (s̃1, . . . , s̃g̃∞),

respectively. Notably, the integer partitions associated with the same invariants of G − λH
and G̃ − λH̃, e.g. ε and ε̃, can be of different length.
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Proposition 5.11 [65] Let G − λH and G̃ − λH̃ be two n×(n+m) matrix pencils with no
row minimal indices. If O(G − λH) covers O(G̃ − λH̃) then one of the following conditions
holds:

(1) conj(ε) > conj(ε̃) are adjacent, hµi
= h̃µi

for all eigenvalues µi, and s = s̃.

(2)
∑m

i=1 εi >
∑m

i=1 ε̃i, conj(ε) > conj(ε̃) are adjacent, h̃
(i)
1 = h

(i)
1 + 1 for some eigenvalue

µi (where µi can be a new eigenvalue), and s = s̃.

(3)
∑m

i=1 εi >
∑m

i=1 ε̃i, conj(ε) > conj(ε̃) are adjacent, hµi = h̃µi for all eigenvalues µi,
and s̃1 = s1 + 1 (where s and s̃ can be empty partitions).

(4) ε = ε̃, hµi
> h̃µi

for all eigenvalues µi, and s = s̃.

(5) ε = ε̃, hµi = h̃µi for all eigenvalues µi, and s > s̃.

From Theorem 5.9, Proposition 5.11, and the cover conditions for matrix pencils (see
Theorem 5.8 and B), it is possible to derive both necessary and sufficient conditions for a
cover relation between two controllability pairs (A,B). The proof is organized as follows.
We modify Proposition 5.11 so that it fulfills the restrictions given by the structure of the
controllability pair and then, where required, strengthen each condition so that they become
not only necessary but also sufficient.

Theorem 5.12 [36] O(A,B) covers O(Ã, B̃) if and only if one of the following conditions
holds:

(1) R(A,B) covers R(Ã, B̃) where r0(A,B) = r0(Ã, B̃), and J µi
(A,B) = J µi

(Ã, B̃) for
all eigenvalues µi.

(2) If rε1 = 1 and ε1 ≥ 1 for R(A,B), then R(Ã, B̃) = R(A,B) \ (rε1), J µi
(Ã, B̃) =

J µi
(A,B)∪ (1) for some eigenvalue µi (where J µi

(A,B) can be an empty partition),
and J µj

(A,B) = J µj
(Ã, B̃) for all µj 6= µi.

(3) R(A,B) = R(Ã, B̃), J µi
(A,B) covers J µi

(Ã, B̃) for one eigenvalue µi, and
J µj

(A,B) = J µj
(Ã, B̃) for all µj 6= µi.

Theorem 5.13 [36] B(A,B) covers B(Ã, B̃) if and only if one of the following conditions
holds:

(1) R(A,B) covers R(Ã, B̃) where r0(A,B) = r0(Ã, B̃), and J µi(A,B) = J µi(Ã, B̃) for
all eigenvalues µi.

(2) If rε1 = 1 and ε1 ≥ 1 for R(A,B), then R(Ã, B̃) = R(A,B) \ (rε1), J µi(Ã, B̃) = (1)
for a new eigenvalue µi, and J µj (A,B) = J µj (Ã, B̃) for all µj 6= µi.

(3) R(A,B) = R(Ã, B̃), J µi
(A,B) covers J µi

(Ã, B̃) for one eigenvalue µi, and
J µj

(A,B) = J µj
(Ã, B̃) for all µj 6= µi.

(4) R(A,B) = R(Ã, B̃), J µi
(Ã, B̃) = J µi

(A,B)∪J µj
(A,B) for one pair of eigenvalues

µi and µj, µi 6= µj, and J µk
(A,B) = J µk

(Ã, B̃) for all µk 6= µi, µj.
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Notably, Theorem 5.13 has four rules, i.e., one extra compared to Theorem 5.12. The
additional rule (4) follows from that eigenvalues can coalesce in the bundle case.

From the dual relation between the controllability pair (A,B) and the observability pair
(A,C), it follows that replacing partition R with L in Theorems 5.12 and 5.13 gives the
cover conditions for the observability pair (A,C). We remark that the theorems are only
valid for independent (decoupled) matrix pairs (A,B) and (A,C), respectively. This means
that Theorems 5.12 and 5.13 cannot be applied straightforwardly to the related matrix triple
(A,B,C) or matrix quadruple (A,B,C,D). The covering relations for orbits and bundles of
the controllability pair in terms of coin rules are given in Corollaries 5.14 and 5.15. The re-
formulations are done using the definition of integer partitions and Theorem 5.1. In Tables 4
and 5 of B, these and the remaining covering relations for matrix pairs are summarized. A
larger example illustrating the usage of Corollary 5.15 is presented in Section 5.4.

Corollary 5.14 Given the structure integer partitions R and J µi
of (A,B), one of the

following if-and-only-if rules finds (Ã, B̃) such that O(A,B) covers O(Ã, B̃):

(1) Minimum rightward coin move in R.

(2) If the rightmost column in R is one single coin, move that coin to a new rightmost
column of some J µi

(which may be empty initially).

(3) Minimum leftward coin move in any J µi
.

Rules 1 and 2 are not allowed to do coin moves that affect r0.

Corollary 5.15 Given the structure integer partitions R and J µi of (A,B), one of the
following if-and-only-if rules finds (Ã, B̃) such that B(A,B) covers B(Ã, B̃):

(1) Minimum rightward coin move in R.

(2) If the rightmost column in R is one single coin, move that coin to the first column of
J µi for a new eigenvalue µi.

(3) Minimum leftward coin move in any J µi
.

(4) Let any pair of eigenvalues coalesce, i.e., take the union of their sets of coins.

The major difference between the rules for matrix pencils and matrix pairs, is that
rule (4) (both for orbits and bundles) in Theorem 5.8 does not apply to matrix pairs, since
there is only one type of singular blocks (L or LT ) in each matrix pair type. Moreover, in
rules (1) and (2) of Corollaries 5.14 and 5.15, the pair (A,B) applies to the R partition only.

5.4 Illustrating the stratification of a state-space system

We illustrate the concept of stratification by considering a general state-space system of the
same size as the one used in Example 4, with two states, three inputs and one output (n = 2,
m = 3 and p = 1):

S(λ) =
[
A B
C D

]
− λ

[
I2 0
0 0

]
, (5.45)

where A ∈ C2×2, B ∈ C2×3, C ∈ C1×2 and D ∈ C1×3. We assume that the system
does not have well-defined poles and zeros (eigenvalues), so we have to work with the bundle
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Figure 9: The window on the left shows the complete stratification of the bundles of 3×5
general matrix pencils. The light grey area marks the possible canonical structures for a
matrix triple and together with the dark grey area for a matrix quadruple. The window
on the right shows the corresponding canonical structures associated with the nodes in the
graph.
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stratification. To compute and visualize the closure hierarchy graphs for the different system
pencils in the examples we use the software tool StratiGraph v 3.0 [70, 74].

The bundle stratification of general matrix pencils G − λH of size 3×5 can be represented
by a graph with 26 different (canonical) structures, as in Figure 9. The graph spans from the
most generic case, L2⊕L1 with codimension 0, to the most degenerate case, 5L0⊕3LT

0 with
codimension 30. This stratification does not, however, consider the special structure of the
system pencil S(λ) and therefore generates canonical structures in the closure hierarchy that
are in fact not possible for the system (5.45). Moreover, for matrix pencils the stratification
procedure makes no distinction between finite and infinite elementary divisors (eigenvalues).

Instead we associate the state-space system with a matrix quadruple (A,B,C,D). Even
though we do not have the covering relations for matrix quadruples we can generate all
18 possible structures for S(λ). They are listed in Table 1 with their corresponding bundle
codimensions in the leftmost column, where the most and least generic structures are derived
in Example 9. In Figure 9, the corresponding structures are highlighted by the union of the
dark and light grey areas. Let c :k denote node

k
c in Figure 9, where c is the codimension

of the corresponding bundle and k is an order number that identifies individual nodes with
the same codimension. As examples, we show why the orbits with KCF L3 ⊕ L0 (2 :2) and
L1 ⊕ L0 ⊕ 2J1(µ1) (7 :2) are not possible for system (5.45). The reasoning follows directly
from the characteristics of the GBCF (2.19). The node with KCF L3 ⊕ L0 has only two L
blocks and therefore m = 2 (the system has two inputs), which contradicts with the number
of inputs of S(λ). The node with KCF L1⊕L0⊕ 2J1(µ1) can either have a finite or infinite
eigenvalue µ1. If µ1 is finite then n = 3 and m = 2, and if µ1 is infinite then n = 1 and
m = 4. In both cases, the dimensions of the state-space matrices contradicts with S(λ).

Moreover, the stratification procedure for matrix quadruples identifies infinite and finite
elementary divisors and treat them separately. For example, the structure 2L0 ⊕ J2(µ1) ⊕
J1(µ2) (node 7:2) for the general matrix pencil splits into two different structures in the
matrix quadruple case:

• 2L0 ⊕ J2(µ1) ⊕ N1 corresponding to a system with one finite elementary divisor of
order two (a finite zero at µ1 of order two), one infinite elementary divisor of order
one, and the column minimal indices ε1 = 0 and ε2 = 0.

• 2L0 ⊕ J1(µ1) ⊕ N2 corresponding to a system with one finite elementary divisor of
order one (a finite zero at µ1 of order one), one infinite elementary divisor of order
two (an infinite zero of order one), and the column minimal indices ε1 = 0 and ε2 = 0.

By only considering the subsystem of S(λ) corresponding to the matrix triple (A,B,C),
we get the subset of structures in Table 1 with no infinite elementary divisors of order one,
i.e., no N1 blocks (as we concluded in the end of Section 2.6). In Table 1, the codimensions
are presented for the bundles of the matrix triples when they can appear in the closure
hierarchy, and in Figure 9 the possible canonical structures for triples are highlighted by the
light grey area. The most and least generic triples are derived in Example 9. The bundle of
the matrix triple associated with the second order state-space system (2.20) considered in
Example 4, with KCF 2L0 ⊕ J1(µ1)⊕N2, is represented by the node 7:2 in Figure 9 and as
we can see in Table 1 it has codimension 2.

Now, consider the independent subsystems of (5.45) associated with the controllability
pair (A,B) and the observability pair (A,C), where the controllability system pencil

SC(λ) =
[
A B

]
− λ

[
I2 0

]
,
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Table 1: All possible canonical structures for a state-space system with two states, three
inputs and one output. The bundle codimensions for the associated matrix quadruple
and triple are listed in the first two columns, and the label for the corresponding node in
Figure 9 in the last column.

cod(B(∗)) Node label
(A,B,C,D) (A,B,C) Canonical structure (KCF) in Fig. 9

0 – 2L1 ⊕N1 2:1
1 – L2 ⊕ L0 ⊕N1 3:1
2 – L1 ⊕ L0 ⊕ J1(µ1)⊕N1 4:1
3 0 L1 ⊕ L0 ⊕N2 5:1
4 – 2L0 ⊕ J1(µ1)⊕ J1(µ2)⊕N1 6:1
5 – 2L0 ⊕ J2(µ1)⊕N1 7:2
5 2 2L0 ⊕ J1(µ1)⊕N2 7:2
5 2 2L1 ⊕ L0 ⊕ LT

0 8:1
6 3 2L0 ⊕N3 8:2
7 – 2L0 ⊕ 2J1(µ1)⊕N1 9:1
7 4 L2 ⊕ 2L0 ⊕ LT

0 10:1
7 4 L1 ⊕ 2L0 ⊕ LT

1 10:3
8 5 L1 ⊕ 2L0 ⊕ LT

0 ⊕ J1(µ1) 11:1
9 6 3L0 ⊕ LT

2 12:1
10 7 3L0 ⊕ LT

1 ⊕ J1(µ1) 13:1
11 8 3L0 ⊕ LT

0 ⊕ J1(µ1)⊕ J1(µ2) 14:1
12 9 3L0 ⊕ LT

0 ⊕ J2(µ1) 15:1
14 11 3L0 ⊕ LT

0 ⊕ 2J1(µ1) 17:1

is of size 2× 5 and the observability system pencil

SO(λ) =
[
A
C

]
− λ

[
I2

0

]
,

is 3× 2. The stratification of bundles of the matrix pairs (A,B) and (A,C) are illustrated
by graphs (a) and (c) in Figure 10, and in graphs (b) and (d) we show the stratification
for orbits. These closure hierarchy graphs are computed by using the stratification rules in
Tables 4 and 5 of B.

We now show step by step the procedure to get the complete bundle stratification of
the controllability pair (A,B), as shown in graph (a) of Figure 10. We can, e.g., start by
determining the most generic case which corresponds to a controllable system (or the most
degenerate case if we work the opposite way). In Example 11, we have shown how the most
and least generic cases can be determined if the system matrices A and B have a fixed
structure. However, we are now interested in the stratification of a general controllability
pair. As we have shown in Example 10 the most generic structure has the KCF 2L1 ⊕ L0

with the corresponding BCF:[
AB BB

]
− λ

[
I2 0

]
=

[
0 0 1 0 0
0 0 0 1 0

]
− λ

[
1 0 0 0 0
0 1 0 0 0

]
.

By considering the controllability pair in BCF we can directly see that (A,B) is con-
trollable; rank

([
AB BB

]
− λ

[
I2 0

])
= 2 for all λ ∈ C. We can also see that it has three

(m = 3) L blocks of which one (3− rank(BB) = 1) is an L0 block.

65



This is the topmost node in the graph and by using the appropriate formula in A we can
also determine that it has codimension 0. The next step is to decide which bundle(s) that
is (are) covered by B(2L1 ⊕ L0). This is done by using the rules (1)–(4) in the bottom left
part of Table 4 of B.

The first rule tells us to do a minimum rightward coin move on R. The only possible
choice is to move the topmost coin from r1 to r2:

R: ⇒ R: ,

which gives the structure L2⊕2L0. The second rule is not applicable because the rightmost
coin in R is not a single coin, as well as the third and fourth rules because we have no Jordan
blocks. So the only bundle covered by B(2L1 ⊕ L0) is the bundle with KCF L2 ⊕ 2L0 and
codimension 2. The associated matrix pair is controllable, which also can be seen from its
BCF: [

AB BB

]
− λ

[
I2 0

]
=

[
0 1 0 0 0
0 0 1 0 0

]
− λ

[
1 0 0 0 0
0 1 0 0 0

]
.

We continue by repeating the procedure for L2 ⊕ 2L0. The first rule is not applicable
because the only possible minimum rightward coin move affects r0 which is not allowed.
As before, since there are no Jordan blocks in L2 ⊕ 2L0 the last two rules can also not be
applied. However, with rule (2) we can remove the last coin from R and create a new set
J µ1 = (1):

R: ⇒ R: , J µ1 : .

The new structure has the KCF L1 ⊕ 2L0 ⊕ J1(µ1) which corresponds to a system with one
uncontrollable mode at µ1. Looking at the corresponding BCF:

[
AB BB

]
− λ

[
I2 0

]
=

[
0 0 1 0 0
0 µ1 0 0 0

]
− λ

[
1 0 0 0 0
0 1 0 0 0

]
,

we can see that rank
([

AB BB

]
− µ1

[
I2 0

])
= 1 and the diagonal entry µ1 corresponds

to the uncontrollable mode.
In the following, we only mention the rules that are applicable on each canonical struc-

ture. There is actually only one rule in each step that is allowed. Notably, the graph never
splits into two or more branches in this example, as will happen in the orbit case.

Once again we can apply rule (2); now to the structure L1 ⊕ 2L0 ⊕ J1(µ1):

R: , J µ1 : ⇒ R: , J µ1 : , J µ2 : ,

which gives the KCF 3L0⊕J1(µ1)⊕J1(µ2) corresponding to a system with two uncontrollable
modes at µ1 and µ2. The corresponding BCF is

[
AB BB

]
− λ

[
I2 0

]
=

[
µ1 0 0 0 0
0 µ2 0 0 0

]
− λ

[
1 0 0 0 0
0 1 0 0 0

]
,
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Figure 10: The stratification of: (a) (A, B)-bundles (n = 2, m = 3), (b) (A, B)-orbits
(n = 2, m = 3), (c) (A, C)-bundles (n = 2, p = 1), and (d) (A, C)-orbits (n = 2, p = 1).
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where the two uncontrollable modes are the diagonal elements of AB .
The fourth rule can be applied to 3L0 ⊕ J1(µ1)⊕ J1(µ2):

R: , J µ1 :
⋃

J µ2 : ⇒ R: , J µ1 : ,

which gives the KCF 3L0 ⊕ J2(µ1) with one uncontrollable mode of multiplicity two and
with the corresponding BCF:

[
AB BB

]
− λ

[
I2 0

]
=

[
µ1 1 0 0 0
0 µ1 0 0 0

]
− λ

[
1 0 0 0 0
0 1 0 0 0

]
.

Finally, we can apply rule (3) to 3L0 ⊕ J2(µ1):

R: , J µ1 : ⇒ R: , J µ1 : ,

which gives the KCF 3L0 ⊕ 2J1(µ1) with two uncontrollable multiple modes and with the
corresponding BCF:

[
AB BB

]
− λ

[
I2 0

]
=

[
µ1 0 0 0 0
0 µ1 0 0 0

]
− λ

[
1 0 0 0 0
0 1 0 0 0

]
.

By examining the closure hierarchy we get qualitative information about systems under
small perturbations. From the stratification in graph (a) of Figure 10 we can see that the
two most generic cases are completely controllable (they have no uncontrollable modes), the
structure with codimension 3 has one uncontrollable mode, and so forth. By also presenting
the upper and lower bounds for the distance from a given controllable structure to the nearest
uncontrollable, we also have a quantitative measure on how sensitive the controllable system
is for small changes. This quantitative information is available in StratiGraph through the
Matrix Canonical Structure Toolbox for Matlab [71], in which StratiGraph [70, 74] has been
incorporated (see also [72]).

Finally, let us return to Example 4 where the controllable and observable second order
state-space system (2.20) has the controllability pair L2 ⊕ 2L0 and the observability pair
LT

2 . As we can see in graph (a) of Figure 10 the controllability pair is not the most generic
case, so it can by a small perturbation become the structure 2L1 ⊕ L0, which is also con-
trollable. However, the more degenerate case L1 ⊕ 2L0 ⊕ J1(µ1) is uncontrollable with one
uncontrollable mode. By computing a lower bound to this system, which is the “nearest”
(in complex arithmetic) uncontrollable system in the closure hierarchy, we get a measure on
the sensitivity of controllability for the state-space system (2.20).

The observability pair on the other hand is already the most generic case. But as
we showed in Example 4 the structure could be very close to the more degenerate case
LT

1 ⊕ J1(µ1), with the unobservable mode µ1, if the state-space system (2.20) has γ close to
zero. And in graph (c) we can see that all less generic structures are also unobservable.
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6 Some concluding remarks

In this paper, we have given an introduction to stratification of orbits and bundles with
applications in systems and control. The necessary background theory has been presented,
both from a mathematical as well as from an applications point of view using a unify-
ing terminology and notation. The background theory and the stratification theory have
throughout the paper been illustrated by examples.

The close relation between the Kronecker canonical form and the generalized Brunovsky
canonical form is well known. In Section 2.7, the explicit expressions for the permutation
matrices which transform a matrix pencil in KCF to GBCF are derived. Algorithms to
determine these two permutation matrices are also presented in the same section.

In Section 5.3, the closure conditions for orbits and bundles of matrix pairs are derived
and the cover conditions are presented. In line with previous work on matrices and matrix
pencils, we have presented the stratification rules for matrix pairs, both the controllability
pair (A,B) and the observability pair (A,C).

The natural continuation of Section 5.3 is to derive both the closure and cover conditions
for orbits and bundles of matrix quadruples and matrix triples. Other systems which are of
interest are state-space system with fixed structure and generalized state-space systems and
subsystems there of. All these systems are of great practical interest and arise in several
applications.
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A Codimensions of orbits and bundles

Presented below are the explicit expressions for computing the codimension of the state-
space system (or independent subsystems of)

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n and D ∈ Cp×m, and the general matrix pencil
G − λH, where G, H ∈ Cmp×np , with the following invariants:

• The column minimal indices ε = (ε1, . . . , εr1 , εr1+1, . . . , εr0), where εi ≥ 1 for i =
1, . . . , r1 and εi = 0 for i = r1 + 1, . . . , r0.

• The row minimal indices η = (η1, . . . , ηl1 , ηl1+1, . . . , ηl0), where ηi ≥ 1 for i = 1, . . . , l1
and ηi = 0 for i = l1 + 1, . . . , l0.

• The Segre characteristics hµi = (h(i)
1 , . . . , h

(i)
gi ), for the finite eigenvalue µi, i = 1, . . . , q.

• The Segre characteristics s = (s1, . . . , st, st+1, . . . , sg∞), for the infinite eigenvalue
where si ≥ 2 for i = 1, . . . , t and si = 1 for i = t + 1, . . . , g∞, i.e., t is the number of
Ni blocks of size i ≥ 2

The codimension of an orbit/bundle can explicitly be determined from the above invari-
ants. In the following, we summarize how the codimension is computed in the orbit case.
For all systems the codimension of the bundle is given as:

cod(B(∗)) = cod(O(∗))− (number of distinct eigenvalues).

Codimension of the orbit of a matrix A [23]

cod(A) =
q∑

i=1

gi∑
j=1

(2j − 1)h(i)
j . (A.46)

Comments: (A.46) comes from the sizes of the Jordan blocks for the finite eigenvalues.

Codimension of the orbit of a general matrix pencil G − λH [23]

cod(G − λH) =
∑

εi>εj

(εi − εj − 1) (A.47)

+
∑

ηi>ηj

(ηi − ηj − 1) (A.48)

+
∑
εi,ηj

(εi + ηj + 2) (A.49)

+ (r0 + l0)

 q∑
i=1

gi∑
j=1

h
(i)
j +

g∞∑
j=1

sj

 (A.50)

+
q∑

i=1

gi∑
j=1

(2j − 1)h(i)
j +

g∞∑
j=1

(2j − 1)sj . (A.51)

Comments: (A.47) and (A.48) come from the interaction between the L blocks and
the LT blocks, respectively. (A.49) comes from the interaction between the right and left
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singular blocks and is the summation over all pairs of Lεi
and LT

ηj
blocks. (A.50) is the

product of the number of right singular blocks and the total size of the regular part, and
(A.51) comes from the sizes of the Jordan blocks (as in (A.46)) for the finite and infinite
eigenvalues.

Codimension of the orbit of a controllability pair (A,B) [39]

cod(A,B) =
∑

εi>εj

(εi − εj − 1) (A.52)

+ r0

q∑
i=1

gi∑
j=1

h
(i)
j (A.53)

+
q∑

i=1

gi∑
j=1

(2j − 1)h(i)
j . (A.54)

Comments: (A.52) comes from the interaction between the L blocks, (A.53) is the prod-
uct of the number of right singular blocks and the total size of the regular part, and (A.54)
comes from the sizes of the Jordan blocks for the finite eigenvalues.

The controllability system pencil
[
A− λIn B

]
has full row-rank and cannot have LT

blocks or infinite eigenvalues.

Codimension of the orbit of an observability pair (A,C)

cod(A,C) =
∑

ηi>ηj

(ηi − ηj − 1) (A.55)

+ l0

q∑
i=1

gi∑
j=1

h
(i)
j (A.56)

+
q∑

i=1

gi∑
j=1

(2j − 1)h(i)
j . (A.57)

Comments: (A.55) comes from the interaction between the LT blocks, (A.56) is the
product of the number of left singular blocks and the total size of the regular part, and
(A.57) comes from the sizes of the Jordan blocks for the finite eigenvalues.

The observability system pencil
[
A− λIn

C

]
has full column-rank and cannot have L

blocks or infinite eigenvalues. The terms (A.55)–(A.57) follow by duality from the results
for the controllability pair.
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Codimension of the orbit of a triple (A,B, C) [51]

cod(A,B,C) =
∑

εi>εj

(εi − εj − 1) (A.58)

+
∑

ηi>ηj

(ηi − ηj − 1) (A.59)

+
∑
εi,ηj

(εi + ηj) (A.60)

+ (r0 + l0)
q∑

i=1

gi∑
j=1

h
(i)
j (A.61)

+
q∑

i=1

gi∑
j=1

(2j − 1)h(i)
j (A.62)

+
t∑

i=1

(2i− 1)(si − 2) (A.63)

+ (m− r1 − t)
t∑

i=1

(si − 2) (A.64)

+ (p− l1 − t)
t∑

i=1

(si − 2) (A.65)

+

{∑t
i=1(si − 2), if r1 > 0,

0, otherwise
(A.66)

+

{∑t
i=1(si − 2), if l1 > 0,

0, otherwise.
(A.67)

Comments: In the following, Aε, Aη, A∞, and Aµ refer to blocks in GBCF (see Sec-
tion 2.6).

(A.58) and (A.59) come from the interaction between the L blocks and the LT blocks,
respectively. (A.60) comes from the interaction between the right and left singular blocks
and is the summation over all pairs of Lεi and LT

ηj
blocks in Aε and Aη, respectively. (A.61)

is the product of the number of right singular blocks and the size of the block Aµ. (A.62)
comes from the sizes of the Jordan blocks for the finite eigenvalues, and (A.63) from the sizes
of the Jordan blocks for the infinite eigenvalue in A∞. (A.64) and (A.65) are the products of
the number of L0 and LT

0 blocks, respectively, and the size of A∞ minus t (t is the number
of Ni blocks of size i ≥ 2). (A.66) and (A.67) add for each existing block Aε and Aη, the
size of A∞ minus t.
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Codimension of the orbit of a quadruple (A,B, C,D) [49]

cod(A,B,C,D) =
∑

εi>εj

(εi − εj − 1) (A.68)

+
∑

ηi>ηj

(ηi − ηj − 1) (A.69)

+
∑
εi,ηj

(εi + ηj) (A.70)

+ (r0 + l0)
q∑

i=1

gi∑
j=1

h
(i)
j (A.71)

+
q∑

i=1

gi∑
j=1

(2j − 1)h(i)
j (A.72)

+
t∑

i=1

(2i− 1)(si − 2) (A.73)

+ (m− r1 − g∞)
t∑

i=1

(si − 2) (A.74)

+ (p− l1 − g∞)
t∑

i=1

(si − 2) (A.75)

+

{∑t
i=1(si − 2), if r1 > 0,

0, otherwise
(A.76)

+

{∑t
i=1(si − 2), if l1 > 0,

0, otherwise
(A.77)

+ (r0 + t)(l0 + t). (A.78)

Comments: In the following, Aε, Aη, A∞, Aµ, D∞, and DB refer to blocks in GBCF.
(A.68) and (A.69) come from the interaction between the L blocks and the LT blocks,

respectively. (A.70) comes from the interaction between the right and left singular blocks
and is the summation over all pairs of Lεi

and LT
ηj

blocks in Aε and Aη, respectively. (A.71)
is the product of the number of right singular blocks and the size of the block Aµ. (A.72)
comes from the sizes of the Jordan blocks for the finite eigenvalues, and (A.73) from the sizes
of the Jordan blocks for the infinite eigenvalue in A∞. (A.74) and (A.75) are the products of
the number of L0 and LT

0 blocks, respectively, and the size of A∞ minus t (t is the number
of Ni blocks of size i ≥ 2). (A.76) and (A.77) add for each existing block Aε and Aη, the
size of A∞ minus t. (A.78) is the size of DB minus its rank (size of D∞).

80



B Stratification rules of orbits and bundles

In this appendix, we summarize the stratification rules for orbits and bundles of matrices,
matrix pencils, and matrix pairs. From the integer partitions representing the canonical
structure (information) of an orbit or a bundle, the stratification rules find covering and
covered orbits or bundles, respectively. The following structure integer partitions are defined
for each system, where each partition has a corresponding set of coins (see Section 2.4 for
definitions):

• J µi
for a matrix A, µi ∈ C.

• R, L and J µi
for a matrix pencil G − λH, µi ∈ C.

• R and J µi for a controllability pair (A,B), µi ∈ C.

• L and J µi
for an observability pair (A,C), µi ∈ C.

Stratification rules of orbits and bundles of a matrix A

Table 2: Given the structure integer partitions J µi
of A, one of the following if-and-only-if

rules finds Ã fulfilling orbit or bundle covering relations with A [2, 31].

A. O(A) covers O(Ã):

(1) Minimum leftward coin move in
any J µi

.

B. O(A) is covered by O(Ã)

(1) Minimum rightward coin move in
any J µi

.

C. B(A) covers B(Ã):

(1) Minimum leftward coin move in
any J µi

.

(2) Let any pair of eigenvalues coa-
lesce, i.e., take the union of their
sets of coins.

D. B(A) is covered by B(Ã):

(1) Minimum rightward coin move in
any J µi

.

(2) For any J µi
, divide the set of

coins into two new sets so that
their union is J µi

.

Comments: For orbits (cases A and B), the number of eigenvalues and the total size of
all blocks associated with the same eigenvalue are the same for all orbits in the closure
hierarchy. This in contrast to bundles (cases C and D) where eigenvalues can coalesce and
split apart, respectively.
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Stratification rules of orbits and bundles of a matrix pencil G − λH

Table 3: Given the structure integer partitions L, R and J µi
of G − λH, where µi ∈ C,

one of the following if-and-only-if rules finds G̃ − λH̃ fulfilling orbit or bundle covering
relations with G − λH [31].

A. O(G − λH) covers O(G̃ − λH̃):

(1) Minimum rightward coin move in
R (or L).

(2) If the rightmost column in R (or
L) is one single coin, move that
coin to a new rightmost column
of some J µi

(which may be empty
initially).

(3) Minimum leftward coin move in
any J µi

.

(4) Let k denote the total number
of coins in all of the longest (=
lowest) rows from all of the J µi

.
Remove these k coins, add one
more coin to the set, and dis-
tribute k + 1 coins to rp, p =
0, . . . , t and lq, q = 0, . . . , k − t −
1 such that at least all nonzero
columns of R and L are given
coins.

Rules 1 and 2 are not allowed to do coin
moves that affect r0 (or l0).

B. O(G − λH) is covered by

O(G̃ − λH̃):

(1) Minimum leftward coin move in
R (or L), without affecting r0 (or
l0).

(2) If the rightmost column in some
J µi

consists of one coin only,
move that coin to a new rightmost
column in R (or L), where R (or
L) is previously non-empty.

(3) Minimum rightward coin move in
any J µi

.

(4) Remove one coin from each col-
umn of R and L. Subtract one
coin from this set and distribute
the remaining coins on all J µi

as follows. First, all nonzero
columns in each set for all eigen-
values are given one coin each.
Remaining coins are assigned to
new (rightmost) columns of exist-
ing J µi

or on new sets (for new
eigenvalues).

C. B(G − λH) covers B(G̃ − λH̃):

(1) Same as rule 1 above.

(2) Same as rule 2 above, except it
is only allowed to start a new set
corresponding to a new eigenvalue
(i.e., no appending to nonempty
sets).

(3) Same as rule 3 above.

(4) Same as rule 4 above, but apply
only if there exists only one set of
coins corresponding to one eigen-
value, or if all sets corresponding
to each eigenvalue have at least
two rows of coins.

(5) Let any pair of eigenvalues coa-
lesce, i.e., take the union of their
sets of coins.

D. B(G − λH) is covered by

B(G̃ − λH̃):

(1) Same as rule 1 above.

(2) Same as rule 2 above, except that
J µi

must consist of one coin only.

(3) Same as rule 3 above.

(4) Same as rule 4 above, except that
a new set for a new eigenvalue
may only be created if there exist
no J µi

. If a new set is created,
all coins should be assigned to it
and create one row.

(5) For any J µi
, divide the set of

coins into two new partitions so
that their union is J µi

.

Comments: The restriction for rules A.(1) and A.(2) implies that the number of left and
right singular blocks remain fixed, while rule (4) adds one new block of each kind and rule (3)
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corresponds to the nilpotent case. Rule (4) cannot be applied if the total number of nonzero
columns in R and L are more than k + 1. If the rule can be applied, at least one coin must
be assigned to R and L, respectively. Expressed in KCF, the restriction of rule C.4 means
that it can only be applied if there is just one eigenvalue or if all eigenvalues have at least
two Jordan blocks.

Notably, the eigenvalue µi corresponding to the structure integer partition J µi
belongs

to the extended complex plane, i.e., µi ∈ C ∪ {∞}.
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Stratification rules of orbits and bundles of a controllability pair
(A,B)

Table 4: Given the structure integer partitions R and J µi
of (A, B), one of the following

if-and-only-if rules finds (Ã, B̃) fulfilling orbit or bundle covering relations with (A, B) [36].

A. O(A, B) covers O(Ã, B̃)

(1) Minimum rightward coin move in
R.

(2) If the rightmost column in R is
one single coin, move that coin
to a new rightmost column of
some J µi

(which may be empty
initially).

(3) Minimum leftward coin move in
any J µi

.

Rules 1 and 2 are not allowed to do coin
moves that affect r0.

B. O(A, B) is covered by O(Ã, B̃)

(1) Minimum leftward coin move in
R, without affecting r0.

(2) If the rightmost column in some
J µi

consists of one coin only,
move that coin to a new rightmost
column in R.

(3) Minimum rightward coin move in
any J µi

.

C. B(A, B) covers B(Ã, B̃)

(1) Same as rule 1 above.

(2) Same as rule 2 above, except it
is only allowed to start a new set
corresponding to a new eigenvalue
(i.e., no appending to nonempty
sets).

(3) Same as rule 3 above.

(4) Let any pair of eigenvalues coa-
lesce, i.e., take the union of their
sets of coins.

D. B(A, B) is covered by B(Ã, B̃)

(1) Same as rule 1 above.

(2) Same as rule 2 above, except that
J µi

must consist of one coin only.

(3) Same as rule 3 above.

(4) For any J µi
, divide the set of

coins into two new sets so that
their union is J µi

.

Comments: The rules for the matrix pair (A,B) differ from the rules for a general matrix
pencil in that rule (4) in Table 3 (both for orbits and bundles) cannot be applied to the
matrix pair (A,B), since there cannot exist LT blocks in (A,B). Moreover, rules (1) and
(2) only apply to the structure integer partition R.
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Stratification rules of orbits and bundles of a observability pair (A,C)

Table 5: Given the structure integer partitions L and J µi
of (A, C), one of the following

if-and-only-if rules finds (Ã, C̃) fulfilling orbit or bundle covering relations with (A, C) [36].

A. O(A, C) covers O(Ã, C̃):

(1) Minimum rightward coin move in
L.

(2) If the rightmost column in L is
one single coin, move that coin
to a new rightmost column of
some J µi

(which may be empty
initially).

(3) Minimum leftward coin move in
any J µi

.

Rules 1 and 2 are not allowed to do coin
moves that affect l0.

B. O(A, C) is covered by O(Ã, C̃):

(1) Minimum leftward coin move in
L, without affecting l0.

(2) If the rightmost column in some
J µi

consists of one coin only,
move that coin to a new rightmost
column in L.

(3) Minimum rightward coin move in
any J µi

.

C. B(A, C) covers B(Ã, C̃):

(1) Same as rule 1 above.

(2) Same as rule 2 above, except it
is only allowed to start a new set
corresponding to a new eigenvalue
(i.e., no appending to nonempty
sets).

(3) Same as rule 3 above.

(4) Let any pair of eigenvalues coa-
lesce, i.e., take the union of their
sets of coins.

D. B(A, C) is covered by B(Ã, C̃):

(1) Same as rule 1 above.

(2) Same as rule 2 above, except that
J µi

must consist of one coin only.

(3) Same as rule 3 above.

(4) For any J µi
, divide the set of

coins into two new sets so that
their union is J µi

.

Comments: The rules for the matrix pair (A,C) differ from the rules for a general matrix
pencil in that rule (4) in Table 3 (both for orbits and bundles) cannot be applied to the
matrix pair (A,C), since there cannot exist L blocks in (A,C). Moreover, rules (1) and (2)
only apply to the structure integer partition L.

Notably, the rules for the matrix pair (A,C) are dual to those for the matrix pair (A,B).
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C Notation

inf{A} The greatest lower bound of a set A.
sup{A} The least upper bound of a set A.
A ⊇ B The set B is a subset of A, i.e., every member of B is a member

of A.
A ⊃ B The set B is a proper subset of A, i.e., A ⊇ B and A 6= B.
κ κ = (κ1, κ2, . . .) is an integer partition with κ1 ≥ κ2 ≥ · · · ≥ 0.

Also ν and τ are used.∑
κ The sum κ1 + κ2 + · · · of κ.

κ + m (κ1 + m,κ2 + m, . . .) where m is a scalar.
conj(κ) The conjugate partition of κ.
κ ∪ ν The union of κ and ν.
κ \ ν The difference between κ and ν.
κ ≥ ν κ1 + · · ·+ κi ≥ ν1 + · · ·+ νi for all i = 1, 2, . . .
κ > ν κ dominates ν, i.e., κ ≥ ν and κ 6= ν.
R The field of real numbers.
C The field of complex numbers.
C C ∪ {∞}, i.e., the extended complex plane.
Cm×n The set of complex matrices of order m× n.
A A square matrix of size n× n. I or In is the identity matrix.
AT The transpose of A.
AH The conjugate transpose of A.
Gln(C) The linear group of order n over C. If A ∈ Gl(C) then the n× n

matrix A is nonsingular.
vec(A) An ordered stack of the columns of a matrix A from left to right.
null(A) Null space (kernel) of the space spanned by the columns of A.
ran(A) Range (image) of the space spanned by the columns of A.
diag(A1, . . . , Ab) A block diagonal matrix with diagonal blocks Ai.
A⊗B The Kronecker product of two matrices A and B whose (i, j)-th

block element is aijB.
A ≡ A1 ⊕A2 ⊕ · · · Direct sum of matrices, A = diag(A1, A2, . . .).
(E, A,B, C,D) Matrix tuple representing an LTI system associated with{

Eẋ = Ax(t)+Bu(t)
y = Cx(t)+Du(t) . Independent subsystems are represented by

subsets of the tuple, e.g. (E, A,B, C), (A,B), (A,C), etc.
G − λH A general matrix pencil of size mp × np.
S(λ) The system pencil [ A B

C D ]− λ [ E 0
0 0 ] of size (n + p)× (n + m) cor-

responding to the tuple (E, A,B,C,D).
SC(λ) The controllability system pencil [ A B ]− λ [ E 0 ], where in most

cases E = I.
SO(λ) The observability system pencil [ A

C ]−λ [ E
0 ], where in most cases

E = I.
C(A,B) The controllability matrix.
O(A,C) The observability matrix.
CS(A,B) The controllable subspace of (A,B).
OS(A,C) The unobservable subspace of (A,C).
Ω Abbreviation used in the following for a matrix A, matrix pencil

G − λH, or a system pencil S(λ).
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µi Eigenvalue of Ω (also α and β are used). Can also be represented
by the pair of eigenvalues (αi, βi), where µi = αi/βi if βi 6= 0 else
µi is the infinite eigenvalue.

O(Ω) The orbit of Ω, i.e. the set of similar matrices or equivalent matrix
or system pencils to Ω (canonical structure and eigenvalues fixed).

O(Ω) The closure of an orbit.
B(Ω) The bundle of Ω, ∪µiO(Ω). Eigenvalues not specified.
B(Ω) The closure of a bundle.
nrk (Ω) The normal rank of Ω, i.e., the order of Ω’s greatest minor differ-

ent from polynomial zero.
tan(Ω) The tangent space of O(Ω) at Ω.
nor(Ω) The normal space of O(Ω) at Ω, i.e., the orthogonal complement

to the tangent space.
dim(Ω) Dimension of O(Ω).
cod(Ω) Codimension of O(Ω), where dim(Ω) + cod(Ω) is equal to the

dimension of the complete space Ω, e.g. matrices belongs to a
n2-dimensional space and matrix pencils to a 2mpnp-dimensional
space.

Dj(A) The greatest common divisors of all the minors of order j of the
matrix A.

dµi dµi = (d(i)
0 , . . . , d

(i)
n ) is the integer partition representing the mul-

tiplicity d
(i)
j of (λ− µi) in Dj(A).

Pj(A) The invariant factors of A.
q Number of distinct finite eigenvalues.
gi The geometric multiplicity of the finite eigenvalue µi.
g∞ The geometric multiplicity of the infinite eigenvalue.
r0 Number of column minimal indices.
r1 Number of column minimal indices greater than zero.
l0 Number of row minimal indices.
l1 Number of row minimal indices greater than zero.
hµi hµi = (h(i)

1 , . . . , h
(i)
gi ) is the integer partition representing the

Segre characteristics for the finite eigenvalue µi.
s s = (s1, . . . , sg∞) is the integer partition representing the Segre

characteristics for the infinite eigenvalue.
ε ε = (ε1, . . . , εr0) is the integer partition representing the column

(left) minimal indices. The conjugate r = (r1, . . . , rε1) is the
r-numbers.

η η = (η1, . . . , ηl0) is the integer partition representing the row
(right) minimal indices. The conjugate l = (l1, . . . , lη1) is the
l-numbers.

J µi
J µi

= (j1, j2, . . .) is the integer partition representing the Weyr
characteristics for the finite eigenvalue µi.

N N = (n1, n2, . . .) is the integer partition representing the Weyr
characteristics for the infinite eigenvalue.

R R = (r0, r1, . . .) = (r0) ∪ conj(ε) is the integer partition repre-
senting the right singular structure.

L L = (l0, l1, . . .) = (l0)∪ conj(η) is the integer partition represent-
ing the left singular structure.

Jk(µi) Jordan block of size k × k associated with the eigenvalue µi.

87



Nk Jordan block of size k× k associated with the infinite eigenvalue.
Lk Singular block of size k× (k+1) associated with a column (right)

minimal index k.
LT

k Singular block of size (k + 1) × k associated with a row (left)
minimal index k.

JCF Jordan canonical form;
PAP−1 = diag(J(µ1), . . . , J(µq)).

KCF Kronecker canonical form;
U(G − λH)V −1 = diag(L, J,N,LT ).

BCF Brunovsky canonical form;
P [ A−λI B ]

[
P−1 0

R Q−1

]
=

[
Aε 0 Bε 0
0 Aµ 0 0

]
,

and

[P S
0 T ]

[
A−λI

C

]
P−1=

 Aη 0
0 Aµ

Cη 0
0 0

.

GBCF Generalized Brunovsky canonical form;

[P S
0 T ]

[
A−λI B

C D

][
P−1 0

R Q−1

]
=



Aε 0 0 0 Bε 0 0 0
0 Aη 0 0 0 0 0 0
0 0 A∞ 0 0 B∞ 0 0
0 0 0 Aµ 0 0 0 0
0 Cη 0 0 0 0 0 0
0 0 C∞ 0 0 0 0 0
0 0 0 0 0 0 D∞ 0
0 0 0 0 0 0 0 D0


.
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