
Blocked In-Place Transposition with

Application to Storage Format Conversion∗

Lars Karlsson†

larsk@cs.umu.se

UMINF 09.01

Department of Computing Science

Umeå University and HPC2N

S-901 87 Umeå, Sweden

January 26, 2009

Abstract

We develop a prototype library for in-place (dense) matrix storage for-
mat conversion between the canonical row and column-major formats and
the four canonical block data layouts. Many of the fastest linear algebra
routines operate on matrices in a block data layout. In-place storage for-
mat conversion enables support for input/output of large matrices in the
canonical row and column-major formats. The library uses algorithms
associated with in-place transposition as building blocks. We investigate
previous work on the subject of (in-place) transposition and the most
promising algorithms are implemented and evaluated. Our results indi-
cate that the Three-Stage Algorithm which only requires a small constant
amount of additional memory performs well and is easy to tune. Murray
Dow’s V5 algorithm, which is a two-stage semi-in-place algorithm that re-
quires a small amount of additional memory is sometimes a better choice.
The write-allocate strategy of most cache-based computer architectures
appears to be the cause of an observed performance problem for large
matrices.

∗This research was conducted using the resources of High Performance Computing Center
North (HPC2N).

†Funded in part by the VR grant 70625701. The work is also a part within an IBM Shared
University Research (SUR) grant.

1

Contents

1 Introduction 3

2 Matrix Storage Formats 4
2.1 Canonical Formats . 4
2.2 Block Formats . 4

3 Basics of In-Place Transposition 5
3.1 Algorithms for Square Matrices 5

3.1.1 Basic Algorithm . 6
3.1.2 Pad Transpose . 6
3.1.3 Cut Transpose . 6

3.2 Algorithms that Follow Cycles 7
3.3 Variants of Eklundh’s Algorithm 9
3.4 Other Algorithms . 10

4 Transposition as Matrix-Vector Multiplication 10

5 Blocked Transposition 11
5.1 In-Place Blocked Transposition 12

6 Matrix Storage Format Conversions 15

7 Three-Stage Algorithm for Transposition 15

8 Software 17

9 Computational Experiments 18
9.1 Machines . 18
9.2 Qualitative Study of Cycle-Following Algorithms 20
9.3 Evaluation of the Three-Stage Algorithm 21

9.3.1 Block Size . 21
9.3.2 Cutting and Other Overhead 22

9.4 An Evaluation of Transposition Algorithms 22

10 Conclusions and Future Work 26

A Reformulated Algorithms 28

2

1 Introduction

We develop a library for in-place matrix storage format conversion based on in-
place transposition algorithms. In-place transposition is a well-studied problem
[1, 15, 5, 4, 3, 2, 6, 14, 11]. Nonetheless, the growing gap between CPU process-
ing speed and memory bandwidth/latency unfortunately means that most of
the early algorithms for pure in-place transposition take one or more orders of
magnitude longer to execute than an out-of-place algorithm. The main reason is
that these in-place algorithms move individual elements that are not contiguous
in memory, thereby severely stressing the memory hierarchy. Several algorithms
address these issues [1, 5, 6, 14] but some are only semi-in-place and require a
relatively small but still non-constant amount of additional memory.

In-place transposition has applications in FFT algorithms [9, 8] and to con-
vert between the Column-Major (CM) and Row-Major (RM) canonical matrix
storage formats. However, our main motivation is to provide a software package
for fast in-place conversion between the canonical CM and RM formats and
various block data layouts (see Sections 2 and 6). Such block formats are of-
ten used instead of CM/RM in linear algebra kernels to improve data locality.
Conversion is required in order to support the familiar storage formats at the
interface level while internally working with block data layouts.

The paper is structured as follows. In Section 2, we recall the canonical
storage formats (CM/RM) and four canonical block storage formats. After
discussing storage formats, we continue by recalling some of the previously pub-
lished techniques for in-place transposition in Section 3. We focus on algorithms
that require only a few sweeps through the matrix since memory bandwidth is
the limiting factor. The connection to matrix-vector multiplication and Kro-
necker products is reviewed in Section 4, and in Section 5, we illustrate how
some types of permutations can be implemented using in-place transposition
algorithms. Implementations of these permutations are used as building blocks
for our storage format conversion library. Conversion between storage formats is
further discussed in Section 6 followed by a detailed description of the so-called
Three-Stage Algorithm for in-place transposition in Section 7. The Three-Stage
Algorithm has been previously mentioned in the literature [10, 14], but to our
knowledge it has not been carefully compared with other algorithms. We intro-
duce the conversion library in Section 8, followed by computational experiments
in Section 9 and conclusions in Section 10. Finally, in Appendix A we give de-
tails on how to re-formulate some previously published algorithms using the
notation developed in this paper.

We consistently use a zero-origin indexing convention, meaning that an m×n
matrix has m rows numbered 0, . . . ,m−1 and n columns numbered 0, . . . , n−1.
The top left element of the matrix is consequently A(0, 0) and the first storage
location is 0. We interchangeably use (storage) format and data layout to denote
the scheme by which a matrix is stored in memory.

3

2 Matrix Storage Formats

2.1 Canonical Formats

The two canonical storage formats typically used by compilers are the Row-
Major (RM) and Column-Major (CM) data layouts. Using either of these for-
mats, element A(i, j) of the m× n matrix A is stored at location

i + jm (CM), or
in + j (RM).

Figure 1 is an example of a 9 × 6 matrix in CM format. The elements are

1 10 19 28 37 46

2 11 20 29 38 47

3 12 21 30 39 48

4 13 22 31 40 49

5 14 23 32 41

6 15

50

24 33 42 51

7 16 25 34 43 52

8 17 26 35 44

0 9 18 27 36 45

53

Figure 1: A 9× 6 matrix in CM format.

numbered according to their location in memory. We use a polyline to highlight
the storage order of the elements. In all examples, the start of the sequence is in
the top left corner and the end is in the bottom right corner. In this particular
example, the sequence begins with 0, 1, . . . and ends with . . . , 52, 53.

There is a strong connection between the CM/RM formats and matrix trans-
position. For example, if A is stored in RM format it is indistinguishable from
AT stored in CM format. Hence, transposing A in CM format is the same as
converting it into RM format and vice versa.

2.2 Block Formats

It has long been understood that the CM and RM formats are suboptimal
for a large class of algorithms, including most of linear algebra, FFT, image
analysis, and more. The reason is that spatial data locality is only maintained
within columns (CM) or rows (RM), whereas many algorithms need locality in
both dimensions. For example, element A(i, j) and A(i + 1, j) are close in CM
(stride 1) but A(i, j) and A(i, j + 1) are far apart (stride m). Block formats
bring elements within certain submatrices (known as blocks) closer together.
Accessing a submatrix in a block format typically provides more spatial data
locality than accessing the same submatrix in CM or RM format [17].

Among the many proposed hybrid data layouts, the canonical block formats
have most of the benefits of hybrid data layouts (e.g., see [7, 17]) while keeping a
simple mapping from element to storage location (the so called storage mapping).
Assume that an m× n matrix is partitioned into an M ×N block matrix with

4

blocks of size mb × nb and that each block is stored contiguously in memory.
Typically, m = Mmb and n = Nnb. We call such a data layout a block format
and by choosing CM or RM as the storage format for the blocks and CM or RM
as the storage format for the elements inside each block we get the four canonical
block formats: CCRB, CRRB, RCRB, and RRRB. The suffix RB is an acronym
for Rectangular Block, the first letter indicates the storage format used for the
blocks and the second letter indicates the storage format for elements inside a
block. For example, the RCRB format stores the blocks in RM format while
the elements inside each block are stored in CM format.

The element Ai1,j1(i2, j2) of the block matrix

A =

A0,0 · · · A0,N−1

...
. . .

...
AM−1,0 · · · AM−1,N−1

denotes the (i2, j2)-element of the (i1, j1)-block. It is the same as A(i1mb +
i2, j1nb + j2) and is stored at one of the following locations:

(j1M + i1)nbmb + (j2mb + i2) (CCRB)
(j1M + i1)mbnb + (i2nb + j2) (CRRB)
(i1N + j1)nbmb + (j2mb + i2) (RCRB)
(i1N + j1)mbnb + (i2nb + j2) (RRRB)

Figure 2 illustrates a 9 × 6 matrix (the same matrix as in Figure 1) stored in
CCRB format with blocks of size 3× 2.

1 10 19 28 37 46

2 11 20 29 38 47

3 12 21 30 39 48

4 13 22 31 40 49

5 14 23 32 41

6 15

50

24 33 42 51

7 16 25 34 43 52

8 17 26 35 44 53

0 9 18 27 36 45

Figure 2: A 9× 6 matrix in CCRB format.

3 Basics of In-Place Transposition

3.1 Algorithms for Square Matrices

Square n×n matrices are easier to transpose in-place than rectangular matrices.
We describe some well-known techniques related to square in-place transposition
[5].

5

3.1.1 Basic Algorithm

Element A(i, j) of a square n× n matrix in CM format is moved from location
i+ jn to location in+ j. Similarly, element A(j, i) moves from location in+ j to
location i + jn. Therefore, the diagonal elements are not moved at all, whereas
the off-diagonal elements A(i, j) and A(j, i) are swapped. Cache blocking must
be used to get good performance since in a naive implementation at least one
matrix is accessed with a large stride.

3.1.2 Pad Transpose

If a matrix is nearly square, we can pad the matrix so that it becomes square
and apply any square in-place transposition algorithm [5]. This is only practical
if we can use |m−n| ·max(m,n) storage locations directly following the matrix
in memory (something which is impossible in many codes).

Algorithm: PACK

for j = n−1 downto 1
 for i = m−1 downto 0
 [i+(j+x)*m] = [i+j*m]

Algorithm: UNPACK

for j = 1 to n−1
 for i = 0 to m−1
 [i+j*m] = [i+(j+x)*m]

Figure 3: Illustration of the PACK and UNPACK algorithms used to implement
pad and cut transposes.

The notation [x] in Figure 3 refers to the element at storage location x.

• If m > n, pad with x = m− n columns. After transposition, the padded
elements make up the x last rows of the matrix and are hence scattered in
memory. By applying the PACK algorithm (Figure 3) the padded elements
are removed and only the transposed original matrix remains.

• If instead n > m, pad with x = n − m rows by applying the UNPACK

algorithm (Figure 3). After transposition, the padded elements make up
the x last columns of the matrix and can be safely ignored.

Besides having to transpose a slightly larger matrix, the pad transpose also
requires an additional sweep through the matrix.

3.1.3 Cut Transpose

By removing instead of adding elements, the requirement on additional storage
directly following the matrix is not mandatory. This technique is called a cut
transpose [5].

• If m > n, cut away x = m− n rows by applying the PACK algorithm (first
making sure to save the cut-off elements). After transposition, the cut-off
elements make up the x last columns and can be copied back to their
correct locations.

6

• If instead n > m, cut away x = n − m columns and save the cut-off
elements. After transposition, the cut-off elements make up the x last rows
and room for them is created by the UNPACK algorithm. After unpacking,
the cut-off elements can be copied back to their correct locations.

The primary cost of a cut transpose is the extra sweep through the matrix.

3.2 Algorithms that Follow Cycles

Element A(i, j) is stored at location k = i + jm and after transposition it has
moved to location k̄ = in + j. There is a simple form for the mapping from k
to k̄:

k̄ = P (k) =

{
kn mod M if 0 ≤ k < M ,
M if k = M ,

(1)

where M = mn− 1 [3, 4]. The inverse mapping turns out to be more useful in
practice and it can be shown that

k = P−1(k̄) =

{
k̄m mod M if 0 ≤ k̄ < M ,
M if k̄ = M .

(2)

Transposition is a permutation and every permutation can be factored into
a product of disjoint cycles. Due to the special structure of P−1 a cycle starting
at s has a companion cycle (or sometimes dual cycle) starting at M − s [3]. In
some cases, the two cycles coincide and s is said to be self-dual. A cycle leader is
any unique representative of a cycle (e.g., its minimum element). For example,
the cycle factorization of P−1 for the 5× 3 transposition problem is

(0)(1 5 11 13 9 3)(7)(2 10 8 12 4 6)(14).

The cycle leaders (the minimum elements) are 0, 1, 2, 7, and 14. There are
three singleton cycles: 0, 7, and 14 = M and two self-dual cycles. The first
cycle has leader s1 = 1 and companion leader M − s1 = 13, while the other
cycle has leader s2 = 2 and companion leader M − s2 = 12. Cycle-following
algorithms shift the elements of each cycle and previous research has focused
on how to reduce the overhead of finding the cycle leaders. There is basically
no spatial data locality when shifting a cycle, a fact that can be partly appreci-
ated by observing that the definition of P−1 is similar to that of a Park-Miller
linear congruential random number generator. Therefore, previously published
cycle-following algorithms are of little practical interest on today’s computer
architectures with deep memory hierarchies.

A single cycle is shifted efficiently by Algorithm 1 which uses the inverse
mapping P−1. The notation [x]y is used to denote the vector of y contiguous
elements starting at memory location xy (compare with Figure 3).

It turns out that self-dual cycles always meet in the middle [4, Theorem 7].
In other words, if one starts at s and M − s and simultaneously traverses both
cycles, then one will arrive at M − s outgoing from s at the same step that
one arrives at s outgoing from M − s. If the cycles are not self-dual, then one
will complete their cycles at the same step since they have the same length.
This symmetry result has been used in [3, 4, 11] to efficiently shift both cycles
simultaneously. See Algorithm 2 for an implementation.

7

Algorithm 1 Cycle Shifting

Input: The cycle leader s and the vector length L.
1: a1 := s

2: t := [a1]L
3: a2 := P

−1(a1)
4: while a2 6= s do

5: [a1]L := [a2]L
6: a1 := a2

7: a2 := P
−1(a1)

8: end while

9: [a1]L := t

Algorithm 2 Simultaneous Cycle and Companion Cycle Shifting

Input: The cycle leader s, M = mn − 1, and the vector length L.
1: a1 := s

â1 := M − s

2: t := [a1]L
t̂ := [â1]L

3: a2 := P
−1(a1)

â2 := M − a2

4: loop

5: if a2 = s then

6: The cycle and its companion are distinct.

7: [a1]L = t

[â1]L = t̂

8: break

9: end if

10: if â2 = s then

11: The cycle is self-dual.

12: [a1]L = t̂

[â1]L = t

13: break

14: end if

15: [a1]L := [a2]
[â1]L := [â2]

16: a1 := a2

â1 := â2

17: a2 := P
−1(a1)

â2 := M − a2

18: end loop

8

One approach to finding the cycle leaders is to scan through the elements
and use a boolean table with mn entries to record which elements have been
moved. The cycle leader test reduces to a table lookup. This approach is
memory intensive for floating point matrices unless the table can be embedded
into an unused bit in each element.

An approach which does not require any additional memory uses the mini-
mum element as the cycle leader. For each possible cycle leader s in the sequence
0, . . . mn− 1, traverse its cycle until either t < s is encountered (in which case s
is rejected) or s is encountered again, completing the cycle and showing that s
is the minimum element in its cycle. The computational cost of this approach is
significant and makes this approach impractical. However, the idea to traverse
the cycle to find its minimum element is useful and is called the general cycle
test in what follows.

Brenner [3] used number theory results to study the transposition permu-
tation. He showed that all elements in a cycle starting at s are divisible by
d = gcd(s,M) and not divisible by any other larger divisor of M [3, Theo-
rem 1]. We associate all φ(M/d) such elements with d, where φ is Euler’s phi
function. For each divisor d of M , successively larger multiples of d are con-
sidered as possible cycle leaders until all φ(M/d) elements associated with d
have been shifted. Experience has showed that Brenner’s algorithm can greatly
reduce the overhead of finding cycle leaders. We have adopted Brenner’s results
as the basis for our implementation.

In practice, cycle-following algorithms are hybrid methods that use a boolean
table of limited size, typically with only (m+n)/2 entries. The table covers the
first few possible cycle leaders. For larger candidates the general test is used.
Experience indicates that the transposition often completes before the table is
overrun.

ACM Algorithm 302 [2] can also be categorized as a cycle-following algo-
rithm. However, it uses a fundamentally different algorithm for shifting cycles.
The algorithm does not appear to be as efficient as either ACM Algorithm 467
or ACM Algorithm 513 [4].

3.3 Variants of Eklundh’s Algorithm

Eklundh [6] developed an algorithm for transposing large square 2n×2n matrices
out-of-core. His method uses only a small amount of additional in-core memory.
The general idea starts with a 2× 2 block partitioning:

A =

(
A11 A12

A21 A22

)

.

After transposing each block in-place recursively the storage contains the matrix

(
AT

11 AT
12

AT
21 AT

22

)

.

To complete the transposition the blocks AT
12 and AT

21 are swapped. Eklundh
pointed out that the entire process can be performed from the simple building
block of reading two rows into core memory, swapping some elements, and writ-
ing the two rows back in the same place. He combined this simple operation with

9

some intricate index manipulations and arrived at an ingenious non-recursive
implementation.

Eklundh’s algorithm has since been extended to rectangular matrices and
more general composite dimensions in [18]. Variants of Eklundh’s algorithm
appear to require a larger number of sweeps than cycle-following algorithms and
is therefore unlikely to be competitive when the matrix fits in main memory.
See [14] for more variants of Eklundh’s algorithm.

3.4 Other Algorithms

Murray Dow reviewed several transposition techniques in [5], including the pad
and cut transposes. Two block algorithms suitable for vector computers were
also presented. The first algorithm (V4), which Dow attributes to Markus
Hegland, applies when m = Mmb. The matrix is partitioned into an M × n
block matrix with blocks of size mb×1. The blocks are first transposed and then
their elements are reordered to complete the transposition. For an example, see
[5, Algorithm V4] or Appendix A.

Dow’s second block algorithm (V5) partitions both dimensions and applies
when D ≡ gcd(m,n) > 1 [5, Algorithm V5]. The dimensions are factored into
m = Dmb and n = Dnb and partitions the matrix into a square D ×D block
matrix with blocks of size mb×nb. The first step of the algorithm transposes each
block. This is reported to require mnb additional memory locations. The second
step transposes the block matrix using a square in-place transpose algorithm
requiring no additional storage.

A three-stage transposition algorithm is presented by Alltop in [1]. It also
factors m = Dmb and n = Dnb and partitions the matrix into a D ×D block
matrix with blocks of size mb × nb. The first step transposes the square D×D
block matrix. The second and third steps taken together transpose the individ-
ual blocks and are implemented by out-of-place rectangular transpositions using
Dnbmb = nmb and Dnb = n additional elements, respectively.

4 Transposition as Matrix-Vector Multiplication

The Kronecker product A ⊗ B of the m × n matrix A and the p × q matrix B
is an mp×nq matrix with aijB as its (i, j)-th element. The vec operator forms
a vector by stacking the columns of a matrix underneath eachother [12]. Thus
with a•j denoting the j-th column of the matrix A

vec A =

a•0

...
a•n−1

 .

The order of the elements corresponds to the layout in memory when A is
stored in CM format. Transposing A amounts to permuting vec A into vec AT

by multiplication with a permutation matrix

vec AT = Ln·m
m vec A.

The so-called vec-permutation matrix Ln·m
m is nm × nm and permutes an nm-

vector by taking every m-th element of the vector starting with the first, then

10

every m-th element starting with the second, and so on. An alternative defini-
tion of Ln·m

m is as the permutation matrix which verifies

Ln·m
m (en

j ⊗ em
i) = em

i ⊗ en
j ,

where, for example, en
i denotes the i-th unit vector (counting from zero) of

length m. Yet another definition is constructive:

Ln·m
m =

m−1∑

i=0

n−1∑

j=0

em
i (en

j)T ⊗ en
j (em

i)T .

The vec-permutation matrix L5·3
3 is illustrated in Figure 4. For a review of

1 · · · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · ·
· · · · · · 1 · · · · · · · ·
· · · · · · · · · 1 · · · · ·
· · · · · · · · · · · · 1 · ·
· 1 · · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · ·
· · · · · · · 1 · · · · · · ·
· · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · · 1 ·
· · 1 · · · · · · · · · · · ·
· · · · · 1 · · · · · · · · ·
· · · · · · · · 1 · · · · · ·
· · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · · 1

Figure 4: The vec-permutation matrix L5·3
3 . The dot-elements are zeroes.

the history and properties of the Kronecker product and the vec-permutation
matrix in particular see [12].

5 Blocked Transposition

With blocked transposition we consider algorithms that primarily read and write
contiguous storage locations. In this section, we explain how certain permuta-
tions can be implemented with in-place transposition algorithms (adapted to
move contiguous vectors) as building blocks.

We follow the approach of Fraser [8] and others and view storage locations
in a mixed-radix number system and consider digit permutations. We use the
notation [r1, r0](d1, d0) to specify the radices r1 and r0 as well as the digits d1

and d0 in a mixed-radix number system. Another way to specify mixed-radix
numbers is to subscript each digit with its radix. We stick to the former notation
since it separates radices from digits.

For numbers with four positions, which is primarily what we are using, the
definition of a mixed-radix number is

[r3, r2, r1, r0](d3, d2, d1, d0) = d3r2r1r0 + d2r1r0 + d1r0 + d0, (3)

11

where the radices are greater than one (ri > 1) and di ∈ {0, . . . , ri − 1}. With
these conditions, every decimal number x ∈ {0, . . . , r3r2r1r0 − 1} has a unique
representation. Note that r3 = r2 = r1 = r0 = 10 corresponds to our deci-
mal number system. The example below also illustrates an alternative way of
presenting mixed-radix numbers using subscripted radices:

[4, 6, 5, 7](2, 5, 3, 4) = 24563547 = 2 · (6 · 5 · 7) + 5 · (5 · 7) + 3 · (7) + 4 = 620.

Consider again the block matrix

A =

A0,0 · · · A0,N−1

...
. . .

...
AM−1,0 · · · AM−1,N−1

where each block is of size mb×nb. The element Ai1,j1(i2, j2) is stored (assuming
CM format) in the storage location with the mixed-radix number representation

[N,nb,M,mb](j1, j2, i1, i2) = (j1nb + j2)Mmb + (i1mb + i2). (4)

If the same element instead was stored at the location

[N,M,nb,mb](j1, i1, j2, i2) = (j1M + i1)nbmb + (j2mb + i2), (5)

then the matrix A would have been stored in the CCRB storage format.
There is a connection between mixed-radix numbers and certain vectors

built by Kronecker products. The number in (4) gives the position of the only
non-zero element in the vector

eN
j1
⊗ enb

j2
⊗ eM

i1
⊗ emb

i2
. (6)

Multiplying (6) with a particular permutation matrix

(IN ⊗ Lnb·M
M ⊗ Imb

)(eN
j1
⊗ enb

j2
⊗ eM

i1
⊗ emb

i2
) = eN

j1
⊗ eM

i1
⊗ enb

j2
⊗ emb

i2

commutes the two vectors in the middle of the Kronecker product (6) and the
position of the only non-zero element of the resulting vector is now given by the
number in (5).

Many algorithms can be expressed in terms of factorizations of the vec-
permutation Ln·m

m , including most algorithms discussed in this paper. See [14]
(and also [13]) for an extensive study on the subject with many existing and some
new algorithms and their relations to factorizations of the vec-permutation.

5.1 In-Place Blocked Transposition

In this section, we investigate three classes of permutations and their implemen-
tation with in-place transposition algorithms as building blocks. We show that
swapping two adjacent digits can be implemented by a set of independent in-
place transpositions that move contiguous vectors. Furthermore, we also show
that swapping two non-adjacent digits can be implemented by a set of inde-
pendent square in-place transpositions if the radices of the two digits are equal.
Finally, we show how to fuse two adjacent digit swaps together provided they

12

operate on different digits. This allows for an implementation which sweeps
through the matrix once instead of two times.

We start by looking at swapping two adjacent digits dk in (3). To indicate
which digits we intend to swap we will make use of a so-called transposition
pattern. The pattern (j, i, ·, ·), for example, simply indicates that we intend to
swap the third and fourth digits. A pattern for swapping two adjacent digits
is called regular. Without loss of generality we apply the pattern (·, j, i, ·) to
storage locations expressed in the mixed-radix number system

[r3, r2, r1, r0](d3, j, i, d0). (7)

All elements addressed by i ∈ {0, . . . , r1− 1} and j ∈ {0, . . . , r2− 1} (keeping d3

and d0 fixed) are interpreted as an embedded matrix of size r1 × r2. There are
d3d0 such embedded matrices in the example above, one for each choice of d3

and d0. We use this interpretation to highlight that swapping two digits can be
implemented by transposing all of the embedded matrices in-place.

In the example above, we wish to permute the elements so that the element
at location (7) is moved to location

[r3, r1, r2, r0](d3, i, j, d0). (8)

Equation (7), which is the storage location before permutation, expands to

d3r2r1r0 + d0 + (jr1 + i)r0, (9)

and (8), the storage location after permutation, expands to

d3r2r1r0 + d0 + (ir2 + j)r0. (10)

The only difference is in the parenthesized expressions. Notice the connection
between the parenthesized expressions and the CM storage mapping of the as-
sociated r1 × r2 embedded matrix (call it B). The expression (jr1 + i) in (9)
is the location of B(i, j) prior to transposition and the expression (ir2 + j) in
(10) is the location of the same element after transposition. The key point is
that we can implement an adjacent digit swap by adapting the memory refer-
ences of any (in-place or out-of-place) transposition algorithm and repeat the
algorithm for every choice of the digits d3 and d0. Moreover, from (10) we make
the following observation. With d3, i, and j given, the elements corresponding
to all choices of d0 are contiguous and maintain their relative order after the
permutation. Therefore, we can move all r0 such contiguous elements at once.
Figure 5 is an illustration of an embedded matrix associated with the regular
pattern (·, j, i, ·) when we interpret the matrix as being block-partitioned and
in CM format. In summary, swapping two adjacent digits amounts to a set of
independent (in-place) transpositions that move contiguous elements.

A pattern associated with swapping two non-adjacent digits is called sepa-
rated. An example of a separated pattern is (·, j, ·, i) which swaps the first and
the third digits. We use the mixed-radix number representation

[r3, r2, r1, r0](d3, j, d1, i)

and expand the storage location before the permutation to

d3r2r1r0 + d1r0 + (jr1r0 + i) (11)

13

2,1

0,0 0,1

1,0 1,1

2,0

Figure 5: An illustration of the 3 × 2 embedded matrix (inside a 9 × 8 block-
partitioned matrix) associated with [3, 2, 3, 3](1, j, i, d0), d0 = 0. Each shaded
vector of length three groups together the contiguous elements obtained by
varying the choice of d0 between 0 and r0 − 1 = 2.

and the storage location after the permutation to

d3r2r1r0 + d1r2 + (ir2r1 + j). (12)

The embedded matrices are r0 × r2. Note that the underlined term is slightly
changed. This implies that if r0 6= r2, then the first storage locations (i = j = 0)
differ before and after the permutation is applied. Therefore, it is impossible to
independently tranpose each embedded matrix in such cases. However, if the
embedded matrices are indeed square (i.e., r0 = r2 in the example) then the
two underlined terms are equal and it is easy to verify that independent in-place
transpositions of each embedded matrix is possible. We remark that swapping
two non-adjacent digits can be performed by a sequence of adjacent digit swaps
and that a Kronecker product factorization of the permutation matrix can be
used to express the same result. In summary, swapping two non-adjacent digits
(i.e., applying a separated transposition pattern) is possible to implement us-
ing square in-place transposition of the embedded matrices assuming they are
square.

The final type of transposition pattern that we have identified is the fused
pattern (j, i, j, i). The double set of indices indicate that there are two sets of
embedded matrices and the fused pattern is indeed just a combination of the
two regular patterns (j, i, ·, ·) and (·, ·, j, i). Each contiguous set of elements in
the former pattern corresponds to an embedded matrix in the latter pattern.
Hence, an implementation of the fused pattern could perform the transpositions
associated with the latter pattern (·, ·, j, i) while moving elements as a part of
the former pattern (j, i, ·, ·). The cost would essentially be half that of applying
the two patterns individually since each element is fetched from memory only
once. In Kronecker product notation, the idea of a fused pattern stems from

(Lr3·r2

r2
⊗ Ir1r0

︸ ︷︷ ︸

(j,i,·,·)

)(Ir3r2
⊗ Lr1·r0

r0
︸ ︷︷ ︸

(·,·,j,i)

) = Lr3·r2

r2
⊗ Lr1·r0

r0
︸ ︷︷ ︸

(j,i,j,i)

.

The table below summarizes the seven possible transposition patterns.

14

Pattern Comment Name
(·, ·, j, i) Pointwise
(·, j, i, ·) Regular
(j, i, ·, ·)
(·, j, ·, i) r2 = r0

(j, ·, ·, i) r3 = r0 Separated
(j, ·, i, ·) r3 = r1

(j, i, j, i) r1r0 is small Fused

We remark that the separated pattern (·, j, ·, i) can be implemented with lim-
ited additional memory as a sequence of out-of-place transpositions even if the
embedded matrix is not square. This fact is used in, for instance, Dow’s V5
algorithm.

6 Matrix Storage Format Conversions

All six of the storage formats reviewed in Section 2 can be succinctly described
by a mixed-radix number system as in Section 5 using a block-partitioned matrix
(i.e., m = Mmb and n = Nnb). The ability to permute the digits is therefore all
we need to do in-place conversion between each pair of formats. The six storage
formats and some of the permutations that convert between them are shown in
Figure 6. The following permutations are referred to in the diagram:

1 regular pattern (·, j, i, ·),

2 regular pattern (j, i, ·, ·),

3 regular pattern (·, ·, j, i).

The diagonal arrows in the middle of the diagram represent the fused pattern
(j, i, j, i) which is the combination of 2 and 3.

Conversion between two block formats with mismatching block sizes can be
implemented by first converting to CM/RM (whichever is closer in the lattice)
and from there to the output format. This is the strategy we use in our con-
version software. It is an open question whether special relationships between
mismatching block sizes (such as the output block size being a multiple of the
input block size) can be exploited to improve performance.

7 Three-Stage Algorithm for Transposition

Below we describe an interesting algorithm for in-place transposition, which was
mentioned already in [14] and brought to our attention by Fred Gustavson [10].
Bold radices and digits indicate which digits that are about to be swapped.

[N , nb , M , mb](j1, j2, i1, i2) Stage A
[N , M , nb , mb](j1, i1, j2, i2) Stage B1
[M, N , nb ,mb](i1 , j1, j2, i2) Stage B2
[M, N ,mb, nb](i1 , j1, i2, j2) Stage C
[M, mb, N , nb](i1 , i2 , j1, j2)

15

CM

2 2

1

3

(N, M, n, m)
CCRB

(N, M, m, n)
CRRB

32

(M, N, n, m)
RCRB

3
(M, N, m, n)

RRRB

1

(M, m, N, n)
RM

(N, n, M, m)

Figure 6: Conversion lattice showing six storage formats, their radices in a
mixed-radix number system, and some of the permutations (circled numbers)
that convert between them.

16

Assuming that mb and nb are reasonably large, say between 50 and 100 (see
Section 9.3.1), then the following item list includes some of the reasons to why
this algorithm can be expected to be efficient.

• Stage A results in N embedded matrices with vector length mb.

• Stage B1 results in one embedded matrix with vector length mbnb.

• Stage B2 results in MN embedded matrices that are small enough (mbnb

elements) to be transposed out-of-place.

• Stage C results in M embedded matrices with vector length nb (compare
with Stage A).

• Stages B1 and B2 can be fused, reducing the number of sweeps through
the matrix from four to three.

• Small cuts on the rows and/or columns can be used to ensure that the
block sizes mb and nb are suitable (neither too small nor too large).

• As few as three sweeps (no cuts) and at most five sweeps (cuts of both
rows and columns) through the matrix are required.

Note that all stages result in in-place transposition problems that are substan-
tially smaller than the original m× n problem.

The algorithm is easily understood with the help of the conversion lattice in
Figure 6. Stage A implements a conversion from CM to CCRB format, Stage B
converts from CCRB to RRRB, and finally Stage C converts from RRRB to
RM format (i.e., the matrix has been transposed). Take a 9 × 6 matrix with
blocks of size 3×2 as an example (Figure 1). Stage A converts to CCRB format
(Figure 2). Stages B converts from CCRB to RRRB (Figure 7). Finally, Stage C

10 11 12

6

13 14 15

7 8

16 17

19 20 21

28 29 30

22 23 24

31 32 33

25

34

26

35

37 38 39

47 48

40 42

49 50 51 52

43 44

53

41

46

543210

9

18

27

36

45

Figure 7: Configuration of a 9 × 6 matrix after Stage B. The matrix is now
transposed but in CCRB format (i.e., the original matrix is in RRRB format).

converts from RRRB to RM (Figure 8).

8 Software

We have developed a software package written in C99 for the purpose of provid-
ing fast in-place transposition of large rectangular matrices and in-place con-
version between storage formats. Some of the features of the package are listed
below.

17

2 3

11 12

4 5 6

13 14 15

7 8

16 17

20 21

29 30

22 23 24

31 32 33

25

34

26

35

38 39

47 48

40 42

49 50 51 52

43 44

53

41

10

19

28

37

46

0

9

18

27

36

45

1

Figure 8: Configuration of a 9 × 6 matrix after Stage C. The matrix is now
transposed and in CM format (i.e., the original matrix is in RM format).

• Portable since it is written in C99.

• Uses the Three-Stage Algorithm for transposition and cycle-following al-
gorithms for in-place permutation.

• Uses the ideas of Brenner [3] to prune the search for cycle leaders.

• Exploits square transposition algorithms when any intermediate matrix is
square.

• Automatically selects suitable block sizes mb and nb by finding the largest
divisor of m such that blow ≤ mb ≤ bhigh and similarly for nb.

• The parameters blow and bhigh enable tuning to a particular machine.

• Uses small cuts of rows and columns to give improved performance when
no appropriate block sizes can be chosen (for example, when m and/or n
are prime).

• Driver routines for in-place conversion back and forth between all 15 pairs
of these storage formats:

– CM/RM

– CCRB/CRRB

– RCRB/RRRB

9 Computational Experiments

Extensive experiments have been carried out on two different architectures. On
each machine, all cores of a node were reserved for the application and only
one core was actually used during each test. We present performance figures for
the Three-Stage Algorithm together with comparisons with Dow’s V5 algorithm,
Alltop’s three-stage algorithm, and out-of-place transposition. We also present a
qualitative study of various cycle-following algorithms on a large set of problems.

9.1 Machines

We have performed our experiments using two different machines at the HPC2N
facility in Umeå, Sweden. Since the execution of matrix transposition is ulti-
mately memory bound we have benchmarked both systems using two bench-
marks that are inspired by the STREAM benchmark [16]:

18

• Copy measures the time it takes to copy a large vector of double precision
numbers (y ← x).

• Scale measures the in-place scaling of a double precision vector (x← α·x).
The multiplication with a scalar is merely to hinder the compiler from
optimizing away the entire loop body. There should be plenty of spare
clock cycles available to hide the overhead of the multiplication.

It is important to notice that the benchmarks are not intended to measure the
peak hardware memory bandwidth but to establish the practical peak band-
width obtainable by our particular combination of hardware, compiler, and
compiler optimizations. Both benchmarks are implemented as one-statement
for-loops in C99 and verification of the assembler output shows that the compiler
does unrolling and vectorization. In contrast with the STREAM benchmark,
our code uses dynamically allocated memory and the vector size is determined
at runtime. This makes the benchmark more similar to a typical usage pattern.

We chose these two benchmarks to capture two fundamentally different usage
patterns. In an out-of-place transposition, the matrix is copied from one memory
area to another and then copied back. If the matrix is large, then the memory
written to does not reside in the cache. This usage pattern is captured by the
Copy benchmark. A cycle-following in-place transposition, on the other hand,
moves data around cycles. The memory that is written to was recently read
and hence is likely to be found in the cache. This usage pattern is similar to
that in the Scale benchmark.

Some characteristics of the two machines are given in Table 1. The bench-

Name Akka Sarek
Processor Dual Intel Xeon QC L5420 Dual AMD Opteron 248
Frequency 2.5 GHz 2.2 GHz

Memory 16 GB 8 GB
Compiler PathScale 3.1 PathScale 3.1
Switches -O3 -march=auto -O3 -march=auto

BM: Copy (tcopy) 4.845 ns (3098 MB/s) 6.731 ns (2265 MB/s)
BM: Scale (tscale) 3.067 ns (4925 MB/s) 4.708 ns (3240 MB/s)

Table 1: Characteristics of the HPC2N machines used for the experiments.

mark figures are the time divided by the length of the vectors. The Copy bench-
mark is roughly 58% slower than the Scale benchmark on Akka and roughly 43%
slower on Sarek.

Many cache-based systems use a write-allocate strategy when writing to
memory that is not cached. The write-allocate strategy means that the hard-
ware reads the cache line into cache prior to the write. This has the side-effect
that a write to uncached memory requires twice the memory bandwidth com-
pared to a memory read or a cached write. The vector extension SSE (used
on our machines) provides special instructions to write directly to memory (so-
called non-temporal instructions). Nonetheless, the Copy and Scale benchmarks
indicate that a dramatic difference can be observed.

19

9.2 Qualitative Study of Cycle-Following Algorithms

The general cycle test employed by many cycle-following algorithms (recall Sec-
tion 3) is one of the largest sources of overhead in such algorithms. To get
an idea of how significant this overhead may be and how it can be reduced
by using a hybrid method with a limited lookup table, we experimented with
three different algorithms using three different table sizes on all of the 61752
rectangular matrices m × n with m,n ∈ {2, . . . , 250}. We counted the number
of times (α) that P−1 was evaluated during a general cycle test. The number α
varies considerably between problems, so to get an overview we computed two
statistical quantities:

max
(α

mn

)

and avg
(α

mn

)

.

The maximum and average are taken across all 61752 problems. The ideal
scenario is for both of these to be close to zero. An average of one means that
we expect to calculate P−1 approximately twice as many times as necessary
(roughly half of them during the cycle shifting and the other half during the
general tests).

The algorithms we considered were ACM Algorithm 467 [3] (A467), ACM
Algorithm 513 [4] (A513), and a simplified variant of ACM Algorithm 467 that
does not take advantage of companion cycles (A467s). For each of these algo-
rithms the table sizes 0, (m+n)/2, and 100 were used. The results are reported
in Table 2. The worst case for A467 was 2.19 without any table, which is not

Algorithm A513 A467 A467s

Table Size 0 m+n
2 100 0 m+n

2 100 0 m+n
2 100

max
(

α
mn

)
6.89 2.77 3.40 2.19 1.46 1.58 4.28 3.14 3.31

avg
(

α
mn

)
1.79 0.72 0.78 0.42 0.07 0.07 1.24 0.24 0.27

Table 2: Comparison of the number of times that P−1 is evaluated as part of
general cycle tests for three hybrid cycle-following in-place transposition algo-
rithms using three different table sizes.

so alarming since evaluating P−1 is not so expensive. Looking at the average
values, going from no table to a table of size m+n

2 does bring a substantial re-
duction. For A467 the average is reduced by a factor of 6.0, for A467s the factor
is 5.17, while for A513 it is only 2.49. The range of problems studied above is
relevant in our context since the Three-Stage Algorithm with mb = nb = 50
requires the solution of transposition problems that are within the considered
range for all m,n ∈ {1, . . . , 12500}.

We also measured the number of cycles (β) for each of the problems. This is
an interesting problem characteristic which also varies considerably across the
problem space. We found that

max

(
β

mn

)

≈ 0.33 and avg

(
β

mn

)

≈ 0.01.

Thus, the average cycle length is approximately mn
0.01mn

= 100.

20

9.3 Evaluation of the Three-Stage Algorithm

The performance of pointwise cycle-following algorithms is very poor due to
high overhead per element and a seemingly random memory access pattern.
Our experiments indicate that the execution time is typically between 5 to 10
times longer compared to the Three-Stage Algorithm. Therefore, we instead
compare with an out-of-place transposition and implementations of Dow’s V5
algorithm and Alltop’s three-stage algorithm.

We begin by evaluating different aspects of the Three-Stage Algorithm before
moving on to algorithm comparisons in Section 9.4.

9.3.1 Block Size

The block size can not be chosen freely since the possible block sizes depend on
the problem size. However, cuts can be applied to alter the problem size. It is
important to understand how the problem size impacts performance in order to
determine when it is economical to pay for the overhead of cutting. We designed
an experiment where we modified a fixed problem size so that both dimensions
are divisible by some common factor (the block size). By doing this for all block
sizes from 1 to 200 we get results for a collection of almost equally large problems
for a range of block sizes. By comparing the time per element (T

mn
) instead of

actual execution time we reduce the impact of the different problem sizes. The
results on Akka displayed in Figure 9 show the total time as well as the time
for each of the three stages. The results on Sarek are qualitatively similar to
the results on Akka. There is a peak at mb = nb = 128 in Stage B which is

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 20 40 60 80 100 120 140 160 180 200

T
im

e
pe

r
el

em
en

t [
s]

Block size (mb = nb)

Matrix size: 5000x4800 (PathScale)

Stage A
Stage B
Stage C

Total

Figure 9: Performance breakdown on Akka of the Three-Stage algorithm on a
fixed problem (5000×4800) for all block sizes (mb = nb) in the range 1, . . . , 200.

likely caused by cache thrashing in the small out-of-place transpositions. Other
than that, a block size larger than 30 gives good performance whereas smaller
block sizes should be avoided, mainly due to the performance of Stage B which
eventually turns into a pointwise cycle-following algorithm when mb = nb = 1.

21

9.3.2 Cutting and Other Overhead

Cuts require an additional sweep over the matrix and will therefore impact
performance. Similar to our experiment with different block sizes we started
from a fixed problem size and a fixed block size and modified the problem size
to induce cuts of size 1 to 99 in both rows and columns. The performance of
the pre- and post-processing steps (the cuts) on Akka are reported in Figure 10
(the results on Sarek are qualitatively similar). Note that the performance is

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 10 20 30 40 50 60 70 80 90

T
im

e
pe

r
el

em
en

t [
s]

Cut size

Matrix size: 5000x4800, block size: 100 (PathScale)

Pre
Post

Figure 10: Performance on Akka of the pre- and post-processing steps during a
symmetric cut on a fixed problem (5000× 4800).

comparable to the three stages as reported in Section 9.3.1 and the introduction
of a cut costs alot whereas a large cut does not cost significantly more than a
small cut.

An interesting aspect of the implementation is the observed overhead in
the cycle-following part of the algorithm. We measured the time spent in cycle
shifting in addition to the total time and Figure 11 shows the results on Akka for
various block sizes. For larger block sizes the overhead is insignificant whereas
for smaller block sizes the implementation might be improved by introducing a
lookup table.

9.4 An Evaluation of Transposition Algorithms

There are many parameters that affect the performance of transposition algo-
rithms. Examples include the implementation of an algorithm, choice of com-
piler and settings, different optimizations and machine characteristics. The
problem size and the shape of the matrix also affect performance. Some prob-
lem sizes might require cuts or cause severe cache thrashing. Some algorithms
have additional tuning parameters such as block sizes and thresholds.

We compare the Three-Stage Algorithm, Murray Dow’s V5 algorithm, All-
top’s algorithm, and two implementations of out-of-place transposition: one
naive implementation and one tuned cache-blocked algorithm. We have per-

22

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 20 40 60 80 100 120 140 160 180 200

T
im

e
pe

r
el

em
en

t [
s]

Block size (mb = nb)

Matrix size: 5000x4800 (PathScale)

Shifting
Total

Figure 11: Performance breakdown on Akka of Stage A in the Three-Stage
algorithm on a fixed problem (5000× 4800). The time to do the actual shifting
is shown together with the total time, which includes finding the cycle leaders.
For larger block sizes the overhead is negligible but for some small block sizes
the overheads are significant.

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

1800x7200

2500x5100

3200x4000

3900x3300

5100x2500

7200x1800

T
im

e
pe

r
el

em
en

t [
s]

Matrix size

Memory: 100 MB (PathScale)

Three-stage
Alltop

Dow V5
Out-of-place

Tuned Out-of-place

Figure 12: Performance comparison on Akka using matrices of different shapes
that all require roughly 100 MB of memory.

23

formed many experiments on both machines to investigate and capture the
behaviour of each algorithm. We have selected representative data that cap-
ture most of what we found during experimentation. In the listing below, we
summarize some facts about our experiments.

• The block size for the Three-Stage Algorithm was set to mb = nb = 100 (a
suitable block size based on the results in Section 9.3.1) and all problem
sizes were multiples of 100. Thus, no cuts were required and a block size
of 100 was used for all executions.

• The common divisor D in Alltop’s algorithm and Dow’s V5 algorithm was
chosen optimally for each problem size.

• All experiments were repeated five times and only the best result was kept
in order to minimize the noise from system activities.

• The out-of-place algorithm was optimized by the compiler, which is capa-
ble of cache-blocking transformations.

• The tuned out-of-place algorithm is an automatically tuned implementa-
tion of a blocked transposition where different block traversal schemes and
cache block sizes were taken into account. We chose the best performing
implementation on a 1200 × 1800 test problem and that implementation
traverses the blocks and elements in row-major order and has a block size
of 16× 16.

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

5700x22800

8000x16100

10200x12800

12500x10400

16100x8000

22800x5700

T
im

e
pe

r
el

em
en

t [
s]

Matrix size

Memory: 1000 MB (PathScale)

Three-stage
Alltop

Dow V5
Out-of-place

Tuned Out-of-place

Figure 13: Performance comparison on Akka using matrices of different shapes
that each require roughly 1000 MB of memory.

We observed that the memory footprint and the shape of the matrix affected
performance significantly. We therefore performed experiments on matrices of
different shapes having roughly the same memory footprint. For matrices re-
quiring around 100 MB, the results on Akka are displayed in Figure 12. For

24

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 3.5e-08

 4e-08

 4.5e-08

5700x22800

8000x16100

10200x12800

12500x10400

16100x8000

22800x5700

T
im

e
pe

r
el

em
en

t [
s]

Matrix size

Memory: 1000 MB (PathScale)

Three-stage
Alltop

Dow V5
Out-of-place

Tuned Out-of-place

Figure 14: Performance comparison on Sarek using matrices of different shapes
that each require roughly 1000 MB of memory.

larger matrices of around 1000 MB, the results on Akka are shown in Figure 13
and the corresponding results on Sarek are in Figure 14.

Dow’s V5 algorithm is sometimes considerably faster than any of the other
algorithms, especially for smaller matrices. The Three-Stage Algorithm has a
relatively predictable performance (partly due to the fixed block size of mb =
nb = 100) and is among the fastest, especially for large matrices. Alltop’s
algorithm appears to be rather inefficient for large matrices (see Figures 13 and
14).

The performance of Dow’s V5 algorithm differs alot between small and large
matrices and also for different shapes of large matrices. We think that this
is partly due to data locality issues but also due to the worse performance of
out-of-place transformations in general. In Table 3, we show two simple models
of the execution time for each of the algorithms. The Three-Stage Algorithm

Algorithm Optimistic Pessimistic
Three-Stage 3mn · tscale —
Dow’s V5 mn · tscale + mn · tscale mn · tscale + 2mn · tcopy

Alltop 2mn · tscale + mn · tscale 2mn · tscale + 2mn · tcopy

Out-of-place 2mn · tcopy —

Table 3: Models of the execution time under both an optimistic and a pessimistic
scenario.

consists of three stages that are in-place (i.e., similar to Scale). The out-of-place
algorithms have two stages that are both out-of-place (i.e., similar to Copy).
The remaining algorithms have different models depending on the problem size.
Dow’s V5 algorithm has a first stage of in-place character and a second stage
which is an out-of-place transformation of Dmbnb = mnb elements at a time.
If the cache is large enough to retain the buffer until it is copied back, then

25

the usage pattern is similar to the Scale benchmark in that the written memory
resides in cache. This is the optimistic scenario. On the other hand, if the cache
is not large enough, then the second stage consists of two operations similar
to the situation in the Copy benchmark. This requires much more bandwidth
(more than twice since tcopy > tscale) and is the pessimistic scenario. A similar
analysis has been done for Alltop’s algorithm and all models are summarized in
Table 3. Note that a multilevel cache hierarchy means that a transition from
an optimistic to a pessimistic scenario will be gradual.

These models match the data pretty well. For example, most cases where
Dow’s V5 algorithm is considerably faster than the others are of the optimistic
type whereas the other cases tend to be of the pessimistic type. Table 4 shows
the prediction of each model on both machines. The figures in that table are
for comparison with Figures 12, 13, and 14.

Akka Sarek
Algorithm Optimistic Pessimistic Optimistic Pessimistic
Three-Stage 0.920 — 1.412 —
Dow’s V5 0.613 1.276 0.942 1.817

Alltop 0.920 1.582 1.412 2.288
Out-of-place 0.969 — 1.346 —

Table 4: Model predictions on both machines (all figures should be multiplied
by 10−8). These figures are for comparison with Figures 12, 13, and 14.

10 Conclusions and Future Work

We have demonstrated that it is possible to develop cache-efficient in-place
transposition algorithms based on generalized versions of previously known
cycle-following algorithms. The performance of such algorithms rivals the best
known semi-in-place algorithms by Alltop and Dow as well as out-of-place trans-
position. The write-allocate strategy of cache-based computer architectures,
although in theory partly alleviated with non-temporal instructions, can be a
performance problem in practice.

Conversion between the CM, RM, and the four block formats CCRB, CRRB,
RCRB, and RRRB can be performed in-place using our software package which
is based upon the techniques discussed in this paper. The implementation uses
the cut transpose technique to give reasonable performance for cases when m
and/or n do not enable a suitable choice of block size.

Evidence suggests that a hybrid implementation of the cycle-following kernel
could be used instead of the pure implementation we currently have in order to
reduce overhead.

Thread parallelization of independent subproblems and/or cycle shifts might
improve performance on multicore architectures. The best algorithm for a par-
ticular problem depends on many parameters and there is no single best algo-
rithm.

26

Acknowledgements

I would like to acknowledge Fred Gustavson for introducing me to the subject of
in-place transposition and storage format conversions. He pointed out the merits
of the Three-Stage Algorithm and together with Tadeusz Swirszcz he recently
published improvements to cycle-following algorithms [11]. I also acknowledge
Bo Kågström for his kind support, references to and comments on the subject,
and constructive criticism on drafts of this manuscript.

References

[1] W. O. Alltop. A Computer Algorithm for Transposing Nonsquare Matrices.
IEEE Transactions on Computers, 24(10):1038–1040, 1975.

[2] J. Boothroyd. Algorithm 302: Transpose Vector Stored Array. Communi-
cations of the ACM, 10(5):292–293, 1967.

[3] N. Brenner. Algorithm 467: Matrix Transposition in Place. Communica-
tions of the ACM, 16(11):692–694, 1973.

[4] E. G. Cate and D. W. Twigg. Algorithm 513: Analysis of In-Situ Transpo-
sition. ACM Transactions on Mathematical Software, 3(1):104–110, 1977.

[5] M. Dow. Transposing a Matrix on a Vector Computer. Parallel Computing,
21(12):1997–2005, 1995.

[6] J. O. Eklundh. A Fast Computer Method for Matrix Transposing. IEEE
Transactions on Computers, 21(7):801–803, 1972.

[7] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. Recursive Blocked
Algorithms and Hybrid Data Structures for Dense Matrix Library Software.
SIAM Review, 46(1):3–45, 2004.

[8] D. Fraser. Array Permutation by Index-Digit Permutation. Journal of the
ACM, 23:298–309, 1976.

[9] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005.

[10] F. G. Gustavson. The Relevance of New Data Structure Approaches for
Dense Linear Algebra in the New Multicore/Manycore Environments. Tech-
nical Report RC24599, IBM Research, 2008. (Also submitted to PARA’08).

[11] F. G. Gustavson and T. Swirszcz. In-Place Transposition of Rectangular
Matrices. In B. Kågström et al., editors, Applied Parallel Computing. State
of the Art in Scientific Computing, PARA 2006. Lecture Notes in Computer
Science, Vol. 4699, pages 560–569. Springer, 2007.

[12] H. V. Henderson and S. R. Searle. The vec-Permutation Matrix, the vec
Operator and Kronecker Products: a Review. Linear and Multilinear Al-
gebra, 9:271–288, 1981.

27

[13] J. R. Johnson. Matrix Transposition. Department of Mathematics
and Computer Science, Drexel University, Philadelphia, PA 19104, 1995.
(Manuscript).

[14] S. D. Kaushik, C. H. Huang, J. R. Johnson, R. W. Johnson, and P. Sadayap-
pan. Efficient Transposition Algorithms for Large Matrices. In Proceedings
of Supercomputing ’93, pages 656–665, 1993.

[15] S. Laflin and M. A. Brebner. Algorithm 380: In-situ Transposition of a
Rectangular Matrix. Communications of the ACM, 13(5):324–326, 1970.

[16] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current High
Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, December 1995.

[17] N. Park, B. Hong, and V. K. Prasanna. Tiling, Block Data Layout, and
Memory Hierarchy Performance. IEEE Transactions on Parallel and Dis-
tributed Systems, 14(7):640–654, 2003.

[18] H. K. Ramapriyan. A Generalization of Eklundh’s Algorithm for Transpos-
ing Large Matrices. IEEE Transactions on Computers, 24(12):1221–1226,
1975.

A Reformulated Algorithms

Below is the V4 algorithm by Murray Dow [5, Algorithm V4] expressed in our
notation:

[n , M , mb](j , i1, i2)
[M, n ,mb](i1, j , i2)
[M, mb, n](i1, i2, j)

The algorithm applies when m = Mmb with mb being the block size. The final
representation is correct since the memory location is

i1mbn + i2n + j = (i1mb + i2)n + j = in + j

which agrees with the memory location of the matrix in RM format. Both steps
can be performed in-place (regular transposition patterns).

Dow’s V5 algorithm [5, Algorithm V5], which applies when m = Dmb and
n = Dnb, can be expressed as:

[D, nb , D,mb](j1, j2, i1 , i2)
[D, mb,D, nb](j1, i2, i1, j2)
[D, mb, D, nb](i1 , i2, j1, j2)

The first step can not be performed in-place since nb and mb are different (or
otherwise the matrix would be square) and hence the embedded matrices are
rectangular. The second step can be performed in-place since the embedded
matrices are square.

28

The three-stage algorithm by Alltop [1], which applies when m = Dmb and
n = Dnb is expressed below:

[D, nb , D , mb](j1, j2, i1, i2) Stage A
[D, nb , D ,mb](i1, j2, j1, i2) Stage B1
[D, nb ,mb, D](i1, j2, i2, j1) Stage B2
[D, mb, nb , D](i1, i2 , j2, j1) Stage C
[D, mb, D , nb](i1, i2 , j1, j2)

Stage A has a separated pattern but since it is square it can be performed in-
place. Stages B1 and B2 together is actually just an adjacent digit swap in
another mixed-radix number system, namely

[D,nbD,mb](i1, j2D + j1, i2).

Stages B and C are also possible to perform in-place but Alltop suggested using
out-of-place transposition without mentioning the possibility of in-place trans-
position. The additional memory required is nbDmb for Stage B and only nbD
for Stage C.

29

