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Abstract

Bioinformatics is a fast-developing field, which makes use of computational
methods to analyse and structure biological data. An important branch of
bioinformatics is structure and function prediction of proteins, which is often
based on finding relationships to already characterized proteins. It is known
that two proteins with very similar sequences also share the same 3D structure.
However, there are many proteins with similar structures that have no clear
sequence similarity, which make it difficult to find these relationships.

In this thesis, two methods for annotating protein domains are presented,
one aiming at assigning the correct domain family or families to a protein
sequence, and the other aiming at fold recognition. Both methods use hidden
Markov models (HMMs) to find related proteins, and they both exploit the
fact that structure is more conserved than sequence, but in two different ways.

Most of the research presented in the thesis focuses on the structure-anchored
HMMs, saHMMs. For each domain family, an saHMM is constructed from a
multiple structure alignment of carefully selected representative domains, the
saHMM-members. These saHMM-members are collected in the so called “mid-
night ASTRAL set”, and are chosen so that all saHMM-members within the
same family have mutual sequence identities below a threshold of about 20%.
In order to construct the midnight ASTRAL set and the saHMMs, a pipe-line
of software tools are developed. The saHMMs are shown to be able to detect
the correct family relationships at very high accuracy, and perform better than
the standard tool Pfam in assigning the correct domain families to new domain
sequences. We also introduce the FI-score, which is used to measure the per-
formance of the saHMMs, in order to select the optimal model for each domain
family. The saHMMs are made available for searching through the FISH server,
and can be used for assigning family relationships to protein sequences.

The other approach presented in the thesis is secondary structure HMMs
(ssHMMs). These HMMs are designed to use both the sequence and the pre-
dicted secondary structure of a query protein when scoring it against the model.
A rigorous benchmark is used, which shows that HMMs made from multiple
sequences result in better fold recognition than those based on single sequences.
Adding secondary structure information to the HMMs improves the ability of
fold recognition further, both when using true and predicted secondary struc-
tures for the query sequence.

v



vi



Kort sammanfattning p̊a
svenska

Bioinformatik är ett omr̊ade där datavetenskapliga och statistiska metoder
används för att analysera och strukturera biologiska data. Ett viktigt omr̊ade
inom bioinformatiken försöker förutsäga vilken tredimensionell struktur och
funktion ett protein har, utifr̊an dess aminosyrasekvens och/eller likheter med
andra, redan karaktäriserade, proteiner. Det är känt att tv̊a proteiner med
likande aminosyrasekvenser ocks̊a har liknande tredimensionella strukturer.
Att tv̊a proteiner har liknande strukturer behöver dock inte betyda att de-
ras sekvenser är lika, vilket kan göra det sv̊art att hitta strukturella likheter
utifr̊an ett proteins aminosyrasekvens.

Den här avhandlingen beskriver tv̊a metoder för att hitta likheter mel-
lan proteiner, den ena med fokus p̊a att bestämma vilken familj av protein-
domäner, med känd 3D-struktur, en given sekvens tillhör, medan den andra
försöker förutsäga ett proteins veckning, d.v.s. ge en grov bild av proteinets
struktur. B̊ada metoderna använder s.k. dolda Markov modeller (hidden
Markov models, HMMer), en statistisk metod som bland annat kan användas
för att beskriva proteinfamiljer. Med hjälp en HMM kan man förutsäga om en
viss proteinsekvens tillhör den familj modellen representerar. B̊ada metoderna
använder ocks̊a strukturinformation för att öka modellernas förm̊aga att känna
igen besläktade sekvenser, men p̊a olika sätt.

Det mesta av arbetet i avhandlingen handlar om strukturellt förankrade
HMMer (structure-anchored HMMs, saHMMer). För att bygga saHMMerna
används strukturbaserade sekvensöverlagringar, vilka genereras utifr̊an hur pro-
teindomänerna kan läggas p̊a varandra i rymden, snarare än utifr̊an vilka
aminosyror som ing̊ar i deras sekvenser. I varje proteinfamilj används bara ett
särskilt, representativt urval av domäner. Dessa är valda s̊a att d̊a sekvenserna
jämförs parvis, finns det inget par inom familjen med högre sekvensidentitet än
ca 20%. Detta urval görs för att f̊a s̊a stor spridning som möjligt p̊a sekvenserna
inom familjen. En programvaruserie har utvecklats för att välja ut represen-
tanter för varje familj och sedan bygga saHMMer baserade p̊a dessa. Det
visar sig att saHMMerna kan hitta rätt familj till en hög andel av de testade
sekvenserna, med nästan inga fel. De är ocks̊a bättre än den ofta använda meto-
den Pfam p̊a att hitta rätt familj till helt nya proteinsekvenser. saHMMerna
finns tillgängliga genom FISH-servern, vilken alla kan använda via Internet för
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att hitta vilken familj ett intressant protein kan tillhöra.
Den andra metoden som presenteras i avhandlingen är sekundärstruktur-

HMMer, ssHMMer, vilka är byggda fr̊an vanliga multipla sekvensöverlagringar,
men ocks̊a fr̊an information om vilka sekundärstrukturer proteinsekvenserna
i familjen har. När en proteinsekvens jämförs med ssHMMen används en
förutsägelse om sekundärstrukturen, och den beräknade sannolikheten att sek-
vensen tillhör familjen kommer att baseras b̊ade p̊a sekvensen av aminosyror
och p̊a sekundärstrukturen. Vid en jämförelse visar det sig att HMMer baser-
ade p̊a flera sekvenser är bättre än s̊adana baserade p̊a endast en sekvens, när
det gäller att hitta rätt veckning för en proteinsekvens. HMMerna blir ännu
bättre om man ocks̊a tar hänsyn till sekundärstrukturen, b̊ade d̊a den riktiga
sekundärstrukturen används och d̊a man använder en teoretiskt förutsagd.
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CHAPTER 1

Introduction

This chapter presents a brief introduction to the thesis, including a motivation for the

research and a description of the research goals.

1.1 Background and Motivation

The sequencing of the human and other genomes are generating huge amounts of bi-

ological data to analyse. To fully explore the information gathered, all genes have to

be located and their roles in the cells have to be determined. For all proteins to be

completely characterized, we want to know their three-dimensional (3D) structures,

their molecular and cellular functions, their interactions with each other and other

molecules, and how they are regulated. The function of a protein is the same as its

role in the organism, for example, as a building block making up the very walls of

the cells or pumps that transport other molecules in and out of the cells, as a helper

molecule that makes some chemical reaction go faster, or as a signal sending messages

between different cells. Due to the vast amount of proteins, it is not feasible to study

each molecule in each genome experimentally. Instead, the characteristics of a newly

sequenced protein is usually derived by sequence and/or structure comparison to al-

ready characterized proteins. Also, to determine the 3D structure of a protein might be

problematic, and the procedures used are time-consuming. If possible, it is preferable

to use computational methods to guide the experimental approaches.

One commonly used tool for the comparison of protein sequences is profile hid-

den Markov models (HMMs, Chapter 5), which have proven to be very powerful at

recognising new members of protein families (see for example [94], [111]). Often, a

HMM is constructed to model a protein sequence family of interest. The HMM can

then be used to search genomes for previously unannotated members of that family,

or a sequence can be searched against a database of HMMs to find which model fits

the sequence best, and thereby locate the family it most likely belongs to.

Proteins with sequences that are very similar, are known to also have similar struc-

tures, with some rare exceptions (mostly in the case of structural plasticity [51]).

However, similarity in structure says little about how similar, or dissimilar, the cor-

responding sequences are. During evolution, the structure of a protein is conserved to

a much higher degree than is its amino acid sequence. The reason is that some amino

acids, or combinations of amino acids, can perform similar tasks in the protein, and

1



Chapter 1

therefore can be substituted for each other without changing the conformation of the

protein. For example, at some positions in the sequence it may be sufficient to have

a reasonably small amino acid for the chain to fold correctly. In protein chains, some

parts are more important than others for the correct folding of the chain, and these

fragments are typically buried in the core of the structure. Often, residues located on

the surface of the molecule are less important.

For a protein to function correctly, the most important issues are the conforma-

tion of the chain of amino acids, and that a few crucial residues are in their correct

positions.

All this has the effect that two proteins, very similar in structure and possibly

performing similar tasks in the cell, might differ a lot in their amino acid sequences.

This makes it difficult to identify relationships based on the sequences only.

To construct profile hidden Markov models for protein families, a multiple se-

quence alignment is needed for each model to build. Usually, the models are based

purely on sequence alignments, which means that proteins that differ too much in se-

quence from the proteins the HMM was based upon, will never be found by the model,

even if they are very similar in structure. Therefore, several attempts have been made

to use structural information, both together with HMMs and with other methods, to be

able to detect these relationships (for some examples, see Sections 7.1.7 and 7.2.3).

1.2 Research Goals and Scope

In this thesis, HMMs are used to locate which family a given sequence most likely

belongs to. Given the fact that structure is more conserved than sequence during evo-

lution, I aim at investigating how structural information can be added to HMMs, and

whether this improves their ability to locate distant relationships that would otherwise

be missed. By distant relationships, I in this case mean that the proteins are simi-

lar in structure, even though their amino acid sequences differ significantly. I con-

sider two novel approaches to include structural information into the HMMs. First,

our structure-anchored HMMs, saHMMs, are presented. These HMMs use structure

alignments as the base for the models. Then the secondary structure HMMs, ssHMMs,

are described. These use secondary structure information in addition to sequence in-

formation when scoring sequences against the HMMs.

A second goal of this thesis is to investigate whether a limited number of represen-

tative sequences, with low mutual sequence identities, are sufficient for characterising

a protein domain family. Often, it is assumed that the more sequences available for

building a model of a protein family, the better is a resulting model. However, as I use

structure alignments it is possible to align also very divergent sequences, which re-

duces the need for multiple sequences in order to obtain enough information to model

the family.

A third goal of the thesis is to develop a pipe-line of software tools to automatically

update the collection of saHMMs as more structures are solved. This makes it possible

to maintain an up-to-date collection of saHMMs, which is needed for the fourth goal

– to make the saHMMs available for searching through a web server.
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Introduction

Of course, the result of a search for similar structures is only a first step towards the

characterization of a new protein. The next step is to make a correct alignment of the

two proteins, in order to be able to draw reliable conclusions about the 3-dimensional

structure. However, the construction of optimal query-target alignments is outside

the scope of this thesis. Also, different members within structurally related families

might have very different functions, even though the structures are similar. Hence,

the identification of distant relationships mainly provides clues that can be used for

guiding and enabling experiments to focus on the most likely function of the protein.

1.3 Research Environment and Process

This thesis is in the area of Bioinformatics (see Chapter 3), and more precisely within

fold and family recognition. In other words, the ultimate goal is to use computational

methods to find the family or fold for a protein sequence. Bioinformatics is inher-

ently cross-disciplinary, which made it natural to perform the PhD-work jointly at

the Department of Computing Science and Umeå Centre for Molecular Pathogenesis

(UCMP). Part of the work was also carried out at the Department of Biochemistry

at Stockholm University, in a group that later was one of the founders of Stockholm

Bioinformatics Centre.

The approach taken for the saHMMs in order to include structure information is

most natural. For these I use multiple structure alignments as the base for regular

hidden Markov models. However, in order to maximize the sequence diversity within

the protein families, I construct a representative set of sequences for each domain

family. This set is then used for the structure alignment the saHMM is based on. The

representatives within each family are chosen so that their mutual sequence identities

are very low, and so that the best possible structures are used. This quite elaborate

selection procedure forms a major part of the method.

For the ssHMMs, the approach is different. In order to include secondary structure

information in the HMMs, a change is made in the very architecture of the models. In

this way, the secondary structure information literally affects how a sequence is scored

against the model.

The two approaches are described in more detail in Chapter 7.

1.4 Organization of the Thesis

The rest of this thesis is organized in the following way. The first chapters form an

introductory part, which gives some essential background to non-experts in Biology

or Bioinformatics. Due to the cross-disciplinary nature of the thesis, it cannot be

expected that the common reader is familiar with all the terms and techniques used

in the thesis. Therefore, in Chapter 2 some basic concepts of molecular biology are

described, followed by a very brief overview of the area of Bioinformatics in Chap-

ter 3. Chapters 4–6 describe important resources and techniques used in the thesis.

In Chapter 4, some important databases are described. Chapter 5 presents profile hid-
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den Markov models and how they are used in Bioinformatics. A number of protein

structure alignment methods, with emphasis on those used in the thesis, are treated in

Chapter 6.

The last two chapters focus on the research presented in the thesis. Chapter 7

contains an overview of the main contributions of the thesis, together with a survey of

related work and how this thesis relates to that work. Finally, Chapter 8 gives short

summaries of the individual papers included in the thesis. This chapter also discusses

some computational aspects and presents ideas for future work.
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CHAPTER 2

Biological Background

The information carriers in all living organisms are the strains of deoxyribonucleic

acid (DNA). All the genetic material, i.e. the description of every part of our cells

and ourselves (in a biological sense), is stored in the DNA, which is located in the

cell nucleus of every cell in the body. This information is then transferred to finally

construct the proteins, the molecules that perform most of the work in the cells. The

process from DNA to protein is illustrated in Figure 1, where the so called “central

dogma of molecular biology” is depicted. The central dogma captures, in a very sim-

plified way, the flow of information in the cell. DNA consists of four types of bases,

commonly called A (for adenine), C (cytosine), G (guanine), and T (thymine), which

are connected into strands. In Bioinformatics, sequences of these letters, correspond-

ing to the genetic information, are investigated and compared. The DNA is stored as

double helices, where two strands are twisted around each other. The two strands are

connected by base-pairing, such the A binds to T and C binds to G. Whenever an A

is seen on one strand, a T appears on the other, meaning that the two strands are each

others complement, and that each strand contains all the information stored. When

cells divide, for example during embryonic development, the DNA is replicated to

produce two identical double helices (see Figure 1). During replication, each of the

two strands act as a template for a new molecule. During transcription, parts of the

DNA is translated into mRNA (messenger ribonucleic acid), consisting of the bases A,

C, G, and U (uracil). There is a one-to-one correspondence between the DNA bases

and the mRNA bases, and usually the mRNA is a simple copy of part of the DNA,

with all T’s replaced by U’s. The mRNA sequences too are interesting from a bio-

logical perspective, since they represent molecules that actually perform tasks in the

cell, apart from the DNA that mainly stores all information. The mRNA is then used

as a template for proteins, which are produced during translation. Proteins are built

from 20 kinds of amino acids, often represented by 20 letters (see Figure 2). There

is a three-to-one correspondence between RNA and protein, with three RNA-bases,

called a codon, representing one amino acid in the protein. There are between one

and six codons coding for each amino acid, depending on the particular amino acid.

The 20 genetically encoded amino acids each have different characteristics. They all

have a common base (coloured red in Figure 2), where they are linked together to

form the protein chain. This chain of amino acids forms the so-called backbone of

the protein. Very short stretches of connected amino acids are called peptides. To

the common base, each kind of amino acid has a unique side-chain connected, which

5



Chapter 2

FIGURE 1: The central dogma of molecular biology. The picture shows the flow of information

in the cell, from DNA to protein. The picture is kindly provided by Andy Vierstraete

(http://allserv.rug.ac.be/˜avierstr/tif.html).
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Biological Background

FIGURE 2: The twenty genetically encoded amino acids. The common parts of all amino

acids, which are connected to form the backbone of the protein, are coloured red.

In parenthesis are the three-letter and one-letter codes for the amino acids.

gives the amino acids their different properties. The 20 amino acids can be divided

into groups with similar properties, for example hydrophilic/hydrophobic (water lov-

ing/water avoiding), neutral/charged or small/large.

In the context of a protein chain, the amino acids are called residues. The protein

chain folds into a well-defined 3D structure, determined by the actual sequence of

amino acids. It is the chemical properties of the amino acids that determine the shape

of the protein molecule.

The overall structure of a protein is defined at different levels. The pure sequence

of amino acids, represented by a sequence of letters, is called the primary structure of

7
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(a) (b)

FIGURE 3: The two most common types of secondary structures. Only the main chain (back-

bone) is shown, the side chains are indicated by filled grey circles. (a) An alpha

helix. (b) A beta sheet consisting of three anti-parallel strands.

FIGURE 4: A dimer (two aggregated molecules) of the immunoglobulin light chain. The chain

folds into two separate domains, coloured blue and cyan, respectively, that mainly

consist of beta strands. The red and gold domains are the other chain, located in a

different direction.
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Biological Background

the protein, or simply the sequence. Parts of the chain fold locally to form so called

secondary structure elements. There are two major kinds of secondary structures: al-

pha helices, and beta strands that form beta sheets (see Figure 3). The alpha helices

are often shown as extended spirals in pictures of proteins, while the beta strands are

shown as arrows. The secondary structures can group to form super-secondary struc-

tures or motifs. Two examples are beta hair-pins, consisting of two anti-parallel beta

strands and a short loop connecting them, and the beta-alpha-beta motifs, consisting

of two parallel beta strands with an alpha helix in between them. The super-secondary

structures are packed together to form domains, that in turn pack to form the tertiary

structure of the protein. In general, proteins fold so that amino acids which do not

like water are located in the inside of the protein, and form the so called hydropho-

bic core, while residues that easily interact with water are found on the outside of the

protein. Exceptions are, for example, residues important for the interaction with other

molecules. A protein domain is a region of the protein that has its own hydrophobic

core, and that interact relatively little with the rest of the protein. Domains can often

fold independently of other parts of the protein. In Figure 4, an example of a protein

with two domains is illustrated.

Sometimes, several protein chains pack together to form complexes, that build up

the so called quaternary structure. Very large collections of proteins, possibly packed

together with RNA or DNA, are called macromolecular assemblies. One example

of such an assembly is the ribosome, which produces new proteins from an mRNA

template.

The particular packing and orientation of the secondary structure elements, and the

location of residues important for the structure and/or function of a protein, is called

the fold of the protein. In Figure 5, an example of the different levels of protein folding

is shown. Protein structures can be displayed in a number of ways. In Figure 6, this is

illustrated by five different representations of the same protein.

The amino acid sequence of a protein can easily be determined from its corre-

sponding DNA, and the sequence of DNA is routinely determined experimentally.

The 3D structure of a protein can be determined by experimental methods such as

X-ray crystallography, Nuclear Magnetic Resonance (NMR) and electron microscopy

(EM) reconstruction. As of the 1st of April 2008, 49974 structures are known and de-

posited in the Protein Data Bank (PDB, see Section 4.2), and the number is increasing

exponentially.

Currently, it is not possible to determine the structure from the sequence only, al-

though there has been some success in folding small proteins (see Section 3.7). The

most common way to find the structure of a new protein is to compare it to proteins

with known structures and predict a conformation based on sequence similarity. From

a sequence comparison of two proteins, similarities can be found between proteins

from different organisms or between two proteins in the same organism. These simi-

larities often indicate a common evolutionary origin, in other words, the proteins are

homologous. Given sequence homology, it is possible to deduce similarity in struc-

ture and perhaps even in function. Homology between two proteins from the same

organism means that a gene has been duplicated, and that during time, differences

have been introduced by mutations and reorganisations. During time, the proteins
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FIGURE 5: The different levels of protein folding. At the top of the figure, two secondary

structures are shown, one alpha helix (1a) and one beta strand (1b). In (2a), the

helix is packed with two beta strands to form a beta-alpha-beta motif, that in turn

joins more strands to form a complete protein domain (3a). The strand in (1b) is

packed with more strands, and together they form a beta sheet (2b). In (3b) the sheet

together with another sheet form a second domain. The two domains together form

the complete folded protein (4), that interact with another identical protein chain to

form a dimer (5).
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FIGURE 6: Five different representations of the same protein chain (anti-platelet protein from

leech, PDB code 1i8n). At the top left, the molecule is shown as lines between

atoms, which are represented by the colour of the line. At the middle of the top

row, only the backbone of the molecule is shown, now with sticks instead of lines

and the atoms represented by balls. At the top right, the backbone of the protein

is represented with ribbons, where helices are shown as extended spirals and beta

strands as arrows. The bottom left of the figure shows the protein using a space fill

representation, i.e., each atom in the molecule is represented by a sphere, where the

radius corresponds to the Van der Waals distance (the closest any other atom can be

without contact). The bottom right shows the area of the protein that is accessible to

water molecules, and is perhaps the most true picture of the protein from any other

molecules point of view.
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have developed in divergent directions to perform two different, but probably similar,

functions. This is the main strategy for the evolution of new genes and more complex

organisms.

However, not all similarities are indicators of common ancestry. Some similarity

may also be introduced by convergent evolution to a similar 3D structure, resulting

in analogous proteins. Analogy appears when two proteins performing the same task

in different organisms have evolved similar properties, without having a common an-

cestor, simply because those properties make the proteins more suitable for the task.

A clear distinction between homologous and analogous proteins is difficult to obtain

because functional relatedness is hard to prove. A distinction can in some cases be

made based on similarity in side-chain directions [79].

There exist extensive resources for retrieval and comparison of proteins on the

Internet. For example, there are databases containing protein and DNA sequences,

including the complete genomes of several organisms. The PDB contains all cur-

rently known protein structures. Protein structures are also classified in a number

of ways, see Chapter 4. Much information and many databases are available at the

National Center for Biotechnology Information, NCBI, through the Entrez search en-

gine1. EMBL-EBI (European Bioinformatics Institute) offers the SRS (Sequence Re-

trieval System)2, which provides access to hundreds of databases and applications.

The Biology Workbench3 at San Diego Supercomputer Center (SDSC) offers a simi-

lar environment for browsing databases and applying analysis and modelling tools to

retrieved data. These are only a few of the available resources for data retrieval and

analysis.

1 http://www.ncbi.nlm.nih.gov/Entrez/
2 http://srs.ebi.ac.uk/
3 http://workbench.sdsc.edu/
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Bioinformatics

Bioinformatics is a very broad area of research, with that in common that it uses

computational methods to analyse and structure biological data, and from this make

theoretical predictions about biological processes. Much of the research in Bioinfor-

matics is multidisciplinary, and includes computing science, statistics, and structural

and molecular biology.

It is unclear when and where the term “Bioinformatics” first appeared. How-

ever, computers were used in the field of biology long before the term appeared, but

then under names as Computational Biology, Biocomputing or Biostatistics. Already

in the 1960’s, the first computer programs were constructed to analyze protein se-

quences [64]. The foundation of Bioinformatics was laid along with the construction

of biological sequence databases. The first bioinformatics “database” was gathered

in 1965, when Dayhoff et al. compiled the first Atlas of Protein Sequence and Struc-
ture [31], a book containing all sequence data available at that time, including se-

quence alignments. As the number of and the sizes of databases grew, new tools for

searching these became available, see for example Sections 3.6 and 6.1.1.

Today, there are several branches of Bioinformatics, some of which are briefly

described below. The list of branches presented here is most likely not complete, and

some people would probably claim that some important aspect is missed or that some

things listed below not at all belong to Bioinformatics in its true sense. This illustrates

the fact that there still is no consensus on the definition of Bioinformatics. However,

most people would probably agree on the description given above, even though many

choose to narrow it further.

3.1 Genomics and Phylogenetic Trees

An important part of Bioinformatics is the analysis and comparison of genes and

genomes. For example, in order to show the evolutionary relationships between dif-

ferent organisms, phylogenetic trees can be constructed based on their genomes (e.g.,

[96]). These kinds of trees can also be constructed for individual genes, showing how

they have evolved and how they are related. Stochastic grammars have been used

to determine evolutionary relationships between biological sequences, and to find a

common ancestor (e.g., [70]).

As mentioned in Chapter 2, in the DNA each amino acid is represented by one or
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more combinations of three bases, so-called codons. However, all codons coding for

a specific amino acid are not equally abundant. The patterns of codon usage differ

between organisms and between genes in the same organisms, and can be studied to

find similarities and differences. The amounts of the bases C and G in genes also

differ between organisms and genes, and give information about the history of a gene,

the level of expression, and about evolution.

Having the human and other genomes sequenced, it is important to locate the

parts of this huge amount of DNA that are genes that code for proteins. The major

parts of the human and other large genomes do not code for any gene, and the func-

tions of these regions remain unclear. Methods have been and are developed to find

the start and stop of the protein coding sequence, and other patterns characteristic for

genes (e.g., [135], [100]). It is also interesting to locate regulatory regions, which

for example govern when and how often a gene is transcribed (e.g., [113]), or to find

possible cleavage sites, where the final protein is cleaved to remove for example sig-

nal sequences after they have been used (e.g., [147]). In comparative genomics, the

complete genomes of organisms are compared, in order to find for example conserved

protein coding genes or regulatory elements. Comparing genomes can also help to

locate and understand the nature of functional DNA that do not code for protein or

RNA (e.g., [116]).

During and after translation, some proteins are transported out of the cell or to

the mitochondria, the energy fabrics of the cell. These proteins have signal peptides,

making it possible to transport them to the correct location. Neural networks have

been used to, based on the sequence, locate this signal and determine where a protein

should be located [41]. Some proteins are inserted into the membrane surrounding

the cell. Hidden Markov models (HMMs, Chapter 5) are used to determine whether a

protein is a membrane protein or not, and which parts of the protein are inside the cell,

which parts are inserted into the membrane, and which are outside of the cell [136].

Statistics in different forms can be used to study genetic diseases. Healthy and

sick people are compared on a genetic level, and genetic properties are determined

(e.g., [42]).

3.2 Study of RNA

As RNA has a very important role in the cell, both as an information carrier between

DNA and final protein, and as an important actor on its own, the theoretical study of

RNA sequences has grown during the recent years. Much effort is put into the predic-

tion of RNA secondary and tertiary structures, which are formed due to base pairing

and other interactions within the RNA chain. For example, stochastic context-free

grammars are used to make these predictions [59]. Fold libraries are also developed,

containing typical fold fragments, and algorithms are developed to design molecules

with a given secondary structure, in order to be able to produce self-assembling RNA

structures for certain purposes (e.g., [8]). Short fragments of RNA, containing only

about 20 nucleotides, form so called microRNAs. These have proved to be impor-

tant in the regulation of protein expression. The microRNA binds the mRNA of its
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target protein, and down-regulates the expression with the help of protein complexes.

Some research in Bioinformatics is aimed at the identification of microRNA targets

(e.g., [125]). Other research that could give insight into the gene regulation and pro-

cessing is to be able to locate the sequence regions recognised by the RNA splicing

machinery (e.g., [155]).

3.3 Study of Protein Function

The study of protein function on a larger scale, both experimentally and theoretically,

has grown increasingly important. To study chemical modifications, the binding of

cofactors, interactions between proteins, etc., is called proteomics (compare to ge-

nomics, the study of the genome). Bioinformatics is needed when it comes to the

analysis of experimental data. For example, patterns from mass spectrometry ex-

periments can be compared to databases in order to find what the sample contains

(e.g., [9]). Approaches are also made to predict, for example, which parts of a protein

that interact with other molecules (e.g., [84]).

A field that has grown into a research area of its own is the use of microarrays

in functional genomics. Microarrays are small arrays, where several different DNA

strands are attached. These are used to study gene expression in different types of

cells and under different conditions. When a gene is expressed, mRNA is produced

with DNA as a template, and the RNA in turn is used as a template to build protein

molecules, see also Chapter 2. Not all genes are expressed in all cells, and a sin-

gle gene is only expressed in a given cell when it is needed. The particular mRNA

molecules present in a cell at a certain time can be captured using the DNA arrays,

thus capturing information about which genes are currently expressed in the cell.

The mRNA has the ability to base pair with the DNA, due to the chemical similar-

ity between DNA and RNA. It is this ability that is used in the technique. The RNA

molecules bound can be detected and the strength of the signal is a measure of the

amount of RNA in the cells.

Bioinformatics is used when processing and analysing the data. Often, gene ex-

pression is studied under different conditions, for example the expression of genes in

starving cells can be compared to that in cells under normal conditions. In the exper-

iments, what is interesting is the difference in expression, not the actual expression

levels. Scientists are looking for genes that are up-regulated or down-regulated (i.e.,

expressed more or less than under normal conditions), in order to find patterns in the

expression of different genes. In this way, it is possible to, for example, locate genes

that belong to a common pathway and cooperate to perform a certain task in the cell,

since these proteins should be expressed in a similar way. The very amount of data

makes it a difficult task to find patterns between genes.

To find patterns in gene expression, several different approaches have been used,

such as graph theory [149], self-organising maps (SOM) [146], the singular value

decomposition (SVD) [72], and fuzzy clustering based on neighbourhood approxima-

tion [49].
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3.4 Biological Interactions and Networks

In order to understand how biological processes work, methods have been developed

for predicting which proteins interact in a cell, e.g., [133]. Based on available infor-

mation on protein function and interactions, metabolic networks can be constructed,

showing which proteins are parts of which pathways, and how the pathways are con-

nected. Work is also done to predict metabolic networks, and to make models of

signal transduction and other important processes in the cell (e.g., [30], [104], [7]).

The modelling of metabolic networks, how biological molecules interact, and even of

complete cells, falls under the label Systems Biology, and is nowadays a research area

of its own.

3.5 Databases and Information Searches

Several databases containing biological data are available via the Internet, some of

which are discussed in Chapter 4. These databases might store raw data as well as

annotated, or literature references. Also, new databases are created by developing

new algorithms to, for example, cluster proteins into structural or functional families

(e.g., [110], [55]). Some researchers focus on annotating the raw data and constructing

cross-links to create new, value added databases (e.g., [18], [23]). Research is also

done to combine several databases and/or to index web pages, in order to make it

possible to find all data relevant from just one or a few searches, and to quickly find

other, related information (e.g., [71]).

3.6 Biological Sequence Analysis

A classical branch of Bioinformatics is the analysis of biological sequences, such as

DNA and protein sequences. Comparisons of sequences most often involve sequence

alignments, where one sequence is matched as good as possible to another sequence.

From a sequence alignment it is possible to determine characteristics common to the

two sequences, such as conserved amino acids or conserved properties such as size

or charge of the aligned residues. More information of a whole protein family can

be gained from multiple sequence alignments, where many sequences are aligned si-

multaneously. Several methods have been developed for the alignment of multiple se-

quences, see for example [105], [39] for reviews. Some examples of approaches used

are dynamic programming (see Section 6.1.1) in different forms [27], the divide and

conquer strategy, where the alignment is divided into small manageable parts [139],

genetic algorithms, which use the analogy of genetic mutations and recombination to

find the best alignment [106], and to progressively align the sequences, i.e. to add one

at a time following some schema (e.g., [45], [107]).

The key to making alignments are the use of scoring matrices to determine simi-

larity between amino acids. Two of the most comonly used series of scoring matrices

are the PAM [32] and BLOSUM [67] matrices.
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3.7 Prediction of Protein Structure and Function

The ultimate goal of much work in Bioinformatics is to be able to predict the struc-

ture, and perhaps even the function, of a protein, based on its amino acid sequence.

This is needed since, in general, it is very expensive, difficult, and time consuming to

determine the structure of a protein experimentally. For certain proteins, it is even im-

possible using current techniques. The function of a protein is also hard to determine,

especially if one has no clues about what the role of the protein could be. If one can

predict the structure of a protein, the structure gives clues about possible functions

of the molecule, and together with other techniques it might be possible to predict

the function of the protein. This prediction can in turn make a base for constructing

tailored experiments to determine the true function of the protein. The scope of this

thesis is in the area of structure prediction, or rather fold and family recognition, see

below. To predict function based on sequence and structure is still a largely unex-

plored area, much due to the need for good structure prediction methods to base the

work on.

There are many approaches to structure prediction. The most direct, and perhaps

most difficult, approach is to make ab initio prediction. This means to try to calcu-

late the fold of a protein based on its sequence and knowledge about the amino acids’

chemical properties, using different energy functions (e.g., [90], [152]). In a way, this

is equivalent to simulating in the computer how the folding of the protein sequence

is done in the cell. Another ab initio approach is the Frankenstein monster model

method, which combines small parts from many different known structures, finding

the combination of structural parts that seems to fit the sequence best [131], [80]. Here,

steric and chemical properties of the amino acids making up the sequence are consid-

ered to find the best combination of structural parts. If one succeeds in constructing

an efficient ab initio method, this yields important insight into the natural folding pro-

cess and which parameters or properties are important for defining the particular fold

a certain protein adopts.

Other methods for structure prediction use already known structures as templates

to deduce the fold of a given sequence. A common method is threading, where the

sequence is “threaded” through a number of structures, in order to find the one that

fits the steric and chemical properties of the chain the best (e.g., [85], [127], [141]). In

homology modelling, the sequence is fitted to the sequence of a protein with known

structure, and a possible structure is determined based both on the fit of the sequences

and on the known structure (see for example [54] for an overview). For this procedure

to be possible, a way to locate the closest homologue with known structure is needed,

and it is necessary to be able to fit the sequences in a biologically sensible way. This

area, often called fold recognition, is one of the classic fields within Bioinformatics.

Much work in this area is based on sequence alignments in one way or the other.

Alignment methods have been developed, that are able to find in a database the se-

quence that fits a given query sequence best, i.e., that gives the best alignment between

the two (e.g., [112], [5]). More sophisticated methods have also been developed, that

try to model the sequences of a whole protein family, to be able to assign the query

to a group of related proteins even if the relationships are distant. Two examples of
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such models are profiles and hidden Markov models (see Chapter 5). To automatically

cluster and classify proteins into families, methods based on for example graphs [81]

and Markov clustering [43] have been used.

Every second year, the Critical Assessment of Structure Prediction (CASP1) takes

place, where methods for structure prediction are tested on real targets. Predictors are

invited to submit predictions on sequences whose structures are due to be released, but

that are not known to the predictors at the time of prediction. This blind test makes

it possible to make a fair comparison between the best methods available today. The

results from the latest assessments show that expert evaluation and intervention in the

prediction procedure still is superior to purely automatic methods, but that the gap is

decreasing. However, human predictors often start with models generated from some

automatic server, why the quality of server predictions highly affects the quality of

predictions in general. By comparing the results from all experiments since the start in

1994, it is clear that steady improvement in performance is made [83]. The CAFASP

(Critical Assessment of Fully Automated Structure Prediction)2 experiment runs in

parallel with CASP, and is designed to evaluate the performance of fully automated

services on the blind targets provided in CASP. Since 1999, LiveBench3 performs

automatic evaluation of publicly available automatic servers on a more regular basis.

New targets, obtained from the PDB, are submitted to the servers on a weekly basis,

and the results are evaluated. To participate, the servers must delay the updating of

their structural libraries by one week. In general, it seems like the combination of

results from several different methods give the best results.

The ssHMMs presented in Paper V of this thesis were used in combination with

other methods in CASP3, with some success (see Section 7.2.2). The saHMMs have

not been used in any of these assessments. In order to participate, the methods must

generate an appropriate alignment to a template sequence with known structure, which

is not within the scope of this thesis.

An area related to structure prediction is the prediction of interactions and interac-

tion sites in proteins, including binding sites (e.g., [19], [26]). Another related area is

the prediction of unstructured regions (e.g., [28], [50], [65]). The existence of intrin-

sically disordered regions in some proteins plays an essential role in their functions,

and may also prevent experimental structure determination of the remaining regions

of the proteins. The prediction of unstructured regions is one of the sections in the

CASP experiments.

1 http://predictioncenter.gc.ucdavis.edu/
2 http://www.cs.bgu.ac.il/ dfischer/CAFASP5/index.html
3 http://bioinfo.pl/meta/livebench.pl
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Databases and Protein
Classifications

In this chapter, some of the most common databases relevant for this work are de-

scribed, with focus on databases containing classifications of proteins. A longer list-

ing of useful biological databases can be found in Baxevanis [15], including a short

description of each database. A more detailed description of each database is provided

through the Nucleic Acids Research web site1. The annual database issue of the Nu-

cleic Acids Research gives an up to date overview of the most important databases, as

well as completely new ones.

4.1 Sequence Databases

There are three important databases storing genetic information, i.e. nucleotide data-

bases containing DNA and RNA sequences. GenBank2 is the NIH (National Insti-

tute of Health, USA) genetic sequence database. GenBank is an annotated collection

of all publicly available DNA sequences and is maintained at the National Center

for Biotechnology Information (NCBI). The EMBL Nucleotide Sequence Database3

(sometimes called EMBL-Bank) is the main resource of nucleotide sequences in Eu-

rope, and is maintained at the European Bioinformatics Institute (EBI), which is a

part of the European Molecular Biology Laboratory (EMBL). The third collection of

nucleotide sequences can be found in the DNA database of Japan (DDBJ)4. The three

databases cooperate, and exchange new and updated database records on a daily basis.

Each database entry is given a unique accession number, making it possible to refer

to a specific gene sequence. The main sources of DNA, and also RNA sequences,

are submissions from individual researchers, genome sequencing projects and patent

applications.

One of the main sources of protein sequence information has historically been

the Swiss-Prot Protein Knowledgebase (SWISS-PROT)5. SWISS-PROT is a curated

1 http://nar.oxfordjournals.org/
2 http://www.ncbi.nlm.nih.gov/Genbank/index.html
3 http://www.ebi.ac.uk/embl/index.html
4 http://www.ddbj.nig.ac.jp/Welcome-e.html
5 http://www.ebi.ac.uk/swissprot/
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protein sequence database, which aims at providing a high level of annotation, as little

redundancy as possible, and a high level of integration with other databases. SWISS-

PROT is maintained by the Swiss Institute for Bioinformatics (SIB) together with the

EBI. The SWISS-PROT release of March 2008 contains 359942 sequence entries.

The TrEMBL database (Translated EMBL)6 contains the translations of all cod-

ing sequences present in the EMBL Nucleotide Sequence Database. In other words,

the DNA sequences in EMBL-Bank that code for a protein are translated into the

corresponding protein sequence. Only sequences which are not yet integrated into

SWISS-PROT are stored in TrEMBL. A subset of TrEMBL, called SP-TrEMBL, con-

tains sequences that eventually will be incorporated into SWISS-PROT. PIR (Protein

Information Resource)7 produces the Protein Sequence Database (PSD), which con-

tains protein sequences that are functionally annotated.

To collect the information in these three databases, the United Protein Databases

(UniProt)8 project was formed in 2002 by joining the forces of the SWISS-PROT,

TrEMBL and PIR protein database activities.

The UniProt Knowledgebase combine the three collections of data in a single

protein database, divided into two sections; UniProtKB/Swiss-Prot and UniProtKB/-

TrEMBL. UniProt contais two more components; the UniRef databases providing

clustered sets of sequences, and UniParc providing non-redundant protein sequences

with links to all sources and versions of these sequences.

4.2 PDB

The RSCB Protein Data Bank9 (PDB, [17]) is a collection of structural data of proteins

and other biological macromolecules. In the PDB, all protein structures are stored in

an organised way, and all entries are assigned a unique PDB accession code. The data

in the individual structure files is ordered according to the PDB format, making it easy

to parse and extract specific information.

The world wide PDB, wwPDB10 [16], was established in 2003 as a cooperation

between the RCSB PDB, described above, MSD-EBI11 (the Macromolecular Struc-

ture Database at the European Bioinformatics Institute), and PDBj12 (PDB Japan).

In 2006, the BMRB13 (Biological Magnetic Resonance Data Bank, harbouring NMR

spectroscopic data) joined the wwPDB. The goal of the wwPDB is to maintain a sin-

gle, world-wide, publicly available archive of macromolecular structural data with

uniform content and format of the data files. However, the individual wwPDB sites

present the data using their own views and tools.

6 http://www.ebi.ac.uk/trembl/index.html
7 http://pir.georgetown.edu/
8 http://www.uniprot.org
9 http://www.rcsb.org/pdb/

10 http://www.wwpdb.org/
11 http://www.ebi.ac.uk/msd/
12 http://www.pdbj.org/
13 http://www.bmrb.wisc.edu/
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FIGURE 7: A schematic picture of the SCOP classification, together with the number of entries

at each level, as of version 1.73 (to the right). Pictures of protein structures are

obtained from the PDB.

4.3 SCOP

In the Structural Classification of Proteins (SCOP, [101]), all proteins with known

structures are divided into groups based on different levels of similarity. The classifi-

cation is made at the domain level (see Chapter 2), meaning that different parts of a

single protein may appear in multiple families in the classification, and even in differ-

ent classes. The aim is to capture evolutionary relationships between protein domains.

In SCOP, a domain is defined as an evolutionary unit, either observed in isolation in

nature or together with different domains in different multidomain proteins.

In Figure 7, a schematic picture of the SCOP classification is shown. The lowest

level of the classification contain the actual protein domains (at the bottom of Fig-

ure 7), sorted by species. Protein domains that are very similar in structure, and with

experimentally determined similarities in function, are put into the same family, the

next higher level. Especially, domains having a sequence identity of 30% or more are

assigned to the same family. Families of proteins with similar structures, but uncertain

similarity in function, are part of the same superfamily. One level higher is the fold,

where superfamilies with roughly the same arrangement of secondary structures and

the same topology are grouped together. The highest level in the SCOP hierarchy is
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the class level, where folds consisting of the same kinds of secondary structure ele-

ments are grouped into the same class. Apart from the four main classes shown in

Figure 7 – all alpha-helices, all beta-sheets, and the two kinds of mixtures of alpha

and beta – there exist three more true classes; multidomain proteins, membrane pro-

teins, and small proteins. There are also four additional classes containing peptides,

low resolution structures, and other groups of proteins that could not be included in

the actual classification. These are not considered as true classes.

SCOP includes all proteins in the PDB until the date they started working on the

current release of SCOP, and most of the proteins whose structures have been pub-

lished but not included in the PDB. The database is curated, meaning that the clas-

sification of the protein domains is determined manually by a group of experts. The

investigation is done using both visual inspection and comparison of structures. Auto-

matic tools are used to speed up the classifications. Sequence comparison can be used

to group domains with high sequence similarity to the same family, while structural

alignments are used to suggest a fold for a protein of interest, even though manual

inspection must be used to verify the result and choose an appropriate superfamily

and family for the domain. The manual check of the classification is the reason why

the SCOP database often is used as the gold standard for grouping of similar protein

domains.

The current version of SCOP (version 1.73) was released in November 2007 and

contains 97178 domains divided into 3464 families.

4.3.1 ASTRAL

The ASTRAL Compendium [25] is a collection of sequences for the domains classi-

fied in SCOP, derived from their respective PDB files. The sequences can be retrieved

filtered according to different criteria such as sequence identity or BLAST [5] E-value.

The compendium also provides the extracted coordinates of single SCOP domains, as

well as predicted domains from PDB structures not yet classified in SCOP.

4.4 CATH

In CATH [110], protein domain structures are classified into five levels: protein class

(C), architecture (A), topology (T), homologous superfamily (H), and sequence family

(S). The classification is, as far as possible using current techniques, done automati-

cally, with the goal of completely automatic classification in the future. The database

classifies single structural domains, so multidomain proteins are divided into separate

domains using an automatic procedure. In those cases where the procedure fails, the

domain borders are determined manually.

The class (C-level) describes the content of α helices and β sheets in the struc-

tures. There are four classes: mainly α, mainly β, α−β, and a special class grouping

all domains with low secondary structure content. The class of a domain is determined

by an automatic procedure, which examines the secondary structure composition of

one representative for each sequence family. The architecture (A-level) describes the

general arrangement of secondary structures, and is determined manually, while the
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topology (T-level) further groups the structural domains based on the overall fold.

The fold describes the number and arrangement of secondary structures, and the con-

nectivity between them. The homologous superfamilies (H-level) group domains by

high structural similarity and similar functions. The T- and H-levels are determined

by structural comparison of representative proteins using the SSAP program [142],

with different cut-offs for the two levels. For a protein to belong to a certain homol-

ogous superfamily, it must also have a common function to the other members in the

superfamily. Function is determined from SWISS-PROT, the PDB file or literature.

At the lowest level (S-level, sequence family), protein domains with high sequence

similarity (more than 35% identical) are clustered. These domains are assumed to have

very similar structures and functions. The sequence similarity is determined by pair-

wise comparisons using the Needleman-Wunsch algorithm [102], and the sequences

are clustered into families by single linkage cluster analysis.

From the PDB [17], only NMR structures and crystal structures with 3.0Å resolu-

tion or better are selected. The domains are sorted so that low resolution, native X-ray

structures are first and mutant NMR-structures become last. The domain listed highest

is chosen as representative for the sequence family in the classification.

In addition to the actual classification, the database contains derived data such

as structural alignments and family templates. Also, for each structure in CATH, a

number of graphical representations are provided, together with a report containing

information from the PDB file, domain boundary data and functional data.
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CHAPTER 5

Hidden Markov Models in
Bioinformatics

5.1 Hidden Markov Models in Bioinformatics

Hidden Markov models have been used for a number of purposes within the area of

Bioinformatics. Perhaps the most common use is for protein fold or family recogni-

tion, where profile HMMs (see Section 5.3) are used extensively. In addition, a type

of hidden Markov model based on structural features, instead of the sequence features

used by profile HMMs, has been described for these purposes [4]. The use of profile

HMMs have also been developed by the invention of profile-profile comparison tech-

niques (e.g., [124]). However, HMMs have also been used to locate transmembrane

regions in proteins [82], to find signal peptides [103], to model interaction sites [47],

and for many other applications.

In this chapter, the profile hidden Markov models, which are used throughout this

work, are described in detail, with focus on the HMMER1 [37] implementation. For

a more complete description of hidden Markov models and their use in molecular

biology, see for example [11] or [36].

5.2 Multiple Sequence Alignments and Profiles

One often used technique to identify common sequence characteristics within a protein

family is to construct a multiple sequence alignment, see Figure 8 for an example.

In a multiple sequence alignment, several sequences are fitted on top of each other,

such that the amino acids placed above each other in the alignment are as similar as

possible. To make the sequences fit better, gap symbols, shown as dashes in Figure 8,

might be inserted at some positions in one or more of the sequences. These are needed

when a sequence contains insertions or deletions with respect to the consensus of all

aligned sequences. From the aligned sequences, a consensus sequence can be derived,

which aims at representing a “typical” sequence of the group.

A more elaborate way to describe a protein family is to construct a position-

specific scoring matrix, or profile, from the multiple sequence alignment [60]. In a

1 http://hmmer.janelia.org/
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FIGURE 8: An example of a multiple sequence alignment. Here, five fictitious peptide se-

quences are shown aligned to each other. The amino acids are coloured according

to their chemical properties.

profile, each position in the alignment is associated with a score for matching each of

the 20 amino acids to that position, or to have insertions/deletions. For example, in

column eight, marked with a green box, in the alignment seen in Figure 8, the amino

acids ‘D’ (aspartic acid) and ‘E’ (glutamic acid) would have high scores, while all

other amino acids would have lower, or even negative, scores.

Using the position specific scores, it is possible to score a collection of sequences

against the matrix in order to find high scoring sequences that most likely are addi-

tional family members.

PSI-BLAST
PSI-BLAST (Position-Specific Iterated BLAST) [6] is an extension of BLAST

(Basic Local Alignment Search Tool) [5], a commonly used method for pairwise com-

parison of biological sequences and for finding relationships between, for example,

two protein sequences. PSI-BLAST uses a position-specific scoring matrix similar

to the profiles described above, but without the column for gap penalties. The posi-

tion specific scoring matrix is automatically constructed from the alignments resulting

from a BLAST run. The BLAST search is then repeated using the matrix instead of

the query sequence, and the procedure is iterated using the new results acquired in

each run. PSI-BLAST has proven to be sensitive to weak sequence similarities [89].

5.3 Profile Hidden Markov Models

A similar approach as the profiles, but with a formal probabilistic basis and a consis-

tent theory behind insertion and gap scores, is to use profile hidden Markov models to

model protein families (e.g., [38]).

In a Markov model, a probability is assigned to symbols in a sequence, based on

which symbols are seen in the preceding positions in the sequence. In a general case,

a ‘sequence’ can be any sequence of symbols or events. The order of the Markov

model is the number of preceding symbols the probabilities are based on. A simple

first order Markov model of a protein sequence would be a set of arrays ak, one for

each amino acid, with the probabilities P(i | k) of seeing amino acid i after amino

acid k in the sequence. The probability that an observed protein sequence belongs to
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FIGURE 9: A schematic picture of a HMM. Circles symbolize delete states, squares are match

states, and insert states are pictured as diamonds. Arrows between the states indicate

the possible transitions. A transition probability t is associated with each transition.

Match and insert states are associated with emission probabilities e. These are only

shown for the first few states in the figure.

the model would then be the product of the probabilities for each amino acid in the

sequence, treating the first amino acid as a special case, since it is not preceded by

any other residue. These kind of models work well in some occasions, but they do not

give much information about the sequences they model.

A slightly more complicated, but also more informative, way to model a group

of sequences is to use profile hidden Markov models (profile HMMs). Hereafter, the

terms profile HMM and HMM will be used interchangeably, unless otherwise stated.

In short, a profile HMM is a statistical model of a multiple sequence alignment, where

probabilities are assigned to each amino acid at each position in the alignment, and to

the transitions between positions. The analogy to multiple sequence alignments makes

it possible to draw conclusions about the group of sequences that are modelled, mak-

ing hidden Markov models more appealing than the simple Markov model described

above. The HMM can, like multiple alignments and profiles, be used to locate struc-

turally or functionally important residues, since they are conserved in the sequences

and consequently receives high probabilities in the HMM. The HMMs are also useful

for finding other sequences, similar to the ones modelled.

Some of the advantages with HMMs, compared to for example simple profiles,

are position specific scores for amino acids and for the penalties for insertions and

deletions. In many other methods, a single gap penalty is chosen regardless of where

in the sequence a gap is inserted. This does not model true sequences very well, since

it is much more likely to find insertions or gaps in loop areas than in an alpha helix,

for example. Other advantages are that the HMMs are built on a formal probabilistic

basis, and that less skill and manual interventions are required for using HMMs than

for profiles.
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A profile HMM consists of a collection of states of three kinds (Figure 9): match
states, which correspond to the positions in the consensus sequence, insert states,

which model insertions with respect to the consensus, and delete states, which repre-

sent deletions with respect to the consensus. The match and insert states emit symbols,

in this case amino acids, with a certain probability ei(x) that symbol x is emitted from

state i. The delete states are silent, not emitting any symbols. There are also transi-

tions between the different states (arrows in Figure 9), and a probability ti j to move

from state j to state i is associated with each transition. The insert states have self

transitions, i.e. transitions back to themselves, to allow for arbitrary length insertions

relative to the consensus sequence. To model the beginning and end of a sequence

belonging to the alignment, two special states that do not emit any symbols are added

in the first and last positions of the HMM. A HMM of length N has N match states

with corresponding delete states, and N +1 insert states in between the match states.

Using the emission and transition probabilities, a sequence can be emitted by the

HMM. Assume that the sequence “TLVSM” is observed. This sequence can be emit-

ted by the HMM in Figure 9 in a number of ways. One possible sequence of states

resulting in the observed sequence is m1 → m2 → m3 → m4 → i4. That is, to go from

the begin state to match state m1 emitting symbol “T”, then move on to state m2 emit-

ting symbol “L”, to state m3 emitting an “V”, to state m4 emitting an “V” and finally

go to state i4 emitting symbol “M” before going to the end state. Another possibility is

the state sequence d1 → d2 → d3 → d4 → i3 → i3 → i3 → i3 → i3, skipping all match

states and emitting all symbols from state i3 by using the transition back to itself. Yet

another possibility is i0 → m1 → d2 → m3 → i3 → m4, as is illustrated in Figure 10.

All the possible state sequences have different probabilities, but there is no way to tell

which state sequence emitted the observed sequence – the state sequence is hidden for

us. That is why hidden Markov models are called hidden.

5.3.1 The Plan7 Architecture for HMMs

The HMMs in HMMER2.2g (http://hmmer.janelia.org/), which is the HMM imple-

mentation used throughout the work in Papers I–IV, do not look exactly as described

above. Instead, the Plan7 architecture, illustrated in Figure 11, is used. The basics are

the same as described earlier, with a number of match states corresponding to consen-

sus positions, associated insert and delete states, and transitions between the states.

Unlike the previously described architecture, Plan7 does not have any transitions, in

any direction, between insert and delete states. This reduction of transitions from 9 to

7 for each node, i.e. each match state with associated insert and delete states, is one

of the reasons for the name Plan7. The B and E states are, as above, states used to

enter and exit the main model. The special states S, N, J, C and T control which kind

of alignment the model is most likely to generate. The S and T states are start and ter-

mination states, respectively. None of them emit any symbols. The N state is used to

model unaligned N-terminal sequence, in other words the beginning of the sequence.

Every time it makes a transition to itself, a symbol is emitted. The same holds for the

C state, which models C-terminal sequence not aligned to the actual model. These

two states make it possible to model local alignments with respect to the sequence, for

28



Hidden Markov Models in Bioinformatics

FIGURE 10: An example of how the sequence “TLVSM” can be generated by the HMM illus-

trated in Figure 9. The bold arrows and states show the path followed to generate

the sequence. The bold letters are the symbols emitted at each match and insert

state the path passes through. Together, these symbols form the sequence.

FIGURE 11: The Plan7 architecture used in HMMER2.0 and later. See text for details.

example a single domain in a multidomain protein, as the parts of the sequence not

aligned to the main model are captured by the N and C states. The J state is used to

model regions in between two matching domains in a sequence. A protein sequence

containing two domains belonging to the modelled family, with flanking sequence

regions, would therefore start in the S state and then go to the N state where the N-

terminal sequence region is emitted. As the first of the two domains starts, it will be

modelled by the main model, starting with the B state and ending with the E state. The

region between the two domains is described by the J state, after which the sequence

enters the main model again to model the second domain. The region following the

second domain is finally modelled by the C state, before the T state is entered and the

process is terminated.
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The dotted arrows in Figure 11 illustrate transitions between the B state and match

states, and between match states and the E state. These make it possible to model

local alignment with respect to the main model. Using one of the dotted transitions, it

is possible to skip some of the match states in the beginning and/or end of the model,

without having to pass through a number of delete states. The alignment mode is

determined by the actual values for the transitions between the special states, and is

decided when building the model. If one wishes more than one type of alignment

mode, several HMMs have to be constructed for the same sequences.

5.3.2 Scoring Sequences and HMMs

To score a sequence versus the HMM is the same as finding the probability that a

certain HMM generated an observed sequence, i.e. to determine how likely it is that

a sequence s is related to the sequences modelled by the HMM. If the probability that

the HMM generated the sequence is high, then it is also very likely that the observed

sequence is related to the group of sequences that are modelled by the HMM.

A sequence s = x1 . . .xL with length L, following the state path q = q0 . . .qN+1

through a HMM μ with N states, has the probability

P(s | q,μ) =
N+1

∏
i=1

tqi,qi−1

N

∏
j=1

e j(xl( j)), (5.1)

where l( j) is the index in the sequence for symbol x at state q j. Equation 5.1 is simply

the product of the probabilities of going from one state to the other, i.e. the transitions

t, and the probabilities e of emitting the symbols of the sequence at the given states.

To calculate the probability of the HMM emitting the sequence, we have to choose

a suitable path for the sequence. The most common approaches are to sum over all

possible paths, or to take the path which has the highest probability. To sum over all

possible paths can be expressed as:

P(s | μ) = ∑
q

P(s | q,μ). (5.2)

However, to compute the probabilities for all possible paths is often too computa-

tionally exhausting, especially when there are many models to compare the sequence

against. The path with the highest probability is called the Viterbi path [11]:

P(s | μ) = max
q

P(s | q,μ). (5.3)

Strictly, it is not the probability P(s | μ) = P(s = x | x is generated by model μ) that

is interesting, since it describes the probability of seeing sequence s in a collection of

sequences generated by the given model. Instead, the question of interest is to find

the probability, given a sequence s, that this sequence is generated by the model:

P(x is generated by model μ | x = s) = P(μ | s). To calculate this probability, Bayes’

rule can be used:

P(μ | s) =
P(s | μ)P(μ)

P(s)
. (5.4)
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To avoid computing the unknown probabilities P(μ) and P(s), the question is

slightly twisted; instead of calculating the probability that the model generated the

sequence, the odds that the sequence was generated by model μ rather than model η is

calculated:

P(μ | s)
P(η | s)

=
P(s | μ)
P(s | η)

P(μ)
P(η)

. (5.5)

Here, η is generated as a null model that tries to fit all sequences in the universe

of sequences, for example a sequence database. The relative probability P(μ)/P(η) of

the two models can be estimated as the expected number of hits divided by the number

of sequences scored.

Scoring in HMMER2.0
In HMMER2.0 and later releases, the two models μ and η are considered equiprob-

able, so the relative probability is set to 1. The null model in HMMER2 is a single

insert state that can make transitions back to itself, and a dummy end state equal to

the END state in the actual model. The insert state of the null model emits symbols

according to a distribution equal to the average amino acid composition in SWISS-

PROT34. The score reported by HMMER is the logarithm of the right hand side

in Equation (5.5) – a log-odds score. To correct for bias in sequence composition,

HMMER2.0 and later actually uses a second null model in addition to the simple one

described above. This model is useful for HMMs modelling sequences with unusual

sequence compositions, preventing unrelated sequences with the same unusual com-

position from receiving unreasonably high scores.

E-values
In addition to the raw scores, an E-value is reported from HMMER2.0 and later.

The E-value is an expectation value; it is the expected number of sequences in the

database that score higher than or equal to the reported score S = y, but that are not re-

lated to the model. This is the same as the number of hits with a score greater than

or equal to y in a database of size N, that one can expect just by chance. By default,

the E-value in HMMER is calculated as an analytic upper bound, roughly equal to

ε = Nz−y, where z is the base of the logarithm, in this case 2 [12]. More accurate

values can be obtained by calibrating the HMM before using it for sequence searches.

When calibrating the model, an extreme value distribution P(S < y) = exp(−e−λ(y−μ))
is fitted to the scores generated by the model, and the E-value can then be calculated

as ε = N ·P(S ≥ y). The scores the distribution is fitted to are generated from a Monte

Carlo simulation of a sequence database. To find the parameters λ and μ, the log

likelihood is maximized. That is, the maximum of the logarithm of the likelihood of

obtaining the simulated scores from a distribution defined by λ and μ is determined:

max
λ,μ

{logP(y1, . . . ,yn | λ,μ)}. (5.6)

To find the maximum, the zeroes of the partial derivatives with respect to λ and

μ are found using a Newton-Raphson algorithm. In practice, only the right tail of the

histogram of scores is fitted, because the left tail (the low scoring sequences) does not
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obey the extreme value distribution. The right tail, around ε = 1, empirically fits the

distribution quite well, and since this is the region of interest it is recommended that

the models are calibrated.

According to the HMMER User’s Guide (http://hmmer.janelia.org/), E-values of

0.1 or less in general represent significant hits.

5.3.3 Aligning a Sequence to a HMM

Aligning a sequence to the HMM is the same as finding the state sequence, or path,

through a given HMM, that generated the observed sequence. If one finds that path,

one also has the optimal alignment of the sequence to the model, as well as the optimal

alignment to other sequences generated by the HMM. The solution is to find the path

that gives the highest probability for the sequence, as given by Equation (5.1).

5.3.4 Constructing a HMM

To find the parameters of the HMM, i.e. the transition and emission probabilities, is

sometimes called the training problem. If an there exist an alignment of the sequences

in the family to model, it is rather a question of building a HMM, not training. In this

case, the consensus positions, i.e. positions in the alignment where most sequences

have an amino acid and not a gap symbol, are set to match states. All gaps with

respect to the consensus are counted as delete states, and all insertions correspond

to symbols emitted by insert states. The transition probabilities can be calculated by

simply counting the number Ti j of observed transitions from one state, j, to another

state, i, divided by the total number of transitions from that state:

ti j =
Ti j

∑i′ Ti′ j
. (5.7)

The emission probabilities are calculated as

e j(x) =
E j(x)

∑x′ E j(x′)
, (5.8)

where E j(x) is the number of occurrences of symbol x at position j.
As an example, we consider the alignment in Figure 8, and the column marked

with a blue box, before the one with an conserved ‘C’ in the middle of the alignment.

If this column is a match state, there are four transitions from it to the next match

state (the next column with the conserved ‘C’). There is also one transition from this

state to a delete state, since the fourth sequence has a gap instead of the conserved

‘C’. There are no transitions to insert states at this position. This means that the

transition probabilities from this match state become tmm = 4/(4+1+0) = 0.80, tdm =
1/(4+1+0) = 0.20 and tim = 0.

At this position in the multiple alignment, there are two symbols ‘I’ (isoleucine)

and three symbols ‘L’ (leucine). This means that the emission probabilities at this

position become e(I) = 2/(2 + 3) = 0.40 and e(L) = 3/(3 + 2) = 0.60. All other

emission probabilities are equal to zero.
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For the insert states, background frequencies are often used for the emission prob-

abilities. It is assumed that the symbols in insertions are more or less random, so that

the probability of emitting an ‘A’ should be the same as the frequency of an ‘A’ in the

universe of protein sequences. The reason for this assumption is that the number of

observations often is too small to determine all the parameters, especially in inserts.

Also, inserts are by nature not very conserved within a family.

A serious problem with this raw calculation of probabilities is the risk of overfit-

ting the model to the data. If the HMM fits the data too well, it will only recognise

the sequences used when building the model, and no related sequences. In the worst

case, a sequence differing from the observed sequences in just one, single position can

obtain a probability of zero, since this very amino acid has not been observed at that

position. To handle this problem, so called pseudocounts are added to the raw counts.

In this way, all possible symbols will be assigned a probability greater than zero at

all positions, even if they are not observed, making it possible to generate and recog-

nise sequences that differ slightly from the training sequences. Also, in the case of

proteins, one knows from alignment of homologous proteins that some substitutions

of amino acids are more likely than others. For example, tyrosine and phenylalanine

often occur in the same place in an alignment, while they both rarely substitute for

proline. Knowing that phenylalanine and tyrosine often substitute for each other, a

small count can be added to one of them each time the other is observed, increasing

the probability for both amino acids.

In a group of related sequences, there are often many similar sequences belonging

to the same sequence family, and a few more unique ones. To obtain a good model of

all sequences in the family, not just the majority of very similar ones, the few unique

ones should have a higher weight. This can be achieved by using tree-based weighting,

where sequences with few neighbours on the same branch are given higher weights.

If no alignment is given, the model has to be trained from the raw data, i.e. from

a set of unaligned sequences. First, a random alignment is produced, most simply

by aligning the first residue of each sequence and then aligning all the others without

gaps until the end of the sequences. From this random alignment the parameters can

be calculated to create an initial model. All sequences are then aligned to the model,

resulting in a new alignment which can be used to calculate new parameters. The

procedure is then iterated until the alignment and parameters converge. To avoid being

trapped in a local minimum, with a suboptimal alignment, a few variations in this

procedure are implemented. However, in HMMER2.0 and later, the training of HMMs

is not implemented at all, since sequence alignment tools such as ClustalW give much

better alignments, resulting in better HMMs, than the HMM training.

In this work, we use alignments based on structural superimposition as the base

for building structure anchored HMMs (saHMMs), and alignments derived from the

HSSP database [121] for the secondary structure HMMs (ssHMMs), see Chapter 7 for

further details.

Dirichlet mixtures
In the default settings of HMMER2.2g, Dirichlet mixtures are used to define the

pseudocounts to add at each position, in order to avoid overfitting.
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Let p be a probability vector, containing a possible distribution over the twenty

amino acids. That is, element pi in the vector is the probability of amino acid i,
pi ≥ 0 and ∑i pi = 1. A Dirichlet density ρ is a statistical density over all probability

vectors, meaning that it gives high probabilities to some distributions (probability vec-

tors) of amino acids, and low to others. For example, a certain Dirichlet density may

give high probability to distributions where one single amino acid dominates, i.e. to

conserved distributions. Other densities might give high probabilities to distributions

where amino acids that share a common feature, such as hydrophobicity or size, dom-

inate, while even others favour distributions where no particular kind of amino acid

dominates.

For a particular p, the value of the density is

ρ(p) =
∏20

i=1 pαi−1
i

Z
, (5.9)

where Z is a constant that makes ρ sum to unity, and αi are the parameters of the

density.

A Dirichlet mixture is a mixture of Dirichlet densities. The individual densities

ρ j are called components of the mixture, and each component is associated with a

mixture coefficient q j, that functions as a weight for the component. The mixture

coefficients sum to 1. A Dirichlet mixture ρ with l components has the form

ρ = q1ρ1 + . . .+qlρl . (5.10)

At each position of the alignment, the probability of each amino acid is calculated

based on the observed number of occurrences in that column. Pseudocounts are added

from each component ρ j of the Dirichlet mixture, each contributing with different

number of counts depending on the particular density. The pseudocounts from each

component are scaled according to how likely it is that the individual component has

produced the observed data. The result is that the final probability distribution at each

position reflects the most likely probability distribution given the observed data, and

is not based solely on the raw counts of amino acids.

The mixture used in HMMER2.0 and later versions is a nine-component mixture,

where the parameters (q j, α j) are estimated based on the multiple sequence alignments

in the Blocks database [66]. The Blocks database contains ungapped alignments of

protein segments, which correspond to highly conserved regions of proteins.
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Structure Alignment Methods

In this chapter, some approaches for structure alignment of protein molecules are de-

scribed, in particular methods designed to align several molecules simultaneously. A

structure alignment is a matching of residues, in different molecules, that are equiva-

lent from a structural point of view, instead of a matching based on the identity of the

residues, as in sequence alignments (see Section 5.2). These equivalences can be used

to make an optimal superimposition of the structures, by minimizing the root mean

square deviation (RMSD) of the equivalenced residues. Often, superimpositions are

used as a step in the process of finding the structural equivalences.

There are several reasons for being interested in structure alignments of proteins,

instead of pure sequence alignments. The most obvious reason is to study which

residues are really at equivalent positions in the folded protein structure, and thereby

locate residues that are important for the function and/or folding of the protein. Struc-

tural alignments can also help to detect distant evolutionary relationships that are dif-

ficult, or even impossible, to find from sequence information alone. In this thesis,

structure alignments are used instead of sequence alignments in order to obtain align-

ments of sequences with highly similar structures, but where the mutual sequence

identities are very low.

6.1 Alignment and Superimposition of Protein Structures

To find matching residues in two or more protein structures is not a trivial task, since

the proteins can differ in size or have slightly different angles between their secondary

structure elements, and still have the same overall fold. Even if the similarity is ob-

vious by eye, it is difficult to parameterize it and make a computer find the matching

residues automatically.

If the structures are superimposed as rigid bodies, the centre of the superposition

might be quite well defined, while the further away you are from the centre, the further

apart are the structures, even though the basic shape is the same. For example, two

helices that are situated at the same position with respect to the other elements of the

protein in two structures, might be parallel but still some distance apart in the superpo-

sition, since one protein could be more loosely connected or have longer loops than the

other. This kind of situation makes it very difficult to determine which residue in one

protein corresponds to which in the others, especially in an automatic approach. An
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FIGURE 12: An example of four superimposed structures belonging to the DEATH domain

family. Above the superposition smaller images are shown for the individual struc-

tures. The four protein domains are: d1d2zb (magenta), d1d2za (blue), d3ygsp

(yellow) and d1cy5a (green), following the SCOP nomenclature.

example of such a situation is the rightmost helix in Figure 12, where a superposition

of four similar domain structures is displayed. Here, the blue and the magenta helices

obviously are equivalent, but since they are tilted in slightly different directions, they

only overlap perfectly on a few residues in the middle, while the ends of the helices

are quite distant.

Several methods have been developed to compare protein structures. Most meth-

ods developed are designed to compare just two proteins at a time, and almost all

multiple methods use pairwise alignments as a starting point. Methods for structural

alignments are reviewed in for example [53], [40], and [77].

A very common approach to find matching residues in the proteins to align, is

to use dynamic programming (e.g., [142], [120], [69], [44], [148], [74], [138]). Dy-

namic programming (see Section 6.1.1) finds the optimal solution for the superpo-

sition of two structures, conditioned on the scoring function optimized during the

process. This scoring function is also the main difference between the above meth-

ods. Some alternative scoring functions are to compare intra-protein distances [69],

to combine and compare features such as surface accessible area, secondary structure

and sequence information [74], to minimize the “soap area” between the backbones of

the two structures [44] and to compare the discrete curvature of the backbones [148].

Several methods have been developed that represent the secondary structure ele-

ments as vectors, and find the best matching between those as a first step in the align-

ment procedure ( [91], [140], [128], [3], [132], [150], [93]). The reason for this choice

is to reduce search space for the initial alignment, and to ensure biologically relevant

alignments since the secondary structures are the building blocks of the structures.
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Genetic algorithms have also been used to find initial equivalences [140].

For the actual rotation and translation to superimpose the structures, most methods

use some kind of iterative least squares procedure that minimizes the RMSD between

equivalenced residues (e.g., [91], [118], [148], [74], [140], [128], [3], [132]). Most

often, the structures are treated as rigid bodies, however, some approaches accept more

flexible alignments (e.g., [154]). Often, equivalenced residues are found using nearest

neighbours or dynamic programming. These equivalences are then superimposed,

and the procedure is iterated until either the RMSD, the equivalenced residues, or both

have converged. Another method to find the optimal superposition and/or equivalences

is Monte Carlo optimization [69], [93].

There are a few methods with more “unique” approaches, that use hashing to find

common submotives [86], search all possible combinations of rotations and trans-

lations to find the maximum number of matched Cα [34], or assemble structurally

similar fragment pairs using combinatorial extension [129].

6.1.1 Dynamic Programming

Dynamic programming is one of the most common methods to optimally align two

sequences, whether it is DNA, protein or an abstract sequence of structural features.

Dynamic programming is also used extensively in approaches to align multiple se-

quences, however, in these cases the method quickly becomes computationally ex-

hausting. Since the method is so commonly used, the basic procedure is shortly de-

scribed in this section.

Dynamic programming is a general method that guarantees a mathematically op-

timal alignment of two linear sequences, given a scoring function and penalties for

insertions or deletions (see Section 5.2). The scoring function is often given as a

scoring matrix – a table of scores for matches and mismatches between all sequence

symbols. Often, there are two kinds of penalties for generating an insertion/deletion; a

gap opening and a gap extension penalty. The gap opening penalty is used when open-

ing a new gap in a sequence, while the gap extension penalty is used for extending the

gap, i.e. inserting multiple gap symbols in one of the sequences. The gap extension

penalty is usually lower than the gap opening penalty, since it is more biologically

reasonable to extend an existing gap than to open a new one.

Dynamic programming was first introduced in molecular biology by Needleman

and Wunch [102]. The heuristic measure of homology introduced in that paper has

since then been developed into a true measure of the distance between sequences,

as illustrated in the Smith-Waterman algorithm [134]. The Needleman-Wunch algo-

rithm is designed for constructing global alignments, where one complete sequence is

aligned to another complete sequence. The Smith-Waterman algorithm, on the other

hand, is designed for local alignments, where parts of one sequence is aligned to a sub-

sequence of the other. This makes it possible to find alignments between only parts

of the sequences, which is the biologically more common situation. The method has

also been optimized for time and memory usage [56], and the method is often slightly

modified to fit a given application. However, the basic idea of dynamic programming

is the same in all cases, why the Smith-Waterman algorithm is described below in
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more detail, to illustrate the method.

The Smith-Waterman algorithm
The Smith-Waterman algorithm [134] is used to find similarities between two long

sequences, by locating a pair of segments (one from each sequence) such that the pair

has a higher similarity than any other pair of segments. The similarity is calculated us-

ing a similarity measure s(a,b) between elements a and b in sequences A = a1a2 . . .an
and B = b1b2 . . .bm. Introducing gaps in one of the sequences is penalised with a

penalty wk, dependent on the number of gaps, k. An (n+1)× (m+1) similarity ma-

trix H is constructed to find the most similar pair of segments, where the element Hi j
can be seen as the similarity of the two segments ending at positions ai and b j, re-

spectively. To start, the similarities between an empty position b0 first in B and all

sequence positions in A are set to 0. These represent segments where the beginning

of sequence B matches internal positions in sequence A, for example if B = abc is

matched to A = xxabc. The equivalent holds for an empty position a0 matched to B.

Hence:

Hk0 = H0l = 0 for 0 ≤ k ≤ n and 0 ≤ l ≤ m. (6.1)

The other elements in H are then chosen as the maximum similarity given by one

of the following four possible combinations of sequence elements:

1. If ai is matched to b j, the similarity is calculated as Hi j = Hi−1, j−1 + s(ai,b j).

2. If ai−k is matched to b j, so that ai is at the end of a deletion of length k (k
gaps are inserted after position b j, and ai is matched to gap number k), then the

similarity is calculated as Hi j = Hi−k, j −wk.

3. If ai is matched to b j−l , so that b j is at the end of a deletion of length l (l gaps are

inserted after position ai, and b j is matched to gap number l), then the similarity

is calculated as Hi j = Hi, j−l −wl .

4. If s(a,b) can give negative values, 0 is included to avoid negative similarities.

The number 0 means no similarity.

In summary, element Hi j is determined as:

Hi j = max

⎧⎪⎪⎨
⎪⎪⎩

Hi−1, j−1 + s(ai,b j)
max1≤k≤i{Hi−k, j −wk}
max1≤l≤ j{Hi, j−l −wl}

0

⎫⎪⎪⎬
⎪⎪⎭

. (6.2)

The pair of segments giving the highest possible similarity, i.e. the optimal align-

ment, is found by locating the largest element Hi j, and then backtracking the calcula-

tions to find the other matrix elements leading to this value. The backtracking proce-

dure ends when a zero matrix element is found. In this way, the most similar segments

from the two sequences and their alignment are found. To find alternative matching

segments, the next largest element, not in the same path as the largest element, should

be located.
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FIGURE 13: The construction of the similarity matrix in the example. After the first step, the

first row and column are set to 0. Left: The result after calculating element H1,1.

Right: The result when element H1,2 is calculated and added. The arrows show

which other element each calculated element is based on.

The algorithm is illustrated with the following example. Assume that we have a

simple similarity measure

s(a,b) =
{

1 ifa = b
0 otherwise

(6.3)

and a gap penalty wk = 0.1 · k. Given sequences A = xxyzxxzy and B = xyzxyzx, the

similarity matrix H can be calculated. In this case, n = 8 and m = 7.

First, all elements in the first row and the first column are set to 0. Then, we

continue to calculate element H1,1, which represents the similarity of two segments

ending at positions xa1xb1, where xa1 is the x at position 1 in sequence A and xb1 is the

x at position 1 in sequence B. If xa1 is matched to xb1 (alternative 1 above), then the

similarity is H0,0 + s(a1,b1) = 0+ s(x,x) = 0+1 = 1. If xa1 is at the end of a deletion

(alternative 2), the similarity is max1≤k≤1{H1−k,1−wk}= max1≤k≤1{H1−k,1−0.1 ·k}.

In this case, k = 1 is the only option, since the index 1−k should be equal to or greater

than zero (no negative indices!). Hence, we obtain a similarity of H0,1 − 0.1 · 1 =
0− 0.1 = −0.1. Correspondingly, if xb1 is at the end of a deletion (alternative 3),

we obtain a similarity of −0.1. Alternative 4 above is not relevant in this case, since

s(a,b) never yields negative values. To find element H1,1, we take the maximum of all

these values (cf. Equation (6.2)):

H1,1 = max

⎧⎨
⎩

H0,0 + s(xa1,xb1)
max1≤k≤1{H1−k,1 −wk}
max1≤l≤1{H1,1−l −wl}

⎫⎬
⎭ = max{1,−0.1,−0.1} = 1.

We find that H1,1 = 1, a value derived from element H0,0 (see Figure 13, left).

If we move on to element H1,2, alternative 1 gives the similarity H0,1 +s(xa1,yb2) =
0 + 0 = 0, and alternative 2 gives the similarity −0.1, as derived above for H1,1. Al-

ternative 3 can give two values for the similarity, one for l = 1 and one for l = 2, of
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FIGURE 14: The final similarity matrix resulting from the example. Arrows indicate from

which element each value is derived, and are used to backtrack the calculations to

obtain the matching sequence segments. Bold arrows represent the optimal path

through the matrix, i.e. the alignment of the two segments having the highest

similarity.

which we want to choose the largest: max{H1,2−1 −w1,H1,2−2 −w2} = max{H1,1 −
0.1 ·1,H1,0 −0.1 ·2} = max{1−0.1,0−0.2} = 0.9 , derived from element H1,1. Ele-

ment H1,2 is the maximum of all three alternatives:

H1,2 = max

⎧⎨
⎩

H0,1 + s(xa1,yb2)
max1≤k≤1{H1−k,2 −wk}
max1≤l≤2{H1,2−l −wl}

⎫⎬
⎭ = max{0,−0.1,0.9} = 0.9,

which is derived from element H1,1 (see Figure 13, right).

In this way, all the elements in the matrix can be calculated, see Figure 14. In the

figure, the arrows indicate which previous element each value is based on. When the

similarity matrix H is filled, the largest element is located, representing the pair of

fragments with the largest similarity. In this case, elements H7,6 = H8,7 = 5 contain

the largest value. By following the arrows we can backtrack the calculations from H8,7

to H7,6 to H6,5 to ..., all the way to element H1,0, which has the value 0. This yields

the aligned sequence segments

x x y z x x z y
− x y z x y z x,

which contain no gaps, except for the initial one, and two mismatches, at positions six

and eight in the alignment.
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6.2 Multiple Structure Alignment

In the work presented in this thesis, we want to make use of alignments of multiple
structures. In a multiple structure alignment, preferably all input structures should be

aligned simultaneously, or at least the order of adding the structures to the alignment

should not affect the final result.

To construct multiple structural alignments, the most common approach is to per-

form pairwise alignments and add proteins to the alignment based on a guide tree

(e.g., [118], [120], [92]), pairwise similarity scores (e.g., [109], [151]) or Monte Carlo

optimization [63]. Other methods align all proteins to a pivot structure, which might

be a consensus structure or a chosen representative structure (e.g., [52], [148], [108],

[153], [156]).

There are only a few software tools available that attempt to align all input mole-

cules simultaneously. MUSTA [87] uses a hash table to find conserved submotives,

which are then used to find the optimal transformations. MASS [35] initially detects

pairs of conserved secondary structure elements, also using hash tables, to construct

local alignments, which are then refined using the atomic coordinates. Also MultiProt

[126] and MUSTANG [78], both described below, do simultaneous multiple structure

alignments.

In the following, three methods for structure alignment are described in more de-

tail. STAMP is the software that was first used in this work. Until recently, it was

one of the very few methods available for multiple structure alignment that produces

actual residue matches. The two other tools described are MultiProt and MUSTANG,

where the later now is used in our method instead of STAMP for producing structure-

anchored sequence alignments.

6.3 STAMP

STAMP (Structural Alignment of Protein Sequences) [118] aligns several sequences

based on their structural similarity. A guide tree based on pairwise comparisons is

used to determine the order in which the structures are aligned.

An overview of the procedure STAMP uses is shown in Figure 15. To start,

STAMP needs the structures to be reasonably superimposed, a superimposition which

is refined in the procedure, and which is used to construct the guide tree. The struc-

tural domains are then superimposed in the order indicated by the pre-calculated tree.

First, a matrix is calculated, containing the likelihoods of structure equivalence be-

tween each residue in one domain and each residue in the other. The optimal way

through the matrix is found, see below, resulting in a list of equivalent residues with

corresponding Cα positions. These positions are used to calculate the transformation

(translation and rotation) of one structural domain that gives the lowest RMSD with

respect to the other. The domain is transformed, resulting in a new set of coordi-

nates, and the calculations are repeated until convergence. STAMP then repeats the

procedure for the next pair to be superimposed.

The initial multiple superimposition or multiple sequence alignment needed by

STAMP can be produced by (i) constructing a multiple sequence alignment of the
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FIGURE 15: The STAMP procedure for alignment and superposition of protein structures. See

text for details.

domains to be superimposed, (ii) constructing a simple alignment where the sequences

are stacked on top of each other with no gaps, starting from the N-terminus, or (iii)

pairwise superimposition of all structural domains against one of them, after which

the superimpositions are converted to a multiple sequence alignment.

The initial alignment is used to construct a tree that guides the order of superim-

position. For each pair of domains to be superimposed, the k positions aligned for this

pair in the initial alignment, with no gaps, are rotated and translated to minimize the

RMSD for the pair. The RMSD is a measure of the distance between equivalent atoms

in the two molecules, and consequently measures how well the two molecules are su-

perimposed, and how similar they are in structure. If N proteins are to be aligned,

the RMSD values for each of the possible N(N −1)/2 pairs are used to construct the

guide tree, such that pairs with low RMSD are close to each other in the tree, while

pairs with high RMSD are further away from each other. To construct the tree, each

molecule is assigned to its own subset. Then the two subsets with the lowest RMSD

are joined together, and the length of the branch is set as the distance. These two

subsets are then treated as a single subset when the process is iterated, until all subsets

have been joined to a single set, the tree. When two subsets containing more than

one molecule are compared, the average RMSD values from all possible pairings of

molecules from the two subsets are used to determine the distance.

The structural domains are then superimposed starting from the leaves in the tree,

superimposing a pair of domains at each node until reaching the root of the tree. In

this way, the most similar domains are compared first, leaving the comparison and
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alignment of more distantly related domains until later in the procedure. At internal

nodes, where more than two domains are to be superimposed, average values are used

for domains belonging to the same branch of the tree.

The actual superimposition in each node starts by calculating a structure equiva-

lence matrix for the two domains to be superimposed. For each residue i in domain A,

the probability Pi j of structural equivalence to residue j in domain B is calculated as:

Pi j = exp(− d2
i j

2E2
1

)exp(− s2
i j

2E2
2

), (6.4)

where di j is the distance between the Cα atoms of residues i and j, si j is a measure of

their conformational similarity, and E1 and E2 are constants. If A contains m residues

and B contains n, this results in a m× n matrix. In case more than two domains are

to be superimposed in a node, domains on the same branch are kept fixed with respect

to each other, and the average Pi j for all possible combinations is computed for each

position i j. For example, if domains A and B superimposed on one branch are to be

compared to domains C and D from the other branch, then all possible combinations

are A-C, A-D, B-C, and B-D. If a comparison is made to a gap, a neutral value of 0 is

used.

The best way through the matrix, i.e. the path that yields the highest score S, is

determined using a modified Smith-Waterman algorithm [134], [118] (see also Sec-

tion 6.1.1). The score S is calculated as the sum of Pi j values along the path. The

path corresponds to the best possible set of equivalent residues. From this set, the

pairs having a Pi j larger than a threshold T are used to obtain two sets of equivalenced

Cα positions.

The two sets of equivalent Cα positions can be seen as two sets A and B of k
vectors ai and bi (i = 1, . . . ,k), where k is the number of equivalent positions. Each

vector ai and bi contain three elements, representing the x-, y-, and z-coordinates of

the residue at position i. Given these two sets, the optimal superimposition is found

by determining a rotation matrix R, and a translation t which, when applied to set A,

yield a transformed set of coordinates ãi which minimizes the RMSD with respect to

set B. In nodes where several domains are compared, the average Cα coordinates for

domains belonging to the same branch are used.

The domain is transformed using the calculated rotation R and translation t, re-

sulting in a new set of coordinates that can be used to calculate a new distance matrix

according to Equation (6.4). The calculations are repeated until the score S does not

change more than 0.1% compared to the previous iteration. STAMP then moves on

to the next node and pair of domains/averaged domains to be superimposed, until

reaching the root where all structural domains are superimposed.

6.4 MUSTANG

MUSTANG (MUltiple STructural AligNment AlGorithm) [78] is a relatively recent

tool for multiple structure alignment. According to the authors, it tries to extend the

spirit of DALI [69], which is one of the most widely used applications for pairwise
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structure alignments. Instead of comparing the actual coordinates of the proteins,

the methods find similarities between distance matrices computed from the structures.

The distance matrix of a protein structure comprises all pairwise distances between the

Cα atoms in the structure. This matrix contains all information needed to reconstruct

the protein structure, except for the chirality1 of the molecule.

In DALI, the distance matrices of the two molecules to align are first systemati-

cally compared to find all matching hexapeptide-hexapeptide contact patterns, which

are stored in a pair list. All scores are calculated based on similarities in the internal

distances stored in the distance matrices. The highest scoring pairs are used in the next

step, the actual alignment, which is produced by Monte Carlo optimization. A number

of seed alignments are constructed from all triplets of non-overlapping hexapeptides

in the pair list. The seed alignments are extended using overlapping contact pairs,

and the highest scoring alignments are optimized in parallel. The optimization con-

sists in extending the alignment based on overlapping contact pairs and trimming the

alignments by removing negatively scoring matches. The procedure continues with

expansion and trimming until the score no longer improves. Finally, the best align-

ment is refined.

In a similar way, MUSTANG uses similarity in patterns of residue-residue contacts

within the proteins, as well as local structural topology, to align the Cα atoms in a

set of protein structures. First, scores of pairwise correspondences are determined,

which are used for pairwise structural alignments. The scores of all residue-residue

correspondences are then recalculated in the context of multiple structures. Finally, all

structures are progressively aligned along a guide tree, using the recalculated scores.

For the first phase, where pair-wise residue-residue scores are determined, com-

plete distance matrices are calculated for all structures to align. Then a list of all

maximal similar substructures is compiled for each pair of structures. A similar sub-

structure is a pair of equal length fragments, one from each structure, with a length

of at least lmin, that can be superimposed with an RMSD of at most ε. The MUS-

TANG authors empirically determined the values lmin = 6 and ε = 1.75Å to give the

best results. A maximal similar substructure is a pair of similar fragments that are not

contained in longer fragments with the same N-terminus, i.e. which do not start at the

same position as a longer fragment.

The list of maximal similar substructures for a pair of structures is compiled by

superimposing all possible combinations of fragments of length lmin from the two

structures. In case the RMSD is at most ε, the fragment pair is extended by adding

positions to the C-terminus, i.e. to the ends of the fragments, until the fragments no

longer can be superimposed with small enough RMSD.

From the list, rough pairwise similarity scores are derived for all maximal frag-

ment pairs mii′
j j′(l), where i and i′ are the structures to align, j and j′ are the start of

the respective fragments, and l is the length of the fragments. The score wii′
j+t, j′+t(0 ≤

t ≤ l −1) of every correspondence mii′
j j′(l) is calculated as:

1 The chirality of a molecule is its “handedness”. Compare to a left and a right hand – they are identical

with respect to internal distances between for example fingers, but are each others mirror images.
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wii′
j+t, j′+t = ∑

∀0≤p≤l−1
∑

∀p+1≤q≤l−1

φ(i, i′, j, j′, p,q) + ∑
∀0≤q≤l−1

φ(i, i′, j, j′, t,q). (6.5)

The function φ is a slight modification of the similarity function used in DALI, and is

based on values in the distance matrices:

φ(i, i′, j, j′,x,y) =
{

(θ−|di
j+x, j+y −di′

j′+x, j′+y|/d∗) ·ω(d∗), x 	= y,
0, x = y.

(6.6)

Here, di
jk is the distance between residues j and k in structure i, d∗ is the average of

the distances di
j+x, j+y and di′

j′+x, j′+y, θ is a constant and ω(d) is an envelope function

(see [78] and [69]). The similarity scores are used to derive pairwise global structure

alignments by dynamic programming (see Section 6.1.1) without gap penalties.

These pairwise alignments are used to prune the list of maximal similar substruc-

tures, in order to limit its length. Only those pairs of fragments that are close to any

of the correspondences in the pairwise alignment of the structures are kept in the list.

Using the pruned list of fragments for each pair of structures i and i′, the pairwise

residue-residue scores are then recalculated. Each pair of maximal fragment pairs on

the form mii′
j j′ and mii′

kk′ are jointly superimposed, and in case the resulting RMSD is at

most ε′ = 6.5Å, the score is updated using a modified version of Equation (6.5).

In phase two, pairwise structural alignments are generated using the recalculated

scoring matrix and dynamic programming. The alignments are used in phase three,

the extension phase, to generate a new scoring matrix with scores that are calculated

in the context of multiple structures.

For all correspondences in a pairwise alignment, the score in the new matrix is

set to the same value as in the previous matrix. Next, transitive correspondences

between every pair of structures i and i′ through every other structure j are detected,

and the scores are updated according to these. I.e., if residue x in structure i is aligned

to residue y in structure j, which in turn is aligned to residue z in structure i′, the

score wii′
x,z is increased in order to reflect this transitive correspondence. The more

intermediate structures supporting the alignment of a pair of residues, the higher the

score of matching these two residues.

Finally, the recalculated scores for each pair of structures are used in the progres-

sive alignment phase where the multiple structure alignment is generated. The multi-

ple alignment is assembled along a binary guide tree, where the structures to align are

the leaves, which are connected in a way reflecting their structural similarities. The

tree is constructed using the neighbour-joining method [119], which starts from a star-

like tree and iteratively pairs the nodes that gives the smallest sum of branch lengths,

until the tree is binary. The branch lengths are calculated based on the distances be-

tween nodes, which in this case are derived from normalized alignment scores of the

pairwise structure alignments. Starting from the leaves in the guide tree, a multiple

alignment is generated by aligning the two subalignments in each node in a pairwise

fashion.
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From the correspondences in the multiple structure alignment, a structure super-

imposition is also constructed by minimizing the sum of the RMSD for the residues

that are aligned in all structures.

6.5 MultiProt

In our evaluations of structure alignment software (see Section 7.1.3), we also included

MultiProt [126], which is one of the few additional methods that perform simultaneous

multiple structure alignments.

MultiProt derives alignments from simultaneous superimposition of input mole-

cules, and the method does not require that all molecules participate in the align-

ment. Instead, an ensemble of alignments is reported, with alignments for all possible

number of input molecules. MultiProt uses the pivoting technique, meaning that all

molecules are aligned to a pivot molecule. By selecting each molecule in turn as the

pivot, all solutions can be detected. In the first stage, all possible structurally similar

fragment pairs are detected between the pivot molecule and all the other structures to

align. A structurally similar fragment pair is a pair of fragments, one from the pivot

and one from another molecule, with maximal length and an RMSD of at most ε.

All possible combinations of structurally similar fragments between two or more

molecules are then detected. It is required that the pivot molecule participates in

the alignment, but no requirement is placed on including all of the input molecules.

From each set of structurally similar fragments, only one fragment is selected for

each molecule, in case there is more than one. The fragment is chosen so that the

transformation which optimally superimposes the fragment on the pivot, also gives

the largest global structural alignment, with an RMSD of at most ε, with the pivot

molecule. In this way, a set of rotations and translations is calculated, based on the

similar fragments, so that all aligned molecules are superimposed on the pivot. Fi-

nally, the largest structural cores between the 3D-transformed molecules are detected.

This is done iteratively, by applying the transformations, determining the multiple

structural correspondences, and calculating new transformations based on these new

correspondences. In the default settings, this procedure is repeated three times. The

solutions are scored based on alignment size and the multiple RMSD of the alignment,

calculated as the average of the RMSDs of the structural cores of each molecule and

the pivot. Longer alignments and smaller RMSDs give higher scores. Solutions are

grouped based on the number of aligned molecules.
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Contributions and Related Work

As discussed in the introduction (Chapter 1), one of the aims in this thesis is to inves-

tigate how structural information can be included in HMMs, and how this affects the

performance of the models. We hypothesize that structural information will improve

the HMMs ability to recognize and model remote relationships, and make the models

more accurate.

In the first four papers, the structure-anchored HMMs, saHMMs, are presented

and investigated. These HMMs use structure alignments as the base for the models.

In the last paper, the secondary structure HMMs, ssHMMs, are described. These

use secondary structure information in addition to sequence information when scoring

sequences against the HMMs.

7.1 Structure-Anchored HMMs (saHMMs), Papers I-IV

Sequences more than 20-30% identical are often uncomplicated to align to each other.

However, below this limit the quality of an alignment cannot be guaranteed, because

the significance of an alignment is no higher than that of an alignment of two random

sequences [121] (see Section 7.1.2). This presents a problem in case one wants to build

models of groups of very dissimilar sequences, as sequence alignments are needed to

find similarities to other proteins, and in particular to construct hidden Markov models.

Our approach is to use structural alignments of known structures, where the residue

equivalences are determined based on the structural environment of the residues rather

than on the identity of the actual amino acids. This makes it possible to align low

identity protein sequences, as long as their structures are similar enough. Also, se-

quence alignments based on pure sequence information and statistical methods might

differ significantly from those constructed based on structure. Thus, the use of struc-

ture alignments is a way to include structural information in the models, when the

structure-based sequence alignments are used to build HMMs. The resulting structure-

anchored HMMs are presumably better at recognising even very distant relatives of the

protein family.

7.1.1 Outline of the Method

We have developed a method that use structurally similar, low sequence identity repre-

sentatives of SCOP protein domain families, to construct so called structure-anchored
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FIGURE 16: A schematic illustration of our method. For each family, we start by selecting a

representative set of protein domains with low mutual sequence identities. These

are then structurally aligned, and the structure-based multiple sequence alignment

is used to build a structure anchored hidden Markov model (saHMM) for the fam-

ily. The resulting database of saHMMs can be used to obtain useful information.

See text for details.

hidden Markov models, saHMMs, for assigning family relationships to protein se-

quences. The main steps of our method are illustrated in Figure 16.

First, only those sequences in a family that have very low sequence identity with

respect to each other are selected as representatives for that particular family of protein

domains. This selection is done in order to avoid bias towards sequences common in

the family. The structures of the selected protein domains are then multiply aligned,

i.e. a multiple sequence alignment is generated based on which residues are struc-

turally equivalent in the structures, and thus are close to each other in space when the

structures are superimposed. One structure alignment is constructed for each family.

The resulting structure-anchored multiple sequence alignment is presumably better

than what could be achieved from aligning the sequences based on sequence infor-

mation only, especially in the case of low sequence identity. Finally, the structure-

anchored multiple sequence alignment is used to build a structure-anchored HMM
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representing the family.

The construction of one model for each protein family yields a whole database of

saHMMs, which in turn can be searched with sequences to find similarities. If one

has a particularly interesting sequence, this can be searched against the database to

find which saHMM fits the sequence best, and thus which family the sequence most

likely belongs to. If, on the other hand, one is particularly interested in a certain

protein family, the corresponding saHMM can be used to search sequence databases

or newly sequenced genomes for more members of the family. In both cases, the fact

that the saHMMs are built from structure-anchored alignments, means that matching

a sequence to an saHMM also matches the sequence to the corresponding structure.

7.1.2 The Midnight ASTRAL Set

The first step in the process of building saHMMs involves the definition of groups

of protein domains with similar structures, and to select representatives from each

group. We chose to use the family level in the SCOP classification (Section 4.3) as

groups of structurally related protein domains, and exploit the ASTRAL compendium

(Section 4.3.1) in order to obtain the 3D coordinates of individual domains.

In the PDB (Section 4.2), and consequently in SCOP, there is a high degree of

redundancy [20]. Both databases are biased towards proteins that crystallize or are

suitable for NMR experiments, and they also contain structures which are the result

of mutagenesis studies, where the effect single mutations have on the final structure

is investigated. This means that some proteins have a huge number of entries, only

differing in single positions, while the majority of proteins only have one entry. As a

consequence, some families in SCOP contain lots of domains, while others only have

one or two members. The number of families in superfamilies, and the number of

superfamilies in folds are also skewed, but not in a correlated way.

To avoid obtaining an alignment biased towards sequences very common in the

family, and in order to maximize the sequence diversity of the representatives from

each family, we decided to use only sequences with mutual sequence identities below

a certain limit. The limit was defined as the border to the so called twilight zone,

described by the HSSP-curve presented by Mika and Rost [97], [117], and illustrated

in Figure 17(a). The twilight zone is the border where the percentage sequence identity

between two aligned protein sequences no longer is useful to determine whether the

two proteins are related or not. The actual curve that defines the border to the twilight

zone differs depending on the data it is based on, and on slightly different definitions

between authors, but the basic idea is the same.

If all known proteins are pairwise aligned, the resulting sequence identity can

be plotted versus the alignment length. In such a plot, pairs of non-related proteins

will have low sequence identities over mostly short alignment lengths, while related

proteins often have higher sequence identities and longer alignments. A curve can be

defined so that protein pairs falling above the curve always are homologous proteins.

Around the curve, the number of unrelated pairs rapidly increases, and below the curve

most of the protein pairs are not related at all. The equation used in this thesis for the

HSSP-curve is [97]:
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(a) (b)

FIGURE 17: (a) The HSSP-curve, which is the border to the so called twilight zone. Marked

with a red cross is the position in the plot of the two DEATH domains shown su-

perimposed in (b), together with the corresponding structural alignment. When the

percentage sequence identity is plotted to the length of the alignment of two pro-

tein sequences, related proteins fall above this curve. The further into the twilight

zone one gets, the less likely it is that the two proteins are related.

pI(L,n) = n+

⎧⎨
⎩

100 f or L ≤ 11,

480 ·L−0.32·(1+e−L/1000) f or 11 < L ≤ 450,
19.5 f or L > 450.

(7.1)

Here, pI(L,0) is the cut-off percentage of residues identical over an alignment

length of L residues that is required for concluding that two proteins are homologous,

and n is the distance, in percentage points, from the curve. The equation is based on

the HSSP-curve originally defined by Sander and Schneider [121], whose principal

functional dependency was later shown to follow from statistics [2]. The parameters

of the equation are visually selected so that it excludes most false positives, i.e. most

pairs falling above this curve really are related. Two constraints are used; to reach

100% at an alignment length of 11, as shorter alignments do not reveal much about

structural similarity, and to level out at around 20% sequence identity for longer align-

ments.

The equation implies that for short alignments the sequence identity has to be

very high for the two sequences to be considered related, while for longer alignments

even quite low percentage identities are significant. For building the saHMMs we use

n = 0, except in a comparison of the saHMMs resulting from n = 0 and n = −10 (see

Section 7.1.6).

Pairs of proteins falling under the HSSP-curve are most likely not related. How-

ever, there exist some pairs in this area that are related, as illustrated by the two

DEATH domains shown in Figure 17(b). These domains are structurally related, even
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FIGURE 18: A flowchart showing our procedure for selection of representative protein do-

mains from each SCOP family. Each member in a family is compared to each

other member, by constructing a pairwise structural alignment. The length of the

structure alignment and the resulting pairwise sequence identity is calculated, and

if the numbers fall above the curve in Equation (7.1), i.e. the two proteins are

too similar, one of them is removed. The protein kept is the one with the highest

(best) resolution, or, if the resolutions are similar, the protein with the best mean

B-factor.

though their mutual sequence identity is very low. One motivation for this thesis is to

be able to detect such related pairs that fall under the curve.

Our procedure to select representatives for each family is illustrated in Figure 18.

The representatives for each family are chosen by taking all proteins belonging to

the same SCOP family and comparing them pairwise. For each pair of domains, a

structure alignment is constructed, and the resulting alignment length and pairwise

sequence identity is calculated. The number of structural comparisons is limited by

removing one of the domains in a pair from further consideration, if the structure
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alignment reveals a sequence identity above the identity cut-off for that alignment

length, as defined in Equation (7.1). The domain with the best resolution is kept, if one

of them is solved at a higher resolution than the other. In case the resolutions are within

10% of the mean value of the two resolutions, the protein domain with the best mean

B-factor is kept. The mean B-factor is calculated as the average of the temperature

factors, or B-factors, of all Cα atoms in a domain, and is an additional measure of

the quality of the structure. If the mean B-factors are equal, one domain is chosen

randomly. To guarantee high quality structures for the structural alignments, only X-

ray structures with a better resolution than 3.6Å are chosen, and all structures with

worse resolutions, or determined using NMR or any other technique, are discarded. In

case the structure alignment fails, the two domains are treated as very similar, in order

to remove one of them and thus avoid problems to align the complete set of selected

domains in later steps.

After going through the first round of selection, all removed protein domains are

checked against all left, to insure that only sequences with too high sequence identities

are discarded. The rationale behind this second comparison is that in the process of

removing proteins, it is possible that a domain A is removed due to high sequence

identity to domain B. If B later is removed due to high identity to domain C, it might

be the case that A and C have a mutual sequence identity below the threshold. Hence,

A and C must be compared, and in case the identity is equal to or less than pI(L,0)
both domains should be kept.

The set of selected protein domains is named the midnight ASTRAL set, as we

use domain structures obtained from the ASTRAL compendium (Section 4.3.1) that

fall within the “midnight zone”, i.e. that have mutual sequence identities below the

twilight zone.

The creation of the midnight ASTRAL set is treated in Papers I and III. In Pa-

per III, a second algorithm for selecting representative domains is evaluated. In this

second algorithm, all-against-all pairwise structure alignments are constructed within

each family. However, as the number of pairwise comparisons grows quadratically

with the number of domains in a family, we find that it is not feasible to use this

algorithm for regular updates of the collection of saHMMs.

7.1.3 Construction of Structure-Anchored Sequence Alignments

Initially, we chose to use the STAMP software [118] (Section 6.3) for the construction

of structure alignments. STAMP is used in Paper II, which is chronologically the first

paper treating the saHMMs. The reason for choosing STAMP was that it produced the

best sequence alignments among the software tools tested. The first choice was MAPS

(G. Lu, personal communication), since this method superimposes multiple structures

simultaneously. MAPS makes multiple structure alignments based on the same ideas

as the pairwise method TOP (protein TOPological comparison) [91], which represents

the secondary structure elements as vectors. Based on these, TOP makes a first fit,

which is iteratively refined using rigid body transformations. MAPS starts with the

pairwise alignments produced by TOP and minimizes the total RSMD between all

structures. MAPS produces very nice superimpositions when looking at the structures
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in 3D. However, it only presents very short stretches of aligned residues, those that

are really close in space, and therefore the method was abandoned. STAMP produces

longer sequence alignments, and also has the benefit that the output can be easily

parsed to a format suitable to construct HMMs using HMMER (see Section 7.1.4).

To construct a multiple structure alignment, STAMP needs an initial alignment

to start from. We use SCAN, included in the STAMP package, which generates an

initial alignment by scanning all structures to align against a given template structure,

generating a multiple alignment from the resulting pairwise alignments. We use the

domain that is of median length as template structure. In the few cases where STAMP

nevertheless fails to align the domains in the family, we chose to use MAPS to generate

a better initial alignment in the form of superimposed structures.

Until recently, there did not exist many publicly available software tools for mul-

tiple alignment of protein structures. The only real alternative to STAMP and MAPS

was the multiple version of SSAP [142], which was not readily available to us. How-

ever, in the last few years several new methods to produce structure alignments have

been presented.

Comparison of multiple structure alignment methods
In order to evaluate which multiple structure superimposition program best suits

our purpose, we compare the quality of the saHMMs resulting from STAMP, MUS-

TANG [78](Section 6.4) and MultiProt [126](Section 6.5). For the comparison we se-

lect eight of the larger SCOP families, two from each of the four major SCOP classes.

The selected families are listed in Table 7.1, and each has at least ten representatives

in the midnight ASTRAL set constructed from SCOP 1.69 using STAMP and SCAN

as described above.

We find that the choice of structure alignment program substantially influences

the quality of the resulting saHMMs (see Table 7.1). Judging from the eight example

families, MUSTANG performs slightly better than MultiProt. The saHMMs gener-

ated using MUSTANG find more family members than those based on MultiProt, at

the cost of a few more false positives. Both methods clearly outperform STAMP.

Moreover, MUSTANG can produce structure-anchored sequence alignments in mul-

tiple sequence format, msf, an accepted input format for HMMER, which makes it

ideal for our automated saHMM construction pipeline. We therefore decided to re-

place STAMP with MUSTANG for all further structure superimpositions and saMSA

extraction, including the results presented in Papers I, III and IV.

7.1.4 Construction of Family saHMMs

Only SCOP families with two or more representatives in the midnight ASTRAL set

are used, since at least two structures are needed to construct an alignment. We call

the representatives selected for a given family the saHMM-members of that family,

as they are used to construct the saHMM. The saHMM-members in each family are

structurally aligned as described in the previous section. The resulting structure an-

chored multiple sequence alignments are thereafter used to produce the final saHMMs

with HMMER2.2g (http://hmmer.janelia.org/), using standard parameters. These pa-

rameters are derived to work well in most cases, and to optimize them individually for
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SCOP id/

sunid

Domain name Nr of family

members

STAMP Mustang MultiProt

a.1.1.2/ Globins 973 958 973 973

46463 0 2 0

a.3.1.1/ Monodomain 210 70 209 126

46627 cyto-chrome c 0 53 10

b.1.1.1/ Ig V set domains 1691 303 1685 1685

48727 0 34 17

b.60.1.1/ Retinol binding 172 150 168 167

50815 protein-like 0 0 0

c.1.8.3/ Beta-glycanases 336 287 306 235

51487 0 23 0

c.37.1.1/ Nucleotide and nucle- 244 134 234 230

52541 oside kinases 0 4 0

d.108.1.1/ N-acetyl transferase, 98 91 97 91

55730 NAT 0 1 0

d.169.1.1/ C-type lectin domain 243 144 243 243

56437 0 0 0

TABLE 7.1: Comparison of structure alignment methods. For each family, the upper value

is the number of family members found and the lower value is the number of false

positives.

each family is outside the scope of this thesis (see also Section 8.8).

In HMMER2.0 and later, Dirichlet mixtures are used by default for prior infor-

mation. The mixtures make the models perform better when using only very few se-

quences and, consequently, not much sequence information is available. The Dirichlet

mixtures improve the model’s ability to recognize remote homologues (e.g., [22]) by

giving each match state emission probabilities with the most likely probability dis-

tribution, based on the observed data (see Section 5.3.4). One of the reasons for the

success of the saHMMs is the use of Dirichlet mixtures, which allow us to use very

few sequences as the base for our models.

The type of HMM was chosen to be optimal to find alignments and/or hits that are

global with respect to the HMM and local with respect to the query sequence, i.e. to

match the complete saHMM, but allowing matches to only parts of the sequence. All

HMMs are calibrated to obtain fitted E-values (see Section 5.3.2)

Using MUSTANG, we were able to construct saHMMs for about 30% of the fam-

ilies in SCOP version 1.69, covering 65% of the SCOP domains belonging to true

classes. Due to the exponential increase of deposited 3D structures, the number of

saHMMs is likely to increase, which will make the saHMMs cover more of the pro-

tein space. Also, as the number of structures known for each protein family grows,

more members can be included in the individual models.
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7.1.5 Alternative Implementations

In our implementation, we use the SCOP classification (see Section 4.3) to separate

protein domains into families. SCOP is a highly reliable classification, since it is man-

ually curated by experts, and therefore is a very good base for the HMMs. However,

this is also the drawback of using this classification. The existence of the database re-

lies on a few people, and the inclusion of new protein structures in the database cannot

be done immediately. There exist some automatically created databases, but the exact

classification of domains depends on the method used. The most natural alternative

to the SCOP classification would be to use CATH, a similar database that is built on

semi-automatic clustering of the proteins (see Section 4.4). Using CATH would make

the method less dependent on A. Murzin and co-workers, who runs SCOP, but on the

other hand SCOP is usually seen as a more reliable classification of protein structures

because of the human expertise. This far, CATH has been less straightforward to use,

and SCOP is the commonly used database in similar studies.

We chose to use the family level in the SCOP classification as the base for our

HMMs. As the majority of our false matches are within the correct superfamily, the

accuracy of the saHMMs might increase by working on the superfamily level, es-

pecially by pooling the results of all families in the same superfamily. In Paper I,

this approach is investigated. We find that both the coverage and the accuracy of the

saHMMs increase, with a slightly more marked increase in accuracy, when pooling

the results on the superfamily level. The accuracy approaches 100%, i.e. the number

of false hits is essentially zero. However, as we know that the vast majority of the

matches are correct on the family level, we decided against combining the saHMMs

into superfamilies, and instead report the results on the family level. This strategy has

the advantage that the structural and functional information is more specific, at the

same time as we know that in case there are false matches, they are most likely within

the correct superfamily.

The structure-based sequence alignment can be extended to include sequences for

which the structures are not determined, but which are similar in sequence to one or

more of the saHMM-members. In that case, each of the saHMM-members would be

searched independently against some sequence database using BLAST [5] or some

other sequence alignment tool. The so found sequences would then be aligned by se-

quence to the saHMM-member used as query, and consequently to the other saHMM-

members through the structure-anchored alignment. An extended structure-anchored

multiple sequence alignment would give the saHMM more family specific sequence

information, and decrease the need for general prior information. However, it is not

clear how many additional sequences to add for each saHMM-member, how much the

number of sequences added per saHMM-member might differ without introducing

bias, which we take great care to remove, or what is a reasonable level of sequence

similarity for the additional sequences. For these reasons, no extension is made of

the multiple structure alignment, which makes the saHMMs well balanced with re-

spect to the sequence variability within the family. In Paper IV, we show that also

a very limited number of saHMM-members often result in excellent performance of

the saHMM. It is even the case that limiting the number of saHMM-members further
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can result in better-performing saHMMs. From Papers I, II and III it is clear that the

saHMMs, which are built from a low number of carefully selected protein domains,

for some families outperform the HMMs in Pfam, which are built from alignments

that include a large number of similar sequences.

7.1.6 Performance Evaluation of the saHMMs

The evaluation of the saHMMs is largely based on matching all sequences in a test

set against the collection of saHMMs, each saHMM representing one protein domain

family, in order to assign families to the query sequences. In addition, each saHMM

is matched to the set of sequences in order to evaluate its ability to accurately locate

family members. As the test set we construct a subset of SCOP, containing all domain

sequences from families with an saHMM, except for the saHMM-member sequences.

The performance at a given E-value threshold e can be evaluated with respect to

the following two criteria: the coverage, which is expressed as the percentage of all

sequences in the test set that are matched with the correct saHMM with an E-value

less than or equal to e, and the accuracy, which stands for the percentage of all hits

with an E-value of at most e that are correct. We count as correct hits, also called

true positives (tp) matches, those between a sequence and an saHMM from the same

family. All other hits are considered as false positives (fp).

In order to take both the coverage and the number of false positives into consid-

eration in a single score, we introduce the Family Identification score, FI-score. The

FI-score is calculated as (t p− f p)/N, where N is the total number of sequences that

should be matched. The FI-score can be at most 1.0, for perfect performance. How-

ever, in case the number of false positives exceeds the number of correct matches, the

score may become negative. This makes the FI-score penalize false positives more

than other scores, such as the F-measure [88]. The F-measure is the weighted har-

monic mean of the coverage and accuracy, and is often used for binary classification

problems.

The performance is also evaluated by plotting the number of Errors Per Query

(EPQ) versus coverage, at a range of E-value cut-offs e. The EPQ at a given e is cal-

culated as the total number of false positives divided by the total number of queries.

In the case of sequence searches versus saHMMs, the number of queries is equal to

the number of sequences used for searches. In the case of searching saHMMs versus

sequences, the number of queries corresponds to the number of saHMMs, in other

words, the number of families. Note that for these searches, an error per query corre-

sponds to the number of false positives per domain family, and not per sequence. As

the SCOP families in the test set harbour on average 53 sequences, this means that an

EPQ of one corresponds to one false positive per 53 sequences. The coverage is in

both cases calculated as described above. The advantage of these graphs over Receiver

Operating Characteristic (ROC) plots [157], [61], which are often used in medicine, is

that the EPQ versus coverage plots are better suited to visualize a high degree of accu-

racy and a vast background of non-homologues, while they communicate essentially

the same information as the ROC curves [21].

56



Contributions and Related Work

Ability to Identify Family Relationships
When the sequences in the test set are used to search against the collection of

saHMMs with an E-value cut-off of 0.01, we find that the coverage exceeds 96% and

that the hits are highly family specific, with an accuracy of about 95%. Counting

only the highest scoring hit for each search gives 98.5% coverage and an accuracy of

99.2%. Also the EPQ versus coverage plots show that the test set can be matched to

the saHMMs with few errors per query and very high coverage.

When instead searching with the saHMMs against the test set, and using an E-

value cut-off of 0.1, both the coverage and accuracy is 95%. Of the false positive hits,

more than 99% are matches within the correct superfamily.

The performance of the saHMMs is compared to the results obtained using PSI-

BLAST (see Section 5.2), which is a common approach to locate sequences belonging

to the same family as the query. For the comparison, all sequences in the midnight

ASTRAL set are used, one at a time, as queries in PSI-BLAST searches. First, PSI-

BLAST (blastpgp v. 2.2.13) is run for five iterations versus the NCBI non-redundant

database, nr, (downloaded March 30, 2006). The resulting position specific scoring

matrices, PSSMs, one for each saHMM-member, are thereafter used to search SCOP

version 1.69. The results obtained for all saHMM-members within the same family

are pooled, in order to produce results comparable to those from searches of saHMMs

versus SCOP sequences. As the pooled PSSM matches can contain duplicates, we

consider only non-redundant matches. In case of two or more hits to the same se-

quence, we keep the match with the lowest E-value.

The graph in Figure 19(a) shows that the saHMMs are able to identify family

members within SCOP with few errors per query and high coverage. For example, the

coverage is about 91% at an EPQ of two, which corresponds to an accuracy of 96

The results demonstrate that at a given coverage, the saHMMs based on pI(L,0)
are able to accurately identify family members with clearly less errors per query com-

pared to PSI-BLAST PSSMs. It seems that a few diverse, well aligned sequences can

perform better than the PSSMs built from a large number of sequences without any

restrictions on diversity.

Performance of saHMMs based on pI(L,−10)
We constructed a set of saHMMs based on pI(L,−10) in order to investigate the

effect of an even lower cutoff on sequence identity within the saHMM.

In Table 7.2, results are shown for both collections of saHMMs, and for searches

both with sequences versus HMMs and HMMs versus sequences. The table shows

that the saHMMs based on pI(L,−10) are more accurate, with less errors per query,

but at the cost of a reduced coverage. This can also be observed in the graphs in

Figure 19(a), where the set of saHMMs based on pI(L,−10) at a given EPQ obtain

lower coverages than the saHMMs based on pI(L,0).
These results clearly show that, even though the mutual sequence identities of the

domains used to build the saHMMs are exceedingly low, the models correctly describe

the essential characteristics of the family and are able to identify the majority of the

family members with high accuracy.
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(a) (b)

FIGURE 19: EPQ versus coverage plots. Note that the scale on the y-axis is logarithmic. (a)

Results from searches with saHMMs against the test set, using E-value cut-offs

between zero and ten. The solid and the dashed curves show the results for the se-

lection based on pI(L,0) and pI(L,−10) respectively, whereas the dotted curve il-

lustrates the results of searches with PSI-BLAST PSSMs against SCOP sequences.

(b) Results from searches with low identity sequences versus exo-saHMMs. The

plot also contains the results obtained with PSI-BLAST PSSMs (dotted line).

Performance of saHMMs built from two saHMM-members
At present, the number of sequences per SCOP domain family in the midnight

ASTRAL set is not evenly distributed. In fact, more than half of the families are

represented by only two saHMM-members. One would expect that the performance

of an saHMM is affected by the number of constituent saHMM-members, and that

the saHMMs built from two saHMM-members do not perform as well as saHMMs

constructed from more sequences. In the following, we analyze how these saHMMs

perform, considering the limited amount of family specific information contributed by

only two sequences. Of all the saHMMs built from two sequences, we consider only

the 448 that represent SCOP families with three or more members, since they allow us

to find at least one additional family member. When the sequence identity of the two

sequences used to build an saHMM is plotted as a function of alignment length, one

notices that many pairs have sequence identities well below the threshold pI(L,0) and

are distributed over alignment lengths of 300 residues or less (Figure 20(a)). Surpris-

ingly, most of the saHMMs built from two sequences are able to score significant hits

to all of their family members. The ability to find family members is only marginally
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Nr of se-

quences,

resp.

saHMMs

accuracy

(%)

coverage

(%)

fp w/i

correct

super-

family

(%)

hits

outside

correct

super-

family †

(%)

sequences

resp.

saHMMs

w/o hit

(%)

test-set vs.

saHMMs

pI(L,0) 40877 94.6 96.3 99.4 0.03 3.6

pI(L,−10) 28745 98.5 71.7 99.3 0.1 28.2

saHMMs

vs. test-set

pI(L,0) 831 94.9 95.0 99.5 0.03 0.6

pI(L,−10) 491 98.3 65.5 99.4 0.01 1.2
†Here we have calculated the percent of the false positive matches, fp, that are hits within the correct

superfamily.

TABLE 7.2: The performance of the two sets of saHMs. pI(L,0) represents the saHMMs

based on the midnight ASTRAL set, pI(L,−10) represents saHMMs from the set based

on pI(L,−10).

affected by the percent identity of the two sequences used to construct the saHMM.

This can be seen in Figure 20(b), where we plotted the percent sequence identity

against the coverage. The histogram along the right hand axis corresponds to the dis-

tribution of sequence identities for saHMMs that find 100% of their family members

in SCOP test-set. When we plot the percentage of found family members as a func-

tion of alignment length (Figure 20(c)) we can not detect any correlation between the

alignment length and the coverage. The histogram on the top of the graph shows the

distribution of alignment lengths for saHMMs that are able to detect 100% of their

family members. As can be seen in Figure 20(d) the saHMMs either find all their

family members, or, if not all members are found, no false positive hits are obtained.

In addition, 86.4% of the saHMMs find all their family members with at most 0.5%

false positives. The histogram at the top shows the distribution of false positive hits for

saHMMs that find 100% of their family members. Note the peak at the zero percent

false positives, which, due to space limitations, is not to scale.

Performance on Low Sequence Identity Homologues
The way the midnight ASTRAL set sequences are selected implies that each se-

quence in the test set has a pairwise sequence identity above pI(L,0) with respect to at

least one sequence in the midnight ASTRAL set. In order to investigate the ability of

the saHMMs to match low sequence identity homologues, whose identity is equal to

or less than pI(L,0) when compared to the saHMM-members, we construct exclude-

one-saHMMs, exo-saHMMs. For families with at least three saHMM-members, exo-

saHMMs are generated by excluding one representative sequence at a time and build-

ing new saHMMs from the structure alignment of the remaining domains. In this way,

we obtain a collection of n exo-saHMMs for a family with n saHMM-members.

The excluded sequences are used, one at a time, to query the collection of saHMMs,

where the full family saHMM is exchanged with the exo-saHMM that lacks that query

sequence. The search results show that 66% of the excluded sequences are matched
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FIGURE 20: Results for families with two saHMM-members. Each star represents one of the

448 domain families with two saHMM-members and at least three family mem-

bers in SCOP 1.69. (a) Percent sequence identity as a function of alignment length,

together with the limiting pI(L,0) curve marked in black. (b) Percent sequence

identity as a function of percent coverage. (c) Percent coverage as a function of

alignment length. (d) Percent coverage as a function of percent false hits. A star in

one subfigure has a corresponding star in the other subfigures, coloured the same

way and representing the same family. As an example, the four stars representing

the family of DNA polymerase I domains are connected by pink lines. Note that,

in the majority of the cases, the coverage is high at the same time as the percent of

false positives is low.

to the corresponding exo-saHMM, when considering top hits. The accuracy of these

matches is 76%. If we tolerate matches within the correct superfamily, the accuracy

increases to 83%. Similarly, we evaluate the ability of each of the exo-saHMMs to

find the missing sequence among the excluded sequences. The results vary signifi-

cantly among families. For some families, all of the exo-saHMMs find their excluded

sequence, while for other families none do. In total, 30% of the sequences are identi-

fied by the exo-saHMMs from which they were excluded, with an accuracy of 78%.

Of the false positive matches, 93% fall within the correct superfamily. These results

show that also low sequence identity homologues, which are very hard to identify, can

be detected with high accuracy.
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For comparison, we test the ability of PSI-BLAST to correctly assign a sequence

to its family, even at low sequence identity. As before, all sequences in the midnight

ASTRAL set are used as queries. In this case, a query sequence is counted as assigned

to the correct family if it obtains a match to at least one other family saHMM-member.

Matches to sequences outside the correct family, but within the midnight ASTRAL

set, are counted as false positives. It should be noted that PSI-BLAST PSSMs have

an advantage over the exo-saHMMs in this comparison. Since the PSSMs are derived

from searches in the NCBI’s nr-database, they can contain sequences with a mutual

identity exceeding pI(L,0) when compared to the query sequences. In this way, the

PSSMs might contain bridging sequences, with a sequence identity above pI(L,0) to

both the query sequence and another saHMM-member within the same family, which

can facilitate the PSSMs’ ability to find these sequences. In Figure 19(b), the EPQ

values are plotted versus the coverage for searches of low identity sequences versus

exo-saHMMs. The plot also contains the results obtained with PSI-BLAST PSSMs.

For proper sequence annotations it is important to consider only reliable matches, i.e.

matches with a low error rate. As can be seen in the figure, the exo-saHMMs have

fewer errors per query than the PSSMs up to about 58% coverage, where the two

curves cross at an EPQ value of 0.12. Below this value, the exo-saHMMs achieve

a higher coverage, at a given EPQ, than the PSI-BLAST PSSMs. This demonstrates

that the exo-saHMMs perform better at a low error rate, despite the inbuilt advantage

of the PSSMs.

Performance Test on New Sequences
We also assess the ability of the saHMMs to assign the correct domain family

memberships to newly sequenced proteins. This was done for two sets of saHMMs,

first a collection based on SCOP 1.61 and STAMP, then a collection based on SCOP

1.69 and using MUSTANG for the structure alignment. For the first collection of

saHMMs, we used the domain sequences that are contained in SCOP 1.69 (released

July 2005) but not in SCOP 1.61 (released Nov. 2002) as query sequences. For the

second collection, we use the domain sequences that are present in SCOP version 1.71

but not in version 1.69 to search against the saHMMs. Counting only top hits, 74%

of the sequences with an saHMM in the first collection obtained a correct match, with

an accuracy of 94%. At a comparable E-value cut-off, the corresponding numbers

are 85% coverage and 99% accuracy for the second collection. This shows that the

saHMMs can be used to accurately identify the correct family relationships to new

sequences. Even though the second set of sequences is smaller, it is also clear that the

shifting to MUSTANG greatly improved the saHMMs.

Of the sequences for which our collections lacks an saHMM, in both cases about

98% do not find a match at all, and 2% find the correct superfamily. This demonstrates

that our saHMMs are very domain family specific.

In order to evaluate the ability to detect low sequence identity homologues we

select, for each domain family and for each collection of saHMMs, those sequences

in the set of new sequences that have sequence identities equal to or less than pI(L,0)
compared to the saHMM-members. Even though the sequence identity is very low,

62% obtained top hits to the correct family saHMMs in the first set, a number that
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increase to 69% for the second set.

Comparison to Pfam
The two sets of saHMMs are compared to the corresponding releases of Pfam

[137] (see Section 7.1.9). The saHMMs based on SCOP 1.61 are compared with

Pfam ls HMMs version 7.8 (released November 2002), and the saHMMs based on

SCOP version 1.69 with the Pfam ls HMMs version 19.0 (released Nov. 2005). The

classification of domains in Pfam is not identical to that of SCOP. Therefore we have

mapped the two different Pfam versions onto the corresponding SCOP versions. The

relationships between corresponding families in the two databases are determined by

finding the SCOP classification of PDB sequences that are part of Pfam-A seed align-

ments. Among the “new” sequences defined above, we select as queries those with

both a HMM in Pfam and an saHMM. For the older collections of HMMs, based on

the 2002 releases, the correct family relationships are detected as top hits for 83%

of the sequences using the saHMMs and for 87% of the sequences using Pfam. The

matches are not completely overlapping, and as many as 812 of the relationships de-

tected by the saHMMs are not found by Pfam. Interestingly, 79 of these relationships

are matches to low identity sequences, despite the possibility that some of the query

sequences could have a sequence identity above pI(L,0) to Pfam-A seed sequences.

Using the collections of HMMs based on the 2005 releases, the correct family rela-

tionships are detected as top hits for 94% of the sequences using the saHMMs and

for 88% using Pfam. Hence, this time the saHMMs perform clearly better than the

corresponding Pfam HMMs. One reason for this improvement in the saHMMs is the

switch from STAMP to MUSTANG for the multiple structure alignments. Of the re-

lationships missed by Pfam, 77 can be counted as hits within the midnight zone, since

they have an identity of at most pI(L,0) compared to the saHMM-members.

HMM Logos [123] can be used to visualize the probability distributions within a

HMM, including the amino acid probabilities and the probabilities of entering differ-

net states of the model. We use HMM Logos to compare the parameters of a number

of saHMMs representing the V-set domain family (sunid 48727) with those of the

corresponding Pfam HMM. The saHMMs are built from varying number of saHMM-

members, but all represent the same family. We find that the pattern of conserved

residues is very similar for the saHMMs and the Pfam HMM, despite the considerably

lower number of sequences used when building the saHMMs, at most 28, compared

to the 121 used for the Pfam HMM. Even the best performing saHMM of those built

from just two saHMM-members show the same basic pattern as the other HMMs.

Using the saHMMs for Annotating Sequences
In order to show the use of the saHMMs for annotating protein sequences, we

searched the National Center for Biotechnology Information, NCBI, for human pro-

teins labelled ’unknown’. Of the 2905 sequences found (March 2006), 590 proteins

can be matched to at least one saHMM with an E-value not exceeding 0.01. The

classic Zinc-finger domain family receives with 196 hits by far the most matches, dis-

tributed over 31 different proteins. For 18 of these proteins, the NCBI annotation is

incomplete in the sense that none or not all of the Zn-finger domains are identified in

the sequence entry. For an additional seven proteins the NCBI annotation might not
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be correct, since we find hits with very low E-values for classic Zn-finger domains in

sequence regions where the NCBI annotation suggests other domains.

When the search for ’unknown’ sequences was repeated in November 2007, the

search resulted in 1986 sequences, of which 232 can be matched to at least one of

the saHMMs. Also this time, the classic Zinc-finger domain family receive the most

matches, and for 17 of the found Zn-finger proteins, the NCBI annotation is either

incomplete or possibly incorrect.

Obviously, the saHMMs can be used to detect relationships missed by other meth-

ods.

Improving Performance by Combinatorial Selection
By examining the FI-scores for saHMMs built from varying numbers and combi-

nations of saHMM-members within the same family, we find that it is not neccessarily

the case that the saHMM built from the maximum number of saHMM-members per-

forms the best. For a given number of saHMM-members, the performance can vary

considerably depending on the combination of members used. We therefore introduce

the concept of combinatorial selection, in order to increase the number of members

found and reduce the number of false positive matches for the worst performing family

saHMMs.

For families with saHMMs that find less than 65% of their respective family

members, we build saHMMs with different number and combinations of saHMM-

members, and select for each family the saHMM that achieves the highest FI-score.

In this way, we are able to increase the average FI-score of these saHMMs from 0.298

to 0.649, with an increase in average coverage from 42% to 65%.

7.1.7 Other Approaches Using Structures and HMMs

The last few years, the concept of using structural information to improve hidden

Markov models has been investigated in a number of ways. One of the first studies was

performed by Al-Lazikani et al. [1], who use a structural alignment of SH2 domains,

in combination with multiple sequence alignments of closely related sequences, to

build a hidden Markov model. The HMM is capable of successfully detecting SH2

domains, which was encouraging for the further development of our approach. Later,

Griffiths-Jones and Bateman [62] built HMMs from protein structure alignments ob-

tained from the HOMSTRAD database [98], and compared these with HMMs built

from sequence-based alignments of the same proteins. The authors find that although

the structures improve the quality of the alignments, they do not significantly increase

the ability of the resulting HMMs to find sequence homologues. No filtering of se-

quences is made based on sequence identity, meaning that their alignments contain

sequences with identities covering almost the entire range up to 100%.

Recently, three more elaborate approaches have been presented. In the first study,

HMMs are built based on structural alignments of sequences with less than 35% se-

quence identity within CATH superfamilies [130]. In the second study [122], se-

quences with BLAST E-values below 10−3 are structurally aligned within SCOP su-

perfamilies. In both these cases, the structural alignments are extended with multiple

sequence alignments of closely related sequences. Also in the third study [24] the
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HMMs are based on SCOP superfamilies, but only using sequences with less than

10% sequence identity. All three studies compare the performance of the resulting

structure-based HMMs to single-member HMMs, built from single seed sequences in

an iterative approach. The conclusions are that structure improves alignment quality,

and might help in detecting very remote homologues, although no overall improve-

ment in homologue detection can be found. In particular, Casbon and Saqi [24] find

that at low levels of false positives, the structure-based HMMs are able to detect more

relationships than single-member HMMs.

The work presented in this thesis differs from the work presented above in that we

use the more specific SCOP families instead of superfamilies. We also use strict se-

lection criteria in order to include only sequences with high resolution structures and

with low mutual sequence identities within each family. That is, we only consider the

sequence identities of sequences participating in the same saHMM. We also use rela-

tively few sequences in our alignments, only the selected low identity sequences, and

make no extensions with closely related sequences. This makes the alignments well

balanced with respect to the sequence variability within the family. The selected do-

mains are simultaneously and multiply aligned, based purely on structure. A structure

alignment of a few carefully selected sequences is apparently sufficient to construct an

saHMM capable of recognising family members with high coverage and accuracy. In

addition, we have made our saHMMs available for searching through the FISH server

(Section 7.1.8).

The major ideas in the thesis were first presented in a technical report [145] in-

cluded in the licentiate thesis by the author [144]. The thesis was presented in 2003,

prior to the publication of the last three studies discussed above.

7.1.8 The FISH Server

From a user’s perspective, the use of the saHMMs should be like entering a sequence

into a black box, and out comes the name of the domain family the sequence most

likely belongs to, some measure of the quality of the match, as well as a list of repre-

sentative members of the family.

This “black box” is implemented in the FISH server, which is described in Papers

II and III, and is found at http://babel.ucmp.umu.se/fish/. FISH stands for Family

Identification using Structure-anchored HMMs. The organization of the FISH server

input and results pages is outlined in Figure 21.

The FISH server enables the user to enter one or more query sequences and also

provides the option to select an E-value cut-off for the results. The E-value corre-

sponds to the probability that the similarity found is random. The closer to zero the

E-value is, the less likely it is that the match is random, i.e., the more likely it is that

the query sequence really is related to the sequences the saHMM is built from (see

also Section 5.3.2).

Inside the “black box” the sequence is searched against the collection of saHMMs,

using hmmpfam in the HMMER-package. In the server, the the most recent HMMER

release, HMMER2.3.2, is used. The result of this search is a list of names of saHMMs

that match the sequence, sorted in increasing order by the E-value of the match. The
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FIGURE 21: Organization of the input and result pages of the FISH server. The information

included in the result pages is similar for a search with a query sequence versus

the collection of saHMMs and for a search with an saHMM versus a sequence

database. The information available can be roughly divided into domain family

information (left branch) and alignment information (right branch). The domain

family information includes SCOP classification, the sequences and 3D structures

of the saHMM-members, and pairwise sequence alignments of the query to each

member. The alignment information provides multiple and pairwise alignments of

the query sequence to the saHMM-members and to a consensus sequence extracted

from the saHMM. All alignments are anchored to the saHMM. Links are provided

to relevant databases.

user is presented with a list of matches, up to the chosen E-value cut-off (see Fig-

ure 22(a) for an example). As proteins often contain more than one structural domain

(see Chapter 2), one might expect several matches, to different parts of the query se-

quence. When selecting an entry from the list, family specific information for that

match is displayed, see Figure 22(b). This information includes the name of the

domain family and its place in the SCOP classification, the names of all saHMM-

members, and details specific for this particular match, such as the percent sequence

identity of the query sequence when it is aligned to each saHMM-member. It is also

possible to view the structure of each saHMM-member in an interactive Java win-

dow. In addition, the user can view pairwise comparisons of the query sequence and

each saHMM-member, as well as a multiple sequence alignment of the query and all

saHMM-member sequences in different formats.

A second possibility is to use a single saHMM to search a sequence database, or a

whole genome, looking for proteins that harbour a certain domain. The FISH server

provides the option to select an individual saHMM for searching against a number

of sequence databases. Currently, SWISS-PROT, TrEMBL, and the non-redundant

database, nr, from NCBI are available for searching. In addition, the user has the op-

tion to upload his/her own sequence database, and query it with individual saHMMs.
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(a)

(b)

FIGURE 22: (a) Example of results obtained through the FISH server when using a query

sequence to search the collection of saHMMs. The coloured arrows show which

parts of the query sequence that are matched. The colour of the arrow illustrates

the significance of the hits, where green is significant and orange is not significant

at all. In this example, the query sequence used is AAY15073, a human protein

labelled ’unknown’ by the NCBI. (b) Family specific information obtained when

clicking on the top match of the results shown in (a).
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FIGURE 23: Example of results obtained through the FISH server when searching an saHMM

versus a sequence database. Here, the saHMM of SCOP family a.24.9.1 (sunid

47221), alpha-catenin/vinculin domains, is used to search SWISS-PROT.

For practical reasons, the size of the uploaded database is currently limited to 2 MB.

The output of such a search is similar to that from a search with a sequence versus

the collection of saHMMs, except that instead of a list of families that most likely fits

a query sequence, the user obtains a list of those protein sequences in the database that

most likely belong to the family modelled by the saHMM, see Figure 23. For each

match, the user is presented with the corresponding sequence entry. It is also possible

to view sequence alignments of the matched sequence and the saHMM-members, both

pairwise and multiple. The alignments are all anchored on the saHMM. Information

about the saHMM used for searching, and the corresponding domain family, is also

available.

The Architecture of the FISH Server
Much of the information provided through the FISH server, for example all in-

formation given about the domain families, is fixed, and can therefore be stored in

a database. When a query is submitted by a user, the information relevant for the

obtained matches is extracted from the database. An overview of the FISH server

architecture is shown in Figure 24.

All information about individual saHMMs and saHMM-members, and the corre-

sponding domain families, is imported from flat file databases and stored in relational
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FIGURE 24: Overview of the FISH server architecture. A query is initialized by the user via

the web interface. The query is processed by the query interpreter, using the col-

lection of saHMMs. The cross-link engine integrates the results of the query with

information from the associated databases [SCOP, ASTRAL, PDB, nr (NCBI),

SWISS-PROT and TrEMBL]. The results assembler compiles the search results

and presents them to the user via the web interface.

databases. We use MySQL1, implemented on a Linux platform. The information is

crosslinked for easy access to all relevant information about a given saHMM (see Fig-

ure 25). The user inputs a query through a web interface, which is written in perl,

PHP, and JavaScript. A query interpreter analyses the input, and uses the collection of

saHMMs to perform the requested searches. The cross-link engine then merges the re-

sults from the query with relevant information extracted from the associated databases.

Finally, the results assembler presents the outcome of a search to the user through the

user interface. The results are stored on the server for 24 hours, and can be sent to the

user by e-mail in the form of a www-link.

A search with an saHMM versus SWISS-PROT takes anything from 15 minutes up

to about nine hours, depending on the saHMM chosen. To search through TrEMBL,

which is about ten times larger, takes considerably longer. As a service to the user,

in order to minimize the waiting time, we have pre-calculated the searches of all

saHMMs versus SWISS-PROT, TrEMBL and nr using an E-value cut-off of 100.

When the user requests a search with a given saHMM and database, these results

can immediately be extracted and presented up to the E-value choice of the user. The

computations were done in parallel, by searching the databases with several saHMMs

concurrently. Up to 20 processors were used in parallel on the HPC2N Linux cluster

Seth.

1 http://www.mysql.com/
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FIGURE 25: Schematic view of the database cross-linking used in the FISH server.

7.1.9 Related Internet Resources

In this section, some available web resources based on HMMs are briefly presented.

Pfam is a collection of sequence-based HMMs that is commonly used to find se-

quence family relationships. In SUPERFAMILY, the HMMs are based on sequence

domains with known structure, however, they use single-sequence HMMs and classify

sequence domains on the SCOP superfamily level. PALI is a collection of structure

alignments of SCOP families, from which phylogenetic trees and PSSMs are derived.

The collection is mentioned here since they use SCOP families and the same structure

alignment tool as we do. In all cases, HMMs are built from sequences with no cut-off

on sequence identity. All groups also try to include as many sequences as possible in

their alignments.

Pfam
Pfam2 [137] is a semi-automatically created database of multiple sequence align-

ments of protein domain families. The families are defined based on clear common

ancestry and sequence similarity. The database is purely sequence-based, but is men-

tioned here since it uses HMMs to define families and construct alignments. Pfam

contains two sets of alignments with corresponding HMMs; PfamA and PfamB.

The base of Pfam is a collection of high quality seed alignments. The initial mem-

bers of a seed alignment are collected from a number of sources, including struc-

tural alignments, SWISS-PROT (see Section 4.1) and published alignments. The se-

quences are aligned by an automatic alignment method, most often ClustalW [143],

and checked manually. From each seed alignment a HMM is built, which in turn is

used to search a non-redundant collection of sequences from SWISS-PROT and SP-

TrEMBL (see Section 4.1), called Pfamseq, for additional members. The seed is up-

dated with selected sequences until all known members are found. These are aligned

to the HMM to construct a full alignment of the family. Where available, structural

information is used to ensure that each Pfam family corresponds to just one structural

domain. The seed alignment, the HMM built from it, the full alignment and some

2 http://pfam.cgb.ki.se
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annotation and cross-references to other families make up Pfam-A. Pfam-B is a less

reliable collection of multiple sequence alignments, initially constructed by automati-

cally clustering the rest of pfamseq, i.e. all sequences not included in Pfam-A. In later

releases [13], [14], Pfam-B has been constructed from all protein domain families in

the ProDom database, not included in Pfam-A. ProDom is an automatically generated

database of protein domain families [29]. The latest addition to Pfam is the cluster-

ing of Pfam families into clans, based on related structures and functions, as well as

similarities in the respective HMMs [46].

Superfamily
SUPERFAMILY3 [57], [95] is a library of HMMs representing SCOP superfam-

ilies. The HMMs are built from seed sequences with less than 95% sequence iden-

tity, based on pairwise BLAST alignments. Each seed sequence is used to construct

one HMM, using WU-BLASTP (http://blast.wustl.edu) to search a non-redundant se-

quence database to obtain an initial alignment. A HMM is built from this alignment,

and the HMM is searched against a sequence database to obtain additional related se-

quences. After four iterations, a final HMM is built using the SAM programs [73],

which is a suite of programs similar to HMMER. Each seed sequence gives rise to

one HMM, resulting in one or more HMMs representing the same superfamily. The

HMMs are available for searching on the server, where sequence annotations of a

number of genomes are provided as well.

PALI
PALI4 (Phylogeny and ALIgnment of homologous protein structures) [10] is a

database of structure-based sequence alignments and phylogenetic trees for each SCOP

family. For each family, the database provides a multiple structural alignment, all pos-

sible pairwise alignments, and two phylogenetic trees; one based on structure simi-

larity and the other on similarity of aligned residues. The structural alignments were

previously constructed using STAMP ( [118], Section 6.3), but are now generated by

MUSTANG ( [78], Section 6.4)

Also, in later versions of PALI [58], sequences homologous to the members are

aligned to the family, and Position Specific Scoring Matrices (PSSMs) are constructed

based on these enriched alignments. The alignments and PSSMs are available in the

database.

7.2 Secondary Structure HMMs (ssHMMs), Paper V

At the second CASP process in 1996 (see Section 3.7), five groups were selected

for the best performance in the threading category. Among these groups, one used

predicted secondary structures [115], another used hidden Markov models [76], and

a third group used a hidden Markov model that only used secondary structure and

matched a predicted secondary structure against this model [33]. The success of using

3 http://supfam.org/SUPERFAMILY/
4 http://pauling.mbu.iisc.ernet.in/ pali/
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HMMs and the idea of using predicted secondary structures made it a natural step to

try to combine these two methods, as we have done in Paper V.

We constructed hidden Markov models that use both the amino acid sequence and

secondary structure information simultaneously, so called secondary structure HMMs

(ssHMMs).

7.2.1 Implementation of the ssHMMs

The ssHMMs match and insert states have, in addition to the emission probabilities

for amino acids (Section 5.3), also associated an emission probability for secondary

structures. This means that even though the actual sequence symbol does not match

the HMM, a position can obtain higher probability if the secondary structure matches

that of the model. The secondary structures for query sequences, which of course are

not known, are predicted using some secondary structure prediction method before the

search.

In order to implement the ssHMMs, the program package HMMER5, version

1.8.4, was modified to include secondary structure information both when building

a HMM for a protein family, and when matching an amino acid sequence to a HMM.

In an ordinary profile HMM, a sequence s = x1 . . .xL following the path q =
q0 . . .qN through model μ has the probability

P(s | q,μ) =
N+1

∏
i=1

T (qi | qi−1)
N

∏
i=1

P(xl(i) | qi). (7.2)

Here, T (qi | qi−1) is the probability of a transition from state qi−1 to qi, l(i) is the

sequence index of amino acid x in state qi, P(xl(i) | qi) is the probability of observ-

ing amino acid xl(i) in state qi, and N is the number of states in the path. See also

Section 5.3.2.

The ssHMM has an extra distribution of emission probabilities associated with

each insert and match state, describing the probability of observing the secondary

structures E (beta), H (alpha), or L (loop), see Figure 26.

When matching a sequence to the ssHMM, in each match or insert state the model

gives the probability of observing the given amino acid, as before. However, in ad-

dition to this it gives a second probability for the secondary structure assigned to that

position. In this way, the probability for the sequence becomes higher if its secondary

structure is the same as in the modelled family. The total probability for a sequence

s = x1 . . .xL with the secondary structure ss = y1 . . .yL, given the path q = q0 . . .qN and

model μ, is:

P(s,ss | q,μ) =
N+1

∏
i=1

T (qi | qi−1)
N

∏
i=1

P(xl(i) | qi)
N

∏
i=1

P(ym(i) | qi), (7.3)

where ym(i) is the secondary structure seen in state qi. The emission probabilities

of the secondary structures are determined in a similar way as the amino acid emission

probabilities when building the ssHMM.

5 http://hmmer.janelia.org/
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FIGURE 26: The architecture of the ssHMM. In addition to amino acid emission probabilities,

the match states of the ssHMM also have associated secondary structure emission

probabilities, compare with Figure 9.

At the beginning of the training, all secondary structures are assumed to occur at

equal probabilities. Thus, even if a position is found in only one secondary structure

type, the other secondary structure types will also have a small probability of occur-

rence.

In our implementation, the secondary structures are given the same weight as the

amino acids. In our benchmark we found that a few families caused a very large part

of the false positives obtained using the ssHMMs. The majority of these matches

were between different families that all consisted of a various number of alpha he-

lices. It seems plausible that the contribution from the secondary structure was ranked

too high in comparison with the contribution from the sequence in these cases. For

the ssHMMs to perform the best, and to obtain scores following the extreme value

distribution assumed when calculating E-values, the weighting needs to be fine-tuned.

7.2.2 Performance Evaluation of the ssHMMs

The benchmarking of the ssHMMs is based on matching all proteins in a test set

against all other proteins of the test set, in order to assign a correct fold to the query

sequences.

A library of ssHMMs was built from the sequences and secondary structures of

a representative set of all proteins with known structures. We use the pdb40 data

set of SCOP version 1.37, which contain a subset of SCOP (Section 4.3) where no

protein domains have more than 40% sequence identity to any other member of the

data set [21]. For each of the 1130 proteins in the data set, all closely related sequences

in SWISS-PROT are found via the HSSP database [121]. On average, 26 sequences are

collected for each protein. However, many of these sequences are identical or almost

identical to the original sequence. The secondary structure is assumed to be the same
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for all proteins within a group. The multiple sequence alignment from HSSP, together

with the secondary structure, is used to build an ssHMM. For comparison with the

original HMM method, HMMs not using the secondary structure are also created, as

are HMMs and ssHMMs using substitution matrices for prior information. Finally,

another set of HMMs, ignoring multiple sequence alignments, is created.

When a protein is matched against an ssHMM, its secondary structure is needed

in addition to its sequence. The secondary structure was obtained in two different

ways. First, the correct secondary structure was used, since this was known for all

proteins in our test set. Second, the secondary structure predicted by predator [48]

was used. This most closely resembles how the ssHMMs would be used to annotate

protein sequences in a real case.

In this study, we have focused on proteins that have the same fold but belong to

different families, according to SCOP. Two proteins that are classified into the same

fold have the same secondary structure elements in a similar topological arrangement,

while two proteins that belong to the same family have a clear common evolutionary

origin. In our benchmark, all proteins are matched to the HMMs of all other proteins,

and for each pair the folds and families are recorded. If the two proteins belong to the

same family, we eliminate them from further consideration, because this indicates that

they are homologous and thereby not a good test of fold recognition.

Two different criteria are used to analyse the performance of a method; at what

rank the first true hit was found, and specificity-sensitivity plots [114]. The sensitivity
measures the model’s ability to find all members of the same fold, and is the same

as the coverage (see Section 7.1.6). The specificity, also called accuracy, measures

the probability that a pair of sequences with a score greater than a certain threshold

really belong to the same fold, and is calculated as the fraction of all matches above

the threshold that are correct. The sensitivity is plotted as a function of specificity,

where each point in the plot corresponds to a certain score. The main advantage of the

specificity-sensitivity plots over the rank is that they describe the ability of a method

to find all pairwise matches in the benchmark.

We find that the sensitivity of a hidden Markov model is increased when the sec-

ondary structure is included, both when using the true secondary structures and when

using predicted ones (see Figure 27(a)). Also the fraction of the possible hits that were

ranked in first place is increased when adding the secondary structures.

We also show that the sensitivity at a given specificity is increased for models

built from multiple sequences compared to models built from just one sequence. The

number of sequences placed at rank one is more than doubled when building models

from multiple sequence alignments.

In HMMER1.8, the prior information used for emission probabilities do not in-

clude any information about which substitutions are most likely. If the protein family

is large enough and diverse enough this should not be a problem. However, in our

benchmark, we have many small families with low diversity. We find that using a

substitution matrix, which contains information about how likely it is to exchange an

amino acid for another, as the prior when building the models, increases the sensitiv-

ity significantly. In fact, the use of a substitution matrix helps more than the use of

multiple sequence alignments. However, in both cases the secondary-structure-based
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(a) (b)

FIGURE 27: Specificity-sensitivity plots showing the performance of different types of HMMs.

(a) The effect of adding secondary structure information. The sensitivity of a

hidden Markov model is increased when the secondary structure is included, both

when using predicted structures (dashed line) and the true secondary structure

(bold line). (b) A comparison of HMMs that use multiple sequence information as

well as substitution matrices, with and without secondary structure information.

HMMs place more correct sequences at high ranks than the ordinary HMMs. In later

releases of HMMER, the more advanced Dirichlet mixtures (Section 5.3.4) are used

for prior information as default.

We conclude that using multiple sequence alignment, predicted secondary struc-

tures, and a substitution matrix improves the performance of the HMMs (see Fig-

ure 27(b)).

The ssHMM method, together with other methods and manual judgement, were

used for blind predictions in the CASP3 process [99]. Our best prediction was T0071

(Alpha adaptin ear domain), in which, using ssHMMs, we were able to identify the

first 125 residues as an Ig-like fold. We were also able to produce a rather good

alignment, with 21 out of 125 residues correctly aligned.

7.2.3 Other Approaches Using Secondary Structure and HMMs

There have been a few other approaches to integrate secondary structure information

into hidden Markov models. Di Francesco et al. [33] also use predicted secondary

structure of query proteins to achieve fold recognition. However, they build their

HMMs from alignments of experimentally derived secondary structures only, and do
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not include any sequence information. Later, Karchin et al. [75] presented an ap-

proach slightly more similar to Paper V. However, instead of matching a query or

target sequence against a library of HMMs, they score a template library of amino

acid sequences with known secondary structures against the target HMM. They use

SAM-T2K to train a HMM from a single target sequence. A neural net is used to pre-

dict secondary structure probabilities for the target protein, based on the amino acid

emission probabilities of the HMM. The secondary structure probabilities are then

added as secondary structure emission probabilities in the match states of the HMM.
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CHAPTER 8

Summary of Papers and Outline
of Future Work

In this chapter, a brief summary is given of each paper in the thesis. Some computa-

tional aspects are mentioned, and possible approaches for future work are outlined.

8.1 Paper I: Structure-Anchored HMMs

In Paper I, the novel structure-anchored HMM (saHMM) method is presented. The

saHMMs are hidden Markov models based on alignments derived from the matching

of structurally equivalent positions in protein structures. These kinds of alignments

are assumed to be more biologically correct than those based solely on sequence

and simple statistics, especially for sequences with very low sequence identities. The

saHMMs are built using a careful selection of representative protein domains, where it

is ensured that no domain sequence is more than about 20% identical to any other rep-

resentative domain in the same family. This is to guarantee sequence diversity among

the domains chosen as representatives for each family.

First, we show that the saHMMs are able to accurately identify members of the

families they represent. Using the saHMMs, we can assign the correct family to the

vast majority of our test sequences, and most of the few false matches are still within

the correct superfamily.

In a comparison with PSI-BLAST, we find that the saHMMs are much more ac-

curate in their domain assignments. Even when evaluating the ability to correctly

identify sequences with very low sequence identities to any sequence used for model

building, the saHMMs are more accurate and have a higher coverage than PSI-BLAST

at an acceptable number of errors per query. Using the sequences added between

SCOP releases 1.69 and 1.71 as queries for HMMs corresponding to SCOP 1.69 re-

sult in 94% correct assignments by the saHMMs. This number is higher than the 88%

obtained using the corresponding Pfam HMMs. We also show that the saHMMs can

be used to annotate protein sequences that previously lack annotations.
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8.2 Papers II & III: The FISH Server and the Midnight ASTRAL Set

Paper II introduces the FISH server, where the saHMMs can be accessed for searching.

In the paper, the saHMMs are briefly introduced, and the architecture and use of the

server are described. We also show that the saHMMs are able to correctly assign

family relationships for a majority (74%) of sequences added in SCOP 1.69 compared

to SCOP 1.61, which was used to build the saHMMs for the benchmark. Of the

sequences with a very low sequence identity to those used to build saHMMs, 62%

could be assigned to the correct domain family, despite the low sequence identity. In

addition, we find in an analogous benchmark that the saHMMs perform similarly to

Pfam HMMs, and that 813 of the sequences correctly assigned to a domain family by

the saHMMs could not be assigned to a family by Pfam. This shows that the FISH

server is complementary to Pfam.

The FISH server is also treated in Paper III, where the use and the design of the

server is described in more detail. However, the main focus of this paper is on the

creation of the midnight ASTRAL set, i.e. the selection of representative domains

for each SCOP family. Two algorithms, both slightly modified from those presented

in [68], are evaluated; one trying to minimize the number of pairwise structural com-

parisons, and one aimed at maximizing the number of representatives. We find that

the second algorithm is more than an order of magnitude slower than the first one, due

to the all-against-all structural comparisons within each domain family. We therefore

conclude that even though the second algorithm results in a slightly larger midnight

ASTRAL set, it is not feasible to use this algorithm for regular updates. Hence, we

decide to use the first algorithm for the construction of the saHMMs.

8.3 Paper IV: The FI-score and Combinatorial Selection

In Paper IV, we explore a way to improve the worst performing saHMMs. Here, the

Family Identification score, FI-score, for measuring the performance of the saHMMs

is introduced. The FI-score takes both the coverage and the accuracy into account in

a combined score, ranging from negative (more false matches than correct ones) to 1

(perfect performance). We use the FI-score to rank saHMMs that represent the same

domain family, but that are built from different number and combinations of saHMM-

members. We find that also saHMMs with a very low number of saHMM-members

can perform remarkably well. It is also obvious that it is not necessarily the complete

set of saHMM-members that yields the best performing saHMM, instead some combi-

nation of a subset of saHMM-members might result in the best model. We exploit this

fact and choose the number and combination of saHMM-members that yield the best

saHMM for the families with the worst performing saHMMs in the database. In this

way, the average FI-score of the saHMMs with less than 65% coverage was increased

from 0.298 to 0.649. We also compare the parameters of selected saHMMs represent-

ing the Ig V-set domain family, as well as the corresponding Pfam HMM, by using

HMM Logo plots [123]. We find that the pattern of conserved residues in well per-

forming saHMMs are very similar to that of the Pfam HMM, despite the considerably

lower number of sequences used when constructing the saHMMs.
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8.4 Paper V: Secondary Structure HMMs

In Paper V, a different type of novel HMMs, secondary structure HMMs (ssHMMs), is

described and evaluated. The ssHMM is a combined HMM, taking both the sequences

and the secondary structures of the proteins into account. Here, the actual architecture

of the standard HMM is modified. If the secondary structure of the query sequence

matches that of the HMM, the score for that match is increased, even if the particular

amino acid at that position does not fit well. For a sequence whose structure is un-

known, which would be the matter in a real case, the secondary structure of course has

to be predicted, using some secondary prediction method, before it can be compared

to the HMM.

In this paper, we also present a more rigorous benchmark than was used in most

previous studies, and show that the use of HMMs made from multiple sequences re-

sults in better fold recognition than that obtained by HMMs based on only single se-

quences and scoring matrices. Adding secondary structure information to the HMMs

improves the ability of fold recognition further, both when using true and predicted

secondary structures for the query sequence.

8.5 Conclusions

In this thesis, two approaches are used to add structural information to hidden Markov

models. The novel structure-anchored HMMs use structure alignments of selected

representative domains to model SCOP domain families. The representative domains

are selected so that they have high quality crystal structures and low mutual sequence

identities. We find that these few, carefully selected, representative structures are suf-

ficient to create HMMs for family recognition with high coverage and accuracy. We

find that the saHMMs are very family specific, and are able to distinguish between

members of the families they represent and members of other families, even within

the same superfamily. Also, most of the few false predictions made by the saHMMs

are still within the correct superfamily.

The saHMMs are in our tests able to assign the correct family to more sequences

than are Pfam HMMs, despite the limited number of representative sequences for each

family. In addition, we find that the saHMMs are more accurate than PSI-BLAST

when locating members of a given family. When investigating the ability of the two

methods to assign the correct family to remote family members, with low sequence

identity to the other members of the family, we find that the saHMMs are able to make

more assignments at low error rates.

We introduce the FI-sore, which is used to score the performance of saHMMs

resulting from different number and combinations of saHMM-members within the

same family. We show that it is possible to improve the performance of the worst

performing saHMMs by selecting the best combination of saHMM-members for each

domain family.

Through the structural information associated with a hit to an saHMM it might be

possible to build comparative models using the saHMM-members as template struc-

tures. This provides a starting point for further computational and experimental anal-
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ysis such as mutagenesis studies, identification of active sites and interaction surfaces,

and could possibly assist in drug design.

The saHMMs are made publicly available for searching through the FISH server,

where a user can select to submit a query sequence for searching the collection of

saHMMs, or choose an saHMM for searching against a sequence database. In order

to construct the midnight ASTRAL set, i.e. the selection of representative domains,

and build saHMMs from the structure alignments of these domains, a nearly automatic

pipe-line of software tools has been developed. This pipe-line facilitates the update of

the FISH server with new SCOP releases.

The second approach used in this thesis to include structural information in HMMs

is to modify the architecture of the HMM, in order to consider both the sequence and

the secondary structure of a protein when scoring it against the model. We find that

the novel ssHMMs, which take both sequence and secondary structure into account,

are better than comparable methods for fold recognition. We could also confirm the

assumption that HMMs built from multiple sequences perform better than HMMs built

from single sequences.

8.6 Computational Aspects

To generate and test the two kinds of hidden Markov models, extensive calculations

were needed. The individual calculations are, taken by themselves, of moderate sizes.

However, the construction of the midnight ASTRAL set for the saHMMs require pair-

wise structural comparisons of all members within each family, to make sure that none

of the saHMM-members has a higher than allowed sequence identity when compared

to any other saHMM-member within the same family. Using MUSTANG, the se-

lection of representative domains within a single family can take more than 90 CPU

hours using the faster algorithm. However, most families are finished within less than

30 minutes. The procedure was parallelized by running several families concurrently.

For the evaluation of the performance of the saHMMs, each of the saHMMs was used

to search the collection of roughly 67000 SCOP sequences, and each of the sequences

was used to query the collection of saHMMs. Also this was performed in parallel, to

make the computation times feasible.

All computations concerning the saHMMs were done using up to 20 processors on

the HPC2N Linux cluster Seth. The compute nodes on Seth are AMD AthlonMP2000+

with 1GB of memory per dual node, connected in a high-speed SCALI network.

An almost entirely automatic “pipe-line” was developed, using primarily perl, to

go from raw SCOP classification of domains, through the selection of the midnight

ASTRAL set, to the construction of saHMMs.

For the construction and evaluation of the ssHMMs, we had no access to parallel

resources.
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FIGURE 28: Histogram showing the number of sequences submitted to the FISH server each

month from July 2006 to March 2008.

8.7 User Statistics for the FISH Server

The saHMMs can be accessed through the FISH server, which is described in Papers

II and III of this thesis, and is available at http://babel.ucmp.umu.se/fish/. The server

has at the time of writing been running for 21 full months since the publication of

Paper II, and has this far received visitors from 31 countries. From outside Sweden,

128 unique visitors have been recorded (as of April 1st, 2008), and on average 39

sequences have been submitted to the server per month. The number of sequences

submitted each month is illustrated in Figure 28.

8.8 Future Work

Since the saHMMs are based on structure anchored sequence alignments, the align-

ment of a query sequence to a structure-based alignment of members representative of

a domain family gives important clues about the putative structure of the query, and

about secondary structure elements in particular. Hence, the saHMMs can be used to

draw conclusions about the structure of an unknown protein.

The saHMMs could be optimized further by tuning the parameters used when

building the HMMs with HMMER. For example, the effect of the prior information

used should be evaluated, and the standard Dirichlet mixtures could possibly be ex-

changed for an updated mixture or other prior information. Also, instead of using a

standard E-value cut-off to determine significance of the hits, each saHMM should be

associated with an individual cut-off.

Apart from being used to assign the correct family to protein sequences, the actual

parameter values of the saHMMs could be studied in more detail to identify regions

and residues important for a particular domain fold. For example, highly conserved

amino acids could be extracted based on the emission probabilities.

The ssHMMs should be remade, using a newer version of HMMER – the standard

HMM implementation used as the base for the ssHMMs. Also, the actual scoring

and the weighting of the secondary structure information with respect to sequence

information have to be evaluated and developed further.
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One suggestion for futute work is to use the saHMM approach, with structural

alignments of a carefully selected set of representative family members, together with

the (updated) ssHMM-implementation, in order to obtain accurate HMMs that are

able to detect very remote sequence relationships.
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cation of a variant associated with adult-type hypolactasia. Nature Genetics, 30(2):233–

237, 2002.

[43] A. J. Enright, S. Van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale

detection of protein families. Nucleic Acids Research, 30(7):1575–1584, 2002.

[44] A. Falicov and F. E. Cohen. A surface of minimum area metric for the structural com-

parison of proteins. Journal of Molecular Biology, 258:871–892, 1996.

[45] D.-F. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to

correct phylogenetic trees. Journal of Molecular Evolution, 25:351–360, 1987.
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[145] J. Tångrot, B. Kågström, and U. H. Sauer. Structure anchored HMMs (saHMMs) for

sensitive sequence searches. Technical Report UMINF 03.18, Department of Computing
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Paper I

Accurate Domain Identification with
Structure-Anchored Hidden Markov Models,

saHMMs∗

Jeanette T̊angrot1,2, Bo K̊agström2,3 and Uwe H. Sauer1

1Ume̊a Centre for Molecular Pathogenesis,
2Department of Computing Science

and
3High Performance Computing Center North

Ume̊a Universty
S-901 87 Ume̊a, Sweden

{jeanette,bokg}@cs.umu.se, uwe@ucmp.umu.se

Abstract: The speed of DNA sequencing has increased the discrepancy be-
tween the number of known gene products, and the knowledge of their function
and structure. Proper annotation of protein sequences is therefore crucial if
the missing information is to be deduced from sequence-based similarity com-
parisons. These comparisons become very difficult as the pairwise identities
drop to very low values. In order to increase the accuracy of sequence searches,
we exploit the fact that the three-dimensional structures of proteins are much
more conserved than their sequences. Based on structure-anchored multiple
sequence alignments of low identity sequences we have constructed a collection
of 850 structure-anchored hidden Markov models, saHMMs, each representing
one domain family. A search of SCOP sequences versus our saHMMs shows
that 95% of the matches are to the correct family. Of the few hits outside
the family, almost all fall within the correct superfamily. A comparison with
PSI-BLAST shows that the saHMMs have consistently lower errors per query
at a given coverage. Evaluating the ability of the saHMMs to correctly identify
new family members by searching with sequences from a new version of SCOP
resulted in 99% accuracy and 85% coverage. In a similar evaluation we find
that the saHMMs performed about 6% better than the corresponding Pfam ls
HMMs. Furthermore, of 1986 human protein sequences labelled “unknown” in
the NCBI protein database, we were able to annotate 232 proteins with 530

∗From UMINF 07.12, 2008
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non-overlapping domains belonging to 102 different domain families.

Our results demonstrate that saHMMs, which are derived from multiple struc-
ture alignments of a few carefully selected homologous sequences with low
mutual sequence identities, result in a versatile and reliable tool for identi-
fication of domains in protein sequences. With the aid of saHMMs, homology
on the family level can be assigned, even for distantly related sequences. The
saHMMs have the added benefit that all matches are associated with multiple
high quality crystal structures, which will support accurate structure annota-
tion. The saHMMs are freely available for querying via the FISH server at
http://babel.ucmp.umu.se/fish/.
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FISH - Family Identification of Sequence
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Markov Models∗
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Abstract: The FISH server is highly accurate in identifying the family mem-
bership of domains in a query protein sequence, even in the case of very low
sequence identities to known homologues. A performance test using SCOP
sequences and an E-value cut-off of 0.1 showed that 99.3% of the top hits
are to the correct family saHMM. Matches to a query sequence provide the
user not only with an annotation of the identified domains and hence a hint
to their function, but also with probable 2D and 3D structures, as well as
with pairwise and multiple sequence alignments to homologues with low se-
quence identity. In addition, the FISH server allows users to upload and
search their own protein sequence collection or to quarry public protein se-
quence data bases with individual saHMMs. The FISH server can be accessed
at http://babel.ucmp.umu.se/fish/.

∗By permission of Nucleic Acids Research, Oxford University Press, 2006
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ABSTRACT

The FISH server is highly accurate in identifying the
family membership of domains in a query protein
sequence, even in thecaseof very lowsequence iden-
tities to known homologues. A performance test
using SCOP sequences and an E-value cut-off of 0.1
showed that 99.3% of the top hits are to the correct
family saHMM. Matches to a query sequence provide
the user not only with an annotation of the identified
domains and hence a hint to their function, but also
with probable 2D and 3D structures, as well as with
pairwise and multiple sequence alignments to homo-
logues with low sequence identity. In addition, the
FISH server allows users to upload and search their
own protein sequence collection or to quarry public
protein sequencedata baseswith individual saHMMs.
TheFISHservercanbeaccessedathttp://babel.ucmp.
umu.se/fish/.

INTRODUCTION

The detection of homologous proteins with known function
and well-determined three-dimensional (3D) structures is
crucial for the correct characterization and annotation of
newly sequenced proteins. Since proteins are modular and
can harbour many domains, it is advisable to characterize
the constituent domains rather than the protein as a whole.
Existing internet resources, such as Pfam (1), Superfamily
(2), SMART (3), CD search (4) and others, provide the user
with versatile tools for domain identification. Nevertheless,
the definition field of millions of database entries still con-
tains remarks such as ‘hypothetical’, ‘putative’, ‘unidentified’
or ‘function unknown’.

The FISH server can be used as a complement to existing
annotation methods. One can compare a query sequence with
all structure anchored hidden Markov models (saHMMs) and,

in case of a match, assign family membership on the domain
level for such sequences even in the case of low sequence
identity.

Furthermore, it is important to discover those proteins in a
database that harbour a certain domain, independent of
sequence identity and annotation status. The FISH server
provides such a tool, where a user can employ individual
saHMMs for searching against a sequence database and
obtain hits even if the sequence identity is 20% or less and
falls below the so called ‘twilight zone’ curve, pI (5).

METHOD

Construction of structure anchored hidden
Markov models

FISH, which stands for Family Identification with Structure
anchored HMMs, is a server for the identification of sequence
homologues on the basis of protein domains. At the heart of
the server lies a collection of 982 saHMMs, each representing
one SCOP (6) domain family (Tångrot, J., Kågström, B. and
Sauer, U.H., manuscript in preparation). The saHMMs are
built with HMMER 2.2g (7) from structure anchored multiple
sequence alignments, saMSAs. The saMSAs are derived from
multiple structure superimpositions of representative homo-
logous domains. In order to maximize the sequence variabil-
ity within each domain family, we superimposed only those
domains whose mutual sequence identity falls below the ‘twi-
light zone’ curve, pI (5). The selected domains are hereafter
called the saHMM-members. Their coordinate files were
obtained from the SCOP version 1.69 associated ASTRAL
compendium (8) and were superimposed with STAMP (9).
Only high-quality X-ray crystal structures were used. Since
at least two structures are needed for superimposition and
because of the stringent sequence identity restrictions, our
collection of saHMMs currently covers �35% of SCOP fami-
lies belonging to true classes. We expect this number to
increase due to the exponential rate at which 3D structures
become available.
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Brief description of the FISH server

The architecture of the FISH server is displayed in Figure 1.
Flat file databases were imported into a relational data base
(MySQL) and cross-linked. The MySQL database is imple-
mented on a Linux platform. The user interface is written
in Perl, PHP and JavaScript, and integrated with the Apache
web server.

The user inputs a query via the web interface. The query
interpreter processes the input, using the collection of
saHMMs. The cross-link engine merges information from
the associated databases with the results of the query. The
results assembler presents the outcome of the search to the
user via the web interface. The search results can be sent to
the user by e-mail in the form of a www-link and are stored
on the server for 24 h.

USE OF THE FISH SERVER

The organization of the FISH server input and results pages
is schematically outlined in Figure 2 and described in the
following.

Sequence vs. saHMM search

Using the FISH server for a sequence vs. saHMMs search is
straightforward. The user is required to enter an amino acid
sequence in FASTA or text format, or to upload a sequence
file. The E-value cut-off is adjustable and determines the
level of significance of the reported hits.

The FISH search results are presented in a hierarchical
manner (see Figure 2). At the top of the results hierarchy is
the ‘overview of results’ page (see Figure 3). It contains a
table of all matches, sorted by ascending E-values up to the
selected E-value cut-off. The lengths of the schematic arrows

below the table correspond to the query sequence length. For
each found domain, the position of the matching sequence
interval is schematically marked by a coloured box. By fol-
lowing the links on the overview page the user obtains
increasingly detailed information about each match.

In the table displayed in the ‘overview of results’ window,
each saHMM identifier links to the SCOP lineage of that
domain family as well as to a table listing the saHMM-
members (Figure 2, left hand side, and Figure 4). Each
entry in the saHMM-member field links to a saHMM-based
pairwise sequence alignment of the query with that member
and further to links providing coordinate information.

The chain identifier field links to a page with the sequence
of the ASTRAL domain, followed by the sequence contained
in the protein data bank file with the ASTRAL sequence
interval marked in orange. This page also provides a link to
the corresponding NCBI sequence entry.

The Coordinate icon in the table leads the user to an inter-
active Java window running Jmol version 10.00 (http://www.
jmol.org) where the domain structure of the saHMM-member
can be visualized. The user can rotate the structure and ana-
lyze it by zooming in on details or by applying a variety of
colouring schemes and display options.

The coloured boxes on the sequence arrows in the ‘over-
view of results’ window lead the user to alignments of the
query sequence with the saHMM consensus sequence.
Links on this page lead the user to a sequence alignment of
the query sequence with the saMSA used to build the
saHMM (right hand side of Figure 2). The multiple sequence
alignment can be viewed in different formats such as
Stockholm, MSF and A2M.

It is also possible to view all pairwise sequence alignments
of the query sequence with the individual saHMM-members.
All alignments are anchored on the saHMM.

Using the SCOP sequences to test the performance of the
server we found that in 99.3% of the cases the top hit matches
the correct saHMM, choosing an E-value cut-off of 0.1. The
matches obtained in a sequence vs. saHMM search provide
the user with a classification on the SCOP family level and
outline structurally defined, putative domain boundaries in
the query sequence. This information can be used for
sequence annotation, to design mutation sites, to identify
soluble domains, to find structural templates for homology
modelling and possibly for structure determination by
molecular replacement.

Performance test on new sequences

In the following we assess the ability of the saHMMs to assign
the correct domain family membership to newly sequenced
proteins. For this purpose we used the 24 957 domain
sequences that are contained in SCOP 1.69 (released July
2005) but not in SCOP 1.61 (released Nov. 2002), to quarry
the collection of 682 saHMMs based on SCOP 1.61. Here
and in the following two paragraphs we consider a hit only
if it is the top match with an E-value equal to or better than 0.1.

Using the classification of SCOP 1.69 we find that 14 173
of the query sequences (57%) belong to domain families for
which we have a saHMM based on SCOP 1.61. Ideally, all of
these sequences should find a match to the correct family
saHMM.

Figure 1. Schematic layout of the FISH server architecture. The user initializes
a query via the web interface. The query is processed by the query interpreter,
using the collection of saHMMs. The cross-link engine integrates information
from the associated data bases [SCOP, ASTRAL, PDB, nr (NCBI), Swiss-Prot
and TrEMBL] with the results of the query. The results assembler compiles the
search results and presents them to the user via the web interface.
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Our results show, that 10 513 sequences (74%) are able to
identify the correct saHMM as their top hit. This number
increases to 10 737 sequences (76%) if we accept matches
on the superfamily level as well. Of the 10 784 domain
sequences for which we do not have a saHMM (as of version
1.61), 183 sequences (2%) found a match to a saHMM
within the correct superfamily. No hit was obtained for
10 561 sequences (98%), which demonstrates that our
saHMMs are very domain family specific.

The combined searches resulted in a total of 11 202 hits of
which 10 513, i.e. 94% of all matches, were to the correct
family saHMM. An additional 407 hits (4%) were correct
on the superfamily level.

Comparing saHMMs with Pfam HMMs

To compare the performance of the FISH server with Pfam,
we used saHMMs based on SCOP 1.61 and the corresponding
Pfam_ls HMM release (version 7.8, released November

Figure 3. Overview of results page. This page contains a table of all matches,
and a graphical representation of the matches mapped onto a sequence arrow.
The position of thematching sequence interval ismarked by a colour coded box.
Green corresponds to E-values <0.1, yellow to an E-value interval between 0.1
and 1.0 and orange to an E-value >1.0. By following the links on the overview
page the user obtains more detailed information about each match, such as the
SCOP lineage, pairwise andmultiple sequence alignments, and 3D structures of
domain members. Shown is a search carried out with AAY24133.1, a human
protein labelled ‘unknown’.

Figure 2.Organizationof theFISH server input and result pages. The result pages are similar for a search of a query sequence versus the collection of saHMMsand for
a search with a saHMM versus a sequence database. The information available can be roughly divided into domain family information (left branch) and alignment
information (right branch). The domain family information includes SCOP classification, the sequences and 3D structures of the saHMM-members, and pairwise
sequence alignments of the query to each member. The alignment information provides multiple and pairwise alignments of the query sequence to the consensus
sequence extracted from the saHMM and the sequences used to build the saHMM. All alignments are anchored on the saHMM. Links to relevant data bases are
provided.

Figure 4. Domain family information page. The SCOP lineage of the domain
family is shown, as well as a table listing the saHMM-members. Each saHMM-
member links to a pairwise sequence alignment of the query with the member,
anchored on the saHMM and to links with coordinate information. The chain
entry shows the sequence of the saHMM-member. The domain structures of the
saHMM-members can be visualized interactively by following the link under
view structure.
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2002). Since the definition of a SCOP family differs from the
Pfam definition, the relationships between SCOP and Pfam
families were determined by finding the SCOP classification
of PDB sequences that are part of the Pfam-A alignments. Of
the 24 957 sequences new in SCOP 1.69 compared with ver-
sion 1.61, a total of 11 592 sequences belong to families with
both an HMM in Pfam and a saHMM, and are used as query
sequences. In the following we consider only top hits with an
E-value <10 as matches.

The correct family relationships were detected for 9574
of the sequences (83%) using the saHMMs and for
10 128 sequences (87%) using Pfam. It is of interest to note
that 812 of the sequences with hits to the correct saHMM
did not find the correct HMM in Pfam.

Detecting remote sequence homologues

We further selected, for each domain family, those sequences
in the set of 11 592 query sequences that had a sequence iden-
tity below the ‘twilight zone’ curve compared with the
saHMM-members based on SCOP 1.61. This left us with
3247 new low identity sequences, of which 2014 sequences
(62%) obtained hits to the correct family saHMMs even
though the sequence identity to the saHMM-members is
very low. Interestingly, 79 of these relationships were not
detected by Pfam, despite the possibility that some of the
query sequences could have a sequence identity above pI to
Pfam-A seed sequences.

saHMM searched vs. sequence database

By choosing a saHMM that represents a particular SCOP
domain family to search a sequence database, one can identi-
fy members of that domain family within protein sequences.
In this way it is possible to identify previously un-annotated
sequences on the domain family level, even in case of very
low sequence identities.

The input page of the saHMM vs. sequence database
search is divided into two parts. To the left is a section
with several options for selecting a saHMM to use for the
search, and to the right is the actual input section.

There are several ways of choosing the saHMM to search
with. If one knows which SCOP domain family to use, and
how to find it in the SCOP classification, the saHMM can eas-
ily be located by browsing the classification tree. Otherwise,
the saHMM can be located using the free text search option.
All SCOP domain families whose description matches the
text search are listed. Those with a saHMM can be selected
for searching.

Alternatively, the name of the saHMM can be written
directly in the input field on the right. The user can also select
which sequence database to search against and input an
appropriate cut-off for the E-value.

The results are reported in the form of a table (see
Figure 5), where the matches are sorted by E-value with
the best hit listed first. Above the results table, the user can
follow a link to information about the domain family as
well as sequence and structural information about the
domains used to build the saHMM.

Each protein name in the results table is linked to the cor-
responding sequence entry, in which the matching sequence
interval is marked in orange. An alignment of the matching

sequence to the saHMM consensus is shown below the
sequence, with the option to view both multiple and pairwise
alignments anchored on the saHMM. In the pairwise align-
ments view, the sequence identity of the found match to
each saHMM-member is displayed in a table. From there,
links allow the user to view the structure of the members
and to obtain coordinate information.

A search with a saHMM vs. SwissProt can take anything
from 15 min up to �9 h. Searching TrEMBL, which is
about 10 times larger, takes considerably longer. In order to
minimize the waiting time for the user, we pre-calculated the
searches of all 982 saHMMs vs. SwissProt, TrEMBL and the
NCBI non-redundant database, nr, using an E-value cut-off of
100. Depending on the E-value choice of the user, the results
are extracted and presented up to that value.

In addition, users can choose to upload and search their
own protein sequence databases.

SUMMARY

The FISH server is a versatile tool with a dual function. On
the one hand, the user can perform sensitive sequence
searches versus a collection of saHMMs, which can provide
matches even within the ‘midnight zone’ of sequence align-
ments. On the other hand, the user can choose one of the
saHMMs to perform a search against a protein sequence
data base. Since the saHMMs are based on structure anchored
multiple sequence alignments, the alignment of the query to
the saHMM-members can be used to draw conclusions
about the probable secondary and tertiary structure of the
query sequence.

A comparison of FISH saHMMs with Pfam HMMs
shows that the methods are comparable in their ability to

Figure 5. saHMMvs. sequence database search. The results for the search with
the saHMM representing the SCOP family b.69.4.1 (50979) are reported in the
form of a table listing the matches sorted by E-value. Only part of the table is
shown in the figure. Above the results table is a link to information about the
domain family aswell as sequence and structural information about the domains
used to build the saHMM. Each protein name contains a link to the correspond-
ing sequence entry, an alignment of the matching sequence to the saHMM
consensus and the option to view both multiple and pairwise alignments
anchored on the saHMM.
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assign family memberships. Our findings also show that each
collection of HMMs can assign family memberships to
sequences that are missed by the other, thus complementing
each other.

Further we demonstrate that for sequences with very low
sequence identity to the saHMM-members a correct assign-
ment was made for about 62% of the sequences. This demon-
strate the ability to detect remote homologues on the domain
family level.
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Abstract: At the core of the FISH (Family Identification with Structure
anchored Hidden Markov models, saHMMs) server lies the midnight ASTRAL
set. It is a collection of protein domains with low mutual sequence identity
within homologous families, according to the structural classification of pro-
teins, SCOP. Here, we evaluate two algorithms for creating the midnight AS-
TRAL set. The algorithm that limits the number of structural comparisons is
about an order of magnitude faster than the all-against-all algorithm. We there-
fore choose the faster algorithm, although it produces slightly fewer domains in
the set. We use the midnight ASTRAL set to construct the structure-anchored
Hidden Markov Model data base, saHMM-db, where each saHMM represents
one family. Sequence searches using saHMMs provide information about pro-
tein function, domain organization, the probable 2D and 3D structure, and can
lead to the discovery of homologous domains in remotely related sequences.

The FISH server is accessible at http://babel.ucmp.umu.se/fish/.

∗By permission of Springer-Verlag, Berlin c© 2007 Springer-Verlag

131



132



Design, Construction and Use of the

FISH Server

Jeanette T̊angrot1,2, Lixiao Wang1, Bo Kågström2,3, and Uwe H. Sauer1
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Abstract. At the core of the FISH (Family Identification with Structure
anchored Hidden Markov models, saHMMs) server lies the midnight
ASTRAL set. It is a collection of protein domains with low mutual se-
quence identity within homologous families, according to the structural
classification of proteins, SCOP. Here, we evaluate two algorithms for
creating the midnight ASTRAL set. The algorithm that limits the num-
ber of structural comparisons is about an order of magnitude faster than
the all-against-all algorithm. We therefore choose the faster algorithm,
although it produces slightly fewer domains in the set. We use the mid-
night ASTRAL set to construct the structure-anchored Hidden Markov
Model data base, saHMM-db, where each saHMM represents one fam-
ily. Sequence searches using saHMMs provide information about protein
function, domain organization, the probable 2D and 3D structure, and
can lead to the discovery of homologous domains in remotely related
sequences.
The FISH server is accessible at http://babel.ucmp.umu.se/fish/.

1 Introduction

Genome sequencing projects contribute to an exponential increase of available
DNA and protein sequences in data bases. Millions of sequence entries contain
remarks such as “hypothetical”, “unidentified”, or “unknown”. It is therefore
crucial to develop accurate automated sequence annotation methods. For proper
characterization of newly sequenced proteins it is important to associate them
with homologous proteins of well characterized functions and possibly high qual-
ity three dimensional (3D) structures. Proteins are modular and can harbour
many domains. Consequently, it is advisable to characterize the constituent do-
mains rather than the protein as a whole. Existing resources, such as Pfam [1],
Superfamily [7], SMART [6] and others, provide the user with versatile tools
for domain identification. Common for these methods is that they use protein
sequence alignments that include as many sequences as possible, even with high
sequence identity of up to 95%, to construct hidden Markov models, HMMs. At
the core of our approach lies a data base of structure-anchored hidden Markov
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models, saHMMs. In contrast to the other methods, we derive structure an-
chored multiple sequence alignments, saMSAs, exclusively from multiple struc-
ture superimpositions of protein domains within SCOP families [9]. Only spatial
distance criteria are considered to find matching residues and to deduce the
multiple sequence alignments from which the saHMMs are built. Great care is
taken to ensure sequence diversity among the domains by including only such
members with a mutual sequence identity below a certain cut-off value. We call
the data set containing the low mutual sequence identity domains the “midnight
ASTRAL set”, since it was derived using the ASTRAL compendium [2]. We have
made the saHMM data base, saHMM-db, publicly available through the FISH
server, which has been introduced and briefly described earlier [13]. FISH, which
stands for Family Identification with Structure-anchored HMMs, is a versatile
server for the identification of domains in protein sequences. Here, we describe
the algorithms behind the server in more detail, in particular the creation of the
midnight ASTRAL set. In addition, we present a layout of the cross-linking of
the underlying data bases and describe in more detail how to use the server.

2 The Midnight ASTRAL Set and Selection Algorithms

The midnight ASTRAL set is the non-redundant collection of representative
domains used to construct the saHMMs. In order to maximize the sequence
variability within each SCOP domain family [9], we included only domains with
low mutual sequence identities, below the “twilight zone” curve, pI(L, 0) [10],[8]:

pI(L, n) = n +

⎧⎨
⎩

100 for L ≤ 11,

480 · L−0.32·(1+e−L/1000) for 11 < L ≤ 450,
19.5 for L > 450.

(1)

The function pI(L, 0) defines the limit of percent sequence identity for clearly
homologous protein sequences, as a function of the alignment length L.

To construct the midnight ASTRAL set, representative domains must be
selected for each of the 2845 SCOP families belonging to true classes. Individual
families can harbour as few as one domain and as many as 1927 domains. We
have evaluated two methods for selecting saHMM-members into the midnight
ASTRAL set. Both methods are modified versions of the algorithms described
by Hobohm et al. [4]. The algorithms select, for each SCOP family, only those
domains that were determined by X-ray crystallography to a resolution of 3.6 Å
or better, and have mutual sequence identities equal to or less than pI(L, 0).

Within each family we construct pairwise structural superimpositions in or-
der to obtain the percent sequence identities. The coordinate files of the do-
mains are obtained from the ASTRAL compendium [2] corresponding to SCOP
version 1.69 [9]. We have evaluated several structure alignment programs, and
found that, currently, MUSTANG [5] results in the best performing saHMMs
(to be published elsewhere). In case the program fails to align two structures,
the pair of domains is treated like a pair with too high sequence identity. As a
minimum requirement for building an saHMM, the SCOP domain family must
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be represented by at least two structures. Therefore, all families with only one
representative were excluded from the midnight ASTRAL set.

All computations were done in parallel, using up to 20 processors on the
HPC2N Linux cluster Seth. The compute nodes on Seth are AMD Athlon MP2000+
with 1GB of memory per dual node, connected in a high-speed SCALI network.

2.1 Algorithm 1 for Selecting saHMM-Members

Algorithm 1 is designed to limit the number of structural comparisons. It works
by removing one of the domains in a pair from further consideration, if the mu-
tual sequence identity falls above pI(L, 0).

Outline of Algorithm 1
1. Collect all family members with < 3.6 Å resolution into to-be-checked set.
2. Take domain d1 from to-be-checked set, place in select set.
3. For each other domain d2 in to-be-checked set.

(a) Pairwise structural alignment of d1 and d2 to determine sequence iden-
tity sI and alignment length L.

(b) If sI > pI(L, 0) then dToRemove = selectOne(d1,d2).
i. place dToRemove in to-remove set.
ii. if dToRemove = d1 repeat from 2.

4. Repeat from 2 until no more domains remain in to-be-checked set.

In order to retain the highest quality structures for constructing optimal
structure superimpositions as the basis for the saHMMs, the algorithm selects
the domain with the better resolution. In cases where the resolution values of
the structures to be compared are too similar, i.e., they differ by less than 10%
of their average, we exclude the domain with the higher mean thermal factor, B-
factor. This rule applies in particular to domains extracted from the same PDB
(Protein Data Bank) file. The mean B-factor reflects the data quality and is here
calculated as the arithmetic mean of the B-factors for all Cα atoms within the
domain. The function selectOne is used to select which domain to remove in
case of high sequence identity.

Outline of function selectOne

1. Read in domains to compare: d1 and d2
2. if |resolution(d1) - resolution(d2)|< 0.1·mean(resolution(d1), resolution(d2))

(a) if the mean B-factor for d1 is smaller than the mean B-factor of d2, then
set dToRemove = d2

(b) else set dToRemove = d1
3. else if resolution of d2 is poorer than that of d1, then set dToRemove = d2
4. else set dToRemove = d1

After the first round of selection, all the preliminary discarded protein domains
stored in the to-remove set are again compared to all domains in the select set,
in order to assure that only domains with sequence identities above pI(L, 0) are



4

permanently discarded. The rationale behind this additional step is that in the
process of removing domains, it is possible that a domain A is removed due to
high sequence identity to domain B. If B is later removed due to high sequence
identity to domain C, it could be that A and C have low mutual sequence identity.
Thus A must be compared with C, and in case the identity is equal to or less
than pI(L, 0) both A and C must be kept.

2.2 Algorithm 2 for Selecting saHMM-Members

We evaluated a second algorithm, called Algorithm 2, which is designed to max-
imize the number of representative domains. Using Algorithm 2, one first fills
an n × n score matrix M based on all-against-all structural comparisons of all
n members within a particular SCOP family. An entry Mij is a measure of the
level of sequence identity and the relative data quality of domains di and dj , and
is defined as:

Mij =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j,
0 if sI ≤ pI(L, 0),

1 + 1/n if dj = dToRemove,
1 − 1/n if di = dToRemove.

(2)

Which domain to remove in case of too great sequence identity is determined
using the same procedure selectOne as described for Algorithm 1. To select
representative domains using M , we remove in each step the domain similar to
most other domains, until no more similarities can be detected. The domain dk,
corresponding to row index k in M , which is similar to most other domains is
the one with the highest row sum:

k = argmaxi(
∑

j

Mij). (3)

Removing the domain dk from the set corresponds to setting elements Mki =
0 and Mik = 0 for all i, including the diagonal element Mkk. The process is
finished when maxi(

∑
j Mij) = 1. The representative domains are those with 1

on the diagonal (Myy = 1 for all representatives y). For reasons described in
Algorithm 1, all removed domains are checked once more against all selected
domains to make sure that no representatives were mistakenly discarded.

2.3 Comparing Algorithm 1 and Algorithm 2

Calculations using Algorithm 1 result in 3129 domains in the midnight ASTRAL
set, representing 850 different SCOP domain families. These families cover 65%
of the SCOP domains and correspond to 30% of the SCOP families belonging
to true classes. Algorithm 2 gives 3293 domains in the midnight ASTRAL set,
which represent 894 SCOP domain families. These families cover about 60% of
SCOP domains and correspond to 31% of the true class SCOP families.

The advantage of Algorithm 2 is that it produces more saHMM-members for
the midnight ASTRAL set. However, it is time expensive due to the all-against-
all structural comparisons, which cause the problem to scale quadratically with
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the number of domains. It was not practical to use Algorithm 2 for the four very
largest families, each harbouring more than 600 domains. Even so, the computing
time used to select representative domains with Algorithm 2 exceeded the total
time used by Algorithm 1 by an order of magnitude. We therefore decided against
Algorithm 2, and will from now on use Algorithm 1 to select saHMM-members,
even though Algorithm 1 results in a slightly reduced coverage of SCOP families.

2.4 Analysis of the Midnight ASTRAL Set

In Fig. 1(a) the distribution of lengths of domains within the midnight ASTRAL
set selected with Algorithm 1 is displayed. The sharp peak shows that the most
common sequence length of the saHMM-members is about 100 residues. The
length varies from 21 amino acids for the shortest domain up to 1264 residues for
the longest. In Fig. 1(b) the distribution of resolutions at which the structures of
the domains were determined is displayed. The majority of the crystal structures
from which the domains are extracted fall into the resolution range between 1.5
to 2.5Å. This assures a high confidence in the determined structures.
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Fig. 1. Distribution of (a) sequence lengths and (b) resolutions among domains in the
midnight ASTRAL set.

3 The saHMM Data Base

The construction of structure-anchored Hidden Markov Models, saHMMs, re-
quires three major steps. First, the non-redundant midnight ASTRAL set must
be generated as was described above. Then a multiple 3D superimposition of the
peptide chains of these domains, called the saHMM-members, is constructed. By
using only spatial criteria to compare their structures, it is possible to match
those amino acids that are from different chains and in close spatial vicinity, into
a structure anchored multiple sequence alignment (see also [12]). The final step
involves building the saHMMs from the deduced structure-anchored multiple
sequence alignment.
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The coordinate files of the saHMM-members are obtained from the ASTRAL
compendium corresponding to SCOP version 1.69. The domains are superim-
posed with MUSTANG [5] and the saHMMs are built using HMMER 2.2g [3].

We implemented several Perl programs in order to automate the process
from raw SCOP family classification of domains, through the construction of
the midnight ASTRAL set, to the creation and testing of the saHMMs. The
programs perform tasks such as detecting and correcting inconsistencies between
the notations used in SCOP and the ASTRAL coordinate files, standardizing the
notation used in the coordinate files and parsing of results to convert output from
one program to input for another.

3.1 Coverage of SCOP

Since at least two structures are needed for superimposition, and because of
the stringent sequence identity restrictions, our collection of saHMMs currently
includes 850 saHMMs, which cover about 30% of the 2845 SCOP families be-
longing to true classes and 65% of the 67210 domain sequences. We expect these
numbers to improve due to the exponential increase of deposited 3D structures.

4 The FISH Server

4.1 Design of the FISH Server

Fig. 2. Schematic view of the data base cross-linking used in the FISH server.

Flat file data bases were imported into a relational data base (MySQL im-
plemented on a Linux platform) and cross-linked (Fig. 2). The user interface
is written in Perl, PHP, and JavaScript and integrated with the Apache web
server. The user inputs a query via the web interface. The query interpreter an-
alyzes the input, using the collection of saHMMs. The cross-link engine merges
information from the associated data bases with the results of the query. The
results assembler presents the outcome of the search to the user via the web
interface. The search results can also be sent to the user by e-mail in the form
of a www-link and are stored on the server for 24 hours.
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4.2 How to Use the FISH Server

Sequence Searches vs. the saHMM-db
Using the FISH server, a user can compare a query sequence with all models

in the saHMM-db. Matches obtained in such a search provide the user with a
classification on the SCOP family level and outline structurally defined, putative
domain boundaries in the query sequence. This information is useful for sequence
annotation, to design mutations, to identify soluble domains, to find structural
templates for homology modelling and possibly for structure determination by
molecular replacement.

(a) (b)

Fig. 3. Sample (a) input and (b) results pages from a sequences vs saHMMs search.

Fig. 3(a) displays an example of the input page. The user enters one or more
query sequences and can select an E-value cut-off for the results. The E-value of
a hit is the expected number of false matches having at least the same score as
the hit, and hence is a measure of the confidence one can have in the hit. The
closer the E-value is to zero, the more the match can be trusted. In the ‘overview
of results’ page (Fig. 3(b)) the list of matches is sorted in increasing order with
respect to the E-value, up to the chosen cut-off. When selecting one entry from
the list, the family specific information for that match is displayed (Fig. 4(a)).
The top table provides information about the SCOP classification. It is followed
by a table listing all saHMM-members of this family together with details about,
for example, the percent sequence identity of the query sequence aligned to the
member. For each saHMM-member, it is possible to view the structure of the
selected domain in an interactive Java window, as shown in Fig. 4(b).

Below the list of matches in the ‘overview of results’ page (Fig.3(b)) is a
horizontal bar graph representation of the query sequence, where matches are
marked as coloured ranges. A light green range corresponds to an E-value of
0.1 or less, a yellow range to 0.1 ≤ E-value ≤ 1.0 and an orange range for
E-values above 1.0. Each coloured range links to a pairwise alignment of the
query sequence and the saHMM consensus. The user has the option to display
a multiple sequence alignment of the query sequence and the saHMM-member
sequences in different formats. In addition, it is possible to reach a list with
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pairwise comparisons of the query and each saHMM-member. All alignments
are anchored on the saHMM.

(a) (b)

Fig. 4. Example pages displaying (a) the domain family information of the top hit
from Fig. 3(b) and (b) the structure view of the domain with highest sequence identity
compared to the query sequence.

saHMM Searches vs. a Sequence Database
Furthermore, the FISH server allows the user to employ individual saHMMs

for searching against a sequence data base to find those proteins that harbour a
certain domain, independent of sequence identity and annotation status. For this
purpose, the user can choose a particular saHMM from a list of available models
and specify against which data base to perform the search. Currently, the Swiss-
Prot, TrEMBL and the non-redundant data base, nr, from NCBI are available
for searching. In addition, a user has the option to upload his/her own sequence
database, as long as its size does not exceed 2 MB. In this way it is possible
to identify previously un-annotated sequences on the domain family level, even
in case of very low sequence identities, below pI(L, 0). For each match, the user
obtains the corresponding sequence entry, as well as pairwise and multiple se-
quence alignments of the matched sequence and the saHMM-members, anchored
on the saHMM. Information about the domain family used for searching is also
easily available.

A search with a single saHMM vs. SwissProt can take from 15 minutes up
to about nine hours. Searching TrEMBL, which is about ten times larger, takes
considerably longer. In order to minimize the time a user has to wait for the re-
sults, we pre-calculated the searches of all 850 saHMMs vs. SwissProt, TrEMBL
and nr using an E-value cut-off of 100. Depending on the E-value choice of the
user, the results are extracted and presented up to that value. The computa-
tions were done in parallel, by searching the databases with several saHMMs
concurrently, using up to 20 processors on the HPC2N Linux cluster Seth.
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Fig. 5 shows an example of (a) the input page and (b) the results page of a
search with an saHMM versus a sequence database. In the example, SwissProt
was used. The results of the search are represented in form of a list sorted by
E-value up to the user-specified cut-off.

(a) (b)

Fig. 5. Example of (a) input and (b) results of a search with the catenin saHMM
(a.24.9.1) vs SwissProt version 1.69. Only the top part of the results page is shown.

5 Conclusions

The foundation of the structure-anchored hidden Markov model method is the
3D superimposition of carefully chosen domains representing the SCOP domain
family to be modelled. For the selection of the representative domains, called
the saHMM-members, we evaluated two algorithms, Algorithm 1 and Algorithm
2. Even though the use of Algorithm 2 results in 164 more saHMM-members
in the midnight ASTRAL set, which leads to 44 more saHMMs, we prefer Al-
gorithm 1 since it is more than an order of magnitude faster and can handle
even the largest families in a reasonable amount of time. The resulting saHMMs
together constitute the saHMM-db, which covers 30% of the SCOP families and
65% of the domains belonging to true classes. So far, every new SCOP release
has lead to new saHMMs and has increased the number of saHMM-members for
many families. As the number of deposited structures grows, we anticipate that
the saHMM-db will cover more of SCOP. In addition, we expect that new do-
main sequences will be added to families, which in turn increases the number of
saHMM-members and improve saHMMs with only few saHMM-members. The
saHMM-db is publicly available through the FISH server, which is a powerful
and versatile tool with dual function. On the one hand, the user can perform
sequence searches versus the saHMM-db, and possibly obtain matches even for
remote homologues, within the ”midnight zone” of sequence alignments. On the
other hand, the user can choose one of the saHMMs to perform a search against
a protein sequence data base. Since the saHMMs are based on structure an-
chored sequence alignments and the structures of all representatives are known,
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the alignment of a sequence to the saHMM-members can be used to draw con-
clusions about the secondary and tertiary structures of the sequence.
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Combinatorial Selection Improves Hidden
Markov Model Performance∗

Jeanette T̊angrot1,2, Bo K̊agström2,3 and Uwe H. Sauer1

1Ume̊a Centre for Molecular Pathogenesis,
2Department of Computing Science
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Abstract:

Motivation Correct domain identification is a prerequisite for reliable pro-
tein sequence annotation as well as proper functional and structural association.
Previously, we have shown that domain family specific structure-anchored hid-
den Markov models, saHMMs, are an accurate and sensitive way to identify
domains. The family specific saHMMs are built from structure alignments
of low sequence identity SCOP domain representatives, the saHMM-members.
Here we investigate how the number of available domains and their selection
affect the performance of the saHMMs.

Results We observe a wide spread of performance for saHMMs based on the
minimum of two domains from the same SCOP family, and that the saHMMs
built from all available saHMM-members do not necessarily perform best. By
using a combinatorial selection approach, we are able to improve on the per-
formance of HMMs in situations where only a limited number of sequences
are available. For four representative SCOP families, we show that combina-
torial selection can be used to dramatically increase the performance of the
corresponding saHMMs. We further provide evidence that a few well selected
sequences suffice to create saHMMs that capture the characteristic features of
a domain family. The improvements will be implemented in the FISH server
(http://babel.ucmp.umu.se/fish/).

∗From UMINF 07.14, 2008
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Paper V

Hidden Markov Models That Use Predicted
Secondary Structures For Fold Recognition∗

Jeanette Hargbo† and Arne Elofsson

Department of Biochemistry, Stockholm University, Stockholm, Sweden
jeanette@cs.umu.se, arne@sbc.su.se

Abstract: There are many proteins that share the same fold but have no
clear sequence similarity. To predict the structure of these proteins, so called
“protein fold recognition methods” have been developed. During the last few
years, improvements of protein fold recognition methods have been achieved
through the use of predicted secondary structures (Rice and Eisenberg, J Mol
Biol 1997;267:1026-1038), as well as by using multiple sequence alignments in
the form of hidden Markov models (HMM) (Karplus et al., Proteins Suppl
1997;1:134-139). To test the performance of different fold recognition methods,
we have developed a rigorous benchmark where representatives for all proteins
of known structure are matched against each other. Using this benchmark,
we have compared the performance of automatically-created hidden Markov
models with standard-sequence-search methods. Further,we combine the use
of predicted secondary structures and multiple sequence alignments into a com-
bined method that performs better than methods that do not use this combina-
tion of information. Using only single sequences, the correct fold of a protein
was detected for 10% of the test cases in our benchmark. Including multi-
ple sequence information increased this number to 16%, and when predicted
secondary structure information was included as well, the fold was correctly
identified in 20% of the cases. Moreover, if the correct secondary structure was
used, 27% of the proteins could be correctly matched to a fold. For compar-
ison, blast2, fasta, and ssearch identifies the fold correctly in 13-17% of the
cases. Thus, standard pairwise sequence search methods perform almost as
well as hidden Markov models in our benchmark. This is probably because the
automatically-created multiple sequence alignments used in this study do not

∗By permission of Proteins: Structure, Function, and Genetics c© copyright 1999
Wiley-Liss, Inc., A Wiley Company

†Now Jeanette T̊angrot
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contain enough diversity and because the current generation of hidden Markov
models do not perform very well when built from a few sequences.

Key words: protein structure; HMM; Scop; HSSP; threading; blast; fasta;
ssearch; protein fold recognition
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Hidden Markov Models That Use Predicted Secondary
Structures For Fold Recognition
Jeanette Hargbo and Arne Elofsson*
Department of Biochemistry, Stockholm University, Stockholm, Sweden

ABSTRACT There are many proteins that share
the same fold but have no clear sequence similarity.
To predict the structure of these proteins, so called
‘‘protein fold recognition methods’’ have been devel-
oped. During the last few years, improvements of
protein fold recognition methods have been achieved
through the use of predicted secondary structures
(Rice and Eisenberg, J Mol Biol 1997;267:1026–1038),
as well as by using multiple sequence alignments in
the form of hidden Markov models (HMM) (Karplus
et al., Proteins Suppl 1997;1:134–139). To test the
performance of different fold recognition methods,
we have developed a rigorous benchmark where
representatives for all proteins of known structure
are matched against each other. Using this bench-
mark, we have compared the performance of auto-
matically-created hidden Markov models with stan-
dard-sequence-search methods. Further, we combine
the use of predicted secondary structures and mul-
tiple sequence alignments into a combined method
that performs better than methods that do not use
this combination of information. Using only single
sequences, the correct fold of a protein was detected
for 10% of the test cases in our benchmark. Includ-
ing multiple sequence information increased this
number to 16%, and when predicted secondary struc-
ture information was included as well, the fold was
correctly identified in 20% of the cases. Moreover, if
the correct secondary structure was used, 27% of the
proteins could be correctly matched to a fold. For
comparison, blast2, fasta, and ssearch identifies the
fold correctly in 13–17% of the cases. Thus, standard
pairwise sequence search methods perform almost
as well as hidden Markov models in our benchmark.
This is probably because the automatically-created
multiple sequence alignments used in this study do
not contain enough diversity and because the cur-
rent generation of hidden Markov models do not
perform very well when built from a few sequences.
Proteins 1999;36:68–76. r 1999 Wiley-Liss, Inc.

Key words: protein structure; HMM; Scop; HSSP;
threading; blast; fasta; ssearch; protein
fold recognition

INTRODUCTION

The most promising method for predicting the structure
of a protein is to identify a protein with a known structure
that shares the same fold. Traditionally, this has been done

by identifying proteins that have similar sequences. How-
ever, of late, many examples of structures that have
similar folds but no detectable sequence similarity have
been found,. This has led to the development of methods to
detect the fold of a probe sequence from a library of known
target folds. These methods are often referred to as fold
recognition methods.

Fold recognition methods can roughly be divided into
three different types, based on the type of information that
they use. Within each category there are many different
implementations. The three types of methods are sequence-
based methods,1,2 structure-based methods,3,4 and predic-
tion-based methods.5–9,10 In this study, we introduce a new
method that combines multiple-sequence-alignment meth-
ods with predicted secondary structure information. We
also compare the performance of hidden Markov models
with standard sequence-based methods. All these compari-
sons are made with a more rigorous benchmark than those
used in most earlier studies.

Sequence-based methods are the oldest methods for fold
recognition.11 It seems a bit surprising that sequence-
based methods are able to detect a similar fold of proteins
that show no sequence similarity, but the amino-acid
sequence contains much information about the physical
environment at each position in the sequence. Thus, even
if there is no detectable sequence similarity between two
proteins that have the same fold, the corresponding posi-
tions in the proteins will have similar properties. More-
over, there are many examples where there is no obvious
sequence similarity, but where two proteins clearly are
homologous. Of course, these targets might be detected
with improved sequence-based methods. One way to in-
crease the performance of sequence-based methods is to
use information from a family of sequences, instead of
from just one sequence. With the inclusion of multiple
sequence alignment information and modern computa-
tional methods, such as hidden Markov models, sequence-
based methods have proven to be successful in fold recogni-
tion.2

Abbreviations: Scop, a structural classification of proteins database;
HMM, Hidden Markov Model; ssHMM, hidden Markov models that
use secondary structure information; predHMM, hidden Markov
models that use secondary structure information with predicted
secondary structures.
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Stockholm University, 106 91 Stockholm, Sweden. E-mail: arne@
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A hidden Markov model (HMM), or more correctly a
profile-HMM, is a generalized version of a profile that is
mathematically more consistent. A general description of
HMMs (applied in speech recognition, where they were
originally used) has been written by Rabiner and Juang.12

In biology, HMMs have been used in many different areas,
such as gene prediction,13 membrane protein prediction,14

and protein sequence comparisons.1,2 One major difference
between profile-HMMs and a profile is that in a profile the
penalty for gaps or insertions are the same in every
position of the alignment, even though some regions are
more variable than others. Ideally, these regions should
have a smaller penalty for gaps than more conserved
areas. In the HMM, the penalties are position-dependent,
and are learned from the training data.

An alternative type of information has been used in the
structure-based fold recognition methods. These methods
do not use sequence information to determine if two
proteins have the same fold or not. Instead, they use an
energy function that describes how well a probe sequence
matches a target fold. The energy function is often ob-
tained from a database of known protein structures, and
can be used, for instance, to describe the environment of
each residue15 or the probability of finding two residues at
a certain distance from each other.3,4

Proteins having a similar fold also have similar second-
ary structures, so that even though the amino acid se-
quences may have changed a great deal during evolution,
the secondary structure will still be the same for related
proteins belonging to the same fold. Today, the secondary
structure can be predicted from the amino acid sequence
with an accuracy of more than 70%.16 Several approaches
attempt to use this information, in addition to the amino
acid sequence, to recognize the correct fold.5,6,9 Fischer and
Eisenberg5 align a probe sequence to known folds and then
calculate the probability of the protein having a certain
fold. The score for an aligned amino acid normally depends
on how likely it is to have that particular amino acid in
that position in the fold, but Fischer and Eisenberg also
take the predicted secondary structure into account, in-
creasing the score if it fits the secondary structure of the
fold and decreasing the score otherwise. The addition of
the secondary structure information seems to help signifi-
cantly in recognizing the correct fold, indicating that, even
though the predicted secondary structure is not completely
correct, it still contains a lot of useful information that
could complement other information.

Usually, a HMM only uses the amino acid sequence
when modeling a protein family, making very distant
homologues difficult to recognize. The aim of this work is to
create a HMM that uses the predicted secondary structure
in addition to the primary sequence. By combining the
information from both sequence and secondary structure, it
should be possible to recognize even distant or non-homolo-
gous proteins that share a similar fold. The idea of using
secondary structure predictions and multiple sequence infor-
mation HMMs has been proposed earlier but not tested in this
type of benchmark.8,17 In addition, our implementation of this
approach differs from earlier attempts.

MATERIALS AND METHODS
An Implementation of HMMs Using Secondary
Structure Information

The program package HMMER, version 1.8.4,18 was
modified to include secondary structure information when
building a hidden Markov model (HMM) of a protein
family, as well as when matching an amino acid sequence
to an HMM. The secondary structure HMMs (ssHMMs)
are models of protein families based both on amino acid
sequence and on secondary structure information.

Ordinary profile HMMs consist of a sequence of match
states, analogous to positions in a multiple sequence
alignment, and corresponding insert and delete states. To
each insert and match state a probability distribution over
all amino acids is associated, these distributions giving the
probability of a certain amino acid, given that particular
state. The parameters of the model are the probabilities for
transitions between states and the amino acid probability
distributions, and these are optimized so that all se-
quences belonging to the modeled family obtain high
probabilities and all other sequences low. Thus a sequence
s � x1 . . . xL following the path q � q0 . . . qN�1 through
model µ has the probability

P(s 0q, µ) � �
i�1

N�1

T(qi 0qi�1) �
i�1

N

P(xl(i) 0qi ) (1)

where T(qi0qI�1) is the probability for a transition from
state qI�1 to qi and l(I) is the index for amino acid x in the
sequence in state qi , P(xl(I)0qi) is the probability of having
amino acid xl(I) in state qi, and N is the number of states in
the path. The lower indexes represent the position in the
path. The theory behind HMMs has been described in
more detail in earlier work.1,18,19 In comparison with
sequence profiles, one of the major differences is that for
each position there is a correct transition probability for
each gap and insertion parameter.

The ssHMM has an extra distribution of probabilities for
the secondary structures E, H, and L associated with each
insert and match state. In each state, the model emits a
probability for the amino acid, as before, but in addition to
this it emits another probability for the secondary struc-
ture assigned to that position. In this way, the probability
for the sequence is higher if the secondary structure is the
same as in the modeled family. The total probability for a
sequence s � x1 . . . xL having the secondary structure ss �

y1 . . . yL given the path q � q0 . . . qN�1 and model µ is now:

P(s,ss 0q, µ) � �
i�1

N�1

T(qi 0qi�1) �
i�1

N

P(xl(i ) 0qi ) �
i�1

N

P( ym(i ) 0qi ) (2)

where ym(I) is the secondary structure emitted in state qi.
The emission probabilities of the secondary structures are
found in the same way as the amino acid emission probabili-
ties when training the model. The combined HMM will be
referred to as a secondary structure HMM (ssHMM). The
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modified HMMER program is available from http://
www.biokemi.su.se/�arne/sshmm/

As the number of parameters in the model increases,
additional information is needed to produce a useful
model. To decrease the number of free parameters, the
emission probabilities P(x0ik) for the insert states are set
equal or to some background frequency. The problem with
having too little information, i.e., too few training se-
quences, concerns fitting, i.e., a HMM created from this
data will be able to recognize only proteins that are very
closely related to the proteins used to create the HMM. In
this situation, a prior distribution can be used, and the
model is not allowed to specialize too much. However, a
prior distribution assumes that any change from one
amino acid to another is equally probable, which is not the
case. 19 A standard HMM could be seen as building a
sequence profile using an identity matrix, which certainly
is not the most efficient matrix to use. The inclusion of
substitution parameters into HMMER can be made through
the use of a special prior distribution using a substitution
matrix. The inclusion of substitution matrices are made
when building the HMM by adding a partial count to all
amino acid types when a certain amino acid is found in a
position. This partial count is related to the probability of
an amino acid having been replaced by another particular
amino acid. In this study, we have used the Pam250
substitution matrix, which was included in the HMMER
package. For the secondary structure counts, we were not
able to create a prior distribution that significantly im-
proved the performance. Therefore we chose not to use any.
At the beginning of the training, all secondary structures
are assumed to occur at equal probabilities. Thus, even if a
position is found in only one secondary structure type, the
other secondary structure types will also have a small
probability of occurrence.

A library of ssHMMs was built from the sequences and
secondary structures of a representative set of all proteins
with a known structure. For a given protein, all related
proteins in Swissprot were found through the HSSP
database,20 and the secondary structure was assumed to
be the same for all proteins in a family. The multi-
ple sequence alignment from HSSP, together with the
secondary structure, was used to build a ssHMM, as
described above. For comparison with the original
HMM method, HMMs not using the secondary structure
were also created, as were HMMs (and ssHMMs) using
substitution matrices. These last will be referred to as
HMM-pam and ssHMM-pam. Finally, another set of
HMMs, ignoring multiple sequence alignments, were cre-
ated. These will be referred to as HMM-single, ssHMM-
single, etc. For a complete description of all HMMs built
see Table I.

To match a protein against a library of HMMs, a query
sequence is matched against all HMMs. We examined the
four different alignment algorithms included in HMMER
local, global, endsfree, and fragmentary matches. How-
ever, in all cases, the hmms program that uses a global
alignment algorithm performed best, and only results
using this algorithm were evaluated in this study. When a

protein is matched against a ssHMM it is necessary to
assume the secondary structure of the protein; this was
done in two different ways. First, the correct secondary
structure was used. Second, the secondary structure pre-
dicted by predator21 was used. The tests using the pre-
dicted secondary structures are referred to as predHMM
etc. (see Table I). The rather mediocre performance of 68%
was probably due to the fact that 45% of the sequences in
our database had 10 or fewer homologous sequences in
HSSP. For comparison with the standard sequence search
methods we have used blast2,22 fasta,23 and ssearch23 on
our benchmark. These methods were used with default
parameters, and the scoring has been done by using the
expectation-values.

Measuring the Performance

To compare the performance of different fold recognition
methods, it is of great importance to use a large and
well-crafted benchmark. Several recent studies6,24,25 have
shown that a useful benchmark can be created using
Scop26 as a standard for classifying proteins into families
of similar fold or of evolutionary relationship. Scop is a
database in which all known protein structures are classi-
fied into a hierarchical classification: class, fold, superfam-
ily, and family. In this study we have focused on proteins
that have the same fold but belong to different families,
according to Scop. Two proteins that are classified into to
the same fold have the same secondary structure elements
in a similar topological arrangement, while two proteins
that belong to the same family have a clear common
evolutionary origin. Two proteins classified into the same
fold but to different families might belong to the same
superfamily or they might not.

We created a benchmark from the pdb40 dataset of Scop
version 1.37. This dataset contains a subset of Scop where

TABLE I. Description of Information Used
in Methods Studied†

Name
SS in
HMM

Query
True SS

Query
Pred SS

Substi-
tution
matrix MSA

HMM X
predHMM X X X
ssHMM X X X
HMM-single
predHMM-single X X
ssHMM-single X X
HMM-pam X X
predHMM-pam X X X X
ssHMM-pam X X X X
HMM-pam-single X
predHMM-pam-single X X X
ssHMM-pam-single X X X
blast2 X
fasta X
ssearch X
†SS in HMM, secondary structure in the HMM; Query True SS, correct
secondary structure in query sequence; Query Pred SS, predicted
secondary structure in query; MSA, multiple sequence alignment.
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no proteins have more than 40% sequence identity to any
other member of the dataset.25 However, this dataset did
not completely match the latest release of HSSP in that (1)
HSSP was created from another subset of pdb and (2) the
proteins in Scop are divided into domains, whereas pro-
teins in HSSP are not. To overcome this problem, we
matched each sequence in pdb40 to the HSSP database
and replaced the sequence with the HSSP sequence if the
match had a significance better than 1.e-5 using fasta, and
if the alignment produced was of the same length as the
original sequence. Using this procedure, 1,130 out of 1,272
sequences in pdb40 were retained. This procedure re-
moved all Scop entries of the ‘‘non-proteins’’ class and
many of the peptides, as they were not present in HSSP.
For each of the 1,130 sequences, the multiple sequence
alignment and the secondary structure were read from
HSSP. On average, 26 sequences were included in a
sequence family. However, many of these sequences
were identical or almost identical to the original sequence.
This dataset of sequences and multiple sequence align-
ments is available from http://www.biokemi.su.se/�arne/
sshmm/

In our benchmark, see Figure 1, all proteins were
matched to the HMMs of all other proteins, and for each
pair the folds and families (according to Scop) were re-
corded. As the family classification in Scop is a sub-
classification of a fold, two proteins can belong either to the
same family, to two different families but to the same fold,
or to two different folds. If the two proteins belong to the
same family, we have eliminated them from further consid-
eration, because this indicates that they are homologous
and thereby not a good test of fold recognition methods. If
the fold, but not the family, of the two entries is the same,

the match was considered to be a true match, while if the
two entries belong to different folds they were considered
to be a false match. To create a good benchmark it is
necessary to have a large and complete set of proteins; in
our benchmark set there are 730 proteins that have at
least one true match, i.e., there are 400 proteins in the
database that do not have any true match. These 400
entries were retained, because they provided potentially
important information about false matches. The total
number of true hits is 8,312, and there are more than 1.2
million false hits in the benchmark (see Table II). The
benchmark includes proteins from 359 different folds and
666 different families in Scop. We believe that this bench-
mark contains a significant fraction of all possible targets
for fold-recognition.

Fig. 1. A schematic description of the ssHMMs. First a library of
representative folds is created, second, all homologous sequences of
these proteins are found. These multiple sequence alignments, together
with the secondary structures of the representative proteins, are used to

construct the library. For the probe sequence, a secondary structure
prediction is performed. Finally, the sequence with the predicted second-
ary structure is probed against all folds in the fold library.

TABLE II. Description of the Benchmark

Data
Number of
data points

Protein domains in pdb40 1,272
Protein domains both in HSSP and in pdb40 1,130
Protein domains with at least one true match

(another domain from the same fold but from
another family) 730

Number of pairwise comparisons 1,273,618
True matches (protein domains from the same fold

but different families) 8,312
False matches (protein domains from different folds

and families) 1,265,306
Number of different protein families 666
Number of different protein folds 359
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We have used two different criteria to analyze the
performance of a fold recognition method on our bench-
mark. First, we simply examined at what rank the
first true hit was found. This is a very intuitive mea-
sure, however, and it does not measure the reliablity
of a match of a certain score. For some proteins there
are several possible correct hits and with this measure
the first match could be to any one of these proteins, while
for others there is only a single match. Second, as a
complementary measure, we have used specificity-sensitiv-
ity plots, or spec-sens plots, as in Rice and Eisenberg.6

The main advantage of this method is that it describes
the ability of a method to find all pairwise matches in
the benchmark. The sensitivity is based on the model’s
ability to find all members of the same fold. In other
words:

SENS(score) � TP(score)/(TP(score) � TN(score)) (3)

where TP(score) is the number of true hits that have a
score above score, and TN(score) is the number of true hits
with a score less than score. The specificity measures the
probability that a pair of sequences with a score greater
than a certain threshold really belong to the same fold. The
specificity is defined as:

SPEC(score) � TP(score)/(TP(score) � FP(score)) (4)

where FP(score) is the number of false hits that have a
score above score and TP is defined as above. The sensitiv-
ity is plotted as a function of specificity, each point in the
plot corresponding to a certain score. One difference
between our two measures is that the spec-sens curves
represent a method’s ability to recognize all proteins from
the same fold (but from different families), while the
simple counting method measures the ability of a method
to identify any member of the same fold (but from another
family).

RESULTS AND DISCUSSION

Every two years there is a community-wide effort, CASP,
to analyze protein structure prediction methods by blind
predictions, allowing predictors to ‘‘guess’’ the structure of
soon-to-be solved protein structures.27 At the second CASP
process in 1996, five groups were selected for the best
performance in the threading category. One of these groups
used predicted secondary structures,7 another group used
hidden Markov models (HMM),2 a third group used a
hidden Markov model that only used secondary structure
and matched a predicted secondary structure against this
model.8 The last two groups4,28 used either human expert
knowledge or a physical energy function in their threading
studies. The success of using HMMs and the idea of using
predicted secondary structures makes it a natural step to
try to combine these two methods, as we have done in this
study.

This study is based on matching all proteins in our test
set against all other proteins of the test set. Each protein is
classified as belonging to a protein family and as having a

certain fold, according to Scop.26 The Scop classification is
hierarchical, i.e., a fold is a superset of one or several
families, and thus two proteins might belong to the same
fold but to different families. Two proteins from the same
fold, but from different families, are not assumed to be
homologous but still have a similar structure. A match
between two proteins is ignored if the two proteins belong
to the same family, it is considered as a true match if the
proteins belong to different families but to the same fold,
and it is considered to be a false match if the proteins
belong to different folds. Using this benchmark, we have
compared the performance of the newly developed ssHMMs,
standard HMMs, and pairwise sequence comparisons
methods.

Secondary Structure Increases the Performance
of HMMs

Earlier studies showed that including predicted second-
ary structure sequence into single sequence-based search
methods increased the performance significantly.5,6,9 There-
fore, we believed that the same would be true for hidden
Markov models. In Figure 2 it can be seen that our
assumption are apparently correct, as the sensitivity of a
hidden Markov model is increased when the secondary
structure is included. For instance, at a specificity of 5%,
the sensitivity increases from 2% to 30% if the true

Fig. 2. A specificity versus sensitivity plot of HMM, predHMM, and
ssHMM. It can be seen that the sensitivity increases when predicted or
true secondary structure information is included.
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secondary structure is used and to 13% if the predicted
secondary structure is used (Table III). The fraction of the
possible hits that were ranked in first place is increased as
well, from 12% to 30% when using the secondary structure,
and to 19% if the predicted secondary structure is used
(Table IV). The increase in performance is similar to that
reported for single sequence-based methods; for instance,
Fischer and Eisenberg increased the fraction of hits found
in first rank from 54% to 65% by using predicted secondary
structures and the BLOSUM62 matrix.29 In the study by
Rice and Eisenberg, the sensitivity increased from approxi-
mately 15% to 30% when predicted secondary structures
were used at 5% specificity.

It should also be noted that our benchmark seems
significantly more difficult than the benchmark used by
Fisher and Eisenberg, as they were able to detect 54% of
the proteins in first place using sequence alignment meth-
ods, while we were able to detect only 17%. The difficulty of
the benchmark used by Rice and Eisenberg seems to be
similar to the difficulty of ours.

Using Multiple Sequence Information Increases
the Performance of HMMs

It has been assumed that using multiple sequences
improves the performance of sequence-based search meth-
ods. However to our knowledge, there has been no studies
showing that this is in fact true, using as complete
benchmark as the one we have used here. Figure 3 shows
that the sensitivity at a given specificity is increased for
models built from multiple sequences compared to models
built from just one sequence. This is most obvious for the
ssHMMs, where at a specificity of 5%, the sensitivity
increases from 17% to 30% when using multiple sequences
to build the ssHMMs, compared to single sequences. A
clear increase can also be seen for ordinary HMMs, and
when using predicted secondary structures. The number of
sequences placed at rank one is more than doubled when
building models from multiple sequence alignments. They
increase from 14% to 30% for the ssHMMs, from 10% to
19% using predHMMs, and from 4% to 12% for the
ordinary HMMs (Table IV). It should be remembered that
when using multiple sequence alignments we have used
only automatically-created alignments from HSSP, and for
many proteins these alignments do not contain enough

TABLE III. Sensitivity of Methods
at Specificity � 5% and 10%

Name Spec � 5% Spec � 10%

HMM 2% 1%
predHMM 13% 1%
ssHMM 30% 8%
HMM-single 0% 0%
predHMM-single 6% 0%
ssHMM-single 17% 0%
HMM-pam 11% 6%
predHMM-pam 11% 2%
ssHMM-pam 26% 7%
HMM-pam-single 8% 2%
predHMM-pam-single 17% 5%
ssHMM-pam-single 24% 11%
Blast2 3% 2%
Fasta 5% 3%
ssearch 13% 6%

TABLE IV. Fraction of Possible True Hits Placed
at Ranks 1, 5, 10, and 25

Name #1 #5 #10 #25

HMM 12% 24% 32% 45%
predHMM 19% 38% 47% 59%
ssHMM 30% 49% 59% 69%
HMM-single 4% 15% 24% 38%
predHMM-single 10% 29% 38% 51%
ssHMM-single 14% 34% 44% 56%
HMM-pam 16% 30% 40% 51%
predHMM-pam 20% 36% 45% 57%
ssHMM-pam 27% 48% 56% 67%
HMM-pam-single 10% 22% 31% 44%
predHMM-pam-single 17% 35% 44% 55%
ssHMM-pam-single 21% 39% 48% 60%
Blast2 17% 30% 37% 48%
Fasta 13% 25% 37% 43%
ssearch 17% 25% 30% 40%

Fig. 3. When multiple sequence alignment is used (bold lines) the
sensitivity of the hidden Markov models is increased, compared to using
only single sequence alignments. In (a) standard HMMs are used, in (b)
predHMMs, and in (c) ssHMMs.
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diversity to perform as well as HMMs created from a more
diverse set of sequences.

Using a Substitution Matrix Increases
the Performance of HMMs

A standard hidden Markov model does not include any
information about which substitutions are most likely, i.e.,
a substitution matrix is not used. If the protein family is
large enough and diverse enough this should not be a
problem. However, in our benchmark, we have many small
families with low diversity. By including a substitution
matrix we attempted to overcome this problem. As can be
seen in Figure 4a,b, the use of a substitution matrix when
building the models increased the sensitivity significantly.
For hidden Markov models built from multiple sequence
alignments, the sensitivity increases from 2% to 11%, at a
specificity of 5%, when using the substitution matrix.
When comparing Figures 4a and 3a, and Figures 4a and
4c, it can be seen that the use of a substitution matrix
helps more than the use of multiple sequence alignments.

In Figure 4d,f, it can be seen that the ssHMMs and
predHMMs built from single sequences have higher sensi-
tivities when using a substitution matrix than when not.

However, for the ssHMMs built from multiple sequence
alignments, using a substitution matrix does not seem to
improve the performance. On the contrary, the sensitivity
decreases from 30% to 26% when the substitution matrix
is added to the ssHMMs (Fig. 4e, Table III). This indicates
that the prior distribution might not be optimized for the
secondary structure HMMs. For these, another prior,
where the secondary structure is included, could be used.

When Creating a Hidden Markov Model It Is Best
to Use Multiple Sequence Alignments and
Substitution Matrices

From the previous results it was concluded that the use
of multiple sequence alignments and substitution matrices
give the best results. A comparison between the HMM-pam
methods with or without secondary structure information
can be seen in Figure 5. At a low specificity (�5% for
predHMM and �10% for ssHMM), the secondary struc-
ture HMMs have a higher sensitivity than the ordinary
HMMs. For higher specificities, however, the ordinary
HMMs have a higher sensitivity. One possible explanation
of this is that the ssHMMs give very high scores to some
false matches. When studying false matches with high
scores for predHMM-pams, we found that there were a few
families that caused a very large part of these false
positives. The majority of these matches were between

Fig. 4. The specificity is increased when a substitution matrix is used
(bold lines). In (b,d,f) HMMs created from single sequences are used,
while in (a,c,e) multiple sequence HMMs are used. In (a,b) standard
HMMs are used, in (c,d) predHMMs, and in (e,f) ssHMMs.

Fig. 5. A final comparison of HMMs that use multiple sequence
information as well as substitution matrices. It can be noted that at higher
specificities the sensitivity is lower for the ssHMMs and predHMMs than
for the HMMs that do not use secondary structure information.
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different families that all consisted of a various number of
alpha helices. From this data, it seems plausible that the
contribution from the secondary structure was ranked too
high in comparison with the contribution from the se-
quence. The secondary-structure-based HMMs still place
more correct sequences at high ranks than the ordinary
HMMs (Table IV). For example, the number of sequences
correctly ranked as number one is increased from 16% to
27% when adding the secondary structure, and to 20 %
when using predicted structures.

In Tables III and IV and in Figure 5, a summary of all
methods is shown. The ranks clearly support the conclu-
sions that using multiple sequence alignment, predicted
secondary structures, and a substitution matrix improves
the performance of HMMs. For instance, when using a
single sequence HMM, only 4% of the probe sequences
recognize a correct target. This figure increases to 12%
when using a multiple sequence alignment, and to 10%
when using either a predicted secondary structure or a
substitution matrix. When using a combination of all three
methods, the number of probe sequences that recognize a
correct target is increased further to 20%. The number of
probes that recognize a correct target among the top 10
hits is increased from 24% to 31–38% when using multiple
sequence alignments, predicted secondary structures, or
substitution matrix, and to 45% when using all three.

The sensitivity shows a pattern similar to that of the
ranks, although there are also some notable differences.
First, it can be seen that predHMM-pam-single performs
better than the HMMs that use multiple sequence align-
ments. This might indicate that the use of substitution
matrices is not the optimal choice with the ssHMMs, as
discussed above. Second, the standard HMMs that use
substitution matrices perform better at higher specificity
than the predHMMs. This might be due to the occurrence
of a few false positives that have very high scores, as
described above.

HMMs Perform as Well as but not Better Than
Single-Sequence-Based Methods

The performances of all these methods were compared
with the performance of single-sequence-based methods—
fasta, blast, and ssearch. It could be assumed that the
performance of ssearch should be similar to the perfor-
mance of single sequence HMMs using a substitution
matrix. However, ssearch performs better than HMM-
single, as can be seen in Tables III and IV. Actually, all the
single-sequence-based methods perform significantly bet-
ter than HMM-pam-single and when it comes to ranks,
they actually perform as well as standard HMMs. When
studying the spec-sens curves it can be seen that the
performance of blast and fasta are not superior to HMM-
pam-single. However, ssearch still performs as well as
standard (multiple sequence) HMM methods.

The reason why the multiple sequence information does
not improve the performance further is probably due to the
following. (1) In our benchmark, 45% of the HMMs are
built from sequences with less than 10 sequences and
HMMER is not optimized for small families. Furthermore,

even in the case where there are several sequences they
are often very similar, and thus still fail to provide the
necessary diversity. (2) The gap penalties in a HMM are
calculated individually for each position in the model.
However, when an HMM is created from a family with low
diversity, and thus few gaps, the gap penalties will not be
optimal for recognizing a distant member of the family. (3)
Blast, fasta, and ssearch use an extreme value distribution
to fit the scores. This method has been included in HMMER-
2.0, and consequently the performance has improved (data
not shown). (4) When a hidden Markov model is created, it
includes a process of optimizing the transition probabili-
ties. Ideally, one should make several tries and create
several hidden Markov models for a given sequence family
and then use the one that performs best. However, this
was not possible in this study, due to computational
limitations. All these points show some of the limitations of
the current generation of HMMs, but also indicate some
easy methods to improve the performance of HMMs.

In fold recognition it is not enough to identify the correct
fold of a protein, it is also necessary to make the correct
alignment between the two proteins to obtain three-
dimensional studies. In the alignments obtained for
ssHMM and the other methods from our benchmark,
however, most pairs in our benchmark contained proteins
that were very distantly related, or not homologous at all,
and these proteins are extremely difficult to align correctly.
We were, unfortunately, not able to detect any significant
improvement of the alignments using ssHMM (data not
shown). In a future study we plan to create an alignment
benchmark using a set of less difficult proteins to align and
examine whether ssHMMs, or standard HMMs, are able to
align proteins better than standard pairwise sequence
methods.

Use of ssHMM in CASP3

The ssHMM method, together with other methods and
manual judgment, were used for blind predictions in the
CASP3 process.27 Three successful fold predictions were
made of CASP3 targets T0046, T0053, and T0071a. T0046
(gamma-adaptin, ear domain) is an IG-like fold, and
several methods (ssHMM, standard HMMs, and threader3)
consistently scored high for IG-like domains. For T0053
(CbiK protein), we mainly focussed on the threader re-
sults. Our best prediction was T0071 (Alpha adaptin ear
domain), in which, using ssHMM, we were able to identify
the first 125 residues as an IG-like fold. We were also able
to produce a rather good alignment, with 21 out of 125
residues correctly aligned.

Summary

The program package HMMER was modified to allow
the construction of hidden Markov models (HMMs) that
use the secondary structure, in addition to the amino acid
sequence, to model protein families. This was accom-
plished by adding a distribution over emission probabili-
ties for secondary structures to each match and insert
state in the model. It was shown that the resulting
secondary structure HMMs perform better than the ordi-
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nary HMMs, with both the true and the predicted second-
ary structures used to recognize proteins having the same
fold as the modeled sequences. We have also analyzed the
performance of automatically-created HMMs, using a rig-
orous benchmark. It was shown that using a substitution
matrix improved the performance of HMMs. Finally, it was
shown that the automatically-created HMMs did not
perform significantly better than single sequence based
methods.
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15. Bowie JU, Lüthy R, Eisenberg D. A method to identify protein
sequences that fold into a know three-dimensional structure.
Science 1991;253:164–170.

16. Rost B, Sander C. Prediction of protein secondary structure at
better than 70% accuracy. J Mol Biol 1993;232:584–599.

17. Hubbard JT, Park J. Fold recognition and ab initio structure
predictions using hidden Markov models and �-strand pair poten-
tials. Proteins 1995;23:398–402.

18. Eddy SR. HMMER—hidden Markov model software. http://
www.genome.wustl.edu/eddy/hmmer.html

19. Durbin R, Eddy S, Krogh A, Mitchison G. Biological sequence
analysis. Cambridge, UK: Cambridge University Press; 1998.

20. Sander C, Schneider R. Database of homology derived protein
structures and the structural meaning of sequence alignment.
Proteins 1991;9:56–68.

21. Frishman D, Argos P. Seventy-five percent accuracy in protein
secondary structure prediction. Proteins 1997;27:329–335.

22. Altschul S, Madden T, Schaffer A, et al. Gapped blast and �-blast:
a new generation of protein database search programs. Nucleic
Acids Res 1997;25:3389–3402.

23. Pearson W. Comparison of methods for searching protein se-
quence databases. Protein Sci 1995;4:1145–1160.

24. Abagyan R, Batalov S. Do aligned sequences share the same fold?
J Mol Biol 1997;273:355–368.

25. Brenner S, Chothia C, Hubbard T. Assessing sequence comparison
methods with reliable structurally identified evolutionary relation-
ships. Proc Natl Acad Sci USA 1998;95:6073–6078.

26. Murzin AG, Breener SE, Hubbard T, Chothia C. Scop: a structural
classification of proteins database for the investigation of se-
quences and structures. J Mol Biol 1995;247:536–540.

27. Moult J, Hubbard T, Bryant S, Fidelis K, Pedersen J. Critical
assessment of methods of proteins structure predictions (CASP):
round II. Proteins Suppl 1997;1:2–6.

28. Murzin A, Bateman A. Disant homology recognition using struc-
tural classification of proteins. Proteins Suppl 1997;1:105–112.

29. Henikoff S, Henikoff J. Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci USA 1992;89:101915–10919.

76 J. HARGBO AND A. ELOFSSON



170


